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ABSTRACT

Two topics in the theory of sound are covered.

-In Part I the generation and transmission of sound
in two dimensional ducts is investigated. The ducts contain
a basic uniform background flow. In one case the duct is
taken to have parallel plane walls, and in another case the
duct contains a finite section of greater width. The sound
is generated by a piston vibrating sinusoidally, set in one
of the duct walls, perpendicular to the flow. The sound field
is found and the force on the piston and the net powerflow
into the duct are also calculated. The calculations are
undertaken with no viscous effects being taken into account.

In Part II ducts with elastic walls or with semi-
infinite elastic - semi-infinite rigid walls are considered.
The sound is generated by a point source or an incoming wave
from the rigid part of the duct, respectively. Calculations
are made for the acoustic field at points inside the duct
and also for the radiating sound field outside the duct.
Interesting effects, awoungst them ''Leaky waves') are found in
the radiating field. These results are for the limit of light
fluia loading. FExtensive use is made of the Wiener-Hopf

technique.
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INTRODUCTION

In many acoustical problems of practical interest
the presence of a background flow is significant. Obvious
examples are those of aircraft in flight and the flows of
gases and liquids through pipes.

Previous work such as that by MUNGUR § GLADWELL (24),
MORFEY (22), FFOWCS WILLIAMS & LOVELY (12), DOWLING (11),
TAYLOR (26) and lastly LEPPINGTON § LEVINE (17) has revealed
some surprising effects due directly to the presence of flow.
In order to extend our basic understanding of flow phenomena
it is desirable to study in detail some of the fundamental
and relatively simple model problems that are amenable to
mathematical analysis.

This thesis is concerned with the effects of
steady background flow on duct acoustics. It falls naturally
into two separate parts.

In Part I steady flow down a two-dimensional
duct is disturbed by time-harmonic transverse vibrations
of a piston set in one of its sidewalls.

Chapter 1 Jeals with tlie simplest case where the
\2‘duct has parallel walls. A linearised boundary condition,to
account for the piston motion,leacs to an approximate solution
throughout most of the flow region. but near the ends there are
essential nonlinear effects which have to be dealt with by
detailed local analYQE;: Tils leads to the more interesting

geometry in Chapter 2. Here the abrupt widening and
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narrowing of the duct generates further reflection and
resonance phenomenon.

The acoustic fluctuations in these problems have
been caused by the motions of a side panel vibrating like
a piston. A more realistic model for panel vibration has
to consider its flexibility and this is taken up in Part II
of the thesis which consists of Chapters 3 and 4. These
chapters analyse the interaction between flow and bounding
elastic surfaces,

The simplest prototype duct problem is that where
both sidewalls of a two-dimensional duct are elastic. This is
studied in detail in Chapter 3. In order to analyse the
interaction between flows and an elastic surface with an
adjoining rigid surface a semi-infinite rigid/semi-infinite
elastic duct is considered in Chapter 4. The complexity of
the problem is such that tractable exact solutions have not
been found,so in both cases emphasis was placed on a limit
of specific interest,namely that of light fluid loading.

Explicit expressions are obtained for resflection
and transmission coefficients and fofrinteresting bcaming
effects that persist to relatively large distances from

the duct joint.
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PART 1

THE GENERATION OF SOUND BY PISTONS IN DUCTS CONTAINING FLOW
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INTRODUCTION

The jenerntion of sound in ducts has
been studied by many authors, MUHRING (27) and MORFEY (22)

are amonﬂsfthe few who have considered the presence of
a basic uniform background flow. It is the generation and
transmission of sound in the presence of a basic uniform
background flow that is investigated in the first part of
this thesis.

It is the aim of this work to undertake some
detailed analysis of one of the most basic problems of this
sort in order that we might understand more fully the results
of problems of a more complex nature. To this end,in
Chapters 1 and 2,we consider two-dimensional ducts that have
walls that are both rigid and parallel. Sound is produced
by the time harmonic oscillations of a piston set in a sidewall
of the duct.

In Chapter 1 we study the simplest case of the
piston set in an infinite duct that has parallel walls and contains
flow. The acoustic disturbances upstream and downstream of
the piston are identified and these results used to evaluate
"the force on the piston and the total power flow into the duct.
Either the Green's function method or Fourier transforms can
be used for this analysis along with the method of Matched
Asymptotic Expansions. The inner regions are those around the
piston ends and the outer region being the rest of the duct.‘

In Chapter 2 the analysis of Chapter 1 is extended
to a more complex geometry - that of an expansion chamber -

|
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still with a basic background flow. The flow around the
piston is analysed in exactly the same way as before but
Matched Asymptotic KExpansions are also used to analyse the
flow across the duct expansions.

The acoustic disturbances are found in the
expansion chamber and in the duct leading to and from it.
Once again the force on the piston and the power flow into
the expansion chamber and hence into the duct are found from

these results.
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CHAPTER 1 : The generation of sound by a piston in a duct
containing flow

1.1 INTRODUCTION AND SUMMARY

In this chapter the velocity field of, the force on,
and the work done by, an oscillating piston set in a side wall of
a two-dimensional duct containing a basic uniform flow are modelled.
In the linearised model, with inviscid and compressible fluid, the
piston is represented by an oscillating line source at each end with
an oscillating line source distribution in between. This linearisation
of the piston effect is, however,not adequate for the calculation
of the force near the piston ends. In these regions the shape
of the piston has to be taken into account by a local transformation
of the basic problem followed by a match with the first model.

In section 1.2 a rigorous definition of the non-linear
problem is given. This is then linearised to give the model problem
to be investigated. The boundary conditions, with particular
reference to the 'top hat' piston profile, are also discussed here.

In section 1.3 one of the two possible methods of attack
(the Green's function method) is pursued. The other method,
Fourier transforms, is investigated in Appendix 1. In sectica 1.4
the theory for the work done (in the linearised theory) is
deVéloped. In section 1.5 the velocity potential calculated in
section 1.3 is used alonglﬁith the theory of section 1.4 to find the

work done by the piston.
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In section 1.6 inner and outer regions, near the piston ends,
are set up. The inner solution is found in section 1.7 and then
used in section 1.8, along with the outer solutions from section

1.3, to find an approximation to the force on the piston.

Discussion of the results takes place in section 1.9.
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1.2 PROBLEM DEFINITION AND LINEARISATION

-Iaviscid, compressible fluid flows adiabatically in an
infinite two-dimensional duct that has rigid parallel walls. In
cartesian co-ordinates (x,y) the walls are at y = 0 and y = d.

The basic uniform flow, parallel to the walls and of constant
magnitude U with velocity potential Ux, is perturbed by the small,
time-harmonic, oscillations of a piston that is forced to vibrate
about its mean position in the duct wall. As shown in Figure 1 the
piston is set in the lower baffle between x = -a and x = a and

its displaced surface is given by

h(x,t) = Re{h(x)e—iwt} .' (1.2.1)
y=d
—_
.

Figure 1

If ¢ is the total velocity potential for the fluid in the

-~

duct ,then writing

6= Ux *+ ¢ (1.2.2)

$; is the velocity potential of the disturbance, taken to be small

compared to the basic flow. We now let

¢; = Refy, e 10} (1.2.3)
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to take into account the periodic response of the disturbance
to the piston.
LIGHTHILL [( 19 ) equation (61)] gives, for the nonlinear

equation of motion of the fluid,

2 2 2
ZyZy 2 T8, p 3 3%, 38 3 3

2 dx, 9x.at dX. 9X, 9Xx,9X.
ot i i i) i)

(1.2.4)

where ¢ is the local sound speed and V2 the Laplacian operator.
The boundary condition on the duct walls is that there is

no flow through them;

3 3¢
¢ _ 1 "2 cved - -
3y = 3y " 3y 0 for all x;y=d; for |x| >a, y=0,

(1.2.5)

The corresponding condition on the piston surface is that the surﬁzag

%Pecéﬂcatumgmaterial derivative is zero, that is

D {y-h(x,£)} = 0 on y = h(x,t) , (1.2.6)

The velocity potential is calculated, to first order in
h(x,t) (taken to be small compared to u) by linearising the equation
of motion, (1.2.4), and the boundary con&ition on y = h(x,t) (equation
(1.2.6)) to one on y = 0 by neglecting terms of order (¢1)2.

After such linearisation equation (1.2.4) becomes

2 3 2
vl 4 (k o+ im 23 ] by = 0 (1.2.7)

where k = %ua wave number,and m = g-the Mach number. The total
o e o

velocity yT’ the basic flew U, and the perturbations u are given

by



29, 04, 3, 390
Up= | U* 5x *3y ]’!‘(Uﬂ)»“[ax ' 3y ] )
wiH\ o & consEant ( lot c°=c_). | (1.2.8)
9y 5h

Linearising equation (1.2.6)lassuming h; % and 3%

are all small gives

3¢
1 _ sh 3h _
5y “actUsx o y=0 - (1.2.9)

. 21
When expressed in stretched coordinates Xy = x(l—mz) I,

Y1 =Y K = k(l-m2 —%, and with

¢2(x,y) = ¢3(xl,yl) exp{-imel} (1.2.10)

equations (1.2.5), (1.2.7) and (1.2.9) become

3¢
3 a
= =0 for all x,,y;=d;|x,| > =<3 y, =0 (1.2.11)
(vf + K2)¢3 =0 (1.2.12)
- -imkx
3 1 3h U oh
: {cb e ) = — + 1 (1.2.13)
3)’1 3 ét (1_m2)z 3)(1
where Vi is the Laplacian with respect to the new coordinates (xl,yl)
and
2. -% . nkx
o;(x,y) = Re{¢3(x(l—m ) %,y) exp{-i(wt + 5 )1} (1.2.14)
1-m

For some piston profiles, in particular the 'top hat' as

described below, the solution brcaks down at the piston ends because

the perturbation is no longer small compared to the basic flow. In
these regions the velocity potential will be calculated using matched

asymptotic expansions based on the piston profile h(x,t) and the Mach
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number m being small.

The 'top hat' profile is defined as
h(x,t) = hO{H(x+a)—H(x-a)}coswt (1.2.15)

where H is the Heaviside step function, whereas the general piston
profile has a general h(x,t) such that h(x,t) = h(x) coswt and
max |h(x) | = hg- |
b
For the 'top hat' profile differentiation with respect to
t gives no special problems but formal differentiation with respect

to x gives

g—x h(x,t) = hy{6(x+a) -8 (x-2) }eosut (1.2.16)

where §(x) is the Dirac delta function. This violates the condition
that %g—is small and the potential calculated by this procedure is
regarded as an 'outer expansion' in the language of matched

asymptotic expansions and equation (1.2.8) becomes

99 .
Syl = Re{c}&)[m{é(x+a)—8(x-a)}—ik{H(x+a)—H(x—a)}]e-lwt}
(1.2.17)
Although this has singularities at x = a and x = -a these infinite

slope singularities are integrable and in the calculations of the
work done by the piston they only appear inside integrals so they
can be accepted and used in sections (1.4) and (1.5). However in
order to-calculate the forcz on the piston,the flow in the small
regions around the piston ends, the inner approximation, will have
to be investigated further.
The latter half of expression (1.2.17) represents a distribution
of line sources between x = -a and x = a. These sources, of

constant strength proportional to mho,represent the flux of the

]
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piston's volume forced into and then pulled out of the flow, linearised
to its mean position on the baffle.
The first half of expression (1.2.17), two pulsating
line sources (at x = -a and x = a), represents the blocking effect
that the piston's ends would have were they to actually be present
in the flow. Again linearisation back to the mean position on
the baffle has taken place.
From here it is possible to proceed in one of two ways.
Firstly we could find the Green's function for the problem
and use that to find the linearised velocity potential. Alternatively
we could take Fourier transforms of the equation)solving the
resulting inversion for the velocity potential.
The first method, applied to the 'top hat' profile, will
be detailed in the main text whereas the second method, for a

generalised piston profile, is given in Appendix 1.
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1.3 GREEN'S FUNCTION METHOD

In order to employ the Green's function method we must
first find the Green's function G(xl,yl,XO,YO) for the problem.
The function G(xl’yl’XO’YO) satisfies the following equations and

boundary conditions —
(v, 24k%)G = 8(x,-X) 8(y,-Y,) | (1.3.1)
1 170 1 0~/ T
an outgoing wave form al inﬂhiéj)

3G _ 0 on the duct walls.
ayl

Then ¢3 is given by
3¢
50

where So is all theduct surfaces (XO,YO) and n is the normal there.

G can be found, by a superposition of separable solutions,

to be

=]
INe~18

1 . 1 1
G(xl,yl,XO,YO) -'EEEE—exp{—1K|x1-XO|} iy . ;;

- X1} cos(™T nm
exp{ Yn[xl XOI, cos (-5~ ¥;) cos(g Y,)

(1.3.3)
where
‘nn 2 23 nm . ,2 DT 2 3 nn
Yo T ((7f9 -K ) for T > K, -i(X —(7f9 ) for q < K
(1.3.4)
and it is assumed that K is not a multiple of %;

The velocity potential ¢1 can then be found by taking the
boundary conditions from equation (1.2.17) (after transforming into

stretched coordinates) with G from equation (1.3.3) and substituting
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into equation (1.3.2) to give after integration:-

For ~a<Xx<a

wh
by = - _§—J{sinwt [ Cos(k(x—;m))sin(k(a—gx) - wt)}
k™d l1-m 1-m
N h0
+ z — {ﬁ?— + U)sin(Fn(x-a) + wt)

1
n=1 dB_(1-n)* Tn " L -
- CE_ ¥ U)Sin(En(x+a)+Wt)+w(E—'- f—)Sinwt}cosgéL

d
n n n
° h0 w w
+ 2 Re{ 71 Kg—' + U) exp{—iFn(x—a)} - (E——+ U) exp{—iEn(x+a)}
N+l dB (1-m“)% 'n n
" 1 p | et nry
+ w(E—- - i—)]e cos —g- (1.3.5)
n n
where
B B
Fn - me * n2 3 s By mk2 h n2 ] for n=<N
1-m (1-m™) T 1m (1-m9)*
iB iB
Fn = mk2 + nz T sy E = mk2 - n2 . for nz=N
1-m“  (1-m)* To1an® (1-n%)*
kd 2 nw 22
N=[ ——3—] s B o= K- P (1.3.6)
(1-m“) %q

‘ .o nm .

Here we must exclude the resonance condition K = 3 since

in such circumstances the assumption that a time-periodic solution
exists is invalid. For this case one would have to study the initial

value problem, and this is not pursued here.

For x>a
2
c’h
_ 0 . ka kx
4 = - o sin( 1) cos{wt - I } (1.3.7)
N 2h

- z 9 {Jﬂ- + U} cos(ggza sin(aEn)cos(w*+xEn)

1
1d8 (1-mH% By
n
oy 2. -% nny , mkx
) exp{-xB_ }(1-m") " cos(=3) {constantxcos(— + wt)
N+1 1-m”

+ constantxsin(mkx2 + wt)}

1-m
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¢1 for x < -a is similar to (1.3.7))the main difference being that
En is replaced by F. .

The far field downstream disturbance potential thus consists
of a y-independent travelling wave, the first term of expression
(1.3.7), a set (the sum up to N) of y-dependent travelling waves,
and an infinite set (the sum from N+1 to «) of terms that decay
exponentially with distance from the origin. | The upstream potential,
similar in nature to the downstream potential, contains the same
types of terms in the same numbers.

Having found the velocity potential in the vicinity of the piston
as well as upstream énd downstream of it,we now calculate the rate
of work done by the piston on the fluid, that is the amount of work

needed to be done to force the piston to sustain this periodic motion.
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1.4 RATE OF WORK DONE BY PISTON: THEORY

We will now calculate the net, time-averaged, energy
flux into the duct which is the average rate of work done by the

piston (W).

<[ ah ds,> (1.4.1)
s, .

where <> indicates time average, p is the pressure on the piston
and Sy is thepiston's surface linearised to y = 0.
If o is the fluid'suniform density at infinity then

Bernoulli's equation gives

p = constant - p, {——- %—(%%T- %%T-]}. (1.4.2)
i i

Taking the reference pressure at infinity to be zero and denoting

the excess pressure by pressure p we have
- U _ 3 1 3¢ 3¢
p=py {5 -57-7( )1, (1.4.3)

This then gives,after linearisation with respect to the perturbation

magnitude)
8¢1 3¢1

P=-0r, {a_t—+UW} , (1.4.4)

LIGHTHILL[( 19 ) equation 65] tells us that

*
* 3N .
SE i
5t T 3%, - O (1.4.5)
where
. 2
N o= (wu+ =0) (o, u+ Up) (1.4.6)
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and

%— o2 + (U)o (1.4.7)

and p is the excess density.

One can think of E* and N* as giving a measure of the eXcess
energy and energy flux respectively; such an interpretation requires
some caution, however, since second order terms in the acoustic
fluctuation have been ignored. As E* and N* are of second order,
if a true measure of the:excess energy and energy flux were required
(which here they are not) the second order terms would have to be
included.

Now to order (h(x,t))z, that is to first order, equation

(1.4.1) gives

W= < [ N% x> (1.4.8)
51

which after substitution for p,p,U,u becomes

99, @b, s 2h

N 3h dh 3
W= < _f Po 31~ e+ U 5 Jdx >+ 0(h) . (1.4.9)

51

It can be shown that < f Ni*dxi> is path independent. That
s
is to say < f N*ds> over any 1path s from x = -a to x = a in or
s
bounding the fluid will give the same result.

Integration of (1.4.5) over any closed fluid volume v, with

surface s yields

aN.* e 3
[ % dv =[N *ds, = 57 [E* dv (1.4.10)
v axi s 1 1 v

but as the time average of the right hand side of equation (1.4.10)

is zero it follows that
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< [ N.*ds.> = 0.
s 1 1

The integral (1.4.8) can thus be evaluated over any surface S
from A to B (Figure 2). In particular, since N* has zero normal

component. on the rigid duct walls

w= [+ f (1.4.13)

Figure 2

In general the rate of work done by the piston, W, is given

w = < £ Ni*dsi> (1.4.14)

and although N* and E* are not the true energy flux or excess energy

their integrated values give the true power flow.
Proceeding in a different way, since other second order terms
have to be properly accounted for, CANTREILand HART ( 4 ) showed, by

considering the equations of motion up to and including second order
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terms, that the net, time-averaged, contribution of these other terms
in the velocity to the integral was zero. Such a powerful and

algebraically complex proof, involving all second order terms, is

not required here.
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1.5 RATE OF WORK DONE BY PISTON: CALCULATION

Taking the integral form of the perturbation velocity
potential (Al.6) and substituting into equation (1.4.9) yields
for the net, time-averaged work done by the piston

Po® i coshyd . ~Y
W =1;_ Reljfj’f T siniyd (UTHe) (UT-w)H(DH(T) x

L

x exp i{-ty+sy-sx-rx}drdrdydxds | . (1.5.1)

The x and y and the r and 1 integrations can be undertaken without
specific knowledge of the profile transform H (the Fourier transform

of h) to give

p AW .

0 2 5.0\ i cosh yd

W= - 7r—-Re J (Us+w) ™ H(s)H(-s) ¥ sinh yd ds , (1.5.2)
L

ﬁ(s)ﬁ(—s) is an even real function and if the piston is finite
ﬁ(s) is also analytic. The path of integration, L, is along the real
axis with indentations in the upper half plane for poles to the left
of the origin and in the lower half plane‘for poles to the right.
The integrand is wholly imaginary for réal s so W can be evaluated

bn}sight to be wi times the sum of the residues (times the appropriate

sign) [—
Pw 2,4 2 9
= 0 (l”m ) W ~ k ~ -k w k -k
" 4d(1-m2)% { 2k ”y(1+m) H(1+m) H(1+m) ¥ (l—m) H(l-m) H(l-m)l
N 2 9 3
+ % ﬁL‘I(UEn+wJ H(E)) H(-E ) + (UF_+w) H(F) H(_pn)!} ’
n

(1.5.3)
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For the 'top-hat' profile where h(x) = ho[H(x+a)—H(x—a)]

h 2pc
0 . 2,ak ak
W= ——iﬁ_'{SIH (Tiﬁﬂ + sin ( )}
hlogs N 2 2 w 2 2
$ =y {3 7 (-—- +U) sin” aE) (?— + U) sin aFnl}
d(1-m ) 1 'n Eq n )
(1.5.4)

Alternatively these results could be obtained by substituting
the expansion for 91 inte either integral for W and then integrating
each individual term of the expansion separately. The results
can also be obtained, because of the relationships documented in section
1.4, by calculating W as in (1.4.13) using eitherthe Fourier
transform integral or the series expansion for ¢1 and then integrating
over any two surfaces x = constant across the duct (one upstream
and one downstream).

We see in equations (1.5.3) and (1.5.4) that the decaying modes
of the potential do not contribute to the work done. The surfaces
of integration do not have to be sufficiently far up or down the duct
for the decaying modes to be small as their contribution is identically
Z€ero. The contributions from the travelling modes are easily
identifiable as to which mode they come from. The first terms of
exbressions (1.5.3) and (1.5.4) come from the plane waves which do
not depend for their existence on the size of k relative to the duct
widthd and are always present even for very small d.

Ifu

0 (no flow) then cxpression (1.5.3) gives the e[emenéa?a

result for a.piston in a baffle in a duct namely

) 3
gtz HOOHGO + LB

W= H(Eh) ﬁ(-Eh)} (1.5.5)

1

= 2 nm 2 1
where B = [k© - &P, |
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and, more accurately, expression (1.5.4) for small m becomes

2

h “p N .
0 70 ¢ 3(sinka)? + 205 § B, (sina B)°}
d o1 P n

m2 c2h 2md_l{kaZCOSZka + a sin2ka

P0¢ "o

+

N 2 2 2
" g BN ED edh «xh8 " als a5l )sinzal

2

2 2
=-2_1 nr nn 2,7 - 2,4 = 4
-B (3 CP Q@GP + kDB T - 22"k cos2aB_ [} + o).

(1.5.6)

The differencé between expressions (1.5.3) and (1.5.5) and
(1.5.4) and (1.5.6) (with m = 0) is the extra amount of work done
by the piston against the flow whilst maintaining its periodic
motion. In expression (1.5.6) the effect of the flow, for small m,
is much clearer in that it is represented by the additional terms.

In the 1limits ka ~ 0 and d + < this problem reduces
to the elementary one of a compact piston in an infinite baffle
bounding a semi-infinite fluid region. For this problem the work
rate, Wa, is known to be, HARDING-PAYNE (13 )

2
223 2,-5/2 4
- R O S 5/2. {1*rn%fj + O&E)) (1.5.7)

and indeed expression (1.5.4) does reduce to this in the appropriate

limits.
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1.6 INNER AND OUTER REGIONS

An approximation to the force, F, on the piston will
now be calculated. F is the integrated pressure across the piston

surface and is therefore given by

F= [pds . < (1.6.1)
S

In the linearized theory of sections 1.2 and 1.3 the velocity
potential has a singularity proportional to log r (where r is
the distance from either piston end) so that p has a non-integrable
singularity o} order (xta)—l as x > ta. This arises from the
linearisation of the boundary conditions, which is clearly invalid
near the piston ends as already mentioned. We thus regard the
previously calculated potential as an '"outer expansion' that should
only hold for r >> hO' In the small inner region at each end of
the piston, r << a, w2 take the full boundary conditions and calculate
an approximation to the potential, based on the local dominant small
length seale hO’ using the method of matched asymptotic expansions.
Consider first the flow around the right hand piston end

X = a. Rescaling the flow with respect to h(t) such that

X-a . Y = y/h(t) (1.6.2)

gives a new problem, flow over a stationary step as shown in Figure 3.

The problem with flow has thus been replaced by a new static one
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¢y = hithhit)

{0,0)
(o

<Y
(W

Figure 3

The boundary conditions in this new system are

0 onY =20, X>0
3 _
v . (1.6.3)
h(t)h(t) onY =1, X<0
%%— = 0 on X = 0, 0<Y <1 . (1.6.4)

However the limit of ¢ as |X2+Y2| + » 1is not yet known and will be
determined by matching the inner solution, expanded in powers of
the small parameters h(t) and m, to the outer solution expanded in
a similar way using the method of VAN CDVKE ( 27 ).

In Appendix 2 the limit as |X2+Y2| + o of ¢(X,Y) is found

by\this method to satisfy
¢ = U h(t)$ + constant + higher order terms (1.6.5)

where $ is 0(1) but unknown.
Substituting expfégsion (1.6.5) into equation of motion (1.2.6)

shows that

V2$ = O(h(t)z, h(t)m,mz) in the inner region (X,Y) (1.6.6)
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SO

2, h(t)ms) in the inner region (X,Y)

(1.6.7)

v = 0(h(t)3m, h(t)%n

To solve for ¢ let ¢ be denoted by o5 in the inner region
and 9o in the outer region. In the inner region the equation of
motion (1.2.4) has been reduced to Laplace's equation to at least
the first few orders thus making the flow not only quasi-static
but almost incompressible as well. First we find the inner solution

..

1
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1.7 INNER SOLUTION

The inner solution ¢i satisfies

V2¢i =0 to order (pérameter)4 (1.7.1)
¢ - ®) on R=0O , oY < |
IX
3¢i 0 on Y=0 , X>0
v = { . (1.7.2)
h(t)h(t) on Y=1 , X<0
. 2,2
¢i matches with ¢o as IX +Y | > (1.7.3)

Geometry as in Figure 3.

In order to solve for ¢i we consider a transformation that
maps the step into an easily analysed straight line.

Consider the Schwartz-Christoffel transformation

z= (g

m

2—1)% + cosh—lg) (1.7.4)

where z = X+iY, £ =¢&+in. This maps the step ABCD of Figure 3

onto the straight line A'B'C'D' of Figure 4.

und

O
Q

A B
(-1,0) {(1,0)

Figure 4: ¢-plane

—

If y is the potential in the Z-plane then the equations (1.7.1),

(1.7.2) and (1.7.3) become, on putting &y = g+l
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w 0 on ny = 0 ’ gl >0

1 Lhoyhce {—El—J on n, =0 <0 (1-7.3)

Vfw = 0 (1.7.6)

¢(&Y) = Re{wz(z)} = Re{wC (cl(z))} (1.7.7)
1

where wz( ) denotes the complex potential in the z-plane.

The general solution to this problem can be found; it is

_ h(t)h(t) 1 2
¢1 = Re{- ————Er——[cllogcl * 5 (1ogc1) + F1c1+F2]

Uh(t)
+ ¢iR + - [c1+F3]+ Ual (1.7.8)
where ¢iR satisfies
V2¢ =0 (1.7.9)
1YiR T

Bd)iR { 0 on gl > 0 nl =0
. 1
h(he) (1,
m £

)
1 2 1

1 -
-1 - ET—} on gl <0 nl-O

(1.7.10)

and Fi’ i=1,2,3 are constants as yet undetermined. They can be found

by matching with the outer expansion. This is not done here since
these constants prove to be not relevant in the calculation of the force.
The first part of expression (1.7.8) comes into the solution due to

the flux thrqugh the upper half of the step, the second half comes

ay

5 = 0 on all boundaries.
Ny

from the eigensolution y of Viw = 0,
A similar calculation yields the potential for the flow around

the other end of the piston.
\
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1.8 THE FORCE ON THE PISTON

The inner solution of section 1.7 holds in
|(xia)2+y2|% << a (1.8.1)
whereas the outer solutions hold in
|(xia)2 + yzl% >> |h(t)]| , |X2+Yzl>> 1. (1.8.2)
Both solutions hold when,
{h(t) ]| << |(gia)2 + yzl% <<a, |xta]>0 and |[X|>= (1.8.3)

We can write equation (1.6.1) as
-a+ a-u
F = pdx + | pdx + | pdx ) (1.8.4)

-a -a+i a-y
where X and u are arbitrary except for the stipulation that
[h(t)| << Au << a ' (1.8.5)

that is both A and p lie in the regions in which both the inner and
outer solutions are valid. a

For the second term of expression (1.8.4) the outer solution
is valid and expression (1.4.4), linearised to y = 0, can be used
for the pressure.

For the first and last terms of expression (1.8.4) the outer
solution is no longer Valid and the inner solutions, with expression
(1.4.3) for the pressure, must be used instead.

Substituting the required formulae into these integrals and

expanding in powers of m and h(t), rejecting all terms wholly

dependent on A and u (because they are arbitrary so cannot appear in
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the answer) gives for the force on the piston

2 h0 1
F = 2p0 w5 {E——(ka coswt - sin ka cos(ka-wt))
3
N . B
+ nzl B [2aBncoswt—51nwt—51n(ZaBn-wt)]

o0
— -3 — —
+ z Bn [1—ZaBn—exp{-ZaBn}]cosmt}
n=N+1

+ 2p0U2 2?—cosgt 1oge|h0cosmtl + 0Uh()) . (1.8.6)
The first term in this expression for F comes from that part
of the potential that has no singularity at the piston ends. It could
be found by letting X and p tend to zero in the first term in the
power series expansion)in h(t) and m)of the second integral of
expression (1.8.4).

The second term of expression (1.8.6) is that contribution

to the force that comes from the discontinuities at the piston ends.
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1.9. DISCUSSION

“The most significant fact in this calculation is that the
singularities in the model problem, caused by the piston ends, do
not have to be accounted for when calculating the power flow W.
This is because the time-average of the singularities in this
part of the problem is integrable.
However, in the calculations of the force F(t), where
no time average is taken, full account of the end contributions must
be taken. This leads to a large fluid-loading, of order h(t)log|h(t)],
which is larger than the linearised quantities of order h(t).
We should note that the power flow W and the force on the piston

F(t) are not independent since

W= <—whosinwt F(t)> (1.9.1)

If this time averaged quantity is evaluated using expression
(1.8.6) for F(t) it is found that the log term has zero average.
The leading term of this agrees with the leading term of expression
(1.5.6). Thus
h02p
d

0 3

n

W=

1 '_'B’n'3 (sinab_) 21 + o(h(t)md)

1t ~122

{cs(sin ka)2 + 20

(1.9.2)
Note that there are no terms of order h(t)m in equation
{1.8.6) .and therefore no terms of order h(t)zm in expression (1.9.2).
This is not surprising since reversing the flow in this symmetric
problem (changing the sign of m) should not affect the total force

on the piston or the work rabe
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Linearisation of Lighthill's equation lead to a standard
problem but the model broke down at the piston ends. When the
behaviour of the fluid at the piston ends was properly treated,
however, we found that this inviscid model gave a finite force on
the piston. Viscosity need not be taken into account to make the
force finite and the inviscid solution made a sound first

approximation to the force and the work done.
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CHAPTER 2 : The generation of sound by a piston set in an
expansion chamber in a duct containing flow.

2.1 INTRODUCTION AND SUMMARY

In this chapter the calculations of the velocity potential
for the force on}and the work done by, a pisfon are extended to a
more complicated and thus a more physically realistic geometry.

The same linearised model for the piston as was used previously is
employed.

The expansioﬁ chamber is a wider region of duct for which the
inlet to and outlet from are not necessarily ofthesame width. They
contain a steady background flow.

The solution from Chapter 1 is employed and as before it
breaks down in the vicinity of the piston ends. Details of the local
flow are just as before so their calculation will not be repeated
here.

The solution also breaks doﬁn near the changes in duct width
and the method of matched asymptotic expansions is used along with a
Schwartz-Christoffel transformation to bridge this region.

The solution for the velocity potential can then be used
td‘calculate the force on the piston and the work done by it in
sustaining the motion.

In section 2.2 the nonlinear problem is rigorously defined
and the nature of the steady background flow is discussed. In
section 2.3 the lineariééé problem for all the straight sections of
duct is considered and in section 2.4 the potentials are expanded
for the method of matched asymptotic expansions. In section 2.5

the solution in one of the regions joining the straight sections is
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found and expanded in preparation for sections 2.6 to 2.8 in which the
Van Dyke matching is done. The rate of work done by the piston
and the force on it are calculated in sections 2.9 and 2.10

respectively. Section 2.11 contains discussion of the results.
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2.2 PROBLEM DEFINITION

Inviscid compressible fluid flows adiabatically through a
two-dimensional duct whose geometry abruptly changes from width

1’ d3 > dS'

2d1 to 2d3 and then to 2d5, with d3 > d

Acoustic fluctuations to the steady stream are produced by
the small amplitude, time-harmonic, transverse vibrations of a
piston set in a side wall in the widest part of the duct, see
Figure 1. The problem is to find the velocity potential when the
piston amplitude is small compared with the other length scales in
the problem and when the Mach number of the steady duct flow is
small.

Using cartesian coordinates (X,y) the walls of the duct are

at

1 1
y = td3 for —L1 < x < L2 (2.2.1)
ids for L2 < X

The magnitude of the basic flow for x << -1y is U and it

follows from conservation of mass that it must have the asymptotic

ud
value —— as X > o, Furthermore, as the width d, << L. + L
d5 3 1 2
the steady flow within the expansion chamber will be nearly parallel
ud
(away from the ends)and its speed will be El .
3

It can be seen from Figure 1 that the piston is set between
X =-aand x = aony= -d, and it has the displaced surface given by

t}.

3
h(x,t) = Re{hoe_lw



2d1

FIGURE 1:

THE REGIONS

-av -
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The regions shown in Figure 1 are as follows. Region 1 is
from minus infinity to many duct widths to the left of x = -L1
and Region V is from infinity to many duct widths to the right of

X = L2' Region III lies between many duct widths to the right
of x = -Lland many duct widths to the left of x = L2. Regions 11
and IV overlap and join the other three as shown.
The basic steady velocity potentials ¢  are:
J
in Region I, ®1 = Ux + ¢, = Ux (c1 = 0, say) (2.2.2a)
Ud1 d1
in Region III, ¢3 = a;—x * Cqg = alx + ¢ = U2x + cs(u = ag)
(2.2.2b)
Ud1 d1
in Region V, o = 5; X+ cg = BUx + cg = st + cs(B = a;a
(2.2.20)

The velocity potential, with arbitrary multiplying factors,
is calculated to first order in h{(x,t) (small when compareduﬂH\U)

by linearising the equation of motion and the boundary condition on

i}

y as in the previous chapter.

3

The approximations ¢j, j = 1,3,5)breakdown near x = —L1 and

—d3 + h(x,t) to one on y = -d

X L2 because the flow there is no longer uniform. Matched asymptotic
expansions will be used to find the velocity potentials in these
regions, assuming that the parameters kd3 and m (a mach number) are

<< i.
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2.3 REGIONS I, III and V

As in the previous chapter the equation of motion of
the fluid is given by LIGHTHILL [( 19 ) equation 61] to be

2
2p2y = 2 :
at

, 89 324 . % 3¢ 3
X 9x_ 9t 9X 9X 3X_9X
m m m n m n

m,n = 1,2,

(2.3.1)
where ¢ is the total velocity potential, c the local sound speed and
V2 the Laplacian operator, ¢=5j for j = 1,2,3,4,5. For j = 1,3,5we se&
;. = 0. + ;j where $j are the velocity potentials of the linearised

J J
perturbations assuming ¢j is small compared to the basic flow and

~

neglecting terms of order (¢j)2. This then gives

230. 54, 54,
5 %%y %

Yr =G 0 50 (2.3.23)
vwoo= G ey (2.3.2b)
U. = (U.,0 2.3.2¢
U ( ; ) ( )
where ng, Ej and gj are the total velocity field, the perturbed

velocity field and the basic velocity field respectively.

~

¢j satisfies the linearised equation of motion

A ~ ~
2 9= 32¢- 32¢j ) 32¢j
V. = —5L + 2, =L + U —L (2.3.3)
J ot J oxat I ax

Substituting ¢j = Re{¢j e-lwt} gives the convected forn

of Helmholtz's equation in each of the three regions

2 9 42

\ ¢j = - {k + imj 5;4 ¢j ; i =1,3,5, (2.3.4)
where k = %— is a wave number, m =m= g-a Mach number and m, = am,

m5 = pm are modified Mach numbers.
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Expressed in stretched coordinates X5 yj where yj =y,
R.
- 2y-1 Sy
Xy = X(l—mj ) with Kj =k - and

. = . A')A- -i -K-A- 2.3.
65 (x,¥) = w3 (x5,y;) expl-im K x ) (2.3.5)
equation (2.3.4) becomes
~2.2
¢ . =0 2.3,
(V5 + ; 7z ( 6)

o2, . . .
where Vj is the Laplacian with respect to stretched coordinates.

So

- -1 . ) 27
¢. = ij + cj + Re{wj(x(l—mjz) 2,y)exp[—1wt—1mjkx(l—mj )ﬁ}

]
(2.3.7)
Region 1
Equation (2.3.6) with j = 1 gives
(7. 24k, 5y =0 (2.3.8)
1 ™ VT "o
with boundary conditions
Bwl -
5_}’— =0 ony-= idl v (2.3.9)
¢, an outgoing wave at minus infinity
¢1 must match the potential in Region II as x ~» —Ll—O.
Region V
Equation (2.3.6) with j = 5 gives
~2.2

with boundary conditions
|
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oY
5 .
'a—y"— =0 on y= ids (2.3.11)

¢5 an outgoing wave at infinity

¢ must match the potential in Region IV as x L2 + 0.

Region 111

PN

Letting ¢, = ¢_ + ¢, where ¢, is the velocity potential
3 3p 3p P

3¢
due to a piston in a duct of width 2d, with basic flow st, LI is
thus the velocity potential representing the perturbations travelling

along the expansion chamber , confined by reflection at each end.

A

The function ¢, is given in Chapter 1 and behaves as
3p P

ch .
" 0 . ka . ikx
¢, ~ - sin Re{exp{-iwt + 1} for x >> a
3p 2kd3 1+m3 l+m,
(2.3.12)
and
ch .
" 0 . ka . ikx
¢3p - 2kd3 sin T-ny Re{exp{-iwt - T:EEJ} for x<<-a
(2.3.13)
Equation (2.3.6) with j = 3 then gives
(v32+1<32)w3C =0 (2.3.14)
with the boundary conditions
3y
ay3° =0 on y=#d, (2.3.15)

$3= g * ¢3p must match to the solutions in both Regions II and IV
as x - —L1+ and Ly- respectively.

The general solution to
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2 2
v.” + K. . =0 2.3.
( 3 ; )wJ (2.3.16)
awj
— = 0 .= +d. 2.3.1
yj on yJ 3 ( 7)

is found in Appendix 3.

The forms of the solution appropriate here are

n ~ " . ikx
o) + Ux + Re{A; exp{-iwt - 373} + e.s.t. (2.3.182a)
~ - . ikx
¢c = UBx + Re{B5 exp{-int + 1+8m}} + Cg + e.s.t. (2.3.18b)
o ~iwt,? ikx - ikx
¢5 = Uox + Re{e [A3 exp{- 1:5544-B3 exp{1+am}]}
+ g + ¢3p + e.s.t. (2.3.18c)

~ ~

where Al’ AS’ B3, B5 are constants as yet not evaluated and e.s.t.

denotes exponentially small terms{as 1v1-= co Por oder fmr'ame[:ers -ﬁixe«(),

-~

Considering the factors in ¢3p and ¢3 it is expedient to put

ch ch ch

~ Y R . _ o =

DAy oggo Ay 3RL3 0 Bos oo B 33,5, and 45 = 5o 4y

, 3 3 3
(2.3.19)

The expansion of the three velocity potentials, in matching
coordinates, as the joining regions are approached, will now be

considered.
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2.4. EXPANSION OF PQTENTIALS

Consider first the matching from Region I to Region II
and from Region III to Region II.

In Regions I and III let the non-dimensional variables
characterised by the local length scale A = k_l, known from now on

as 'outer variables', be
X, = kx + kL1 = kx + Kl; Y, = ky {(2.4.1)

In Region II let the local non-dimensional variables based
on the local dominant length scale d3, known as the 'inner variables',

be

1. "1

In Region I the velocity potential 51 in terms of outer

variables is

N i£1 ix
Cbl = Al exp{m - m} (2.4.3)
Letting A1 =ay *oea;+ ezaz L wherel§‘= kd3 << 1 is the small

~ matching parametey)gives on expanding in this small parameter)

)
N ) iKl ixl
¢, = (a0 tea; + e'a, + ) exp{Tja-- T:ﬁ} (2.4.4)

~

¢jn,in the notation of matched asymptotic expansions, denotes
expansion up to the nth power of € in the first (outer or inner) variable
and $j“m denotes the expaQ§ion up to the mth power of ¢ of Ej“ aftexr

it has been rewritten in the second (inner or outer) variable. So

corresponding forms in Region I for potential 51 are
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N il
¢1°° = a, explr—) (2.4.5a)
iex, il
~ 01 1
¢, =2 {1- } exp{l m}’ (2.4.5b)
iex.a il
~ 11 2 1
¢ = {a0+€a1 - = } exp{1 — }/ (2.4.5¢)
$ 22 _ {a .+ma_.+ e[a . +ma,.-ix,(1+m) (a,,*a,,)]
1 00 01 10 11 2 20 "21
+ sz[a +ma,, - l—(a +ma . ) (1+2m)x 2—ix (1+m) (a, ,+ma.,) ]} x
20 21 2 00 01 2 2 10 11
‘ iI_l
x eXp{T?H} (2.4.5d)

where (2.4.5d) has also been expanded for small m (up to 0(m))and

where

+ mza. + ... (2.4.6)

a, = a.
i2

+ ma.
i i0

1l

In Region III the velocity potential 53 in terms of the outer
variable is

il ix -il ix

o 1 1 1
¢3 = {AS— ¢ sin; } exp{l o - 1 o )+ B exp { 1+am:},
(2.4.7)
Letting
A, = ¢, + ecy, + ezc +
3 0 1 2 cre
.B = é + eé + 52& +
3 0 1 2 Tt
and expanding as before in e gives
~ 2 a e233
¢, = {c, + ecy + €%¢c, + L. - S+ v} x
3 0 l 2 1-am 6(1—am)3d32
il ix il ix
1 - - 2% ' 1
* eXp{l-am " lam b {dO * Ed1 te d2 -} exp {- T+om * Lram}

| ’

(2.4.8)
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For the matching expansions this then gives

il il .

<00 _ . __ 3 1 1 .1
¢3 - {"0 - l-am} eXP{l—ozm} * dg exp{ 1+am} ? (2.4.9a)
iex il iex il
~ 01 _ a 2 1, - 2 M
¢3 - {CO - l-am} - l—am} exp{ l-am}+ dO{1 * 1+0Lm} expl l+am s
(2.4.9)
iex il
~ 11 _ a _ 2 __a 1
4)3 B {CO - l—am+€cl l1-om (CO l—am)} exp{ l-am}
“ . iéoxze ie
+ {do +ed) Tron } exp {- 1+um} ) (2.4.9¢)
~22 a 1x, a 2 a®
03 = leg - ygm el - 1om (oo - Tl * e, ¢ 3.2
2 6(1-am) d3
ix, ¢ X il
RE N G 2 1} expl 1}
1-am 0 1-om 2 Pt Tom
- (1-am) R 2
ix.d ix.d x,°d il
" 3 270 2.5 271 20 1
tldgveld) + el v - 51} expl- o
2(1+am) ’

(2.4.9d)
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2.5 REGION II

Figure 2 shows the Regions VI and VII across which the
matching has to be achieved. InRegions VI and VII the solutions
of both Region I and Region II and of Regions II and III are valid
so matching can be undertaken. First the solution in Region II

must be considered.

| |
l, |
v 1 K._nl_m_
I ¢ — | |
| | | |
: ! ' I —
| | | |
| | | |
|- | ! |——)
| | ! \
—_— : : y/La : |
X
g ! J : —
S G | |
| | ! i
[ l : | —
! |
| | | '
| !
] l I .
| I S
IVI | I
) Figure 2 VIl

In Region II the basic time-independent part of the flow, 2,5,

satisfies, from equation (2.3.1)

2
3. 9%0 50,
22 2 2 2
Ve, = 1] % wox X (2.5.1)
szy n m n m
n "1°1
Xm=x1y1

In inner variables (xz,yz), with sz denoting the Laplacian with

respect to those variables this becomes
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- 2
22,2, _ g ) 00, 30, 30,

d;7cTv, 0 5%, OX.8X, ’Xx, - (2.5.2)
i%%5 M

Xj=Xp0Yy Xi7X5Y,

We know, from matching leading orders, that

Ud_x, - UL as X, > - o
0,5 (xy5y,5) > 52 1 2 (2.5.3)

Uud3x2 - UaL1+c3 as x2 »-w'

Putting ®2(x2,y2) = Ud3w2 - UL1 gives

X as X, >-o

2 2
Yy (xy5y,) > (2.5.4)
aX,+C;  8S Xy > w
and
Jy Bzw Y
2 2 2 2 2
Vp¥p = m . X zx BX. BX. X, X, . (2.5.5)
i %2 A57%Y2 D
Expanding 12) in powers of m,thus
2
Vo = Vo ¥ MY,y + My, + ... ) (2.5.6)
yields
X as X, > -o
2
szwzo =0 and y,, > z (2.5.7)
, ax,*C; as Xy > w
. o ~ -iwt
Putting ¢, = Ud3W2 - UL1 v, = Udswz-UL1 + Re{¢2e } (2.5.8)

and substituting into equation (2.3.1) gives after linearisation,

oy 3
2 2 . 2 2
Vp 0y = -e 9, - 2iem o7 oo
1 1
2
BWy Wy aep o OV Wy 52,0 )

2
+m{2 09X, 0X.,dX, OX, ax, ax, 9X, 9X. ,
J 1) 1 1 J 1]

(2.5.9)
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So V22¢2 = 0(82, €m, m2) assuming all derivatives of potentials on

the right hand side are bounded.

Note: This is not strictly valid for the right angles
in the duct. We need to assume that these corners
are slightly rounded off to ensure boundedness
without affecting the factors in the following
Schwartz-Christoffel transformation.

If we put ¢, = ED-¢ as before and expand $I in powers
2 2d3 2 2
of ¢

~

then we have from equation (2.5.9) the following equations

governing the inner expansion of ¢2 y

2 2
¥, %0, = 0D 5 V%, = 0(m) (2.

Expanding ¢20 in powers of m and then deducing the properties of

each part of the expansion gives

) 2

%20 = %200 * ™01 * ™ 902 * - (2.
anc’l’
G0 = G 0+ Mo+ mg .+ (2
21 = %210 211 212 e '
- for m << 1 giving
2 2 2 )

Vo900 = 05 Vadypp T 05 Vb= 0. (2.

' 2
¢y = by * €y * E Gy, + ... for e<<1 (2.

5.10)

5.11)

5.12)

5.13)

5.14)
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2.6 VAN DYKE MATCHING-ORDER ZERO

Matching, in the style of VAN DYKE ( 27 ), in the Regions

VI and VII gives

¢100 = ¢200 as X, > - ' (2.6.1)
and thus
o iZl
lim ¢, = a, exp{—} (2.6.2)
X,
2
3,00 = 3200 as x, > 4= (2.6.3)
and thus
N a iﬂl - i£1
i13+w ¥ = {CO B l—am} eXp{l—am} * dO exp{- 1+am}'
2 (2.6.4)

Consider now 52 in terms of the outer variables:

i 2
= 050(xgYp) = 0p00(X25¥2) * moy0(Xp)Yp) *+ M 00, (Xoy5)

X Yy X y X y
1 1 1 ‘1 2 1 1
t2000 T 2 Tt Mg (T E) P byl

-
N
t

]

(2.6.5)
¢200 and ¢201 both satisfy Laplace's éduation, so there can be no

terms of lower order than zero in e, (because if there does exist

such a term ep/q then it must come from xz-p/q which is not a

solution of Laplace's equation and has a singularity at the origin).

Therefore we have for 5200
~ 00 _ ~ - 2
¢2 = ¢200 + m¢201 + 0(m™) (2.6.6)
So
il
~ 00 _ ! 2
¢2 = a, exp{ i } to order m (2.6.7a)

by matching in Region VI and
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it ig

$.00 . } o+ 30 exp{-

a
0, = leg = Tognt expl

L} to om?

1-oam 1+am

(2.6.7b)
by matching in Region VII. Also

2~ 0

v,%, 0 _ 0 to 0(nd) (2.6.8)

Now $200 matches to two constants to order m2 and satisfies
Laplace's equation so 3200 to order m2 is a constant. Substituting
this result into the general equation (2.5.9) yields similar results
for ¢20j’ j = 2,3,4, etc., ¢200 is therefore identically a constant

at all orders of m so
0 T by =8y -

Equations (2.6.2) and (2.6.4) thus yield

ill a ill - iﬂl
a, exp{ T } = (cq - T?Eﬁa exp{ l—am} + dO exp{- l+am} .
(2.6.9)
Matching also gives
~ 01 _ ~ 10
$; = ¢2 as X, > -®
(2.6.10)
~ 01l ~ 10 -
b3 =9, as Xy >+
Now we have already shown that
iex
~ 01 ~ 00 2 00
S U U el | (2.6.11)
and
~ 01 ~o00 €% a iL, iex, . it
%3 =93 - Toam (cq - l-am) expi l-am} ¥ Tvom d0 exp{- 1+am}

(2.6.12)
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[from equations (2.4.5b) and (2.4.9b)].

However it is also known that

~

¢2 = constant + e$21(x2y2) (2.6.13)

and substituting this into equation (2.5.9) gives

2 2
2 Wy 3wy ¥y, By, dy, 3 dy,

2
eV 0y = el 5= 5T W Y W W s ooxl )
i i i i%%j

(2.6.14)
The substitution of expression (2.5.13) into equation (2.6.14) tells

us that

2 =0 : 2 -
V) 000 =05 V705, =0 (2.6.15)

assuming once again that the derivatives of v, are bounded.
Using an argument similar to that used for ¢200 and ¢20]

we can show that

~ 1 N ~ 1 N 2
051 (x55¥p) = constant + ¢, (= )+ mby (7 ) + 0
_ N N . : 1 (2.6.16)
where both ¢210 and ¢211 are to (owest order ¢ .
‘This gives for the matching expansion
~ 10 ~ 00 ~ ~ 2
¢, = 4+ e{¢210 + m¢211} + 0(m%) | (2.6.17)
If o = 7 a p=0,1,2,3
- - E Il e
P =9 Pn

and if similar expansions are chosen for bp's and ép's and dp's
(with dpn = dpn) then the expansions of equations (2.6.11) and

(2.6.12) in powers of m are
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it
~01 _ ~00 | : 1 2
6 = ¢, - 1ex2{aoo+m[a01+a00(1+1£1)]} e + 0(m%) as x, > -= ,
(2.6.18)
il
~01 _ ~00 . 1
o5 = ¢; - 1ex2{c00—a+m[c01—aa+(cOO—a)(1+1£1)a]} e
—i£1
+ 1ex2{d00+m[d01+ad00(121—1)]} e as X, > ©
(2.6.19)
So matching tells us that
ill
--1x2{a00+m[a01+a00(1+1£1)B e as x, > -= (2.6.20a)
o N il
9510 * mbypq ™ -ixz{coo—a+m[c01—aa+(coo—a)(1+i£1)a]}e
B ‘ -i£1
+ix2{d00+m[d01+ad00(121—1)]}e as x, > + (2.6.20b)

Conservation of energy gives the flux across SI equal to

the flux across SII (see Figure 2). 1In integral form that is

a ~ ~ - _ a ~ ~
[ 557 (10tméy )0y, = [ 5 (6 p%mey; Ny, (2.6.21)
SI 2 SII 2

L~ ~ . ) . . . .
since ¢210 and ¢211 satisfy Laplaces equation. This equation gives
us two more relationships between the constants in which we are

interested. The 0(1) term of expression (2.6.21) is

il -il if

_ 1 1
—aoodle = dS{dOOe - (coo-a)e } (2.6.22)

and the 0(¢) term is

it -if

1 . 1
= ds{[d01+ud00(1£1—1)]e

-y [agy*ag(1+idyd]e

iKl
- [c01-aa+(c00—a)(1+i£1)a]e } ,

(2.6.23)
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2.7 MATCHING-ORDER ONE

Equations (2.4.5c¢) and (2.4.9c) partly expanded for small

m give
il
~ 11 ~ 00 . . . 1
¢, = ¢ e{a10+m[a11+1£a10]—1x2(a00+m[a01+a00(1+1£1)])}e
+ O(mz) as X, > -® _ (2.7.1)
? 1 P 00, e{c, +m[c, . +il ac. J-ix,(c . -a+m[c,,-aa+(c,-a) (1+il ]a])}elﬂ
3 1 10 11 17710 2700 01 00 1
—iZl
+ e{d10+m[d11+1£1ad10]+1x2(d00+m[d01+d00a(1£1—1)]}e
+ 0(m?) as x,»+® | (2.7.2)
2 , .7.
for the outer expansions.
Considering the inner solution it is known that
~1 _~00 2
90 = 9 Edy g tmedyyy * O
= $ 00 + e{constant + $ +m$ } o+ O(mz) (2.7.3)
1 210 211 o
and therefore
~ 11 _~ 00 ~ ~ 2
¢2 = ¢l + e{constant + ¢210+m¢211} + 0(m™) (2.7.3a)

‘because as expression (2.7.3) is identically 5210 it must also be

¢211. From the zero order matching it is known that 52 behaves,

to O(mz), like a linear function of x

,on fnovénj away from the

sharp change of width in the duct into the matching regions. If ¢p

is a particular solution then
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X as > 4+

p d3
"'_d X

where d3/d1 is

X2

as x, > -

and J.., by the

13
- see Appendix 4.

in equation (2.5.3) giving

|

(2.7.4)

determined by the mass flux condition as before
geometry via the Schwartz-Christoffel transformation

This is also the solution of the basic flow

€z = -UJlgde UJ13d1 5 Cg = -ud (J 53) (2.7.5)
The general solution for $2 is thus given by
~ 00
_ o ¥ E{A1x2+A2} as x, >
¢2 ~ (2.7.6)
X
~ 00 2
¢1 + e{xl(T;-+ J13)+ AZ} as x, > -=
where Al and AZ are constants to be determined by matching.
Van Dyke matching gives
~11 _ ~ 11 .
ST ¢2 as X7 /
(2.7.7)
~ 11~ 11
o =93 as X7y
‘that is
i£1
Al = Tla(a +m[a OO(1+1£1)])e (2.7.8)
i£l iZl
Ay = Wygalaggrmlagtag (14il ) Pe "+ (aygmla);+ilja 1)
(2.7.9)
and
il
Al = —1(coo-a+m[c01—aa+(c00—a)(1+1£1)a])e (2.7.10)
—i£1
+ 1(d00+m[d01+d00u(1£l-1)])e
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il -il

1 . 1
+ (d10+m[d11+1£1ad10])e

Ay = (c10+m[c11+i£1a clo])e (2.7.11)

Equating equations (2.7.8) and (2.7.10) and also (2.7.9) and
(2.7.11) gives two equations. We are interested in one of thenm,

namely,

i£1 i£1 ill -itl
a001J13ae + a e + d, e . (2.7.12)

The other equation involves aj1s ©q1 and d11 which we will not

1

attempt to evaluate here.
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2.8 MATCHING-ORDER TWO

Equations (2.4.5d) and (2.4.8d) give

a 2 ' i£1
¢, = {a20 - X, - ialoxz}e + 0(m) (2.8.1)

2

[ 22 _ {c,, + —éi— - (c n-2) fz—-—ix c }e121
3 20 2 00 2 2710
6d
3 2 .
X, ‘ -1@1
+ {d20 - d00 -5+ dlolxz}e + 0(m) . (2.8.2)

Equation (2.5.9) with the expansion (2.5.10) along with

the similar expansion

227 %220 M1 * - (2.8.3)
yields
V) 0500 = “0yp0 = - 2 (2.8.4)
2 "220 220 00
giving
$200 = il(—z)g-xzz * Yoo where V22w220 =0 , (2.8.5)

Using a similar argument for Y50 S Was used for equations

(2.7.8) to (2.7.11) yields

a
- 200 2 w
_E_ x2 + A3x2-+x4 as x2 > +
200 ~
400 2
- Xy o+ As{xz/u + J13}+ A4 as X, > -

(2.8.6)

The 82 term of 3222 is 52¢220; thus equating the 0(52)

terms of 3122 and $222 as x >~ and of $322 and 5222

as X > +w

gives

i£1 i£1 —iﬂl
-0a, e = -Co® + dloe . (2.8.9)
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Now the 0(1) and O0(m) equations from expanding expression
(2.6.9) plus equations (2.6.22), (2.6.23), (2.7.12) and
(2.8.9) give a system that is by no means complete. However if
the entire matching procedure employed in Region II is repeated

in Region IV then the following equations can be obtained.

iﬂs iﬂs a . ils
b, exp{izga} = ¢q exp{- l-am} + { d0 - 1+am} exp{T:an ) (2.8.10)
iﬂs —i£5 i£5
dSbOO e "= ds{—cooe +(d00-a)e } o, (2.8.11)
. its ' -i£5
ds{bOI-BbOO—lﬂstO}e = - d3{c01+ac00(1—125)}e
. if’S
+ ds{d01—aa—(1+1£5)(doo—a)a}e ) (2.8.12)
e, i -1, il
blOe + KS3 a/B 1b00e = ¢g® + dloe , (2.8.13)
/8 b elz5 = ¢ e_lz5 +d elg5 (2.8.14)
10 10 10 ‘

These twelve equations do make a closed system that can

b b b

be solved to give a 01’ 210° 0o’ Co1° S10°

00’ 201’ 210’ P00’

d d01, and le' These are listed in Appendix 5.

00’
Finally the evaluation of these constants means that we

have calculated the velocity potentials Qj , j =1,3,5 as listed

© in Appendix 5.
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2.9 RATE OF WORK DONE BY PISTON

Let us now consider the net, time averaged, energy flux
into the duct, that is the average rate of work done by the
piston.

The work by CANTRELL& HART ( 4 ) and LEPPINGTON § LEVINE
(17 ) (as well as that in the previous chapter, section 1.4) shows
that the time-averaged power flow W across the piston is the same,
to order ho, as the net power flow from the expansion chamber into
Regions I and V.

Equation (1.4.9) for the power flux in a duct of width
2d3 with basic uniform flow ol gives
%3 ah |

W=<-Jro3c Gt
I

U gga dx > + 0(hY) (2.9.1)

where once again < > denotes the time-average, the density

at infinity and St is the piston's surface.

If ¢3 is expressed as the sum of two components, ¢3= ¢3P + ¢3C’

~

then contributions from ¢3P to the work done, Wp,aregiven
by expressions (1.5.3) and (1.5.4) as
2 3 -
h “p ¢ 2 2
_ 070 . ak . ak
Wp = ——zag——- {(sin 1+am) + (sin 1_am) } (2.9.2)
 myTege” 2 22 4
= S {(sin ak) “+a"m"ak(kacos2ka+sinka)} + O(m ') .
3

(2.9.2a)

~

In order to calculate W ,the contribution from ¢3C)we

C

must consider equatioﬂw(2.3.18c)/



- 64 -

ch . .
N 0 -iwt ikx
5o = Re {Eag- e {A3 expl - Toom

b+ By expl 3591} (2.9.3)

and substituting this into equation (2.9.1) yields

h, %o,k
WC = - —7&-3—— Re {A351n

ak . ak
Toam * 8351n 1+am}‘ (2.9.4)

Substituting in the expansions for the constants A_ and B3 and

3

using the constants from Appendix 5, gives, after additionm,
for the total work done by the piston

2 3 2.2
4hy Pgea ko 2, 2.2, 2.2, 2 2, —
W= {B[cos™, +a"sin" L, J+a"sin £ +B cos "L }xx
d3 1 1 5 5

k3h 2p csazi 2il -22
. 0o e e 1z 271
13700

(2.9.5)
2 5 +— 5
* J53/82 [boo e "Poo
+ higher order terms
where  denotes the complex conjugate.
We notice here that there is no term of order kzm ind&zting
thét a reversal of the flow would not alter the time-averaged work
done by the piston. As in the previous calculation W is also

equal to

*
W=< [N ds > (2.9.6)

where S is any surface from one end of the piston to the other lying
in or on the duct. It is a trivial matter to show that this is

true for SII and S of Figure 3, but the same results can be

I11
obtained for SI and SIV' This is not shown here due to the

complexity of the algebra. However this does afford a check
on the validity of the matching as S

|
V' which lie beyond Regions II and IV across which the solutions

and SI lie in Regions I and

I v
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Figure 3
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2.10 FORCE ON THE PISTON

The force on the piston, F, needed to sustain the
piston's periodic motion (the pressure integrated across

the piston surface) is given by equation (1.6.1) as

Fp = i pds; | (2.10.1)
51

The contribution from the ¢3P part of ¢3, Fp, is

given by the previous chapter, for small €, as

czkzh 2ac
= - 0 3 —
Fp o ————7—-6(51nwt 3d coswt)
d 3
3
+ 8c%h poe2 z 1 3 {1- E%E__ exp(- éBIJ} coswt
0 n=1 (nw) 3 dsz
222
a ¢ mhy 2.3 3 2
+ 20, ———— coswtloge|(hocoswt)|+ 0(em™;m”;e”,e"m) |
(2.10.2)
From Fo = f pcds1 where P. is the pressure contribution from the
¢3C part of]the velocity potential/with
3¢ 3¢ =
_ 3c 3c
Po= - pg g +U 51—}, (2.10.3)
we have
2
p.c’h .
0 . -iwt . ka . ka
F, = —~ag——-Re{1e [A; sin = — + B4 sin 1+am]} . (2.10.4)

Substituting for A3 and B3 from the constants in Appendix 5

and adding to Fp givéé for F., the total force on the piston:

T’
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2p0a2c2m2h0
Fp = ————— cosut log [ho cosut |

22
8p.c a ha
S A {B[c052£ +azsin2£ ] + azsinzﬁ +82c052£ } x
d 2 1 1 5 5
3

x yxesinwt

2p c2h az
- Eecoswt - —————T;L—- xi{uzsz(1+a2)sin2£5+(1—a2)(az—sz)

ds

sin(2€,+20,) -(1-a%) (a®-8%) sin2e,]

2 . .
+ ezcoswt Pot hoa [ 2a2 + E—2--(.1 (a 2e—21£1+a 2e—21£1)
- 2 3d 4a 13700 00
d3 3
2ik -2ik
2 5 —2 5
*Jsz 2 (bgg® by, e )]
/B
2 2 . .
- ezsinwt E—E—Egi— i{J,_(a 2e21£l—a 2e-21£1)
4d3 13700 00
2il -2ik
2 5+——2 5
¥ Jss/ 5 (Pgg e “Pgp © )}
8 .
2
8c“h p o
3
s — 00 2 Yy 1/n7{1- AT . expl- 22T }}coswt
3 & d d
m n=1 3 3
(2.10.5)

The first term comes from that part of the velocity potential
that has singularities at the piston ends,the rest coming from the
main body of the piston. Once again we notice that there is no

term of- order em.
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2.11 DISCUSSION

In this problem, as previously, the singularities in
the model problem caused by the piston ends, did not have to be
taken into account when calculating the power flow W.

It was noted in Chapter 1 that there were not any terms
of the form k2m in W and this was not surprising given the
symmetry of the problem with respect to the flow and thus Mach number
m., In the calculation in this chapter however the downstream
duct is of a different width to the upstream duct and the piston
is not set in the centre, yet there is still no term of the form
k2m. This does suggest some inbuilt features of such problems
that preclude the presence of such terms.

In the calculations of the force F{t) the singularities
of course did have to be taken into account again giving a large
fluid loading,of order h(t) log|h(t) |,which is larger than the
other linearised quantities of order h(t).

So in this chapter the method developed for forming a linearised
model of a piston set in a duct wall, developed in the previous
chapter, lLas been successfully applied to the more complex
situation of a piston in an expansicn chamber enabling the power

flow from and the force on such a piston to be calculated.
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APPENDIX 1

FOURIER TRANSFORM METHOD

With this method we take Fourier transforms of the linearised
equation of motion and then substitute in the transforms of
the boundary conditions. This gives an expression for the

transform of the potential which can then be inverted.

If the general piston profile is Re{h(x)e_lwt})where its

time independent transform H(s) is given by
+©0
H(s) = J h(x)e¥dx (A1.1)

- 00

and its inverse by

400

h(x) = % J E(s)e'isxds, (A1.2)

-0

then the transform ¢ of 9 and its inverse are given by

+0 4o

#(x,y) J 0,1 ax, 9 0,1 = 5 J ¢(s,y)e”

-~ -0

isxds , (A1.3)

Taking the transform of equation (1.2.7) and substituting

in the transforms of the boundary conditions, equations (1.2.5)

and (1.2.9),gives

+00

o(s,y) = Zf?ﬂﬂfii%;% ” fi(o) (wrur)e X ISX gy (Al.4)

- 00

where

te

) 1 -
(s®(1-nP)=2mks-k2)* |, |s| > k(1-m%)
(AL.5)

Ne

Y(s) { , .
-1 (Cazmks-s2(1-n9)) % |s| sk(1-n?) :
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Substituting into the inversion formula gives

00

+
” 5?:})11551215{;()121 H(7) (w+Ut) exp{-itr+isr-isx}dtdrds .

bo(xy) = — J
2 41r2

-0

(Al.6)

When h(x) is specified H(t) is known. This can be substituted
into equation (Al.6) and then an inversion or an approximation to
an inversion can be obtained. In the case of the 'top-hat'

profile the inversion can be done exactly to give the results

of section 1.3.
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APPENDIX 2

INNER LIMIT OF THE OUTER SOLUTION

If we take expression (Al.6) for ¢2 and substitute in
the Fourier transform of the 'top-hat' profile and do the r
and T integrals we have

+o0

iuh, ,[ -isx-iwt

coshy(s) (y-d)} sin as ms
Y(s)sinhy(s)d 3 (1+ x’° ds}

-0

¢, (x,y) = Rel —

(A2.1)
Expanding this for small m and h(t), considering only that

part centred on (a,0), and finding the limit as s > = of each

term, we find, from LIGHTHILL ( 18 ) p. 43 , that the limit as

I(x—a)2 + y2[ + 0 of ¢;, is such that

4, ~ Ux - %?It) logr + Uh(t)A, (A2.2)

hit) ((x—a)logr—ye+A2x) + h.o.t.

where 12 = [(x-a)2+y2] ; B = 'cam-1 y/x-a and where the constants
Al'énd A2 are determinate but not calculated here.
Expressed in terms of inner variables and expanded again

expression (A2.2) gives
8, ~ U(t)X + Ua - TLE) 1ogpn(e) + Un(t)A, (A2.3)

h(t) h(t)X logh(t)R + %-ﬁ(t)h(t)ye : %-ﬁ(t)h(t)Azx

]
A+

L
where R = (X2+Y2)2.
We can now see from expression (A2.3) that as R » = the

inner potential ¢ is such that

¢. ~Uh(t)¢. + h(t)ﬁ(t)¢. + constant (Ua)
i » i i,

where ¢35 and ¢i are 0(1).
1 2
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APPENDIX 3

GENERAL SOLUTION FOR wj

The problem is to find the general solution to

2.2 _
(Vi +Ki )wi =0 (A3.1)
with
Bwi
5};-= 0 on Yy = idi . (A3.2)

Equation (A3.1) can also be written as

2 2
vy 3wy 2
+ + K.7y. =0 (A3.3)

2
axi ayi

and this can be solved using the method of separation of variables.
Putting wi(xiyi) = Fi(xi)Gi(yi) (A3.4)

and substituting into equation (A3.3) gives

Foot K. = - = v {A3.5)

where y is the separation constant.

Equations (A3.5) can be rewritten

t
G. + YZG. = 0 and F.
1 1 1

ek vHE = 0 (A3.6a)
(A3.6b)

Now the general solutions to (A3.6a) and (A3.6b) give

as a general solution for ¥y

e

y; = [Acosyyi+Bsinyyi][C exp(—ipixi) + D exp&hixi)] (A3.7)

2

2 2
where My S Ki - vy , unless w, or y = 0 when Fi or Gi are poly-

nomials of order one.
|
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Application of boundary conditions (A3.2) requiresthat

-A sin Ydi + B cos Ydi =0
and (A3.8)
A sin ydi + B cos Ydi =0 .
That is either B = 0 and sin Ydi =0 (A3.9a)
or A = 0 and cos Ydi =0 . (A3.10a)
Condition (A3.9a) » yd, = nm so y = gﬂ- and B =0 , (A3.9b)
i

‘Condition (A3.10a) - vd, = (n#))7w so y=(n+)i— and A= 0, (A3.10b)
i

Both conditions give the same result when applied to the general

solution (A3.7)

v . . nm . '
v (x35¥5) = nzo (Cpexp(-ung%y) + Dy exp (%) Jeoszg (¥v;-dy)
(A3.11)
ar 2 2 €
where by o= ((5819 - K9 n=1,2,3,... (A3.12)

since K.d, << 1 and ¢ _. = iK. for n = 0.
ii ni i :

Expression (A3.11) gives for Yy

wi(xiyi) = Co{exp —1Kixi} + DO{exleixi}

‘]

. : . nw
. {Cnexp{—lunixi} + D exp{lpnixi}} cos 75;-(yi-di)

1
(A3.13)

where the constants Can will be determined by other conditions on

the function.

a e et a g e e e e g e e e R o e i N e g e A AR
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APPENDIX 4

SCHWARTZ-CHRISTOFFEL TRANSFORMATIONS

We wish to evaluate the constants Jij such that the

velocity potential y satisfies

Vig = 0 ' (A4.1)

Yy > X as X - 4w (Ad4.2)
4

y > a;-x + Jij-as X > - (di<dj) (A4.3)

Ay

Fru 0 on duct walls (Ad.4)

in the interior of the duct shown in Figure 4.1

Y= 1
—_
—-’
—_— y —
—_—_“FX%A¥+¥j [_; — U~ X
— : —
w—%/% —
—
—
y:—1

Figure 4.1: Z-plane, Z = x + iy

As the problem is symmetric about the line y = 0 the
easier half-plane problem, to whichitis equivalent, will be solved
instead. That is y satisfies (A4.1), (A4.2), (A4.3) and (A4.4) for

the duct geometry in Figure 4.2,

T T A e
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Y

B’ T 3 A.

/7

X
) -—
‘.yu x(ﬁ /d+ K.U. _

, y=-dy/d — ex
¢ - D —
_*.
—
y=-1

E R

Figure 4.2: Z-plane

Consider the transformation given by KOBER[++section
12,8] which maps this half-duct and its interior onto the real
1ine and the half-plane above it as in Figure 4.3:

L
dz _ (t-1)7°

_ Cdz 2,2
O = vy m LI ML A (A4.5)

Figure 4.3: t-plane, t = t1 + itz.

Note the mapping takes the points A , B _, C_, D, E, F_ in Figure 42
onto their corresponding primes in Figure 4-3 «

The inverse of this mapping is

d.
_ 1 -1 2t-a-1 i -1 (a+1)t-2a
Z = cosh ( o] ) - a;%cosh @Dt (A4.6)

The velocity potéﬁtials as x > *o in the Z-plane correspond

to those as t > » and t~>0 in the t-plane.

**DICTIONARY OF CONFORMAL REPRESENTATIONS , KOG ER ,H. 19682 Dover
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(i) Consider t + -=, that is x » =,

From equation (A4.6) in this limit

L 4’ . L, 4%
z~ 5 log(—5—3) - 75 cosh (Tli—‘—§”9 - i (A4.7)
d.%-q, 3 a.%.q,
J 1 J 1

\ .
Now if W(Z) = v + iy is the complex velocity potential for this

]
incompressible irrotational flow in 2-D and y is the stream

function then
y = Re{W(t=£(2))} - (A4.8)

Expression (A4.7) gives

. . 4,2 d; ) dj2+diz
W{z) ~z ~ ;-logt + ;-log( > 2) - 7d cosh ~( > ) - i
d,.”- j d."-d.
J 1 ] i
(A4.9)
1
or W ~ E—logt + constant Cl . (A4.9a)
(ii) Consider t >0, that is x> -,
Now
2 2 .
d."+d
2t-a-1 a+l, _ j i
___a_—T_+_(ETI _-(—-—-2——2—)ast—>0) (A4.10)
dj —di

(assuming dj>di); this gives for the first cosh_1 term in expression

(A4.6)
2 .2
d. “+d.
cosh ™t (2tzazly | cosnt( 1y 4 iy (A4.11)
a1 77 )
d.%-d,
] 1
also
(a+l)t-2a 28___ s t,0 (A4.12)

(a-1)t T G-t

thus giving for the second c:osh_1 term

T I MRE  m,  Y  y pnt n m e
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2
‘ 44,
cosh-l(_(_,a'_M) ~ logt + log _L— + im
(a-1)t d 2_d 2
j i
and hence for the whole expression
. . dj2+di2 4 4a ?
z~ Y {cosh (—-—2——-—2‘) + in} - Td. log( —%—2-) + in}
d. -d. j d. -d.
J 1 j i
di
+ ;Ef~logt -1 as t-0.
J
However from equation (A4.3)
W(z) ~ djz/éi as z>-o
so
. . 4dj2 a, . dj2+diz
W(z) ~ = logt - ;-log{-—i———ia} i+ — cosh ~ (~5—=)
d. -d. j d.” -d,.
j i j i

and so for small t

W) ~ %-logt + constant C2.

The upstream section of the duct corresponds to t =

(A4.13)

(A4.14)

(A4.15)

(A4.16)

(A4.17)

0 so

in the t-plane the velocity potential is that due to a point source

at t = 0- Such a source has a complex potential:
W = l-lo t + constant C
T g 3
Choosing C3=C1 we have
at z = o W(z)~z - C1+C3 = Z
4
at z = - W(z)~ a;—zf— C,+Cy
4
R sl R Y

1

(A4.18)

(A4.19)

(A4.20)
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(A4.21)
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APPENDIX 5

CONSTANTS AND POTENTIALS

If x = [(a—B)(1—a)exp{i(£1+£5ﬂ+(a+8)(1+a)exp{-i(£1+ﬂs)}]-1

then the constants are

10

10

10

—iZl iZs —iﬂs
2ae {(a-B)e - (o+B)e }x (A5.1)
—iZS —i£1 ill
-2ae {(1+a)e + (1-a)e “l}x (AS5.2)
—i£5 —iEl iKl
a(a-B)e {(1+a)e + (1-a)e Iy (A5.3)
i£1 iﬂs -i£5
a(l-a)e ~{(a-R)e - (a+B)e bx (AS.4)
—iﬁl i£5 i£5
-2ae {[a+i£1(1—a)](a-8)e + [a—iﬂl(l—a)](a+3)e }x (A5.5)
-il -if il

2aBe 5{[a+i£5(a—8)](1+a)e 1—[a~i£5(a—8)](1—a)e l}x

(A5.6)
iZS ‘-ill iﬂl
aa(B-a)e [ (1+a)e - (1-0)e “x (A5.7)
iﬁl i£5 -ils
-aa(l-a)e “[(a-BR)e + (o0+B)e 1x (A5.8)
Zia{aOOJls[iBsin(£l+£5)—acos(£1+£5)]
—i(£l+25)
bOOJSSa/Be Fx o (A5.9)
1L by, .
ZiBa{aOOJlsue + —E-J53[1sin(£1+£5)—acos(£1+£5)]}x
(A5.10)
2 iﬂs i/(’,l ~i£1
ia"/B e [iBaOO(B—a)Jlse +b00(1+a)J53e 1x
(A5.11)
.2 ik -if ig
1. -
i%— e {B(a+8)a00J13e >, (l_a)bOOJSSe S}X.

(A5.12)
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The velocity potentials are given by

ch
o 0 . ikx
o~ Ux + 2d3 Re{(a00+ma10+sa10)exp(-1wt - T:ﬁ)} ) (A5.13)
¢3~ Uax - UJ13d1 + ¢3P
-iwt | ikx
+vRe{e [cyormey *e Cp expl- 1-am}
ikx
+ (d00+md01+ed10) eXP{TTEE}]} , (A5.14)
@5 ~ UBX—Udl(J13+J53)
. ikx
+ Re (b00+mb01+eb10) exp{-iwt + 1+am}} ) (A5.15)
where
ch
rO 0 . ka . ikx
¢3p 2kd3s1n T Re{exp{-iwt + T:Eﬁ}} for x>>a
ch
~ 0 . ka . ikx
$2p ‘2?3; sin 7 Re{exp{-iwt - T} for x<<a

(A5.16)
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PART 11

TRANSMISSION IN AND RADIATION FROM WHOLLY OR PARTLY ELASTIC WALLED
DUCTS WITH FLOW
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INTRODUCTION

Many authors have considered the interaction between sound
and infinite or semi-infinite wave-bearing surfaces. Usually
these surfaces have been taken to bealone in an infinite fluid so
that their responses are not affected by the presence of any
other restrictive surfaces, passive or active. LAMB ( 16 ) in 1959
was first to consider the diffraction problem of a semi-infinite
elastic plate, but his analysis of the fluid-plate coupling system
is incomplete. MORSE & INGARD ( 23 ) in 1968 dealt with coupled
fluid-plate systems in some detail, their analysis failing to
describe the systems in the regions in which were contained the most
interesting phenomenon; consequently they identified spurious
beaming effects to infinity. LYAMSHEV ( 20 ) includes the vital
feature of a basic flow behind the plate, but his analysis, being
similar to Lamb's, is lacking in the same way. The most valuable
background to this work is that of CRIGHTON (7),(8), CRIGHTON §
LEPPINGTON ( 9 ), and CANNELL ( 2 ), (3 ). 1In 1971 and 1979
Crighton successfully analysed the waves on a fluid loaded elastic plate
and identified the special regions in which a beaming effect (Leaky
waves) could be identified for moderately large distances and light
fluid loading. CRIGHTON § LEPPINGTON ( 9 ) and CANNELL ( 2 ), (3 )
took the important step of considering semi-infinite geometries and
employing the Wiener-Hopf technique. Although here we will restrict
ourselves to solutions for the light fluid loading limit we will have
the added complexity of not only a second wave-bearing surface,
parallel to the first, but we will also consider the case of the fluid
in the duct created by these two parallel surfaces being in constant

uniform motion.
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In Chapter 3 we study the interaction between an acoustic source,
in an elastic walled duct containing flow, and the duct wall.
The waves that propagate up and down stream in the duct, as well
as those in the duct walls, are examined along with the disturbances
present outside the duct,caused by the transmission through the
duct walls. The effect of the confinement of the source in a duct
is noted, as is the effect of the flow within the duct on the
velocity potentials inside and outside as well as the waves on the
duct surface.

In Chapter 4 we study the interaction of an acoustic plane
wave travelling dan an inhomogeneous duct, from the rigid walled
section to the elastic walled section, with the wall discontinuity
at the join and with the elastic parts of the wall. Here we examine
the waves transmitted or reflected by the duct discontinuity, the waves
present in the wall and also those present in the otherwise stationary

fluid outside the duct.



- 84 -

CHAPTER 3: The transmission of sound from a point source in an
elastic walled duct containing flow.

3.1 INTRODUCTION AND SUMMARY

In this chapter we investigate the two-dimensional problem of
a point source in an infinite duct that has parallel elastic walls
and contains uniform flow. This is the simplest model of a duct
system that contains almost all- the important features - wave-bearing
surfaces - fluid flow - a disturbance (a point source). The only
important effect, apart from the third dimension, that is not
incorporated is that of geometric complexity.

The choice of the thin elastic plate as a model of a wave-
bearing surface is, of course, open to criticism. The TIMOSHENKO-
MINDLIN plate equation is a better model of, say, underwater systems
if the frequency is high but in the aerodynamic context the thin
elastic plate equation is adequate. The adoption of the Timoshenko-
Mindlin plate would result in considerable additional algebraic
complexity.

In section 3.2 a complete definition of the system under

examination is given. The model boundary value problem for small

"~ disturbances is formulated in section 3.3 by linearising the

équations and boundary conditions, as set out in the previous section,
by assuming that all disturbances are small compared with the basic
uniform constant flow. The possible free wave solutions that the
system can support areifgund in section 3.4 and the nature and
properties of each solution are discussed. This then gives a good
idea of the possible wave solutions and also locates the possible
poles of any integrand of the problem, which will be discussed in

|

e T R T e T 8 ST e s s s n e
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detail in section 3.7. A Fourier transform analysis of the

problem is done in section 3.5 giving Fourier inversion integrals
for the velocity potentials and the wall displacement. In section
3.6 the duct's velocity potential is briefly discussed and its
major features mentioned. A coordinate and variable of integration
transformation given in section 3.7 allows the first estimate, for
most angles 6, of the external potential to be found in section 3.8.
Sections3.9 and 3.10 deal with the special asymptotics needed when

® is near ''Mach Angles' and it is at these that we find a beaming
effect at moderate distances (Leaky waves). The behaviour of this
external velocity potential is summarised in section 3.11 and the
wall displacement is discussed in section 3.12. Section 3.13

consists of observations on and a summary of the analysis.
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3.2 PROBLEM DEFINITION

Inviscid, compressible fluid flows adiabatically in a two-
dimensional infinite duct which has parallel elastic walls with
identical still fluid outside the duct. The walls are a distance 2d
apart at y = *d where (x,y) are cartesian coordinates. The
basic interior flow has uniform constant velocity with potential
$ = Ux.

Sound is produced by pulsations of a line source at (x,y) = (0,0)
of strength Re{ZAe-iwt} (w is the frequency, t the time variable).
The time-harmonic oscillations of this source cause perturbations

in the uniform flow which in turn, via the elastic walls of the

duct, cause perturbations outside the duct ,

y=d
’ y
—
— 3 U X——)x
—_—
source

—

y=-d

Figure 1

As shown in Figure 1 the problem is symmetric about the x-axis,
so the equivalent half-space problem will be solved.

The half-space problem consists of a basic uniform flow U
down a duct of width d with the plane y = 0 forming an infinite barrier
and a thin elastic plate at y = d. The plane y = 0 consists of a

rigid baffle filling the half-planes y = 0 x>0 and y = 0 x<0
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. . e g ' -int . . .
with a time-periodic source of strength Re{)e 1oty oscillating into

the duct at y = 0, x = 0, as shown in Figure 2.

ELASTIC WALL

REGION 2 /

y=d
._)
Y REGION 1
—>
)
e =0
x \ ’
BAFFLE
Figure 2

The small amplitude vertical displacement, n(x,t), of the
elastic plate above the plane y = d is governed by the equation
34 32 +
D —[ﬂ(x,t) + 2Mh _é'n(x’t) = - [p]_ on Y'_-d + n(x:t)

9x ot

(3.2.1)

see MORSE & INGARD ( 23 ) where

3
D = ——————7—-is the wall's boundary stiffness
3(1-0_7)
P
E 1is the Young's modulus for the wall
2h  is the wall's thickness
c is Poisson's ratio

M is the wall's volume density

[p]f = p(x,d+0)-p(x,d-0) is the fluid pressure difference

, across the wall.

i e T T & % v % S e s a o b et o 1 e a1 PR e = e e N - T amea e
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If ¢ is the total velocity potential write

Ux + ¢1 in Region 1
d = (3.2.2)
¢2 in Region 2
where ¢1 and ¢2 are the velocity potentials of the disturbance in
Regions 1 and 2 respectively.

If we now write

-iwt

$j = Re{¢je- } and

©
i
o

j=1,2 (3.2.3)

to take into account the periodic response of the disturbance to

the source then we have

~ -iwt
¢, = Ux + Re{¢le }

~ -iwt
¢2 = Re{¢2e } (3.2.4)
We now wish to obtain solutions for ¢1, ¢2 and n. The

velocity potentials of the disturbance are calculated by assuming
that the disturbance is small compared with the basic flow so that
the equations of motion can be lineariséd with respect to small

\¢i’ by neglecting terms of order (¢i)2’ and by replacing the
boundary conditions on y = d + n(x,t) with ones on y = d. Fourier
transforms can then be taken and integral representations found for
¢1 and ¢2. Contour integration can then be used to find thc exact

solution formally and then the leading order terms for the far

field (kr - «) in the light fluid loading limit.
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(93]
w

THE MODEL PROBLEM FROM LINEARISATION

We now formulate the boundary value problem for ¢1, ¢2 and n.
Equation (3.2.1) governs the motion of the elastic wall and

if the parameters k, u, €, € are defined by

2 w2
Mho” _ 4 ~_Po 1 .. fo
D ’ Tk My D’
~ 4
ek W
£ = _ZU_’ k = < (3.3.1)

where Py is the density of the fluid in the undisturbed state and
c is the sound speed in the fluid}then k is a wave number for the
acoustic source and ; is a non-dimensional fluid loading parameter
which is a measure of the inertia of a column of fluid one
acoustic wavelength in depth relative to the inertia of the

wall beneath it.

The linearised version of (3.2.1) is

Ml ut 92 - - * = d. (3.3.2)
_—'4_ n(x,t) + 2 —°2' n(x,t) = - 2 [P]_ on y = . (3.3.
pow

X W ot

At a later stage we will considéf ; << 1 (e << 1 for fixed
k and p) that is when the coupling between the wall and the fluid is
small. However we will not consider an expansion in small e of
relevant quantities such as potentials at this stage as much information,
particularly the nature of the waves present in the disturbance,
depends on the 0(52) terms and expansion to this order here would
result in too much algebraic complexity.

The boundary condition on both sides of the wail between the

wall and the fluid is that the material derivative is zero
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-g—t {y-n(x,t)} = 0 on y=4d+ n(x,t) , (3.3.3)
After linearisation this yields, on the Region 2 side

9%; 3
'a—y—— = _ZE n(x,t) ony =d J (3.3.4)

and on the Region 1 side the convected equivalent

9 2 '
TR n(x,t) + Uz— n(x,t) on y-=4d (3.3.5)

thus ensuring that the normalJBrLuemmfacross the plate is
continuous. The extra term in (3.3.5) is the convected term present
solely due to the flow in the duct.

Writing n(x,t) = Re{n(x)e_iwt} to take into account the response
of the plate to the harmonic excitation of the source gives for equations

(3.3.4) and (3.3.5)

3¢2

.a_y__ = - iwn(x) ony=4d (3.3.6)
3¢ . 3

V = - iwn(x) + U B—X— n(x) ony=d , (3.3.7)

The boundary condition on the baffle y = 0 is

— = >\6(X) (3-3.8)

where the Dirac function 6(x) allows for the presénce of the source.
Additional conditions are that él and &2 represent catgoing
waves at infinity.
LIGHTHILL[( 19 ) equation (61)] gives for the equation

of motion of the fluid
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2 2 2

2.2 3% 3 9% 30 30 320

CVe == *+ 237 %ot ax. 3x. 3x. 0%, (3.3.9)
i i i j i

where v? is the Laplacian operator.
Substituting (3.2.4) into (3.3.9) and linearising with respect
to small ¢1 by neglecting 0(¢12) terms gives a convected Helmholt:z

equation for ¢

2 2 5 .2
St S+ (ktim 5§9 ]¢1 = 0 0<y=<d (3.3.10)

where m = g-is the Mach number for the flow.
A similar substitution for ¢2 yields the classic Helmholtz
equation for ¢2

2 2

d d

[ — +
oX By2

N kz]gl =0 (3.3.11)

Lastly the pressure difference p]t across the plate is

p]i = PyP; (3.3.12)

~

where the excess pressures (pl,pz) on either side of the plate

are given by

miuty j=1,2 (3.3.13)

e
1]

R .
e{pJ e

8¢1

P, = po{iw¢1 S U QS

5% } p, = 1wp0¢2 , (3.3.14)
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3.4 POSSIBLE WAVE SOLUTIONS

Before undertaking a formal analysis of this problem
by taking Fourier Transforms it is instructive to consider what
waves produced by the coupling of the fluid and the plate it is

possible for the half-space system to sustain.

ELASTIC WALL

2'
y=d
—
— 1,
—
=0
\RIGID WALL
Figure 3

We wish to determine what free wave solutions of equations
(3.3.2), (3.3.6), (3.3.7), (3.3.8), (3.3.9), (3.3.10), (3.3.11)

of the form
isx

¢y = Fpe N 5 g, = Fy(ne N (3.4.1)

exist.

"Substitution into equation (3.3.10) for ¢1 in (3.4.1) gives
2 2 2
Fl"(y)-(s (1-m™) - 2mks-k™) Fl(y) =0 . (3.4.2)

So

Fl(y) = AeY(S)y + Be-Y(S)y (3.4.3)
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where A and B are undetermined constants and where
2
¥(s) =y = (52(1_m2) - 2mks-k )% (3.4.4)

has branch cuts from -k/1+m to -« and from k/1-m to = along the
real axis such that y(0) = -ik (see Figure 4).
The conditions of zero normal derivative on y = 0 and

normalisation yield

F (y) = COShY(S)j; ¢, (x,y) = coshy(s)y e 15X (3.4.5)

Substitution into equation (3.3.11) for ¢2 in (3.4.1) gives

F () - (s7K%) Fy(y) = 0 (3.4.6)
SO

N ~ A
F,(y) = AeY(®Y 4 p7(5)Y (3.4.7)

~ ~

where A and B are also undetermined constants and y(s) is the

non-convected form of y(s) i.e. y(s) = y(s)l =+vy has branch cuts
m=0
from *tk to tx (see Figure 4).

-k/1+m l k/1-m

Figure 4

Thus for real s (with s below the cut from k to « and

above the cut from ]E%H to © , Re(y) 20 and Re(y) = 0.
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An outgoing finite waves at infinity requires

$, = Be Y(S)Y-isx : (3.4.8)

Applying boundary conditions (3.3.6), (3.3.7) and (3.3.8)

ony =d via n(x) gives

-1

1oy =) i (3.4.9)

B = ¢ Y(s)d ysinhyd vy~

The substitution of these expressions for ¢1 and ¢2
along with those for n(x) and the pressure excesses Py and P,
into the elastic plate equation (3.3.2) gives as the condition

for the pbssible values of s the roots of

F(s) = (s"-u") Y(s)v(s) sinhy(s)d - ely(s)sinhy(s)d
2.
+ (1 + %;; y(s)coshy(s)d] = 0 . (3.4.10)

In Appendix 1 the method for finding the zeros of F(s),
for small €, is outlined and the zeros and their nature are listed.

Now the possible behaviour of ¢ when € is small will be
coﬁsidered. The cases u < k and y > k will again be dealt with
separately and it is the exponent in which we have the most interest.

The exponentials of the potentials are of the form

exp{ax+by} = exp{(al+ia2)x + (bf&bz)y} - (3.4.11)

where a a,, b1 and b, are all real. The real part a of the complex

1’ 1

coefficient a in the exponent indicates either growth or decay im

X. Each of these coefficients depends on the small parameter €.

If a, is 0(e), for example, this will be referred to as an 0(e)
decay in x. The imaginary part of a, 2, in the exponent indicates

a travelling wave in Xx.
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If a, is 0(e), for example, this will be referred to as an 0(e)
wave in x. The coefficients b of y will be described in a similar

way.

3.4.1 BELOW COINCIDENCE k <y

The solutions associated with S1 and S2 are waves in the
negative and positive x directions respectively and have
exponential decay in y, thus they are subsonic surface waves (assuming
decay and not growth) with exact wave numbers S1 and SZ' The

solutions from S3 and S4 are waves at 0(1) in y but have an 0(g)

decay in y and an 0(1) decay in x. The 85 and S6 solutions are
waves in the x-plane with 0(e) decay in y, these too then are subsonic

surface waves on the plate. The S., contribution has, in both

7
x and y, waves at 0(1) and at O0(e) but decay at 0(52). SS produces

a subsonic surface wave in a similar way to Sl’ S+n for n < N

give contributions similar to S, and S+n(n>N) give contributions

7

similar to S3 and 84.

3.4.2 ABOVE COINCIDENCE k>

The nature of the contributions from 53, S4, S7, 88 and Sin
is unchanged. S1 and S? give waves-at 0(1) but decay at 0(g).

S5 and S6 give an 0(1) wave in x but 0(e) decay in both x and y.
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Although, as mentioned above, it is possible for the system
to be satisfied by potentials which exhibit exponential growth
in some directions in practice such solutions are seldom triggered
off in regions where they are not ultimately decaying at large
distances; they might be present for instance in the case of unstable

motion e,g. vortex sheets. ¥

By looking at this system we have determined the possible
free-wave solutions and their behaviour. Now Fourier transforms

of the problem will be taken.

SN

THERE ARE CASES /M WwHICH SPAcCIAL AND TeEMPoRAL

INSTABILITIES  HAVE BeEN COWNFIRMED FOR ODNIEORM Frow
BUT FoR THE PARAMETER RANGE comsSIDERED weRE 1T
HPé_ BEER SHOWN | RY USE oF RovCHE'S THEDREM IN
AFPENDIX | ) THAT TS 1S NoT THE cASE AND THAT
THE Pores Do NOT  cROSS THE PATH oF NMNTEGRATNION

IN ACloRDANCE wITH cAusAszy RE®OIREMEVTS .
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3.5 EQ?RIER ANALYSIS

Defining the Fourier transform 55 of ¢j by

3. = f 6.075% dx i=1,2 (3.5.1)

1,2 . (3.5.2)

D-
e
ft
3% ]
=
—_—
Rg
L)
[a N
-
(-
n

Taking transforms of (3.3.10) and (3.3.11) yields

‘ 2
-(1-n?)s%G 4 j 5 &, + 2mksd, + k7§, = 0 (3.5.3)
y
and
2
%-5- 5, - (52-k2)¢2= 0 . (3.5.4)
y

In the physical problem k and u are real but for mathematical
convenience, to improve the convergence of the transform integrals,
k and yu are taken to be slightly complex, k = kl + ik2, L P iu2
(kl,kz,ul,uz real) for small positive kz,uz. Later on we let
ky,u, > 0 to give the result.

The general solutions to (3.5.3) and (3.5.4) are

By AleY(S)y ¥ Ble_Y(S)y (3.5.5)
62 = AZeY(S)Y + Bze—Y(S)y ' (3.5.6)

where y(s) and y(s) are as given by equation (3.4.4) but now have
branch cuts from -k/l+m)to -« and k/ll-m)to < and from *k to #«

along straight lines of constant argument.(see Figure 5). So
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for real s; Re(y(s)) =0 and Re(;(s)) > 0.

K k/1-m

XN

S k/1+m

Figure 5: S-plane

Let n be the transform of n(x).
Taking transforms of (3.3.6) and (3.3.7), substituting
for $1 and $2 from (3.5.5) and (3.5.6), applying the transform

of (3.3.8) and the outgoing condition at infinity yields

¢ = -[in(w+Us)coshyy + Acoshy(y—d)]y_lcosechyd (3.5.7)
T ~

¢, = icky nexpl{y(d-y)} . (3.5.8)

Taking transforms of equations (3.3.14) gives

ﬁ11= ipO(w+Us)$1 ; 52 =Iiwp0$2 . (3.5.9)

Now substituting into (3.3.2) and taking transforms gives

s -G - 1+ 5953 on y=d (3.5.10)
' w 2 k°"1

On substituting for the $j's,

(3.5.11)

where F(s) is given by equation (3.4.10)% thus
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. n 2
¢, = —Ay_l cosechyd[coshy(y-d) + ey(l+ %ga coshyy F(s)_l] s

(3.5.12)
- ms -1 ~
0, = e(1+ I F(s) = exply(d-y)}. (3.5.13)
Inverting these transforms gives
A -1 ° ms 2 -1 i
$1 =750 J v “cosechyd[coshy(y-d) + ey(l+ 7?9 coshyy F(s) ~]e *°% ds
I '
(3.5.14)
¢, = %%— J (1+ %?J exp{y(d—y)—isx}F(s)_lds ) (3.5.15)
Ty
n(x) = - A | (1 B85 pes) e TS%gs (3.5.16)
27w k7' e
1

where here we have let k2 > 0, that is k is now real again and Fl

is the path in the S-plane shown in Figure 6.

» k
A\

_k 7?7 . f"

Figure 6: S-plane

Ty is'above'the real axis for Re(s) < 0 and'below'the real axis
for Re(s) > 0. This ensures an outgoing wave at infinity for ¢2.
Notice that the cuts in the plane due to y(s) are not in evidence
because in F(s), as well as the rest of the integrands, y(s) combines
with other such terms to be regular in S. Notice also that these

expressions hold for all e.
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We now look briefly at ¢1 and then go onto examine the
behaviour of ¢, in some detail. The analysis involved in this will

then be of use in examining n(x).
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3.6 THE DUCT POTENTIAL ¢1

Equation (3.5.14) gives for the duct potential 7

X AE ° ms 2 " -1 -isx
ysinfyd ds = o J y(1+ 7(9 coshyy F(s) e ds

1 T (3.6.1)

S coshy(y-d)e *°
1 2T
r

The first of these two integrals représents the potential
due to a point source in an infinite rigid walled duct with flow.
Inversion of the integral gives the potential as an infinite sum of
modes, some travelling up and some down the duct, and some exhibiting
exponential decay éway from the source.

The second term is the éorrection term due to the presence
of elasticity in the duct walls. So putting € = 0 and thus making
the duct rigid walled makes this integral identically zero.
Of course the presence of the duct is reflected in this integral too
by the hyperbolic functions.

It is very interesting to note that the velocity potential
in the duct can be split into these two very distinct parts, one
due to the duct, one due to the elasticity of the walls, even though
no assumptions have been made about the-size of the fluid loading
parameter €. However a little further examination, of the integrand
of the second term, reveals that the poles of the integrand -
requiyed if any inversion is going to be undertaken, are not to
be found simply unless € << 1. This is because it is only in this
case that we can say that_the zeros of F(s) are perturbations away
from those of f(s). If‘e were considered large then the zeros

of g(s) would need to be known exactly.
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3.7 THE EXTERNAL VELOCITY POTENTIAL ¢2

To study ¢2 a new coordinate system (r,8) is introduced.

X = rcosb ; y-d = rsin® (3.7.1)

Region 2 now becomes
O0<r<e ; -m<0 <7 (3.7.2)
and (3.5.15) becomes

¢2(r,e) = %%- J (1+ %?J F(s)-1 exp{-isrcos6-y(s)rsinblds . (3.7.3)
Iy
Remember there are branch cuts in the S-plane from *k to
2 .2.%
t due to the branches of {s™-k7)°.
Using a substitution due to CLEMMOW( 6 ), s = k cos@

where © = o + 1B, o and B real,thus maps the S-plane onto the

a £ 7w, -» < B < win the complex ® plane such that y(s)= -iksin®.

IA

strip O

It follows that

¢2(r,e) = - i;} [ (1+mcos®)l~5(®)-1 exp{-ikrcos(9+6) }sin@de
F e (3.7.4)
where
F(@) = F(kcos®) (3.7.5)
and T, is as shown in Figure 7.

2



Figure 7:

Notice that unlike
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o) <4 > X

©-plane

the S-plane there are no branch cuts

in the ®-plane.

To obtain the far field behaviour of ¢2 the 'method of

steepest descents' will be used to find the asymptotic behaviour

in the 1limit kr - « for small €.

Now the

exponent term -ikrcos(6+®) has a saddle point

at © = m- 06 and the path of steepest descent is on that branch

of cos(a+8)cosh B= -1 which behaves, near the saddle point, like

a +B=m1- 0,
2
g

A

This path is called 1"3 (Figure 8).

27%-6

Figure 8:

©-plane
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If r, is deformed onto Is then there is no contribution
from the connecting sections at infinity but Cauchy's Residue
theorem must be employed to account for any poles picked up in
the process.

Notice (Figure 8) that most of PS lies well inside the
shaded regions which show where the integrand is exponentially
small as kr > «» (the far field). I, may be further deformed
anywhere well inside this region, to avoid passing through or
near most poles, as such deformations contribute only exponentially

small terms [see DAVIS & LEPPINGTON ( 10)].

This then gives

¢2(r,6)==f ( )de = ¢S +27i Z(t Residues captured) (3.7.6)

¢S=J( )de . (3.7.7)

In order to determine an approximation for ¢, we need to know
thé.positions of the poles and zeros of the integrand. We will then
be in a position to say if the poles are captured or not on
deformation of F2 onto FS and also if their contribution, after
capture, is significant; this depends on their nature. If a
captured pole lies well inside the shaded region, its contribution
is exponentially small for sufficiently large kr. Thus captured
poles are significant only if they are near the edges of the shaded

. regions, where the exponential decay is slow (or else outside the

shaded regions - which never occurs here).
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The poles of the integrand correspond to the zeros of
F(s) that were calculated in Appendix 1 for section 3.4.

The positions of these poles, relative to the paths of
integration, on both the S and @ planes are shown in Figures 9

to 14, the cases u > k and p < k being treated independently.

S
"33
52 %5 SB SB %
- o ” 2
Sz
s
I
Figure 9: S-plane

Figure 9 shows the position of the poles of the integrand
corresponding to the zeros Sl""’s8 for u > k and Figure 10 shows

their position in the ©-plane.

xe e a'

5] A 172

% 8« 16
9 %,
5 ¥g
8
1:@‘

1 x®
P 3 ,e
2

Figure 10: ®-plane

Figures 11 and 12 show similar positions for S+n and ®+n’
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they apply for u > k: u <k

Figure 11: S-plane, x denotes S+n

Figure 12: ®-plane, x denotes Chn

Figures 13 and 14 are similar to 9 and 10 but are for

the case p < k.
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XS3
S
6. 0" K s
-k
s, % %
7 s
2 | =
S
4
Figure 13: S-plane
x@
/A
1@
8
k 2
G% }% <
b
xg %%
1
e 12
8 x @
3

Figure 14: ©®-plane

Before proceeding it is instructive to make some observaticns

on the positions of the poles relative to the path of integration.

——
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BELOW COINCIDENCE k < u

It can be seen from Figures 8 and 10 that @5 and @6 can
‘ ! 1)
never be captured by the deformation of r, to I'; nor can @1 > ©
1
and @8 . All the rest must be included in the following

analysis, as must eg and @6. For although they cannot be captured

they can be near the saddle point.

ABOVE COINCIDENCE u < k

It can be seen from Figures 8 and 12 fhat all except @8
can be captured by deformation.

In Appendix 2 the method for finding the residues of F(s)—1
at the points in the S-plane is outlined and the resulting residues
are listed. The potentials Y110¥51 etc. corresponding to the

residues of the whole integrand are also listed.

From equation (3.7.6)

¢,(r,0) ~ b+ JZ + 21riw£j L =1,2 (3.7.8)

where j is summed over those poles that are captured, and give
significant contributions. First the case of the saddle point not

near any poles or zeros is dealt with.
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3.8 SADDLE POINT NOT NEAR A POLE OR ZERO

When the saddle point of re is not in the immediate
vicinity of a pole of F(s)-1 then using the deformations as
shown in Figure 15 for 0 < 6 < w/2 and in Figure 16 for
m/2 < 6 < m all other poles in the ® plane can be avoided [see
DAVIS & LEPPINGTON { 10 )]. This means that it does not matter
if these poles are captured or not since their contribution
on capture is only of the same order and magnitude as the error
in the potential, that is to say they are of higher order than
that to which the épproximation is being taken.

¢S can then be approximated to by the 'method of steepest

descents! on

¢g = - T J (1+mcos(~))f5(®)_1 exp{-ikrcos (0+6) }sin@de@ (3.8.1)

t
This then gives for the leading term in ¢S’ ¢S for kr >> 1

' i\e
(2wkr)

exp{ikr—i'n/4}(l—mcose)[(kL"cosLle—ud')y(-kcose)sinhy(—kcose)d]_1

L

(3.8.2)

T \neo om,

w3

Figure 15: ©-plane
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"%

Figure 16: ©-plane

BELOW COINCIDENCE u > k

From Figure 10 it can be seen that

¢2(r,e) ~ ¢S - 2niw12 to leading order for 0 < 6 < %
(3.8.3)

if PS is deformed as in Figure 15 and

. . . ™
¢2(r,e) ¢S + 2ﬂ1wll + 2n1w18 to leading order for 5 <8 <

(3.8.4)

if I‘3 is deformed as in Figure 16.

The poles at S7 and S+n (n<N) do not contribute significantly,

even when captured, if they are not near the saddle point.

ABOVE COINCIDENCE k > p

From Figure 14 it can be seen that

1]
$,(r,0) ~ 9o to leading order for 0 < 9 < g- (3.8.5)

if FS is deformed as in Figure 15.
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It can also be seen that

!
¢2(r,e) ~ ¢S + 2niw28 to leading order for m/2 < 6 < 7
(3.8.6)

if I‘3 is deformed as in Figure 16.

For this case the poles at Sl’ SZ’ SS’ 86, S7 and Sin
(n£N) do not contribute significantly even when captured unless

they are near the saddle point.
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3.9 SADDLE POINT NEAR A POLE BUT NOT A ZERO

When one of the poles of F(s)-1 is near the saddle point
then the method of steepest descents (as employed on equation
(3.8.1) to give equation (3.8.2)) is no longer applicable.

A different approximation to replace ¢S" taking into account
the presence of the pole, must be found. The potential is then
given by equations (3.8.3) to (3.8.6) with ¢S' replaced by ¢SP

which is now calculateq.

Following the work of CRIGHTON ( 7 ) and ( 8 ), equation

(3.8.1) for ¢g can be recast in the form of a FRESNEL integral
[see CLEMMOW ( 6 )]. The appropriate expansion as formed in
Appendix 3 along with Cauchy's Residue theorem can then be used

to calculate ¢SP' So ¢SP = ¢S (when pole not captured)

cp = ¢ * 2mi x Residue (when pole
SP S
captured)
(3.
Equation (3.8.1) is of the form
¢g = I F(®)exp{-ikrcos(6+0) }d® (3.
r3
where
F(O) = - 255 (1+mcose)sine F(o) ' . (3.

If the case of the saddle point at © = m - 8 being near

the pole at 6 = ®j is considered then Fj(@) can be defined by

F3(0) = sin(0-6,) F (@) (3.

where Fj(@) has no pole at ®j and

0-9. !

Ty

bg = J Fj(®){sin 5 j} exp{-ikrcos (6+0) }d® (3.

9.1)

9.2)

9.3)

9.4)

9.5)



- 113 -

Although the integrand still has a pole in the vicinity of the
saddle point Fjﬁa) is regular in this region and the major
contribution to the integral still comes from this region so a good
approximation to Fj(e) is Fj(w-e) and to ¢S is thus

00,
¢S ~ Fj(ﬂ—e) j {sin 5 1y exp{-ikrcos(6+@) }de . (3.9.6)
r
3

Applying the shift of origin transformation of the inte-

gration variable

Q=0 - (1-9) (3.9.7)

the path T, becomes the path I', in the Q-plane, see Figure 17.

3 4

)

Figure 17: Q-plane

¢S is then given by

0-0-0, -1

g ~ Fj(n—e) J {cos 5 1) exp{ikrcosQl}dQ . (3.9.8)
T

4.
Putting 2=-2 in expression (3.9.8) and taking half the sum

of this and expression (3.9.8.) gives
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0+0.
- ) ) j cosf/2 .
%g ZFj(1T 8) cos( 2 ) cosQ+cos(6+Cﬁ) exp{ikrcosa}da .
Ty (3.9.9)

The complex variable of integration @ can be replaced by

a real one, T, via
ikr cosQ = ikr-krt? . ' (3.9.10)

The integral then contains a Fresnel integral (see CLEMMOW

( 6 )) because

+0o0
in/4 + ikr b 9
b ~ 2F.(m-8)e —s——7> expi-krt“l}dr (3.9.11)
S j 2 ., 2
T + ib
0-6.
where b = V2 cos(— 1) (3.9.12)
+00
and 2b 5 exp{—krTz}dT = +£2V/71 F(2bv/kr) (3.9.13)
T +ib
ia2 _.12
where F(a) = e et dr is the Fresnel integral . (3.9.14)
a

The properties of the Fresnel integral are listed in Appendix

There are two types of contribution that must be considered.
First there are those due to @1 and Cb for y < k. It is only for
these two that the imaginary part of ®j is 0(e). Otherwise the
imaginary part is 0(82).

The 'Mach Angle' for each pole is defined by

keos, | = Re(S;) + 0(e?) : (3.9.15)

In the (r,8) plane this gives a 'Mach Angle' in real space

of
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Om = T8 - (3.9.16)

]
If the 'Capture Angle',CB , for each pole is defined by

' 3

- 2 5020 2
ej = GEm + i(k sj ) Im(S;) + 0(e7) (3.9.17)

'
and a corresponding ej in the (r,8) plane by

' 1
9, = m-0, 3.9.18
j =78 ( )

" then

1
(i) for a pole just above the real axis (cb),e < ej corresPoan
t

a4

corresponds to the pole not being captured and -3m/4 < arg b < n/4.

to the capture of the pole and /4 <-arg b < 51—,whereas 6 > ej

1
(ii) for a pole just below the real axis (@1))9 > ej corresponds

T
wahereas 6 < ej

corresponds to the pole not being captured and w/4 < arg b < 5%n/4.

to the capture of the pole and -3m/4 < arg b <

Let us consider first the potential contribution when 6
!
5
1
For -3n/4 < arg b < n/4 we have 6 > 6, and

is near 8

'
(i) for |6-6., | of O(1) and kr >> 1, bvkr is large and expressicn
~

(A3.9) holds so
o /2m -in/4 + ikr -3/2 .
¢SP -/ 7 F(r-8)e + 0(kr) y (3.9.19)

. - ! -2 » . .
(ii)  for Ie-ez | of 0(e) and kr >> ¢ “, bYkr is still large and
equation (3.9.19) is still valid )
1 -
(iii) for |e—82 | of 0(e) and 1 << kr << ¢ 2 bvkr is small and

expression (A3.10) holds ,

dgp ~ =271 F,(m-8) exp{-ikr cos(8+®2)} . (3.9.20)
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For w/4 < arg b < %g— we have 8 < 62 and

1]
(iv) for |e—62 | of 0(1) and kr >> 1, b/kr is large and the
contribution from the residue combines with (A3.11) to give ¢SP u:kiok

satisfies equation (3.9.19);

1 -
(v)  for |6-6, | of 0(c) and kr >> ¢, /KT is still large

so equation (3.9.19) still holds}

. 1 -
(iv) for |e—62 | of 0(e) and 1 << kr << € 2, bvkr is small giving
equation (3.9.20) as the expression ¢SP'

For the contribution when 6 is near el} similar results

can be obtained as follows ,—

]
(i) when |e-e1 | is of 0(1) and kr >> 1 or

1 -
when |e—61 | is of 0(e) and kr >> ¢ 2

2r 2 -im/4 + ikr

¢SP ~ - /i F(m-0)e ; (3.9.21)
' ' -
(i) when ie-el | is of 0(g) and 1 << kr << ¢ 2
$sp ™~ 2mi Fl(n-e) exp{-ikr cos(eﬂ91)} . (3.9.22)

The second sort of contribution, from @7 and @un, occurs
where the imaginary tern is 0(82). We define a 'Modified Mach

Angle' for each pole by

= 2
k cosC)J.m = Re(Sj) + 0(¢ )’ (3.9.23)

and a 'Modified Capture Angle' by

' L2 o020 3
6, =0, -S. . .9.
; im + i(k SJ ) Im(SJ) + 0(e™) . (3.9.24)
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The corresponding angles in the (r,0) plane are then given

by
ejm = n-egm (3.9.25)
1 1
6. = m-©, 3.9.26
3 -8, ( )

The cases of poles being above or below the real axis are
different just as before. The contributions in the two cases differ
and are set out below with no further elaboration as the analysis

is similar to that of the previous case.

A POLE ABOVE THE REAL AXIS

’ 1
(1) When Ie-ej | is of 0(1) and kr >> 1 or (3.9.27)
] -
when Ie-ej | is of 0(e) and kr >> ¢ % or

LI 2 -4
when |e-ej | is of 0(e“) and kr >> ¢ )

/2

2n . -im/4 + ikr

-3
bp ~/ 7 F(r-0)e + 0(kr) (3.9.28)
.: LT 2 -4
(ii)  When le-ej | is of 0(e“) and 1 << kr << ¢~ or
1 -
when Ie-ej | is of 0(e) and 1 << kr << ¢ 2 (3.9.29)
bgp ~ - 2mi Fj(n-e) exp{-ikr cos(e+Cﬁ)} . (3.9.30)

A POLE BELOW THE REAL AXIS

. .
(i) When le-ej | and kr satisfy conditions (3.9.27) then bsp

1
is given by equation (3.9.28),whereas when Ie-ej | and kr satisfy

conditions (3'9'29))¢SP is given by

e T A iy T 4T e e
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dgp ™ 2mi Fj(n—e)exp{—ikr cos(6+63)} . (3.9.31)

Thus when 6 is near a 'Mach Angle', ejm, the potential
exhibits a beaming effect of intermediate range,centred on the
capture angle, known as a Leaky wave (or Modified Leaky wave in
the case of an 0(92) imaginary term). At large enough kr the
usual (kr)—% decaying potential is all that is present. At inter-
mediate distances near the Mach angle, 1 << kr << 5—2 in the case
of Leaky waves and 1 ;< kr << 6-4 in the cases of Modified Leaky
waves, a much stronger wave, stronger by (kr)% than the far field
potential but of the same form, with just half the amplitude oL
the poles residue contribution, is present.

Notice Ehot the Modified Leaky waves differ from those of
CRIGHTON ( 7 ) and ( 8 ) in that they are narrower but are

present over a much greater range.

S AL s+ B P
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3.10 SADDLE POINT NEAR A POLE AND A ZERO

Lastly we consider the poles at @5 and ®6. Here the saddle
point of the integrand is near one of its zeros. In theﬂbelow-—
coincidence”case and the second term in the steepest descents
expansion, of order (kr)—s/z, combines with the term already
found to give the dominant contribution.

The more interesting case is the “above—coincidence”one (u < K).
Here the saddle point of the integrand is near one of its poles
as well as one of its zeros and for some 6 the pole can be
captured. The previous approximation method fails here since the
integrand is approximated by its value at the saddle point and
this becomes small and then zero as 6 is near and then equal to
0 or .

There are two possible methods for estimating ¢ in this
case.

The first method is to isolate the pole of the integrand

in such a manner that we can subsequently approximate it. Putting

~ B 1 . _ E-
F(®) - QJ (@) + q] sec '2_(8‘@:’): qJ = am Rj ) (3-101)

so qj is half the residue df E(@) at ®j, is an excellent method

‘of doing this. The function Qj(®) has no poles or zeros near

the saddle point so the standard steepest descents method can be
employed to approximate its integral. The integral of the second
term can be recast in the form of a Fresnel integral as was done
previously. This method is not employed since the steepest descent
analysis can be algebraically complicated and the results are

difficult to interpret.



- 120 -

The second method, the one used here, is to rewrite (3.9.2)

in the form

¢S = J %L%%D Gj(®) exp{-ikr cos(8+@)}de (3.10.2)

where the function Gj(®) has a pole and zero in the same places
as F(®) but can be split into the sum of two manageable parts.

For the saddle point near ®5 we choose

. -1
G:(®) = sin % cos —=— [sin —(@ 5] (3.10.3)
2k(k -u) k(k -u)
and for near @6 we choose
. -1
G,(®) = cos LR — [cos 03+ — )] (3.10.4)
6 2 4 4 2 4 4 e
2k(k -u) k(k"-u")
because they can be split into
i 5] 1 i -1
1 + sin —8—44— cos 3 [sin > (- —3—4- )] (3.10.5)
2k(k "-u ) k(k '~u’)
and
ie Q) 1 ie -1
1 + sin 7 sin E-[cos §-(®+ Q7 )] (3.10.6)
2k (k*-uh k(k*-uh)
respectively.

We will consider first the region near 6=w, that is, the
ie
4
k()
(3.10.2), after substituting ; equation (3.10.5) can be split up

saddle point is near ©. - The integral in equation

to give L
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¢g = J g;?é) exp{-ikr cos(06+6)}de
T
" ie ) 1 ie -1
+ J F(®) sin 4 cos 5—[G5(®) sin E—(@ - ———Z——7r)]
/ 2k(k"-u") © k()
3
exp{-ikr cos(6+@)}d® = I, +1, . (3.10.7)
The first of these two integrals has an integrand which is
well behaved in the region of the saddle point so the method of
steepest descents can be employed to give,for the far field, kr >> 1,
) F(6) .
I1 = J G5(®) exp{-ikr cos(6+0) }d®
I‘3
/3 F(n-8) -ikr-in/4 -3/2
AT EETETE) e + 0(kr) for kr >> 1 ,
(3.10.8)
For the second integral, as the major contribution still
comes from near the saddle point, most of the integrand can be
approximated by the value at the saddle poin?lgiving
ﬁ(ﬂ 0) ie -8 1 ie -1
I, ~ ———= sin cos(—) [[sin 5 (® - ———)]
2 Gs(w 8) 2k(k4—u4) 2 . 2 k(k4—u4)
3
exp{~ikr cos(6+@)1}de (3.10.9)
2 HED G e g o
5 o 2k(k -u )
F(+iV2kT cos & (0 + — & ) (3.10.10)
2 4 4
: k(k"-u")

with F and (%) signs as before.
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1
and that for 6 > 6

1
Now we know that for 6 < 65) bsp = ¢g, 5)

$ory = ¢ + 2mi x Residue. Employing the expansions that we have
sp~ s P P

for the Fresnel integral gives the following

(i) When |6-6 is of 0(1) and kr >> 1 and

t
5 |

when |6-6 is of 0(e) and kr >> e-z,

1

s |
2 2 -in/4 + ikr -3/2 .

¢SP - /E;- F(n-8)e + 0(kr) + 2ﬂ1w25.

(3.10.11)

] -
(i1) When [6-6, | is of 0() and 1 << kr << € 2

N 2n F(m-6) -im/4 + ikr -3/2 .
bsp” " Vir GGre) © + 0(kr) + 2miy,g

2 sin %%—%—)— o 1KT , (3.10.12)
2k (k- uh 5

- 211 sin

which is a Leaky wave plus the pole contribution.
'

5
of just the radiating field, to first order like (kr)'% for kr >> 1.

So when 6 is 0(1) away from © the potential ¢SP consists

1]
However when 6 is within 0(e) of 65 the far field is not detected

until kr >> ¢ 2 where as 6 approaches m the amplitude of the (kr)-12

/2

terms decays and the (kr)_s term dominates it. Present here also
is the residue contribution due to the pole which, as 6 approaches
m does not decay until further and further out, until, finally,
on ©=6, it becomes a marginally subsonic weak surface wave.
The analysis can be repeated for 6 near 0, that is the

saddle point is near 6, ~ m- — 2t . The same behaviour,

6 4 4

k(k -u)
including a Leaky wave, but with the marginally subsonic weak

surface wave travelling in the opposite direction, results.
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3.11 THE EXTERNAL VELOCITY POTENTIAL : SUMMARY

The major contributions to the far field of the potential

¢2 are thus as follows:—

3.11.1 Below Coincidence (k < u)

The potential ¢2 consists of the radiating far field, of
order (kr)—% or (kr)-s/2 near the walls, plus (in the positive
%—direction) a subsonic surface wave —2ﬂiw12 and (in the negative
x-direction) two subsonic surface wave542niw11 and Zﬂiwls.

The Modified Leaky waves are also present.

3.11.2 Above Coincidence (p < k)

The potential ¢2 again consists of the radiating far field,

of order (kr)_;2 or (kr)-s/2

near the walls, plus a marginally subsonic
weak surface wave in each direction, an ordinary subsohic wave
Zwiwzs in the negative x-direction, very weak Leaky waves and
Modified Leaky waves as described.

Thus a typical sketch of maximum amplitude, A, against angle

0, at a constant r, with 1 << kr << 8_2 would be of the form

Figure 18.
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Figure 18: Diagramatic only

is a weak subsonic surface wave

is a subsonic surface wave

are Leaky or Modified Leaky wave peaks
is the far field radiation (kr)'lf

A4
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3.12 THE WALL DISPLACEMENT n(x)

Lastly we consider the wall displacement n(x).

Equation (3.5.16) gives us
nx) = - %%%— J (1+ %éﬂy(S)F(S)_l exp{-isx}ds (3.12.1)
]

Putting 8§ = k cos@® gives

exk
27¢C

n(x) = J (1+mcos®')sin2(-3F(®)—1 exp{-ikxcos®}d® . (3.12.2)

Ty

We will again use the method of steepest descents through
the saddle point for finding ng- For x < 0 this is through ® = 0

so the paths I', and F4 coincide. For x > 0 the path is through

3

© = 7 so the transformation has to be used to map FS onto T,. This

then gives for the saddle point contribution in the far field

n31(X) - Ak (1-m) 7y © ikx-im/4 0(kx)_5/2
V21 ¢ y(-k)sinhy(-k)dy (kx)
for kx large and >0 5
(3.12.3)
“sz(x) _ Ak (1+m) - e-lkx—lﬂ/4 R O(kxjs/z
. V21 cy(k)sinhy(k)d(-kx)
‘ for kx large and <0
(3.12.4)
The first term in these expansions is O(kx)—s/2 since the

integrand has a double zero at ® = 0 and v unlike that for ¢2
which only had a single zero in these planes.
We now use Cauchy's Residue theorem to take into account any

poles that contribute significantly on capture, giving the following
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for n(x) in the far field.

Above Coincidence (u < k)

-1ixS

3

n(x) ~ ng,(x) + { Ag (llm)4 3 coehre

c“k(k - ) y(k)sinhy(k)d
-ixS
+ { AE > T a + 0(52)} e 8

2¢k"d(1-m) (k "-u )
for x<0

kx large

(3.12.5)

/2

. . -3 .. . .
which is the (kx) radiating sonic wave plus two subsonic waves,

one of them being small and only marginally subsonic;

3 -ixS
A - 4
N ~ng (v [ 2 roehle  ©
¢ k(k -u )y(-k(sinhy(-k)d
for x>0
kx large

(3.12.6)

/2

which is the (kx)_3 radiating sonic wave plus a small marginally

subsonic wave.

Below Coincidence (k < u)

A€ my 3 . -1 -ixS
n(x) ~ g, (x) + [ (1+ 579 {4u”y(W)sinhy(u)d} + 0(e7)] e

1

e -1xS

+ [ > 74 + 0(e™)] e for x <0, kx large
2ck™d(1-m) (k "~u )

(3.12.7)
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which is the radiating sonic wave plus two subsonic waves of

comparable amplitude ;
3 - -ixS
) ~ g () + [ - B @y wsinhy (-l ¢ 0D e

for x>0, kx large (3.12.8)

which is the radiating sonic wave plus one subsonic wave.
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3.13 SUMMARY

In this chapter the interaction between a time periodic
disturbance in a flow and the wave-bearing duct containing that flow
has been modelled, in two dimensions and in an inviscid régime, by
the linearised system of a line source vibrating in an elastic
walled duct containing flow. The thin elastic plate has been taken
as the model of the wave-bearing surface.

The effects of the flow in the duct, evident throughout
the analysis, are of particular interest. In section 3.3. we
have the convected forms of the material derivative and Helmholtz's
equations, equations (3.3.5) and (3.3.10), as opposed to their non-
convected counterparts, equations (3.3.4) and (3.3.11).

In section 3.4 the ratio of the free wave numbers of
the plate in vacwo to the wave number of the fluid source is seen
to be an important parameter in determining the nature of the
solutions present.

After substituting in an asymptotic expansion, in small ¢,
(the light fluid loading limit) for the zeros of F(s) we were able
to find the positions of the poles of the integrand and thus
identify the types of solution present. Results could not be
obtained analytically, by this method, without the light fluid loading
assumption because it is this that permits the identification of
the abproximate positions of the zeros. Even for large ¢, the
heavy fluid loading limit, the identification of the approximate
zero position is difficult.

We can see in the transform inversion integrals (3.5.14),

(3.5.15) and (3.5.16) that the convection term (l+ms/k) is
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introduced by the flow into all the integrands. In particular

in equation (3.6.1) for ¢1 the flow has an effect not only in

the first but also in the second term which although representing
the elasticity in the walls and the presence of the duct also
reflects the presence of the flow.

It is the flow that in section 3.12, in equation (3.12.1)
for n(x), gives different upstream and downstream contributions
to n(x), (nsz(x) and nSl(x)) and also results in two subsonic
sgrface waves upstream but only one downstream, this applies for
¢ > k and u < k even though the wave speeds are different in each
case.

For the external potential ¢2 the asymptotic methods used,
césting into Fresnel integrals in the style of Clemmow or ''steepest
descents'", permit the identification of a range of beaming effects,
present in the middle field and identified as Leaky waves or
Modified Leaky waves, as well as the classic radiating far field.
The contributions from those poles that give such Leaky waves do
not propagate energy to infinity but decay away to the radiating
field at sufficiently large distances.

Notice that here also, as with @i”and n(x), the conditions
' m< k and p > k determine whether some waves are or are not

present in the solution.
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CHAPTER 4: Radiation from a partly elastic infinite duct
containing flow

4.1 INTRODUCTION AND SUMMARY

In this chapter we investigate the two-dimensional problem
of disturbances caused by a plane wave in a duct (containing uniform
flow) that has parallel semi-infinite rigid and semi-infinite
elastic walls. The thin elastic plate has again been chosen as
a model of a wave—bear&ng surface. We elect to consider this simple
model, losing the algebraic complexity of the Timoshenko-Mindlin
model in favour of the clear identification of the major
potential contributions.

As the geometries here are semi-infinite the Wiener-Hopf
technique will be employed.

The system to be examined is.defined in section 4.2,
Linearisation of the equation of motion and the boundary conditions
gives the model problem (see section 4.3).

In sections 4.4 and 4.5 a Fourier transform analysis and
Wiener-Hopf analysis are undertaken. From the solutions obtained
from this, an approximation for the wall displacement is found and
discussed in section 4.0 and similar results for the interior duct
potential are found in section 4.7.

The solution, for the potential inside the duct, is given
in the form of a complex integral, and significant contributions
arise from the poles of the integrand. In section 4.7 a change in
integration variable leads to an identification of the location of
these poles. The structure is different according as the frequency

is above, or below its 'coincidence' value. In section 4.9 the



v O Bt e AR vy

~ 131 -

first estimate, valid for large kr at most angles 6,is found.

In sections 4.10, 4.11 and 4.12 more complicated asymptotics

for 6 near 'Mach Angles' are developed. It is here that sometimes,
for light fluid loading, local reinforcement occurs and the
existence of Leaky waves is detected. Section 4.13 is a summary
of the external velocity potential. Section 4.14 contains

observations on the analysis.
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4,2 PROBLEM DEFINITION

Inviscid compressible fluid flows adiabatically in a two-
dimensional infinite duct. The duct consists of two joined semi-
infinite sections. One section has rigid parallel walls, where
(x,y) are cartesian coordinates;these are at y = *d, x<0.

The other section has elastic walls about y = td x<0. The
basic flow is uniform and constant from the rigid walled section
into the elastic walled section. It has a velocity potential ¢
éiven by ¢ = Ux,and there is identical still fluid outside the
duct.

A plane wave is travelling down the duct from x = -« to x=w,
This wave, of maximum amplitude XA, has a velocity potential given

by ¢0 where
¢0 = Re{x exp[%%%—— iwt]}, (4.2.1)

The interaction of this wave with the elastic walls of
the duct and with the discontinuity at the joins produces dis-
turEances both inside and outside the duct.

As can be seen from Figure 1 the problem is symmetric about

the centre line y = 0 of the duct.

—_— — - — = —y:d

LllzlLlL
£—-9“<

Figure 1: ____ denotes rigid wall
~--- denotes elastic wall
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The half-;che problem to which this is equivalent will be
solved, see Figure 2. This consists of a basic uniform flow U
down a duct of width d disturbed by a plane wave with potential
90 given by equation (4.2.1). The plane y = -d consists of an
infinite rigid baffle. The half-plane y = 0, x<0 also consists of
a rigid baffle whereas the half-planc y = 0, x>0 is a semi-infinite
elastic plate. There is one other boundary condition/at the

joint, where the pressure is taken to haw at worst an integrable

singularity.
2
X

—
—>

1
—-)U+¢o
—
—

y=-d
Figure 2

Once again the small amplitude vertical displacement, n(x,t),

of the elastic plate is governed by the equation (3.2.1)

4 2

p 23 7 () + 2vh 2 Z=-pl" ony-= n(x,t) (4.2.2)
ax ot

All quantities here have the same definitions as in the

previous chapter.

If ¢ is the total velocity potential for the fluid then

write
rUx+ ¢0 + ¢1 in Region 1
d = —{ R (4.2.3)
¢2 in Region 2
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¢1 and ¢2 are the velocity potentials of the disturbances and

® satisfies Lighthill's non-linear acoustic equation (3.3.9)

2 2 2

2.2 3% 238 3% 30 30 9%

cvie = 22 + : (4.2.4)
at2 Bxi Sxiat Bxi axj ox axj

If we let

5 = Re{¢je‘1wt} and o= 9, j=1,2 (4.2.5)

to take into account the periodic response of the fluid to the

wave then we have

L4
it

Ux + Re{¢1e—1wt+k exp[iii - iwt]} (4.2.6)

e
|

= Re{¢2e

As before we obtain approximations for 91595 and n by assuming
that they are small, linearising,and replacing the boundary conditions

ony = n(x,t), x>0 by onesony =0, x>0.
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FORMULATION OF THE BOUNDARY VALUE PROBLEM

The linearised form of (4.2.2) is

84 4 82 - +

20 x,t) + & 2D (x,t) = p] T ony=0 . (4.3.1)
4 2 .2 2 Pl

X w ot pow

We are going to consider e << 1 but at this stage we will

conduct the analysis for all .

Putting

n(x,t) = Re{n(x)e_iwt} ;o n(x) = n (4.3.2)

to take into account the response of the elastic plate to the

disturbance gives for the linearised boundary conditions between

the fluid and the baffles at y = -dand at y= 0,x<0,

8¢2
-37=0 on y=0 x<0 }
on y=0 x<0
a¢
1_
3y " 0 (4.3.3)

on y=d for all x

For the linearised conditions between the elastic plate

and the fluid we have

9¢ _
5§l'= -iwn + U gg- on y=0, x>0
(4.3.4)
o
2 . , -
5;—-— ~iwn e on y=0, x>0

Additional conditions are that ¢, and ¢, represent outgoing

waves at infinity and that n(0) and n'(0) are zero, that is one
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section of duct is joined to the other in a locally hinge-like
manner.
As before the linearised form of (4.2.4) for ¢2 in Region 2
is
2 2

(2 + +1% e, = 0 (4.3.5)
2 2 2
X 3y

and for ¢y in Region 1 is

22 3? 3 . |
( =+ =5+ [k + im §§j )¢l =0, (4.3.6)

X ay

For this problem the pressure difference p]t across the plate
is given by

pl” = P,"P; (4.3.7)

~ A

where pressure excesses Py and p, are given by

>

—iwt}

pj = Re{pje j=1,2, (4.3.8)
and
U 3¢ .
. . 1 . kA k
Py = lwogey, Py = oglivd) - 5=} v ey po explyynd
(4.3.9)

which is expression (3.3.14) with ¢ replaced by ¢1-+¢0 .

This then gives for equation (4.2.2) ,

. . 3¢ .
on_ 4 dier . im "1 A ikx
L S T ol el vl 4

ol . (4.3.10)

It is not instructive to look at the free wave solutions
this system can suppo;£/as we did in the previous chapter because
of a basic difference in the two problems. This problem has an
inhomogeneous boundary at y = 0 with semi-infinite geometries.

Trying to see what solutions this could support brings us back to
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the original problem (with the semi-infinite boundary conditions).
The presence of the semi-infinite geometry implies that a simple
Fourier transform analysis will not be sufficient and the Wiener-Hopf
technique will be employed as well (see NOBLE (16)). However,

it is anticipated that the kernel of the Wiener-Hopf equation is

the function F(s) already studied. Our knowledge of the positions
of its zeros and poles will be of great use when we come to split

it into a product of 'upper' and 'lower' regular functions (which
are defined later on). Some of the zeros of F(s) will be poles

of the integrand in the solution we obtain,so information about

the types of waves each produces will also be of use. Remember Chak
these asymptotic solutions for the zeros rely on m being finite;

the solutions are non-uniform and do not hold for m small and)

particularly,m equals zero,
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4.4. TRANSFORM ANALYSIS

Using the definitions from equations (3.5.1) and (3.5.2)
for the Fourier transform and its inverse we now also define Che

half-range plus transform given by

isx .
¢j+ = J ¢j e dx , = 1,2, v (4.4.1)
0
known as a plus function because it is regular for all s = 5.+ 1S,
(Sr and S, real) such that S; > S._ for some S_ < 0 provided k and
u have small positive imaginary parts. (This region is known
as R+, see Figure 3) We also define a corresponding half-range
minus transform given by
0
- isx -
¢j- = J ¢j e dx , 1,2 , (4.4.2)

- 0O

which is known as a minus function since it is regular for all s
such that Si < S, for some S, > 0. (This region is known as R,
see Figure 3) Once again k and u have small positive imaginary
parts. We assume k = kr + iki and u = Mo + iui to improve the

convergence of the transform integrals and then we let “i’ki >~ 0

to obtain the solutions for real k and p .

SVAVAVAVAS VAN
XA AL ALK

N

Figure 3: S-plane
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Taking half range plus transforms of equation (4.3.10)

Yields
MNie s ie g L s M5 A, im
(S -y )n =7 © [2+ (1+ k)(bl"" + k+$(1+m) + X cbl(o)]
3
» 220 2 2000) (4.4.3)
ox
oo 400
where n = j n(x)e'¥dx = J n(x)e'>*dx (4.4.4)
0 -0
since n(x) = 0 for x<O0.
Letting
2%n(0) an(0)
3 = q and e = -p (4.4.5)
8x x :
where p and q are as yet undetermined we have
4 4. - _ li n _ ms.~ _ EA
(s7-u)n = - <= {45, - (1+ 39¢,,1 e(k+s(1+m))
2
+ ok 0100 +psT v q . (4.4.6)

Taking transforms of equations (4.3.5) and (4.3.6) and using
the outgoing wave at infinity condition with equation (4.3.3c)

gives

B(s)coshy(s) (y+d) 4.4.7)

-
=
n

= A(s) exp{—;(s)y} (4.4.8)

<1
N
}

where A and B are functions of s and as yet unknown.

The transform of (4.3.3a) gives

d - _ -
H§'¢2— =0 ony=0 (4.4.9)

d -
Iy $1.=0 ony =0 (4.4.10)
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whereas the transforms of (4.3.4a) and (4.3.4b) yield

and

gives

d . =
?1'}7¢2 = -lwn on Yy = 0 (4.4.11)

d . -
Iy ¢1+ - i(w+tUs)n on y =10 . (4.4.12)

Substituting equations (4.4.8) and (4.4.9) into (4.4.11)

~

-yA =-iwn (4.4.13)

and equations (4.4.7) and (4.4.10) into (4.4.12) gives

and

-i(wtUs)n = y(s)B coshy(s)d . (4.4.14)
Soony=20
- - - L c=1- -
¢2+ = ¢’2 - ¢2_ = 1wy n- ¢2_ (4.4.15)
61_'_ = E)l - &1_

= ~iw(1+ 3T y(s)sinhy(s)d] ™! coshy(s)d - §,_  (4.4.16)

and on substituting in for $1+ and $2+ and then for n Sfrom equation

(4.4.11), equation (4.4.6) becomes

_ where

d - . 2 me e
K() @y %2, = Tubsrar T 90 - gaesamy )
t o BBy - (1 ] (4.4.17)
T 2

K(s)

(54-u4) - e{y_1+ (1+ %;J y_lcothyd}

{;Ysinhyd}—l F(s) & (4.4.18)



- 141 -

K(s) therefore has zeros in precisely the same places
as F(s). K(s) also has poles at the zeros of ;Ysinhyd. So as
k and u are slightly complex it follows that there is a strip
of regularity, S, for K(s) about the real S axis within which it
also has no zeros. iS_ is thus given by the minimum (in
magnitude) imaginary part, for complex k and u, of those Sj (all 3)
and éj (j=5,6,7,8 and *n) that have negative imaginary parts.
Conversely iS+ is given by the minimum imaginary part of the same
Sj's and éj's that have positive imaginary parts. S consistsof
the region where R, and R_ overlap. Now as equation (4.4.17)
is in an appropriate form we can proceed to apply the Wiener-Hopf

technique.



- 142 -

4.5, WIENER-HOPF ANALYSIS

First we define a product factorisation of the kernel

K(s) = K, (s)/K_(s) (4.5.1)

K+(s) is regular and non-zero in the upperhalf—plane,R+, while K (s)
is regular andnon-zero in R_. We accept equation (4.5.1) as

a formal definition; explicit determination of the factors K+(s)

and K_(s) is undertaken in Appendix 4 (for e << 1).

The Wiener-Hopf equation (4.4.17) can thus be rewritten

K, ()3, = INGS) + Q(S) + omeqmgdK_(5) (4.5.2)

where ! denoggs partial differentiation with respect to y;thus
0%¢

1 2+

¢2+ means 3y (s,y) evaluated at y = 0. Also

N(s) = -iw[PS2 +q + Ei%ﬂ, a regular function |, (4.5.3)
C
Q_(s) = e[d, - (1+ 3I§;_1,a minus function . (4.5.4)

The last term in equation (4.5.2) can be split into a sum

of plus and minus functions.—

iedk_(s) K_(s)-K_(-k/1+m) ieAK_(-k/1+m)
k+s (1+m) iex { Krs (iom) T+ s () v (4.5.5)

and equation (4.5.2) can be subsequently rearranged to give

' iedK (-k/1+m)
kK+s(1+m) ‘ = N(S)K_(S) + Q_(s)K_(s)

K,(s)e,,

iex {K_(s)—K_(—k/1+m)
k+s (1+m) k+s(1+m)

+

} . (4.5.6)
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Now the left hand side of equation (4.5.6) is regular in R,
and the right hand side is regular in R_. In the strip of
regularity, S, both sides of equation (4.5.6) are regular and
we now let them be equal to a regular function R(s). In S

y  1ieAK_(-k/1+m)

R(S) = K+(S)$2+ - k+s(l+m) (4.5.7)
and
ier K_(s)-K_(-k/1+m)
R(s) = N()K(S) + QUISIK_() *+ oy { — T )
(4.5.8)

Equations (4.5.7) and (4.5.8) thus continue R(s) analytically
throughout the whole S-plane. The behaviour of the right hand
side of equations (4.5.7) and (4.5.8) as s goes to infinity in
the upper and lower half-planes therefore gives the behaviour
of the analytic function R(s) at infinity and R(s) can thus be
determined. In Appendix 5 the appropriate limits are taken and

the function R(s) is found to satisfy
R(s) =-ipuw . (4.5.9)

In Appendix 5 we find the first two terms in the power
series for p. Then from equation (4.5.7)

' ) eAK_(-k/1+m)
., = -iK (s) “[pw - kvs (1om) ] (4.5.10)

®
and substituting into equations (4.4.7), (4.4.8), (4.4.11), (4.4.13)

and (4.4.15) gives, after applying the inversion formula ,

AeK (~k/1+m) -1 -isx
- } K (s) e ds

. -1 -1 ms. coshy(y+dj _
o1 = 37 J Yy ) S gyd o P s

T

(4.5.11)
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i A 1 AeK (-k/1+m) -1 ~
b, = o j Y {pw - Krs (Tom) }K+(s) exp{-yy-isx}ds , (4.5.12)
1
1 €AK_(-k/1+m) -1 -isx
n= o5 {p - SOk s () }K+(s) e ds (4.5{13)
S

where Pl is as before.
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4.6 THE WALL DISPLACEMENT n(x)

Consider now the wall displacement n(x) given by equation

(4.5.13) as
2 -1 -isx
_ € ~ (1+m) -
R e e I RO
I | (4.6.1)

To analyse this integral the second of the two options
available will be used. Instead of transforming to the ®-plane
as before the integral will be deformed to one around a semi-
circular contour is the S-plane, integrating along both sides of a
branch cut if necessary. Employing Cauchy's Residue theorem
to account for any poles picked up in the process and Jordan's
Lemma to confirm that the semi-circular contribution goes to zero
as its radius goes to infinity means the integral can be recast
into either (i) an integral plus the residue contributions or

(ii) just the residue contribution.
An approximation to this second integral, if it is present, can be
found.

First consider n(x) for x<0. The path Fl can be deformed
onto PS, as shown in Figure 4, because the integrand has no branch
cuts in R, . As the integrand is regular in R_ there are no residues
to be picked up and Jordan's lemma gives the integral along e

as zero as L » »,s0 n(x) = 0 for x<0.
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- L L

Figure 4: S-plane

For n(x), kx > 0 and large, the deformation is more complex.
The integrand has a branch cut from -k to -« along a line of
constant argument and the semi-circular path Te in the lower
half-plane R_ has to be indented around this branch cut as shown

in Figure 5. The integrand has poles at S-n’ 82, S4, S6’ S7

so there are residue contributions to be taken into account.

Figure 5: S-plane

From Cauchy's Residue theorem it is known that

[ =1 + [+ [ -2mi{ )} Residues Captured} (4.6.2)
I1 Ter Tez Tes
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From Jordan's lemma it can be shownthat

]

Te1

i
(=]

(4.6.3)

This leaves f , f and the residue contributions to be

T r
Py
found. 6 63

The integral has poles at S S4, S6’ S S . The contri-

2 77 T-n
butions from S6, 82 (for u > k) will be travelling waves whereas

those from 82 (for u < k) S4, S7 and S_n will be decaying
exponentially at some order in e. Thereis no pole at s = §7 = -k/1+m
because it is a zero of (K+(s))'1, In Appendix 6 the method

for finding the residues of the integrand for n(x), partly applicable
for $1 and ¢2 is given, and the residue contributions are listed.

This then only leaves the contributions from T'_, and P63 to be

62
found.

Expanding in powers of € gives

ns(x) ~ {-ex(1+m)+0(€2)}[2vw{k+u(1+m)}{k+iu(1)m)}]—1 X

1 1+m -1 -isx
I.
g {r by * s 1) e ds (4.6.4)
62 63 .
where the (nfegral along Fep*Tez Can be written
-k
1 ' 1+m 1 1 -isx
J [(1+i)u * k+S(1+m)][ K, (s+) - K+(5_)] € ds (4.6.5)
-0

and s+ denotes above the branch cut and s- below it.
The method of sféepest descents, applied after putting K+(s) =

K _(s)K(s) Chen 3(\)25
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i(i+1)k2ﬂx(1+n0(k+u)(k+iu) [ 1-i 1+m "3/2eikx

nS(X) ~ o [k"’U(]-"'m)]fk"'iU(l"’m)] 2u " Km + O(E)] (kxm)

-5/2
+ 0(kx) for large kx.

(4.6.6)

Notice that althcugh this contribution is as small as O(kx)_s/2

it is 0(1) with respect to e,

Combining all these separate contributions to n(x) then gives

]

n(x) ~n (x) - 2ni| n£24-n£4+-n£6+-n£7+§ L £ = 1,2,for large kx .
(4.6.7)

The wall diéplacement at large x thus consists not only
of the O(k)()_s/2 part due to Ng but also an O(ES) travelling wave
n£6 with exact wave numbex‘SG, and, when p > k, a second travelling
wave due to Ny, OT» when u < k, a contribution Moo which is a wave
in the exponent at 0(1) but decay at'O(e). Un and Ny _p (n>N)
give exponentially decaying terms but Np7 and oo (n<N) are

waves at 0(1) and 0(e) in the exponent but decay at 0(52).
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4.7 THE DUCT POTENTIAL ¢1(x,y)

Equation (4.5.11) gives for the duct potential 19

_ ixe(1+m) ‘ ms . coshy(y+d) 1 1+m
$106Y) = e e T L (L) ] [ U+ ) Simvd - Lot e
1
-1 -isx 2
x K (5)7" e 1%%ds + 0(e”) (4.7.1)

where this integrand has poles at SZ’ S4, 86’ 87, S—n’ as did the

6ne for n(x). It also has poles at §7, §8 and §+n' It does not
have any at é-n because these are also zeros of K+(s)_1. This
integrand, just like the one for n(x), nas no branch cuts in the upper
half-plane R, -

For kx < 0 the same procedure as was used for n(x) can be
employed, namely deforming the path r, onto I, as shown in Figure 4
and collecting the residues from the poles §8 and §+n,iﬁ the

process. From Jordan's lemma it can again be shown that the

contribution from integrating around Ts is zero,giving
¢, (xy) = 2ri )} Residues for kx<0 - (4.7.2)

In Appendix 6 these residues are calculated and give, when

substituted into expression (4.7.2)

+n

X~
m

2 2 .
Xe(1-m™) 1 1-m ik
$. (x,y) = (e, * + 0(e)]exp{- —=:
b 2ak[ (ko) -l | Grig) Py P®y PR 2K b
-Ae(l+m)cos nwy/d 1 1+m m ;5
+ L . [(1+i)u + —] (1+ E—S } x
[k+1u(l+m)][k+u(1+m)]dBn k+(l+m)S+n
. —ié X
x 1 e M osoeh) | (4.7.3)

(u+s, ) (iw+S, )
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This velocity potential is due solely to the presence of
the elasticity in the duct walls because the rigid walled duct
potential ¢0 was separated away at the outset. It can be seen
that the modification to the duct potential, in the rigid walled
part of the duct (kx<0), due to the elastic walled part,consists
of a main reflected wave, the first term in expression (4.7.3), with
a set of subsidiary reflected waves, the sum up toN of the second
term, plus a set of disturbances that decay exponentially away
from the origin, the sﬁm from N+1 to infinity of the second term.
The duct potent<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>