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ABSTRACT 

New designs for active RC Bode-type variable equalisers 

(VEs) are presented in this thesis. A distinction is made between 

the equalisers satisfying Bode's transfer function and those 

satisfying only its squared-modulus. The latter are referred to 

as quasi Bode-type VEs; they are derived from symmetrical lattice 

networks and, apart from some constraints on their shaping 

impedances, they can be very useful in applications where phase 

characteristics are of less importance. On the other hand the VEs 

satisfying Bode's transfer function are widely investigated. Some 

have been also derived from symmetrical lattice networks and 

others from a new basic structure. This new structure constitutes 

a major contribution to the design of active RC VEs. It has the 

advantage of being very simple and extremely flexible. This 

flexibility is illustrated by a variety of examples. Moreover, 

the usual variable range [O,00] , which is covered by an adjustable 

resistor, is shown that it can be reduced to any prescribed range [0,i3j 

without disturbing the properties of the transfer function. A final 

feature of the new structure is that it can lend itself to the 

grounding of both the shaping impedance and the adjustable resistor. 

The various practical examples show that nearly ideal performance 

characteristics can be obtained. 
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THE EQUALISATION PROBLEM 

1.1 Introduction. 

1.2 A Bode-type variable equaliser. 

1.3 Aims and organisation of the thesis. 



chapter i . the e q u a l i s a t i o n problem 

1.1 Introduction. 

The use of equalisers to compensate for the distortions in the 

phase and amplitude characteristics of transmission lines and other 

signal processing systems is well known in communication, where high 

quality lines are required. It is therefore required that an equaliser 

should have a defined characteristic fixed by the system with which it is 

associated. However, very often, the characteristics of the equaliser 

cannot be prescribed in advance; this is either due to the fact that the 

characteristics of the system are not known with sufficient precision 

or that they vary with time. A typical example is a communication cable 

for which the loss frequency characteristics vary with temperature and 

other weather conditions. To compensate for these distortions it is 

necessary to use not only the ordinary fixed equaliser but also a variable 

equaliser. 

It is relevant to make a distinction between the terms "variable" 

and "adjustable". For example the electrical properties of a transmission 

line are variable; they are a function of its environment over which 

we have little or no control. Whereas the electrical properties of the 

equaliser are adjustable as they can be set to any value, within a 

range, to compensate for the variability of the transmission line. 

Although the term "adjustable equaliser" seems more appropriate than the 

conventionally used term "variable equaliser", we shall conform here with 

normal usage and use variable instead of adjustable. 

The basic design theory of variable equalisers (VEs) was 

developed by Bode [1,2] , some 40 years ago, and his principles are still 
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widely applicable. His circuit realisation aimed at LRC circuits, and Later 

improvements and refinements contributed by other circuit designers[3,4,53 

require, in the present era of microelectronic inductorless active RC 

circuits, at least revision and supplementation. This need for active 

RC filters during the last ten years has been motivated primarily by the 

availablity of good, inexpensive integrated circuit (XC) operational 

amplifiers. This permits the realisation of filters which are cheaper, 

smaller, and more easily manufactured. This is very important in the 

case of equalisers because they are used in large numbers. 

In this work, we are mainly interested in amplitude equalisation 

and our aim will be the realisation of RC Bode-type VEs. What is a Bode-

type VE? What are its properties? The answer to these questions are 

dealt with in the following section. 

1.2 A Bode-type variable equaliser. 

In 1937, Bode invented VEs in response to the need of the 

maintenance of high quality transmission in long telephone circuits. 

In those lines the distortions are mainly due to temperature variations 

and, in some cases, to humidity changes. In some of these carrier 

systems the maximum change in attenuation is around ldR per mile; it is 

therefore important, if a reasonable standard is to be maintained, to 

compensate with great accuracy for those changes. Since a large number 

of compensating elements are needed in the overall carrier frequency 

system, this compensating element should be made as simple as possible, 

preferably of a kind that lends itself readily to automatic control. 

The idealised loss frequency characteristic of a Bode-type 



VE is of the following form [2] 

a(w,k) = a (w) + k(R ) a1(w) (1.1) 

where k(k
v) is a frequency-independent real adjustment parameter whose 

value, as a function of an adjustable resistor R^, can be varied from 

-1 to +1. ot̂ (w) is a frequency dependent response under our control 

(to Bode this functioit corresponds to the temperature characteristic, 

and k(Rv) expresses the calibration of the controlling element with 

respect to temperature). a^Cw) represents a reference response (or a 

fixed loss), it could be either dependent or independent of the freque .cy. 

Equation (1.1) describes a family of curves (Fig.1.1) 

symmetrically arranged around the mean curve: 

a (w, o) = a (w) (1.2a) 

the outer curves are given by 

a(w,+l) =a (w) + a (w) (1.2b) 

for any k(-l<k^+l) the family of curves satisfies the symmetry 

condition : 

a (w,+k) + a: (w,-k) = 2 a (w) (1.2c) 

furthermore, at all w. for which a _ (w.) = 0, all curves go ' i 1 i 

through one or more common points given by 
lv i 

«(w.,k) = a (w.), for any k (-Kk<+1) (1.2d) 
1 ' 0 1 
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Since the transfer function T^(s) of a VE containing an adjustment 

resistor R^ must be of the bilinear form D5l : 

t x ( s ) = 
A(s) Rv + B(s) 

C(s) Ry + D(s) (s=jw) (1.3) 

with a corresponding loss-frequency characteristic 

ot^w) = -10 log10| T^s) | (1.4) 

we can see that equation (1.1) can never be fully satisfied by a physical 

circuit. 

In order to illustrate how unsuitable a circuit satisfying (1.3) 

(but not (1.1)) can be, let us investigate the circuit in Fig. 1.2 which 

produces the family of curves shown in Fig. 1.3. Although these curves 

have a common point of confluence at zero frequency and behave 

acceptably at high frequencies; at an intermediate frequency range however, 

the various curves intersect each other in a way which very strongly 

violates (1.1). This can be easily investigated for any positive couple 

(R^j ^vy^* "̂ k6 lntersect:lon point of the curves corresponding to R ^ 

and R ^ (apart from the common point of confluence at w=o) is given 

by : 
i 

n 2 

w: 
2R R + R (R + R ) vx vy o vx vy 

(1.5; 

An alternative form of the transfer function T^(s) in (1.3) 

is therefore required and which satisfies, at least approximately, the 

ideal equation in (1.1). 
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An acceptable approximation to (1.1), given by Bode, can be 

obtained by a transfer function T(s) of the form 

1 +y H(s) 
T (s, Y) = T (s) 

0 
(1.6) 

y + H(s) 

The parameter Y is chosen to be equal to R /R , where 
v 0 

R 
0 

is a suitable 

reference resistance and R is a variable resistance; ideally y 
v 

varies from 0 via 1 to co (this range [O,oo] will be referred to 

as the 'whole range' of variation of the variable element). H(s) is 

a normalised driving point impedanee function which, we shall see, 

is a function of a shaping impedance Z (s). The transfer function T (s) 
0 0 

is of less importance and it could be realised by means of a separate 

non-variable equaliser circuit. For further discussions and for all 

the design methods with which we are dealing here, T (s) is a constant 
0 

M (i.e. independent of the frequency) which, within limits, can be 

freely chosen. Thus (1.6) becomes 

1 + yH(s) 
T (s, y) = M (1.7) 

y + H(s) 

This transfer function represents a family of curves; the mean curve 

is given by 

T(s,l) = M (1.8a) 

and the outer curves by 

= M [H(s)] (1.8b) 

for any Y , the symmetry condition is 
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T(s,y) . T(s, y""1) = M2 (1.8c) 

and for any y , at all w\ for which H(jw^) = 1, the common 

points are given by 

t ( j w i , y ) = m (1 .8d ) 

The family of curves obtained from (1.7) satisfy similar conditions to 

those obtained from (1.1). The approximation made in choosing (1.7) 

instead of (1.1) can be justified. Let us first write (1.7) in a slightly 

different form. 

-<j> -a -cu 1 +Ye e = e " 
Y + e- <P (1.9) 

If (1.9) represents a transfer function, the loss (in nepers) is given by 

1 +Y 
a = a - ln (1.10) 

Y + e 

1 + y e ^ 
let y = (1.11) 

Y + e~ ̂  

y - 1 1 - e ^ 
and W = = - — . j- (1.12) 

y +1 Y+l 1 + e ̂  

then if we write y in terms of W we have 

14 W n in y = (1.13) 
1 - w 

developing In y as a power series of W we get 
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, r w3 w5 

In y = 2 L W + + — + 
3 5 

(1.14) 

which gives 

in y = - Y-l 
Y+l - 1 y Iflsl ] 

12 y + l ^ y + 1 j - 1 

(1.15) 

Inserting (1.15) in (1.10) yields 

y - 1 1 v - i a = a + I—±. (j) + _ i j — i o A1 ' 12 Y+l 
Y+l (y+O d)3 + f(Y) + 5 +... 

(1.16) 

The first two terms in (1.16) can be identified with the quantities 

appearing on the right hand side of equation (1.1). The remaining 

terms represent the departure from the ideal case. Bode [1] has 

estimated that the loss deviation i's about 0.1 dB when the maximum value of <j> 

is 1 neper, corresponding to a total variation in attenuation of about 18.dB. 

Although passive realisations of (1.7) performed quite well 

in the past, they have however some disadvantages such as the requirement 

for dual impedances (which makes the use of inductors compulsory) and 

non-constant input and output impedances in most practical realisations. 

1.3 Aims and organisation of the thesis. 

Bode's transfer function for VEs and the properties of its loss-

frequency characteristics have been defined above. This project is 

mainly concerned with active RC realisations of this transfer function. 
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Th e designs could include either transistors or op-amps. 

Transistors are only suitable when a very wide frequency range is 

required because their finite gain bandwidth product f̂ , c en. 

be far higher than that of op-amps. However, within the voice 

frequency band, where in signal processing systems the demand for VEs 

may be considerable, it is useful to concentrate on active RC designs 

using op-amps. On the other hand, the variable element by which the 

amplitude of the frequency-response is varied is chosen to be a 

single two-terminal adjustable resistor. Compared with capacitors, 

resistors are easily adjustable and make the structures suitable for 

automatic control. The designs using three-terminal variable resistors 

[6,7] are not considered. In this thesis a significant number of new 

designs of active RC VEs, which are believed to be original, are 

presented. They are very attractive and can be useful to active RC 

designers^ in some cases nearly ideal performance characteristics can be 

obtained. Although most oPb Re. structures are built with discrete components, 

they can conceivably be implemented microejectronically. 

The structure of the thesis is as follows: In chapter 2 a 

review of the work related to the design of active RC Bode VEs is 

presented, it includes methods using either Op-amps or 

transistors. An example of a non-Bode VE is also given. To overcome 

some of the disadvantages of those designs, a new kind of equaliser 

is developed in chapter 3; we referred to them as 'quasi Bode—type' VEs 

because they do not satisfy the transfer function (1.7) itself but only 

its squared-modulus. They have,therefore, identical loss-frequency 

characteristics with those of the corresponding Bode-type VEs; 

nevertheless, they introduce an extra positive phase shift. In Chapter 4, 

advantage is taken of the use of symmetrical lattice networks, in 

developing the equalisers in Chapter 3, to design a Bode equaliser free 

of the restrictions inherent to quasi Bode-type equalisers. These two 
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chapters are made independent because of the particular behaviour of 

the phase-frequency characteristics of the networks in chapter 3. 

In chapter 5, a new basic design for Bode VEs is introduced. 

It is believed to be, so far, the best structure. It is less sensitive 

to the amplifier finite gain bandwidth product and it is very flexible. 

This flexibility is illustrated by the use of terminal interchange trans-

formations [21, 29, 30,31] which lead to the design of a wide range of 

alternative Bode equalisers. An attempt is made, in chapter 6, to 

minimise the effect of the f̂ , and a comparison method of the sensitivities 

to this effect is presented. The final conclusions concerning the 

usefulness and the practicality of the new equalisers are discussed in 

Chapter 7. 
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Fig. 1.1 symmetrical characteristics obtained from 
a Bode-type VE. 
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Fig. 1.3 characteristics obtained from the circuit in Fig. 1.2 
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CHAPTER II REVIEW OF PREVIOUS WORK 

In this chapter we shall discuss some of the work which has 

been achieved in the field of active RC VEs and especially active RC 

Bode-type VEs. 

2.1 Brglez's approach. 

In 1974, Brglez was the first to publish a work on active 

RC Bode-type VEs [8,9] . His approach is based on the transformation 

of Bode's original transfer function (1.7); and he showed that ?v 

mapping the range of the variable element from [O,00] to [~R0> + 

one arrives at a different formulation of the equaliser transfer 

function. 

2.1.1. Transformation of the original transfer function. 

Let us first rewrite equation (1.7) 

1 + yH(s) 
T ( s,Y) = M (1.7) 

Y + H(s) 

The new parameters in the new transfer function to be found are re la-ted 

to (1.7) via the bilinear transformation, namely 

1 - H (s) 
H(s) = 2 (2 .1) 

1 + H (s) o 

1+ P 1-Y \ /o o 
iT-p- P = T n > <2'2 

Inserting (2.1) and (2.2) into (1.7) produces a new transfer function 
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T0(s,p) 

TQ(s,p) = m 
1 -P H (s) o 

1 + PH (s) o 

(2.3) 

From (2.2) we see that if y in (1.7) varies from 0 to oo , then p 

varies from +1 to -1. If we set p = R /R , where R isa suitable v o o 
reference resistance and R the variable resistance; we can cover the v ' 
whole range of variation by varying Rv between +Rq and • 

The convergence property of (2.3) is identical with that 

of (1.7) and both approximate the ideal equaliser equation (1.1). The 

basic contribution of Brglez is to identify "p in (2.3) as the variable 

element and H q ( s ) the shaping immittance; and the realisation of the new 

transfer function with unsymmetrical passive lattice network containing 

a single shaping impedance Z^Cs) (Fig. 2.1). Comparing the transfer 

function of this circuit and (2.3) we get 

M = \ 

p = R /R (2.4) K v o 

R 
Ho(s) - — J ! 

R + Z (s) o o 

The resistance R in series with Z (s) is essential in this case otherwise o o 
the circuit will not behave as a VE and will be reduced to the familiar 

lattice form. 

The advantage of this structure is that it does not require 

dual impedances but it has the disadvantage to halve the range of the 

variable element ( p varies only from 0 to 1), and does not permit 
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simultaneous grounding of the input and the output ports. Moreover, 

the reference flat loss is not OdB but 6dB. 

2.1.2 Active realisations. 

The simplest active realisation of (2.3) is the circuit shown 

in Fig. 2.2 which corresponds to the passive lattice network in Fig.2.1. 

Its voltage transfer function is given by 

R - R + Z (s) 
T(s,R ) = X (2.5) 

R + R + Z (s) o v o 

Comparing (2.5) and (2.3) we get 

M = 1 

= R /R v o 

H (s) = o 
R 

R + Z (s) o o 

(2.6) 

At the cost of using a single transistor, the reference flat loss is 

shifted to OdB and a common ground to the input and output ports is 

made available; but the whole range of variation cannot be covered by 

using this structure because R varies only between 0 and + R . a v o 

The solution to this problem is a realisation which takes 

advantage of active all-pass network structures [10] . By inserting a 

negative impedance converter (NIC) into this structure, Brglez [8] 

presented his first active RC -W which covers the whole range of variation. 

The circuit is shown in Fig. 2.3 where the physical variable resistor 
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R varies from 0 to + 2 R which makes R = R -R vary from -R to + R . x o v x o o o 
This equaliser represents a valuable alternative to passive designs 

because it does not require dual impedances; its reference flat loss is 

OdB and since its output terminal occurs at the output terminal of an 

operational amplifier (op-amp) it can be used as basic building block 

for direct cascading into multiple sections. 

In order to remove the need for a NIC and the associated 

op-amp, an alternative design containing a circuit-modifying switch 

has been proposed [ 9 ] . The transfer function of this circuit 

(Fig. 2.4) is given by 

l-pHQ(s) 
T (s,p) = - , switch connected to 1 
0 1+pH (s) 

1 + 0H (s) (2'7) 

TT(s,p) = - , switch connected to 2 
° 1 ~ P H (s) 

o 

with p = R /R ; 0 $R $ R v o v o 

R 
o 

R + Z (s) o o 

This structure does not need an extra op-amp to cover the whole range 

of variation but its main disadvantage is the necessity to vary R^ 

in different directions, depending on the switch position. This is not 

desirable if automatic regulation is required (i.e. at a fixed frequency 

R^ should be increased not only to increase the positive loss but 

also to decrease the negative loss). 

and 

H (s) o 
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It can be verified that interchanging R and Z (s) + R v o o 
will also result in (2.7); however the resulting network would be unstable 

if the switch is connected to position 2 when the shaping impedance 

Z q ( s ) is a simple capacitor. 

Another structure which has the transfer function in (2.7) is 

shown in Fig. 2.5; in this case we have 

p = G /G v o 0 $ G $ G v o 

H (s) = 
G + Y (s) o o 

where Y (s) is the shaping admittance, G = 1/R and G = 1/R . o r e ' o o v v 

This configuration has been used by Brglez to equalise the lower 

bandedge frequency response over an amplitude range of £ 10 dB ( Y q ( s ) 

is a capacitor, see Fig. 2.6). But the main attractive feature of 

the configuration is the design of a Tbumpf equaliser shown in Fig. 2.7 

which has the transfer function 

2 2 s -I- (hw /Q) s + w 
T (s) = - — = , ST? connected to 2 (2.8) 
° s + (w /Q)s + w 1 

where 

TT(s) = 1/T (s) , SW connected to 1 o o 

2 w o L C o o 
w C (2.9) o o 

G + G - G q o v 
h = Ga + Gn +G, 

Gq + G0 " Gv 
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In practice the inductor Lq could be simulated by an active RC 

single or two amplifiers circuit. The kind of loss-frequency response 

obtained by this equaliser is shown in Fig. 2.8. It is worth pointing out 

that the resonant frequency fQ = w0/2tt is adjusted by means of Lq (a 

resistor in active realisation) and the height h of the bump is 

adjusted by means of G^; from (2.9) we can see that these two adjustments 

are independent of each other. The variation in the sharpness of the 

bump (or its Q) can be achieved by varying Gq ; however, this would alter 

the height h. At a resonant frequency fQ, it is possible to maintain 

the constancy of the Q by ensuring a tracking between Gq and G^ which 

will result, of course, in height variations. 

2.2 Other approaches. 

2.2.1 VE with differential amplifiers. 

In order to eliminate the need for a NIC or a circuit modifying 

switch in Brglez's circuits, Shida and Suzuki [11] proposed an alternative 

structure to realise a Bode-type VE. The starting point is the 

transformed Bode's transfer function in (2.3) which is broken down to the 

following form 

To(s) = 2(J - Tx(s)) 

P H (s) 
T (s) = 2 (2.10) 1+ pH (s) o 

For the time being, the multiplying coefficient M is assumed to be 

equal to 1. The signal flow graph in Fig. 2.9 shows this transformation. 

The voltage transfer function T^(s) can be realised, for example, by 

means of a shaping impedance, a variable resistor and a fixed resistor 

as shown in Fig. 2.10a. The whole range of variation can be covered by 
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varying p = RV/R
Q between -1 and +1. But the aim of the authors is not 

to introduce a NIC in their design which provides the negative R^ 

range; they, instead, introduced balanced sources to the circuit in 

Fig. 2.10a which gives the equivalent circuit shown in Fig. 2.10b. 

This is the first step to get rid of the required NIC; the whole VE 

structure which contains the transformed circuit in Fig. 2.10b is 

shown in Fig. 2.11 where Rx is the physical variable resistor which 

replaces R + 2R in the transformed circuit. The transfer function r o v 
of the obtained VE is given by 

l-pH(s) 
T(s) = ± 2 (2.H) 

2 1+ p H (s) o 

where 
R 

H (s) - — ± 
R + Z (s) o o 

and 

1 Rx 
p = 2 ( t t " 1 } 

o 

It is easy to verify that if R^ varies from 0 to + 2Rq, p is within 

the range 0*4; ].At the outer limits of this range and when Z^Cs) 

is purely reactive, the maximum loss that can be obtained with this 

configuration is about +1 Neper. For p = 0 (i.e. R = R ) we get a 
x o 

reference flat loss of 6 dB. 

Although this structure does not require a NIC or a switch; 

it uses nevertheless, two differential amplifiers and doubles the 

complexity of the shaping impedance. Moreover, the symmetrical amplitude 

variable range is restricted to +_ 1 Neper and the reference flat loss is 
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no longer OdB but 6dB. 

An alternative design, which uses a single shaping 

admittance, has been proposed by the authors of reference [11] ; 

the circuit is shown in Fig. 2.12, its transfer function is given by 
G G 

(2.11) with H (s) = and p = { fa - 1). 
° G + Y (s) Go o o 

2.2.2. VE using feedback and feedforward. 

The method has been proposed by Takasaki and al. [ 1Z1 in 

1976. Bode's transfer function (1.7) is simulated by signal flow 

graphs that have a forward, feedforward, and feedback paths as shown 

in Fig. 2.13. Both combinations (corresponding to solid or broken 

lines) have the same transfer function 

x + y9 (s) 
T(s) = (2.12) 

1 - xyn (s) 

if we choose 

y(s) = y2(s) = - y1(s) 

we get 

x «- y(s) 
T(s) = (2.13) 

1 + xy(s) 

which is the inverse of the transfer function in (1.7); therefore the 
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signal flow graphs in Fig. 2.13 can realise Bode-type variable equalisers 

in terms of variable gain element x and shaping network y(s). An 

example, given by the authors, is the circuit in Fig. 2.14 which corres-

ponds to the solid feedback and feedforward lines in Fig. 2.13. 

Let us derive the transfer function T(s) = V^/V^ of this network where 

y^ and y^ are shaping networks and denote also the corresponding transfer 

admittances. 

The current flowing into R^ is 

v , 
_ 1 I tt" 

x + y i V 

and the voltage across it is 

Vf = -R, •
f v i + v _ v" 

r 1 1 
(2.14) 

The current flowing into R^ is 

V" I = —-— + y VT 
2 ro y 2 

and the output voltage is given by 

y = - r f -H— + y VT] 
M . R 2

 2 J 
(2.15) 

but V" and Vf are related by 

V" = k VT (2.16) 

R 
where k = v 

R_ + R 5 v 
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Combining (2.14), (2.15) and (2.16) yields 

V R R k + R Y 
T(s) = — = — = . (2.17) 

v x
 r i r 2 1 + k v l 

In order to give this transfer function the form of (2.13), let 

x = ak (where a is an arbitrary positive number) and 

y a aR£y2 = R3Y1/a 

then we get 

R3 Ra x + y 
T (s) = J H . (2.18) 

aRxR2 1 + xy 

Apart from a multiplying constant, equations (2.18) and (2.13) are 

identical. We have seen that for a Bode type VE x should vary 

between 0 and co ; this is not the case because the upper limit of x 

is a (i.e. o ̂  x ̂  a). 

If a=l and Rn = Rn = R_ = R. = R ; and if y. and y0 are 1 2 3 4 o 1 2 
identical and represent the T-section in Fig. 2.15 we get the 

following transfer function 

x + y (s) 
T(s) = ^ (2.19) 

1 + x yQ(s) 

where 

y0Cs) = 
8 +sR C, o ° 

8 + 3sR C_ o ° 

The corresponding loss-frequency characteristics are 
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symmetrical about a reference flat loss OdB and correspond to those 

of a Bode-type fan equaliser. 

The structure in Fig. 2.14 is suitable for high frequency 

equalisation because it uses transistors which could have very high f . 

In practice, the structure can only lend itself to discrete 

realisation or at moat hybrid integration because it uses coupling 

capacitors of high values which are not available by microelectronic 

technology. Another disadvantage of the structure is that it uses 

two shaping networks. 

2. 3 An example of jion-Bodeytype VE. 

In 1973, Fleischer [13] developed a variable amplitude 

equaliser which was used to improve the frequency response of data 

transmission lines ( a variable delay equaliser which is not to be 

discussed here was also developed by the same author [13] ). 

The transfer function to be realised is of the form 

2 2 s + hQs + w 
T(s) = — | (2.20) 

s + Q s + w o 

which corresponds to a bump equaliser where w^ = 2 7TfQj represents 

the resonant frequency, h is the bump height and Q describes 

the sharpness of the bump. It is required that each of these 

parameters should be freely adjusted. 

In order to realise this biquadratic transfer function a 

biquad [14, 15] is used. Thus, the transfer function of the 

circuit shown in Fig. 2.16 is given by 



-35-

T(s) = - — R, 

2 / 1 +
R l R5(R6-R7) 

s + i ] + — - — 
8 ^ R 4 6 7 r 1 c 1 

s2 • 
r 1 c 1 R2R3C1C2 

R2R3CXC2 

(2.21) 

If we set R. = R, = R„ and R. = R,, we get the desired transfer 5 6 8 4 1 
function 

T(s) = -

2 R5 S
 + 2 

s V 7 w ° (2.22) 
2 s s + — + w 

r l c l 

? where w = 1/R_R0C.,C0 . O Z 3 1 z 

The resonant frequency can, therefore, be adjusted by means 

of Rg or Rg, while the height h = R|j/Ry is adjusted by means of 

Ry, and the bandwidth is varied by changing Rg but it is necessary 

that R, tracks R,. 4 1 

Although the structure in Fig. 2.16 can provide a reference 

flat loss OdB and a positive and a negative loss, it should not be 

regarded as a Bode-type bump VE because its transfer function can never 

be of the form of (1.7). 
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2.4 Conclusion. 

Some of the work achieved in the design of active RC 

VEs has been briefly reviewed in this chapter. It is seen that 

most of the structures have many advantages when compared with their 

passive conterparts. They are very simple in their design, they 

are also very flexible because a single structure can produce 

different shapes of its frequency response depending on one or two 

shaping impedances. In order to illustrate a difference between 

a Bode-type and a non-Bode-type VE, an example of bump equaliser, which 

uses four op-amps, was given in section 2.3; another example of non-

Bode bunrp equaliser can be found in reference [161 . 

All the designs discussed in this chapter have their own 

advantages and also some disadvantages. In the following chapters 

we shall describe the significant number of circuits we have designed 

and compare them with the existing structures. 
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Fig. 2.1 passive VE using a single shaping impedance. 
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Fig. 2.3 inductorless VE using 2 op-amps. 
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Fig. 2.4 VE using a switch. 
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Fig. 2.5 alternative design to the VE in Fig. 2.4 
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Fig. 2.7 Brglez's bump equaliser based on the circuit in Fig. 2.5 
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Fig. 2.12 alternative design using a single shaping impedance. 
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X = oc 

Fig. 2.13 signal flow-graph simulating Bode's transfer function. 

Fig. 2.14 example of realisation for signal flow-graph in Fig. 2.13 
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Fig. 2.16 example of non-Bode-type VE. 
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CHAPTER III. SOME QUASI BODE-TYPE VARIABLE EQUALISERS. 

3.1 Introduction 

The equalisers to be described in this chapter are based 

on Saraga's idea [17] whereby they do not satisfy the original transfer 

function (1.7) itself but only the corresponding modulus equation 

|M [1 +y H(s)] | 
t ( s , y ) | = : ( 3 . 1 ) 

I Y+ H(s)| 

Therefore, we shall refer to the circuits satisfying (3.1) and not 

(1.7) as 'quasi Bode-type' VEs. 

Since we are interested only in the loss-frequency characteristic 

(in dB) given by 

a(w,y) = 10 log | T(s,y) I 2 (3.2) 

it is useful to write H(s) (in (3.1)) in the form 

H(s) = A + SB (s = jw) 

and to denote 20 log |m|by Mq; then 

2 2 2 2 (1+yA) + w y B 
|T(s,y) i = m 5 r~2 (3-3) 

( y+ a) + w b 

The corresponding loss-frequency response is given by 
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1 + 2yA + v2 | H(s) I 2 
n(w,T) = M + 10 log ( 

y (y+ 2A) + I H(s)I 

let us investigate the property of this loss-frequency response which 

represents a family of curves: 

the mean curve is given by 

a (w,l) = M q (3.5a) 

and the outer curves are given by 

a(w,~) = Mq + 20 log |H(s) j (3.5b) 

for any Y, the symmetry condition is 

a(w,Y) +a(w,Y~1) = 2 M 0 (3.5c) 

and for all w.. for which | H(jw^)j = 1, the common points are given 

by 

cKw-^y) = M^ (3.5d) 

If we replace in (1.1) aQ(w) by - corresponding to the replacement 

of T (s) in (1.6) by M in (1.7) - we note that equations (3.5) have a o 
similar form to equations (1.2) and (7.8) . This shows that the 

features, described by (1.2), of the ideally required VE characteristic 

a(w,k) defined by (1.1) are shared by a(w,y) defined in (3.4), which 



is based on T(s,y) defined by (1.7). However, as we have seen 

for (1.7), the exact proportionality relationship between a(w,k) 

and aQ(w) stipulated in (1.1) is not exactly satisfied by (3.4) but 

only approximated. 

3.2 Transformation of Bode's transfer function for VEs. 

In order to facilitate the investigation and the design 

of quasi Bode-type VEs, it is useful to derive a new equivalent relation 

to equation (3-1)• To do this, we shall carry out a similar 

transformation,. as the one used in Section 2.1.1, cn equation (!.?)• 

This equation is 

1 + y-H(s) 
T( s , v) = M (3.6) 

y+ H(s) 

H (s) -1 
let H(s) = (3.7) 

hg(s) + 1 

1+p 
and y = • (3.8) 

1-9 

Inserting (3.7) and (3.8) into (3.6) yields 

. H (s) - p 
T(s,f») = M ( } 1 H (s) + p 

where p varies from -1 to +1, if in (3.6) y varies from 0 to 

Hg(s) is a normalised driving point impedance function which can be 

written under the form Hg(s) = Z(s)/ If we set p = R V/ R
Q
 s o that 

R varies over the range - R 0 + R then 
v o o 

Z(s) - R 
T(s, R ) = M - (3.10) 

V Z(s) + R v 
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Z(s) in (3.10) can be written in the form Z(s) = R(w) + jX(w); but 

we shall consider the special case where R(w) is a constant resistance 

R q and jX(w) is the impedance of a pure reactance one-port so that 

Z(s) = R q + jX(w) ( 3 . 1 1 ) 

with this notation (3.10) becomes 

R + jX(w) - R 
T(s,R ) = M — v (3.12) 

V R + jX(w) + R o J v 

the squared modulus of this function is : 

9 9 (R-R) 2+X 2(w) 
[T(s,R ) | = M ° V

 9 = (3.13) 
v (R +R )Z + X (w) o v 

It should be noted that if Z(s) in (3*11) is a series combination 

of a variable resistor R^ and a purely reactive impedance JX(w).and 

Rv is replaced by R , the transfer function (3-10) becomes: 

R + jX(w) - R 
T(s,R ) = M ° (3.14) 

v Rv + jX(w) + Ro 

The interchange of Rq and R^ in (3.12) and (3.14) does not affect the 

function (3.13). Thus, if in a network satisfying (3.13) we 

interchange Rq and R , the loss frequency characteristic of this network 

is not affected. This property of (3.13) will be used in the design 

of quasi Bode-type VEs and the phase shift introduced by this kind 

of equalisers will be discussed in section 3.5. 
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3.3 Lattice circuits and transformations. 

3.3.1 Passive unsymmetrical lattice circuits. 

The general form of an unsymmetrical lattice circuit is 

shown in Fig. 3.1. Its transfer function T(s) = Vo/Vi 1s 

T(s) = 
Z2Z3 " Z1 Z4 
« 1 + Z 3 ) ( Z 2

+ Z 4 ) 

(3.15) 

if we choose Z^ = Z^ = R^, the transfer function (3.15) 

becomes 

Z — Z 
T(s) = i — - (3.16) 

Z2 + Z4 

If, as in the case of Brglez's circuit C8] , we set Z^ = Z(s) and 

Z^ the variable resistor we get the circuit shown in Fig. 3.2 

with the transfer function 

1 z ( s ) - r
v T(s,R ) = g 2 (3.17) v Z Z (s) + R v 

(3.17) is identical with (3.10) if M=4; furthermore if Z(s) satisfies 

(3.11), the transfer function (3.17) agrees with (3.12) and the 

corresponding circuit is shown in Fig. 3.3. 

The circuit in Fig. 3.3 can be modified by interchanging 

R and R . This modification leads to the circuit in Fig. 3.4 * Its o v 
transfer function is the same as the one given in (3.14), therefore 

we can say that both the circuits in Figs. 3.3 and 3.4 have the same 
2 

T(s,R)l of the form given in (3.13). We note that the lattice sections 



-48-

we are dealing with are passive only when R^ lies in its positive 

half range. However, it is important to distinguish these passW® 

ciCU\t£ ffOttt the practical active realisations. 

£.£.2., Passive symmetrical lattice circuits. 

A symmetrical lattice section in its most general form, 

with terminating impedances Z and Z , is shown in Fig. 3.5. It can s i_i 
be obtained from the circuit in Fig. 3.1 by making Z^ = Z^ and Z^ = 

The transfer function T(s) = of t b x s c^rcu^t given by 

z l ( z 2 ' v 
T(s) = - - ± (3.18) 

(ZL+Zs) <Z +Z2> + 2 (Z L
Z
s
+ ZlV 

In the following we examine some special cases 

a) Z = nzn and Z_ = Z./q , where q is an s i L I 
arbitrary real positive parameter. The 

corresponding transfer function is : 

z - . z 
T(s) = ^ — (3.19) 

(l+q)z(z +Z ) 

b) Zg = nZ2 and ZL = Z^w 

Z -Z 
T(s) = (3.20) 

(l+n) Cz2+z1) 

If the terminations are equal (i.e.q = 1) we have for the case £ 
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Z = ZT = Z. and (3.19) becomes s l 1 

z 2 " z 1 
T(s ) = i- (3.21) 

4<Z +Z ) 

Foe the case b: Z = Z_ = Z_ and (3.20) becomes — s L L 

z 2 " z 1 
T(s ) = - 1 (3.22) 

4 ( z 2 + z x ) 

The common sub-case of _a and b_ is obtained for n= 0 (i.e. the 

transfer function T(s) is the open circuit voltage ratio of the 

interminated section) 

T(s) = z 1 (3.23) 
z 2 + z l 

In the circuit in Fig. 3.5 the interchange of Z^ and Z2 leads to the 

transfer function in (3.18) multiplied by -1 which means that |T(s)| 

remains unchanged. This is also valid for the T-sections equivalent 

to this circuit that we shall investigate and which are very attractive 

in the context of active realisations: 

When Z and ZT are chosen in accordance with (3.&9); the s L 
T-section equivalent to the lattice circuit in Fig.3.5 is shown in Fig. 3.6 

In Fig. 3.7 we have the same circuit with the output taken from a 

different point, consequently an increase of the output voltage is to be 

expected; thus its transfer function is : 

z 2 ~ z 1 T(s) = - 1 (3.24) 
( 1+ f i ) ( z +z ) 
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If Z and Z are chosen in accordance with (3.20) we get the 
s Li 

network in Fig. 3.8 . For ri = 0 this circuit and the one given in Fig, 3.6 

lead to the simple and attractive L-section circuit shown in Fig. 3.9 

which has the transfer function T(s) in (3.23). It is mainly this 

circuit that shall be considered as a basic design for active RC 

realisations of quasi Bode-type VEs. 

3.4 Active realisations. 

Two examples of active realisations will be given. The 

first one is the design of a fan equaliser (i.e. the shaping element X(w) 

in (3.11) is a capqcitor C q ) ; and the second one is the design of a bump 

equaliser; in this case X(w) is a series combination of a capacitor 

and an inductor. 

Let us then consider the L-section circuit in Fig. 3.9 

and look at the choices we have. We can either choose Z, = R + jX 
1 o 

and Zg = R^ or Zg = R^ and Zg = R^ + jX ; apart from a multiplying 

constant we get, in both cases, the transfer function in (3.12). Let 

us, for example, take the last choice (i.e. Zg = R^ and Z^ = Rq + jX); 

the resulting VE will require two matched equal variable resistors 

(because Zg = Rv will appear in both branches of the L-section circuit). 

At first sight it might have no practical interest, however in the 

next chapter it is shown that it can lead to the design of an interesting 

VE. 

The circuit corresponding to the first choice (i.e, 

Z„ = R + iX and Z_= R ) is shown in Fig. 3.10; the series combination 1 o J 2 v 
of (R -R ) and -£jX could be obtained by a NIC (Fig. 3.11). Since 
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this circuit requires the impractical aspect of two identical 

shaping elements, its performances will not be considered further. 

As a next step let us proceed to the interchange of R q and 

R^, proposed in section 3.2, which leads from equation (3.12) to 

equation (3.14); in this case our second choice becomes Z^ = R^ 

and Z^ = Rv + jX and we get the circuit in Fig. 3.12 which is far 

more attractive then the network in Fig. 3.10 because it requires 

only one reactance one-port and a single variable resistor. Our 

design examples will be based on this combination of Z^ and Z^. 

3.4.1. Example I_: fan equaliser. 

In order to realise a simple fan equaliser the reactive 

element x M , in the circuit in Fig. 3.12, is chosen to be a capacitor 

Co; the corresponding active network is shown in Fig. 3.13 in which 

the physical variable element is the resistor R^ = \ (R -R^). One 

can easily verify that when R varies between -R and +R , the actual 
j v o o 

resistor R^ varies between +Rq and 0. The loss frequency response 

of this equaliser is symmetrical about a reference flat loss OdB. 

The circuit uses only one op-amp which performs simultaneously two 

different tasks: the realisation of |T(s,Rv)| and provision of a negative 

range for Rv; whereas, for example, in the' case of Brglez's circuits 

either two amplifiers (Fig. 2.3) or an amplifier and a switch (Fig.2.4) 

are required for the same task. It might be argued in practice that 

also the circuit in Fig. 3.13 will require a second amplifier to provide 

buffering for the open circuit output. However,this can be avoided 

by using its resistively terminated version shown in Fig. 3.14 which 

is based on the network in Fig. 3.7 with p=l. In this case the 

reference flat loss in no longer OdB but 6;dB. Going back to the 

open circuit operation (Fig. 3.13), it is useful, in order to avoid 
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tendency to instability, to provide an output series buffer resistor 

RR to ensure that the real part of the output impedance . of the circuit 

is always positive. When the circuit is driven from a grounded 

voltage source, the output impedance is given by 

R (1 - s C RT) 
z _ o o v 
out 1 + s C (R -Rr) o o v 

If in a practical case R r varies between R /4 and 3 R /4, we should v o o 
choose a value of R R which is greater than 3Rq; this is 

because at high frequencies ke[ZQut ] is identical with 

R R ' 
z - -out R - R f o v 

and therefore max IZ I = 3R . Thus the problem of instability ' out o r J 

in this VE can be avoided. 

The practical circuit is shown in Fig. 3.15., and the measured 

loss frequency characteristics with the corresponding deviations 

from the computed results assuming ideal op-amps, are shown in Fig. 3.16, 

3a4a2a Example II: bump equaliser. 

The bump equaliser to be realised is also based on the network 

in Fig. 3.12 in which the shaping element X(w) is a series combination 

of a capacitor C and an inductor L (i.e. X(w) = wL - 1/w C ). r o o o o 

Since X is a purely reactive element, a lossy inductor would not be 

suitable. Furthermore our aim is to achieve a bump equaliser with 

a minimum number of op-amps. 
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The basic circuit is shown Fig. 3.17. For active RC 

realisation it is necessary to simulate the inductor and to provide 

a variable negative resistor R^. Figs. 3.18a and 3.18b show two 

inductorless circuits simulating the basic circuit in Fig. 3.17, each 

of them using two op-amps [18] . One amplifier is used to form 

a NIC of the type shown in Fig. 3.11, the other one is used to form 

a negative impedance inverter (Nil) with characteristic impedance 

R', as shown in Fig. 3.19. The difference between a, NIC and a Nil 

is that when a NIC is terminated by an impedance Z, it provides an 

input impedance -Z, while a Nil with a characteristic impedance RT 

when terminated by the same impedance Z has an input impedance -RT /Z. 

The operation of the circuits in Figs. 3.18a and 3.18b 
1 1 is self-explanatory; as to Fig. 3.18a, we note that if - = - - jwC 
L k 1 

(i.e. R is in parallel with a negative capacitor Cg), then 
R'2 R'2 2 Rv =— r— + jwC R* ; if we set R = — 0 we get a variable 

z r 1 

negative resistor R^ in series with an inductor Lq = Cg RT . 

A laboratory model of the bump equaliser circuit shown 

schematically in Fig. 3.18a has been built. The practical circuit 

is shown in Fig. 3.20; measured loss frequency curves, for various 

values of the variable resistor R' , are shown in Fig. 3.21 for a 
v 

resonant frequency f = 1.0'KH^. Their deviations from the ideal 

computed responses are also shown in Fig. 3.21. We note that 

the two resistors in series R^ and RT could be, in practice, replaced 
by a single variable resistor R" = RT + R*. J v v 

An alternative option to realise the negative resistor R^ 

in series with the inductor L q in the basic circuit 3,17 is the 

circuit in Fig. 3.22 [193; its input impedance is given by 



z. 
ln 

by setting R
4 

= R
3 

= R we get 

-54-

(3. 25) 

(3. 26) 

The overall resistor (R
1 

- R
2

) can be identified with the variable 

resistor R' and its adjustment is made by varying the physical 
v 

resistor R2 which does not appear in the expression of the 

simulated indu~tor L
0 

= c
1 

R
1 

R • R~ = (R
1
-R

2
) could be either 

positive or negative and it is equal to zero when R2 = R
1

• 

Since we are interested only in the negative values of R' we set 
v 

R
2 

> R
1

• We note that if R
2 

= 0 we obtain the simulated lossy inductor 

available in reference [20] • 

The whole bump equaliser is shown 1n Fig. 3.23 and the 

practical circuit is shown in Fig. 3.24. it has been designed to 
' 

provide an amplitude range of about + 10 dB at a resonant frequency 

f = 2.5 kH • The measured loss-frequency curves and their deviatLons 
0 z 

from the computed ones, assuming ideal op-amp, are shown in Fig. 3. 25. 

In the following we shall show that it is possible to rernove 

the extra output buffer amplifier and the buffer resistor associated 

with it. Let us then reconsider the circuit in Fig. 3.22; by 

substituting z
2

(s) = R
1 

t 1/s C
0 

for R
1

, the expression (3.25) 

of its input impedance becomes 

1 
sC 

0 

+ R' 
v 

(3- 2 7) 
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where 

R2R4 C1 
r ; - r i - + — r a ( 3 - 2 8 ) 

3 o 

Expression (3.27) suggests the replacement of the bump equaliser 

in Fig. 3.23 by its equivalent shown in Fig. 3.26 which is more 

attractive because its output can be taken from B instead of A. 

By doing so, we end up with a quasi Bode bump equaliser which does 

not need an extra buffer amplifier at its output. The required 

negative range of R^ can easily be provided by varying the physical 

resistor R,,. Since - R $R' $ 0 we have 
2 o v 

r c r c 

v c r i + c 1 v * r
2
 s r 7 c r o + r i + - r v ( 3 - 2 9 ) 

R. o 4 o 4 

By computational analysis we found that this circuit is slightly 

more sensitive to the finite gain bandwidth product f̂ , of the 

amplifier than the circuit in Fig. 3.23; this leads us to consider 

modifying the circuit. This modification consists of inserting a 

redundant resistor R q between A and B and using transformation B [213 

which shall be discussed in section 5.3.2. The transformation itself 

consists of connecting the ground terminal D to the output 

terminal of the op-amp and connecting C to the ground after disconnecting 

it from the output of the op-amp. The next step is to interchange 

the branches AE and AB but because they are identical, this inter-

change has no effect on the structure. The transfer function TT(s) 

of the obtained circuit shown in Fig. 3.27 is related to the transfer 

function T(s) of the original circuit (Fig. 3.26) by 

TT (s) = - T(s) (3.30) 
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A laboratory model of the transformed circuit has been built to 

provide a variable amplitude range of + 10 dB at a resonant frequency 

of 2.5 kH • The measured loss-frequency responses and their 
z 

deviations from the computed ones, assuming ideal op-amps, are shown in 

Fig. 3.28. 

3.5. Phase considerations and effects of the amplifier 

finite gain bandwidth product. 

In this section we investigate the effect produced on the 

phase by a quasi Bode-type VE, i.e. the interchange of R and R 
0 v 

as stipulated in section 3.2. We shall represent a Bode equaliser transfer 

function by TB and a quasi Bode equa1iser transfer function by TQB~ 

Let us rewrite the transfer function (3.12) which represents 

a Bode equa1iser transfer function and where M is chosen' to be 

equal to 1. 

R + jX(w) - R 
0 v 

R + jX(w) + R 
0 v 

(3.31) 

Its squared modulus is 

= (3.32) 

Its phase QB, using the definition 

T = ]T lexp (-j0) 

is 



= tan-1( X(w)1 
<PB I R +R 

~ 0 v ) 
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tan-1 ( 
I 

X(w) I 
R - R I 

0 v J 

For the corresponding quasi Bode equaliser (interchange of R and 
0 

R ), the transfer function is 
v 

R + jX(w) - R 
v 0 

= 
R + jX(w) + R 

v 0 

(3.33) 

(3.34) 

Its squared modulus function lS identical with that given in (3.32) 

and its phase function is 

= tan -l ( X ( w) l 
I R +R J 0 v 
l 

-tan -1 X(w) 
R -R 

v 0 

We are interested in llcp = ¢QB - <P'B From (3.33) and (3.35) 

we get 

= 

Thus 

-1 1( X(w) 
- tan I 

l 
R -R 

v 0 

X(w) 

R -R 
0 v 

-1 + tan ( X(w) 

l R -R 
0 v 

l 
I 

J 

(3.35) 

(3.36) 

Since R varies from - R to + R , (R -R ) varies from +2 R to zero. 
v 0 0 0 v 0 

This shows that the additional phase shift produced by using a quasi 
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Bode equaliser instead of a Bode equaliser is always positive, i.e. 

a quasi Bode equaliser is a non-minimum phase network. It should 

be pointed out that both <J>_ and A are functions of the variable 
b • qd 

resistance R . In table 3.1 some numerical values of <J?_ and c(> 
v B QB 

(in degrees) are given for four settings of R^; they correspond to 

those of a fan equaliser where X(w) is a capacitor C q = 20nF 

and R = 10 kSl. o 

f (kH ) 
z 

+ R V • QB 

0.20 
i 

6.76 151.88 
0.40 R / 4 11.48 127.20 o 11.48 
0.80 14.47 91.49 
5.00 4.72 19.23 
10.00 2.41 9.70 

0.20 
-

13.49 152.18 
0.40 R /2 o 22.90 128.87 
0.80 29.76 96.86 
5.00 11.60 23.71 
10.00 6.00 12.08 

TABLE 3.1 

3A5A2A Effects of the amplifier finite gain bandwidth product. 

The effect of the amplifier finite gain bandwidth product on the 
loss-frequency responses is now investigated. We restrict ourselves 
to the example of a fan equaliser presented in section 3.4.1. Let us 
start by deriving the input impedance Z of the NIC in Fig. 3.29; we 
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have 

ZNI = t ± (3.37a) 
0 

V -V 1 2 i = — - — - ( 3 . 3 7 b ) o 
r i 

V -V V 
X - l = (3.37c) 
R0 RT 2 v 

and 

V 1 - V 3 = - V 2 / G (3 .37d ) 

where 

G " w, 
1 = a + r 1 (s = jw) (3.38) 

T 

1/a is the d.c. gain of the amplifier and wT = 2 it f where f^ is the 

gain bandwidth product. 

Combining equations (3.37) we get 

R'- i (R0+Rf) 
z n i = - r l ' v 1 ( 3 - 3 9 ) 

v 5 c r 2 + r ; } 

which can be written under the following form 

1 - 1 .c1+ r , / r ' ) 

^ 1 1 + i (1+ r ' / r . ) 
G v 2 

where 

R., R1 1 v 
R. 

(3.41) 
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Equation (3.41) represents the expression of the desired ideal 

impedance which, as can be seen, is not affected by the interchange 

of R1 and R~ [22] • By doing so and assuming a <<1, equation (3.40) 

becomes 

= 

which represents the non-ideal input impedance of the circuit shown 

in Fig, 3. 30. 

Let us now set R1 = R2' 

1 - 2 
s 

wT 
ZNI = - R' 

v 1 + 2 s 
wT 

which is ~n the form 

= - R' 
v 

exp (-j¢) 

to obtain 

(3.42) 

(3.43) 

(3.44) 

This shows that the non-ideal impedance ZNI is independent of R1 and R2 ; 

whereas (3.40) shows that the distortions are dependent on R~ and R2• 

Therefore, if the NIC in Fig. 3.30 is used we should expect the deviations, 

from the ideal characteristics, of a quasi Bode fan equaliser to·be 

independent of R
2 

and R
1

• To illustrate this fact, let us compare the 

loss frequency responses of the circuits in Figs. 3.3la and 3.32a. 

In both cases Rt is chosen to be equal to R /5 which produces a loss 
v 0 

of about + 11.5 dB at an upper frequency f = 10 kH • The corresponding z 

deviations of the computed non-ideal responses from the ideal ones are 

shown in Fig. 3.3lb and 3.32b respectively. 



It would be interesting to search for a hypothetical network 

(NIC) which produces no phase shift, i.e. <|> in (3.44) is equal to zero. This 

has been done by adopting a strategy which consists of interchanging the 

inverting and non-inverting input terminals of the op-amp in Fig. 3.30 

and by inserting a small capacitor C' in parallel with R^. But, in 

practice, it was found that the compensated fan. equaliser was 

not stable. 

3.6 Conclusion. 

VE circuits with identical loss-frequency characteristics to 

those of a Bode equaliser, but of phase-frequency characteristics different 

from the corresponding Bode-type equaliser have been presented, and we 

referred to them as quasi Bode-type VEs. We have shown that they always 

produce an additional positive phase shift which may be unattractive in some 

applications. However in applications involving only speech signals, 

for example, loss frequency characteristics are far more important than 

the phase ones. In that case, in spite of the fact that the shaping 

impedance is restricted to a purely reactive one, it is always possible 

to design a VE with well defined loss-frequency characteristics. If it 

turns out that the phase is important or if the condition Z0(s) = jX(w) 

is not satisfied, then a quasi Bode equaliser is not suitable. In 

the following chapter (which is closely related to the present one), 

an attempt is made to overcome some of these restrictions. It is worth 

pointing out that the unsuitable equaliser circuit given in Fig. 1.2 

becomes suitable in the context of active RC quasi Bode-type VEs; i.e. 

if the range of the variable resistor R^ of this circuit is chosen 

to be C-Ro,0 ] instead of [0,°=] we obtain the VE in Fig. 3.14 which 

satisfies the squared modulus of Bode's transfer function (1.7). 
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V1 
Z1 

•c=z> 
7 2 

h 1-

o-

Z 3 
h h 

z 4 
•j h 

o v 2 

-o 
Fig. 3*1 unsymmetrical lattice 

circuit. 

v , o-
R1 

a / v — 

Z (s) 
{ Z Z h 
R1 

r v ^ r 

Fig. 3.2 

M 
V 1 o — c 

7-2 

72 

7\ 

Zi(1+i?) Z\ 
•oy2 v-| o—I h 

z l £ z 2 - z l ) 

o y 2 

zi In 

Fig. 3.5 symmetrical lattice 
circuit with terminating impedances. 

T= V
z 1 

Fig. 3.6 
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v i o — [ 
Zi(1+i?) 

± ( z 2 - Z l ) 

Z1 
•oV2 V-| o—i M 

Z1 

l \ [ 1 + 4 i ' W 

•0V2 

Z2/7 

ID-

Fig. 3-7 Fig. 3.8 

V1o—[ 
z 1 

l < z 2 " z 1 > 

• 0 v 2 v-i 

o-

T=(Z2-Z1) / (Z^zy 

Fig. 3.9 

jX. R, I • o v 2 

-fjx 

-R < R / R 
O x V A o 

Fig. 3.10 

NIC - o o — i — v v — i — v \ a — r — o 
Rb A Rb 

Fig. 3*11 negative impedance converter, 
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Fig. 3.12 quasi Bode-type VE. Fig. 3.13 

v2 

2R 0 

Fig. 3. 14 

Fig. 3.15 experimental quasi Bode-type VE 

op-amp TL 082 CL (fT =3.0 MHz) 

Vz 
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10.0T- as measured 
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0.0 
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2-5 k f l 

8 . 0 

8-0 

10. 
10 -0 

" -"• i i i i 

r v = 2 * 5 k a 

. 

i i i 

Ry = 7-5kiL 

i 

Fig. 3.16 performance evaluation responses of the quasi Bode 
equaliser in Fig. 3.15. 
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V C W t X - oy-

c 0 t = 

- r ; 

Fig. 3.17 basic quasi 
bump equaliser. 

Fig. 3.18a 

Fig. 3.18b 

r ' 

n i l 

r ' r ' r ' r ' 
0 — V V — i — W - o 

n i c 

r 

Fig. 3.19 negative impedance inverter. 
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Fig. 3.20 experimental quasi bump equaliser based 
on the circuit in Fig. 3-l8b, op-amps HA-2605-5 
( f_ = 12 MHz ) 



-68-

F R E Q - ( k H z ) 

Fig. 3«21 performance evaluation responses of the quasi 
bump equaliser in Fig. 3-20. 
a : measured loss m 
a^ : computed loss assuming ideal op-amps. 
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Fig. 3.24 practical quasi Bode-type bump equaliser based 
on the circuit in Fig. 3.23, op-amps T1 082 CL 
( fT = 3 MHz ) 
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FREQUENCY [kHz] 

0-15 

CD 
"o 
ro 
o c_ c_ 
cj 

-0-15 

Fig. 3*25 measured frequency response of the circuit in Fig. 3.2k 
and deviations from the ideal case. 
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Fig. 3.26 

V-j o-
10.95k.fl 

- a a a 
10-94kib 
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8 • 5 k j l 

77777 

Fig. 3.27 op-amps TL 082 CL (f =3MHz) 
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Fig. 3.28 measured frequency response of the quasi bump equaliser 
in Fig. 3.27 and deviations from the ideal case. 
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Fig. 3.31a (f = 1MHz) 
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Fig. 3.31b computed deviations for various values of R^ 
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Fig. 3.32a (f„ = 1MHz) 
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Fig. 3.32b computed deviations for R = 6, 12, 30k St 



CHAPTER IV 

A BODE EQUALISER USING A SINGLE OP-AMP 

4.1 Introduction. 

4.2 The new circuit. 

4.3 Practical examples. 

4.3.1. Fan equaliser. 
4.3.2. Bump equaliser. 

4.4 Discussion. 



-'lb-

CHAPTER IV. A BODE EQUALISER USING A SINGLE OP-AMP 

4.1 Introduction. 

We recall from Chapter 3 that the design of a quasi Bode 

VE is possible only if the shaping impedance Z (s) is purely 
0 

reactive. The purpose of the present chapter is to show that 

it is possible to overcome this restriction by deriving a Bode VE 

from the passive symmetrical lattice circuit of Fig. 3.5 and 

which uses the same number of op-amps as its corresponding quasi 

Bode-type VE. 

4.2 The new circuit. 

Before introducing the steps to be taken in the development 

of the new VE , let us first give the basic transformations which 

lead from a T-section circuit to its equivalent L-configuration 

and vice versa 

a - Transformation T ~ L 

The T-section circuit in Fig. 4.1. with impedances Zit'· ZB and 

ZC has a equivalent ~-configuration with Z'A' z' B 
and z' c 

where 

Z' ZA + ZB + 
ZAZB 

(4.la) = 
A 

zc 

Z' ZA + ZC + 
ZAZC 

(4.lb) = B 
ZB 

Z' ZB + ZC + 
ZBZC 

(4.lc) = c ZA 

if ZA = ZB = z we have 
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z 2 

Z; = 2Z+ (4.2a) 

Zl = Zl = Z + 2Z (4.2b) D L. c 

b - Transformation a->T. 

The A-configuration in Fig. 4.2 has its T equivalent with Z! , Zl 
A D 

and where 

ZA = i r ( 4 - 3 a > 
ZAZC 

Zl = — — (4.3b) 
B Z.Z 

z r z r 
Z' = B C (4.3c) 

I Z 

with SI Z = Z + Z + Z0. 
a b c 

Consider now the symmetrical lattice circuit in Fig. 3.5 

Its T-equivalent (for q55 0 and Z. = R , Z„ = R + 2Z ) is shown in n 1 v 2 o o 
Fig. 4.3 which, since it has an open circuit output, can be 

replaced by the inverted-L circuit as in Fig, 4.4. Although the 

circuit satisfies Bode's transfer function, it is very impracticable 

because it needs two variable resistors. One resistor Rv varies 
from -Rto +R , and the other one R1 varies from 0 to + R , therefore o o v o 
the adjustment of this equaliser could be only acceptable in the case of 

manual control. 
Let us reconsider now the circuit in Fig. 4.3. which, at 

first sight, seems to be very unattractive. But let us find the 

A -c onf iguration corresponding to the T-configuration between nodes 

ABC. Equations (4.2a) and (4.2b) give 
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R 2 (-2R )(2R ) 
z i =2r 4- — z = 2 ( 4 - 4 a ) v £ (R -R ) 2 R - 2R 

2 o v v o 

= r q ( 4 . 4 . b ) 

Z^ represents a resistor 2Rv in parallel with ~2Rq; and we know that 

R^ varies between -R and . This would require for the design of 

Z! . at- least two NICs which is not desirable. The solution lies in the A 
fact that for the whole range of variation of Rv, the corresponding 

range of Z^ is between -R and <». If we write Z^ in the following 

form 

Z! = - R + R" A o v 

we get the network in Fig. 4.5 in which the range of Z^ remains 

unchanged when R^ is positive and varies from 0 to » . The problem 

now is to realise the floating negative resistor (~"R0) series with 

R'\ This can be achieved by inserting Ro between two NICs; but 

if the circuit is driven from a grounded voltage source only a single 

NIC is needed. The final VE is shown in Fig. 4.6 which has a voltage 

transfer function 

Z (s) (R + Rr?) + R 2 
r rwv o o v o / / p \ T(s) = (4.5) Z Cs) (R + R") + R R" 

o o v o v 

It is a Bode transfer function (1.7) with M=l, 
Z0(s) 

y = R"/R and H(s) = 
V ° Z (s)+R o o 

This circuit requires only one op-amp to achieve the whole operation 

of a Bode-type VE, It does not need a circuit modifying switch nor 

extra basic op-amps. However, it requires an additional buffer output 

amplifier. In general buffer amplifiers do not contribute to the 

circuit performance deterioration caused by the gain bandwidth product 
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f^ being finite (this is no longer valid at frequencies far above 

the working frequency range) . Therefore we can say that a network 

which requires an output buffer amplifier is, in general, to be 

preferred to the alternative circuits requiring an op-amp as a circuit 

element. 

In order to test the stability of the circuit let us write 

the expressions of its input and output impedances. 

The input impedance is given by 

k 
Zin (s) = Z (s) + R (4.6) 

k+1 ° 

k = R"/R v o 

and when the input is short circuited, the output impedance is 

given by. 

22 + r 
Z f (s) = (k-1) R (4.7) 
O U t 0 Z (k+l)+kR 

o o 

Equation (4.7) shows that the circuit is potentially unstable 

for k <1 because Ref Z (s)] <0. In a practical realisation we came out 
across this problem of stability. Whenever k is less than 1 

the circuit starts to oscillate. To ensure an absolute stability 

we add a resistor R,, of a suitable value at the output port of the 
D 

circuit to make the real part of the overall output impedance 

positive. Thus, if Z q is a capacitor C q we have, 



R [Z (s)] 
e out 
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2 2 2 
2(k+l)+kR C w 

= R (k-1) 0 0 

0 (k+l) 2+(kR C w) 2 
0 0 

and RB should satisfy (4.9) 

> R (1-k) 
0 

2(k+l) + k R 2 C 2w2 
0 0 

(k+l) 2 +(kR C w) 2 
0 0 

at all frequencies a satisfactory RB is given by 

1-k 
k 

(4.9b) shows that the circuit can never be stable for k=O. But 

(4.8) 

(4. 9a) 

(4.9b) 

1n practice k does not reach zero; for example to get a gain of about 

20 dB at high frequencies, k should be about 0.1. In this case 

4.3 

= 10 R is satisfactory. 
0 

Practical examples. 

The circuit 1n Fig. 4.6 has been used for designing and 

testing both a fan and a bump equaliser [23] • 

In this example Z is a capacitor C with a measured 
0 0 

value 20.08 nF and R = 10.66 ~~. The practical circuit is shown 
0 

in Fig. 4.7; it is designed to provide+ 10 dB loss variation at an 

r frequency of 10 KH for four settings of R" • The minimum value uppe z v 

of R" to get this .:!.:. 10 dB loss variation is 3. 56 ~S2.. ; in order to 
v 

ensure the stability of the circuit RB should satisfy (4.9b), thus 
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R_ > 21.26 k JL. 

we have chosen 24 kitwhich is satisfactory. The measured responses 

and their deviations from the ideal ones are shown in Fig. 4.8; 

where a^ is the measured lo*ss and a^ is the computed loss assuming 

that the op-amp is ideal. The effect of the amplifier finite gain 

bandwidth product will be compared, in chapter 6, with non-ideal 

characteristics of the other VEs. 

bump equaliser has a biquadratic transfer function of the form 

given by (2.8). The transfer function (4.5) of the network in 

Fig. 4.6 is of this form when 

where Rq represents: a resis;tor hy which, the sharpness- of the hump 

is adjusted and RT the equivalent resistor of a lossy- inductor 

which can he simulated by an active RC circuit us.iiig one op-̂ amp, 

Among the variety of those circuits we have to find a suitable 

one for our purpose. For reasons that will become obvious at the 

end of this section, it is preferable to use a simulated inductor 

in which RT =0, However, the available single amplifier simulated 

inductor circuits which, satisfy this condition are not easily-

adjustable. The example [24] of the circuit shown iii Fig. 4,9 

illustrates this fact. By straightforward analysis we'fihd that if 

the following conditions are satisfied 

4.3.2. Bump equaliser 

We have seen in the previous chapters that a variable 

Z (s) = R + RT + j [wL - 1/CwC;)] C4.10I 

R, 
r 3 . r 5 . r 6 

g m u ) 
'2 

r / . c - v m '4 3 6 
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I© = R5R6/R3 (4.11b) 

then the equivalent inductance is given by 

2 
r . r 0 r 0 rc 

L = C 1 2 3 5 6 
o o R2 R4 (Rx R3 + R3 R4 + R4R6 + R6R3) 

This shows that the adjustment of L q can never be achieved by a 

single resistor without violating (4.11a) and (4,11b); this is 

also valid for the network in ref. [ 25 ] . Since the use of 

simulated lossy inductors becomes inevitable, let us then investigate 

some of those circuits. 

The Prescott circuit [26] shown in Fig, 4,10 has the 

following input impedance 

z l n c s ) = r.-l + r 2 + s c 1 r x g© 12] 

Here, the adjustment of L q = can be. achieved by a single, 

resistor (R̂  or R 2© However, if this circuit is: used in the design 

of our bump equaliser, the adjustment of the resonant frequency by R^ 

or R2 will result in a change of RT = R^ + R^ which will produce a 

variation in the bump height and this is not desirable. 

We shall now show that the single amplifier active RC 

circuit [27] shown in Fig. 4.11 can he, in practice, satisfactory. 

Its input impedance is given by 

1 + sC1 R, 
Z.Cs) = R„ C4,13] 

2 1 + s G f o 
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The equivalent circuit of this input impedance is not unique, 

but (4.13) can be written in the following form 

7 , , „ u ( w c 1 ) 2 r 1 r 2 +
 c 1 w v Z. (s) = R = — + s (4.14) 

i n z i + ( w c 1 r 2 ) z i + ( w c 1 r 2 ) z 

If R^ > R2 ,(4.14) can be interpreted as a positive inductance Lq 

in series with the associated resistance R* where 

C-R.(R.-R9) 
L = 1 Z Z (4.15a) 
° l+(w€ R )Z 

1 + (wC )2R R 
RT = R9 - V (4.15b) 

1 + (w C R r 

Both and R* are frequency dependent; hut if the circuit is in 

series with a capacitor C q = C^ and we asrsume that the resonant 

frequency is 

w = l /c / r T r T o o 1 2 

then 

c r r ( 1 - c ) 
L = 1 1 2 — ("4,15 c) 

1 + e 

2 r 
r ' = — c4.154) 

1 + e 

where z = R2/R^. 
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If Rg <<Rg we get 

Lo = C1 R1 R2 (4.15e) 

R1 = 2Rg (4.15f) 

This is a desirable circuit because L q can be adjusted by 
Rg without changing R1. Expressions (4.15e) and (4.15f) 
are valid at the resonant frequency and for e<<l with the assumption 
that the op-amp is ideal. 

The circuit in Fig. 4 . 1 1 was selected to provide R* and 
L q appearing in the expression ( 4 . 1 0 ) of Z q ( s). It is relevant to 
point out that the capacitor Cg should be close to C^ otherwise 
the above approximations are not valid. This circuit is used also 
in the next Chapter for designing bump equalisers. 

The experimental bump equaliser is shown in Fig, 4.12, 

its voltage transfer function is given by 

— 2 2. C4»16aJ 

o o 

t ( s ) 

where wq = 1/C / 'RgRg C4,101 

(R_ + 2R_) (l+k.)+R 
h = — 3 ± (4,16'c) 

(R^+2Rg) (l+k)+kRo 
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q = 
1+k 

r(R +2R_)(l+k)+kR -J o o q I o-
(4.16d) 

and k = Rn/R . v o 

The Q defined in (4.16d) is different from the practical 

Qp, an easily measurable term defined as (Fig. 4.13). 

w 

w 1 - w 2 

(4.17) 

where w is the resonant frequency and (w--w_) is the bandwidth o 1 2 
between the two frequencies at which the maximum transmitted signal 

power is halved (i.e. the signal level is reduced by 3 dB). 

In order to find the relationship between Q and Q^ let 

write the equation which gives w^ and xj^I from (4.16a) we get 

us 

w 2.2 2 0 
h - ) i f ) < h / p ) 2 

o J o 

I w \ 21 ( w \ 2 , .2 
1 + ( 1 ^ n 1 

O J O ft 

(4.18a) 

which can be written as 

A 2f 2- ) ' - ( £ - ) 2 + w ' x w ' o o Q2 (h2-2) 
+ 1 = 0 (4.18b) 

the roots w^ and w^ of this equation are related by 
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2 2 0 w i wo k 2 

s = ( ~ ~ ) + ( ) = 2 + < 4 ' 1 8 c ) w w r\ f\~ on 
o o Q (h -2) 

2 o w w 2 
P =( — ) . ( tr- ) = 1 (4.18d) w w o o 

Inserting (4.18c) and (4.18d) into (4.17) yields. 

1 / 2 Qp = = Qfl - y <4-19> 
7 S-2P h 

(4.19) shows that Q and Qp are not equal; combining this expression 

with (4.16c) and (4.16d) we get 

(1+k) f h 2 - 2 

Qp = (4.20) 
C w [ (R +2R0)(l+k)+R ] o o q Z o 

which gives the value of the practical in terms of the elements 

of the bump equaliser. 

Returning to the expression of wq (4.16b), we see that 

the resonant frequency can be adjusted by means of R^ without affecting 

the height h (4.16c) or the sharpness of the bump ('4.16d) and 

(4.20). * The last two parameters are adjusted by means of k (i.e. 

R^ ) and R^ respectively. However, as shown by (4.16c) and (4.16d), 

any adjustment of the height h by k leads to a variation in Q, and 

the adjustment of Q by R^ affects the height h. 

Let us now find the conditions to be satisfied in order 

to yield a bump, with prescribed h and Q at a resonant frequency wq. 

The combination of (4.16c) and (4.16d) gives 
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k = 
Q R C w + 1 - h o o o 

Q R C w + h - 1 
o o o 

(4.21a) 

R = 
q 

1+h 

2QC w o o 

R + 4R0 o 2 (4.21b) 

In the case where h > 1 which corresponds to k<l, the frequency 

response of the VE corresponds to having a gain. To make sure 

that k and R^ are always positive we should have 

h-1 
q :> (4.21c) 

•R C w o o o 

and 
1 + h 

Q <c (4.21d) 
(R +4R0)C w o z o o 

which can be written 

h-1 1+h 
S Q $ = (4.21e) 

R C w (R +4R0) C w o o o o 2 o o 

This shows that once the height h is chosen, Q is within limits; 

in order to increase the range of Q, it is advisable to choose R^ <<: 
or at least to satisfy the following condition 

R 
R < 2 (4.21f) 
Z 2(h-1) 

The bump equaliser in Fig. 4.12 was built to produce a 

maximum amplitude range of about +_ 10 dB at a resonant frequency 

f = 1 KH . R is chosen to be equal to zero and we have a Q (4.16d) o z q 
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of about 5.22 which corresponds to a practical Q^ of 4.6. The 

measured loss-frequency responses and their deviations from the 

computed ones assuming ideal op-amps, are shown in Fig. 4.14. 

The stability of the circuit is ensured by the buffer output 

resistor R^ = 68 k£2. 

In practice, the lossy inductor used can be replaced 

by any simulated inductance using one or two op-amps, depending 

on the required value of its Q. It is important to mention that 

a very wide range of variation of k is not desirable. This could 

be the case if the equivalent resistance of the simulated lossy 

inductor is not small enough. This can be explained by investigation 

of equation (4.16c). For simplicity we set Rq = 0, in this case 

the values of k and kT corresponding to a pair of symmetrical 

loss-frequency characteristics are given by 

R + 2(l-h)R9 
k = — - (4.22a) 

hR + 2(h-l)R0 
o 2 

hR + 2(h-l)R9 
kt = _ o (4.22b) 

R + 2(l-h)R9 o 2 

These equations are reciprocal and the change of h to 1/h leads 

from one of them to the other. If h>l then k<l and decreases when 

R0 increases and it is equal to zero when R0 = R /2(h-l). On 2 2 o 
the other hand kT>l and increases rapidly when R^ increases. Thus 

the minimum spread is obtainable for R2=0 and it is infinity 

when R0 reaches R /2(h—1) . In the case of the experimental 



-89-

circuit (Fig. 4.12), the 10 dB loss is obtained for R̂J = 1.2 kSL. 

and 55.83 ka; if we had R =0 we would have R" = 2.73 kit and 9 2 v 
24.55 kSi. 

4.4 Discussion. 

In this chapter a Bode-type VE structure has been presented,» 

It is derived from a passive symmetrical lattice network and has 

the advantage of not introducing extra positive phase shift unlike 

the quasi Bode equaliser discussed in chapter 3. Both the structures 

introduced in the present chapter and the previous one require a 

buffer amplifier at the output; and in order to avoid a tendency 

to instability in the input of this buffer amplifier, it is advisable 

to ensure that the real part of the output impedance of the VE 

is always positive. This is easily achieved by providing a series 

buffer resistance R„ of suitable value between the VE output and 
D 

the buffer amplifier input. 

As far as the shaping impedance Zq(s) is concerned we 

have removed its restriction to being a purely reactive impedance 

and the structure in Fig. 4.6 can deal with any general shaping 

impedance. 
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b 
o-f ] — o 

Fig. 4.1 T-configuration. Fig. 4.2 tS-configuration. 

a o — b 
r v j r y 

o — y m t 
Rv 

r ; = i ( r 0 - r v ) 

Fig. 4.3 Fig. 4.4 

given in Fig. 4.3 
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» 

Fig. 4.6 realisation of the negative resistor of the 
circuit in Fig. 4.3 by a negative impedance 
converter. 

Fig. 4.7 Tan equaliser based on the circuit in Fig. 4.6 
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Fig. 4.8 measured frequency response of the circuit in Fig. 4.7 and deviations 

from the ideal case 
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C o ^ 

Zin. 

R. 

r ' + -

Ri 

• r 

R 

/ / j / / 

Fig. 4.9 example of simulation of an ideal inductor 
by a circuit using a single, op-amp. 

Zin > i R 
l 1 

-o 

Fig. 4.10 Prescott's 
circuit. 

o 

Zin 

•AAA 
0 

C1 

o-

Fig. 4.11 Dutta Roy's circuit, 
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. 4.12 experimental bump equaliser using the non-ideal 
simulated inductor in Fig. 4.11 (op-amps AD 518 JH 
fm = 12 MHz ) 
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0-6 0 * 8 1-0 1-2 1 4 

F R E Q . (kHz) 
Fig. 4.14 measured frequency response of the practical "bump 

equaliser in Fig. 4.12 and deviations from the 
ideal case (the error represents the difference 
between the measured loss and the computed loss 
assuming ideal op-amps). 
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CHAPTER V. A NEW BASIC DESIGN FOR BODE EQUALISERS. 

5.1. Introduction. 

In the previous chapters we introduced quite a number of 

Bode-type and quasi Bode-type VEs and we have seen that at least, in 

theory, they comply with Bode's transfer function for VEs or its 

squared modulus (in the case of quasi Bode-type VEs). However, in 

practice each one has its own shortcomings. First, Brglez's circuits 

(Fig.s. 2.3 and 2.4) need either an extra NIC or a switch modifying 

circuit to cover the whole range of variation. Second, quasi Bode 

type VEs introduce a positive phase shift; and like the network 

introduced in Chapter 4 (Fig. 4.6), direct cascade connection is 

only possible when they are provided with a buffer amplifier at 

the output plus the need for a buffer resistance to overcome their 

tendency to instability. 

investigated and which is very useful in practice; and, as we shall 

see, it is a most flexible design. 

Let us consider the circuit in Fig. 5.1. Its transfer 

function is given by : 

In this chapter a new basic design [23 J for Bode VEs will be 

5.2 The basic network (28] 

T(s) (5.1) 

let (5.2) 
and 

z b (5.3) 
then we have 
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T(s) = 
Z F ( V Z E ) + ZBZE 

W V + ZBZD 
(5.4) 

We note that neither Z nor Z_ appear in conditions (5.2) and (5.3). 
r d 

Since our aim is to design a VE which does not have any constraint 

on its shaping impedance and on the element adjusting its loss (or gain); 

therefore one of the two impedances (Z_ or Z ) can be chosen as the 
jb d 

variable element and the other one the shaping element. However, 

this freedom is restricted when symmetrical loss frequency characteristics 

about a flat loss are desirable. Furthermore, in active RC realisation, 

priority is given to a grounded shaping impedance because when this 

shaping impedance includes a simulated inductance, the grounded one 

will require less op-amps than a floating one. In this case the 

only possibility left is to choose Z^ as the variable element and ZR 
the shaping impedance. 

Let us rewrite Bode's transfer function for VEs 

1 +yH(s) 
T(s) = M 

y + H(s) 

Comparing (5.4) and (5.5) we get 

M = 1 

Y = ZD/ZE 

and H(s) = ZF/(ZF+ZB). 

In order to cover the whole range of variation y varies over the range 

[0>°°]} therefore Z^ should cover the same range; the simplest way to do 

this is to choose Z_ as a variable resistor R . Z_ could be any 
D v F 

shaping impedance ^(s) which may consist of a number of elements. In 
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the practical network, shown in Fig. 5.2, we have chosen the 

reference resistance R = Z_ = Z_ which makes Z. = Z^ = 2R . 
o E C A B o 

The loss frequency response of this VE is symmetrical about OdB 

flat loss (obtained for R̂ ;=R ), and the full range of variation 

is covered by varying R^ from 0 to oo . At the outer limits of this 

range, the corresponding transfer function is given by : 
+1 

T(s) = 
Z (s) + 2R 

o o 

Z (s) o 

The advantages of the new circuit are that it uses only a single 

variable resistor to produce the required range of variation, it 

contains only a single op-amp and since the output terminal of the 

circuit coincides with the output terminal of the amplifier, the 

circuit is suitable for direct cascade connection without buffer 

amplifiers. This makes it more attractive than the previous designs. 

It might be argued that the use of a floating variable resistance 

to cover the range [0,co] may not be preferable, But in practical 

realisations, this range is not fully covered, and in most cases it 

is reduced to acceptable limits. In Table 5.1 some examples of 

range of variation of R are given. Zq(s) i-s assumed to be a pure 

reactance and the maximum loss is calculated for Z (s) = 0. For 
o 

example if Zq(s) is a capacitor, high frequencies are considered; 

and when Z (s) is an inductor, low frequencies are considered. In o 
the case of a series combination of a capacitor and an inductor 

Zo(s) = j [ w L - 1 / (wC) ] only the resonant frequency (f = 1/2 fLC) 

is considered. 
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R /R v o Loss(dB) range of R^ 

0.562 

1.778 

+5 

-5 
1.216 R o 

0.316 

3.162 

+ 10 

-10 
2.846 R o 

0.178 

5,623 

+ 15 

-15 
5.445 R o 

TABLE 5.1 

The table shows that in order to get a + 15 dB loss R varies between 
° — v 

0.178 R and 5.623 R which is less than 6 R . Therefore a floating o o o ° 

variable resistor should not be a problem. Furthermore, as we shall 

see in section 5.5, it is always possible to cover the whole range 

of variation by varying Rv over a range £ 0, > where m is 

arbitrary real and positive. It shall also be shown in Section 5.6 

that the structure in Fig. 5.1 could lead to a VE with both a grounded 

shaping impedance and a grounded variable resistor. 

5.3 Some active network transformations by terminal interchange. 

In this section two network transformations by terminal 

interchange shall be presented and shall be used in the following 

sections for the development of further equalisers. These transformations 

are applicable to networks containing a grounded output op-amp whose 
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output terminal is connected to the output terminal of the network. 

5 i 3 a l a j t r a n s f o r m a t i o n _ a [ 2 9 , 3 0 , 3 1 ] 

This is the well known transformation by which a network 

Ng with a voltage transfer function Tg(s) leads to a network Ng with 

a voltage transfer function Tg(s), where 

Tg(s) = 1/T (s) 

Let us investigate this transformation and consider the 

network Ng in Fig. 5.3 in which the output terminal of the assumed 

ideal op-amp Ag coincides with the output terminal of the network Ngj 

and where N q is the network remaining after the op-amp Ag is 

removed. 

The potential of the two inputs of Ag are equal 

VA(s) = V5(s) (5.6) 

and can be expressed in the general form : 

i j 

V4(s) all ai2 V. (s) l 

v5(S) a21 a22 V (s) o 

depend on the structure and connections of the network 

(5.7) 

N . o 
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From (5.6) and (5.7) we derive T (s) of N^ 

t x ( s ) = 
V (s) 

V.(s) l 

all " a21 
a 2 2 " a 1 2 

(4.21a) 

The interchange of the input and output terminals of N^ leads to 

the network N^ shown in Fig. 5.4. If (5.7) represents the relation 

for N^, the corresponding relation for N2 would be : 

V4(s) 

V5(s) 

l l l "12 

21 22 

V (s) 
o 

V.(s) 
(5.4) 

and the voltage transfer function T ^ W N2 3-8 

t 2 ( s ) = 

a22 " a 1 2 

all " a21 
( 5 . 1 0 ) 

Comparing (5.8) and (5.10) we get 

T2(s) = 1/T1(S) (5.11) 

we can therefore say if the conditions set above, are satisfied, 

the interchange of the input and output terminals of a network N̂ , 

with a voltage transfer function T^(s) gives a network N2 with a 

voltage transfer function X, ,(s) = 1/Tb(s). 

5.3.2. Transformation B [21 ] . 

This second transformation and its result shall be presented 

followed by an attempt to outline its proof. 
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Let us consider the network N^ (Fig. 5.5) whose output 

is connected to the output terminal of the op-amp A2 (A2 is assumed to be 

ideal) and which has a voltage transfer function T^(s). 

The transformation consists of interchanging Z^ and Z^, 

and connecting terminal 2 to the ground and terminal 6 to the output 

terminal of A2; the obtained circuit with a voltage transfer function 

T2(s) is shown in Fig. 5.6. 

T 2 ( s) and T^(s) are related by 

Z ! T 2 ( s ) = - -f- T^ (s) (5.12) 

The network in Fig. 5.5 can be represented by Fig. 5.7 in which the 

output voltage is represented by a voltage source eT^. The interchange 

described above leads to the networks in Fig. 5.8. The network in 

Fig. 5.8b is identical with the network in Fig. 5.6; where V. = e 
z 1 

and Vo = -e ~ ^ 

vo Z 
therefore T? = -2- = - - — T 

Z v 1 L2 l 

obviously, if Z = Z2 then T2 = - T . 

5.4 VEs derived from the basic network by terminal interchange. 

The two transformations described above are used here for 

the development of further Bode-type VEs. 

The interchange of the input and output terminals of the 

circuit in Fig. 5.2 (i.e. transformation A) leads to the circuit 

shown in Fig. 5.9; its transfer function is 
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T(s) = 
Z (R +R ) + 2R R o v o v o 

Z (R +R ) + 2R 2 o v o o 
( 5 . 1 3 ) 

We note that the loss-frequency characteristics obtained from the 
circuit in Fig. 5.2 by varying R^ over the range £ 0, ooj are obtained 

from the circuit in Fig. 5.9 by varying R^ over the range [oo, o] ; 
and, of course, the flat loss OdB is obtained from both circuits by 

setting R = R . The two circuits are 'inverse' one of the other v o 
and the choice in dealing with one or the other depends on the user. 
However, the circuit in Fig. 5.9 is more sensitive to the amplifier 
finite gain bandwidth product f^ than the basic circuit. This shall 
be shown in chapter 6. 

Let us now apply transformation B to the circuit in Fig. 5.9; 

the resulting circuit with a voltage transfer function 

Z (R +R )+2R R 
m / \ o v o v o / c i / n T (s) = - 2 — (5.14) 

Z (R +R )+2R O v o o 

is shown in Fig. 5.10. If transformation A is applied to this last 
circuit we get the VE shown in Fig, 5.11 whose transfer function is 

Z (R +R ) + 2R 2 
T O O = - ° V ° 2 . ( 5 . 1 5 ) 

Z (R +R ) + 2R R o v o v o 

It shall be shown, in chapter 6, that this VE and the one in Fig. 5.2 

have identical reaction to the effect of amplifier imperfections. 

The distortions due to this effect are also identical for the circuits 

in Figs. 5.9 and 5.10. 
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Th e shaping imped ance Z of the VEs m Figs. 5.10 and 

5.11 should be treated as grounded because in the first case it is 

connected to the output terminal of the op-amp, and the second case 

it is connected to the input terminal of the VE which is driven 

from a grounded voltage source. All the four circuits are stable; 

to prove this, let us examine the expressions of their respective 

input impedances shown in Table 5.2. 

Fig. number Zin(s) 

- 2R R + Z (R +R ) 
5.2 5.2 3* R 

V 

2R R + Z (R +R ) 
o V o 0 V 5.11 2R . 

2R R + Z (R +R ) 
o V o 0 V 5.11 2R . 

0 R (2R +3R )+ Z (R +R ) 
O O V O 0 V 

5.9 2 
2R -o 

2R 2 + Z (R +R ) -R o o o v v L J 

5.10 2R . 
2R 2 + Z (R +R ) 

O O O V 

0 R (2R +R )+Z (R +R ) 
O O V O O V 

TABLE 5.2 

The circuits in Figs. 5.2, 5.11 and 5.10 are short-circuit stable 

and the real part of their respective input impedances are always 

positive. The circuit in Fig. 5.9 is also short-circuit stable 

and the fact that Re [zin (s) ] becomes negative for Rv"^2Ro does 

not imply that the circuit is not stable; it only means activity. 

Passivity, which is one of the requirements of stability, could be 
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violated without disturbing stability [32] . One of the practical 

means of testing stability is the evaluation of the amount of 

positive feedback (which is less than the negative one in the case 

of the circuit in Fig. 5.9). 

5.5 VE with a prescribed maximum range of variation of 
the variable resistor. 

It has been mentioned in section 5.2 that it is always 

possible to reduce the range of variation of the floating variable 

resistor Rv of the basic circuit in Fig. 5.2 from [ 0,«>] to [ 0, mRo ], 

where m is arbitrary real and positive. To do this let us reconsider 

the network in Fig. 5.1 and let 

Z. = aR A o 

Z B = bR B o 

ZC = cR 
o 

Z = kR D o 

Z^ = eR and Z^ = Z (s) E O ± o 

where a,b,c,k,e are positive and real. 

The corresponding transfer function can be written in the 

following form 

[k(ae-bc)+ abe] R 
Z (s) + o 

T ( s ) = a(k+e) 
z (S) + -Msis> R 
o k+e o 

In this equation Zq(s) is the shaping impedance and k corresponds to 

the variable element. (5.17) is a Bode's VE transfer function if the 
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two following conditions are satisfied 

abe 
m = (5.18) 

be - ae 

a(c+2e) 
b = (5.19) 

a+c 

Condition (5.18) gives the maximum range of variation of the variable 

element (in this case k in (5.17) is equal to m);condition 5.19 allows 

the loss-frequency characteristics of (5.17) to be symmetrical around 

a flat loss OdB. It can easily be verified that when a=b=2 and e=c=l 

we get the circuit in Fig. 5.2 where the range of variation of the 

variable element is [0, If we assume that the needed range of 

variation should be [0,1] ^ in this case m=l and condition (5.18) 

becomes 

be - ae = abe (5.20) 

with the additional constraint 

be > ae (5.21) 

Combining (5.19) and (5.20) we get 

c'2 + ce(l-a) - ae(l+2e) = 0 (5.22) 

(5.22) has infinite (a,c,e) solutions. For the sake of simplicity let 

a=l, then we get 

c =/e(l+2e) (5.23) 

(5.23) gives infinite couple (c,e); but if we choose e=£, then c=l and b=l. 
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And if we make another choice for example e=4 we get c=6 and b=2. 

The first choice gives the circuit shown in Fig. 5.12 

with the transfer function 

Z (R +2R ) + R (R -R ) 
T(s) = ° ° V ° ° V (5.24) 

Z (R +2R ) + 3R R O O V O V 

and the OdB flat loss is obtained for R = R /4. v o 

The second choice leads the VE shown in Fig. 5.13 with the 

transfer function 

Z (4R +R ) + 8R (R -R ) 
T(s) - ° ° V ° ° V (5.25: 

Z (4R +R ) + 10 R R O O V O V 

4 and the OdB flat loss is obtained for R = - R . v 9 o 

The last two circuits (in Figs. 5.12 and 5.13) are not the only 

Bode-type VEs which have the range of variation of the variable element 

[ 0,1 ] (0^R v^R q), but there is an infinite number of circuits 

depending on the solutions of equation (5.22). This range [ o , l ] 

could be reduced or extended depending on the value of m in condition 

(5.18). Transformations A and B (section 5.3 ) can be applied 

to all those circuits. However, one should be careful when applying 

transformation B because the flat loss of the obtained circuits might 

not be any longer OdB. This fact is illustrated by the VE in Fig. 5.13: 

when transformation A is applied to this circuit we get the inverse of the 

transfer function in (5.25) and the flat loss is OdB. Transforming, 

the obtained circuit, by B gives the following transfer function 
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Z (4R +R ) + 10 R R O O V o v 
T (s) = -2 (5.26) 

Z (4R +R ) + 8R (R -R ) O O V O O V 

which indicates that the flat loss is at 6dB and not OdB. On the 

other hand if we apply the successive transformations to the VE in 

Fig.5.12, the flat loss OdB remains unchanged. In general the 

obtained flat loss, after transformation B, is given by 20 log b/a, 

In order to illustrate the capabilities of the basic 

structure in Fig. 5.1, the following section will show another 

attractive feature of this structure which is the development of a 

VE with both a grounded shaping impedance and a grounded variable 

resistor. 

5.6 A design with a grounded variable resistor. 

In this section we shall show that the basic network in 

Fig. 5.1 could lead to the design of a Bodertype VE where the variable 

resistor and the shaping impedance are both grounded. By "grounded" 

we mean that the relevant element is directly connected to the ground 

terminal or it is either connected to a grounded output terminal 

of an op-amp or the input terminal of a network driven from a grounded 

voltage source. In the basic network the impedances Z^, Z^, Z^ and 

Z_ are regarded as grounded. The only combination of these four 
f 

impedances that produces a Bode-type VE is when Z q is the variable 

resistor and Z_, the shaping impedance Z (s). 
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If R is a reference resistor and we set o 

Z = a R A o 

Z = b R B o 

ZD = d R (5.27) o 7 

Z = e R E o 

Z = R = kR C v o 

where a,b,d,e and k are positive and real; the transfer function 

(5.1) becomes 

Z (s) + R A(k) 
T(s) = 2 (5.28) 

Z (s) + R B(k) o o 

where 

abe + d(ae-bk) 
A(k) = 

B(k) = 
d(e+k) 

d+e 

a(d+e) 
(5 .29 ) 

Since k is positive, B(k) is always positive but A(k) becomes 

negative when 

ae(b+d) 

bd 

It is therefore essential to find the upper limit of the range [0, k^ ] 

within which k should vary in order to produce symmetrical loss-

frequency characteristics. 



-111-

The lower limit which is zero gives 

e(b+d) 
A(o) = 

d+e 
(5.30) 

T, / N de B(o) = 
d+e 

the upper limit km should satisfy 

A (km) = B(o) 
(5.31) 

A(o) = B (km) 

then the unique value of km is 

, ae km = —7-d 

we can therefore say that the basic network (Fig. 5.1) is a Bode-type 

VE with both a grounded variable resistor and a grounded shaping 

impedance only if 

ZA " Z B " ^ o 

zn = R = kR C v o 

ZF = Z o ( s ) 

the corresponding network is shown in Fig. 5.14; its transfer 

function is 

(d+e)Z (s) + ("e(a+d) - dk 1 R 
T(s) = 2 i — (5.32) 

(d+e) Z (s) + d(e+k) R o o 
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Comparing (5.32.) and (5.5) we get 

M = 1 

d(e+k) 
y = 

e(a+d) - dk 

(d+e) Z (s) 
H(s) = 

(d+e)Z (s) + e(a+2d) R o o 

ae • It can easily be verified that when k varies from 0 to — , Y varies 

from d to • This means that the whole range of variation a+d d 
[o, co ] of Y can never be fully covered by this new VE. Consequently 

the maximum symmetrical variable amplitude is within limits which 

have to be specified. 

ae • We know that for any k ( O ^ k ) , the maximum amplitude 

is obtained for Z (s) = 0; in this case (5.32) becomes o 

e (a+d) - dk 
T(k) = (5.33) 

d(e+k) 

at the outer limits of k, the maximum loss (or gain) in dB is given 

by 

a (dB) = + 20 log (5.34) 

This shows that the maximum amplitude that can be obtained by the VE 

in Fig. 5.14 depends on the ratio (a+d)/d. It is up to the designer 

to choose this ratio and also the other parameters depending on the 

requirements to be met by the equaliser. 
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Let us give an example : the aim is to design a 

VE (based on the network in Figs. 5.14) which gives a maximum loss 

of about + 6 dB when k varies between 0 and 1 (i.e. Ox'R < R ). 
— ^ v x o 

Equation (5.34) gives 

+ 6 = + 20 log 2 = + 20 log ~ 

• • • ae which gives a=d; and since the maximum value of k is 1 = — > a 

we get e=l; we can always choose a=d=l which leads to the circuit 

shown in Fig. 5.15 with a transfer function 

2Z (s) + (2-k)R 
T(s) = 2 ( 5 . 3 5 ) 

2Z (s) + (l+k)R o o 

Depending on the special application, Zq(s) and Rq have been left to 

be chosen accordingly. Whatever Zq(s) and Rq are, the loss-frequency 

characteristics of the VE are symmetrical about OdB flat loss 

(obtained for k = and the maximum loss (or gain) that can be 

reached is 6dB. 

Laboratory models of the VE in Fig. 5.14 have been built; 

they can provide a maximum loss of about +_ 14dB. The practical results 

shall be presented in section 5.7. 

Like all the circuits presented in this chapter, transformations 

A and B (Section 5.3) can be applied also to the circuit in Fig. 5.14; 

and because Z = Z , the OdB flat loss remains unchanged after the B A D 
transformation. 
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5.7 Some practical results. 

Some of the VEs we have presented in this chapter have 

been built and tested. The circuit in Fig. 5.2 was built for designing 

both a fan and a bump VE. Its corresponding practical fan equaliser 

is shown in Fig. 5.16. The measured responses and their deviations 

from the computed ideal ones are shown in Fig. 5.17. The practical 

bump equaliser is shown in Fig. 5.18. It was built to provide 

a range of the variable loss of about jt 10 dB at a centre frequency 

f = 1.5 kH . The lossy inductor used here is the same one as that o z 
in Fig. 4.11 and the comments given in sub-section 3.3.2 regarding 

the adjustment of the height and the sharpness of the bump are 

relevant in the context of the circuit in Fig. 5.18; these adjustments 

should be achieved in the same way. The measured loss-frequency 

characteristics and the error characteristics of the VE are shown in 

Fig. 19. 

A fan equaliser, based on the network in Fig. 5.9,was 

built to provide 10 dB variable loss at an upper frequency 10 kHz. 

The experimental circuit and the measured results are shown in 

Figs. 5.20 and 5.21 respectively. It can be seen that the responses 

obtained by this circuit when R varies from 2.0 kiLto 28.13 kil. J v 

are identical to those obtained by the circuit in Fig. 5.16 when R^ 

varies from 28.13 kit to 2.0 laSU 

The last practical example is based on the circuit in 

Fig. 5.14. It was designed to produce a maximum variable loss of 

14 dB when R^ varies between 0 and 14.2 k&. The experimental fan 

and bump equalisers are given in Figs. 5.22a and 5.23a, and the 

respective measured responses and their deviations from the computed 

ones (assuming ideal op-amps) are shown in Figs. 5.22b and 5.23b . 
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5.8 Conclusion. 

A new basic structure for Bode-type VEs has been presented. 

It is a very simple and flexible structure; it requires only a single 

op-amp to provide the basic operation of a VE. Moreover, the output 

terminal of this op-amp is directly connected to the output terminal 

of the VE which makes the structure suitable for direct cascade 

connection without extra buffer amplifiers. Potentially, the network 

in Fig. 5.1 is capable of producing an unlimited number of Bode 

equalisers. We have produced some of them via transformations by 

terminal interchange and others by changing the position of the variable 

element, i.e. the VE in Fig. 5.14 for which, at the expense of a 

constraint on the symmetrical variable loss, it was possible to have 

both the shaping impedance and the variable resistor grounded. 

It is worth pointing out that, for the network in Fig. 5.14, the 

variations of R. are no longer of the form 1/R (0 £R ) v ° v v 
but they become linear. 

The effects of the amplifier gain bandwith product on the 

VEs discussed in this chapter and the previous ones shall be investigated 

in the following chapter. 
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Vi O-

•o V 2 

zo 4 z e 
z p 

Fig. 5»1 n e w basic structure for Bode-type VE. 

2 R 0 2 Rq 

Fig. 5.2 VE obtained from the above structure 
by making Za=Zb=2Rq , Zc=Ze=Rq and 



-117-

- o 1 

- 0 . 2 
N 

b o-

4 o-
5 a -

6 o-

77777 

• o v 0 

Fig. 5-3 network N^ with transfer function T^ 

Fig. 5-4 network Np with transfer function 1/T 
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M o 

7777 

Fig. 5*5 network N̂  to be transformed by transformation B. 

N Z 2 M 

Fig. 5.6 network N„ obtained from network N by transformation B. 



Zi 

a 
gT-] 

7777 

(b ) 

Figure 5.7 networks equivalent to the one shown in Fig. 5*5 where a 
nullator is inserted between nodes 4 and 5 (it replaces the 
input terminals of the op-amp). In (b) the current source e/Z, 
replaces the voltage source e in (a). 

vo i 



e/Zi 

M 

i 
ro ? 

7777 

( a ) ( b ) 
Figure 5.8 networks identical with the one shown in Fig. 5.6 

(a) is obtained from 5»7b by transformation B 
(b) is identical with (a) where the input current source e/Z^ is 

replaced by a voltage source e. 
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Fig. 5*9 VE obtained from the circuit in Fig. 5.2 by-
trans format ion A. 

Fig. 5.10 VE obtained from the above circuit by 
transformation B. 

Fig. 5.11 VE derived from the circuit of Fig. 5.10 by 
transformation A. 
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( 0 < k ^ 1 ) 
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r o r o 

1 5 k x l 1 5 k j i . 

Fig. 5.16 experimental fan equaliser based on the 
circuit in Fig. 5.2 (op-amp TL 082 CL, f =3MHz). 
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1 0 . 0 - r 

5.0-

0 . 0 

-5.0-

-10.0 
0 . 0 

0-1 
0-0 

2.0 4. 0 6.0 8.0 10.0 
FREQUENCY [kHz] 

2-0 4-0 6-0 8-0 10-

CD 

r 0 

Rv =2 8-13 k i t 

sjh:--.' 

R v = 2 kSI. 

0-1 

Fig. 5.17 measured frequency response of circuit in Fig. 5.16 
and deviations from the ideal case. 
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1 5 k i i 
Vh O — , — V \ A -

7 - 5 k i i 

R v 7 - 5 k . a 
Rq = 1-49k<a 

1 4 - 7 n F = -

51k_a 

- o V 2 

Fig. 5«18 experimental bump equaliser based on the circuit in 
Fig. 5.2 (op-amps TL 082 CL, f =3 MHz). 



-126-

1 2 . b r 

8 . 0 — 

4.0 — 

-4.0 — 

- 8 . 0 — 

Rv = 5 5 k jl 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

f r e q u e n c y ckhz3 

0.0 1-0 2-0 3-0 
1 1 I I 

y 
= 1 k si 

y 

— — ^ \ s. 
N. 

! I I I 
= 5 5k JL 

Fig. 5.19 measured frequency response of bump equaliser 
in Fig. 3.18 and deviation from the ideal case. 



-127-

1 5 k j L 
•AAA— 

- a J X ^ L 

r v 

6•84n F = 

7-5k si 
7-Skrz. 

Fig. 5*20 practical fan equaliser based on the circuit 
in Fig. 5.9, op-amp TL 082 CL (fT= 3MHz). 

10. 01-

5.0 — 

cd -o 

03 
03 o 

0.0 

-5.0 — 

-10 . . 0 
0.0 2.0 4.0 6.0 8.0 10.0 

FREQUENCY CkHz3 

0-0 2-0 4-0 6-0 8-0 10-0 

Fig. 5.21 measured frequency response of the above circuit 
and deviations from the ideal case 
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35-58 ksL 
Vh o — , — v \ A 

35-58 ksl 

— v \ a — 
8 - 8 8 ki t 

o v 2 

- w — 
3 -56 kiL 

6-84 nF 

•o 

Fig. 5.22a practical fan equaliser corresponding to the 
circuit in Fig. 5-14 ( f - 3 MHz ) 

35-58 kja 35-58kjL 

Fig. 23a practical bump equaliser corresponding to the 
circuit in Fig. 5.14 ( f - 3 MHz ) 
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FREQUENCY CKHz] 

Fig. 5.22b frequency response of the practical fan equaliser 
in Fig. 5.22a and deviation from the ideal case. 
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FREQUENCY CKHzl 

Fig. 5«23b measured frequency response of the bump equaliser 
in Fig. 3.23a and deviations from the ideal case. 
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CHAPTER VI EFFECTS OF THE AMPLIFIER FINITE GAIN 
BANDWIDTH PRODUCT. 

6.1 Introduction 

In practice the distortions, due to the amplifier imperfections 

are characterised by the finite gain bandwidth product f of the 

amplifier. It will be assumed that all op-amps in the VEs under 

consideration here are identical and have the same f^. The investigation 

will not include the distortions caused by the variations of f^ due 

to environmental factors such as temperature. A comparison method 

between the various VEs shall be presented followed by an attempt 

to minimise the effects of f^. Finally some computed results shall 

be given. 

6.2 The comparison method. 

The purpose of this section is to show that some conditions 

should be met before proceeding at any comparison of the performances 

of the VEs we have presented in the previous chapters. Thus, two 

fan equalisers, for example, with different structures are not 

comparable unless they produce identical loss-frequency characteristics 

which means that the modulus of their respective voltage transfer 

function should be equal. In the following the circuit in Fig. 4.6 

will be used as reference for comparison. 

6.2.1. Fan equalisers. 

The transfer function of the reference VE in Fig. 4.6 

is given by 

Z (s) (1+k ) + R 
T (s) = — 2 2 2 (6.1) 

Z (s) (1+k ) + k R o o o o 
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where k = R /R varies from 0 to 00 and Z (s) is a capacitor C o v o o r o 
which is assumed to be the same for all the VEs to be considered. 

Let us find under which conditions the circuit in Fig. 5.1 

produces identical loss-frequency characteristics with those of the 

reference VE. First let 

ZA = = aR A 
ZB ' = bR 

zc • = cR 

Z^ = = R D V 
ZE " = eR 

z„ = = z F 0 

where R is positive and arbitrary and the parameters a,b , C j k and e to 

be defined are positive and real. Then we have 

(1+k ) + (R C w)2 a2(k+e)2 +[k(ae-bc)+abe]2(RC w)2 

° ° ° ° ( 6 . 2 ) 
(1+k )2+(k R C w)2 a2[(k+e)2 + k2(c+e)2(RC w)2] o o o o o 

which gives 

abe k 
k = (6.3) 

a(c+e) - k (ae-bc) o 

and 

a2(k+e)2(k 2-l)R0+{[k(ae-bc)+abe]2-a2k2(c+e)2}(1+k ) 2R 2 = 0 (6.4) o o 

Combining these two equations with conditions (5.18) and (5.19) and 

assuming that the parameter 'a' is arbitrary we get 
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b = R /R (6 .5a ) o 

mb 2 

e (6 .5b ) 
(a-b)(b+m) + 2bm 

ab (b+m) 
c 

(a-b)(b+m)+2bm ( 6 . 5 c ) 

mbe k 
k = o 

bek +m(c+e) o 

k varies within the range [0, m ] where m is positive and real 

and could be infinity. Equations (6.5) give the design parameters 

of the network in Fig. 5.1 which has the same loss-frequency 

characteristics as the reference fan equaliser. 

A set of VEs with identical loss-frequency characteristics 

is shown in Table 6.1 in which k represents the variable element of 

the VE to be compared with the reference VE; and m is the upper limit 

of the range k. In the case of the circuit No:4 (table 6.1), h Q 

represents a maximum amplitude. 

For simplicity, the bump equalisers to be compared contain a 

purely reactive shaping impedance which is realised by means of an 

active RC simulated inductor in series (or in parallel) with a 

capacitor Cq. Table 6.2 gives some bump equalisers with identical loss 

frequency characteristics where the circuit No:l is the reference VE; 

wq represents the centre frequency of the bump. The design parameters 

are found by following the procedure used for fan equalisers. However, 

6.2.2. Bump equalisers. 
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Continued:- (Table 6.1 ) 

VE DESIGN PARAMETERS TRANSFER FUNCTION 

aR aR 
m 

i — 
V. R 

dR eR 

No: 4 

e = 

a = 

h - 1 o 
m R 

e(h +1)R-R o o 

d = 

k = 

h -1 o 
e (k h -1) o o 

k +1 o 
0 $k $m 

T a ( s ) -
(d+e)+sCQR[ e(a+d)-kd] 

(d+e) + s C Rd(e+k) o 

o A/vV- T-
r r - 1 

c 0 _ r kR 

Ra 
Ra 

R = R 

k = k +1 o 
0< k $1 

-o No: 5 

T 5 ( S ) = 

1 - skC R o 
1 + s(l-lc) C R o 

Continued. 



Continued 

ve DESIGN PARAMETERS TRANSFER FUNCTION 

No: 6 

R = R /2 o 

k -1 
k = ; 

k +1 o 

k = 1-kp . 

1-k 

for k £ 1 o 

for k £ 1 o 

S W 1 T. (s) = -
6 

1+ s C R (1-k) 

1+ s C R (1+k) o 

SW 2 T*(s) = 1/T,(s) D D 

TABLE 6.1 



T A B L E 6-2 

CIRCUIT NUMBER DESIGN PARAMETERS TRANSFER FUNCTION 

Ra Ra 
k0 r , 

ro 5 7 7 R 

Lo 

0 <k < 00 ^ o *> T 2 1 ( s ) -
w 

o J 

(1+k ) + sC R o o o 

i - i ^ r w o. 
(1+k )+s C k R 

o o o o 

reference VE 1 

aR 
• A A A 

bR 

L 
cR I ^ eR 

b = R /R o 
mb' 

1 - I f / (k+e) + k(ae-bc)+abe RC s o 

(b+m)(a-b)+2mb 
t 2 2 ( s ) = 

kR Co 

Lo 

K > ) (k+e)+k(c+e)RC s o 

ab (b+m) 

No: 2 

C = 

k = 

(b+m) (a-b) + 2mb 
mebk 

ebk +m(c+e) o 

, o^k^m 



Continued:- (Table 6.2) 

i 
VJJ 
VO i 



Continued: 

TABLE 6-2 
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it might be useful to treat the circuit No:4 (Tables 6.1 and 6.2) 

as an example. 

By equating the respective squared modulus of T2^(s) and T 2 4(s) 

we get 

k 2 [e(a+d)-kd]2 - d2(e+k)2 = 0 (6.6) o 

(d+e)2(k 2-l)R 2 + {[e(a+d)-kd]2 -d2(e+k)2}(1+k ) 2 R 2 = 0 (6.7) o o o 

Combining these two equations yields 

(a+d) k -d 
k = e — (6.8) 

d(1+k ) o 

(d+e) R = e(a+2d)R (6.9) o 

From chapter 5 (Section 5.6) we know that the upper limit of k is 

given by 

m = ~ ( 6 . 1 0 ) a 

and the maximum amplitude that can be obtained (in this case at the 

resonant frequency) is given by 

h = (6.11) o d 

(6.10) and (6.11) give the first design parameter 
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by eliminating d from (6.9) and (6,11), and using (6.12a) we 

get 

m R 
a = — (6.12b) 

e(h +1) R-R o o 

with 
R 

R > 2— 
e(h +1) o 

Since a and e are known we can derive d either from (6.10) or 

(6.11). 

Finally the variable element k is easily found by dividing (6.8) 

by d and replacing (a+d)/d by h , thus 

k h - 1 
k = e - 2 — 2 (6.12c) 

k + 1 o 

o $k $m 

6.3 The optimisation method. 

For most of the VEs we have discussed in the previous chapters, 

there is no obvious method to compensate for the distortions caused 

by the finite gain bandwidth product f^ of the amplifier. And even 

if there is any compensation method, it will complicate the structure 

of the VE; and because, usually, some approximations have to be made 

to achieve this compensation, consequently the effect of f̂ , is not 

completely removed. 
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In the case of the VE using transistors (Fig. 2.14), two 

capacitors have been used [12] to compensate for the error due to the 

amplifier limitation. The method we have used for the circuit in 

Fig. 3.31 seems more attractive because it reduces the error without 

incorporating extra components into the structure. 

In this section a method of minimising the effects of the 

amplitifer finite gain bandwidth product f^ shall be presented. It is 

mainly efficient when applied to the VEs discussed in chapter 5. This 

method consists of finding the values of the components of a VE for 

which the deviations from an ideal reference response, within a 

working frequency range, are minimum. This, of course, does not 

involve any extra devices to be added to the basic structure of the 

VE. 

The method to* be. followed is exactly the same for all the circuits. 

By saying that, let us give an illustrative example. 

We have chosen the circuit No. 2 in Table 6.1 whose non-ideal 

transfer function is given by 

Z (s) a(k+e) +' R [k(ae-bc) + abe ] 
T (s) = — 2 : : 

a[Z (s)(k+e)+k(c+e)R] + £ {R(c+e)[ab+k(a+b)] +Z (s)Cab+(a+b)(k+c+e)]} o o o 

(6.13) 

! . f 

where Z (s) = 1/s C and - = a + j , where 1/a represents the DC o o G 
gain of the op-amp and f_ its finite ĵ ain bandwidth product. 
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An optimisation programme is set to calculate the modulus of 

(6.13); but first we have to find the parameters a,b,c,e and k. 

If the range of k is chosen to be [0, oo] then m should be 

equated to infinity in the expressions of the above parameters. Rq, C 

and k Q are defined by the reference VE (circuit No:l in Table 6.1). 

Because the parameter Taf is arbitrary we can set it to any positive 

value; then the procedure is very simple : the programme is initiated 

with an arbitrary value of R which gives 

b = R /R o 

since 'b' is known, we have 

b 2 
e = 

a+b 

ab 
C a+b 

eb k 
k = 2. 

c+e 

All the parameters are known for the initial value of R; this 

enables the programme to find, within the working frequency range, 

the maximum error (in dB) ER^ = 20 log T(s) 
To(s) (T (s) is o 

obtained from (6.13) by setting 1/G = 0). Then ER^ is compared 

with an arbitrary reference error (ERMAX) which is high enough and 

cannot be obtained in practice, therefore ER, < | ERMAX , and ER. 

becomes the new reference error. The next step is to frind the error 
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ER2 for R +AR; if | ER21>|ER^|another error ER^ is calculated 

for (R+AR) - AR/2; if |ER3|<|ER2| then the new reference error is 

ER^. The process of decreasing each new value of R continues till 

we reach (R+AR) - for which the error is ER.; if I ER. I < I ER. J 
2 l 1 i ' 1 l - l 1 

the process continues otherwise the error calculated 

for (R+AR) - rc^ + ^ . The programme continues increasing 

and decreasing each new value of R until it reaches an error ER^ 

for which | ER^ - , where z is a very small error (for 
—6 

example 10 dB). This means that no significant improvement 

of the distortions is to be expected in changing the new value of R 

by _+ SR. At this stage, the programme stops and gives the values 

of the parameters b,c,e,k, the error ERj and R. Table 6.3 gives 

the design parameters of the circuit No:2 (Table 6.1) for different 

values of R. For each value, the circuit produces the same frequency 

response as the reference VE (circuit No:l Table 6.1) for 
which R = 15 kft, k = l/n corresponding to a loss of - 8.297 dB o o J 
at an upper frequency 10 kH . 

R(kil) fT(MH ) l z a b c e k maximum 
error (dB) 

15 1 0.5 0.5 1/6 -0.03598 

13 3 1 1.1538 0.5357 0.6181 0.206 -0.03352 

7.5 2 0.6666 1.3333 0.4444 -0.02642 

2 7.5 0.8823 6.6176 2.2059 -0.01483 

TABLE 6.3 
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In some cases the improvement is not very significant; moreover, the 

value of ERj depends on and on the arbitrary value of ' af; it 

is advisable to test the programme for different values of a. 

In the case of bump equalisers, apart from the quasi Bode-

type ones (chapter 3), the inductor L q is simulated by the positive 

impedance converter (PIC) shown in Fig. 6.1 where R^ = R^ and R^ = ̂  ^ 
Jo o 

(Wq corresponds to the resonant frequency f Q = . This choice 

can be justified by investigating the non-ideal input impedance 

of the PIC. If we assume that the gain function G is identical for 

both op-amps we get 

Z.n(s) = R 
R2 R4 * 5 a 5 ( R 3 + r 4 ) ( R 2 + z o ( s ) ) 

R 3 Z 0 ( S ) + 5 ( l 5 ) ( v r 4 ) ( r 2 + z o ( s ) ) 

(6.14) 

1 s where - -a + and Z (s) = 1 / s C ; assuming that a is very small b wl o o 
and ignoring second and higher terms proportional to 1/ , we find the 

wt 
following expression 

2 l n < « . . co - m . v . * * " J v > ( , I 5 ) 
r 2 3 w C R 0 R, R, 

1 2 j - ( 1 + ± ) + ( 1 + 
W T 3 T 3 

which can be written 

Z.n(s) sL [ R (e) + j I (s)] o e m (6.16: 
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where 

R R R 
L = C 1 ^ 

° ° r 
3 

1 - — C R-C1+R./RJ + (l+R./R.) 
WT ° 2 4 3 T o 2 3 4 

Re'(e) 
2 

1 - 2 (l+R./Rj R 9 C — 4 3 2 o wT 

I (e) - ^ 
m w„ 

R3 / R4 " R4 / R3 

1 - 2 — R 9 (1+ R./Rj w T 2 4 3 

If R_ = R, then I (e) = 0 and the Q-factor of the simulated 3 4 m 
inductor is not affected by w [33] ; in this case 

Re(e) = 1 + — Z-Xx + R9 C w 2] w T C qR 2 2 o 

This function is minimum when R 0 = X — ; if w is the resonant z u w o 
frequency wq . and Rg is chosen accordingly, we can say that the 

effect of fg, on the simulated inductor is minimum at a fixed resonant 

frequency [34] . The PIC optimised by this method will be 

used as an element of the shaping impedances of the bump VEs to be 

compared; but it is not guaranteed that the optimisation method, 

described above, of the whole equaliser will lead to the optimum circuit, 
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However, as it shall be shown, the computed results are very close 

to the ideal. As far as the comparison is concerned, it would be 

simpler to use ideal inductors but this would have the disadvantage 

of depriving the reader from appreciating the non-ideal effect of 

amplifiers on the loss-frequency characteristics of RC fan equalisers 

and RC bump equalisers. 

6.4 Some computed results. 

We recall that in order to be able to make any comparison 

between the performances of the various VEs, regardless of their 

structure, we should make sure first that they are designed in such 

a way that they produce identical frequency responses. The ideal 

transfer function (6.1), corresponding to the circuit No.l (Table 6.1), 

is chosen as reference. In the case of fan equalisers we have : 

R = 15 kft and Z is a capacitor C =6.8 nF; the variable element k o o • o o 

is either equal to 3 or 1/3. These two values of k Q bring a 

maximum loss of + 8.297 dB at 10 kH . For each of the circuits — z 
given in Table 6.1, the deviations of the non-ideal responses from 

the ideal ones have been computed. Table 6.4 gives the design parameters 

of the various VEs and it is stated whether a particular circuit is 

optimised or not. As for the circuits 1,5 and 6, the optimisation 

method described in section 6.3 does not substantially improve their 

performances; for this reason it is not stated that they have been 

optmised. 

A glance at the error-frequency characteristics of the 

circuits 2 and 4 shows that the optimisation method has been 

successfully applied to them. A comparison of the error-frequency 

characteristics (from Fig. 6.2 to Fig. 6.15) of the whole set of 

fan equalisers leads to the following remarks : 
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TABLE 6.4 

Circuit 
number Design parameters optimised fT(MH«) 

Error-frequency 
Characteristics j j 

1 < 

1 
R = 15 kft o 
k = 3, 1/3 o 

3 

* 

j Fig. 6.2 
I 4 £ 

< i / 

m 00 \ 1 ! 
j j 
1 

R = 15 kft 
1 i i 

3 

t 
j Fig. 6.3 

) 
i 1 

a = b = 1 i 5 ! i 

c = e = 0.5 | No 
I 

5 1 
] j 

i 1 i Fig. 6.4 
' * 

i 

k = 3/2, 1/6 

5 1 
] j 

i 1 i Fig. 6.4 
' * 

a , 
1 ;i 

m 00 

i ? 

1 

2 
i 
I 

R = 2 kfi t 
t. 

A 

I 
2 a = 1, b = 7.5 3 ! Fig. 6.5 

1 i 
I 

c = 0.882, e = 6.617 

k = 19.852, 2.2 

i 
i 

Yes I 5 f 

3 i 3 * 

m 00 •j 

R 5 3 kfi 
I * 

a = 1, b = 5 1 Fig. 6.6 

c = 5/6, e = 25/6 ? 
i 

k = 12.5, 1.388 

m — ^ co 

R = 15 

3 a = b = 1 

c = e = 0.5 

k = 1/6, 3/2 

No 3 Fig. 6.7 

Continued on next page 
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Table 6.4. - continued. 

m = 4, h = 5 0 
R = 7.5 kft 3 Fig. 6.8 

a=2, d=0.5, e=l NO ' 

k=3.5, 0.5 1 Fig. 6.9 

m=4, h =5 ' 0 
R= 3.5 kft 3 Fig. 6.10 

a=10, d=2.5,e=l YES 

k = 3.5, 0.5 1 Fig. 6.11 

4 
m=9, h = 10 o 
R= 10 kft 

a= 1.421, d= 0.1579 NO 3 Fig. 6.12 

e = 1 

k = 7.25, 1.75 

m = 9, h = 1 0 
o 

R = 1.8 kft 

a = 28.125 YES 3 Fig'. 6.13 

d = 3.125 

e = 1 

k = 7.25, 1.75 

R = 15 kft 

5 R = 10 kft a 
k = 0.25, 0.75 

3 Fig. 6.14 

R = 7.5 kft 

6 R = 10 kft a 
k= 0.5 

3 Fig. 6.15 

TABLE 6.4 
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the VEs derived from symmetrical lattice networks 

(i.e. circuits 1 and 5) are affected most by the 

finite gain bandwidth product of the amplifier. 

- the circuit 4 derived from the new basic structure 

is thought to be the best circuit because, when 

optimised, the f T of the op-amp has only a minor 

effect on its frequency response. 

We note that the error-frequency characteristics in Figs. 6.3 and 

6.4 of the circuit 2 are identical with those of the circuit in 

Fig. 5.11. Apart from a multiplying constant (-1), their non 

ideal transfer function is the one given by (6.13) where a=b. 

This is also valid for the circuit 3 and the circuit in Fig.5.10 

which have the error frequency characteristics shown in Fig. 6.7. 

When a=b and c=e, their non-ideal transfer function is given 

by 

Z (s) (k+c) + 2kcR 
T ( s ) = + 2 t (6.17) 

Z (s) (k+c)+acR+- {2c(a+2-k)R+Z (s) (a+4c+2k) } 
o (j o 

The second set of error-frequency characteristics to be 

compared are those of bump equalisers. Apart from the quasi Bode-type 

equaliser, we have used the PIC in Fig. 6.1 to simulate the inductor 

needed for each of the VEs in Table 6.2. The values of the elements 

of this PIC are : R = R = R = R = 9.35 kft and C = 6.8 nF 
1 2 3 4 o 

which gives a resonant frequency £ q = 2.5 For all of the bump 

equalisers, the maximum loss at the centre frequency is about +_ 9.544 dB 
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corresponding to the two values 3 and 1/3 of the variable element 

k (k corresponds to the adjustable resistor of the reference o o 

circuit 1 in Table 6.2). Table 6.5 shows the design parameters 

of bump equalisers with identical frequency responses, they correspond 

to the VEs given in their most general form in Table 6.2. 

A comparison of the computed error-frequency characteristics 

(from Fig. 6.16 to Fig. 6.22) shows that the equalisers derived from 

symmetrical lattice networks (circuits 1 and 5 in Table 6.2) are 

the most affected by the finite f of the amplifiers. Figs. 6.18 

and 6.20 show the error-frequency characteristics of the circuits 2 

and 4 where the two op-amps of the PIC are assumed to be ideal; comparing 

these two figures with Figs. 6.17 and 6.19 we get an idea of the contri-

bution to the distortions due to the simulated inductor being non-ideal. 

The non-ideal effect of the op-amps on the frequency response 

of a bump equaliser is characterised by a slight change in the 

amplitude and by a shift in the resonant frequency, mainly due to the 

non-ideal simulated inductor. The obtained shapes of the error-frequency 

characteristics are explained by Fig. 6.23, where it can be seen 

that the error changes sign around the centre frequency, and its 

modulus is maximum at the flanks of the bump. In practice this 

maximum error can be reduced by a readjustment of the resonant frequency. 

A final point to be mentioned is that only the circuit 5 (Table 6.2) 

can be optimised by the method described in Section 6.3; in the other 

cases the improvement is of no significance. 
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Circuit: 
number Design parameters fT(MHa) error-frequency 

characteristic 
Circuit: 
number Design parameters 

basic 
op—amp PIC 

error-frequency 
characteristic 

1 R 0 = 11 ka 
k Q = 3, 1/3 

3 3 Fig. 6.16 

2 

m ^ co 

R = 11 kft 

a = b = 1 

c = e = 0.5 

k = 3/2, 1/6 

3 3 Fig. 6.17 

2 

m ^ co 

R = 11 kft 

a = b = 1 

c = e = 0.5 

k = 3/2, 1/6 

3 ideal Fig. 6.18 

4 

m = 4, h = 5 o 

R = 3.5 ka 

a = 4.4 

d = 1.1 

e = 1 

k = 3.5, 0.5 

3 3 Fig. 6.19 

4 

m = 4, h = 5 o 

R = 3.5 ka 

a = 4.4 

d = 1.1 

e = 1 

k = 3.5, 0.5 
3 ideal Fig. 6.20 

5 

R = 11 kfl 

Rg= 10.31 k^,R3=4.445ka-

R, =8.5 k-Q 

R 2 = 11.3,14.18 kft 

3 Fig. 6.21 

6 

R = 20 a 

R = 31.87 ka 

k = 0.5 

3 3 Fig. 6.22 

TABLE 6.5 
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Figure 6.7 

t l 

Figure 6.10 
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FREQUENCY IN KHZ 

Figure 6.9 

Figure 6.10 
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Figure 6.11 

Figure 6.10 
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Figure 6.13 
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FREQUENC.Y IN KHZ 

Figure 6.21 

Figure 6.10 
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£ = A (non-ider'•) - A (ideal} 

Figure 6.23 
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CHAPTER VII GENERAL CONCLUSIONS AND SUGGESTIONS 
FOR FUTURE WORK 

The main objective of this work was the design of high-

precision active RC Bode-type VE circuits in a form suitable for 

microelectronic implementation and which lend themselves readily 

to automatic control. It must be pointed out that none of the VEs 

we have developed and constructed (with discrete components) have 

so far been fabricated microelectronically. 

Whatever the reason for which an equaliser is used in a 

communication system, it should be of a very simple structure, easily 

adjustable and inexpensive. We aimed at structures where the basic 

VE operation is provided by the use of the following main elements 

a single op-amp. 

a single adjustable resistor, 

a single shaping impedance which may merely 

consist of a capacitor; but in general it might 

include several capacitors and op-amps, depending 

on the required shape of the frequency response. 

It is seen from the first chapter that the general transfer 

function of the structures we are dealing with is required to be of the 

form 

l+yH(s) 
T (s) = M (1.7) 

Y+ H(s) 

I.deaily y varies within the whole positive range [0,°°] and it is 
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related to the adjustable resistor by a positive multiplying 

constant; the frequency dependent function H(s) can be identified with 

a normalised driving point impedance function. 

In Chapter 3 we introduced the concept of quasi Bode-type 

VEs; this class of equalisers do not satisfy the transfer function 

(1.7) itself but only its squared modulus; consequently, their 

corresponding shaping impedance is restricted to a purely reactive 

one. Apart from this restriction, they can conceivably be used 

in applications where phase characteristics are not of paramount 

importance (e.g. speech). 

A new basic structure for Bode-type VEs (Fig. 5.1) 

has been developed and presented in chapter 5. The capabilities 

of this structure have been widely investigated; its inherent 

potential in leading to novel active RC VEs with prescribed requirements 

on both the variable range of the adjustable resistor and the maximum 

variable amplitude highlights its flexibility and exhibits its 

superiority over the existing structures. 

At various stages, in this work, we have given some practical 

examples which have shown that nearly ideal performance characteristics 

can be obtained with most of the significant number of VEs we have 

developed. However, as revealed in chapter 6, the responses obtained 

from the computer-simulated models have shown that the VEs derived 

from balanced lattice networks (Chapters 3 and 4) are more sensitive 

to the effects of amplifier imperfections. 
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One of the major problems, we came across in this work, 

was the practical realisation of bump equalisers satisfying a biquadratic 

transfer function of the form given by (4.16a). This, as already 

pointed out in section 4.3.2, is due to the fact that the requirements 

for the needed active RC simulated inductor are not fully met 

by any of the existing circuits. We did however overcome this 

obstacle - via justified approximations - by adopting the circuit 

in Fig. 4.11. Nevertheless, it would be of great practical value to 

develop an alternative single op-amp simulated inductor, easily 

adjustable and less sensitive to the effects of the amplifier 

imperfections. Further points that would be significant and of direct interest 

to be investigated include the following: 

- electronic control of the variable element R . 
v 

- reduction of the phase of quasi Bode VEs. 

- independent adjustment of the amplitude and the phase by two variable 

resistors. 

- reduction of the effect of f^ on the loss frequency characteristics of 

the circuit in Fig. 4.6 and the quasi Bode equaliser developed in Chapter 3« 

Salient contributions of original nature contained in this thesis 

include the following: 

— the quasi bump equalisers in Chapter J>. 

— the structure of a Bode equaliser in Fig. 4.6 . 

- the-basic structure in Fig. 5-A 

- the use of transformations by terminal interchange in developing the TSs 

in Figs. 5.9, 5.10 and 5.H. 

— the reduction of the range of the variable element from [0,CO] to [o, m] 

(i. e. the circuits in Figs- 5-12 and 5.13). 

- the development of a design with a grounded R (i.e. the circuit in Fig.5- 14). 
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