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ABSTRACT 

Two topics in the theory of sound are covered. 

-In Part I the generation and transmission of sound 

in two dimensional ducts is investigated. The ducts contain 

a basic uniform background flow. In one case the duct is 

taken to have parallel plane walls, and in another case the 

duct contains a finite section of greater width. The sound 

is generated by a piston vibrating sinusoidally, set in one 

of the duct walls, perpendicular to the flow. The sound field 

is found and the force on the piston and the net powerflow 

into the duct are also calculated. The calculations are 

undertaken with no viscous effects being taken into account. 

In Part II ducts with elastic walls or with semi-

infinite elastic - semi-infinite rigid walls are considered. 

The sound is generated by a point source or an incoming wave 

from the rigid part of the duct, respectively. Calculations 

are made for the acoustic field at points inside the duct 

and also for the radiating sound field outside the duct. 

Interesting effects, ai^ungst them "Leaky waves", are found in 

the radiating field. These results are for the limit of light 

fluid loading. Extensive use is made of the Wiener-Hopf 

techn
-

" que. 
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INTRODUCTION 

In many acoustical problems of practical interest 

the presence of a background flow is significant. Obvious 

examples are those of aircraft in flight and the flows of 

gases and liquids through pipes. 

Previous work such as that by MUNGUR § GLADWELL (24) , 

MORFEY (22), FFOWCS WILLIAMS £ LOVELY (12), DOWLING (11), 

TAYLOR (26) and lastly LEPPINGTON £ LEVINE (17) has revealed 

some surprising effects due directly to the presence of flow. 

In order to extend our basic understanding of flow phenomena 

it is desirable to study in detail some of the fundamental 

and relatively simple model problems that are amenable to 

mathematical analysis. 

This thesis is concerned with the effects of 

steady background flow on duct acoustics. It falls naturally 

into two separate parts. 

In Part I steady flow down a two-dimensional 

duct is disturbed by time-harmonic transverse vibrations 

of a piston set in one of its side^alls. 

Chapter 1 deals with the simplest case where the 

duct has parallel walls. A linearised boundary condition,to 

account for the piston motion,lead^ to an approximate solution 

throughout most of the flow region but near the ends there are 

essential nonlinear effects
 ,,T

hich have to be dealt with by 

detailed local analysis. This leads to the more interesting 

geometry in Chapter 2. Here the abrupt widening and 



narrowing of the duct generates further reflection and 

resonance phenomenon. 

The acoustic fluctuations in these problems have 

been caused by the motions of a side panel vibrating like 

a piston. A more realistic model for panel vibration has 

to consider its flexibility and this is taken up in Part II 

of the thesis which consists of Chapters 3 and 4. These 

chapters analyse the interaction between flow and bounding 

elastic surfaces. 

The simplest prototype duct problem is that where 

both sidewalls of a two-dimensional duct are elastic. This is 

studied in detail in Chapter 3. In order to analyse the 

interaction between flows and an elastic surface with an 

adjoining rigid surface a semi-infinite rigid/semi-infinite 

elastic duct is considered in Chapter 4. The complexity of 

the problem is such that tractable exact solutions have not 

been found,so in both cases emphasis was placed on a limit 

of specific interest
;
namely that of light fluid loading. 

Explicit expressions are obtained for reflection 

and transmission coefficients and for interesting beaming 

effects that persist to relatively large distances from 

the duct joint. 
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PART I 

THE GENERATION OF SOUND BY PISTONS IN DUCTS CONTAINING FLOW 
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INTRODUCTION 

The ^ervenxtion of sound in ducts has 

been studied by many authors, MOHRING (27) and MORFEY (22) 

?Lre amongs^he few who have considered the presence of 

a basic uniform background flow. It is the generation and 

transmission of sound in the presence of a basic uniform 

background flow that is investigated in the first part of 

this thesis. 

It is the aim of this work to undertake some 

detailed analysis of one of the most basic problems of this 

sort in order that we might understand more fully the results 

of problems of a more complex nature. To this end,in 

Chapters 1 and 2,we consider two-dimensional ducts that have 

walls that are both rigid and parallel. Sound is produced 

by the time harmonic oscillations of a piston set in a sidewall 

of the duct. 

In Chapter 1 we study the simplest case of the 

piston set in an infinite duct that has parallel walls and contains 

flow. The acoustic disturbances upstream and downstream of 

the piston are identified and these results used to evaluate 

the force on the piston and the total power flow into the duct. 

Either the Green's function method or Fourier transforms can 

be used for this analysis along with the method of Matched 

Asymptotic Expansions. The inner regions tt^e those around the 

piston ends and the outer region being the rest of the duct. 

In Chapter 2 the analysis of Chapter 1 is extended 

to a more complex geometry - that of an expansion chamber -
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still with a basic background flow. The flow around the 

piston is analysed in exactly the same way as before but 

Matched Asymptotic Expansions are also used to analyse the 

flow across the duct expansions. 

The acoustic disturbances are found in the 

expansion chamber and in the duct leading to and from it. 

Once again the force on the piston and the power flow into 

the expansion chamber and hence into the duct are found from 

these results. 
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CHAPTER 1 : The generation of sound by a piston in a duct 
containing flow 

1.1 INTRODUCTION AND SUMMARY 

In this chapter the velocity field of, the force on, 

and the work done by, an oscillating piston set in a side wall of 

a two-dimensional duct containing a basic uniform flow are modelled. 

In the linearised model, with inviscid and compressible fluid, the 

piston is represented by an oscillating line source at each end with 

an oscillating line source distribution in between. This linearisation 

of the piston effect is,however, not adequate for the calculation 

of the force near the piston ends. In these regions the shape 

of the piston has to be taken into account by a local transformation 

of the basic problem followed by a match with the first model. 

In section 1.2 a rigorous definition of the non-linear 

problem is given. This is then linearised to give the model problem 

to be investigated. The boundary conditions, with particular 

reference to the 'top hat
1

 piston profile, are also discussed here. 

In section 1.3 one of the two possible methods of attack 

(the Green's function method) is pursued. The other method, 

Fourier transforms, is investigated in Appendix 1. In section 1.4 

the theory for the work done (in the linearised theory) is 

developed. In section 1.5 the velocity potential calculated ir> 

section 1.3 is used along with the theory of section 1.4 to find the 

work done by the piston. 
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In section 1,6 inner and outer regions, near the piston ends, 

are set up. The inner solution is found in section 1.7 and then 

used in section 1.8, along with the outer solutions from section 

1.3, to find an approximation to the force on the piston. 

Discussion of the results takes place in section 1.9. 
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1.2 PROBLEM DEFINITION AND LINEARISATION 

Jnviscid, compressible fluid flows adiabatically in an 

infinite two-dimensional duct that has rigid parallel walls. In 

cartesian co-ordinates (x,y) the walls are at y = 0 and y = d. 
t 

The basic uniform flow, parallel to the walls and of constant 

magnitude U with velocity potential Ux, is perturbed by the small, 

time-harmonic, oscillations of a piston that is forced to vibrate 

about its mean position in the duct wall. As shown in Figure 1 the 

piston is set in the lower baffle between x = -a and x = a and 

its displaced surface is given by 

h(x,t) = Re{h(x)e~
1 U ) t

} . (1.2.1) 

y = d 

1 — 7 n y=o 
x=-a f x=a 

Figure 1 

If <{> is the total velocity potential for the fluid in the 

duct,then writing 

<f> = Ux + <\>
1 }
 (1.2.2) 

<j)j is the velocity potential of the disturbance, taken to be small 

compared to the basic flow. We now let 

= Re{<J>2 e"
i u ) t

} (1.2.3) 
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to take into account the periodic response of the disturbance 

to the piston. 

LIGHTHILL [ ( 1 9 ) equation (61)] gives, for the nonlinear 

equation of motion of the fluid , 

2 2 _ a* a
2

(j> 
c V

 * - —
 +

 2 —
 +

 ^
 9 x

 (1.2.4) 

at i i i j i j 

2 

where c is the local sound speed and V the Laplacian operator. 

The boundary condition on the duct walls is that there is 

no flow through them; 

8< t > ^ 2 

3y
 =

 3y~
 =

 dy~
 = 0 f o r a 1 1 x

> y
= d

>
 f o r

 l
x

l > a, y = 0 . 

(1.2.5) 

The corresponding condition on the piston surface is that tKc. sur-fcce. 

^ca^/ort:*material derivative is zero, that is 

(y-h(x,t)} = 0 on y = h(x,t) , (1.2.6) 

The velocity potential is calculated, to first order in 

h(x,t) (taken to be small compared to u) by linearising the equation 

of motion, (1.2.4), and the boundary condition on y = h(x,t) (equation 

2 
(1.2.6)) to one on y = 0 by neglecting terms of order ((f)̂ ) . 

After such linearisation equation (1.2.4) becomes 

2 V
2

 +
 (k

 +
 im ^>

2
 = 0 (1.2.7) 

where k = —.a wave number,and m = — the Mach number. The total (* • c 
f -- o 

velocity Uj,, the basic flow U, and the perturbations u are given 

by 
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H
T
 = u + 

3 ^ 3 ^ ' 

,lL~L C 

3x ' 3y 

o cjl ( lab Co^c) 

, U = (U,o), u = 
' 34»

x 

k
 ' 37" 

(1 .2 .8) 
3 < J ) . 

1 3 h 
Linearising equation (1.2.6) assuming h, and ^ 

are all small gives 

3h ah 
ay at ax 

on y = 0 (1.2.9) 

When expressed in stretched coordinates x^ = x(l-m ) 

2 -4-
y^ = y, K = k(l-m ) , and with 

<J>
2
(x,y) = ^

3
( x

1
, y

1
) exp{-imKx

1
> (1.2.10) 

equations (1.2.5), (1.2.7) and (1.2.9) become 

3(f> 

3y 

3

 = 0 for all x
1
, y

1
= d; ̂  | > \ V

Y
 = 0 (1.2.11) 

(V
2

 + K
2

H
3
 = 0 

1 1

 ( 1 - m V 

-imtfx 
1, 9h U 
J Si 

1 
at 

ah_ 
ax. 

(l-m ) 

,2 . 

(1.2.12) 

(1.2.13) 

where V^ is the Laplacian with respect to the new coordinates (x^,y^) 

and 

(x,y) = Re{cl)
3
(x(l-m

2

)"^,y) exp{-i(u>t + (1.2.14) 

l-m 

For some piston profiles, in particular the 'top hat' as 

described below, the solution breaks down at the piston ends because 

the perturbation is no longer small compared to the basic flow. In 

these regions the velocity potential will be calculated using matched 

asymptotic expansions based on the piston profile h(x,t) and the Mach 
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number m being small. 

The 'top hat* profile is defined as 

h(x,t) = hg{H(x+a) -H(x-a) }cosu>t (1.2.15) 

where H is the Heaviside step function, whereas the general piston 

profile has a general h(x,t) such that h(x,t) = h(x) coscot and 

max|h(x)| = h
n
. 

x
 u 

For the 'top hat' profile differentiation with respect to 

t gives no special problems but formal differentiation with respect 

to x gives 

h(x,t) = h
Q
{6(x+a)-6(x-a) }coso)t (1.2.16) 

where 6(x) is the Dirac delta function. This violates the condition 

8 h 

that t^t is small and the potential calculated by this procedure is 

regarded as an 'outer expansion' in the language of matched 

asymptotic expansions and equation (1.2.8) becomes 

r—
1

- = Re{c h_ [m{<5 (x+a) -6 (x-a) }-ik{H(x+a) -H(x-a) }]e
- 1

 } 
dy u 

(1.2.17) 

Although this has singularities at x = a and x = -a these infinite 

slope singularities are integrable and in the calculations of the 

work done by the piston they only appear inside integrals so they 

can be accepted and used in sections (1.4) and (1.5). However in 

order to calculate the forco on the piston
}
the flow in the small 

regions around the piston ends, the inner approximation, will have 

to be investigated further. 

The latter half of expression (1.2.17) represents a distribution 

of line sources between x = -a and x = a. These sources, of 

constant strength proportional to wh^,represent the flux of the 
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piston's volume forced into and then pulled out of the flow, linearised 

to its mean position on the baffle. 

The first half of expression (1.2.17), two pulsating 

line sources (at x = -a and x = a), represents the blocking effect 

that the piston's ends would have were they to actually be present 

in the flow. Again linearisation back to the mean position on 

the baffle has taken place. 

From here it is possible to proceed in one of two ways. 

Firstly we could' find the Green's function for the problem 

and use that to find the linearised velocity potential. Alternatively 

we could take Fourier transforms of the equation^solving the 

resulting inversion for the velocity potential. 

The first method, applied to the 'top hat' profile, will 

be detailed in the main text whereas the second method, for a 

generalised piston profile, is given in Appendix 1. 
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1,3 GREEN'S FUNCTION METHOD 

In order to employ the Green's function method we must 

first find the Green's function G(x^,y ,XQ,Y
q
) for the problem. 

The function G C x ^ , X q , Y q ) satisfies the following equations and 

boundary conditions -

( V ^ + K ^ G = 6 ( x
r
X

0
) 6 ( y

r
Y

0
) , (1.3.1) 

an outgoing wave -form «.t i^fcm'ty
 } 

3G 
r — = 0 on the duct walls. 

Then ^ is given by 

9(J> 

^3 /
G

 3 ^ r
d s

0 t
1

-
3

-
2

) 
s

0 

where S q is all the duct surfaces ( X q , Y q ) and n is the normal there. 

G can be found, by a superposition of separable solutions, 

to be 

00 

G(x y X Y ) = ^ - e x p { - i K | x -X |} - J I f 
n=l

 1

 n 

exp{-Y
n
|x

1
-X

( )
|} c o s C ^ y p cosC^jp Y

Q
) 

(1.3.3) 

where 

2 2 i ~ 2 ^ 
Y

n
 = (C-jO -K ) for -j- > K, -i(K -(-j-) ) for -j- < K 

nn 
and it is assumed that K is not a multiple of -j-

(1.3.4) 

The velocity potential <f>̂  can then be found by taking the 

boundary conditions from equation (1.2.17) (after transforming into 

stretched coprdinates) with G from equation (1.3.3) and substituting 
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into equation (1.3.2) to give after integration: 

For - a < x < a 

kfx-am") kfa—mx") 
(jjj 2~ (sinwt [ cos ( — — — 2 " ~ ^ 

k d l-m l-m 

N h 
+ I r-r

 +

 U)sin(F (x-a) + art) 

n=l d B
n
( l V )

5

 n " 
- ( g — + U) sin(E

n
(x+a) +u)t) +u)( p—)sinwt}cos 

n n n 
00 h

n 
+ I Re{ V - y - r

 + u

) exp{-iF (x-a)} - U) exp{-iE fx+a) } 
/V+l dB (l-m )

5

 n
 n b

n
 n 

n 

1 1
 -lttt 

+ w (

r " " F ~
) ] e c o s

 ^ ci.3.5) n n 

where 

i B . B 
c mk ^ n „ mk n ^ 
F = 9 + 5-T i E = , for n < N 

l-m (l-m ) l-m (l-m ) 
i B

 i IB 
c mk ^ n „ mk n ^

 XT F = + tTX" > E = « - — , for n > N 

n

 l-m
2

 (l-m )
 n

 l-m
2

 (l-m
2

)* 

N = C
 k d

2
 , ] ; B = |K

2

 - (2£) V (1.3.6) 
2 11 u 

-m ) IT 
nir 

Here we must exclude the resonance condition K = since 

in such circumstances the assumption that a time-periodic solution 

exists is invalid. For this case one would have to study the initial 

value problem, and this is not pursued here. 

For x > a 

c
2

h c

 "o . , ka . j. kx , 
= - • •, s m ( r — ) cos{o)t - , — } n 3 71 Y

1 tod
 v

 1+m
J

 1+m N 2h
Q 

- I 7~T { + U) sin(aE )cos(w
+

+xE ) 
1 dB (l-m ) n

 d n 

n
 J 

00 

+ I exp{-xB }(l-m
2

) c o s ( ^ ) {constantxcos(2!**-. + tot) 
N+l

 a

 1-m" 

mkx 
+ constantxsin( j + cot)} 

l-m 
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for x < -a is similar to (1.3.7)jthe main difference being that 

E^ is replaced by F
n
» 

The far field downstream disturbance potential thus consists 

of a y-independent travelling wave, the first term of expression 

(1.3.7), a set (the sum up to N) of y-dependent travelling waves, 

and an infinite set (the sum from N+l to of terms that decay 

exponentially with distance from the origin. The upstream potential, 

similar in nature to the downstream potential, contains the same 

types of terms in the same numbers. 

Having found the velocity potential in the vicinity of the piston 

as well as upstream and downstream of it^we now calculate the rate 

ofwork done by the piston on the fluid, that is the amount of work 

needed to be done to force the piston to sustain this periodic motion. 
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1.4 RATE OF WORK DONE BY PISTON: THEORY 

We will now calculate the net, time-averaged, energy-

flux into the duct which is the average rate of work done by the 

piston (W). 

W = < / p f £ d s > (1.4.1) 
S

1 

where <> indicates time average, p is the pressure on the piston 

and s^ is thepiston's surface linearised to y = 0. 

If pQ is the fluid'suniform density at infinity then 

Bernoulli's equation gives 

p - constant - p
Q
 (ft • \ (ft- f t - ) } . (1.4.2) 

1 1 

Taking the reference pressure at infinity to be zero and denoting 

the excess pressure by pressure p we have 

l l 

This then gives
;
 after linearisation with respect to the perturbation 

magnitude 

8<{> 9tJ) 

P
 =

 -
 }

 . C1.4.4) 

LIGHTHILL[( 19 ) equation 65] tells us that 

ap*
 a N

* 

f t
 +

 air = ». C1.4.53 

where 
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and 
2 

E

*
 =

 1
 p

O
u 2 +

 1 ^
 p 2 +

 -
) P

 (1-4.7) 

and p is the excess density. 

One can think of E* and N* as giving a measure of the excess 

energy and energy flux respectively; such an interpretation requires 

some caution, however, since second order terms in the acoustic 

fluctuation have been ignored. As E* and N* are of second order, 

if a true measure of the-excess energy and energy flux were required 

(which here they are not) the second order terms would have to be 

included. 

2 
Now to order (h(x,t)) , that is to first order, equation 

(1.4.1) gives 

W = < / N.* dx^> (1.4.8) 
S

1 

which after substitution for p,p,U,u becomes 

" " - - / P o ^ M l r ^ l ^ x - O C h )
3

 . (1.4.9) 
S

1 

It can be shown that < J N.*dx.> is path independent. That 

s
1

 1 1 

is to say < f N*ds> over any path s from x = -a to x = a in or 
s 

bounding the fluid will give the same result. 

Integration of (1.4.5) over any closed fluid volume v, with 

surface s yields 

8N * - 9 
/ 1 dv = /N.* ds. = Jt J E *

 d v

 (1.4.10) 
V s

 1 1 v 

but as the time average of the right hand side of equation (1.4.10) 

is zero it follows that 
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< / N.*ds.> = 0. J

 1 1 

The integral (1.4.8) can thus be evaluated over any surface S 

from A to B (Figure 2). In particular, since N* has zero normal 

component on the rigid duct walls 

Itf = / + / (1.4.13) 
FE CD 

E D 

Figure 2 

In general the rate of work done by the piston, W, is given 

W = < / N.*ds.> (1.4.14) 
S
 1 1 

and although N* and E* are not the true energy flux or excess energy 

their integrated values give the true power flow. 

Proceeding in a different way, since other second order terms 

have to be properly accounted for, CANTREILand HART ( 4 ) showed, by 

considering the equations of motion up to and including second order 
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terms, that the net, time-averaged, contribution of these other terms 

in the velocity to the integral was zero. Such a powerful and 

algebraically complex proof, involving all second order terms, is 

not required here. 
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1.5 RATE OF WORK DONE BY PISTON: CALCULATION 

Taking the integral form of the perturbation velocity-

potential (A1.6) and substituting into equation (1.4.9) yields 

for the net, time-averaged work done by the piston 

p
n
a) 

N - Re 1/f/f 
16tt -oo 

i - f g g j - (UT+UJ) (Ur-W)H(r)H(T) x 

x exp i{-Ty+sy-sx-rx}dxdrdydxds | . (1.5.1) 

The x and y and the r and T integrations can be undertaken without 

specific knowledge of the profile transform H (the Fourier transform 

of h) to give 

P
0
w 

W = - - f - Re 
4tt 

( U s W )
2

 H(s)H(-s) * yd
 d S

 •
 ( 1

-
5

'
2 ) 

H(s)H(-s) is an even real function and if the piston is finite 

/v 

H(s) is also analytic. The path of integration, L, is along the real 

axis with indentations in the upper half plane for poles to the left 

of the origin and in the lower half plane for poles to the right. 

The integrand is wholly imaginary for real s so W can be evaluated 

on sight to be iri times the sum of the residues (times the appropriate 

sign) 

W = 

p

o
U ) 

4 d ( l - m V 

a - m V
 u

 w
 2

~ k
 +

 w
 2

 k -k_ j 1

 1+nr u + m 1+nr
 v

l-nr
 v

l-nr
 v

l-m
 1 

2k 

2 N , 2 2 
+

 % F " l
( U E

n
+ a 3 )

 "
C E

n
}

 "
(

-
E

n
} + ( U F

n
+ a

°
 S ( F

n
}

 . 
1 n 
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For the 'top-hat' profile where h(x) = h
Q
[H(x+a)-H(x-a)] 

h
 2

 c 
w = +

s i n
2

( ^ ) } 

h
 2

p
n
io N

 n

 2

 o „
 2

 o 

+
 { J i • U) Sin

2

 aE
n
 • ( f • U) sin

2

 a P j ) , 
2 - . . . 

d(l-m ) 1 n n n 

(1.5.4) 

Alternatively these results could be obtained by substituting 

the expansion for ^ into either integral for W and then integrating 

each individual term of the expansion separately. The results 

can also be obtained, because of the relationships documented in section 

1.4, by calculating W as in (1.4.13) using either the Fourier 

transform integral or the series expansion for ^ and then integrating 

over any two surfaces x = constant across the duct (one upstream 

and one downstream). 

We see in equations (1.5.3) and (1.5.4) that the decaying modes 

of the potential do not contribute to the work done. The surfaces 

of integration do not have to be sufficiently far up or down the duct 

for the decaying modes to be small as their contribution is identically 

zero. The contributions from the travelling modes are easily 

identifiable as to which mode they come from. The first terms of 

expressions (1.5.3) and (1.5.4) come from the plane waves which do 

not depend for their existence on the size of k relative to the duct 

widthd and are always present even for very small d. 

If U = 0 (no flow) then expression (1.5.3) gives the 

result for a piston in a baffle in a duct namely 

p u)
3

 N 
W = H(k) H(-k) + I B ^

1

 H(B
n
) H(-B"

n
)} (1.5.5) 

n=l 

where B = |k
2

 - C 
n
 1

 d
 1 
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and, more accurately, expression (1.5.4) for small m becomes 

h

n
2 p

n ^ ? 7 N _ _
 2 

W = {c (sinka) + 2u> Y B (sina B ) } 
d n n' 

n=l 

2 2 2 - 1 2 
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d n n
v

 ^ d
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T
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) 

(1.5.6) 

The difference between expressions (1.5.3) and (1.5.5) and 

(1.5.4) and (1.5.6) (with m = 0) is the extra amount of work done 

by the piston against the flow whilst maintaining its periodic 

motion. In expression (1.5.6) the effect of the flow, for small m, 

is much clearer in that it is represented by the additional terms. 

In the limits ka 0 and d °° this problem reduces 

to the elementary one of a compact piston in an infinite baffle 

bounding a semi-infinite fluid region. For this problem the work 

rate, W . is known to be, HARDING-PAYNE (13 ) 
a 

M _ ^ y. 3
r i
 _2

y
-5/2

 r a
 ^ m — ^ md-^^ c 

-jdl̂  ^0 0 v. - j L.J. . 2
 J

 '
 wvv

-"
tt

'
 J

 Li.o./J 

\ 

and indeed expression (1.5.4) does reduce to this in the appropriate 

limits. 
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1.6 INNER AND OUTER REGIONS 

An approximation to the force, F, on the piston will 

now be calculated. F is the integrated pressure across the piston 

surface and is therefore given by 

F = / pds (1.6.1) 
s 

In the linearized theory of sections 1.2 and 1.3 the velocity 

potential has a singularity proportional to log r (where r is 

the distance from either piston end) so that p has a non-integrable 

singularity of order (x±a)~* as x ±a. This arises from the 

linearisation of the boundary conditions, which is clearly invalid 

near the piston ends as already mentioned. We thus regard the 

previously calculated potential as an "outer expansion" that should 

only hold for r >> h^. In the small inner region at each end of 

the piston, r << a, W2 take the full boundary conditions and calculate 

an approximation to the potential, based on the local dominant small 

length scale Iiq, using the method of matched asymptotic expansions. 

Consider first the flow around the right hand piston end 

x = a. Rescaling the flow with respect to h(t) such that 

X =

 HIT)
 ; Y = y / h W

 a.6.2) 

gives a new problem, flow over a stationary step as shown in Figure 3. 

The problem with flow has thus been replaced by a new static one 
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<|>
y
 = h(t)h{t) 

B 

(0,Q) c 

i = o 

D 

Figure 3 

The boundary conditions in this new system are 

a 
9Y 

on Y = 0, X > 0 

h(t)h(t) on Y = 1, X < 0 

(1.6.3) 

34> 
3X 

= 0 on X = 0, 0 < Y < 1 

,2 „2 

(1.6.4) 

However the limit of <f> as | X +Y | °° is not yet known and will be 

determined by matching the inner solution, expanded in powers of 

the small parameters h(t) and m , to the outer solution expanded in 

a similar way using the method of VAN DYKE ( 27 ). 

i 2 21 

In Appendix 2 the limit as |X +Y | °° of <}>(X,Y) is found 

by this method to satisfy 

$ = U h(t)<|> + constant + higher order terms (1.6.5) 

where <j> is 0(1) but unknown. 

Substituting expression (1.6.5) into equation of motion (1.2.6) 

shows that 

V <j) = 0(h(t) , h(t)m,m ) in the inner region (X,Y) (1.6.6) 
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so 

2 ^ 2 2 3 
V (J) = 0(h(t) m, h(t) m , h(t)m ) in the inner region (X,Y) 

(1.6.7) 

To solve for <j> let <f> be denoted by in the inner region 

and <J>
0
 in the outer region. In the inner region the equation of 

motion (1.2.4) has been reduced to Laplace's equation to at least 

the first few orders thus making the flow not only quasi-static 

but almost incompressible as well. First we find the inner solution 



- 33 -

1.7 INNER SOLUTION 

The inner solution d>. satisfies 
1 

2 ' * 4 
V = 0 to order (parameter) (1.7.1) 

Hi = o ^ j 1 

8Y 

0 on Y=0 , X>0 

L h(t)h(t) on Y=1 , X<0 
(1.7.2) 

2 7 

<f>i matches with <j> as |x +Y | « ( 1 . 7 . 3 ) 

Geometry as in Figure 3 . 

In order to solve for d>. we consider a transformation that Y

i 

maps the step into an easily analysed straight line. 

Consider the Schwartz-Christoffel transformation 

z = ^ { ( C
2

- l ) ' + cosh"
1

^) (1.7.4) 

where z = X+iY, c = £+in. This maps the step ABCD of Figure 3 

onto the straight line A'B'C'D' of Figure 4. 

B 

•1.0) 

C 

(1.0 

D 

Figure 4: C-plane 

If ty is the potential in the C-plane then the equations (1.7.1), 

(1.7.2) and (1.7.3) become, on putting ^ = c+1 
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BTln 

0 on T)
l
 = 0

 ;
 > o 

£ 
h C t ) h ( t ) { ^ y } on n

1
 = o

j
 ^ < 

= 0 

<t>(XY) = Re{0/ (z)} = Re{W (C,(z))} 
/ z C,̂  1 

ci.7.5) 

(1.7.6) 

(1.7.7) 

where W
z
( ) denotes the complex potential in the z-plane. 

The general solution to this problem can be found; it is 

•
 x
 = Re{- [

C l
l o g

? 1
 + \ ( l o g c ^

2

 • F
l C l

+ F
2
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ir 

+

 ^iR
 +

 ^ i r
1 [ C

1
+ F

3
] + U a } ( 1

-
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-
8 ) 

where <{>.„ satisfies 
lR 

V i R
 = 0 (1.7.9) 

8<{>. 
iR 

an-

o on ^ > 0 

h(t)h(t)
{ 

TT
 U

C
1
- 2

J 

n x = o 

r
) o n r < 0 n = 0 

h 

(1.7.10) 

and F^, i=l,2,3 are constants as yet undetermined. They can be found 

by matching with the outer expansion. This is not done here since 

these constants prove to be not relevant in the calculation of the force, 

The first part of expression (1.7.8) comes into the solution due to 

the flux through the upper half of the step, the second half comes 

from the eigensolution of V^ip = 0, = 0 on all boundaries. 

A similar calculation yields the potential for the flow around 

the other end of the piston. 
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1 . 8 THE FORCE ON THE PISTON 

The inner solution of section 1.7 holds in 

|(x±a)
2

+y
2

 « a (1.8.1) 

whereas the outer solutions hold in 

|(x±a)
2

 + y
2

|^ » |h(t)| , |X
2

+Y
2

| » 1. (1.8.2) 

Both solutions hold when 

|h(t) | « | (x±a)
2

 + y
2

| * « a, |x±a|->0 and |x| +
 00

 (1.8.3) 

We can write equation (1.6.1) as 

-a+X a-y 

F = pdx pdx + pdx " (1.8.4) 

-a -a+X a-y 

where X and y are arbitrary except for the stipulation that 

|h(t)| « X,y << a (1.8.5) 

that is both X and y lie in the regions in which both the inner and 

outer solutions are valid. 

For the second term of expression (1.8.4) the outer solution 

is valid and expression (1.4.4), linearised to y = 0, can be used 

for the pressure. 

For the first and last terms of expression (1.8.4) the outer 

solution is no longer valid and the inner solutions, with expression 

(1.4.3) for the pressure, must be used instead. 

Substituting the required formulae into these integrals and 

expanding in powers of m and h(t), rejecting all terms wholly 

dependent on X and y (because they are arbitrary so cannot appear in 
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the answer) gives for the force on the piston 

2
 h

0 1 
F = 2p

rt
 a) -r- { ; — ( k a coscot - sin ka cos(ka-wt)) 0 d k^ 

N _
3
 _ 

+ J,
 B

 [2aB cosiot-sincot-sin(2aB -cot)] 
n=l

 n 

— 3 — — 
+ T B [l-2aB -exp{-2aB }lcoscot} 

, n
 L

 n
 r

 n 
n=N+l 

+ 2p
Q
U

2 coscot logJhgCoswtl + 0(U 2 h(t ) ) , (1.8.6) 

The first term in this expression for F comes from that part 

of the potential that has no singularity at the piston ends. It could 

be found by letting X and y tend to zero in the first term in the 

power series expansion
;
in h(t) and m^ of the second integral of 

expression (1.8.4). 

The second term of expression (1.8.6) is that contribution 

to the force that comes from the discontinuities at the piston ends. 
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1.9. DISCUSSION 

T h e most significant fact in this calculation is that the 

singularities in the model problem, caused by the piston ends, do 

not have to be accounted for when calculating the power flow W. 

This is because the time-average of the singularities in this 

part of the problem is integrable. 

However, in the calculations of the force F(t), where 

no time average is taken, full account of the end contributions must 

be taken. This leads to a large fluid-loading, of order h(t)log|h(t)|, 

which is larger than the linearised quantities of order h(t). 

We should note that the power flow W and the force on the piston 

F(t) are not independent
}
 since 

W = <-o3h
0
sino)t F(t)> (1.9.1) 

If this time averaged quantity is evaluated using expression 

(1.8.6) for F(t) it is found that the log term has zero average. 

The leading term of this agrees with the leading term of expression 

(1.5.6). Thus 

h
 2

p N 
W = °

d

 0

 {c
3

(sin ka)
2

 + 2co
3

 \ B
n
~

3

 (sinaB
n
 )

 2

} + 0(h(t)m
2

) 
n=l 

(1.9.2) 

Note that there are no terms of order h(t)in in equation 

2 
(1.8.6) and therefore no terms of order h(t) m in expression (1.9.2). 

This is not surprising since reversing the flow in this symmetric 

problem (changing the sign of m) should not affect the total force 

on the piston or the work rccke-
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Linearisation of Lighthill's equation lead to a standard 

problem but the model broke down at the piston ends. When the 

behaviour of the fluid at the piston ends was properly treated, 

however, we found that this inviscid model gave a finite force on 

the piston. Viscosity need not be taken into account to make the 

force finite and the inviscid solution made a sound first 

approximation to the force and the work done. 



- 39 -

CHAPTER 2: The generation of sound by a piston set in an 
expansion chamber in a duct containing flow. 

2.1 INTRODUCTION AND SUMMARY 

In this chapter the calculations of the velocity potential 

for the force on and the work done by, a piston are extended to a 

more complicated and thus a more physically realistic geometry. 

The same linearised model for the piston as was used previously is 

employed. 

The expansion chamber is a wider region of duct for which the 

inlet to and outlet from are not necessarily of same width. They 

contain a steady background flow. 

The solution from Chapter 1 is employed and as before it 

breaks down in the vicinity of the piston ends. Details of the local 

flow are just as before so their calculation will not be repeated 

here. 

The solution also breaks down near the changes in duct width 

and the method of matched asymptotic expansions is used along with a 

Schwartz-Christoffel transformation .to bridge this region. 

The solution for the velocity potential can then be used 

to calculate the force on the piston and the work done by it in 

sustaining the motion. 

In section 2.2 the nonlinear problem is rigorously defined 

and the nature of the steady background flow is discussed. In 

section 2.3 the linearised problem for all the straight sections of 

duct is considered and in section 2.4 the potentials are expanded 

for the method of matched asymptotic expansions. In section 2.5 

the solution in one of the regions joining the straight sections is 
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found and expanded in preparation for sections 2.6 to 2.8 in which the 

Van Dyke matching is done. The rate of work done by the piston 

and the force on it are calculated in sections 2.9 and 2.10 

respectively. Section 2.11 contains discussion of the results. 
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2.2 PROBLEM DEFINITION 

Inviscid compressible fluid flows adiabatically through a 

two-dimensional duct whose geometry abruptly changes from width 

2d^ to 2d^ and then to 2d^, with d^ > d^, d^ > 

Acoustic fluctuations to the steady stream are produced by 

the small amplitude, time-harmonic, transverse vibrations of a 

piston set in a side wall in the widest part of the duct, see 

Figure 1. The problem is to find the velocity potential when the 

piston amplitude is small compared with the other length scales in 

the problem and when the Mach number of the steady duct flow is 

small. 

Using cartesian coordinates (x,y) the walls of the duct are 

at 

±d
1
 for x < -L

1 

±d
3
 for -L

1
 < x < L

2 

±d
5
 for L

2
 < x 

(2.2.1) 

The magnitude of the basic flow for x << -L^ is U and it 

follows from conservation of mass that it must have the asymptotic 
Ud

x 

value —r— as x -> «>. Furthermore, as the width d„ << L, + L
0 5 3 1 2 

the steady flow within the expansion chamber will be nearly parallel 

Ud 

(away from the ends) and its speed will be . 

It can be seen from Figure 1 that the piston is set between 

x = -a and x — a on y — -d_ and it has the displaced surface given by 

h (x, t) = Re{h
0
e"

i a 3 t

}. 
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The regions shown in Figure 1 are as follows. Region 1 is 

from minus infinity to many duct widths to the left of x = -L^ 

and Region V is from infinity to many duct widths to the right of 

x = I^. Region III lies between many duct widths to the right 

of x = -L^and many duct widths to the left of x = L^. Regions II 

and IV overlap and join the other three as shown. 

The basic steady velocity potentials are: 

in Region I, = Ux + c^ = Ux (Cj = 0, say) (2.2.2a) 

Ud
x
 d

2 

in Region III, = x + c^ = aUx + c^ = U
2
x + c

3
(a = 

3 3 
(2.2.2b) 

U d

l
 d

l 
m Region V , = j - x + c

5
 = $Ux + c^ = U^x + c

5
(3 = ) 

5 5

 (2.2.2c) 

The velocity potential, with arbitrary multiplying factors, 

is calculated to first order in h(x,t) (small when compared^ 

by linearising the equation of motion and the boundary condition on 

y = -d^ + h(x,t) to one on y = -d^ as in the previous chapter. 

The approximations 4> ̂ , j = 1,3,5 j break down near x = -L^ and 

x = L^ because the flow there is no longer uniform. Matched asymptoti 

expansions will be used to find the velocity potentials in these 

regions, assuming that the parameters kd^ and m (a mach number) are 

« 1. 
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2.3 REGIONS I, III and V 

As in the previous chapter the equation of motion of 

the fluid is given by LIGHTHILL [( 19 ) equation 61] to be 

2„2. 3
2

<J) 3<(> 3
2

<|> 9<J) 3<f) 3% 
c v

 •
 =

 z f
 +

 dt a3Tat
 +

 a T bT B T W
 m

>
n

 = *>
2 

dt m m m n m n 

(2.3.1) 

where <J> is the total velocity potential, c the local sound speed and 

2 
V the Laplacian operator, <f> = $. for j = 1,2,3,4,5. For j = l,3,5w* 

* A /V 

$j = + where <f> - are the velocity potentials of the linearised 
A 

perturbations assuming ^ is small compared to the basic flow and 

2 
neglecting terms of order (<f>j) . This then gives 

A A 

3$. dtp. 3<j>. 

—jT • ^ a ^ > a ^ V '
3

'
2

* ) 

3<j> • 3<J>, 
Hj = C ^

1

 > a / ) (2.3.2b) 

IL = ( U
j S
0 ) (2.3.2c) 

where Hjj* H.j
 a n d

 Hj
 a r e

 the total velocity field, the perturbed 

velocity field and the basic velocity field respectively. 

A 

<J>j satisfies the linearised equation of motion 

2 A 2" 2" 
9 9- 3 <f>- 3 <J>-

 9
 3 (p-

.
 + 2 U j

 ^ • IK - J - . (2.3.3) 

Substituting = R e { ^ e
 i a ) t

} gives the convected form 

of Helmholtz's equation in each of the three regions 

V
2

^ = - {k + im. f^}
2

 f.
 ;

 j = 1,3,5, (2.3.4) 

U where k = — is a wave number, m = m = — a Mach number and m
7
 = am, 

I C 5 

m ^ = 3m are modified Mach numbers. 
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A A A 

Expressed in stretched coordinates x., y. where y. = y, 
£ 

x. = x(l-m.
2

)~
§

 with K. = k and 
J J J

 x  

= VjCXj.yj) } (2.3.5) 

equation (2.3.4) becomes 

( V A K .
2

) ^ = 0 (2.3.6) 

" 2 

where V_. is the Laplacian with respect to stretched coordinates. 

So 
- 9 -1 2"U 
<(>. = U.x + c. + Re{ip. (x(l-m. )

 2

 ,y)exp[-iwt-im.kx(l-m- )]} 
J J J J J J J 

(2.3.7) 

Region I 

Equation (2.3.6) with j = 1 gives 

( V ^ + K ^ V ^ O (2.3.8) 

with boundary conditions 

-

= 0 on y = ±d
1
 (2.3.9) 

3y 

an outgoing wave at minus infinity 

<f>̂  must match the potential in Region II as x -L^-0. 

Region V 

Equation (2.3.6) with j = 5 gives 

(V
5

2

+K
5

2

)ij>
5
=0. (2.3.10) 

with boundary conditions 
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3 ^ 
= 0 on y = ±d

5
 (2.3.11) 

an outgoing wave at infinity 

<{>£ must match the potential in Region IV as x L^ + 0. 

Region III 

A A A A 

Letting = <f>
3c
 + ^^^ where is the velocity potential 

due to a piston in a duct of width 2d
3
 with basic flow U^x, is 

thus the velocity potential representing the perturbations travelling 

along the expansion chamber , confined by reflection at each end. 
A 

The function 4>
3
^ is given in Chapter 1 and behaves as 

A

 ka ikx 
<f>„ ~ - ,• sin̂ j Re{exp{-io3t + j- }} for x » a 
3p 2kd

3
 l+m^

 F

 l+m
3 

(2.3.12) 

and 

c h

0 . ka „
 r
 r . . ikx 

>_ ~ - TVT-J— sin -= Re{exp{-iwt - }} for x « -a 
3p 3 3

 m

3 

(2.3.13) 

Equation (2.3.6) with j = 3 then gives 

( V
3

2

+
K

3

2

) ^
3 c
 = 0 (2.3.14) 

with the boundary conditions 

= 0 on y_= ±d
7
 (2.3.15) 

3y 

^ 3
= <

^ 3 c
+

 ^3p
 m u s t m a

t c h to the solutions in both Regions II and IV 

as x and L
2
~ respectively. 

The general solution to 
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(V.
2

 + K.
2

)i|K = 0 (2.3.16) 

= 0 on
 y j

 = ±d. (2.3.17) 

is found in Appendix 3. 

The forms of the solution appropriate here are 

A

 ~ ikx 
<K + Ux + Re{A. exp{-io)t -

 T
— } } + e.s.t. (2.3.18a) 

1 I 1 -m 

H v 
<f)_ = U3x + Re{B

c
 exp{-ia)t + + c

c
 + e.s.t. (2.3.18b) 

b o 1+pm b 

i
3
 - Uax

 +
 R e { e -

i u t

{
;

3
 exp{- • B

3
 e x p

{
i ^ } ] } 

A 

+ c
3
 + <j> + e.s.t. (2.3.18c) 

A A A A 

where A^, A^, B^, B^ are constants as yet not evaluated and e.s.t. 

denotes exponentially small terms/cls 1*1-^ 00 f-or other- pa.r-0-makers J^Ue^l"). 
A A 

Considering the factors in <|> and <J>̂  it is expedient to put 

ch
 A

 ch ch ^ 
.. V 2 d ^ A j ^ ^ B 3 = 2dJ B j a n d * j = 2 d ^ *j 

(2.3.19) 

The expansion of the three velocity potentials, in matching 

coordinates, as the joining regions are approached, will now be 

considered. 
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2.4. EXPANSION OF POTENTIALS 

Consider first the matching from Region I to Region II 

and from Region III to Region II. 

In Regions I and III let the non-dimensional variables 

characterised by the local length scale X = k \ known from now on 

as 'outer variables', be 

x
1
 = kx + kL

1
 = kx + y^ = ky (2.4.1) 

In Region II let the local non-dimensional variables based 

on the local dominant length scale d^, known as the 'inner variables' 

be 

x y 

= ;
 y

2 =
 C 2

-
4

-
2 ) 

In Region I the velocity potential in terms of outer 

variables is 

.. * i " A i " S r } ( 2 - 4 - 3 > 

2 
Letting A^ = a^ + ea^ + e a.̂  + ... where^ e = kd^ << 1 is the small 

matching parameter^ gives^on expanding in this small parameter^ 

• Ca
0
 + eaj • e a

2
 + ...) e x p ^ - y ^ } (2.4.4) 

~ n 

<f>j , m the notation of matched asymptotic expansions, denotes 

th 

expansion up to the n power of e in the first (outer or inner) variable 

and <f>j
nm

 denotes the expansion up to the m ^ power of e of (Jk
11

 after 

it has been rewritten in the second (inner or outer) variable. So 

corresponding forms in Region I for potential are 
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{
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V
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{
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^ l
2 2 = { a

0 0
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0 1
+ e
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1 0
+ m a
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i x

2
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+
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2 0 +
a

2 1
) ] 

2 1 2 
+ e [ a

2 Q
+ m a

2 1
 - j ( a

0 0
+ m a

0 1
) ( l + 2 m ) x

2
 -ix

2
(l+m) ( a

1 0
+ m a

n
) ]} x 

i I 
x e x p ^ } (2.4.5d) r

 l-m 

where (2.4.5d) has also been expanded for small m (up to 0(m))and 

where 

2 
a. = a.

n
 + ma., + m a.

0
 + (2.4.6) 

l IO ll i2 

In Region III the velocity potential <j>
3
 in terms of the outer 

variable is 

~ 1 ka *
X

i *
X

1 
<t>„ = {A~- t sin

n
 } exp-h } + B_ exp { — + ,

 m
 } t

3 3 k 1-am
 F

 1-am 1-am 3
 r

 1+am 1+am , 

(2.4.7) 

Letting 

A

3
 =

 °0
 + £ C

1
 + C

\
 + 

A A ^ A 

B
3
 = d

Q
 • ed

1
 • e d

2
 + .... 

and expanding as before in e gives 

2

 3 
7 r 2 ^ a ^ e a ^ \

 v 
= + e c

i
 + e c

o
 +

 • • • T—ZZT + ? — y + )
 x 

3 0 1 2 1

-
a m

 6 (1-am) 

tP ty i-t-. i x , 
*
 e X

P
{

r W " l ^ T
5 + { d

0
 + E d

l
 + E d

2
 + 6 X P 

I 

(2.4.8) 
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For the matching expansions this then gives 

i I i 2 
^ -00 a 1 ~ 1 * 
*3

 = { C

0 "
 } e x

P
{

I ^
} + d

0
 e x

P
{

" ' (2.4.9a) 

~ 01 a
 i E X

? *
 i G X

? 
V =

 { c

n "
 { 1

 " e x p {
1
- i - }

+
 d

n
(l + ?•} e x p { -

T
— L }

; 3 0 1-am 1-am
 r

 1-am 0 1+am
 r

 1+am 

H _ iex^ _ i 
(2.4.9b) 

4»
7

i l

 = {c
n
 - —

+

 - — - (c
n
 - — — ) } exp{ ,

 1

 } 
3 0 1-am 1 1-am 0 1-am

 F

 1-am 
A 

id
Q
x e it 

+ { d

0
 + E d

l
 + e x

P l+ciin̂  ' C2.4.9C) 
ix 3 

v
2

 •
 { c

0 - T T ^ r
+ £

f
c

i - d s r (
c

o - i ! s r »
 +

 ^
+

 7 7 — ^ 7 2 

9
 6(l-am) d 

i x

2
C

l a
 X

2
 i l

l - T • *<
c

o • l ^ i
3

 — 72
 e x

P
{ 

(1-amj
 A 

i x
9
d

n 7
 „

 x

o it 
+ { d

0
+ e

 t
d

i
 +

 - r f i
+ e

 f
d

2
+

 - i r i - exp{- x ^ } 
2(1+am) 

(2.4.9d) 
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REGION II 

Figure 2 shows the Regions VI and VII across which the 

matching has to be achieved. In Regions VI and VII the solutions 

of both Region I and Region II and of Regions II and III are valid 

so matching can be undertaken. First the solution in Region II 

must be considered. 

VI 

Figure 2 

I 

u 

I 

VII 

-IE — 

— > 

In Region II the basic time-independent part of the flow, $
2 

satisfies, from equation (2.3.1) 

c V *
2
 = H 

W i 

W i 

3$> 3$, 

3X 3X 3X 3X 
n m n m 

(2.5.1) 

In inner variables
 V

2 denoting the Laplacian with 

respect to those variables this becomes 
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2 2 2 
2 2 I I ax" 

X
j
=x

2
,y

2
 X.=x

2
y

2
 j 

a S 8 »2 
ax.ax. ax. 

i 3 i 
(2.5.2) 

We know, from matching leading orders, that 

*
2
(x

2
,y

2
) -

U d
3
x

2
 - UL^ as x

2
 -

Uad^x
2
 - UaL^+c^ as x

2 

(2.5.3) 

Putting $
2
(x

2
,y

2
) = U d ^ - UI^ gives 

V
2
(x

2
,y

2
) 

x
2
 as x

2
 + - oo 

a x

2
+ C

3
 a s X

2 °° 

(2.5.4) 

and 

n
 2 2

 V 
2 ^2

 = m

 I I 

ay
2
 a 

X.=x
2
y

2
 X.=x

2
y

2
 j 

ax. ax.ax. ax. . 
i j i 

(2.5.5) 

Expanding ip
2
 in powers of m,thus 

*2
 =

 *20
 + m

*21
 + m

 *22
 +

 , 
(2.5.6) 

yields 

v
2
 „ = 0 and »

2 0
 -

x
2
 as x

2
 -oo 

a X

2
+

°3
 a S X

2 

(2.5.7) 

-lcot 
Putting $

2
 = Ud - UL + <t>

2
 =

 u d

3
^

2
"

U L

l
 + R e

^
2

e

 ' (2.5.8) 

and substituting into equation (2.3.1) gives^after linearisation
; 

2 2 ^ 2
 9(

^2 
V

2
 (j>

2
 = -e *

2
 - 2icm — — 

l l 

+
 2

{ 2
 !!i"

 +
 !!2 . 

1

 ax. ax.ax. ax, ax. ax. ax. ax.
 J

 , 
3

 1

 3
 1

 i 3 1 3 
(2.6.23) 
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2 2 2 
So V^ <t>2

 =

 >
 m

 ) assuming all derivatives of potentials on 

the right hand side are bounded. 

Note: This is not strictly valid for the right angles 
in the duct. We need to assume that these c o m e r s 
are slightly rounded off to ensure boundedness 
without affecting the factors in the following 
Schwartz-Christoffel transformation. 

ch ~ 
If we put <j>2 = <̂ 2

 a s

 before and expand (f>
2
 powers 

of e 

$2
 =

 ^20
 + e

^21
 +

 ^ 2 2
 + £

°
r G < < 1

 ) (2.5.10) 

then we have from equation (2.5.9) the following equations 

governing the inner expansion of <j> '
f 

V
2

2

CJ>
20
 = 0(m

2

) ; V
2

2

<j>
21
 = 0(m) (2.5.11) 

Expanding cf>
2
Q in powers of m and then deducing the properties of 

each part of the expansion gives 

*20
 =

 *200
 + m

*201
 +

 " ^ 2 0 2
 + ( 2

-
5

"
1 2 : ) 

and 

*21
 =

 ^210
 + m<1>

211
 + m 2 < f )

212
 +

 (2.5.13) 

for m << 1 giving 

7

2
2

*200 "
 0 ; V

2
?

*201
 =

 °
 1 V

2
2

*210
 = ( 2

-
5

"
1 4 ) 
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2.6 VAN DYKE MATCHING-ORDER ZERO 

Matching, in the style of VAN DYKE (27 ), in the Regions 

VI and VII gives 

7 00 7 00 , ,, 
<t>

1
 = <f>

2
 as x

2
 (2.6.1) 

and thus 

i 
lim ?

2
 = a e x p {

1
— } (2.6.2) 

v oo 
2 

- 00 - 00 _
 x
 , 

<t>
3
 = $2 as x

2
 (2.6.3) 

and thus 

a
 i l

l
 i l

l 
lim (j)

0
 = {c» - -z } exp{, } + d . exp{- y - — } . Y

2 0 1-am
 r

 1-am 0
 r

 1+am 

2 (2.6.4) 

Consider now (J>
2
 in terms of the outer variables: 

V
 =

 W v ^
 =

 ' W V ^
 + + m

^ 2 0 2
( x

2 ^ 2 ^ 
X

1
 X

1 2
 X

1 
= W "T ' + m W + m W — ' T 3 + 

(2.6.5) 

^200
 a n d

 ^201 satisfy Laplace's equation, so there can be no 

terms of loi^^r order than zero in e, (because if there does exist 

such a term then it must come from x
2
 ^ ^ which is not a 

solution of Laplace's equation and has a singularity at the origin). 

Therefore we have for <f>
2
^ 

*2°°
 =

 *200
 + n

* 2 0 1
 +

 °
( m 2 ) ( 2

'
6

'
6 ) 

So 

~ 0 0 2 
<J>

0
 = a_ exp{ •= } to order m (2.6.7a) 

2 0 l - m
 v 

by matching in Region VI and 
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? o
0 0

 = {c
n
 - - t — — } exp{ — + d

n
 exp{- — } to 0 ( m 2 ) v

2 0 1-am
 r

 1-am 0
 r

 1+am ^
 J 

(2.6.7b) 

by matching in Region VII. Also 

00 2 V

2 =
 0 t o

 °(
m

') (2.6.8) 

Now <f>
2
^ matches to two constants to order m

2

 and satisfies 

Laplace's equation so to order m
2

 is a constant. Substituting 

this result into the general equation (2.5.9) yields similar results 

for ^ O j ' j
 =

 2,3,4, etc., therefore identically a constant 

at all orders of m so 

? 2 0 0 = = ?2 Q . 
Equations (2.6.2) and (2.6.4) thus yield 

a. exp{ } = (c
n
 - -z ) exp{ -z } + d_ exp{- -r-—} , 

0
 r

 l-m
 v

 0 1-am
 1

 1-am 0
 r

 1+am 

(2.6.9) 

Matching also gives 

01 ~ 10 
^ = <j>

2
 as x

2
 ; 

7
 0 1

 7 10 
<|>

3
 =

 a s x

2 

(2.6.10) 

Now we have already shown that 

~ 01 ~ 00
 i e x

2 00
 r 9

 .
 i n 

*1 ~ T ^ r h (2.6.11) 

and 

<L
UJ

" = <t>.,
uu

 - ,
 c

 (Cp. - — ) exp{ .
 1

 } + - — - d_ exp{- , ."*" ) 
3 3 1-am 0 1-am

 1

 1-am 1+am 0
 F

 1+am 
01 ~ 00

 l e X

2 , a ,
 r

 l l

l ,
 i e x

2 ~
 r

 l l

l 

(2.6.12) 
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[from equations (2.4.5b) and (2.4.9b)] 

However it is also known that 

<\>
2
 = constant + (2.6.13) 

and substituting this into equation (2.5.9) gives 

2 2
 r ?

 »*21 »
V

2
 a y

2 ^ l 
eV-

2
 (f>

21
 m el2 ^

 3 x > 9 x > 3 x

 +

 . 3x. 3x.3x.
 } 

J i 3 i 3 1 1 3 

(2.6.14) 

The substitution of expression (2.5.13) into equation (2.6.14) tells 

us that 

V 2 2 * 2 1 0 = ° ; V S l l * 0 f 2 - 6 " 1 5 ^ 

assuming once again that the derivatives of ip
2
 are bounded. 

Using an argument similar to that used for 4>
2
qq

 a n d

 ^201 

we can show that 

*
2 1
( x

2
, y

2
) = constant + ?

2 1 0
( , + m ?

2 n
( -j- , * 0(m

2

) 

/ -1 (2.6.16) 
where both $210 ^ l l

 a r e t 0

 lowest order e 

This gives for the matching expansion 

?
2

1 0

 = t ™ +
 +

 m ?
2 U

>
 +

 0(m
2

) , (2.6.17) 

00 

If a = Y a m p = 0,1,2,3,... 
P n=0 P

n 

and if similar expansions are chosen for b 's and c^'s and dp's 

A 

(with d = d ) then the expansions of equations (2.6.11) and 

(2.6.12) in powers of m are 



- 57 -

01 i t 

01 

<f
1
°° - i e x

2
{ a

0 0
+ m [ a

0 1
+ a

0 0
( l + i £

1
) ] } e

 1

 + 0(m
2

) as x
2 

00 ^ 
<f>

x
 - i e x

2
{ c

0 0
- a + m [ c

0 1
- a a + ( c

0 0
- a ) ( 1 + U

1
) a ] } e 

(2.6.18) 

+ iex
2
{d

0 0
+m[d

( ) 1
+ad

( ) 0
(i£

1
-l)]} e 

- i t 

as x2 ^
 0 0  

(2.6.19) 

So matching tells us that 

i t 

r-ix
2
{a

0 0
+m[a

0 1
+a

( ) 0
(l+i£

1
)]] e

 1

 as x
2
 ^ (2.6.20a) 

>210 + m<f>211 

i t 

~
i x

2 ^
C

0 0 "
a + m

f
c

0 r
a a +

^
C

0 0 "
a

-
)

 C l + i ^ a ] >e
 1 

- i t L

+ i x
2
{ d

( ) 0
+ m [ d

0 1
+ a d

0 0
( i £

1
- l ) ] }e as x

2
 °° • (2.6.20b) 

Conservation of energy gives the flux across S^ equal to 

the flux across S^^ (see Figure 2). In integral form that is 

J x ~
 ( < t >

210
+ m ( f )

2lP
d y

2 (2.6.21) 
Sj 2 S

I I
 2 

since <$>2io
 a n c

* ^211 Laplaces equation. This equation gives 

us two more relationships between the constants in which we are 

interested. The 0(1) term of expression (2.6.21) is 

-il il 

"
a

0 0
d

l
e = d

3
{ d

0 0
e

 " ^
c

0 0 "
a ) e } (2.6.22) 

and the 0(e) term is 

- ^ [ a ^ a ^ U + U p i e ^
1

 , d
3
( [ d ^ a d ^ - 1 ) ]e ^ 

i l
1 

- [c
0 1
-aa+(c

0 ( )
-a) ( 1 + U

1
) a ] e } ^ 

(2.6.23) 
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2.7 MATCHING-ORDER ONE 

Equations (2.4.5c) and (2.4.9c) partly expanded for small 

m give 

i I 

= + E { a
1 0 +

m [ a
1 1
+ U a

1 0
] - i x

2
C a

0 0
+ m [ a

0 1
+ a

0 0
( l + i £

1
) ] ) } e

 1 

2 + 0(m ) as x
2
 -

00

 ; (2.7.1) 

?
3

1 : l

 = ^ j
0 0

 + e { c
1 0
+ m [ c

1 1
+ U

1
a c

1 0
] - i x

2
( c

0 0
- a + m [ c

0 1
- a a + ( c

0 0
- a ) (l + i ^ ) a ] ) }e 

'
U

1 
*
 E W

i o
+ m

t
d

H
+ i

V
d

1 0
] + i x

2
( d

0 O
+ , n

t
d

0 1
+ d

0 0
a ( U

r
1 ) ] > e 

+ 0(m
2

) as j (2.7.2) 

for the outer expansions. 

Considering the inner solution it is known that 

= tf)^
00

 + e{constant + ^210
+ m c

^211
 +

 (2.7.3) 

and therefore 

<t>
2

11

 = c ^
0 0

 + e{ constant + $210
+ m

^211 ̂
 +

 (2.7.3a) 

because as expression (2.7.3) is identically (j)^ it must also be 

From the zero order matching it is known that ^ behaves, 

• 2 

to 0(m ), like a linear function of x
2
 on movtAcj away from the 

sharp change of width in the duct into the matching regions. If •p 

is a particular solution then 
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x^ as x
2
 +

00 

j - x
2 +

 J
1 3
 as x

2
 + 

(2.7.4) 

where d^/d^ is determined by the mass flux condition as before 

and by the geometry via the Schwartz-Christoffel transformation 

- see Appendix 4. This is also the solution of the basic flow 

in equation (2.5.3) giving 

C

3
 =

 -
U J

1 3 *
d

3
 =

 '
U J

l 3
d

l 5
 c

5 " - M l W l S ^ S j J •
 C 2

-
7

"
5 ) 

The general solution for <|> is thus given by 

(f)^
00

 + e { X
1
x

2
+ X

2
> as x

2
 °° 

+ e { x

i
(

- ^ r
+ J

i 3
) + x

2
} a s x

2 * 

(2.7.6) 

where X^ and X
2
 are constants to be determined by matching, 

Van Dyke matching gives 

A
 1 1

 - A
 1 1 

•l " 2 

a
 1 1

 - A
 1 1 

2 " 3 

as x
2
 •*• -

 00

 ; 

as x
2

 00

 j 

(2.7.7) 

that is 

i L 
x

i
 =

 T
i a ( a

o o
+ m [ a

o i
+ a

o o
( 1 + i

'
e

i
)

^
e 1 

i I it 
X

2
 = i J

1 3
a ( a

0 0
+ m [ a

0 1
+ a

0 0
( l + i £

1
) ] ) e + ( a ^ + m t a ^ i ^ a ^ ] ) e 

and 

X

1
 =

 "
i

(
c

o o "
a + m

f
c

o i "
a c i +

^
c

o o "
a

^
1 + i

^ i ^
a

^
e 

+

 ^ O O ^ O l ^ O O ^ V 1 ^ 6 

it. 

(2.7.8) 

(2.7.9) 

(2.6.23) 
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i I -it 

\
2
 = ( c

1 0
+ m [ c

n
+ U

1
a c

1 Q
] ) e + (d

1 0
+m [ d ^ i ^ a d ^ ] ) e \ (2.7.11) 

Equating equations (2.7.8) and (2.7.10) and also (2.7.9) and 

(2.7.11) gives two equations. We are interested in one of them, 

namely, 

i I il U
l
 -i 

a

0 0
i J

1 3
a e + a

1 0
e = C

1 0
e + d

1 0
e

 • (2.7.12) 

The other equation involves a ^ , c-^ and d ^ which we will not 

attempt to evaluate here. 



- 61 -

2.8 MATCHING-ORDER TWO 

Equations (2.4.5d) and (2.4.8d) give 

~ ??
 a

nn ? 

V
 = { a

2 0 " " T "
 X

2
 i a

1 0
X

2
} e + 0 ( m )

 (2.8.1) 

22 ^ ^2 *3 = { C 2 0 + 7 7 7 - ( C 0 C f a ) T " " i x 2 C 1 0 ) e 

3
 x

 2 _
a 

+ { d

2 0 "
d

0 0 - F
+ d

1 0
i x

2
} e 1 + 0 ( m )

 •
 ( 2

-
8

"
2 ) 

Equation (2.5.9) with the expansion (2.5.10) along with 

the similar expansion 

*22
 =

 *220
 + m 4 >

221
 +

 * • '
 ( 2

-
8

'
3 ) 

yields 

V

2 ^ 2 2 0 " "*220
 =

 *
 a

0 0
 ( 2

-
8

"
4 ) 

giving 

a 0 0 2 2 
^220

 =

 ~ ~~2~
 X

2
 +

 *220
 w h e r e V

2 *220
 = 0

 '
 ( 2

'
8

'
5 ) 

Using a similar argument for ^ 2 0
 a s w a S u s e <

* equations 

(2.7.8) to (2.7.11) yields 

*200 

f

 a

nn 2 u u

 x_ + X„x_ + X. as x
0 3 2 4 Z 

a

00 2 
x

2 +
 X

3
( x

2
/ a

 +
 J

1 3
}

 +
 X

4
 as x

2
 - - , 

(2.8.6) 

2 ~ 22 2 2 
The e term of <(> is e $220'

 ec

l
ua

"
t

i-
n

g the 0 ( e ) 

~ 22 ~ 22 ~ 22 ~ 22 
terms of <f> and <j>

2
 as x -*-

00

 and of <j>
3
 and <j>

2
 as x ^ 

gives 

i I it - U 

~
a a

l 0
e =

 "
C

1 0
e + d

1 0
e

 • (2.8.9) 
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Now the 0(1) and 0(m) equations from expanding expression 

(2.6.9) plus equations (2.6.22), (2.6.23), (2.7.12) and 

(2.8.9) give a system that is by no means complete. However if 

the entire matching procedure employed in Region II is repeated 

in Region IV then the following equations can be obtained. 

i l 5 i l 5 a i l 5 
b

n
 exp{

1
-|-} = c

n
 exp{- -r-^-} + { d

n
 - e x p f r - M , (2.8.10) 

0
 r

 l + $m 0
 r

 1-am 0 1+am
 r

 1+am
 v J 

it -it iZ 
d

5
b

0 0
e 5 = d

3
{

"
C

0 0
e 5 +

C
d

0 0 -
a ) e 5 }

 ' C
2

'
8

-
1

" 

U -it 
d

5
{ b

0 r
e b

0 0 "
U

5
b

0 0
} e =

 "
 d

3
{ c

o l
+ a c

0 0
( 1

-
i £

5
) } e 

U

S 
+ d { d

0 1
- a a - ( l + U

5
) ( d

0 0
- a ) a } e > (2.8.12) 

it i t -it it 

b i o e 5 + *53 a / e i b o o e 5 = c i o e 5 + d i o e 5 ; 
it -it- U 

a/3 b
1 Q
e
 5

 = - c ^ e
 b

 + d
l Q
e , (2.8.14) 

These twelve equations do make a closed system that can 

be solved to give a
Q 0
, a

Q 1
, a

1 Q
, b

Q 0
, b

Q 1 >
 b

1 Q
, c

Q 0
, c

Q 1
, c

1 Q
, 

d

0 0 '
 d

01*
 a n d d

1 0 ' These are listed in Appendix 5. 

Finally the evaluation of these constants means that we 

* A 

have calculated the velocity potentials , j = 1,3,5 as listed 

in Appendix 5. 
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RATE OF WORK DONE BY PISTON 

Let us now consider the net, time averaged, energy flux 

into the duct, that is the average rate of work done by the 

piston. 

The work by CANTRELLS HART ( 4 ) and LEPPINGTON £ LEVINE 

( 17 ) (as well as that in the previous chapter, section 1.4) shows 

that the time-averaged power flow W across the piston is the same, 

to order h^, as the net power flow from the expansion chamber into 

Regions I and V. 

Equation (1.4.9) for the power flux in a duct of width 

2dg with basic uniform flow all gives 

A 

d

* >
 +

 °(
h3

) (2.9.1) 

S

I 

where once again < > denotes the time-average, p^ the density 

at infinity and s^ is the piston's surface. A A A A 
If <f>

3
 is expressed as the sum of two components,

 <

^3
=<

J
>

3p
 + 

A 

then contribution* from <J>̂ p to the work done, Wp,aregiven 

by expressions (1.5.3) and (1.5.4) o-S 

2 3 h p c , 2 , 2 
=
 A

y {(sin -r———) + (sin y ^ - ) } (2.9.2) 
P 4dg

 v

 1+anr ^ 1-anr 

, 2 3 
0 2 2 2 4 

{(sin ak) +a m ak(kacos2ka+sinka)} + 0(m ) # 
2 d

3 

In order to calculate W ^ t h e contribution from <l>3c,
we 

(2.9.2a) 

must consider equation (2.3.18c)^ 
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ch 

*3C "
 R e {

2 d f
 e

"
i U t U

3 " & >
 + B

3 

and substituting this into equation (2.9.1) yields 

2 3 h

n
 p

n
C k

 ak ak 
= ~ oa

 R

e {A„sin + B.sin } . (2.9.4) 
C 2d^ 3 1-am 3 1+am

 v J 

Substituting in the expansions for the constants A^ and B^ and 

using the constants from Appendix 5, gives, after addition, 

for the total work done by the piston 

2 3 2^2 

W = — - — ^ {g[cos
2

£^+a
2

sin
2

£^]+a
2

sin
2

£
3
+3

2

cos
2

£
3
)xx 

k
3

h
0

2

p
0
c

3

a
2

i 2U _
 2

 -21 
+

 8 13 00
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 2il

s
 -2i^
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+ J

5 3 /
O
2 t

b

0 0
e

 "
b

00
 6 

(2.9.5) 

+ higher order terms 

where denotes the complex conjugate. 

2 I 

We notice here that there is no term of order k m inditing 

that a reversal of the flow would not alter the time-averaged work 

done by the piston. As in the previous calculation W is also 

equal to 

W = < / N *dS. > (2.9.6) 
S

 1 1 

where S is any surface from one end of the piston to the other lying 

in or on the duct. It is a trivial matter to show that this is 

true for Ŝ .̂  and S^^^ of Figure 3, but the same results can be 

obtained for Sj and S^.^. This is not shown here due to the 

complexity of the algebra. However this does afford a check 

on the validity of the matching as Sj and S^^ lie in Regions I and 

i 
V which lie beyond Regions II and IV across which the solutions 
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Figure 3 
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2.10 FORCE ON THE PISTON 

The force on the piston, F, needed to sustain the 

piston's periodic motion (the pressure integrated across 

the piston surface) is given by equation (1.6.1) cus 

F
T
 = J pdSj , (2.10.1) 

S

1 
A A 

The contribution from the <|> part of <|> , Fp, is 

•given by the previous chapter, for small E, CLS 

2 2 
„ c k hn • 2ae .. 
Fp = - Pq e(smo)t - coscot) 

d

3
 3 

oo 
. o 2, 2 r 1 /i

 a n 7 r a n 7 1

\ i 
+ 8c h p„e i y {1- —j exp(- ) J- cosoot 

0 U

 n=l (nir)
 d

3 <i
3 

2 2 2 
+ 2pp

 a C

7 r

i n

 cosoot log
e
 | (h^coscot) | + 0(em

2

;m
3

;£
3

,e
2

m) 

(2.10.2) 

From F = / p ds^ where p is the pressure contribution from the 

— °
 S

1 ° 
part of the velocity potential^with 

Pc - - "o
 + o U

 i r ^
 }

 y
 ( 2

-
1 0

-
3 ) 

we have 

2

h 
i-i * 0 0 _ <•. -i(i3t

rA
 . ka , . ka

 n 
=

 — j Reiie [A„ s m + B„ sin y - — ] } , (2.10.4) 
c d^

 L

 3 1-am 3 l+am
J

 ' . 

Substituting for A^ and B^ from the constants in Appendix 5 

and adding to Fp gives for F^, the total force on the piston: 
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o 2 2 2, 2p
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(2.10.5) 

The first term comes from that part of the velocity potential 

that has singularities at the piston ends^the rest coming from the 

main body of the piston. Once again we notice that there is no 

term o-f- order em. 
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2.11 DISCUSSION 

In this problem, as previously, the singularities in 

the model problem caused by the piston ends, did not have to be 

taken into account when calculating the power flow W. 

It was noted in Chapter 1 that there were not any terms 

2 

of the form k m in W and this was not surprising given the 

symmetry of the problem with respect to the flow and thus Mach number 

m. In the calculation in this chapter however the downstream 

duct is of a different width to the upstream duct and the piston 

is not set in the centre, yet there is still no term of the form 

2 

k m. This does suggest some inbuilt features of such problems 

that preclude the presence of such terms. 

In the calculations of the force F(t) the singularities 

of course did have to be taken into account again
;
giving a large 

fluid loadingjof order h(t) l o g | h ( t ) w h i c h is larger than the 

other linearised quantities of order h(t). 

So in this chapter the method developed for forming a linearised 

model of a piston set in a duct wall, developed in the previous 

chapter, has been successfully applied to the more complex 

situation of a piston in an expansion chamber enabling the power 

flow from and the force on such a piston to be calculated. 
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APPENDIX 1 

FOURIER TRANSFORM METHOD 

With this method we take Fourier transforms of the linearised 

equation of motion and then substitute in the transforms of 

the boundary conditions. This gives an expression for the 

transform of the potential which can then be inverted. 

If the general piston profile is Re{h(x)e
 l a ) t

} where its 

time independent transform H(s) is given by 

H(s) = 

+ 00 

1SX h(x)e dx (A1.1) 

and its inverse by 

+ 00 

h « = ^ H(s)e
 1 S X

d s , (A1.2) 

then the transform $ of
 a n

d its inverse are given by 

+ 0O +00 

f isx 1 

<f>
2
(x,y)e dx, . <J>

2
(x,y) = 

$(s,y)e~
l s x

ds , (A1.3) 

Taking the transform of equation (1.2.7) and substituting 

in the transforms of the boundary conditions, equations (1.2.5) 

and (1.2.9),gives 

+ 00 

s y") = i cosh y(s)(y-d) 1

 '
y )

 2TT y(s)sinhy(s)d J 
H(i) (O3+UT)e

 1 T X + 1 S X

d x d x (A1.4) 

where 

y(s) =-
r
 (s

2

(l-m
2

)-2mks-k
2

)^ , |s|>k(l-m
2

) 

L -i(k +2mks-s
Z

(l-ni ))'
2

y
 |s| <k(l-ni )~

2

 ' 
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Substituting into the inversion formula gives 

+00 

<l>
2
(x,y) = - ^ 2 j j j S i £ ) d

 g ( T ) (

"
+ U x )

 exp{-iTr+isr-isx>dTdrds 

( A L . 6 ) 

When h(x) is specified H(T) is known. This can be substituted 

into equation (A1.6) and then an inversion or an approximation to 

an inversion can be obtained. In the case of the 'top-hat' 

profile the inversion can be done exactly to give the results 

of section 1.3. 
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APPENDIX 1 

INNER LIMIT OF THE OUTER SOLUTION 

If we take expression (A1.6) for <p
2
 and substitute in 

the Fourier transform of the 'top-hat' profile and do the r 

and T integrals we have 

iu)h
0 

Cx,y) = Re{ — — 

+00 

i. w ^ • -isx-iut 
coshy(s) (y-d) sin as

 ( 1 +
 ms. , 

y(s)sinhy(s)d j k
 J 

yi 

CA2.1) 

Expanding this for small m and h(t), considering only that 

part centred on (a,0), and finding the limit as s » of each 

term, we find, from LIGHTHILL ( 18 ) p. 43 , that the limit as 

2 2 
| (x-a) + y | 0 of is such that 

<J>
1
 ~ Ux - logr + Uh(t)A

x
 (A2.2) 

h ft") 
((x-a) logr-y9+A

2
x) + h.o.t. 

2 2 2 - 1 
where r = [(x-a) +y ] ; 0 = tan y/x-a and where the constants 

Aj and A a r e determinate but not calculated here. 

Expressed in terms of inner variables and expanded again 

expression (A2.2) gives 

<\>
1
 ~ Uh(t)X + Ua - logRh(t) + Uh(t)A

1
 (A2.3) 

- 7
h

( t ) h(t)X logh(t)R + ^h(t)h(t)Ye - ^ h(t)h(t)A
£
X 

where R = (X
2

+Y
2

)^. 

We can now see from expression (A2.3) that as R
 00

 the 

inner potential is such that 

<j>. ~ Uh(t)cf>. + h (t)h (t) c(). + constant (Ua) 
1 i

2 

where <J>. and <J>. are 0(1). 
1

 1

2 
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APPENDIX 1 

GENERAL SOLUTION FOR ^ 

The problem is to find the general solution to 

( V .
2

+ K .
2

)
V i
 = 0 (A3.1) 

with 

. 
on y

i
 = ±d

i
 . (A3.2) 

Equation (A3.1) can also be written as 

rv2 ,2 
9 v

i
 8

 , 2 
j + j + K. = 0 (A3.3) 

3x. 3y.
 1 1 

i
 J

 I 

and this can be solved using the method of separation of variables. 

Putting ip
i
(x.y.) = F

i
( x

i
) G

i
( y

i
) (A3.4) 

and substituting into equation (A3.3) gives 

it n 
F. . G. 1

 v
 2

 l 2 
F —

 K

i
 =

 " G —
 = Y

 I.A3.5) 
i i 

where y is the separation constant. 

Equations (A3.5) can be rewritten 

G." + y
2

G . = 0 and F." + (K.
2

-y
2

)F. = 0 (A3.6a) 1 1

 i l l (A3.6b) 

Now the general solutions to (A3.6a) and (A3.6b) give 

as a general solution for 

= [Acosyy
i
+Bsinyy

i
][C e x p C - i y ^ ) + D e x p C i ^ ) ] (A3.7) 

2 2 2 

where y^ = K^ - y , unless y. or y = 0 when F^ or G^ are poly-

nomials of order one. 
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Application of boundary conditions (A3.2) requires that 

-A sin yd. + B cos yd. = 0 
' 1 l 

and (A3.8) 

A sin yd^ + B cos yd^ = 0
 % 

That is either B = 0 and sin yd^^ = 0 (A3.9a) 

or A = 0 and cos yd^ = 0 , (A3.10a) 

nir 
Condition (A3.9a) yd^^ = mr so y = and B

n
 = 0 , (A3.9b) 

i 

Condition (A3.10a) -> yd
i
 = (n+^ir so y=(n+^)^- and A = 0, (A3.10b) 

i
 n 

Both conditions give the same result when applied to the general 

solution (A3.7) 

ip.(x.,y.) = T {C expf-iy • x.) + D expfiy . x.)}cos~-r- (y.-d.) 
l i

f J

±
J

 n m i
J

 n ni i 2d. i i 
n=0 I 

(A3.ll) 
2 ^ 

where y
n i
 = - K.

2

) n = 1,2,3,... (A3.12) 
i 

since K.d. << 1 and y . = iK. for n = 0. 
l i ni i 

Expression (A3.ll) gives for 

V
i
( x

i
y

i
) = C

Q
{exp -iK

i
x

i
> + D

( )
{expiK

i
x

i
} 

00 
+

 I {C
n
expt-iv

n i
x.} D

n
 e x p U p ^ x . } } cos jjL- (y.-d.) 

n=l l 
(A3.13) 

where the constants C J) will be determined by other conditions on 
n n 

the function. 
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APPENDIX 1 

SCHWARTZ-CHRISTOFFEi. TRANSFORMATIONS 

We wish to evaluate the constants J.. such that the 
ij 

velocity potential y satisfies 

V
2

ifJ = 0 (A4.1) 

ip x as x -*• (A4.2) 

d. 
ip J - x + I . - a s x •»• (d

i
<d.) (A4.3) 

i
 13 3 

= 0 on duct walls (A4.4) 

in the interior of the duct shown in Figure 4.1 

y = 1 

ju-xd/d. +1 
j 1 i 

y=-1 

Figure 4.1: Z-plane, Z = x + iy 

As the problem is symmetric about the line y = 0 the 

easier half-plane problem, to which it is equivalent, will be solved 

instead. That is satisfies (A4.1), (A4.2), (A4.3) and (A4.4) for 

the duct geometry in Figure 4.2. 

y

 i
/d

j 

U ' U-" x 

y=-d/d. 
' J 
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y * 

^ x d / d j + K j 

D 

y=-1 

y=-d./d. 
' J u~x 

Figure 4.2: Z-plane 

Consider the transformation given by KOBER [ section 

12,8] which maps this half-duct and its interior onto the real 

Jine and the half-plane above it as in Figure 4.3: 

t = f(z) ; 
dz _ (t-1) 
dt Trt(t-a) 

J 2!A 2 
a = d. /d. 

3 i 
(A4.5) 

l % 
t = 1 t = dj /dj 

i i i 

B C D E 09 09 

Figure 4.3: t-plane, t = t + it . 
1 2 

Npte the mapping takes the points A^, B^, C^, D, E , F^ in Figure 

©nto their corresponding primes in Figure 4 - 3 ' 

The inverse of this mapping is 

1 ,-1 ,2t-a-l.
 d

i ,-1 (a+1)t-2a .
 r A > l

 .. 
? - - cosh ( : — ) - j— cosh 7 — i . (A4.6) IT

 v

 a-1 ' d.IT (a-l)t
 v J 

J J 

The velocity potentials as x ±» in the Z-plane correspond 

to those as t oo and t 0 in the t-plane. 

+ +

PICTIONARY OF CONFORMAL REPRESENTATIONS , KOOetf j H . fZ VO\/0< 
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(i) Consider t that is x -*• 

From equation (A4.6) in this limit 

2 2 2 
4td. d. , d. +d. 

z ~ 7 " TTHT c o s h " ^ T T T ^ " 1 

d. -d. l d. -d. J i 3 i 
i 

Now if W(Z) = y + iy is the complex velocity potential for this 

r 

incompressible irrotational flow in 2-D and ip is the stream 

function then 

il> = Re{W(t=f (z)J } « (A4.8) 

Expression (A4.7) gives 
2 2 2 

, 4d. d. d.+d. 
W(z) ~ z ~ - logt

 +
 - log( - 1 — ^ - ^ cosh" ( ^ 2 - V ) - i 

d. -d. j d. -d. 

(A4.9) 

or W ~ ^ logt + constant ^ . (A4.9a) 

(ii) Consider t-*0, that is -
 00

 . 

Now 
, 2 . 2 

, , d. +d. 

a T F - - - = - C 2 2) as > (A4-10) 

d. -d. 

(assuming this gives for the first cosh
- 1

 term in expression 

(A4.6) 
j 2 , 2 

-1 2t 1 -1 ' 
cosh (

 a
"

1
~ ) ~ cosh ( - L — + itt 'j (A4.ll) 

d. -d. 
J 1 

also 

(a+1)t-2a 2a 
(a-l)t (a-l)t 

as t 0 (A4.12) 

thus giving for the second cosh
 1

 term 
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. . . 4d.
2 

cosh Q ^ T ? " ) ~ logt + log - j ~ + iTr (A4.13) C a _ 1

-
) t

 d. -d. 
3 i 

and hence for the whole expression 

. 2 . 2 , . , 2 
1 1

 d. +d. d
i
 4d. 

z ~
 7
 {cosh" (

 J

2
 + i^r} - log( J

 2
)
 +
 iTr} 

d. -d.
 3

 d. -d. 

d. 
+ logt - i as t + 0. (A4.14) 

71

 j 

However from equation .(M.3) 

W(z) ~ djz/d^ as z + - °° (A4.15) 

so 
2 2 2 

4d. d. d. +d. 
W(z) ~ I logt - I l o g { — 1 - ^ ) } -i

 +
 ^ cosh" ( - V ^ ) 

d. -d. i d. -d. 
3 i

 J

 3 1 

(A4.16) 

and so for small t 

W(t) ~ ^ logt + constant C
2
. (A4.17) 

The upstream section of the duct corresponds to t = 0 so 

in the t-plane the velocity potential is that due to a point source 

at t = 0 - 3 u c h a source has a complex potential: 

W = i logt + constant C
3
 . (A4.18) 

Choosing we have 

at z = «> W(z) ~ z - C
1
+ C

3
 = Z 

d. (A4.19) 
at z = -oo W(z) ~ z.—— C

2
+ C

x 
1

 d. 

d^"
 Z + J

i ' (A4.20) 
i 
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9
 4d.d. d.

2

+d.
2

 d.
2

+d.
2 

where J - C - C ^ = - l o g C - ^ - ) - ± c o s h ^ - ^ ^ 

d- -d. 1 j d. -d. 
J i j i 

(A4.21) 
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APPENDIX 1 

CONSTANTS AND POTENTIALS 

If
 X
 = [ Ca-3)(l-a)exp{i(£

1
+^

5
)>(a+3)(l+a)exp{-iC^

1
+^

5
)}]"

1 

then the constants are 

-il. il. -il-
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 b

 - (a+3)e
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-il -il iI 
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il il -il 
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ilr -n il, 
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Q 1
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il il -il 
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Q 1
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The velocity potentials are given by 

C h

0 ikx U x +

 2dJ Re{(a
0 0 +

ma
1 0 + e

a
1 0
)exp(-ia.t - ^ } ̂  (AS.13) 

i
3
~ Uax - U J

1 3
d

1
 + ?

3 p 

+
 R e { e -

i u t

 K c
0 0 + m

c
0 1 + e

 c,
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PART II 

TRANSMISSION IN AND RADIATION FROM WHOLLY OR PARTLY ELASTIC WALLED 
DUCTS WITH FLOW 
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INTRODUCTION 

Many authors have considered the interaction between sound 

and infinite or semi-infinite wave-bearing surfaces. Usually 

these surfaces have been taken to be alone in an infinite fluid so 

that their responses are not affected by the presence of any 

other restrictive surfaces, passive or active. LAMB ( 16 ) in 1959 

was first to consider the diffraction problem of a semi-infinite 

elastic plate, but his analysis of the fluid-plate coupling system 

is incomplete. MORSE * INGARD ( 23 ) in 1968 dealt with coupled 

fluid-plate systems in some detail, their analysis failing to 

describe the systems in the regions in which were contained the most 

interesting phenomenon) consequently they identified spurious 

beaming effects to infinity. LYAMSHEV ( 20 ) includes the vital 

feature of a basic flow behind the plate, but his analysis, being 

similar to Lamb's, is lacking in the same way. The most valuable 

background to this work is that of CRIGHTON (7),(8), CRIGHTON § 

LEPPINGTON ( 9 ), and CANNELL ( 2 ), ( 3 ). In 1971 and 1979 

Crighton successfully analysed the waves on a fluid loaded elastic plate 

and identified the special regions in which a beaming effect (Leaky 

waves) could be identified for moderately large distances and light 

fluid loading. CRIGHTON $ LEPPINGTON ( 9 ) and CANNELL ( 2 ), ( 3 ) 

took the important step of considering semi-infinite geometries and 

employing the Wiener-Hopf technique. Although here we will restrict 

ourselves to solutions for the light fluid loading limit we will have 

the added complexity of not only a second wave-bearing surface, 

parallel to the first, but we will also consider the case of the fluid 

in the duct created by these two parallel surfaces being in constant 

uniform motion. 
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In Chapter 3 we study the interaction between an acoustic source, 

in an elastic walled duct containing flow, and the duct wall. 

The waves that propagate up and down stream in the duct, as well 

as those in the duct walls, are examined along with the disturbances 

present outside the duct,caused by the transmission through the 

duct walls. The effect of the confinement of the source in a duct 

is noted, as is the effect of the flow within the duct on the 

velocity potentials inside and outside as well as the waves on the 

duct surface. 

In Chapter 4 we study the interaction of an acoustic plane 

wave travelling down an inhomogeneous duct, from the rigid walled 

section to the elastic walled section, with the wall discontinuity 

at the join and with the elastic parts of the wall. Here we examine 

the waves transmitted or reflected by the duct discontinuity, the waves 

present in the wall and also those present in the otherwise stationary 

fluid outside the duct. 
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CHAPTER 3: The transmission of sound from a point source in an 
elastic walled duct containing flow. 

3.1 INTRODUCTION AND SUMMARY 

In this chapter we investigate the two-dimensional problem of 

a point source in an infinite duct that has parallel elastic walls 

and contains uniform flow. This is the simplest model of a duct 

system that contains almost all- the important features - wave-bearing 

surfaces - fluid flow - a disturbance (a point source). The only 

important effect, apart from the third dimension, that is not 

incorporated is that of geometric complexity. 

The choice of the thin elastic plate as a model of a wave-

bearing surface is, of course, open to criticism. The TIMOSHENKO-

MINDLIN plate equation is a better model of, say, underwater systems 

if the frequency is high but in the aerodynamic context the thin 

elastic plate equation is adequate. The adoption of the Timoshenko-

Mindlin plate would result in considerable additional algebraic 

complexity. 

In section 3.2 a complete definition of the system under 

examination is given. The model boundary value problem for small 

disturbances is formulated in section 3.3 by linearising the 

equations and boundary conditions, as set out in the previous section, 

by assuming that all disturbances are small compared with the basic 

uniform constant flow. The possible free wave solutions that the 

system can support are found in section 3.4 and the nature and 

properties of each solution are discussed. This then gives a good 

idea of the possible wave solutions and also locates the possible 

poles of any integrand of the problem, which will be discussed in 
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detail in section 3.7. A Fourier transform analysis of the 

problem is done in section 3.5 giving Fourier inversion integrals 

for the velocity potentials and the wall displacement. In section 

3.6 the duct's velocity potential is briefly discussed and its 

major features mentioned. A coordinate and variable of integration 

transformation given in section 3.7 allows the first estimate, for 

most angles 9, of the external potential to be found in section 3.8. 

Sections3.9 and 3.10 deal with the special asymptotics needed when 

9 is near ''Mach Angles' and it is at these that we find a beaming 

effect at moderate distances (Leaky waves). The behaviour of this 

external velocity potential is summarised in section 3.11 and the 

wall displacement is discussed in section 3.12. Section 3.13 

consists of observations on and a summary of the analysis. 
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3.2 PROBLEM DEFINITION 

Inviscid, compressible fluid flows adiabatically in a two-

dimensional infinite duct which has parallel elastic walls with 

identical still fluid outside the duct. The walls are a distance 2d 

apart at y = ±d where (x,y) are cartesian coordinates. The 

basic interior flow has uniform constant velocity with potential 

<J) = Ux. 

Sound is produced by pulsations of a line source at (x,y) = (0,0) 

of strength Re{2Ae
 l a r t

} ±
s
 the frequency, t the time variable). 

The time-harmonic oscillations of this source cause perturbations 

in the uniform flow which in turn, via the elastic walls of the 

duct, cause perturbations outside the duct
 % 

y = d 

y=-d 

Figure 1 

As shown in Figure 1 the problem is symmetric about the x-axis, 

so the equivalent half-space problem will be solved. 

The half-space problem consists of a basic uniform flow U 

down a duct of width d with the plane y = 0 forming an infinite barrier 

and a thin elastic plate at y = d. The plane y = 0 consists of a 

rigid baffle filling the half-planes y = 0 x> 0 and y = 0 x < 0 

\ source 
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-icot 
with a time-periodic source of strength Re{Xe } oscillating into 

the duct at y = 0, x = 0, as shown in Figure 2. 

REGION 2 
E L A S T I C WALL 

y=d 

Figure 2 

REGION 1 

— 

B A F F L E 

y=0 

The small amplitude vertical displacement, n(x,t), of the 

elastic plate above the plane y = d is governed by the equation 

4 2 
o d + 

D —r- n(x,t) + 2Mh —j- n(x,t) = - [p] on y = d + n(x,t) 3x at 
(3.2.1) 

see MORSE & INGARD ( 23 ) where 

2Eh
3 

D = x— is the wall's boundary stiffness 
3 ( l - o Z ) 

P 

E is the Young's modulus for the wall 

2h is the wall's thickness 

op is Poisson's ratio 

M is the wall's volume density 

[p]
+

 = p(x,d+0)-p(x,d-0) is the fluid pressure difference 
across the wall. 
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If $ is the total velocity potential write 

$ = 

Ux + <t>̂  in Region 1 

(3.2.2) 
A 

<J>2 in Region 2 

where <f>̂  and <|> are the velocity potentials of the disturbance in 

Regions 1 and 2 respectively. 

If we now write 

<|>. = Re{ct).e"
ia)t

} and $ = j = 1,2 (3.2.3) 3 3 3 

to take into account the periodic response of the disturbance to 

the source then we have 

= Ux + Re{<J)^e
_layt

} 

= Re{<|>
2
e-

iaJt

} (3.2.4) 

We now wish to obtain solutions for <J>̂ , (f>
2
 and n. The 

velocity potentials of the disturbance are calculated by assuming 

that the disturbance is small compared with the basic flow so that 

the equations of motion can be linearised with respect to small 

2 

<Jk , by neglecting terms of order (<j>̂ ) , and by replacing the 

boundary conditions on y = d + n(x,t) with ones on y = d. Fourier 

transforms can then be taken and integral representations found for 

<f>̂  and <J>2- Contour integration can then be used to find the exact 

solution formally and then the leading order terms for the far 

field (kr in the light fluid loading limit. 
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3.3 THE MODEL PROBLEM FROM LINEARISATION 

We now formulate the boundary value problem for <f>̂ , <|> and n 

Equation (3.2.1) governs the motion of the elastic wall and 
A 

if the parameters k, y, e, z are defined by 

2Mhtu
2

 4 ^
 p

0 1
 P

0
W 

D
 y ; e

" k * M h
; £

 D ' 

where p^ is the density of the fluid ii the undisturbed state and 

c is the sound speed in the fluid^then k is a wave number for the 

A 

acoustic source and e is a non-dimensional fluid loading parameter 

which is a measure of the inertia of a column of fluid one 

acoustic wavelength in depth relative to the inertia of the 

wall beneath it. 

The linearised version of (3.2.1) is 

9
4

 '
 4

 a
2

 + 
— n(x,t) + V j — n(x,t) = - 2 on y = d , (3.3.2) 
3x a) at PqU) 

A 

At a later stage we will consider z << 1 (e << 1 for fixed 

k and y) that is when the coupling between the wall and the fluid is 

small. However we will not consider an expansion in small z of 

relevant quantities such as potentials at this stage as much information, 

particularly the nature of the waves present in the disturbance, 
2 

depends on the 0(e ) terms and expansion to this order here :;ould 

result in too much algebraic complexity. 

The boundary condition on both sides of the wall between the 

wall and the fluid is that the material derivative is zero 
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{y-n(x.t)} = 0 on y = d + n(x,t) , (3.3.3) 

After linearisation this yields, on the Region 2 side 

A 

d<|> 
2 8 

= 7 7 n(x,t) on y = d (3.3.4) 3y at 

and on the Region 1 side the connected equivalent 

9 <

h a a 
Ty~

 =

 at
 + U

 dx
 0 n

 y
 =  d

 (3.3.5) 

thus ensuring that the normalclCsphcewitacross the plate is 

continuous. The extra term in (3.3.5) is the convected term present 

solely due to the flow in the duct. 

Writing n (x, t) = Re{n(x)e to take into account the response 

of the plate to the harmonic excitation of the source gives for equations 

(3.3.4) and (3.3.5) 

a<!>
2 

= - iwn(x) on y = d (3.3.6) 
3y 

a<t> 
l a 

= - iwn(x) + U r— n(x) on y = d . (3.3.7) 
ay " ^ 3x 

The boundary condition on the baffle y = 0 is 

d<p
i 

= XS(x) (3.3.8) 
ay 

where the Dirac function 6(x) allows for the presence of the source. 

/S A 

Additional conditions are that <J>̂  and <f>
2
 represent outgoing 

waves at infinity. 

LIGHTHILL[( 19 ) equation (61)] gives for the equation 

of motion of the fluid 
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c V . = 4 •
 2

 r - fe• I
s

- r - (3.3.9) 
3x. 3x.3t 3x- 3x- 3x.3x.

 v J 

3t 1 1 l J l j 

2 
where V is the Laplacian operator. 

Substituting (5.2.4) into (3.3.9) and linearising with respect 

2 
to small by neglecting 0(<J)̂  ) terms gives a convected Helmholtz 

equation for <J>̂  

2 2 
[ 2 - j + + (k+im f^-)

2

]*! = 0 0 < y < d (3.3.10) 
3x 3y" 

where m = — is the Mach number for the flow, 
c 

A similar substitution for cj>
2
 yields the classic Helmholtz 

equation for <J>
2 

2 2 
[ £-5- + + k

2

]* = 0 (3.3.11) 
3x 3y * 

Lastly the pressure difference p]
+

 across the plate is 

Pi! = P
2
"P! (3.3.12) 

A A 

where the excess pressures (p^,p
2
) on either side of the plate 

are given by 

Pj = Re{pj e"
1 U ) t

} j = 1,2 (3.3.13) 

P

1
 = P

o
{ i a ) ( | )

l " dx~
 } ; P

2
 = ia)p

0
(1)

2 • (3.3.14) 
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3.4 POSSIBLE WAVE SOLUTIONS 

Before undertaking a {orrnctX analysis of this problem 

by taking Fourier Transforms it is instructive to consider what 

waves produced by the coupling of the fluid and the plate it is 

possible for the half-space system to sustain. 

ELASTIC WALL 

y=d 

1. 

t- y=o 

M FRIGID WALL 

Figure 3 

We wish to determine what free wave solutions of equations 

(3.3.2), (3.3.6), (3.3.7), (3.3.8), (3.3.9), (3.3.10), (3.3.11) 

of the form 

= F
1
( y ) e "

1 S X

 ; ^ = F
2
( y ) e

_ i s X

 (3.4.1) 

exist. 

Substitution into equation (3.3.10) for ^ in (3.4.1) gives 

F
1

M

(y)-(s
2

(l-m
2

) - 2mks-k
2

) F ^ y ) = 0 . (3.4.2) 

So 

F
1
(yD = A e

Y ( s ) > r

 +
 B e "

Y ( s ) y 

(3.4.3) 
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where A and B are undetermined constants and where 

y(s) = y = (s
2

(l-m
2

) - 2mks-k
2

)
i 5 

(3.4.4) 

has branch cuts from -k/l+m to and from k/l-m to °° along the 

real axis such that y(0) = -ik (see Figure 4). 

The conditions of zero normal derivative on y = 0 and 

normalisation yield 

—i sx 

F
1
(y) = coshy(s)tj; ^ ( x ^ y ) = coshy(s)y e . (3.4.5) 

Substitution into equation (3.3.11) for cj)
2
 in (3.4.1) gives 

(3.4.6) 

F
2
"(y) - (s

2

-k
2

) F
2
(y) = 0 

so 

F (y) - A e ^
C s ) y

 + (3.4.7) 

A A 

where A and B are also undetermined constants and y(s) is the 

A. A 

non-convected form of y(s) i.e. y(s) = y(s) | = y has branch cuts 
m=0 

from +k to ±» (see Figure 4). 

- k k 

-k/1+m k/1-m 

Figure 4 

Thus for real s (with s below the cut from k to °° and 

above the cut from 
-k 
l-m 

to oo , Re(y) > 0 and Re(y) > 0. 
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f\i\ outgoing finite waves at infinity requires 

•
2
 = B e -

Y ( s ) y

-
i s X

 . (3.4.8) 

Applying boundary conditions (3.3.6), (3.3.7) and (3.3.8) 

on y = d via n(x) gives 

A 

n
 -y(s)d . , , ms. -1 . 
B = -e ^

 J

 ysinhyd y (1 + . (3.4.9) 

The substitution of these expressions for ^ and <{>
2 

along with those for n(x) and the pressure excesses p^ and p
2 

into the elastic plate equation (3.3.2) gives as the condition 

for the possible values of s the roots of 

4 4 " 
F(s) = (s -y ) y(s)y(s) sinhy(s)d - e[y(s)sinhy(s)d 

+

 (1
 +

 y O y(s)coshy(s)d] = 0 . (3.4.10) 

In Appendix 1 the method for finding the zeros of F(s), 

for small e, is outlined and the zeros and their nature are listed. 

Now the possible behaviour of <j>
2
 when e is small will be 

considered. The cases y < k and y > k will again be dealt with 

separately and it is the exponent in which we have the most interest. 

The exponentials of the potentials are of the form 

exp{ax+by} E exp{ (a^+ia
2
)x + (bj*ib

2
)y} (3.4.11) 

where a^,a
2
, b^ and b

2
 are all real. The real part a^ of the complex 

coefficient a in the exponent indicates either growth or decay in 

x. Each of these coefficients depends on the small parameter e. 

If a^ is 0(e), for example, this will be referred to as an 0(e) 

decay in x. The imaginary part of a, a
2
, in the exponent indicates 

a travelling wave in x. 
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If a
2
 is 0(e), for example, this will be referred to as an 0(e) 

wave in x. The coefficients b of y will be described in a similar 

way. 

3.4.1 BELOW COINCIDENCE k < y 

The solutions associated with S^ and S
2
 are waves in the 

negative and positive x directions respectively and have 

exponential decay in y,* thus they are subsonic surface waves (assuming 

decay and not growth) with exact wave numbers S^ and S
2 >
 The 

solutions from S^ and S^ are waves at 0(1) in y but have an 0(e) 

decay in y and an 0(1) decay in x. The S^ and S^ solutions are 

waves in the x-plane with 0(e) decay in y t h e s e too then are subsonic 

surface waves on the plate. The S^ contribution has, in both 

2 

x and y, waves at 0(1) and at 0(e) but decay at 0(e ). Sg produces 

a subsonic surface wave in a similar way to S^, S
+ n
 for n < N 

give contributions similar to Sy and S
+ n
 (n>N) give contributions 

similar to S^ and S^. 

3.4.2 ABOVE COINCIDENCE k > y 

The nature of the contributions from S^, S^, S^, Sg and S
+ n 

i.5 unchanged. S^ and S
2
 give waves-at 0(1) but decay at 0(e). 

S,. and S. give an 0(1) wave in x but 0(e) decay in both x and y. 
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Although, as mentioned above, it is possible for the system 

X O be satisfied by potentials which exhibit exponential growth 

in §©we directions^ in practice such solutions are seldom triggered 

off in regions where they are not ultimately decaying at large 

distances; they might be present for instance in the case of unstable 

motion e,g- vortex sheets/*"
1 

By looking at this system we have determined the possible 

free-wave solutions and their behaviour. Now Fourier transforms 

of the problem will be taken. 

THZRe A&e cas&z /V lo^ich sPAciAL. aKtd TSTH POK AL 

I^STA'SiU-neS COVFiRMej} -po (Z o/Jt^oilM "Ff-Ooo 

'Surr PoR the- 'PAftA/nerrfc ^AiO^e" c o s y h g & E -
W A 5

 S^tOLOA)
 j U S £

 ^ ^aocH^'s -Tue&Kevn /AJ 

A ^ ^ - p / x |
 }
 -7%/AT 7T//S is A)crr THE- C-ASE A W -THAT 

-TU& Voi-es -p o NO~r c f2-OS5> TUB VfrrH oF ,*>TEZ
J
(ZAT\Ok> 

(hi ArCco P D A L o ) 1 U cAvsA^/iy R ifvlu I fc^w^-fc 
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3,5 FOURIER ANALYSIS 

the Fourier transform d>. of d>. by 

+00 

; J 

i y 
^ e * dx

 }
 j = 1,2 , (3.5.1) 

its inver.se is given by 

+ 00 

- -1 QY 
>. e

 x

 d s , j = 1,2 . (3.5.2) 

Taking transforms of (3.3.10) and (3.3.11) yields 

2 O O r\ 0 
-(1-ffl I s l j + — 2

 +

 Z m k s ^ + k $ = 0 (3.5.3) 
dy 

and 

2 

i - y - (s
2

-k
2

)^ = 0 . (3.5.4) 
dy

 1 1 

In the physical problem k and y are real but for mathematical 

convenience, to improve the convergence of the transform integrals, 

k and y are taken to be slightly complex, k = k^ + i k
2
, y = y^ + iy

2 

(k^,k
2
,y^,y

2
 real) for small positive k

2
,y

2
- Later on we let 

k
2
, y

2
 -v 0 to give the result. 

The general solutions to (3.5.3) and (3.5.4) are 

• fj * A
i e

Y ( s ) y

 • B
i e

-
Y ( s ) y

 (3.5.5) 

$
2
 = A

2
e ^

( s ) y

 • B
2
e ^

C s

)
y

 ' (3.5.6) 

A 

where y(s) and Y(S) are as given by equation (3.4.4) but now have 

branch cuts from -k/(l+m)to and k/(l-m)to «> and from ±k to ±°° 

along straight lines of constant argument.(see Figure 5). So 
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for real s; Re(y(s)) > 0 and Re(y(s)) > 0. 

Figure 5: S-plane 

Let n be the transform of n(x). 

Taking transforms of (3.3.6) and (3.3.7), substituting 

for (j)̂  and ^ f
r o m

 (3.5.5) and (3.5.6), applying the transform 

of (3.3.8) and the outgoing condition at infinity yields 

<j>j = - [in(o)+Us)coshyy + Xcoshy(y-d)]y ^"cosechyd 

$
2
 = icky nexp{y(d-y)} 

Taking transforms of equations (3.3.14) gives 

p
x
 = ip

0
(a)+Us)^

1
 ; p

2
 = ia)p

0
^

2
 . (3.5.9) 

Now substituting 

into (3.3.2) and taking transforms gives 

( s %
4

) n = - y - {$
2
 - (1+ y ) ^ } on y = d , (3.5.10) 

On substituting for the Jj's, 

n = -i(l+ p
Q
 jy Xy F(s)"

1

 (3.5.11) 

where F(s) is given by equation (3.4.10)', thus 

(3.5.7) 

(3.5.8) 
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4S = -Ay * cosechyd[coshy(y-d) + ey(l+ y ) coshyy F(s)~*] , 

ms -1 
$2 = x D X F(s) exp{y(d-y)}. 

(3.5.12) 

(3.5.13) 

Inverting these transforms gives 

*1 " 27 

, As 
2
 =

 2 7 

n(x) = -

1
 A

 ms l * 
y cosechyd[coshy(y-d) + ey(l + coshyy F(s)~ ]e

 1 S X

 ds^ 

(1+ exp{y(d-y)-isx}F(s) *ds , 

1 

icA 
2tto) 

ms.
A

 _. .-1 -isx, 
(1+ y ) Y F(s) e ds 

(3.5.14) 

(3.5.15) 

(3.5.16) 

where here we have let k^ 0, that is k is now real again and r^ 

is the path in the S-plane shown in Figure 6. 

-k n 

Figure 6: S-plane 

r
i
 is'above'the real axis for Re(s) < 0 and'below'the real axis 

for Re(s) > 0. This ensures an outgoing wave at infinity for c^. 

Notice that the cuts in the plane due to y(s) are not in evidence 

because in F(s), as well as the rest of the integrands, y(s) combines 

with other such terms to be regular in S. Notice also that these 

i 
expressions hold for all E. 
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We now look briefly at and then go onto examine the 

behaviour of ^ in some detail. The analysis involved in this will 

then be of use in examining n(x). 
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3.6 THE DUCT POTENTIAL <p 
1 

Equation (3.5.14) gives for the duct potential <j> 
1 

coshy(y-d)e
 1 S X

 __ Ae 
ysinhyd 2TT y(1+ —-) coshyy F ( s )

- 1

e "
1 S X

d s 

(3.6.1) 

ms -1 -isx 

r l r 

The first of these two integrals represents the potential 

due to a point source in an infinite rigid walled duct with flow. 

Inversion of the integral gives the potential as an infinite sum of 

modes, some travelling up and some down the duct, and some exhibiting 

exponential decay away from the source. 

The second term is the correction term due to the presence 

of elasticity in the duct walls. So putting e = 0 and thus making 

the duct rigid walled makes this integral identically zero. 

Of course the presence of the duct is reflected in this integral too 

by the hyperbolic functions. 

It is very interesting to note that the velocity potential 

in the duct can be split into these two very distinct parts, one 

due to the duct, one due to the elasticity of the walls, even though 

no assumptions have been made about the size of the fluid loading 

parameter c. However a little further examination, of the integrand 

of the second term, reveals that the poles of the integrand -

required if any inversion is going to be undertaken, are not to 

be found simply unless e « 1. This is because it is only in this 

case that we can say that the zeros of F(s) are perturbations away 

from those of f(s). If e were considered large then the zeros 

g(
s

) would need to be known exactly. 
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3.7 THE EXTERNAL VELOCITY POTENTIAL <j> 

To study (j>
2
 a new coordinate system (r,6) is introduced. 

x = rcosG ; y-d = rsin9 (3.7.1) 

Region 2 now becomes 

0 < r < °° ; -TT < 9 < TT (3.7.2) 

and (3.5.15) becomes 

Ae n ^ „,
 N
 -1 

<J>
2
(r,9) C

1 +

 y )
 F

(
s

) exp{-isrcos9-y(s)rsin9}ds . (3.7.3) 

J 
r

i 
Remember there are branch cuts in the S-plane from ±k to 

2 2 h 

±°° due to the branches of (s -k ) . 

Using a substitution due to CLEMMOW ( 6 ), s = k cos© 

where 0 = a + i3, a and $ real^ thus maps the S-plane onto the 

strip 0 < a < TT, < 3 <
 00

 in the complex ©plane such that y(s)= -iksin©. 

It follows that 

»
2
(r,e) = - f i (l+mcos@)F(©)

 1

 exp{-ikrcos(9+©)}sin@d@ 

r

2 (3.7.4) 

where 

F(©) = F(kcos©) (3.7.5) 

and r
2
 is as shown in Figure 7. 
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1 

5' 

// s 

4 

/ 

<L 
Figure 7: ©-plane 

Notice that unlike the S-plane there are no branch cuts 

in the ©-plane. 

To obtain the far field behaviour of ^ the 'method of 

steepest descents' will be used to find the asymptotic behaviour 

in the limit kr
 00

 for small e. 

Now the exponent term -ikrcos(8+©) has a saddle point 

at © = IT - 0 and the path of steepest descent is on that branch 

of cos(a+9)cosh 3= -1 which behaves, near the saddle point, like 

a m-3=tt- 0. This path is called r , (Figure 8). 

11 7T-9 3 H / 2 - 6 2 7T-0 

~ e o 7 V 2 - G
 ( 

/ 

/ / i! 
Figure 8: ©-plane 
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If ?2 is deformed onto r^ then there is no contribution 

from the connecting sections at infinity but Cauchy's Residue 

theorem must be employed to account for any poles picked up in 

the process. 

Notice (Figure 8) that most of r^ lies well inside the 

shaded regions which show where the integrand is exponentially 

small as kr «> (the far field) . T^ may be further deformed 

anywhere well inside this region, to avoid passing through or 

near most poles, as such deformations contribute only exponentially 

small terms [see DAVIS $ LEPPINGTON ( 10)]. 

This then gives 

<J>2(r,0) = | ( )d© = <|)
s
 +2iri £(± Residues captured) (3.7.6) 

I\ 

where 

•s-

2 

( )d6 , (3.7.7) 

P

3 

In order to determine an approximation for
 w e

 need to know 

the positions of the poles and zeros of the integrand. We will then 

be in a position to say if the poles are captured or not on 

deformation of ?
2
 onto r^ and also if their contribution, after 

capture, is significant; this depends on their nature. If a 

captured pole lies well inside the shaded region, its contribution 

is exponentially small for sufficiently large kr. Thus captured 

poles are significant only if they are near the edges of the shaded 

regions, where the exponential decay is slow (or else outside the 

shaded regions - which never occurs here). 
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The poles of the integrand correspond to the zeros of 

F(s) that were calculated in Appendix 1 for section 3.4. 

The positions of these poles, relative to the paths of 

integration, on both the S and 0 planes are shown in Figures 9 

to 14, the cases y > k and y < k being treated independently. 

S S 
5 8 

-k 

S 
U 

Figure 9: S-plane 

Figure 9 shows the position of the poles of the integrand 

corresponding to the zeros S^,...,Sg for y > k and Figure 10 shows 

their position in the ©-plane. 

0 « 
1 

V 

5 >0 

x 0 
A 0 

Figure 10: ©-plane 

Figures 11 and 12 show similar positions for S
+ n
 and ©

+ r i
, 

±n 
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they apply for y > k: y < k 

-k 

Figure 11: S-plane, x denotes S 
±n 

Figure 12: ©-plane, x denotes © 
±n 

Figures 13 and 14 are similar to 9 and 10 but are 

the case y < k. 
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S 
* 3 

s s 6 K 1 o 1 k 
-k X S S 

s_ X 5 8 7 S 
5 8 

2 X 

s 
4 

Figure 13: S-plane 

xft 
' 0 4 

8 

5 
a , 

x 0 
1 

) 

8 X © 
3 

Figure 14: 0-plane 

Before proceeding it is instructive to make some observations 

on the positions of the poles relative to the path of integration. 
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BELOW COINCIDENCE k < y 

It can be seen from Figures 8 and 10 that © ^ and © ^ can 

i t 
never be captured by the deformation of T^ to r^ nor can ©^ , ©^ 

i 
and ©o . All the rest must be included in the following 

o 

analysis, as must ©^ and For although they cannot be captured 

they can be near the saddle point. 

ABOVE COINCIDENCE y < k 

i 

It can be seen from Figures 8 and 12 that all except ©
g 

can be captured by deformation. 

In Appendix 2 the method for finding the residues of F(s) * 

at the points in the S-plane is outlined and the resulting residues 

are listed. The potentials ^ 1 * ^ 2 1
 e t c

*
 c o r r e s

P
o n

d i n g to the 

residues of the whole integrand are also listed. 

From equation (3.7.6) 

<t>
2
(r,0) ~ ^ + I ± 2 - r r i I = 1,2 (3.7.8) 

where j is summed over those poles that are captured, and give 

significant contributions. First the case of the saddle point not 

near any poles or zeros is dealt with. 

> 
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3.8 SADDLE POINT NOT NEAR A POLE OR ZERO 

When the saddle point of r^ is not in the immediate 

vicinity of a pole of F(s) * then using the deformations as 

shown in Figure 15 for 0 < 6 < TT/2 and in Figure 16 for 

TT/2 < 9 < IT all other poles in the © plane can be avoided [see 

DAVIS $ LEPPINGTON ( 10 )]. This means that it does not matter 

if these poles are captured or not since their contribution 

on capture is only of the same order and magnitude as the error 

in the potential, that is to say they are of higher order than 

that to which the approximation is being taken. 

<}>g can then be approximated to by the 'method of steepest 

descents' on 

*S = 
Xke 
3U 

~ -1 
(1+mcos©) F(©) exp{-ikrcos(8 +©)}s in©d© (3.8.1) 

This then gives for the leading term in <J>„, <j> for kr >> 1 
o 

— , exp{ikr-i7r/4}(l-mcos0)[(k^cos^9-y^)y(-kcos6)sinhy(-kcose)d] * 
(27rkr) 

(3.8.2) 

si * 

(< W e 
i \ • 

c 

rr 
7T/2 \ 

c 

rr 

* 

9tv
/; 

Figure 15: ©-plane 
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n, 0 H 1 IX 

Figure 16: 0-plane 

BELOW COINCIDENCE y > k 

From Figure 10 it can be seen that 

C
1

* > ~ <f>g - 2Trii{̂ 2
 t 0

 leading order for 0 < 0 < y 

(3.8.3) 

if r
3
 is deformed as in Figure 15 and 

1 IT 
<F> (r,0) ~ (J) + + 2IRII^10 to leading order for < 0 < IT 
Z o 11 1 o Z 

(3.8.4) 

if r
3
 is deformed as in Figure 16. 

The poles at Sy and ( n < N ) do not contribute significantly, 

even when captured, if they are not near the saddle point. 

ABOVE COINCIDENCE k > y 

From Figure 14 it can be seen that 

<|>
2
(r,0) ~ <j> to leading order for 0 < 0 < j (3.8.5) 

if r is deformed as in Figure 15. 
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It can also be seen that 

i 

<t>2Ĉ *>0) ~ ^s
 + 2 7 r

^ 2 8
 t 0

 order for TT/2 < 0 < TT 

(3.8.6) 

if r
3
 is deformed as in Figure 16. 

For this case the poles at S^, S^, S^, S^, Sy and S
+ n 

( n < N ) do not contribute significantly even when captured unless 

they are near the saddle point. 



- 112 -

3,9 SADDLE POINT NEAR A POLE BUT NOT A ZERO 

When one of the poles of F(s) * is near the saddle point 

then the method of steepest descents (as employed on equation 

(.3.8.1) to give equation (3.8.2)) is no longer applicable. 

i 
A different approximation to replace <J)g , taking into account 

the presence of the pole, must be found. The potential is then 

i 

given by equations (3.8.3) to (3.8.6) with <J>g replaced by <f>gp 

Which is now calculated. 

Following the work of CRIGHTON ( 7 ) and ( 8 ), equation 

(5,3*1) for cf>g can be recast in the form of a FRESNEL integral 

[see CLEMMOW( 6 )]. The appropriate expansion as formed in 

Appendix 3 along with Cauchy's Residue theorem can then be used 

to calculate <}>gp. So <j>g
p
 = <f)g (when pole not captured) 

<J>gp = 27t± x Residue (when pole captured) 

(3.9.1) 

Equation (3.8.1) is of the form 

r 
F(0)exp{-ikrcos(946)}d0 (3.9.2) 

where 

* IpV ~ -1 
F(0) = - (l+mcos0) sin© F(0) . (3.9.3) 

If the case of the saddle point at © = n - 9 being near 

the pole at © = 0. is considered then F-(0) can be defined by 3 3 
A 

Fj (©) = sin
i

5(@-@^.) F(©) (3.9.4) 

where Fj(0) has no pole at ©j and 

S 
r 

e-e, -
1 

Fj (©){sin exp{-ikrcos(9+0) }d@ (3.9.5) 
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Although the integrand still has a pole in the vicinity of the 

saddle point F_. (©) is regular in this region and the major 

contribution to the integral still comes from this region so a good 

approximation to F-(0) is F.(TT-0) and to cj> is thus 3 3 

<J> ~ F. (ir-0) 
S 3 

-6. 
-1 

{sin exp{-ikrcos(0+0)}d0 . (3.9.6) 

Applying the shift of origin transformation of the inte-

gration variable 

n = © - (tt-0) (3.9.7) 

the path r^ becomes the path in the ft-plane, see Figure 17. 

Figure 17: ft-plane 

<f>g is then given by 

4>
s
 ~ Fj (fr-0) 

ft-0-0. 
-1 

{cos —
5
— - } exp{ikrcosft}dft . (3.9.8) 

Putting ft =-ft in expression (3.9.8) and taking half the sum 

of this and expression (3.9.8.) gives 
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e+@. 
2FJ 0 - E ) C O S C - Y ^ O 

cosft/2 
cosft+cos(6+©^) 

exp{ikrcosft}dft 

(3.9.9) 

The complex variable of integration ft can be replaced by 

a real one, x, via 

ikr cosft = ikr-krx' (3.9.10) 

The integral then contains a Fresnel integral (see CLEMMOW 

( 6 )) because 

+00 

<J>
S
 ~ 2Fj (Tr-e)e 

i-nr/4 + ikr 
^ exp{-krx^}dx 2

 -a
2 

x + lb 
(3.9.11) 

where b = i/2" cos( ^
 J

) 

+ 00 

and 2

 -v
2 

x +ib 

2 . 
exp{-krx }dx = ±2/n

r

 F(±bv
/

1cr) 

(3.9.12) 

(3.9.13) 

where F(a) = e 
la -ix 

e dx is the Fresnel integral . (3.9.14) 

The properties of the Fresnel integral are listed in Appendix 

3. 

There are two types of contribution that must be considered, 

First there are those due to ©^ and y < k. It is only for 

these two that the imaginary part of 0 . is 0(e). Otherwise the 

2 
imaginary part is 0(e ). 

The 'Mach Angle' for each pole is defined by 

kcose. = Re(S-) + 0(e ) 
jm

 v

 Jr 
(3.9.15) 

In the (r,0) plane this gives a 'Mach Angle' in real space 

of 
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=

 ' (3.9.16) 
jm jm 

i 
If the 'Capture Angle',0^ , for each pole is defined by 

-h 

0.' = 0 . + i(k
2

-S.
2

) Im(S-) + 0(e
2

) (3.9.17) 

i 
and a corresponding 0^ in the (r,0) plane by 

e / = ir-0j (3.9.18) 
* 

then 

(i) for a pole just above the real axis (0
2
),0 < 9j correspond 

5 71" ' 
to the capture of the pole and TT/4 < arg b < , whereas 0 > 0^ 

corresponds to the pole not being captured and -3ir/4 < arg b < TT/4. 

1 
(ii) for a pole just below the real axis (0-^)^0 > 0j corresponds 

TT 1 

to the capture of the pole and -3TT/4 < arg b < j,whereas 0 < 0^ 

corresponds to the pole not being captured and TT/4 < arg b < 5TT/4. 

Let us consider first the potential contribution when 0 

1 
is near 0^ . 

t 
For -3TT/4 < arg b < TT/4 we have 0 > 0

2
 and 

(i) for 10-0
o
 | of 0(1) and kr >> 1, bv'IcF is large and expression 

(A3.9) holds so 

j. fi-™ rr ^ -iir/4 + ikr ^
 n n

 >-3/2 . _ . 
<J>

sp
 ~ - / k r P ^

- 0

^
 +

 °(
kr

) ) (3.9.19) 

(ii) for 10-62 I
 a n

d kr >> e
 2

, bvlcr is still large and 

equation (3.9.19) is still valid ' 

, » . _2 
(iii) for |0-02 I of 0(e) and 1 << kr << e b/kr is small and 

expression (A3.10) holds 

<f>sp -2-rri F2(TT-0) exp{-ikr cos ( 0 + © 2 ) } . (3.9.20) 
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5ir
 1 

For TT/4 < arg b < we have 0 < 0
2
 and 

(iv) for | I
 o f

 OC
1

)
 a n c i

 kr >> 1, b/kr is large and the 

contribution from the residue combines with (A3.ll) to give <J)gp OJIUCJI 

satisfies equation (3.9.19)j 

(v) for 16 - ©
2
 | of 0(e) and kr » e ~

2

, b/kr is still large 

so equation (3.9.19) still holds^ 

i _ 2 
(iv) for | G-8^ I of 0(e) and 1 << kr << e , b/kr is small giving 

equation (3.9.20) as the expression <f>gp. 

t 

For the contribution when 0 is near 0^ similar results 

can be obtained as follows ;— 

i
 1

 i 
(i) when |0—0 | is of 0(1) and kr >> 1 or 

i _ 2 

when 16-0^ | is of 0(e) and kr >> e 

, /2TT * -ITT/4 + ikr • 
<F>SP ~ " F(TT-0)E

 ;
 (3.9.21) 

i ' i -2 
(ii) when 0-0, | is of 0(e) and 1 « kr << e 

<j>
sp
 ~ 2-rri F^TT-0) exp{-ikr c o s C © - ^ ) } . (3.9.22) 

The second sort of contribution, from 0_ and ©, , occurs 
7 ±n 

2 

where the imaginary term is 0(e ). We define a 'Modified Mach 

Angle' for each pole by 

k cos©. = Re(S.) + 0(e
2

) (3.9.23) 
3 m J 

and a 'Modified Capture Angle' by 

© . ' = © . + i(k
2

-S.
2

)
_ i 5

 Im(S•) + 0(e
3

) . (3.9.24) 
3 jm

 v

 3 3
 1 



by 
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The corresponding angles in the (r,6) plane are then given 

G. = tt-G. (3.9.25) 
jm jm

 J 

6j' = 7t-Q ' (3.9.26) 

The cases of poles being above or below the real axis are 

different just as before. The contributions in the two cases differ 

and are set out below with no further elaboration as the analysis 

is similar to that of the previous case. 

A POLE ABOVE THE REAL AXIS 

i 
(i) When 16-0^ | is of 0(1) and kr >> 1 or (3.9.27) 

i 1 i - 2 
when 19-0j | is of 0(e) and kr >> e or 

I
 1

 I 2 -4 
when |0-6j I is of 0(e ) and kr >> e

 } 

a f
2

™ vr m -in/4 + ikr ,
 n n

 >-3/2 
<t>

sp
 F O - 6 ) e + 0(kr) . (3.9.28) 

I
 1

 I O -4 
(ii) When 10-©^ | is of O(e^) and 1 << kr << e or 

i ' i -2 
when |9-0j I is of 0(e) and 1 « kr « e (3.9.29) 

<(> ~ - 2iTi F. (TT-0) exp{-ikr cos(0+@.)> . (3.9.30) 
^ " 3 3 

A POLE BELOW THE REAL AXIS 

. i . 
(i) When [ 0-0 . | and kr satisfy conditions (3.9.27) then <J>

QD 3 

is given by equation (3.9.28)^whereas when 10—©^ | and kr satisfy 

conditions (3.9.29) <|>
CD
 is given by 
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<|>
C13
 ~ 2iri F. (TT - 9 ) exp {- ikr cos(9+0.)} . (3.9.31) 

or j j 

Thus when 0 is near a 'Mach Angle', the potential 

exhibits a beaming effect of intermediate range,centred on the 

capture angle
;
known as a Leaky wave (or Modified Leaky wave in 

the case of an 0 ( e ) imaginary term). At large enough kr the 

-h 
usual (kr) decaying potential is all that is present. At inter-

_2 
mediate distances near the Mach angle, 1 << kr << e in the case 

-4 
of Leaky waves and 1 << kr << e in the cases of Modified Leaky 

i, 

waves, a much stronger wave, stronger by (kr) than the far field 

potential but of the same form, with just half the amplitude o-f-

the poles residue contribution, is present. 

Notice b\\ot the Modified Leaky waves differ from those of 

CRIGHTON ( 7 ) and ( 8 ) in that they are narrower but are 

present over a much greater range. 
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SADDLE POINT NEAR A POLE AND A ZERO 

Lastly we consider the poles at ©^ and Here the saddle 

iV 
point of the integrand is near one of its zeros. In the below — 

coincidence"case and the second term in the steepest descents 

-3/2 

expansion, of order (kr) , combines with the term already 

found to give the dominant contribution. 

The more interesting case is the
,v

above-coincidence"one (y < k). 

Here the saddle point of the integrand is near one of its poles 

as well as one of its zeros and for some 6 the pole can be 

captured. The previous approximation method fails here since the 

integrand is approximated by its value at the saddle point and 

this becomes small and then zero as 6 is near and then equal to 

0 or IT. 

There are two possible methods for estimating <f)g in this 

case. 

The first method is to isolate the pole of the integrand 

in such a manner that we can subsequently approximate it. Putting 

F(0) = Qj (0) + q. sec ^(6-8^5 ^ = ~ ^ , (3.10.1) 

A 

so q. is half the residue of F(0) at © . , is an excellent method n

J J 

of doing this. The function Qj(©) has no poles or zeros near 

the saddle point so the standard steepest descents method can be 

employed to approximate its integral. The integral of the second 

term can be recast in the form of a Fresnel integral as was done 

previously. This method is not employed since the steepest descent 

analysis can be algebraically complicated and the results are 

difficult to interpret. 
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The second method, the one used here, is to rewrite (3.9.2) 

in the form 

S " 
r 

G.(B) exp{-ikr cos(9+©)}d0 (3.10.2) 
kj 18 J J 

where the function Gj(0) has a pole and zero in the same places 
/s 

as F(0) but can be split into the sum of two manageable parts. 

For the saddle point near 0^ we choose 

-1 
G (8) = sin | cos

 1 £

4 4
 [sin 1 ( © - - 1 1 — ( 3 . 1 0 . 3 ) 

2k(k -y ) k(k -y ) 

and for near 0 . we choose 
6 

G (0) = cos | cos
 1 £

4 4
 [cos ±-(8+

 1 £

 )] (3.10.4) 
2k(k -y ) k(k -y ) 

because they can be split into 

1 + sin — — c o s ® [sin y (0 —
4
 )] (3.10.5) 

2k (k -y ) k(k -y ) 

and 

. -1 
1 + sin

 1 £

 sin | [cos j- (0+
 1 £

 . )] (3.10.6) 
2k(k -y )

 Z Z

 k(k
4

-y
4

) 

respectively. 

We will consider first the region near 0=TT, that is, the 

i e 
saddle point is near © ^ -

 4
— — . The integral in equation 

k(k -y ) 

(3.10.2)
;
 after substituting j equation (3.10.5) can be split up 

to give 
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exp{-ikr cos(0+0)}d© 
g 5 C B ) 

F(©) sin
 1 £

,
 4

 cos f [G (9) sin \ (0 - )] 
2 k ( k % * )

 5 Z

 k(k -y ) 

-1 

exp{-ikr cos(6+0)}d9
 = + 1

2 (3.10.7) 

The first of these two integrals has an integrand which is 

well behaved in the region of the saddle point so the method of 

steepest descents can be employed to give, for the far field, kr >> 1, 

x

i • 
^ ^ y exp{-ikr cos(6+9)}d© 

| l
 e

-ikr-i,/4
 + 0 ( k r )

- 3 / 2
 £ o r k r

 ^ 
kr G^ (tt-6)

 v j 

(3.10.8) 

For the second integral, as the major contribution still 

comes from near the saddle point, most of the integrand can be 

approximated by the value at the saddle point,giving 

T F ( n-e) . ie 
~ T T ^ - T — s m 

2

 V "
0

) 2k(k"-p") 
r r

c o s

( — ) [ s i n
 i.

 c
© . ^ )] 

k(k -y ) 

-1 

exp{-ikr cos(6+9)}d9 (3.10.9) 

= + F(TT-6) . i e 
-- — — sin 

G
r
 (TT-0)

 0 1
 -T -T. 

5
 J

 2k(k -y ) 

© * r~ - i ^ M + ikr 
4 — 4 7

 s i n

 2
 4 / l T e 

F(±i/2kr cos \ (0 + 
le 

2 ,
n
4 4v 

k(k -y ) 
)) (3.10.10) 

with F and (±) signs as before. 
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t t 

Now we know that for 0 < 8^
 ;
 <J>

sp
 = <J>g

;
and that for 0 > 8,.

 f 

<j)gp = c()g + 2iri x Residue. Employing the expansions that we have 

for the Fresnel integral gives the following 

(i) When |©—e
s
*| is of 0(1) and kr » 1 and 

i ' i -2 
when J6-6^ | is of 0(e) and kr >> e , 

. /2n " -in/4 + ikr .-3/2 . 
<f>

sp
 ~ - / ^ r F(TT-8)e + 0(kr) + . 

(3.10.11) 

i ' i - 2 
(ii) When 16 I is of 0(e) and 1 << kr << e

 ; 

/2TT F (IT- 0) - in/4 + ikr .-3/2 _ . 
SP ~ " / k r G ^ 8 )

 6 + 0 ( k r ) +

 ^25 ' 

. . . ie . e F(u- 6) ikr 
- 27,1 sin sin j e , (3.10.12) 

2k(k - y ) 5
v 

which is a Leaky wave plus the pole contribution. 

i 
So when 8 is 0(1) away from 8^ the potential <{)gp consists 

- h of just the radiating field, to first order like (kr) for kr >> 1. 

» 
However when 8 is within 0(e) of the far field is not detected 

- 2 - h . 
until kr >> e where as 0 approaches TT the amplitude of the (kr) 

- 3/2 

terms decays and the (kr) term dominates it. Present here also 

is the residue contribution due to the pole which, as 0 approaches 

IT does not decay until further and further out, until, finally, 

on TT=0, it becomes a marginally subsonic weak surface wave. 

The analysis can be repeated for 0 near 0, that is the x e saddle point is near 0. ~ TT j—-r . The same behaviour, 
k(k - y ) 

including a Leaky wave, but with the marginally subsonic weak 

surface wave travelling in the opposite direction, results. 
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3.11 THE EXTERNAL VELOCITY POTENTIAL : SUMMARY 

The major contributions to the far field of the potential 

<t>2 are thus as follows:— 

3.11.1 Below Coincidence (k < y) 

The potential ^ consists of the radiating far field, of 

-h -3/2 

order (kr) or (kr) near the walls, plus (in the positive 

x-direction) a subsonic surface wave -2iriip^2
 a n

d (in the negative 

x-direction) two subsonic surface waves 2iTiip and 2tt±tp,
 0
 -11 io The Modified Leaky waves are also present. 

3.11.2 Above Coincidence (y < k) 

The potential <J>2 again consists of the radiating far field, 

-h -3/2 

of order (kr) or (kr) near the walls, plus a marginally subson 

weak surface wave in each direction, an ordinary subsonic wave 

2iri\p2g in the negative x-direction, very weak Leaky waves and. 

Modified Leaky waves as described. 

Thus a typical sketch of maximum amplitude, A, against angle 
_2 

6, at a constant r, with 1 << kr << e would be of the form 

Figure 18. 
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0 7\ 

Figure 18: Diagramatic only 

1 is a weak subsonic surface wave 
2 is a subsonic surface wave 
3 are Leaky or Modified Leaky wave peaks 
4 is the far field radiation (kr)

-i5 
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3.12 THE WALL DISPLACEMENT n(x) 

Lastly we consider the wall displacement n(x). 

Equation (3.5.16) gives us 

n(x) = -
2ttoj 

r 
(1+ ^ ) Y ( S ) F ( S )

- 1

 exp{-isx}ds (3.12.1) 

Putting S = k cos© gives 

. eXk 
n(x) = 

2ttc r 
2 * - 1 

(l+mcos@)sin ©F(@) exp{-ik*cos©}d© . (3.12.2) 

2 

We will again use the method of steepest descents through 

the saddle point for finding rig. For x < 0 this is through © = 0 

so the paths r^ and r^ coincide. For x > 0 the path is through 

© = it so the transformation has to be used to map r^ onto r^. This 

then gives for the saddle point contribution in the far field 

n
s l
( x ) ^ ^ 372 e

 i k x

-
i w / 4

 • 0 ( k x ) -
5 / 2 

/2TT C Y(-k)sinhy(-k)dy(kx) 

for kx large and >0 j 

(3.12.3) 

n
S 2
( x ) = ^ ^ _ _

 e
-

i k x

"
i i r / 4

 +
 0 ( k x )

5 / 2 

^2tF cy(k)sinhy(k)d(-kx) 
for kx large and <0 , 

(3.12.4) 

-3/2 

The first term in these expansions is 0(kx) since the 

integrand has a double zero at © = 0 and TT unlike that for ^ 

which only had a single zero in these planes. 

We now use Cauchy's Residue theorem to take into account any 

poles that contribute significantly on capture, giving the following 
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for TI(X) in the far field. 

Above Coincidence (y < k) 

r \ r ^ r Xe
3

(l+m) 4.-, 
n(x) ~ r, (x) + {

 0
 a a -z

 +

 0(e )} e 
c

z

k(k -y ) y(k)sinhy(k)d 

i ' ^ - Y - 4 - 4 — + 0(e
2

)} e " ^
8 

2ck d(l-m)(k -y ) 

for x < 0 

kx large 
(3.12.5) 

-3/2 

which is the (kx) radiating sonic wave plus two subsonic waves, 

one of them being small and only marginally subsonic; 

3 - ixS 
n(x) ~ n

s l
( x ) + [

 ( 1

-
m )

4
 • 0(e

4

)]e
 6 

c k(k -y )y(-k(sinhy(-k)d 

for x > 0 

kx large 

(3.12.6) 

-3/2 

which is the (kx) radiating sonic wave plus a small marginally 

subsonic wave. 

Below Coincidence (k < y) 

y
 , -1

 ?
 -ixS 

n(x) ~ n
s 2
( x ) + Q (1+ p (4y y(y)sinhy(y)d} + 0 ( O ] e 

Xe 2 "
i x S

8 
+ [ j—Z

 +

 ^
 e x < l a r

8
e 

2ck d(l-m)(k -y ) 

(3.12.7) 
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which is the radiating sonic wave plus two subsonic waves of 

comparable amplitudeJ 

n(x) ~ n
s l
( x ) + [ (1- {4y

3

Y
(-y)sinh

Y
(-y)d} + 0(e

2

)] e ^ 

for x > 0 , kx large (3.12.8) 

which is the radiating sonic wave plus one subsonic wave. 
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3.13 SUMMARY 

In this chapter the interaction between a time periodic 

disturbance in a flow and the wave-bearing duct containing that flow 

has been modelled, in two dimensions and in an inviscid regime, by 

the linearised system of a line source vibrating in an elastic 

walled duct containing flow. The thin elastic plate has been taken 

as the model of the wave-bearing surface. 

The effects of the flow in the duct, evident throughout 

the analysis, are of particular interest. In section 3.3. we 

have the convected forms of the material derivative and Helmholtz's 

equations, equations (3.3.5) and (3.3.10), as opposed to their non-

convected counterparts, equations (3.3.4) and (3.3.11). 

In section 3.4 the ratio of the free wave numbers of 

the plate in vacuo to the wave number of the fluid source is seen 

to be an important parameter in determining the nature of the 

solutions present. 

After substituting in an asymptotic expansion, in small e, 

(the light fluid loading limit) for the zeros of F(s) we were able 

to find the positions of the poles of the integrand and thus 

identify the types of solution present. Results could not be 

obtained analytically, by this method, without the light fluid loading 

assumption because it is this that permits the identification of 

the approximate positions of the zeros. Even for large e, the 

heavy fluid loading limit, the identification of the approximate 

zero position is difficult. 

We can see in the transform inversion integrals (3.5.14), 

(3.5.15) and (3.5.16) that the convection term (1+ms/k) is 
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introduced by the flow into all the integrands. In particular 

in equation (3.6.1) for the flow has an effect not only in 

the first but also in the second term which although representing 

the elasticity in the walls and the presence of the duct also 

reflects the presence of the flow. 

It is the flow that in section 3.12, in equation (3.12.1) 

for n(x), gives different upstream and downstream contributions 

to T"i(x) , ( r ^ W
 a n

d
 a n c

* also results in two subsonic 

surface waves upstream but only one downstream,' this applies for 

y > k and y < k even though the wave speeds are different in each 

case. 

For the external potential ^ the asymptotic methods used, 

casting into Fresnel integrals in the style of Clemmow or "steepest 

descents", permit the identification of a range of beaming effects, 

present in the middle field and identified as Leaky waves or 

Modified Leaky waves, as well as the classic radiating far field. 

The contributions from those poles that give such Leaky waves do 

not propagate energy to infinity but decay away to the radiating 

field at sufficiently large distances. 

Notice that here also, as with and n(x), the conditions 

y < k and y > k determine whether some waves are or are not 

present in the solution. 
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CHAPTER 4: Radiation from a partly elastic infinite duct 
containing flow 

4.1 INTRODUCTION AND SUMMARY 

In this chapter we investigate the two-dimensional problem 

of disturbances caused by a plane wave in a duct (containing uniform 

flow) that has parallel semi-infinite rigid and semi-infinite 

elastic walls. The thin elastic plate has again been chosen as 

a model of a wave-bearing surface. We elect to consider this simple 

model, losing the algebraic complexity of the Timoshenko-Mindlin 

model in favour of the clear identification of the major 

potential contributions. 

As the geometries here are semi-infinite the Wiener-Hopf 

technique will be employed. 

The system to be examined is defined in section 4.2. 

Linearisation of the equation of motion and the boundary conditions 

gives the model problem (see section 4.3). 

In sections 4.4 and 4.5 a Fourier transform analysis and 

Wiener-Hopf analysis are undertaken. From the solutions obtained 

from this, an approximation for the wall displacement is found and 

discussed in section 4.6 and similar results for the interior duct 

potential are found in section 4.7. 

The solution, for the potential inside the duct, is given 

in the form of a complex integral, and significant contributions 

arise from the poles of the integrand. In section 4.7 a change in 

integration variable leads to an identification of the location of 

these poles. The structure is different according as the frequency 

is above, or below its 'coincidence' value. In section 4.9 the 
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first estimate, valid for large kr at most angles 6
;
is found. 

In sections 4.10, 4.11 and 4.12 more complicated asymptotics 

for 0 near 'Mach Angles' are developed. It is here that sometimes, 

for light fluid loading, local reinforcement occurs and the 

existence of Leaky waves is detected. Section 4.13 is a summary 

of the external velocity potential. Section 4.14 contains 

observations on the analysis. 
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4.2 PROBLEM DEFINITION 

Inviscid compressible fluid flows adiabatically in a two-

dimensional infinite duct. The duct consists of two joined semi-

infinite sections. One section has rigid parallel walls, where 

(x,y) are cartesian coordinates^ these are at y = ±d, x < 0 . 

The other section has elastic walls about y = ±d x < 0. The 

basic flow is uniform and constant from the rigid walled section 

into the elastic walled section. It has a velocity potential <j> 

given by <j> = Ux
;
and there is identical still fluid outside the 

duct. 

A plane wave is travelling down the duct from x = -
 00

 to x = «>. 

This wave, of maximum amplitude X, has a velocity potential given 

by <f»Q where 

<f>
0
 = Re{X e x p [ ^ - iart] } , (4.2.1) 

The interaction of this wave with the elastic walls of 

the duct and with the discontinuity at the joins produces dis-

turbances both inside and outside the duct. 

As can be seen from Figure 1 the problem is symmetric about 

the centre line y = 0 of the duct. 

y 
u y = 0 

Figure 1: denotes rigid wall 
denotes elastic wall 
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The h a l f - s p a ^ problem to which this is equivalent will be 

solved) see Figure 2. This consists of a basic uniform flow U 

down a duct of width d disturbed by a plane wave with potential 

<f>
Q
 given by equation (4.2.1). The plane y = -d consists of an 

infinite rigid baffle. The half-plane y = 0, x < 0 also consists of 

a rigid baffle whereas the half-plane y = 0, x > 0 is a semi-infinite 

elastic plate. There is one other boundary condition^at the 

joint, where the pressure is taken toMfeat worst an integrable 

singularity. 

y ^ 2 

u*<b 

• y = - d 

Figure 2 

Once again the small amplitude vertical displacement, n(x,t), 

of the elastic plate is governed by the equation (3.2.1) 

4 2 
D ^ (x,t) + 2Mh = - p ]

+

 on y =
 n

(x,t) (4.2.2) 
ax at 

All quantities here have the same definitions as in the 

previous chapter. 

If $ is the total velocity potential for the fluid then 

write 

a 

- Ux + <|> + <f> in Region 1 

$ = (4.2.3) 

<f>
2
 in Region 2 
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a a 

and <f>2 are the velocity potentials of the disturbances and 

$ satisfies Lighthill's non-linear acoustic equation (3.3.9) 

2

y
2

6 = 1
 2 8 $

 3<L_ c

 « 2 3x. 3x.3t
 +

 ax. ax. ax. ax. ' (4.2.4) at 1 1 i j i j 
If we let 

<f>j = Re{({Ke'
1(A)t

} and $ = $. j = 1,2 (4.2.5) 

to take into account the periodic response of the fluid to the 

wave then we have 

= Ux + Re{(J)
1
e"

ia)t

+X exp - iwt] } (4.2.6) 

= Re{<t>
2
e~

i a ) t

} 

As before we obtain approximations for (J>̂ ><{>
2

 a n

d n by assuming 

that they are small, linearising,and replacing the boundary conditions 

on y = n(x,t), x > 0 by ones on y = 0, x > 0. 
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4.3 FORMULATION OF THE BOUNDARY VALUE PROBLEM 

The linearised form of (4.2.2) is 

4 4 2 
(x,t) + 1JL

 ( x
,t) = Pit on y = 0 . (4.3.1) 

3x U) 3t PqO) 

We are going to consider e « 1 but at this stage we will 

conduct the analysis for all e. 

Putting 

n(x,t) = Re{n(x)e"
l u ) t

} ; n(x) = n (4.3.2) 

to take into account the response of the elastic plate to the 

disturbance gives for the linearised boundary conditions between 

the fluid and the baffles at y = -dand at y = 0
;
x < 

3*2 

= 0 on y = 0 x < 0
 } 

on y = 0 x < 0 
3<t> 

3 F
= 0 (4.3.3) 

on y =-d for all x . 

For the linearised conditions between the elastic plate 

and the fluid ^-e- lvcn/<e-

^ • "U 3n n n 
9y~

 =

 "
l a ) n  +

 dx
 0 n  y =

 '
 x  

(4.3.4) 

= -iuTi _ o n y = 0 , x > 0 

8

*2 
3y 

/s /s 

Additional conditions are that <f)j and ^ represent outgoing 

waves at infinity and that n(0) and n
M

(0) are zero, that is one 
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section of duct is joined to the other in a locally hinge-like 

manner. 

As before the linearised form of (4.2.4) for <f>2 in Region 2 * 

is 

2 2 
(
 +

 ^
 =

 ° (4.3.5) 
3x dy 

and for <f>̂  in Region 1 is 

2 2 2 

( +
 [ k + i m

 |_] = o , (4.3.6) 
dx dy 

For this problem the pressure difference p]
+

 across the plate 

is given by 

pit = P
2
" P ! (4-3.7) 

/s a 

where pressure excesses p^ and are given by 

p = Re{p..e~
la)t

} j = 1,2, (4.3.8) 

and 

U

 ckA ikx 
p

2
 = iup

0
<f>

2
,
 P l

 = P
0
{ia)^ - _ }

 +
 i

P ( )
 _ e x p ^ } , 

(4.3.9) 

a a 

which is expression (3.3.14) with <j> replaced by
 +

 ' 

This then gives for equation (4.2.2)
 7 

4 ie
 r
, . im X i-ikx-,-,

 f
. „ 

— j - - y n = - —[(f)
0
-cj), - -j— e x p { ^ }] . ( 4 . 3 . 1 0 ) 

„ 4 a)
 L

 2
 Y

1 k dx 1+m
 r

 1+m • 
dx 

It is not instructive to look at the free wave solutions 

this system can support as we did in the previous chapter because 

of a basic difference in the two problems. This problem has an 

inhomogeneous boundary at y = 0 with semi-infinite geometries. 

Trying to see what solutions this could support brings us back to 
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the original problem (with the semi-infinite boundary conditions). 

The presence of the semi-infinite geometry implies that a simple 

Fourier transform analysis will not be sufficient and the Wiener-Hopf 

technique will be employed as well (see NOBLE (16)). However, 

it is anticipated that the kernel of the Wiener-Hopf equation is 

the function F(s) already studied. Our knowledge of the positions 

of its zeros and poles will be of great use when we come to split 

it into a product of 'upper' and 'lower' regular functions (which 

are defined later on). Some of the zeros of F(s) will be poles 

of the integrand in the solution we obtain,so information about 

the types of waves each produces will also be of use. Remember CJvctfc: 

these asymptotic solutions for the zeros rely on m being finite', 

the solutions are non-uniform and do not hold for m small and 

particularly m equals zero. 
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4.4. TRANSFORM ANALYSIS 

Using the definitions from equations (3.5.1) and (3.5.2) 

for the Fourier transform and its inverse we now also define tke. 

half-range plus transform given by 

(f.. = 
3 + 

i isx , _ _ 
*. e dx 1 = 1 , 2 . T j J (4.4.1) 

known as a plus function because it is regular for all s = S
r
 + iS^ 

(S
r
 and S^ real) such that S^ > S for some S < 0 provided k and 

y have small positive imaginary parts. (This region is known 

as R
+
, see Figure 3.) We also define a corresponding half-range 

minus transform given by 

<f>. e 
3 

I S X 
dx ; 3 = 1 , 2 , ( 4 . 4 . 2 ) 

which is known as a minus function since it is regular for all s 

such that S^ < S
+
 for some S

+
 > 0. (This region is known as R , 

see Figure 3.) Once again k and y have small positive imaginary 

parts. We assume k = k^ + ik^ and y = y^ + iy^ to improve the 

convergence of the transform integrals and then we let 0 

to obtain the solutions for real k and y . 

W V V V 

Figure 3: S-plane 
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Taking half range plus transforms of equation (4.3.10) 

yields 

, 4 4.- ie
 r

- ,, ras.T iX im , , 
( S - „ ) „ - - — - C I * -

 +

 T •
1
C 0 ) ] 

+
 .

 s
2 M 0 1

 ( 4
_

4 3 ) 

8x 
+00 

where r\ = c \ isx, 
ri(x)e dx = Ti(x)e

1 S X

dx ( 4 . 4 . 4 ) 

0 

since n(x) = 0 for x< 0. 

Letting 

;

n(0) 

3 " ^ a
x 

where p and q are as yet undetermined we have 

a * W ) , 9 n ( 0 )
 f A

 . 
= q and — ' = - p (4.4.5) 

f 4 4.- ie
 r

T mSsT eX (s -y )n = - — ft
2+
 - (1

+ t
) 9

1 +
 ] -

 e ( k + s ( 1 + m ) ) 

+

 S I
 +

 P
s 2 +

 ^ • (4.4.6) 

Taking transforms of equations (4.3.5) and (4.3.6) and using 

the outgoing wave at infinity condition with equation (4.3.3c) 

gives 

^ = B(s)coshy(s)(y+d) (4.4.7) 

$
2
 = A(s) exp{-y(s)y) (4.4.8) 

where A and B are functions of s and as yet unknown. 

The transform of (4.3.3a) gives 

^ $
2
_ = 0 on y = 0 (4.4.9) 

and that of (4.3.3b) gives 

~ = 0 on y = 0 (4.4.10) 



- 140 -

whereas the transforms of (4.3.4a) and (4.3.4b) yield 

= -icon on y = 0 (4.4.11) 

and 

~ = - i(oj+Us)n on y = 0 . (4.4.12) 

Substituting equations (4.4.8) and (4.4.9) into (4.4.11) 

gives 

a 

-yA =-iwn (4.4.13) 

and equations (4.4.7) and (4.4.10) into (4.4.12) gives 

-i(a)+Us)n = y(s)B coshy(s)d . (4.4.14) 

So on y = 0 

$2+
 =

 $2 ~ $2-
 = 1(

°
Y n

 " ^2- (4.4.15) 

and 

= " h-

= -icu(l+ ^ O n [y(s)sinhy (s)d] coshy(s)d - ^ (4.4.16) 

and on substituting in for <j>̂
+
 and and then for n from equation 

(4.4.11), equation (4.4.6) becomes 

v f
 . d r

 r
 2 me , eX 

K ( s )

 3 7 *2+
 =

 "
l u ) l p 5 + q +

 " ck(k+s(l+m))
 ] 

where 
2 

K(s) = (s
4

-y
4

) - e{y
- 1

+ (1+ y^cothyd} 

= {yysinhyd}"
1

 F(s) , (4.4.18) 
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K(s) therefore has zeros in precisely the same places 
a 

as F(s). K(s) also has poles at the zeros of yysinhyd. So as 

k and y are slightly complex it follows that there is a strip 

of regularity, S , for K(s) about the real S axis within which it 

also has no zeros. iS is thus given by the minimum (in 

magnitude) imaginary part, for complex k and y, of those S^ (all 

and Sj (j=5,6,7,8 and ±n) that have negative imaginary parts. 

Conversely iS
+
 is given by the minimum imaginary part of the same 

Sj's and S^'s that have positive imaginary parts. S consists of 

the region where R
+
 and R overlap. Now as equation (4.4.17) 

is in an appropriate form we can proceed to apply the Wiener-Hopf 

technique. 
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4.5. WIENER-HQPF ANALYSIS 

First we define a product factorisation of the kernel 

K(s) = K
+
(s)/K_(s) • (4.5.1) 

K
+
(s) is regular and non-zero in the upper half-plane, R , while K (s) 

is regular and non-zero in R . We accept equation (4.5.1) as 

a formal definition; explicit determination of the factors K
+
(s) 

and K_(s) is undertaken in Appendix 4 (for e << 1). 

The Wiener-Hopf equation (4.4.17) can thus be rewritten 

K
+
(s)$

2 +
' = [NCs) + Q_(s) + ^

( 1 + m )
] K _ ( s ) (4.5.2) 

where
 1

 denotes partial differentiation with respect to y;thus 
a
2

<f> i 2+ 
4>2

+
 means (s,y) evaluated at y = 0. Also 

2 £ 
N(s) = -ia)[ps + q + — j ]

}
 a regular function

 ;
 (4.5.3) 

ck 

— ms -
Q_(s) = e [4>

2
 - (1+ y ) ^ ]

}

 a

 minus function . (4.5.4) 

The last term in equation (4.5.2) can be split into a sum 

of plus and minus functions."— 

ieXK (s) K (s)-K (-k/l+m) ieXK (-k/l+m) 

= * " W c M W ! >
 +

 v x i n ^ ' (4.5.5) k+s(1+m) k+s(l+m) k+s(l+m) 

and equation (4.5.2) can be subsequently rearranged to give 

f
 ieXK (-k/l+m) 

K

+
( S )

^ 2 + * k+s (1+m)
 =

 ^ M * )
 +

 Q _ ( O M s ) 

+ 
i e
X K_(s)-K_(-k/l+m) 

< - T T T r T ^ > (4-5.6) k+s(1+m) k+s(1+m) 
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Now the left hand side of equation (4.5.6) is regular in R
+ 

and the right hand side is regular in R . In the strip of 

regularity, 5 , both sides of equation (4.5.6) are regular and 

we now let them be equal to a regular function R(s). In S 

, ieXK (-k/l+m) 
R(s) - K

+
( s H

2 +
 -

 k +
;

( 1 + m )
 (4.5.7) 

and 

K (s)-K (-k/l+m) 
R(s) = N(s)KJs) + Q_(s)K_(s) + H A ^ { ^ ^ > 

(4.5.8) 

Equations (4.5.7) and (4.5.8) thus continue R(s) analytically 

throughout the whole S-plane. The behaviour of the right hand 

side of equations (4.5.7) and (4.5.8) as s goes to infinity in 

the upper and lower half-planes therefore gives the behaviour 

of the analytic function R(s) at infinity and R(s) can thus be 

determined. In Appendix 5 the appropriate limits are taken and 

the function R(s) is found to satisfy 

R(s) = -ipw . (4.5.9) 

In Appendix 5 we find the first two terms in the power 

series for p. Then from equation (4.5.7) 

, , eXK (-k/l+m) 

V
- i

M
s ) - [p. -

 k +
3

( 1 + m )
 ] (4.5.10) 

and substituting into equations (4.4.7), (4.4.8), (4.4.11), (4.4.13) 

and (4.4.15) gives, after applying the inversion formula
 ; 

f , • , , XeK (-k/l+m) -1 -isx 
-l -1,, ms. coshy(y+d)

 r
 - ' \

 v r
 \ j =

 Y C
1 +

 "i—) — • u j — - {pw - ̂  n c } K (s) e ds , 
1 2TT J k ^ s m h y d

 r

 k+s (1+m) +
 J

 > 
r

i 
(4.5.11) 
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=

 2 7 

-1 
AeK (-k/l+m) -1 

Y { p a )

 k+s(1+m)
 }

M
S

) exp{-yy-isx}ds , (4.5.12) 

2 it j {P " 
eXK (-k/l+m) 

to(k+s(l+m)) + 

-1 -isx 
}K (S) e ds (4.5.13) 

where r, is as before. 
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4.6 THE WALL DISPLACEMENT n(x) 

Consider now the wall displacement n(x) given by equation 

(4.5.13) as 

To analyse this integral the second of the two options 

available will be used. Instead of transforming to the ©-plane 

as before the integral will be deformed to one around a semi-

circular contour is the S-plane, integrating along both sides of a 

branch cut if necessary. Employing Cauchy's Residue theorem 

to account for any poles picked up in the process and Jordan's 

Lemma to confirm that the semi-circular contribution goes to zero 

as its radius goes to infinity means the integral can be recast 

into either (i) an integral plus the residue contributions or 

An approximation to this second integral, if it is present, can be 

found. 

First consider n(x) for x < 0 . The path can be deformed 

onto r
5
, as shown in Figure 4, because the integrand has no branch 

cuts in R
+
. As the integrand is regular in R

+
 there are no residues 

to be picked up and Jordan's lemma gives the integral along T^ 

as zero as L «>, so n(x) = 0 for x < 0 . 

n(x) = j {
P
 - + 0(e)}K

+
(s) e ds 

(4.6.1) 

-1 -isx 

u)(k+y (l+m))(k+iy (l+m))(k+s (1+m)) 

(ii) just the residue contribution. 
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For n(x) , kx > 0 and large
;
 the deformation is more complex. 

The integrand has a branch cut from -k to along a line of 

constant argument and the semi-circular path r^ in the lower 

half-pl ane R has to be indented around this branch cut as shown 

in Figure 5. The integrand has poles at S
 n
, S

2
, S^, S

6
, S

7 

so there are residue contributions to be taken into account. 

Figure 5: S-plane 

From Cauchy's Residue theorem it is known that 

J = I
 +

 I
 +

 I -2iri{ I Residues Captured) (4.6.2) r r r r 
1 61 62 63 
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From Jordan's lemma it can be shown that 

/ = 0 » (4.6.3) 

r 6 1 

This leaves / , / and the residue contributions to be 
r r 

r
 , 63. 63 
found. 

The integral has poles at S^, S^, S^, S^, S . The contri-

butions from S^, S
2
 (for y > k) will be travelling waves whereas 

those from S
2
 (for y < k) S^, Sy and S will be decaying 

a 

exponentially at some order in e. There is no pole at s = S^ = -k/l+m 

because it is a zero of (K In Appendix 6 the method 

for finding the residues of the integrand for n(x), partly applicable 

for <f>̂  and <f>
2
 is given, and the residue contributions are listed. 

This then only leaves the contributions from r^
2
 and r ^ to be 

found. 

Expanding in powers of e gives 

n
s
(x) ~ {-eA(l+m)+0(e

2

) } [2™{k+y(l+m) }{k+iy(l)m) } ]
_ 1

 x 

f r 1 l
+ m

 tt y /- -iSX, , .. 
* J [ft • ̂

 +

 1 — % — 1
K

 (s) e ds (4.6.4) 
r
 ^

 l

(l+i)y k+s(1+m)
 J J v J 

62 63 

where the integral along
 r

^ 2
+ r

6 3
 c a n w r

^ -
t t e n 

-k 

r 1
 1 + m

 i r 1 1 i -iSX. .. , 
k+s (1+m) K^Xs+) K

+
(s-)

] 6 d s C 4

'
6

'
5 ) 

-oo 

and s+ denotes above the branch cut and s- below it. 

The method of steepest descents, applied after putting K
+
(s) = 

K_(s)K(s) tkerv 
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n fvl ~ j-Ci-H)k
2

7TXCl+m)C^
+

y)C^+iy) r 1-i 1+m
 o r

 ^
 f k

„_c3/2 ikx n

s W ~ 2co [k+y (l+m)]|k+iy (1+m) ]
 1

 2y " km °
Ce:)J ( k x 7 T ) e 

-5/2 
+ 0(kx) for large kx« 

(4.6.6) 
-3/2 

Notice that although this contribution is as small as 0(kx) 

it is 0(1) with respect to e. 

Combining all these separate contributions to n(x) then gives 
oo 

n(x) ~ n
s
(x) -

 2 7 r i

 [ ̂ £2
 + n

£4
 + +

 ; £ = l,2
;
for large kx 

(4.6.7) 

The wall displacement at large x thus consists not only 

-3/2 3 
of the 0(kx) part due to n

s
 but also an 0(e ) travelling wave 

ri^ with exact wave number S ^ , and, when y > k, a second travelling 

wave due to n-^
 o r

> when y < k, a contribution 1^2 which is a wave 

in the exponent a t 0(1) but decay <xt 0(e) . n ^ and (n > N) 

give exponentially decaying terms but n^y and n^ (n < N) are 

2 
waves at 0(1) and 0(e) in the exponent but decay at 0(e ). 
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THE DUCT POTENTIAL <J>, (x,y) 

Equation (4.5.11) gives for the duct potential cf>.p 

. , -v iXe(l+m) 
V

X , y J =

 2TT [k+Y(1+m)] [k+iy(l+m)] 
n +

 c o s

h y (y+d) r l l+m 
1

 k
 J

 ysinhyd
 1

 (l+i)y
 +

 k+s(l+ra)
J 

F

1 

x ^ ( s ) "
1

 e "
1 S x

d s + 0(e
2

) (4.7.1) 

where this integrand has poles at S
2
, S^, S^, S^, S , as did the 
a a /\ 

one for n(x). It also has poles at Sy, Sg and S
+ n
. It does not 

-1 
have any at S because these are also zeros of K (s) . This J

 -n +
v J 

integrand, just like the one for n(x), has no branch cuts in the upper 

half-plane R
+
. 

For kx < 0 the same procedure as was used for n(x) can be 

employed, namely deforming the path r^ onto T^ as shown in Figure 4 
/s a 

and collecting the residues from the poles Sg and in the 

process. From Jordan's lemma it can again be shown that the 

contribution from integrating around F^ is zero^giving 

((>
1
(xy) = 2iTi I Residues for kx<0 - (4.7.2) 

In Appendix 6 these residues are calculated and give, when 

substituted into expression (4.7.2) 

* f
x y

)
5
. Xe(l-m

2

) r J _
 +

 l-^
2

 +
 o(e^^exv{- — 

?

l
l X J J

 0
,

i r / 1
 ,2 2 2

i r r
, . ,2 2 2,

 L

(l+i)y 2k utejjexpi 
2dk[(k+y) -y m ][(k+iy) +y m ]

 v 

? -Xe(l+m)cos niry/d
 r

 1 1+m , m £ + ^ [ + j (,1+ 7" b ) 

1 [ k+iy (1+m) ] [ k+y (1+m)] dB^
 1 1 1 J y

 k+(l+m)S
+ n 

1
 -iS x

 ? 

e
 + n

 + 0 ( e ) . (4.7.3) 
(y+S ) (iy+S ) +n +n 
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This velocity potential is due solely to the presence of 

the elasticity in the duct walls because the rigid walled duct 

potential <J>q was separated away at the outset. It can be seen 

that the modification to the duct potential, in the rigid walled 

part of the duct (kx<0), due to the elastic walled part,consists 

of a main reflected wave, the first term in expression (4.7.3), with 

a set of subsidiary reflected waves, the sum up to N of the second 

term, plus a set of disturbances that decay exponentially away 

from the origin, the sum from N+l to infinity of the second term. 

The duct potential is thus known explicitly for kx<0. 

For kx large and positive the procedure of deforming the path 

r
x
 onto r

6
 in the lower half plane R is again complicated by the 

necessity to integrate around the branch cut of K
+
(s) * as in 

Figure 5 in section 6. As in expression (4.6.2) is given by 

<(>, = / + J - 2iTi £ Residues Captured, (4.7.4) r r 
62 63 

Jordan's lemma and Cauchy's Residue theorem having both been applied 

as before. This time however the poles are at S^, S^, S^, S^, S
 n 

and also S^. In Appendix 6 the residues for at these poles 

are calculated. 

Using the method of steepest descents an asymptotic expression 

for the integral terms, can be found: 

A(l-m
2

) (k+y) (k+iy)cosh[y(-k) (y+d) ] (1+i) A
 f

 1 1+m-.
 x 

U S 2[ k+y (1+m) ] [ k+iy (1+m) ]y(-k)sinhy(-k) d
 L

(l+i)y " km
 J 

x (kxTT)"
3/2

 + 0 ( k x ) "
5 / 2

 + 0(e) for kx large . (4.7.5) 

The duct velocity potential, <}>̂ ,is then given by 
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v 
<f> = <f>,

c
 - 2iri l Rp>. + 2iriR

p
 for kx large . 

1 1 S

 j = 2,4,6,7,-n ^
 U

 i 4 7 

The travelling wave R^y exactly cancels the imposed wave <J>q and 

shows that the imposed travelling wave does not propagate undeformed 

i 

past the duct discontinuity because it is replaced by R^^ which 

is a slowly (exponentially) decaying wave with a slightly distorted 

wave number. It can be intepreted as the travelling wave decaying 

slowly as it gives up its energy to excite the duct walls and 
t 

then the fluid beyond. The other travelling wave terms are R ^ 

t 
(for y > k) and R ^ which have exact wave numbers S

2
 and S^ 

respectively/ the other terms present decay on going away from the 

-3/2 

origin, c^g like (kx) and the others exponentially. 

For the downstream potential it is not possible to split 

the potential into one part due solely to the rigid duct and one 

part due to the elasticity of the walls as both phenomena are 

intricately intertwined even for large kx. 
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4.8 THE EXTERNAL VELOCITY POTENTIAL <(>
2
(x,y) 

Equation (4.5.12) gives for the external velocity potential 

2 * 

K (-k/l+m) 
ieX 

2 = ~JF { p w

 " k+s(1+m)
 }

 ^ e "
Y y

-
i s x

d s (4.8.1) 
V

J

 k+s(1+m)
 y K + ( s ) 

and as in Chapter 3 a new coordinate system (r,0) and a new inte-

gration variable © are introduced where 

a 

x = rcos6 ; y = rsin6 ; s = kcosB ; y(s) =-iksin© 

0 < r < °° ; 0 < 0 < TT ; 0 = a + i 3 ; 0 < A < 7 R ; - « > < $ < « > 

(4.8.2) 

giving 

= 
'2 2tt 

K (-k/l+m) _
1 { p w

 " k+(l+m)kcos©
 } K

+
(

k c o s @

) exp{-ikr cos(6+©)}d© . 

r
2
 (4.8.3) 

An approximation to <|>
2
, in the far field, will be found. 

As in the previous chapter the path f
2
 can be deformed onto the 

'steepest descents' path and any residues captured in the process 

accounted for. The poles of the integrand of expression (4.8.3) 
a a 

are at ©_, © „, 0,, © and its zeros are at ©., © . In 2' 4' 6* 7 -n 6 -n 

Figures 6,7, and 8 the positions of the poles relative to the zeros, 

for the two alternatively > k and y < k, are shown
 k 
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*© U 

® , X 7 J 

Figure 6: 6-plane y > k 

o x 

o* 

X X X 
-© e e-

Figure 7: 0-plane y < k and y > k 

denotes a pole at S 

denotes a zero at S 
-n 
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X' 
U 

6 

Figure 8: 6-plane, y < k . 

By using similar deformations to those used in the previous 

chapter it can be shown that the residue at ©^ and those at ©
 n

( n > N ) , 
Ak 

along with their associated zeros at © , never contribute 

significantly to the result^so can be ignored. 

The pole at ©
2
 for (k < y) contributes a subsonic surface 

wave and its residue is calculated in Appendix 6 where it is found 

to be 

The steepest descent path passes through the saddle 

point 0 = IT - 6 and there are four possible sets of conditions 

which will be considered separately. 

The first possibility is that the saddle point is not near 

any pole or zero. The second is that the saddle point is near 

a pole but not a zero. The third condition is that the saddle point 

is near a pole and a zero at 0^. The last possibility is that the 

saddle point is near a pole and a real zero where the zero is not 
a 

at 0,. 

g(l+m)iX 
+ 0(e

2

)} exp{-iS
2
x-y(S

2
)y> . 2 

4Try [k+(l+m)y][k-(l+m)y]y(-y) 

(4.8.4) 

6 
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4.9 ' SADDLE POINT NOT NEAR A POLE OR ZERO 

This, the first possibility, is the easiest to consider. 

An approximation to the integral along r ^ ^ g * can be found, by 

i 
the 'method of steepest descents', to be <(> where for kr >> 1 

| 1 1
 + m 4>

s
 = sA(l+m) [

( 1 + i ) y
 +

 k [
i -

(
i

+ m ) c o s e ]
 ][ (kcos0-y) (kcos9-iy) (k+y(l+m)) 

x(k+iy(l+m))(27rkr)
?1

]~
1

 e

l k r

'
1 7 r / 4

 + 0(e
2

) + 0 ( k r ) "
3 / 2

 .. (4.9.1) 

For below coincidence, k < y, 

<J>2 ~ •g* - 27Ti^
12
 for 0 < 6 < j ; kr » 1 (4.9.2a) 

and 

' TT 
<P

2
 ~ <f>

s
 for < E < TT ; kr >> 1 (4.9.2b) 

all other terms being an order of magnitude smaller. 

For above coincidence, y < k, 

i 
(J>

2
 ~ <}>

s
 for 0 < 0 < TT ; kr » 1 , (4.9.3) 

-U 

These potentials thus consist of an 0(kr) 0 - dependent 

wave pluSjin the case y > k^a subsonic surface wave on the wall of 

the duct which decays slowly out into the fluid. 
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4.10 SADDLE POINT NEAR A POLE BUT NOT A ZERO 

The saddle point 0 = IT - 9 can be very close to the poles 

2 

at ©2 (within 0(e) for y < k) and at G^ (within 0(e )) without 

there being any zero in the vicinity. This permits the type of 

analysis used in section 9 of the previous chapter to be employed. 

Consider first the contribution due to (y < k). The 2 

'Mach Angle' © 2
m
 is given by kcos©2

m
 = Re(S2) + 0(e ) and 

0

2m
 0

2m
 = 17

"®2m*
 a s s o c

l
a

"
t e c

^ 'Capture Angles' are: 

©2' = ©
2 m
 + i(k

2

-y
2

)"^ Im(S
2
) + 0(e

2

) and 9
2
' = tt - ©

2
 just as 

they were in Chapter 3. Applying the Fresnel analysis as before 

and denoting the potential contribution from the 'steepest descents' 

path and the pole by tj)gp gives: 
» 

(i) When |8-0
2
 | is 0(1) and kr » 1 or 

i ' i -2 
when |6-02 | is 0(e) and kr >> e 

• p ^ ikr-iiT/4
 f A

 .. 

^SP ~ V k 7
 F

C^-e)e (4.10.1) 

. K (-k/l+m) 
where F(©) = {pw - ~ r -^j—} K (kcos©) . (4.10.2) J

 2TT
 r

 k[ 1+(1+m) cos©]
 J K J 

i ' i -2 
(ii) When |0-0

O
 | is 0(e) and 1 << kr « e 

<f>
sp
 ~ -2iri F

2
( T T - 0 ) exp{-ikrcos(0+©

2
) } (4.10.3) 

where 

F^(0) = sin(-2
J

-)F(@)
 f

 (4.10.4) 

An approximation to <J>
2
 i

n

 the vicinity of this Mach Angle 0
2
, 

for y > k, is therefore expressions (4.9.2a) and (4.9.2b) with 

i 
<(>g replaced by <|>g from above. 
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For the contribution due to the Mach Angles ©_ and 
7 7m 

i i 

and the Capture Angles By and 0y are defined in expressions 

(3.9.15) to (3.9.18) with j = 7. <j> for the saddle point and 

this pole is thus given by: 

(i) When |e-9y'| is 0(1) and kr >> 1 or 

' i - 2 
when |9-0y | is 0(e) and kr >> e or 

i
 1

 i 2 - 4 
when |0-0y | is 0(e ) and kr >> e 

x fi™ c/- ^ ikr-iiT/4
 r

 . 
^SP ~ / k r

 F

(
7 T _ 0

)
e

 • (4.10.5) 

i ' i 2 - 4 
(ii) When |0-0y | is 0(e ) and 1 << kr << e or 

when 10 — 0y | is 0(e) and 1 << kr << e 
- 2 

<f>
sp
 ~ -27Ti F y ( i T - 0 ) e x p { - i k r c o s ( 8 + © y ) } (4.10.6) 

where Fy(0) is given by expression (4.10.4) with j = 7. 

So, in both cases, when 9 is near the Mach Angle 0^ or 0y 

the potential exhibits a Leaky wave or a Modified Leaky wave 

structure that has a beaming effect of intermediate range. 

-2 -4 
However, as before, for large kr(kr >> e for 9

2
 and kr >> e for By) 

-h the usual (kr) decaying potential is identified. 
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a 

SADDLE POINT NEAR A POLE AND A ZERO,© 

When the saddle point on the path of integration is near 

both a zero and a pole of the integrand we need special 
a 

asymptotics as before. The case of ©^ is different from the 

rest in that the zero (on the real axis) has the same real part 

as the pole. This situation will be investigated first. 
a 

As the saddle point © = IT - 0 approaches ©^ it enters 

a small region in which the integrand has a pole as well as a 

zero (for y < k). This pole's residue is a non-decaying subsonic 
a 

travelling wave. Notetkaifttsdoes not happen as © approaches ©^ (s=k) 

because the integrand has neither a pole nor a zero there so the 

-h 

standard steepest descents analysis will hold giving an 0(kr) 

decaying potential. 

In the'below-coincidence"case (k < y) the pole is not 

captured and when the saddle point is within 0(e) of the zero 

the second term in the steepest descents expansion of the integral -3/2 

for <|>g, of order (kr) , combines, as before, with the term 

already found to give the dominant contribution. When © = ©^ 

the first term is zero so it is the second term which becomes the 

leading one. it 

In the above-coincidence case (y < k) the saddle point 

goes near to a pole which can be captured and also approaches 

the zero. A similar analysis to that used in the previous chapter 

will be used. <j>g can be rewritten in the form 

<J>S = j F(0)G
6
(@)"

1

G
6
(@) exp{-ikrcos(0+0) }d© (4.11.1) 

P

3 

where G^(0) is chosen to be as before (see expression (3.10.4)) 

for the same reasons. Splitting the integrals as before gives 
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F(8)G,(8) exp{-ikrcos(6+8)}d8 

r

3 

+ 

r 

F(©) Sin 1 £
4 4 Sin | [cos I (0 +

 1 £

4
 )] \j (©) 

2k(k -y ) k(k -y ) 

x exp{-ikrcos(0+6)}dB = I
1
 + I

2
 . (4.11.2) 

The integrand of the first integral is regular in the 

region of both the saddle point and the pole so the standard method 

of steepest descents, for kr >> 1, may be applied to this integral 

in this region to give 

rr— . ikr-iiT/4 

~ - M TOi)
 e +

 °(kr)-
3 / 2

 for kr » 1 . (4.11.3) 
6 

Using the usual techniques the second integral can be 

recast in the form of a Fresnel integral 

a r~ i
77

/^ f(it-0) 0 . ie tzf > • m — - ie 
4/IR e T T H — k t C O S — sin — 7 — r(±-i/2kr s i n b - R ~ ~ G^(tt-0) — 2 —

 2 k ( k
4 _

u
4

}
 ' - — - 2

 2 k ( k
4 

(4.11.4) 

with ± signs in F as before. 

Employing the Fresnel expansions already obtained
;
along 

with Cauchy's Residue theorem, gives for <J>gp the combined potential 

due to the pole and the integral: 

' 

(i) When |0-0
6
 I is 0(1) and kr >> 1 

pr- „ ikr-iir/4 

*SP ~ " /icr
 F

O "
0

)
e +

 O ( k r ) " ^ ^ (4.11.5) 

1 ' 1 -2 
(ii) When 0-0, is 0(e) and kr >> e 

o 

nr-
 A

 ikr-iir/4 . 

^SP ~ " / k r
 F

(
i r

~
0

)
e +

 0(kr)"
 7

 - 2ttx x Residue 

(4.11.6) 
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where the residue is found in Appendix 6 to be expression 

(A6.18b)which is exponentially small unless 6 is at or near 

in which case it is, or is almost, a marginally subsonic travelling 

wave. 

1 ' 1 -2 
(iii) When |0-0

6
 | is 0(e) and 1<< kr << e 

/ 2 f F(TT-6) ^r-iir/4 

SP ~ - / k ? fciT
 e + 0 ( k r )

 • 26 
o 

- 2-rri G(IT-0) COS Y sin — — j — exp{ikrcos(0 - — ~ — j )} 

2k(k -y ) k(k -y ) 

(4.11.7) 

which is a Leaky wave plus the pole contribution. 
\ 

When 0 is 0(1) away from 0^ the potential <f>gp consists 

-h of just the 0(kr) radiating far field at kr >> 1. However if 0 
' - 2 

is within 0(e) of 0, this far field is not detected until kr >> e 
o 

-3/2 

and even then it looks increasingly like 0(kr) plus a subsonic 

surface wave as 0 approaches zero. The Leaky wave, due to the 

proximity of the pole to the saddle point, is also detectable in 
- 2 1 

the middle ground, 1 << kr << £ , when 0 is within 0(e) of 0^ . 
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4.12 SADDLE POINT NEAR A POLE AND A ZERO 

Consider the pairs of points 6 and ©
 n
 (n < N); © is 

a zero of the integrand, © is a pole. These pairs are not 
a 

similar to ©^ and © ^ because for that pair the Mach Angle © 
a 

if ©^ and the distances from the pole and the zero,(and thus 
a 

the Mach Angle) ©^ and ©^jto the Capture Angle are of the same 
a 

order, 0(e). In the case of © and ©
n
 however the Mach Angle 

2 1 

^-nm ^ f
r o m

 both the Capture Angle © and the pole © 
a 

whereas all these are 0(e) from the zero at © (see Figure 9). 

POLE 

/ 
Qg>! A -

ZERO 

CAPTURE ANGLE 

MACH 
ANGLE 

CAPTURE ANGLE 

0(E) 

1 

ZERO AND 
MACH ANGLE 

-POLE 

Figure 9: ©-plane 

In the ©-plane, if we multiply and divide by some function, 
a 

G
 n
(®) say, that has a zero at © and a pole at © , just as we 

did in section 6, a somewhat similar analysis can then be undertaken. 

For G (©) choose 
-n

v

 ' 

G_
n
(©) = sin j (©-©_

n
)[sin \ (e-0^)]*

1 

(4.12.1) 

because it has its pole and its zero in the right places, and 

then substitute into <{> so that, as in equation (4.11.1), 
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V F(©)G (0)
 1

 G
 n
( 0 ) exp{-ikrcos(6+0)}d0 . (4.12.2) 

r

3 

G
 n
( ® ) can be rearranged to give 

G_N(©) = cos j C©_N"0_N) " [sin j ( © - 0 _ N ) ] cos \ (0-©_ N ) sin I ( © _
n
- © _

n
) 

(4.12.3) 

-1 

and then substituted into expression (4.12.2) where F(@)G N ( 0 ) , 

as it has no poles or zeros near the saddle point and the main 

-1 

contribution comes from there, can be replaced by F ( T T - 0 ) G _
N
( 7 R - 9 ) 

to give 
^S ~ G

(lT

(ff-e)
 C 0 S

 \
 (

® - n { e x
P
{ - i k r c o s ( e , © ) } d © 

"
n 

a 

F(ir-e) . i ^ . 
G P f ^ e )

 S i n

 2 -n -n 
"

n

 r" 
3 

1 1 -
1 

cos j (@-@_
n
)[sin j (©-©_

n
)] 

x exp{-ikrcos(0+©)}d@ . (4.12.4) 

In the second term we can replace cos ^ (©-© ) by cos ^ (it-0-© ) 

and rewrite in the form of a Fresnel integral 

a 

F(n-e) l 
S ~ G — f T e ) °

OS

 2 (
e

- n "
e

- n
) 

r 

exp{- ikrcos (0+0) }d© 

ikr-iiT/4 

"
 C 0 S

 7
 0

-n>
 s i n

 I »-n"
a

-n> I
 6  

-n 

F(±i/2kr cos j (9+0 ))] (4.12.5) 

= + I
2
 . 

Now for kr >> 1 and all 9 the method of steepest descents 

applied to gives 

I ~ . / E cos i (© -0 ,
e

i k r

"
i 7 T / 4

 +
 o r k r ) "

3 / 2 

A

1 / k r G (tt-0)
 c o s

 2
 l U

- n
 U

- n
J e + U

^
k r J 

1

 ~
n

 (4.12.6) 
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The results for 1
2
 are not so simple,' applying the Fresnel 

approximations we have : 

i
 !

 i 2 - 4 
(i) When 16-0

 n
 | is of 0(e ) and kr >> e or 

i _ 2 
when 10-0 I is of 0(e) and kr >> e or 1

 -n
 1 

when I0-0 I is of 0(1) and kr » 1 1

 -n
 1 

2 ~ 0 ( 7 1 0 )
 C 0 S

 2
 e

-n>
 S l n

 2 ^ -n -n / k ? 
-n

v

 / 

X 

l 1 ikr-in/4 _
/ 2 

x [ sin j (tt-0-0 )] e + 0(kr) ' (4.12.7) 

which gives for <|)gp, the potential due to the steepest descents 

path and the pole's residue. 

ikr-iir/4 „
 / ? 

^SP ~ " / k7
 C F ( >

"
0 ) +

 °<^
kr

) (4.12.8) 

Note that when 0 is near 0_
n
 the amplitude of the (kr) 

term is small, actually equalling zero when 0 = 0 , so this term 
-n 

-3/2 
combines with the rest, 0(kr) , to give the dominant contribution. 

i 'i 2 - 4 
(ii) When |8-0 | = 0(e ) and 1 << kr << e the argument of 

the Fresnel function is small giving no change in the leading 

order contribution from but giving as the leading order 

contribution from I
2 

I
0
 ~ ±2iri H ^ "

9

) cos ^ (tt-0-0 ) sin ~ (0 -0 ) exp{-ikr cos(0+© )} 
2 G (n-0) 2

 v

 -n^ 2
 v

 -n - w
 v

 n 
-n 

(4.12.9) 

with + depending, as before, on the capture of the pole. So 

i 2 - 2 
for 0-0 I = Ofe ) . l < < k r < < e the contribution from I, dominates 

—n / 1 

that from I
2
 to give 
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*SP ~ - M r ^ )
 C 0 S

 I ( ® - n - ® - n ^
l k r

' "
/ 4 + 

-n
K J 

i * i 2 - 2 - 4 
and for 0-6 = 0(e ), e << kr << e the contribution from 

1

 -n
 1 v

 ' 2 

dominates that from to give 

a 

F C 01 1 2
 a 

^SP ~ "
i 7 T

 G fTT-ei C 0 S 2 C
7 7

-
0

-
0

^ ) s i n 2 E X P { " I K R cos(0+0 )} 
-n

 J 

(4.12.11) 

i 1 i - 2 
(iii) Lastly we must consider | 0 — G | = 0(e) and 1 << kr << e 

Expression (4.12.6) holds for and expression (4.12.8) holds for 

The contribution from dominates that from l
2
 to give 

Py- p
r
 -, ikr-iTr/4 

*SP ~ - / % J T T ^ e )
 C 0 S

 7
 ( 6

- n - ® - n
) e

 ' (4.12.12) 
-n J 

i
 1

 i i ' i 
Now if 6-6 is 0(e) and 6-0 is 0(e), that is 0 is on the 

i —n
 K J 1

 -n '
 J

' 
| a a 

opposite side of 8 ^ to 6 , then G
 N

( 7 R - 0 ) and F(TT-0) are both 

0(1), whereas when 19 — 6 | is 0(e) but
 c a n

 be arbitrarily 
/s a 

small, although F(TT-0)/G_ (TT-0) is 0(1), F ( T T - 9 ) and G
 n

O - 6 ) are 

both as small as 10—0 I. 1

 -n
1 

The contribution from the saddle point, near one of these 

pairs of pole and zero, is different from anything yet described. 

For sufficiently large kr at any 0 the contribution looks like a 

simple radiating and algebraically decaying wave with a corresponding 

-3/2 
drop in strength to 0(kr) when the saddle point is near the zero. 

- 2 - 4 2
 1 

For the intermediate range e << kr << e and 0 within 0(e ) of © 

aModified Leaky wave can be detected. However this does not 

_2 
stretch all the way back to 1 << kr << e because in this region 

i
 1

 i 2 
for |0-0 | of 0(e) or of 0(e ) a second algebraically decaying 

wave is detected as the dominant one having a different amplitude 

to both the far field decaying wave and the Modified Leaky wave 
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(which is like the pole's residue). This new decaying wave has 

an amplitude of 0(1) and thus represents another reinforcement 

of the far field and therefore a locally detectable stronger field. 

One of these pairs, under certain circumstances, is of 

particular interest. Let us consider them in the S and 6-planes. 

a 

If B , for some n , is such that the real part of S
 n
 is positive, 

that is 

2 2 ^ 

(l-m
2

)"
1

 [ mk - (k
2

-(l-m
2

)( 2-I-) ] > 0 , (4.12.13) 
d 

which is possible, then although the root 6 lies above the real 
a 

axis in the ©-plane the zero © lies on the real axis (to the 

i 

left of k/2)so the capture angle 6
 n
 and Mach Angle 8 are both 

greater than tt/2. This means that the flow in the duct has 'pushed' 

this disturbance around so that it lies upstream of the duct 

discontinuity not downstream as the others do. 
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4.13 THE EXTERNAL VELOCITY POTENTIAL : SUMMARY 

The main contributions to the estimate of cf^, in the far 

field,are as follows. 

4.13.1 BELOW COINCIDENCE (k < y) 

The potential cf̂  consists of the radiating far field of 

order (kr) and (kr) plus: a subsonic surface wave (given 

by , Modified Leaky waves as described and also these other 

intermediate range reinforcements, near certain 0's, caused by the 

proximity of the saddle point and poles of the integral to its 

zeros. 

4.13.2 ABOVE COINCIDENCE (y < k) 

Here the potential ^ consists basically of the radiating 

far field plus a weak marginally subsonic surface wave 

Leaky waves and Modified Leaky waves, and these other new contributions, 

just described,at intermediate ranges near certain 0's. 

A sketch of maximum amplitude against angle 0 would be 

similar to Figure 16 of Chapter 3,but this time for TT/2 < 0 < IT 

there would only be radiating field (4) and no Leaky waves (3) , 

Modified Leaky waves (3) or subsonic surfaces waves (2). 
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4.14 SUMMARY 

In this chapter the analysis and techniques of Chapter 3 

have been extended from an infinite to a semi-infinite geometry. 

The interaction between a time periodic disturbance to a uniform 

flow and the duct, partly wave-bearing, containing that flow has been 

modelled by the superposition of a plane wave onto the flow of an 

inviscid fluid down a duct which changes from being rigid walled 

to being elastic walled. 

The flow within the duct again alters the wave speeds slightly 

and displaces the resonant frequencies for the duct away from those 

for the duct with no flow. The flow's effect is again most evident 

in the model problem in the introduction of the convected terms 

to the material derivative and Helmholtz's equations. 

The Wiener-Hopf technique was applied to find an 

asymptotic solution for the wall displacement and the sound field's 

velocity potential both inside and outside the duct. Because the 

first part of the duct is rigid, almost no Leaky wave type disturbances 

are to be found upstream of the duct discontinuity. This contrasts 

with the previous analysis where they were present upstream and 

downstream in almost equal numbers. 

The poles of the integrands were a selection of those from 

the previous analysis and as such their positions and the nature 

of the solutions they produce was already known. The Wiener-Hopf 

product factorisation, for small £, relies on the positions of the 

zeros and poles of the function K(s) and is, like them, non-uniform 

in s, e and m. In the regions where the original factorisation 

is not valid an alternative, local, method is available for finding 

an approximation to the K (s) or K (s) and hence the residue of 

the integrand. 
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In the external velocity potential ^ the modified 

asymptotics used again identify Leaky waves in the middle field. 

This time however, due to the presence of zeros in the integrand, 

they are sometimes accompanied locally by a radiating far field 

of considerably diminished strength. 
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APPENDIX 1 

THE ZEROS OF F(s) 

The problem is to find the zeros of F(s) = f(s) + eg(s), 

for small e, where 

f(s) = (s
4

-vi
4

)y(s)y(s)sinhY(s)d (Al.la) 

g(s) = - y(s)sinhf(s)d]- (1+ y(s)coshjf(s) dj .. (Al.lb) 

a 

Now the zeros S. of f(s) are at 
3 

S = ±y, ±iy, ±k,-k (1+m)'
1

, k(l-m)"
1

 j=l,2,...,8 
J

 (A1.2a) 

and 
2 2 h 

S = (l-m
2

)"
1

[mk±(k
2

-(l-m
2

) ] n = I,*-- (A1.2b) 

Using Rouche's theorem, integrating F(s) around a closed 

path in the S-plane containing all the zeros of f(s), it can be 
/s a 

proved that, provided the zeros S^ and S
+ n
 are well separated, 

then the zeros of F(s), at S^, S2,...jSg, S
+ n
 can be approximated to 

by putting 

a r\ 

S. = S. + ex,. + e T
0
. + 0(e

3

) (A1.5) 
J J 13 2j ^

 J  

substituting into F(Sj) = 0, expanding for small e and solving for 

T

l j '
 x

2j
 e t c

* restrictions on the separation of the zeros 

for Rouche's theorem are the same as those needed for the expansion 

(A1.3) to hold; that is all those conditions needed for the t ^ 

to be of at most 0(1) so that successive terms are an order higher 

in e. For the pairs, k, k(l-m)
 1

 and -k,-k(l+m)
 1

 to be well 
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separated m must not be too small. These asymptotics then are 
a /v 

non-uniform in m and e and if we wish to consider both e and m 

small the correction x to say the approximation k would need to 

h 
satisfy the cubic in (x/k) ; 

[ ( x / k ) Y - (m+
 £

 % J (T/k)% + - ^ 4 = 0 (A1.4) 
4kd(y -k ) 2/2(k -y ) 

to first order. The solutions to this cubic are very sensitive 
a 

to the relative magnitudes of e and m. 

The following approximations are then obtained for the 

zeros of F(s) 

2 
S

x
 = y + -^3 [ YCuD"

1

 + O y
1

) Y(y)"
1

 cothy(y)d] + 0(e
2

) , 
4y (A1.5a) 

=

 ^
 r e

P l
a c e

d by -y
 ;

 . (A1.5b) 

S^ =
 S l

 withy replaced by iy , (A1.5c) 

5
4
 =

 S l
 with y replaced by -iy

 }
 (A1.5d) 

2 

5
5
 = k + - 4 — 4 ~ 2

 + w i t h

 ^
S

5

2

"
k 2

^
2 =

 T T
 +

 > 
2k(k - y ) k -y 

(A1.5e) 

2 
s6 = " k T T T + w i t h Cs

6
2-k2^2 = T T + 0 ( e 2 ) ' b

 2k(k -y )
 b

 k -y 
(A1.5f) 

V/,
+
 e . k

4

 4 /
1 

S
7
 = - k/l+m 2 c A - U ) 

2kd(l+m) (1+m) 

2 e

 ^-4 4.-2
 r
 l+3m i +

 ~ 2 k d ~
 ( k ( 1 + m )

 > t 2 3 f l i 
4k d(l+m) k(2m+m ) (1+m) 

2 
d 2k

 n
4

n
 .-4 4.-1,

 n r
 3.

 r
..

 c
 . 4

 +

 7- (
k

 (
1 + m

) -V ) 1
 +

 °(
£

 ) , (A1.5g) 
3(l+m) d(l+m) 

S
R
 = + —

 7
 (k

4

(l-m)"
4

-y
4

)"
X

 + 0(e
2

) (A1.5h) 8 1

"
m

 2kd(l-m) > 
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S

±N = U - »
2

) " W
N
] ± F I S

± N
)

2

 B
N 

+ e
2

 x Real 

± (1+ ® s )
2

B "
1

( S
+

 4

- y
4

) "
2

Y ( S
+
 3*

1

 + 0(e
3

) , 
d k ±ir n ±n

 1 1 v

 ±n
 J

 ' 

(A1.5i) 

where 

* 9 9 9 9 
_ ..2 ,, 2. n V ,

!

 2 , 
n " -f

1

-"
1

 ) ' " -
 f l
 2, 2

 ; 

d (l-m )ir 

.... 2. n
2

ir
2

 , 2 ^ k^d
2

 ... .. 
= l ( ( l - m ) —J" ~ k ) ; n > 2 — 2 ' (A1.6) 

d (l-m )tt 

The points in the ©-plane corresponding to these zeros are 

®-i>''«>©o and ©^ . Primes denote where a second zero in the ©-plane 
1' ' 8 ±n

 r 

has come from the S-plane. 

In order to discuss the nature of these zeros with respect 

to their real and imaginary parts we must recognise that the cases 

k > y and y > k have to be treated separately as the positions 

of these zeros in the S-plane are different in each case. We refer 

to these conditions as above or below coincidence respectively. 

ABOVE COINCIDENCE k > y 

S^ and have real 0(1) terms but mixed (real and imaginary) 

0(e) terms. 

Sg and S
4
 have imaginary 0(1) terms but mixed 0(e) terms. 

S^. and S^ are wholly real. 

2 
S^ has real 0(1) and 0(e) terms but mixed 0(e ). 

Sg is wholly real 

2 
S

+ n
 n < N have real 0(1) and 0(e) but mixed 0 ( e ) . 
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s

+ n
 n > N are mixed at 0(1). 

BELOW COINCIDENCE k < y 

Sj and are wholly real. 

S^ and S
4
 have imaginary 0(1) but mixed 0(e) terms. 

S,. and S^ are wholly real. 

2 

Sj has real 0(1) and 0(e) but mixed 0 ( e ) terms. 

Sg is wholly real. 2 

S
+ n
 n < N have real 0(1) and 0(e) terms but mixed 0 ( e ) terms. 

S
+ n
 n > N are mixed at 0(1). 

2 
The 0(e ) terms for S- and S^ are listed whereas for the others 

7 ±n 

they are not, although they have been calculated, because it is 

at this order that the full nature of the zero is revealed. 
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APPENDIX 1 

RESIDUES AND POTENTIALS 

The residues of F(s) and the corresponding potential 

contributions, will be calculated in the S-plane as this is easier 

than in the ©-plane. 

We wish to find the residue of F(s)
 1

 at each of its poles. 

Now the residue R^ of F(s)
 1

 at s = S^ is given by 

R. = r~ - (A2.1) 
3 F < V 

Substituting for F(s) from (3.4.10), differentiating and then 

substituting for S^ from Appendix 1 and then expanding for small 

e gives 

Rj = (4y
3

y(y)y(y)sinhy(y)d "
1

} + 0(e), (A2.2a) 

R

2
 = R

1
 y r e

P
l a c e

d by -V/ (A2.2b) 

R

3
 = R

1
 y r e

Placed by iy, (A2.2c) 

R
4
 = Rj with y replaced by -iy, (A2.2d) 

R
5
 = e[(k

4

-y
4

)
2

 ky(k)sinhy(k)d]
_ 1

 + 0(e
2

), (A2.2e) 

R
6
 = R

5
 with k replaced by -k, (A2.2f) 

R
y
 = - [2kdy(-k(l

+
m)"

1

)(k
4

(l
+
m)"

4

-y
4

)]'
1

 + 0(e), (A2.2g) 

R
g
 = [2kd^(k(l-m)"

1

)(k
4

(l-m)"
4

-y
4

)]"
1

 + 0(e) , (A2.2h) 

R

±n
 =

 ^ - ^ ^ i n ^ ^ ^ V "
1 + 0 ( e )

 '
 ( A 2

'
2 i ) 

B
n
 is given by (A1.6). 
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For all Rj except R^ and R^ the 0(e) terms can be calculated 

but (due to their complexity and lack of interesting features) 

are not listed here. 

Now the potential contributions ^ , I = 1 or 2 are given 

j 
by 

V

I
 =

 M "
 P

i l
l = 1 i s y > k ;

 ^ = 2 is y < k ) (A2.3) 
j 

where Pj is the residue of the integrand and is given by 

ms 
P. = R. exp{-isrcos6-y(s)rsin6} (1+ -r—) 
J 3 k 

(A2.4) 

s=S. 
3 

This yields 

V

ll
 =

 [4y
3

Y(y)T(y)sinhy(y)d]"
1

 (1+ 5H.) + 0(e
2

)] x 

x exp[-ix(y + ) - yy(y) (1 + "
 7

 ) + 0(e
2

)] 
4p 4y

2

(y -k^) 
(A2.5) 

a j 2 1 
where T = y(y) + (1+ y(y) cothy(y)d. 

^12
 =

 ^ll ^ ^
 y r e

P
l a c e

d by -y. (A2.5b) 

=

 ^Zl V
 r e

p l
a c e

d by iy. (A2.5c) 

= V q
 w i t h u r e

P l
a c e d b

y (A2.5d) 

2 
=

 l f k
( 1 + m ) [

 t (k
4

-y
4

)
2

y(k)sinhy ( k ) d ] + 0(e)] x 

2 
x exp[-ix(k

+

 £

 4 4 2
) - y C - f — 4 + 0(e

2

)) + 0(e
3

)] 
,2k(k -y ) k -y 

(A2.5e) 
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2 

~ M k
( 1

~
m )

 [ [ ( ^ V Y C - k D s i n h y C - l O d r
1

 + 0 ( e ) ] x 

exp [ix(k+ ^
 4 2

) - / ( " X T
 + 0

(
e 2

) )
 +

 0(e
3

)] 
2k(k - y V k -y 

(A2.5f) 

W k C l . n , ) t T C ^ j C - ^ J - U
4

) ] -
1

 • 0(
£

2

)] x 

e x p ^ i x C y — — —
 ?

 [ k
4

(l+m)~
4

-y
4

]
- 1

) 
1 m

 2kd(l+m) 

- H [ k ^ l . m ) -
4

- ^ ] -
1

] 
2k (2+m)md(l+m) 

•
 2

 r
 1

 n 4
r i
 4 . - 2 % -k . -1, 

lxe [ =- (k (1+m) -y ) yCt—-) ] 
2dk(l+m)

 1 m 

• 2 . 2- . -k . 1
 r

 .4.. .-4 4,-2 3 
ie Real

 +
 ie yy( — ) [ k (1+m) -y ]

 +
 0(e 

2k (2m+m ) d 

(A2.5g) 

U d k ( l - m ) [ Y C ^ C ^ C l - m ) -
4

^
4

) ] -
1

 + 0(e
2

)] x 

expt-ixCy^- + j [ k
4

(l-m)"
4

-y
4

]
_ 1

) 
i - m

 2kd(l-m) 

y ^ T l ^ f
 1 +

 9
 £

 7 ( k V - n O ^ - y V
1

] + 0(E
2

)] 
2k (2m-m )d(l-m) 

(A2.5h) 

=

 J ^ h c s ^ V d ^ S ^ b j -
1

 + 0(e
2

)] x 

X exp[-ix(S
±n
 ± f (S

4

n
-y

4

)
_ 1

(i
+
 ™ S

z n
)

2

B
n

_ 1

 + E
2

 X Real) 

" ^
± n

) [ l ± ^ S
± n

( l
+
 ^

±
J

2

( S
± n

4

- y
4

) "
1

( S
± n

2

- k
2

) B
n
-

1

 +
 E

2

x
R e 

2 

x
 e "

 n
 , m " 2 2.-1 ~ 4 4.-2 -1 3. 

+

 X
 s

±n
( 1 +

 k
 S

±n
} CS

±n ~
k

 > ^
S

±n
 } B

n
 +

 °
Ce } 

^ E
2

x m * . 2
 4

 4>, -2 fv2 J 2.-^ R -1 
± —j— (1+ r- S^ j (S, -y J (k -S, ) B I 

d ^ k ±ir
 v

 ±n
 J

 ±n
 J

 n
 J 

for n < N. (A2.5i) 
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n - ^
 (

"
1 ) n a +

 * ®±n> K ^ V M S ^ ] "
1

 • 0 (
E

2

) ] x 

a a a 

X exp[-ixS
±n
 - YY(S

±n
) + 0(E)] 

for n > N. (A2.5j) 

2 

As was the case for the
 R

j '
s

 the 0 ( e ) terms have been 

calculated but are not included here. 
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APPENDIX 1 

THE FRESNEL INTEGRAL F(a) 

It can be shown that 

+ 00 

i_ 2 3 7T 
exp{-krx }dT = 2/ii

:

F(+b^kr) for - -r-< arg b<ir/4 
2
 f

 l

 ^ v - —
 4 

x +ib 
5tt 

= -2/JI~ FC-bvl^r) for IT/4 < arg b < , 

(A3.1) 

where F(a) is defined by 

. 2 
F(a) = e

l a 
. 2 

e
1 T

 dx (A3.2) 

We also define the complementary function 
a 

F
0
(a) = e

i a 2 
. 2 

e ~
1 T

 dx (A3.3) 

We use the relations 

F(a)
 +
 F

0
(a) = ^

 e
"

i i r / 4 + i a 2

 (A3.4) 

F(a)
 +
 F(-a) = /F

 e
"

i 7 T / 4 + i a 2

 (A3.5) 

^Ca) ~ 2X^(1-
 + f o r a l a r g e

 " T "
< a r g  a <

J 
2ia a 

(A3.6) 

F q (a) ~ ae 

2 2 3 it IT 
ia (l+0(a )) for a small --j-< arg a < y 

(A3.7) 

to find approximations for equation *(3.9.11) under various conditions 

For - arg b < and bî kir large we employ expansion 

(A3.6) to give us 



- 178 -

tz— . ,, .. e+e. -l 
• /2TT -nr/4+ikr

 r
 Ji R*^ ^ 

~ " / k 7
 F

j
 ) C

 cos (A3.8) 

", . -in/4+ikr 
F(ir-6)e (A3.9) 

Whereas for -3tt/4 < arg b < TT/4 and bvlcF small we employ equations 

(A3.4) and (A3.7) to give 

<j>
s
 ~ - 2iri F^ (ir-0)exp{-ikr cos(6+ ©j)} (A3.10) 

For TR/4<arg b < 5TT/4 and bi^kr large we employ (A3.1) and 

(A3.6) with a replaced by -bvlcr^ to give 

/2TT " -iir/4+ikr ... 
<t>

s
 ~ " (A3.ll) 

and for ir/4<arg b < 5TT/4 with bv'lcr" small expressions (A3.4), (A3.5) 

and (A3.7) give 

<J> ~ 2Tri F. O-0)exp{-ikr cos(0+9.)> • (A3.12) 
& J J 
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APPENDIX 1 

QUOTIENT FACTORISATION OF K(s) 

We seek a factorisation of K(s) of the kind 

K(s) = K
+
(s)/K_(s) . (A4.1) 

We are not able to produce, in general, an expansion 

that is uniformly valid in both s and e. Papers by KOITER (14 ) 

and CARRIER ( 5 ) suggest the replacement of the kernel K(s) by 

a more easily factorised one, f(s), that is K(s) with e = 0. 

Also KRANZER § RADLOW ( 15 ) showed for fixed s and e + 0 the 

error in doing this is 0(e). However, we know from our investi-

2 

gations of the zeros of F(s) that the 0 ( e ) terms are often relevant 

and can play a significant part. We thus choose to follow a 

method due to NOBLE ( 25 ) and employed in a similar situation 

by CANNELL ( 1 ), for small e, which relies on an iterative 

factorisation. In the few places where this method fails we use 

a locally based one. 

The first thing that we need to show is that K
+
(s) and K_(s) 

2 - 2 tend to s and s respectively as s -> °° in the appropriate half-
a a 

plane. We do this by showing that logK
+
(s) and logK (s) tend to 

a a 

zero. K
+
(s) and K (s) are defined by 

K
+
(s) = [(s+y)(s+iy)] K

+
(s) 

-1 

(A4.2) 

K_(s) = [(s-y)(s-iy)] K (s) . 

So 

K(s) = K
+
(s)/K_(s) = ( s

4

- y
4

)
_ 1 

K
+
( s ) / M s ) = (s

4

-y
4

)
_ 1

K(s) . 

(A4.3) 

We can show that 
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+00 
/ |logK(z)|dz exists by considering an expansion of the integrand 
— 00 

in z for z ±°° . 

Now if + 00 

J
+
(s) - logK

+
(s) • ^ logK(z)dz (A4.4) 

we know from Cauchy's theorem that 

+ C 0 

logK
+
(s) = ^ 

z-s 
logK(z)dz (A4.5) 

so 
+ 00 +oo 

0< IJ (s) I — 1

 +
v J 1

 S | logK(z) |dz < -|-~-j- |logK(z)|dz < 

(A4.6) 

where the constant A = max Ur-r- ( ) and B is some other finite 1

 2tti
 v

Z-S
 1 

z 
constant. 

So limit J (s) = 0 
| s |-x» inR

+ 

and as +oo 

limit 
| s |->«> in R

+ 

it follows that 

2iTis 
logK(z)dz = 0 

lim 
s-*»in R 

logK
+
(s) = 0; limit K

+
(s) = 1 ' 

s-x» in R 

Similarly it can be shown that 
a 

limit K_(s) = 1 . 
s-xx) i

n
 R 

Now we assume expansions in e for K
+
(s) and K_(s) of the form 

K
+
(s) = A(e) [K

+
°(s) + (s) + e

2

K
+

2

( s ) + ...] 

K_(s) = A(e) [K_°(s) + eK_
1

(s) + e
2

K_
2

(s) + . . . ] . 

(A4.7) 
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So K(s) = K (s)/K (s) + 

= [ K
+
°(s)+eK

+

1

Cs)+e
2

K
+

2

(s)
 +
 ...] [ K_°(s) + eK_

1

(s)+e
2

K_
2

(s)+.. 

(A4.8) 

Expanding this for small e and comparing with equation (4.4.18) 

for K(s) gives, for the O(e^) terms 

0 0 4 4 
K

+
 (s)/K_ (s) = s -y . (A4.9) 

We choose 

K
+
°(s) = (s+y)(s + iy), K_°(s) = [ (s-y) ( s - i y ) ] ( A 4 . 1 0 ) 

although both could be multiplied by the same constant. 

For the 0(e) terms we have 

K

+
1 ( s : ) K

-
1 ( S )

 "-1, 4 4,-1
 M

 ms. 2 -1 ^ , 
- — r + — ~ = y (s -y ) + (1+ -r-) Y cothyd 

K °(s) K °(s)
 k 

(A4.ll) 

If we denote the right hand side of equation (A4.ll) G(s) 

and assume a sum split of G(s) into plus and minus functions, 

to be evaluated later, we have 

G(s) = G
+
(s) + G_(s) (A4.12) 

and 

K / ( s ) = - K °(s) [G (s)-L(s)] 
(A4.13) 

K_
1

(s) = K_°(s) [ G_(s)+L(s)] 

where L(s) is any regular function. 

By substituting equations (A4.13) and (A4.10) into equation 

(A4.7) and using the knowledge that we have about the behaviour 

of K
+
(s) and K (s) at infinity we can tell that L(s) is a constant 

- 1 2 
L and that A(e) is (1+eL) + 0(e ), that is 
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K
+
(s) = K

+
°(s) (l-eG

+
(s)) + 0(e

2

) 
(A4.14) 

K_ (s) = K °(s) (1 + eG_ (s) ) + 0(e
2

) 

2 

Examination of the 0 ( E ) terms of the expansion (A4.8) would 

allow us to find the next term in the series and so on for all 

powers of e. 

All that remains for us to do in this section is to outline 

the method that can be used for the sum split on G(s). 

Considering first the non-hyperbolic part of G(s), G^(s), 

1 4 4 _ i 
G ^ S ) = y ( s - y

4

) . ( A 4 . 1 5 ) 

Following CANNELL ( 1 ) we have 

! P.(s)-P
 +
 (y) P (s)-P (iy) 

G, fs) = A " t * . i 
1+

 4 p
3 s-y s-iy 

P
+
(s)+P

+
(y) P

+
(s)+P

+
(iy) 

_ i
 :

 ] (A4.16) 
s+y s+iy

 J 

P (s)+P (y) P (s)+P (iy) P (s)-P (y) 
G. (s) = [ — + i — ^ = -
1-

 L

 s-y s-iy s+y 

P (s)-P (iy) 
-i r — ] 

s+iy
 J 

where 

P ( s ) = i (s
2

-k
2

r'
5

 t a n "
1

^ ; P (s) =
 2

 ( s
2

- ^ t a n "
1

^ 
+

 V J

 TT
 J

 >
 J

 TT
 J

 ^ k - S • 

(A4.17) 

Next we consider G2(s) the hyperbolic part of G(s), 

G
2
(s) = (1+

 Y
(s)"

1

coth
T
(s)d ( s

4

- y
4

)
_ 1

 (A4.18) 

G„(s) is not so readily split into plus and minus functions. 

i
 3 

However G
2
(s) is 0( ) as s -> » in the strip of regularity so 

I
 s

 I 
we can find G

2 +
( s ) and G

2
 (s) explicitly by using Cauchy's 
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theorem, 

C
2
[s) 

2iTi 

G-(z) 

z-s 
dz (A4.19) 

L

l
+ C

r
L

2
+ C

2 

where L^, C^, L
2
, and C

2
 lie in the strip of regularity S and are 

shown in Figure 4.1 

C 2 v 

-M M 

Figure 4.1: z-plane 

Now as M -»- °° the contributions from Cj and C
2
 decay to zero 

to give 

• 2ir 

G
2
Cz)

 1 

dz -
z-s 2iTi Z - S 

(A4.20) 

where L^ is z = £ + ir^; - ° ° < £ <
o o

, 0 > r i
1
> s 

l>2 z = £
 +

 in
2
; -°°< £ <°°, s

+
> n

2
 > 0 

The first of these two integrals is regular for all s above 

Lj so is the plus function G
2 +
( s ) whereas the second is regular 

for all s below L
2
 so is the minus function G

2
 (s). 

Note the integrand here contains no branch cuts at all. 
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To find G2
+
(s) then we close the contour in the lower half-

plane, chosen such that the integrand is bounded, and then use 

Cauchy's Residue theorem to collect the residue contributions 

from the poles of the integrand at -y, -iy, -k/(l+m), S to 

give 

a - f o
2

 (i - i f )
2 

G
2 +
( s ) = ^ cothy(-y)d -i — ^ cothy(-iy)d 

4y (s+y)y(-y) 4y (s+iy)y(-iy) 

m
 . 2 

4 „ , N ( 1
+
? S J 

-[ 2kd(l+m)
2

(s
+
 ^ ( ( ^ -y

4

)]"
1

 - I
 k

 "
n 

1 ~ 4 4 2 ? 
d(s (S_

4

-y )(k -(l-m 

00

 2 2 ^ 

+ I i ( l
+
| s _

n
) [ d ( S _

n

4

- y
4

) ( ( l - m
2

) ( ^ ) - k
2

)
2

( s - S _
n
) ] " \ 

N+l 

(A4.21) 

Similarly G
2
_(s) can be found by closing the contour in the upper 

half-plane 

d
+
 "51)2

 ( 1 +
 i W j

2 

G
2
 (S) = ^ cothy(y)d -i — ^ cothy(iy)d 

4y y(y)(s-y) 4y y(iy)(s-iy) 

- [ ( l - m )
2

( (
I
^

r
)

4

- y
4

) 2 k d ( s - ^ ) ] "
1 

N mS 2 ^
 0

 „
 0 0

 „ .. -1 

- [ ( S
+ n

2

V ) d ( k
2

- ( l -
m

2

) ( f ) V (s-sj] 

00

 mS 2 „ 2
 ?

 ^ 
+ i i ( i

+
^ ) [ ( s V ) d ( ( i V ) a - k V ( s - s )] 

N+l 

(A4.22) 
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We now have 

G
+
(s) = G

1 +
( s ) + G

2 +
( s ) 

(A4.23) 
G_(s) = G

1
_(s) + G

2
_(s) 

and have found an asymptotic quotient factorisation of K(s) for small 

e. 
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APPENDIX 1 

DETERMINATION OF R(s) AND P 

Here we investigate the behaviour of R(s) as s °° in R
+ 

and R . We then use this behaviour and the fact that R(s) is 

analytic, with Liouville's theorem, to identify R(s). 

Consider first R(s) in the upper half-plane, R
+
, it satisfies 

equation (4.5.7), 

, ieXK (-k/l+m) 
R(s) = K

+
( s )

$ 2 + k
;

s ( 1 + m )
 (A5.1), 

and we wish to investigate s -> 

2 

We know from Appendix 4 that K
+
(s) ~ s as s ->

 00

 in R
+
. 

As the pressure difference is at worst integrable across 

the plate at x = y = 0 equation (4.2.2) tells us that the following 

must be asymptotic expansion for n(x) for small x > 0 . 

2 3 n(x) — n ( 0 ) + xn
x
(0) + ^ n

x x
(0) + ^ n

x x x
(0) + 0(x*) . 

(A5.2) 

We know that 

n(o) = n
x x
( 0 ) = 0 and n

x x x
( 0 ) = q and n

x
(0) = -p (A5.3) 

So, for small x, 

3 

• n(x)~ - px + ^ y + 0 ( x
3

) . (A5.4) 

Applying an Abelian theorem we get 

n ~ p/S
2

 + q/S
4

 + O(-i-) as s in R , (A5.5) 
x S 

which then gives 



- 187 -

i 2 4 

<J>
2+
 (s,0) ~ - ioo{p/S + 0(1/S )} as s->°>in R

+
 . (A5.6) 

On substitution into equation (A5.1) this gives 

R(s) ~ -ioop, as s °° in R
+
 . (A5.7) 

Next we consider R(s) in the lower half-plane, R ; it satisfies 

equation (4.5.8) 

K (s)-K (-k/(1+m)) 
R(s) = N(s)K_(s) + Q_(s)K_(s) + ^ ^ { "

 k + s
'

1 + m )
 > . 

(A5.8) 

2 
We know that N(s) —itops and from Appendix 4 we know that 

-2 

K_(s) ~ S . The sum of the first and last terms of expression 

(A5.8) therefore ~ -iiop + 0(1/S) as s ® in R . This leaves 

us with only the behaviour of Q_(s), that is ^ (
s

)
 a n (

* ^ ' 

to find before we can calculate R(s). Now the integrability of 

the pressures tells us that the velocity potential is at worst 

integrable as (x,y) -»- (0,0) so ^
 a t

 ^orst a constant and that 

is at worst a constant so is at worst order 

Substitution into Q (s) gives 

R(s) ~ -iwp as s
0 0

 in S . (A5.9) 

So R(s) is bounded by a polynomial (a constant) for all s as s
 00 

and is analytic, by an extension to Liouville's theorem this 

means 

R(s) E -iajp . (A5.10) 

We wish to determine p or the power series in small e 

of p. From equation (4.5.7) using the previous result we now know 
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, ieAK (-k/(1+m)) 

'
i ( o p

 = k T i c i n g —
 ( A 5

-
n

^ 

Letting s -»-
 00

 in (A5.ll) is not sufficient to give us 

a solution for p since it was by this method that we found R(s) 

and it now tells us no more. Instead we consider simultaneously 

the limits s ->• °° and e -»• 0. 

If we write p as a power series in E 

2 
P = P

0
 + ePj_

 +

 e P
2

 +

 • •• (A5.12) 

1 

and expand (
s

)> K
+
(s) and K_(-k/(l+m) from equations (A5.6) 

and (A4.14) in powers of s ^ and z and compare terms of similar 

order after substitution into equation (A5.ll) we get, for the 

0 (E^)/0(S *) expression 

(l+i)yp
0
 = 0 i.e. p

Q
 = 0 . (A5.13) 

For the 0(E^)/0(S expression we get 

V
1
 = - (l+m)X[(l+i)yw{k+(l+m)y}{k+(l+m)iy}]"

1

 (A5.14) 

2 - 1 
and for the 0(E )/0(S ) term 

p
2
 = - (l+m)X[(l + i)y

W
{k+(l+m)y}{k+i(l+m)y}]"

1

 [ G J - j — ) + 

of G
+
(s)}] (A5.15) 

and so on giving the terms of the power series for p. 
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APPENDIX 6 

RESIDUES OF INTEGRANDS INVOLVING K
+
( s )

- 1 

-1 

The problem is to find the residues, R ̂ ; of K
+
(s) 

at its poles, S^, S^, S^, S^ and S which are given by 

R. = —
s
 • (A6.1) 

3

 K (S.) + 3 

i 

However the expansion already obtained for K
+
 (S^) does not 

necessarily hold near its zeros or poles so an alternative 

derivation must be found. 

A zero of K
+
(s) is also a zero of K(s) and the behaviour 

of K(s) near one of its zeros Sj is known 

K(s) ~ k'(Sj) (s-Sj) (A6.2) 

Also the behaviour of K (s) near one of the zeros of K
+
(s) is 

known because this is in a region in which K_(s) is regular and 

the expansion already found will hold. 

Thus 

K_(s) ~ K_(Sj) (A6.3) 

giving for the behaviour of K
+
(s) as s -> S^ . 

K (s) ~ L.(s-S.) 
+ J J 

(A6.4) 

where 

LjCs-Sj) K j S . y
1

 ~ K* (Sj) Cs-SjD (A6.5) 
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or 

L. = K' (Sj)K_(Sj) (A6.6) 

So the residue of K
+
( s )

_ 1

 at s = S^ is given by 

R. = L ~
1

 =[ K'(S,)K_CS.)]
_ 1

 . (A6.7) 
3 3 3 3 

» 
Substituting in for K (Sj) from the differential of equation (4.4.18) 

and for K (S^) from equation (A4.14) gives for the residues 

the following 

R
2
 = - + 0(e) (A6.8a) 

r
 =

 i

C l
+

i )
 +

 o(e) (A6.8b) 

4 2y 

R
6
 = - e

2

(k+y)(k+iy)k"
1

(k
4

-y
4

)"
3

 + 0(e) (A6.8c) 

4 Ry = e(k+y(l+m)) (k+iy(l+m)) [ 2kd(l+m)
4

]~
1

 [ ( ^ - y
4

] "
2 

(A6.8d) 

a 

R _
n
 = - e [ d B

n
( S _

n

4

- y
4

)
2

]
_ 1

( l
+
 (S_

n
"V<) (S_

R
-iy) (A6.8e) 

The residues of the integrand of n(x),n^j, are given by 

s 

£=1,2 (A6.9) 

and the corresponding contributions to n(x) are 

n

l2
 =

 [ [(k+(l+m)y) (k-(l+m)y) 0(e
2

)]e ^ (A6.1€a) 
4Try a) 

= [-
 £ A (

-
2

+ I n }

 [(k+i(l+m)y)(k-i(l+m)y)]
_ 1

 + 0(e
2

)]e ^ (A6.10b) 
4ny a) 

n

£ 6
 =

 ^ (k+iy) A (1+m) [27700k{k+y (1+m)} {k+iy (1+m) } (k
4

-y
4

) x 

x 0 ( £ ) ] e _ l S 6 X ( A 6 - 1 0 c ) 
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eA 4 "I 2 "
i S

7
X 

n

£ 7
 =

 t 2 ^ ( l + m ) ^
 } +

 )l
e

 (A6. lOd) 

n
p
 ={Xe

2

(l+m)(S -y)(S -iy) + 0(e
2

)} [ 7 = ^ - + ] x 
"

n u 1 J y

 k+S (1+m) 
-n 

mS 2 " A A i ~
i s

_
 x  

x (1+ — i ) [ 2 ™ d B (S
 n
 -y

4

){k+y(l+m)}{k+iy(l+m)}]~ e "
n 

K n —n 
(A6.lOe) 

The residues of the integrand of <J>̂ , , for x < 0 are 

given by 

R
£
. = iXeCl

+
m)[

T I
l

I 5 l r +
 j j i ^ j ] (1+ f O ^ j j j [ 2Tr{k+iy(l+m) } 

{k+y(l+m)}] ^ x coshy(y+d)e [ ysinhyd] * 

s=S. 
3

 (A6.ll) 

which on substitution yields 

2 
R

£ 8
 = iXc(l-m

2

) [ +
 3

 + 0(e)] [ 4TTdk(k+y(l+m))(k+y(l-m)) 

-1 i ICY 
(k+iy(l+m))(k+iy(l-m))] exp{ - } (A6.12) 

mS , , 
r> • i si ri

 r
 1 i nny R

l
+
n

 = l X E

(
1 + m

) C l
+

 " k — ) [ n + n u
 + ] C 0 S

 d
 X 

K U 1 J y

 k+S
+
 (1+m)

 d 

1
 -iS x 

X [2TR{k+iy(l+m)}{k+y(l+m)}(y+S
+ n
)(iy+S

+ n
)dB

n
]" e "

n 

(A6.13) 

t 

The residues of the integrand of R ^ for x > 0 at 

S>2> S^, S^ and S are given by 
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R ' = { i X e ( l + m ) • 0 ( e ) }[ + y & f y ( ! • f ) cosh Y( y +d )R . * 

-1 -isx 
x[2ir{k+iy (1+m) }{k+y (1+m) }ysinhyd ] e 

s=S^ (A6.14) 

which after substitution gives 

R
l 2
 = {-iXe(l+m) + 0 ( e

2

) } ( l - ^ ) coshy(-y)(y+d) x 

2 - 1 ~
i S

2
X 

x [4iry {k+y (1+m) }{k-y (1+m) }y (-y)sinhy (-y)d] e (A6.15a) 

R
u
 ={iXe(l)m) + 0(e

2

)}(l- coshy (-iy) (y+d) x 

2
 , -iS.x 

x [4iTy {k+iy (1+m) }{k-iy(l+m) }y(-iy)sinhy(-iy)d]~ e (A6.15b) 

he
 =

 { - i ^
3

( l - m
2

) (k+y) (k+iy) + 0(e
4

)}[ - i ^ ] x 

x coshy(-k)(y+d) [27Tk{k+iy(l+m)}{k+y(l+m)}y(-k)sinhy(-k)d(k
4

-y
4

)
3

 j"
1

 x 

-iS x 
x e

 5

 (A6.15c) 

» iX " i S7 X 
R

l7
 = + e

 (A6.15d) 

mS 
R' = {-iX£(l+m)(S -y) (S -iy) + 0(e

2

)}(l+ ) [ * +
 1 + m

 . ]x 
"

n K

 k+(l+m)S_
n 

* a a i — i S x 
x[2TrdB

n
{k+iy(l+m) }{k+y(l+m)}(S_

n
 -y

4

)] cos e "
n 

(A6.15e) 

a 

The residue at s = S^ is given by expression (A6.ll) 

-1 
evaluated at s = S^, noting that both (1+m)/(k+s(1+m)) and [K

+
(s)] 

have zeros there, and is 
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a 

iX "
i S

7
X 

Hi
 =

 " ̂ r
 e 0 ( e ) ( A 6

-
1 6 ) 

The residues of the integrand of 4>
2
, ^ , are given by 

<*
t
. - -ieX(l+m) [ • • 0(c)] ^ * 

a 2 a 

x[2iT{k+y(l+m) }{k+iy(l+m) }y(S)]~ exp{-y (s)y-isx} | 

s=S. 
3 

(A6.17) 

After substitution this yields, for j = 2 

-1 
ieX(l+m)y(S

2
)

 2 

y£2 = { 2
 +

 )>
e x

P^-Y(S
2
)y-iS

2
x} . 

4iry [ k+y(1+m)][ k-y(1+m)] 

(A6.18a) 

and for j = 6 

= i ^ d ™ ) (k+y) (k+iy) [ - ^ + 0 ( e ) ] x 

x [2iTk{k+y (1+m) }{k+iy(1+m)}(k
4

-y
4

)
 2

] ~
1

 exp{-y (S
6
)y-iS

6
x} 

(A6.18b) 
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