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ABSTRACT 

This thes is d e s c r i b e s the development of a pass ive optical 
s y s t e m for the formation, in real t ime , of the two dimensional cos ine 
Four ier transform of a polychromatic , incoherent, two dimensional intensity 
distribution. The generated transform is itself an intensity distribution 
and as such can b e ei ther p r o c e s s e d by an optical f i l t er , or be directly 
recorded, by a conventional technique, for subsequent electronic process ing . 

The s y s t e m is based on the wavefront folding and shearing 
interferometer which conventionally produces an interference pattern 
whose spat ial ly varying vis ibi l i ty is directly related to the input object's 
Four ier transform. The in ter ferometer requires that the two dimensional 
input object be spatially incoherent and quasi-monochromatic. The 
particular development descr ibed here is the extension of the interferometer 
to accommodate source e m i s s i o n over the full v is ible spectrum. This i s 
achieved by introducing spatial ly and chromatically varying degrees of s h e a r 
to create an achromatic interference pattern. The n e c e s s a r y shearing 
function has been rea l i sed with a pair of mutually inclined diffraction grat ings . 

A theoretical analys is of the instrument i s presented for two 
dimensional input objects and their transforms, comparing the spectra l ly 
compensated interferometer with other techniques for producing Fourier 
transforms, and with other achromatic fringe s y s t e m s . The design and 
real isat ion of a one dimensional implementation of the instrument is d i scussed . 

An experimental investigation of the one dimensional interferometer 
is detailed, showing the manner in which the Fourier transform was obtained 
from a 1 cm wide object illuminated with white light. The s ine function transform 
of the s l i t modulates the v is ibi l i ty of over 400 essent ia l ly white carr i er fr inges . 
The 5th s ide lobe of the transform w a s detectable. Finally, the ef fects of the 
bias intensity level on a subsequent reconstruction of the original distribution 
are d i scussed . 
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CHAPTER I 

Two Dimensional Information 

Many two variable functions describing disturbances of interest 
may be presented as two dimensional light distributions. Typical examples 
of such light distributions would range from astronomical sources to 
microscopic images and from C.R. T . , displays to laser signals. Not 
all two variable functions when displayed in two dimensional space are 
in such a form that the information about the event of interest is readily 
discernable. Hence some form of two dimensional signal processing is 
necessary in order to extract the required information. This processing 
may involve recognising characters , e i ther alphanumerics or some 
predetermined patterns .enhancing the edges of the given function and 
removing image degradations. 

The various two dimensional signal processors that have been 
devised to date can be divided into two groups; those that operate in the 
image plane where the function is displayed, and those which produce 
one of several possible transforms of the function and then operate on 
this transform. The main advantage of the former group is that the 
information is processed directly without the need to pass through several 
intermediate s tages , where some of the information could be lost or 
distorted. Against this, the fundamental disadvantage is that any processing 
of a given feature f i r s t requires that the entire image plane be scanned to 
locate the given feature. In contrast, using a judicious transform, the 
information about the given feature can be located in a specified area 
regardless of the exact position of the feature in the image plane. The 
apriori knowledge of the character's transform greatly facilitates 
processing the original function. 

1.1. General Signal Process ing 

The two most successful techniques developed to date to implement 
two dimensional signal processing are based on digital electronic sys tems 
and on optical analogue sys tems . The actual form of processing performed 
by the digital sys tems will depend to a large extent on the computing fac i l i t ies 
available. The general purpose computers are better suited for image 
plane f i l tering due to their ability to uti l ise a large range of flexible computer 
programs. This enables the computers to implement a wide range of mathematical 
operations designed for digital f i l ter ing (Crouchiere and Oppenheim 1975). 
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The most widely used concept in this type of processing is 
correlation for feature recognition (Wood and Treitel 1975, Stockham 
et al 1975) and deconvolution for removing image degradations 
(Sondhi 1972). However, these general purpose computers are 
usually much s lower in generating various transforms of the input 
data than special , purpose bui l t , computer sys tems (Allen 1975, 
Freeny 1975) which have been designed to produce and then f i l ter 
only one speci f ic transform. 

In general , digital signal process ing , based on computers 
has the merits of flexibility in design and in languages, and hence in 
programs, giving the processor a wide and powerful operating range. 
Secondly, the operations involved are virtually noise free and hence 
are infinitely repeatable. The two major disadvantages s tem from 
the fact that the operations of all e lectronic sys tems are limited to 
one dimension. Primari ly this implies that the input image must 
be sequentially sampled at an appropriate rate and a binary number 
associated with the magnitude of the light signal at the particular 
sample. This digitisation of the input must inevitably introduce a 
certain amount of error. Secondly, due to the limitation of operating 
on a function of one variable at a given instant, the two dimensional 
input signal has to be considered as a sequence of one dimensional 
s ignals . Clearly, this is time consuming and presents a finite time 
delay between the arrival of the signal and the presentation of the 
processed information. Hence, process ing signals in real time, that 
is with a time delay which is of no consequence in a practical sys tem, 
may be very difficult. 

Two dimensional signal process ing can a lso be performed 
by optical analogue sys t ems . A two dimensional wave propagating 
through an optical sys tem will be modified by the two dimensional transfer 
function of the system. Hence, if the transfer function can be made to 
represent some form of f i l ter , then the two dimensional information on 
the wave will be processed instantaneously. This ability to handle two 
dimensional information in real time g ives the optical signal processors 
a distinct potential advantage over the digital sys tems . 

Optical analogue sys tems can a l s o operate directly on the image 
or produce a transform of the image. In the f i r s t instance, the transfer 
function could be some form of matched f i l ter recognising a given 
character from a known alphabet. Or, secondly, and more usually, 
the transfer function of the optical s y s t e m gives r i se to an output which 
can be related to the Fourier transform of the original input function. 
Different optical processors generate outputs that have diversif ied 
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relationships with the exact Fourier transform of the input. Thus 
before proceeding with a discussion of the various processors it is 
useful to clarify the meaning of a Fourier transform of a spatial 
function. 

1.2. Fourier Transforms 

A two dimensional Iburier transform can be associated with a 
two dimensional energy distribution, g ( x , y ) provided that this input 
function has only a finite number of discontinuities and that it is 
integrable over its spatial extent. If these conditions are satisf ied 
then the Fourier transform is defined by 

oo 

G ( p , q ) = g ( x , y ) e x p - j 2 n ( x p + yq) dxdy 1.1 

-oo 

where p and q represent the Fourier frequencies . Since g ( x , y ) is 
a spatial distribution, G ( p , q ) must also represent an energy 
distribution in two dimensional space. Thus the Fourier spatial 
frequencies p and q are directly proportional to the distances 
along an orthogonal s e t of axes in the co-ordinate frame defining the 
transform plane. The above integral can also be considered as 
representing the transfer of energy, or information from a particular 
spatial periodicity in the image plane, to a point whose precise position 
in the transform plane, is determined by the wavelength of the periodicity. 
Thus the input object can be described in terms of a set of spatial 
periodicit ies whose complex amplitudes are given by G ( p , q ) . 

Perhaps the most significant advantage of the Fourier plane 
over the image plane in signal process ing is that the magnitude of the 
spatial frequency spectrum is independent of the input function position 
in the image plane. Thus if equation 1.1, represents the spatial 
spectrum of the function g(x,y)then for a shift in the position of the 
function of (+a,+b) t o g ( x + a , y + b ) the transform becomes 

oo 

G'(P.q) = J j g (x+a , y+b) exp - j2II(xp-t-yq) dxdy 

-oo 
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oo 

= expj2ri(pa + qb) J J g ( x + a , y+b ) exp - j2ri|p(x+a) + q (y+b d (x+a) d(y+b) 

-oo 

= expj2 H (pa + qb ) G (p, q) 1 . 2 

Which is c l ear ly the transform of the original undisplaced 
function multiplied by a phase t erm. Hence , the location of the spatial 
spectrum remains invariant f o r input function displacements . Knowing that 
the transform of a given feature wi l l a lways appear in the same area , 
regardless of the feature 's position in the image plane, greatly faci l i tates 
the process ing of the given feature. One of the s imples t forms of process ing 
in this Fourier plane is to place a binary mask at the centre of the transform, 
thus removing the low spatial f requenc ies in order to enhance the edges or 
differentiate the input function. Clear ly , more complicated masks , even 
holograms containing phase information, can be placed in the Fourier plane 
to rea l i se other f o r m s of proces s ing . 

This form of f i l ter ing can b e considered as a product, in the 
transform plane, of the f i l t er function H ( p , q ) and the transform of the 
function, G (p, q ) . This product can b e related to an operation in the 
image plane by taking the Four ier t rans forms , thus 

/ oo 

0 ( x , y ) = j ( J H ( p , q ) G ( p , q ) exp j 2 r i ( p x + qy) dpdq 

-oo 

I f 

CO 
oo 

H ( p , q ) { 1 / g ( r , s ) e x p - j 2 n ( p r + qs )drds>exp j 2 l l ( p x + q y ) dpdq 
-oo 

-oo 

oo oo 

g(r,s)< H ( p , q ) e x p j 2 n ( p j x - r [ + q j y - s [ ) dpdqi drds 
-oo 

CO 

-oo 

= /1 g ( r , s ) h ( x - r , y - s ) drds 1 . 3 

-fOO 

which can b e recognised as a convolution integral. Hence, complicated 
convolution operations in the image plane reduce to s imple multiplications 
in the Four ier plane. 
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The Fourier transform as defined in equation 1 .1 . , is a 
l inear and unique mapping from the image plane x , y to the spatial 
frequency plane p ,q and hence the inverse transform can be 
readily written as 

oo 

S ( x , y ) = / / / G ( p , q ) exp j 2 n ( p x + q y ) dpdq 1 . 4 
V 
/ 

-OO I 
/ 

Thus the information in the p r o c e s s e d transform can be 
readily transferred back to the image plane by performing the inverse 
Fourier transform as defined above. However, a result of far greater 
practical s ignif icance is the consequence of performing two succes s ive 
posit ive transformations on a given s ignal . Thus, the result of such an 
operation g1 (x,»yf) is given by 

col 

g' (x',y)=JJ/G(p,q) exp - j2r i (px l + qyT) dpdq 
-OQ 

O O OOi 

M h 

y ) exp - j 2 n (px+qy) dxdy | e x p - j 2 n ( p x t + qy') dpdq 

- o o - o o / 
C O / 

J f f f j g ( x > y ) e x p - j 2 n | p ( x + x ' ) + q ( y + y ) | dxdy dpdq 
— oo 

f f l °° / 

J Jig ( x , y ) | J j j e x p-j2njp ( x+x') + q ( y + y f ) ^ dpdq } dxdy 

I -co 

The integral inside the brackets may be expressed as fol lows:-
+ a 

l im J ^ e x p - j 2 n | p ( x + x ' ) + q ( y + y ' ) | dpdq 

- a 
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lim j sin 2[]a (x + x ' ) s i n 2 E I a ( y + y ' ) 

2n(x + x') 2n(y+y') 

5 (x + x ' ) <5(y + y ' ) 

<*(x,y) 5 (x + x ' ) 6 (y + y ' ) dxdy 

- C D 

S f x ' . y ' ) = g ( - x ' , -y ' ) 1 . 5 

Thus a real sys tem producing a transform of an input function 
can be used to reconstruct the function. The only difference between 
this reconstruction and that obtained with an inverse transform is that 
this reconstruction is inverted. However, for all practical situations 
this is of little or no consequence. 

1. 3. Propagation of Light 

The mode of operation of the optical sys tem as suggested in section 
1.1. , depends on the propagation of light waves , hence it is necessary to 
consider the nature of optical sources and the f ields that are generated by 
them. Although information when displayed as a light distribution is always 
perceived as an intensity function, a s ing le point radiating a t a discrete 
wavelength generates an electro-magnetic field over which the amplitude 
and phase are well defined. Therefore, when considering the effect of an 
optical s y s t e m on such an elementary point radiator, that point must be 
described in terms of a complex amplitude, or even more precisely in terms 
of its e lectr ic and magnetic vectors . 

The rigorous Maxwellian electro-magnetic approach does not 
readily lend itself to complete solutions in all but the s implest situation 
(Somerfeid 1954). However, provided certain restrictions are admitted, 
a s impler sca lar technique, based on the amplitude of the electric vector 
can be success ful ly used. These restrict ions are significant when the 
behaviour of electric and magnetic components of the light waves is 
important, notably in the vicinity of objects with dimensions comparable 
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to the wavelength of light. Therefore, small apertures, f ie ld distributions 
within several wavelengths of the source and polarisation effects must be 
treated with caution. However, in practical circumstances these restrict ions 
are rarely an imposition. 

The propagation of a light wave can be described by the general 
wave equation 

_ 1 fo 

Where V* is the Laplacian differential operator and c is 
the speed of light in vacuum. For an isotropic point source situated at 
x ' , y ' , o in a cartesian co-ordinate sys tem, this wave equation will be 
sat is f ied by a propagating function of the form 

vj, = a cos 
2 

j k | ( x - x ' ) J + (y - yT)*+ z a | * - wt - <£ j 

Where a and <£> are positive real constants and k 
is the particular radiation wavenumber defined by 

k - ^ k
 x 

Although this propagation function is not defined at the source 
x , y , o it does not lose its validity in the general f ield more than 
several wavelengths from the source where the scalar theory is applicable. 
For ease of mathematical manipulation, the above function can be 
represented by an exponential 

* = i V e x p j | k | ( x — x')®+ ( y - y ' f + z f * - cot | 1 .6 

Where V is a complex constant. 
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Due to the ease with which the propagation of a plane wave 
through a sys tem can be analysed, it is convenient to describe this 
spherical wave emanating from the elementary point source in terms 
of a s e t of plane waves propagating in directions normal to the 
spherical wavefront. Thus if each of these plane waves is assigned 
an appropriate amplitude and initial phase, the complex amplitude 
distribution across the source wil l b e exactly represented. A 
typical uniform plane wave, of complex amplitude U propagating 
in a direction such that its normal makes angles of d, X, with the 
x, y, z axes respect ively , can be represented by 

U exp j < 2IT(xu + yv + zw) - wt > 

where u, v ,w are spatial frequencies defined by 

u _ COS d V _ cos X w = COS 

This equation can be s impli f ied by omitting the propagation 
term w t which remains invariant whilst the wave propagates 
through an isotropic medium, and by omitting the spatial frequency 

w as it is determined by the values of the other two spatial 
frequencies in the relationship 

u* + v1 + w x = 1 .7 

Hence, the typical plane wave can be written as 

Uy (u, v) exp j2 n (ux + vy) 

with u, v determining the direction of propagation of the plane wave 
and Ux(u,v) its amplitude. As suggested earl ier, the source complex 
amplitude can be expressed by the sum of a number of plane waves each 
of which propagates in a different direction. Therefore, the complex 
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amplitude distribution V (x ,y ) in the source plane is given by 

V ( x , y ) = U4( u, v ) exp j 2 II (ux + v y ) dudv 1.8 

This description is known as the angular spectrum of plane 
waves . The l imits of integration are taken from - cx> to + o° in 
order to have the integral in the standard Four ier form, however, they 
must be treated with caution. Clearly for values of u and v greater 
than | l | the direction cos ines are larger than unity, in which case 
propagation can only be defined in terms of imaginary angles. The plane 
waves produced under such conditions are evanescent waves which osc i l la te 
in planes parallel to the source plane, but are attenuated exponentially in 
the normal direction. Thus their contribution to the f ie ld beyond the 
immediate vicinity of the source plane i s negligible and the practical 
integration in equation 1. 8. , is performed between i . With 
this equation it is poss ible to a s soc ia te an inverse , that i s , the posit ive 
Fourier integral 

which c learly defines the amplitudes of al l the individual plane waves 
representing the radiation f rom the source . 

A plane wave propagating f r o m the source plane to the plane 
of interest £,77 through an isotropic medium wil l be altered in 
phase only by an amount <p given b y 

4> = exp j 2 riz w 

Which on express ing w from equation 1. 7 gives 

This phase term applies equally to all the plane waves in the 
spectrum propagating f r o m the source . Thus it is possible to define an 

00/ 

U s (u ,v) = V ( x , y ) exp - j2II(ux + v y ) dxdy 1 . 9 

- 0 0 / 

<t> « exp j 2 n z ( l / x * - ua - va 
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angular spectrum in the plane 77 in terms of the source spectrum 
as fol lows 

For directions of propagation l imited to smal l angles with 
respect to the z ax i s , the square root in the exponent can be 
s impl i f ied by reducing it to the f i r s t two terms of the Binomial expansion 

U1 (u, v ) = U 5 (u , v) exp j k z . exp - j HXz (u a + v A ) 

The amplitude distribution in this plane is given by the inverse 
Four ier transform of the angular spectrum in the plane £, v thus 

where denotes the inverse Fourier transform of the 
express ion inside the brackets , re lated to the y plane. This 
express ion can be broken up by the convolution theorem into 

-1 

V ( £ ; v ) = exp j k z 

f 

V ( £ , t ? ) = exp j k z exp- j IIAz ( u a + va ) | 1 . 1 0 

The second Fourier transform is a standard result which 
i s 
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The f i r s t express ion can a t the moment , be e x p r e s s e d a s 
a function F ( y ) which c l e a r l y i s re la ted to V ( x , $ through the 
change of var iables . Equation 1 . 1 0 . , can b e written as 

tt />• \ exp i k z F ( £. 77 ) _ . _ / |P*. aN V 1? ) = — ^ * ' ® exp j n (S + V ) 
' l X z - — J

 XT 

On performing the convolution and noting that 

F ( x , y ) = V ( x , y ) 

the amplitude distribution a t a g iven point in the f i e ld i s given by 

0 0 1 a 
e x p i k z CC I ( £ - x ) + (y- y) \ 

v 77 >=TxV" J J j Y i x > y ) e x p j k / — ^ — 1 dxd^ 1'11 

- OQ / 

This is a general expres s ion f o r the l ight distribution o v e r a l imi ted 
range of the f i e l d generated by a monochromat ic light source . It i s 
val id s o long as V ( x , y ) is a true descr ip t ion of the complex amplitude 
of the monochromatic l ight in the s o u r c e plane. If the f i e ld is r e s t r i c t ed 
s t i l l further by the Fraunhofer condit ion (Goodman 1968), that i s 

f » ( x ' + J 1 ) , < y * + ) 

then equation 1.11. , can b e writ ten a s 

co / 

V ( t , » , ) ^ i k Z
 j / y 7 v ( x , y ) e x P ( £ x + V y ) dxdy 1 . 1 2 

-00 / 

which when compared with equation 1 . 1 . , can be recognised as a product 
of a constant phase t erm with a s c a l e d F o u r i e r transform of the original 
l ight distribution. The real d i m e n s i o n s in the plane of interes t a r e 
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hence the scal ing factor which determines the amplitudes and positions 
of the spatial frequencies is 1 z . Although this is not a perfect 
Fourier transform relationship, the phase being multiplied by e x p j k z , 
it does offer a very s imple f i r s t s tage of an optical signal processor . 

There are , however, two fundamental restrict ions regarding 
the light distribution in the image plane. Pr imari ly , it must be 
monochromatic as the wavelength is an important factor in determining 
the scal ing of the transform. A spread of wavelengths would introduce 
a range of transforms with different sca l ings which would result in a 
pattern too complex to be useful. Secondly, in defining the Fourier 
transform integral it was stated, as a condition, that the function must 
have only a l imited number of discontinuit ies . However, in some light 
s o u r c e s , say a C.H. T . , s c r e e n , a radiator wil l emit a photon independently 
of its neighbouring radiator. Thus a discontinuity, which varies randomly 
in t ime, exists between every pair of radiators and as such it is impossible 
to descr ibe the complex amplitude distribution in such a manner as to 
sat i s fy the condition for the existance of the Fourier integral. 

Although such sources do not naturally produce their Fourier 
transforms in the far f ie ld, it is poss ib le to deduce the light distribution 
due to such a source by considering it as a composition of point radiators, 
each of which can take on a different complex amplitude. The amplitude 
and phase at a point in the f i e ld generated by a single point situated at x f , y f 

of complex amplitude V f , is given from equation 1 . 1 1 . , as 

V > = f r s expj i r ) 2 z l + < « - * ' > ' + ( * - y ' f j i - 1 3 

On comparing this express ion with equation 1 . 6 . , it can be 
s een that the complex amplitude V is given by 

V = ! X L 

jX 

Thus equation 1 .13 . , wil l sa t i s fy the general wave equation. 
Clearly, so wi l l the propagation f rom a neighbouring point with a different 
complex amplitude. Invoking the l inearity of the wave equation, then 
their sum "Will a l so s a t i s f y the wave equation. Clearly, this argument 
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can be extended to an infinite number of source points giving an express ion 
f o r the l ight in the f ie ld as 

n»-oom»-oo| 1 . 1 4 

If the complex amplitude v (x^y,* )of the point s o u r c e s is e x p r e s s e d 
in t erms of an amplitude and phase distribution 

V ( x f t , y m ) = A ( x n ,ym ) exp - j k <J> ( x , ,ym ) 

then equation 1.14. , b e c o m e s 

2Za+ ( x n ) + (rti- y r n ) - 2zc£>(xn;y/n ) 

1 . 1 5 

Thus even with <E>(xnjy,„)as a random function the instantaneous 
complex amplitude could b e evaluated although it does not r e s e m b l e any 
defined trans form and hence is not v e r y useful f r o m the s ignal proces s ing 
viewpoint. If <£> (xn;ym) w e r e a w e l l behaved function then the double 
summation could be rep laced by a double integral and equation 1 .15 . , 
would be identical to equation 1.11. 

Hence equation 1.14. , de f ines the amplitude and phase at any 
point in a l imi ted f i e l d which has b e e n generated by a monochromatic l ight 
s o u r c e . The extens ion to a po lychromat ic source i s achieved by s imply 
summing a s e t of e x p r e s s i o n s l ike 1.14. , one for each wavelength. However , 
a point of grea ter s ign i f i cance is that the nature of the s o u r c e , through the 
function <£ (xn;ym ) de termines the e x a c t f o r m of the f a r f i e ld light distribution. 

1 .4 . Real Light Sources 

In observ ing any light pattern, detectors need to react throughout 
a f in i te t ime interval , typical ly at l e a s t one nanosecond in order to record 
the light distribution. Such per iods of t ime are v e r y long compared with 
the fundamental per iod of light w a v e , hence the records a r e of the average l ight 
distribution during the recording period. Hence if a l ight distribution re la ted to 

V ( = 
OO CO A ( x 0 l y „ 

2 - j 2 J z 
exp j 

k 
2z 

n=-oo m»-oo 
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the power spectrum of the source is to be faithfully recorded, then the original 
light distribution must remain constant during the recording process . 
Apart from impos ing a maximum temporal frequency band on the 
input function, it a l so demands that the l ight displaying the function 
must have a constant phasefront. Clearly , for light sources where 
individual point radiators emit photons independently of each other 
the phase across the s creen is constantly changing, making it 
imposs ible to record a discernable pattern related to the Fourier 
transform in the far f ie ld. 

Thus the conditions f o r producing and recording the Fourier 
transform in real t ime of a light s o u r c e , are that it must be monochromatic 
and that all the individual radiators must be coupled to each other. The 
mos t common way of sat isfying these requirements is to present the 
information on a photographic transparency which is then illuminated 
by a spatially f i l tered l a s e r wave. 

Other forms of light s o u r c e s displaying two dimensional 
functions usually consist of C . E . T . , displays for radar, osc i l loscope 
and computer conso les , or arrays of L . E . D . s . These sources are 
in general presented with the information as an electrical signal. 
Individual elemental radiators absorb s o m e energy from the electrons 
carrying the information and emit photons. As the elemental 
radiators are , in the main, independent of each other, so are the 
photons that they emit. Hence, there is no coupling between photons 
f rom various radiators and as such these sources will not produce a 
recognisable Fourier transform in the f a r f ield. 

There is a third way of displaying two dimensional information 
which does not fall into either of the two above groups. There are light 
distributions which have a l imited degree of coupling between the point 
radiators. Such distributions occur when an uncoupled source is imaged 
through an optical s y s t e m onto the input image plane. Due to the finite 
s i z e of the optical components and a l so due to some poss ible component 
de fec t s , a point in the original s o u r c e is mapped onto a finite area. Clearly, 
secondary point radiators in this area a r e coupled as the light originated 
f r o m one point. Although these l ight distributions presented as real or 
virtual images are partially coupled, the degree of coupling is not usually 
suff icient to enable the source to produce a wide spectrum transform. 
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It is possible to derive express ions for a light distribution 
in the far f ield due to various sources in terms of the. cross-correlat ion 
of the light at any two points in the f ie ld. However, such an approach 
based on the Mutual Coherence Function does not contribute a great 
deal in this case except mathematical rigour to the above discussion. 
The main result , that only information presented on a plane monochromatic 
wave readily produces its Fourier transform appears an inescapable fact 
at this stage. 
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CHAPTER 2 

Optical Signal Process ing 

In the previous chapter it was shown, albeit only qualitatively, 
that optical signal processors appear to have a fundamental advantage, that 
of an extra dimension over their electronic counterparts. Inevitably, the 
optical signal processors have several inherent restrictions which must 
be understood and surmounted if the potential of these optical techniques 
is to be real ised. One common obstacle , developed towards the end of 
the last chapter, is the constraint that the light source must produce a 
well defined phasefront. Coupled with the need to have a readily detectable 
amount of light in the observation plane, thus precluding highly f i l tered 
broadband sources , this restriction l imits useable sources to lasers . 

Various schemes have been proposed and developed in attempts 
to overcome the dependence on the l a s e r , and these schemes will now be 
discussed. However, prior to this appraisal , coherent light signal 
processors will be examined in order to provide an insight into the potential 
of optical signal processing. 

2.1. Coherent Light Signal P r o c e s s o r s 

It was shown in chapter 1, speci f ical ly by equation 1.12 that in 
a plane at a large distance from the coherent source, the complex light 
amplitude distribution will represent the Fourier transform of the 
complex amplitude at the source. However, the condition defining this 
distance between the plane of observation and the source plane is rather 
fearsome. For typical values of object s i ze 25 mm. and a l ightwave-
length of 0. 63 f im. , the required distance was given by 

• k ( x * + y * ) z » _ ! 1—: 

. . z » 1 . 5 km 
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which clearly is a prohibitive criterion for a practical signal processor. 

This difficulty was overcome by noting that a convex lens will 
display in the back focal plane the Fourier Transform of the complex 
amplitude distribution present in the front focal plane. If Vfc,y) denotes the 
complex amplitude in the input plane, then the output plane complex 
amplitude can be written by approximating the Fresnel-Kirchoff diffraction 
formula as 

oo 

V (u,v)= JJ V ( x , y ) exp jkrdxdy 

- c e > 
Where r is the distance between any point in the input plane 

and any point in the output plane. This distance can be evaluated by 
considering a plane wave in the front focal plane with its phasefront at 
angles d and 7 relative to the x , y axes . Such a wave will be 
focussed to a point ( u, v ) in the output plane, where 

u = F sin Q 

v = F sin 7 

implying that the distance between any point on the plane wave and the 
point ( u,v ) is constant and equal to 2F, where F is the lens focal 
length. The distance from a point ( x , y ) on the plane wave to the input 
plane is 

- ( x sin d + y s i n 7 ) 

which can be re-written as 

- ( i^L
 + Z L ) 

F F 
giving the distance r as 

xu 
r = 2F " — 

F 
and hence the amplitude distribution in the back focal plane is 

co 
exp jkF f f k 

V ( U V ) = _ _ J J V (x ,y ) exp - j - ( ux + vy ) dxdy 2 . 1 . 
-00 

which, when compared with equation 1 . 1 . can be recognised, to within 
a relatively unimportant constant phase term, as a scaled Fourier transform 
of the complex amplitude in the front focal plane. This result was utilised 
(Rhodes 1953, Cutrona et al. 1960) to produce a coherent light signal proces sor , 
as shown in Figure 2.1. 

- H 
F 
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An input function g (x,y)is presented on a photographic transparency 
in the f i r s t focal plane and is i l luminated by a plane monochromatic wavefront. 
The f i r s t lens displays the s ca l ed F o u r i e r transform G(u, v) in the back focal 
plane, where a complex f i l ter H(u, v) on the second transparency operates 
s imultaneously on all the Four ier frequenc ies present in the signal. This 
plane a lso constitutes the input to the second lens which produces in its back 
focal plane, the modified and p r o c e s s e d information. 

The main forms of proces s ing information by this coherent optical 
technique have been concerned with extracting a given feature from background 
noise . In this application noise impl ies all the s ignals present in the input 
function apart f rom the des ired information. The des ired feature may be 
e i ther multiplied by the no i se , added to the noise or convolved with the no i se ; 
each case requiring a different f o r m of f i l tering. 

In the f i r s t case where the s ignal is multiplied by the no i se , the 
required information can, under certa in restr ict ions be extracted by a s i m p l e 
binary mask. A practical situation demonstrating this form of f i l tering i s in 
removing the half tone dot s tructure f r o m photographs printed in newspapers . 
Such a printed photograph can b e cons idered as the original scene s ( x , y ) 
multiplied by the convolution of the dot s i z e n(x,y) with the two dimensional 
latt ice delta function COMB (2 3 ^ ) . Thus with subscript c denoting dummy 
convolution variables 

g ( x , y ) = s ( x , y ) n ( ^ , y e ) <g> C O M B ( ^ S ^ ) 
( X Y 

which when presented on a transparency in the input plane of Figure 2 . 1 . , 
b e c o m e s in the transform plane 

{ , Xu Yv I 
G ( u , v ) = S ( u , v c ) <g> N ( u , v c ) . COMB ( j j j f j — ) | 

If the original scene has a l imited resolution, its transform S ( u , v ) 
wi l l be space l imited in a region U, V . I n order to preserve the information 
in the original s cene the dots m u s t be c lose ly spaced with their s i ze being 
s m a l l e r than the f ines t detail . Hence the spatial extent of the transform of 
a s ingle dot N(u,v) is larger than the transform of the original scene . Thus 
the product of the transform of the original scene with the transform of the 
dot wil l be non-zero only within the region U , V . However, the spacing 
between s u c c e s s i v e delta functions in the transform of the COMB function 
is inversely proportional to the spacing of the dots. Hence if the distance 
between adjacent delta functions in the COMB transform is greater than the 
s i z e of the region U, V then s u c c e s s i v e products will not overlap each other. 
Thus if a s imple binary mask which wi l l transmit only one such product and 
exclude the others is placed in the transform plane, then the input to the 
second lens will be 

G ( u, v ) = S ( u, v N ( u, v ) 
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which wil l be transformed to produce in the output plane 

g ( x \ y « ) = s (x' c , yc' ) ® n ( x ; , y ; ) 

This can be considered a s the original s cene imaged through an 
optical s y s t e m with a point spread function n(x , ,y')which implies that the 
half tone dot structure has been removed. 

In the second c a s e , where the noise in the input function is 
additive, the input to the optical p r o c e s s o r is of the f o r m 

g ( x , y ) = s ( x , y ) + n ( x , y ) 

which b e c o m e s in the transform plane 

G ( u ,v ) = S ( u ,v ) + N ( u , v ) 

If this is now multiplied by a f i l t er function which is the complex 
conjugate of the transform of the sought for signal, then the input to the 
second lens b e c o m e s 

G ( u, v ) = S ( u, v ).S*( u, v ) + N ( u , v )S*( u ,v ) 

Noting that 

£ " , j s * ( u , v ) | = s ( - x \ - y ' ) 

the output of the signal p r o c e s s o r is 

g ( x ' , y ' ) = s (x^ ,y ; ) ® s ( - x j , - y c ' ) + n (x^,yc» ) ® a(-x',-y') 

This can be recognised as the auto-correlat ion of the original 
s ignal added to the cros s - corre la t ion of the signal and the noise . The auto-
correlation term c o m p r e s s e s ai l the signal energy into one wel l defined 
point, while the cros s - corre la t ion t e r m spreads the energy over an 
appreciable area . Hence the p r e s e n c e of a high intensity point in the output 
indicates the existance of the s ignal in the input function. This technique has 
been widely used in recognising characters and determining their positions in 
the input plane. F r o m equation 1 .2 . a character positioned at (x,y) wi l l be 
transformed to 

G ( u , v ) = S ( u , v ) exp - j - ( x u + y v ) 

which when multiplied by the f i l t er and transformed by the second lens 
b e c o m e s 
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g ( x \ y ' ) = s ( x j , y ; ) ® s ( x ; , y j ) ® ' « ( x j - x, yc'-y ) 

which is quite c learly the auto-correlat ion of the signal centred on (x,y) . 
Therefore , the presence of the requis i te character and its position relative 
to the input plane centre are well defined. 

The last c a s e of f i l tering to be considered, that of identifying a 
signal convolved with noise is shown in clearing a blurred photograph. In 
this case the input function to the signal proces sor is 

g ( x , y ) = s (x e ,y c) ® n ( x c , y c ) 

which wil l be transformed to 

G ( u, v ) = S ( u, v ) N ( u, v ) 

Clearly a f i l t er function ^ ( M w i l l remove the noise and isolate 
the transform of the signal which can then b e readily retransformed. 

One of the f i r s t problems in utilising the above concept is to 
physically rea l i s e the required f i l t e r s . It has been shown that the phase content 
of the f i l t er function can be recorded in the standard holographic fashion 
(Vander Lugt 1964), thus enabling the types of f i l ter necessary in character 
recognition to be real ised. However, a f i l ter for true deconvolution or 
division in the transform plane i s in general impossible . The transform of 
the noise function wil l have its normal i sed amplitude varying between 0 and 
1. 0, thus its inverse , the f i l ter function amplitude must vary from <x> 
to 1 .0 , which for a pass ive s y s t e m is physically unrealisable. A l imited 
degree of decpnvolution is poss ib le with f i l ters that only compensate f o r the 
phase of the no i se transform. 

A second difficulty a r i s e s f r o m the fact that the f i l ters and the 
input function are usually recorded on photographic emulsions. During 
development the emulsion and the acetate base shrink and distort, thus 
introducing a spatial phase distribution acros s the transparency, which 
increases the ambient noise l eve l , hence reducing the signal to noise ratio. 
This can b e overcome by presenting the transparency, whether f i l t er o r 
input function, in a liquid gate where the index matching fluid between parallel , 
optically f la t , g lass plates e f fect ive ly el iminates any f i l m irregularit ies . 

Another source of e r r o r s t e m s f rom the inaccurate positioning of 
the f i l t er in the transform plane. The physical dimensions in this plane 
represent Four ier frequencies , hence a misal igned f i l t er modifies a given 
frequency by an inappropriate amount. It has been shown that f o r a typical 
s y s t e m with a focal length of lm and an input function s i z e of 25 mm,a 
reduction in the signal to noise ratio by a factor of 2 wil l result if the f i l t er 
position is in error by 7jjmfor uniform noise and by 3}jmfor nonuniform noise 
(Vander Lugt 1967). 
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Final ly , perhaps the m o s t important l imitation of the coherent 
light optical signal p r o c e s s o r is its inability to operate in real time. As 
d i scussed in sect ion 1. 4, the majority of real light sources do not have 
suff ic ient coherence to generate their Fourier transforms in the far f ie ld. 
Hence the information displayed by such a source must be reproduced 
on a photographic f i lm , which in turn must be developed, before being 
presented to the signal p r o c e s s o r . This inability to operate in real t ime 
all but null i f ies the advantages of optical signal p r o c e s s o r s over their 
electronic counterparts. 

There are two poss ib le approaches by which this limitation may 
be overcome; one is to produce a real t ime two dimensional coherent light 
modulator, the other is to develop a proces s that wi l l operate directly on 
incoherent light s ignals . 

2. 2. Heal Time Spatial Modulators 

Heal t ime spatial modulators are active units intended to transfer 
the two-dimensional image presented as an incoherent light distribution 
onto a monochromatic plane wave in real time. One such spatial modulating 
technique has been to impose the input function onto a continuously moving 
roil of f i lm. . The exposed f r a m e s are passed through a rapid developer and 
onto the input plane of a coherent processor . However, this only reduces 
the magnitude of the problem without solving it. 

A more complete solution has been based on composite crystal 
dev ices util ising the crysta l ' s b irefr ingence dependence on e lectr ic f i e lds 
(Vohl et al. 1973). A typical device cons i s t s of an anisotropic, uniaxial, e lectro-optic 
crystal with a transparent compos i te insulator-electrode on one face , and 
only a transparent e lectrode on the opposite face , a s shown in Figure 2. 2a. 
The crystal i s a l so a semiconductor , with a wide energy gap, displaying 
photo-conductive character i s t ics . 

In the usual mode of operation, a uniform constant e lectr ic f i e ld 
is applied a c r o s s the device. In the absence of l ight the crystal acts a s an 
insulator which results in the e l e c t r i c f ie ld remaining uniformly distributed 
a c r o s s it. The writing incoherent l ight pattern is focused onto the crysta l 
through the transparent e lectrode and insulator. On reaching the crys ta l , 
the photons with an energy g r e a t e r than the crystal band gap are absorbed, 
generating e lectron hole pa irs . The electrons are swept away a c r o s s the 
crystal leaving the holes trapped at the crystal- insulator interface. These 
trapped holes reduce the f i e ld a c r o s s the crystal in proportion to their 
density, a s shown in Figure 2. 2b. A s this charge density pattern is a d irect 
consequence of the input photon density distribution, the resulting, modified 
f i e ld across the crystal represents the initial image intensity. 
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The crysta l , apart f r o m being a semiconductor, is a l so e lectro-opt ic and 
anisotropic , which means that the die lectr ic tensor and hence the 
refract ive index in different direct ions , depends on the external 
e l ec tr i c f ield vector. The crys ta l is cut and aligned in such a manner 
that the direction of the applied f i e ld and the direction of the reading 
light propagation are parallel to one of the three crystal axes . Then the 
f i e ld dependent refract ive index variations along the two remaining crystal 
axes modify plane waves , polarised in a direction which b i sec t s the 
angle between the two axes , to e l l ipt ical ly polarised waves . The 
magnitude of the minor axis of the polarisation e l l ipse is direct ly 
proportional to the strength of the external f ield. 

Thus if the reading light i s a monochromatic plane wave 
polar ised in the required direct ion, the initial image will ex i s t 
unambiguously as an amplitude distribution present on the minor axis 
of the polarisation e l l ipse . This amplitude can be readily isolated by 
a polar iser c r o s s e d with the original direction of polarisation. However, 
it must be noted that the original intensity distribution is now an amplitude 
distribution and care must be taken if the contrast l eve l s are to be 
maintained. 

The real t ime transfer of information from incoherent light 
to coherent light is made poss ible by placing a band pass interference 
f i l t e r on the insulating layer. The incoherent writing wave with its 
spectral distribution centred on this band is transmitted and hence 
focussed onto the crystal . However, the coherent reading wave, at a 
wavelength outside this transmiss ion band, entering the device at the 
opposite f a c e , p a s s e s through the crys ta l and is ref lected back through 
it by the interference f i l ter . The information carrying ref lected wave 
leaving the crystal can be readily isolated from the incoming reading 
wave by means of a beam spl i t ter . Thus the information can be written 
in on one s ide and read out through the other in real time. 

The succes s fu l operation of these crystal devices depends on 
s e v e r a l important crystal character i s t i c s , which also introduce several 
problems. The energy gap in the semi-conductor determines which 
photons wil l be absorbed and which w i l l be transmitted. Clearly, it 
m u s t be so chosen as to divide the v i s ib le spectrum; absorbing the short 
wavelength, and hence ttie more energet ic photons, while transmitting 
the longer wavelength photons. However, the absorbtion character is t ics 
at room temperature of typically used crysta ls (Oliver et al. 1971.) do 
not have sharp cut-offs . Hence f o r maximum photon absorption the 
writ ing wavelength must be wel l into the absorbtion spectrum. Similarly , 
to prevent reading photons f r o m being absorbed and thus obliterating 
the image information, the reading wavelength must be well c l ear of the 
absorbtion spectrum. 
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This implies, and is bourne out by reported experiments 
(Oliver et al. 1970 & 1971, Hou et al. 1971) that writing must be achieved 
with ultra-violet or blue light while reading is performed with red light. 
Such division is rather unfortunate as the majority of C . R . T . phosphors 
and L. E . D . s emit green or red light, but not blue (leverenz 1950), which 
l imits the applicability of the device . Clearly there is a trade-off between 
reducing the band gap to accomodate longer wavelength writing light and 
preserving the information when reading it. 

There exists a second trade-off , namely that between reading 
intensity and reading time, which is shown by recently reported devices 
(Lipson, Nienson 1974) having a band gap of 3. 25 eV which corresponds 
to a wavelength of 0. 382 p m,and need a writing energy at 0. 366 p m of 
2. On readout at0.633^jm the information is destroyed by 1. 2 m J / c m 
Another important characterist ic , the ability to retain the electric f ield 
pattern in the absence of reading light is limited by the finite resist ivity 
of the semiconductor and is l imited to several hours (Feinlab,Oliver 1972). 

The polarisation of the reading wave is mainly modified by the 
birefringence variation a c r o s s the crystal , thus transfering the original 
information from an e lectr ic f ie ld distribution to an amplitude variation. 
However, the polarisation is a lso perturbed by impurities and strains in 
the crystal as well as p iezo-e lec tr ic bending caused by the applied f ield, 
and thickness variations. Some of the crystals used also display optical 
activity which rotates the direction of polarisation, but this is automatically 
overcome when the reading wave travels forward and back through the 
crystal , the second passage compensating for the rotation incurred in the 
f i r s t , (Nisenson^Iwasa 1972). The other phase perturbations are not so 
easy to remove (Feinlab ;Oliver 1972) and tend to degrade the final image. 
The eff iciency of the Pockels e f fect , measured as the ratio of light power 
in the transmitted image to the amount of reading light power falling on 
the crystal , is approximately 10%, which when taken together with the 
maximum permissable reading energy gives rather low intensity images. 

Finally, the devices compare well with T .V. system quality 
as regards resolution, typically 100 l ines per mm, and frame rates , again 
a typical write and erase cycle takes 5m sec . 

2. 3. Incoherent Light Signal P r o c e s s o r s 

The other possible technique of achieving real time two dimensional 
signal process ing, is to process direct ly the incoherent light distribution 
displaying the signal. Optical s y s t e m s which operate on incoherent light 
information displays can be divided into the two general signal process ing 
groups described in Chapter 1. The f i r s t group, operating in the image 
plane, ut i l ises the ray properties of light and generally produces correlations 
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of the input signal with some other predetermined function. The second 
group based on the wave nature of light produces interference patterns 
which are related to the input intensity distribution by a recognisable 
transform. 

a r o s e out of the work performed by X - r a y crystalographers. A crystal 
illuminated by X - r a y s produced a far f ie ld diffraction pattern which w a s 
the magnitude of the Four ier transform of its lattice configuration. 
Taking a transform of this intensity distribution produced the auto-
correlation of the lattice configuration. As a direct analysis of the 
auto-correlat ion was imposs ib le , an iterative technique was suggested, 
where the auto-correlat ion of a proposed structure was compared with 
the experimental auto-correlat ion. Obviously a fas t and simple corre lator 
was n e c e s s a r y if the i terative technique was to be success fu l . Robertson 
(1932) and later others (Haag 1944, Philips 1954, McLochlen 1962) 
proposed the correlator shown in F igure 2 .3 . 

The two functions g and h to be correlated are presented 
as transmiss ion variations in two separate planes. A uniform incadescent 
source is focussed onto the f i r s t function, so that any radiating point with 
a strength determined by the value of the function at that point, will 
illuminate the entire second function. A ray of intensity dg(x,y) from a 
typical point (x,y) in the f i r s t plane wi l l pass through a point (x',y') in 
the second plane, where it wi l l be reduced in intensity according to the 
local transmiss ion factor dh(xl,y')i Hence the incremental intensity at 
P (u, v) in the output plane is given by 

If the second plane is midway between the output plane, and 
the f i r s t plane, the s y s t e m wil l naturally be convergent giving 

One of the ear l i e s t needs for an incoherent optical correlator 

dP ( u, v ) = dg ( x , y ) dh ( x ' , y ' ) 2 . 2 . 

x' 

x - u = 2 ( x' - u ) 

£ ( x + u ) 2. 3. 

s imi lar ly 

y
f
 = i ( y + v ) 2 .4 . 

which on substituting in equation 2 . 2 . g ives 

dP ( u , v ) = dg ( x , y ) dh + u ) , i ( y 
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Clearly the total intensity at P(u,v) is given by the summation 
of all rays leaving the (x,y) plane, passing through the second plane and 
fal l ing on the point P 

oo7 

P (u.v) = g (x,y) h { + i ( y + v ) > dxdy 2.5. 

-oo 

Thus if the function h is to half the sca le of g , then the 
true correlation will be presented in the output plane to the s a m e sca le 
as g . Thus a reasonably fa s t and very simple,technique was 
developed for displaying, in tvvo dimensional space the cross-correlation 
of a pair of two dimensional functions. Although the initial incentive 
came from X-ray crystalography, this correlator does have other 
potential applications. Several other techniques for producing correlations 
of two functions have been proposed (Kovasznay 1957, Felstead 1967, 
Schneider 1975) but they do not of fer any real advantages over the s y s t e m 
just discussed. 

This correlator has been used as the bas is of a character 
recognition s y s t e m which determines the presence of speci f ic Fourier 
coeff ic ients in the input signal (Leifer et al. 1969). The Fourier 
coeff ic ient at a speci f ied spatial frequency, of a given signal, is 
obtained by presenting the signal g(x,y) in the f i r s t plane, and a 
cosinusoidal function h(x/yf) at twice the required spatial frequency in 
the second plane. If 

h ( xjy' ) = 1 + cos 2 I I K x 1 + ) 

then on substituting into equation 2. 5. with appropriate co-ordinate 
changes, the intensity distribution in the observation plane becomes 

oo/- " 

P ( u ,v ) - J J j g ( x , y ) | 1 + cos 2 N j ( X + U ) + (y+v) j j 
which on using a standard trigonometric identity can b e written as 

OQ 

P ( u, v ) = J j j g ( x , y ) dxdy 

- c o / 

oo/ 

+ cos 2 n I w * u + c ^ v I f f / \ g ( x , y ) cos 2 1 ) WxX+C^y ( dxdy 
2 - 2 J J { I 2 2 I - c o 

oo/ 

- s in 2 IT l ^ u + a v v / / / g ( x , y ) s in 2 n J ^ x + f ^ y f dxdy 
(2 2 ( -co7 < 2 2 ) 
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where the value of the integrals determines the amplitude and phase 
of the Fourier coeff ic ient at a frequency , . This expression 
can be re-writ ten as IT 

P ( u , v ) = const. + c. s in 2 n | + + ( 
( 2 2 ) 

where c = 

g(x, y) cos 2 [I | H x + g y j dxdy|+ jJJ g (x, y) s in 2 n | + <^y | 
S?/ 

dxdy. 

and = 
- O Q ' 

tan 
-i 

oo-f 
/Tl 

g (x,y) cos 2 II { f ' x + |>y } dxdy oo 
oo 

CO 
CO I 

g (x,y) s in 2 n j i ^ x + f^y > dxdy 
' o o ' 

Thus the magnitude and phase of a Fourier coeff ic ient is 
presented as the contrast and posit ion of the shadow fr inges in the 
observation plane. 

To determine more than one Fourier coeff ic ient of a given 
s ignal , a composite f i l ter consist ing of several spatially separated 
periodic i t ies is placed in the second plane. The signal is positioned 
eccentrical ly in the f i r s t plane and is rotated about the sys tem's 
axis of symmetry , thus scanning the composite f i l ter . As a particular 
spatial frequency in the f i l t er is i l luminated by the s ignal , shadow 
fr inges at half that frequency, modulated by the Fourier coeff icient 
wi l l appear in the observation plane. A photodetector in this plane 
wil l produce a frequency and amplitude modulated s ignal from which 
the Fourier coeff ic ients at given frequencies can be decoded by 
electronic techniques. In order to determine the phase of the coeff icient 
an appropriate re ference signal is required. 

In view of the more establ ished Fourier s y s t e m s reviewed in 
sect ion 2 . 1 . , this sampled transform at f i r s t appears to be rather 
l imited. However, Le i fer et al . have shown that some Fourier 
coef f ic ients a r e more useful in differentiating between characters 
than others , hence only severa l coef f ic ients need to be known. This 
can be interpreted a s , in Fourier s p a c e , highlighting the tail in the 
l e t ter Q to distinguish it f rom the l e t ter O. This concept, coupled with 
the relat ive e a s e with which the sampled transform of incoherent light 
patterns is obtained, has made this character reading technique a practical 
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sys t em. However, as a more general signal processor it does have 
severa l l imitations. 

Pr imari ly the transform i s not presented in two dimensional 
space , but has to be e lectronical ly decoded and hence appears as a t ime 
dependent signal. This sequential generation of Four ier coeff icients 
inhibits true real t ime two dimensional parallel process ing. Secondly, 
only a sampled transform is produced with the number of samples being 
rather low, typically about four (Leifer e t a l . 1969, Rogers 1974). 
Notwithstanding that this may be.adequate for recognising characters , 
it is c learly insufficient to f i l t e r and subsequently reconstruct all but 
the s imples t objects . 

A different approach to character recognition and matched 
f i l ter ing with incoherent l ight, centred on optical correlators has been 
suggested (Lohmann 1968). It was shown that an optical sy s t em with a 
predetermined pupil function wi l l produce an image s imi lar to the output 
of a matched f i l t er when the input object contains the des ired information. 
An image can be considered as the convolution of the object and the 
impulse response of the optical s y s t e m 

IMAGE = OBJECT © IMPULSE RESPONSE 

However the impulse response is no m o r e than the Fourier transform 
of the pupil function, hence the image can be expressed as 

IMAGE = OBJECT <2> p " j PUPIL FUNCTION 

Clearly, if the pupil function is the inverse Fourier transform of the 
required character , then the appearance of that character in the object 
distribution wil l generate an image comprising a delta function 
positioned in accordance with the location of the character in the object. 
This output is identical to that obtained from the m o r e conventional 
matched f i l t ers . The requisite pupil function, containing amplitude 
and phase information can be readi ly obtained in the form of a Fraunhofer 
hologram, recorded either in the standard fashion or generated by a 
computer. The fact that a Four ier transform, rather than the required 
inverse is obtained wil l only invert the information in the image plane, 
which once noted, i s of no consequence. 

This s y s t e m was designed f o r character recognition only 
and as such does not readily lend itself to general process ing. However, 
even as a matched f i l t er it does have several l imitations. In order to 
recognise m o r e than one character , several Fraunhofer holograms must 
b e recorded on the same emulsion. Although they can be recorded with 
different re ference waves , great c a r e would have to be exerc i sed when 
deciding whether the output represents a particular character, or a 
different character in another position. 
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Secondly, because the complex amplitude of the impulse response 
must be recorded accurately, this f i ltering technique suffers from positioning 
problems s imi lar to those assoc iated with coherent light processors . Its 
main advantage over the coherent light sys tems is that quasi-monochromatic 
inputs can be used, or if the holograms are recorded on thick emulsions, 
nominally white light objects can be recognised. 

In a further development (Maloney 1971a & 1971b), this sys tem w a s 
improved by having a s e t of spatially independent subholograms as the pupil 
function. Each subhologram was the Fraunhofer distribution of the required 
character's distinctive features . However, the improvements achieved 
appear to be marginal. 

A different approach to incoherent light signal processing is to 
generate an interference pattern f rom the input s ignal , where the two are 
related through a Fresne l or Fraunhofer transform. Such interference 
can be produced from incoherent sources by wavefront shearing interferometers. 
Although there are many types of wavefront shearing interferometers, they 
differ only in the construction and not in the principle of operation. 

The underlying concept cons i s t s of producing two mutually sheared 
virtual objects in the virtual input plane from the one real input light source 
presented in the real input plane. Light from these two virtual sources is 
brought together in a speci f ied plane where interference occurs and can b e 
observed. Hence a real input object g (x, y) , a function bounded by the 
region ( X , Y ) is amplitude divided and sheared by an amount ( xaj 35) 
such that a typical point (x,y) becomes situated at (x^+x,y/=y+y) in the 
f i r s t quadrant of the virtual input plane, and at (x=x-x,3^=y-y) in the 
corresponding third quadrant, as shown in Figure 2 . 4 . For a quasi-
monochromatic input object, the amplitude distribution in the observation 
plane due to a s ingle point(xa , y t ) i n the f i r s t quadrant is given by equation 
1.13 as 

dA; ( u, v ) = e x p - j k < J > ( ^ y , ) e x p j 2F*+ ( x r u )*+ ( y r u ) 
3 2.6. 

where dV (x^y^ is the amplitude of the virtual point and exp - jk (Xj,yf) is 
i ts initial phase. 

Similarly, the amplitude distribution in the observation plane due 
to a different point in the third quadrant wil l be 

d A ( u, v ) ) e x p - j k: cj> ( x y ) exp ] 2F+ (x+u f+ ( y+v )* 
j XF 2F ' 3 

2 . 7 . 
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T h e s e tvvo amplitudes wi l l add to produce an interference 
pattern whose intensity wil l be 

dI(u,v)=Be j j d A , ( u , v ) + d A a ( u f V ) j . j d A , ( u, v ) + d A 3 ( u, v ) ' 
which on substituting f rom equations 2. 6 and 2. 7. and noting that 

B e { Z , Z ; } = E e \ Z* z j 

g i v e s the incremental intensity as 

d I ( u , v ) = R e J d I' ( x f y f : x,y3) + d I" ( x , y f : x ; y 3 ) e x p l l l ) 2 u ( x + x , ) 
( 2 F / j 

+ 2 v (yt + y3) + ( x * - x?) + ( y ^ - y * ) + ^ ( x ^ ) - $ ( x , y , ) > 2 . 8 . 
w h e r e d I' ( x , y , : x , y j ) - d V ( x . y , ) d x y y , ) + d V ( x , y 3 ) d V»( X j y,) > ) 

d l " ( x , y , : x ; y i ) = 2 d V ( x , y ) ) d V * ( x 3 y i ) 

\ V 

If the two points at ( x f $ and ( x ^ do not or ig inate f r o m the s a m e 
physical point on the real incoherent input object, then the di f ference of the 
two initial phase terms<£(x,y,)and c£(x33$)in the above expres s ion wi l l take 
on a random value. Thus the in ter ference pattern between any two virtual 
object points, descr ib ing d i f ferent rea l object points is not defined analyt ical ly . 

However , if the two virtual points at ( x f $ a n d (x^) do orig inate 
f r o m the s a m e s o u r c e point, then c l e a r l y the d i f f erence of the two initial 
phase t erms wi l l be identically z e r o . A l s o , b e c o m e related to 
through the re lat ionships 

x 3 = x r 2 x o y 3=y,-2y 0 

Under these conditions equation 2 . 8 b e c o m e s 

d I (u , v ) = R e j d I ( x , y ) + d I ( x , y ) exp — j u ( x + x„) -frx*-xx, 

w h e r e + v & + + ^ h s } \ 2 ' S' 
d I ( X t y ) , 2 d V ( x , y ) d V * ( x , y ) . * 

X aF A 

Due to the random phase d i f f erence between any two real points 
in the incoherent object , the incremental fr inge patterns can add only intensi ty . 
Thus the total intensity distribution in the observat ion plane is g iven by. 

I ( u , v ) = Re 

GO 

f j j * + e X P { 11 ( X + X*) + Xo( f X . ) + 

-GO/ , ) 
v ( y + y e ) + J J dxdy 
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which is a definite, albeit s l ightly cumbersome, description of the 
interference intensity in terms of the various input and interferometer 
parameters . A c l o s e r examination of equation 2.10 wil l reveal that 
if x c , y o a r e made equal to zero , the interference pattern reduces to a 
Four ier transform relationship. 

The terms inx 0 ,y 0canbe removed from equation 2.10 by 
noting that they originate f rom the as symmetr i c light distribution in 
the virtual input plane. Hence if one of the virtual objects is given 
a two dimensional fold with respec t to the other, the light distribution 
in the virtual input plane wi l l b e symmetr ica l and the output interference 
pattern wil l be related to the Four ier transform of the input object. It 
i s poss ible that a wavefront folding and shearing interferometer 
producing such an output f r o m an incoherent light distribution could 
rea l i s e the potential of optical, real t ime, two dimensional signal 
process ing . 
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CHAPTER 3 

Wavefront Folding Interferometers 

In the previous chapter it was shown that one of the m o r e 
promising techniques of achieving real t ime, two dimensional signal 
process ing is based on the wavefront folding and shearing interfero-
meter . The fundamental di f ference between this interferometer and 
other shearing interferometers i s that the light distribution in the 
virtual input plane is symmetr ica l about the interferometer axis . 
This symmetery , rea l i sed by folding one virtual object with respect 
to the other, is achieved by having an odd number of ref lect ions in 
one arm and an even number in the other. 

3 . 1 . Theoretical Appraisal 

It was shown in sect ion 2 . 3 . , that the intensity distribution 
in the observation plane of a wavefront shearing interferometer is 
g iven by 

I ( u, v ) = Re 

oo 

y) 
-OO; 

1 + exp j 4u( x + x ) + 4 x o (x -

+ 4v ( y 0 + y ) +4y o (y o - y ) dxdy 

which, for a folding interferometer , reduces to 

CD/ 

-co 

I ( u , v ) = Re J / I I ( x , y ) ] 1+ e x p ^ ^ { 4 u x + 4 v y | ( dxdy 
2 F 

3. 

Thus the interference pattern in the output plane of the interferometer 
i s related to the input intensity distribution through a sca led Fourier 
transform. 
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In order to re la te this output pattern direct ly to the input 
function, the virtual plane function I ( x , y ) can be replaced by 
the sheared real input plane function g (x+x, y+j;) . Hence 
equation 3 . 1 . b e c o m e s 

oo, 
-12k 

I (u, v ) = B e j g (X°+Xt' j 1 + GXP I u + v
 6(y+y) 

I F - o o / 
3 . 2 

which on using the F o u r i e r sh i f t theorem b e c o m e s 

OD 

I ( u , v ) = B e 

= B e 

2k 
exp j J ( uxo+ vy£ 

f fx&zi 
•> JJ 

2k 
F a e x p - j "J: (uxy+ vyr) 

+ const . 

. 2k , , exp j — (ux # +vy # ) 

- C O 

0 dxd3v | 

E K * } Si + const. 

3 . 3 

The original input function can be written as the sum of i ts 
even and odd parts, hence the t rans form can a l so be divided into the 
sum of the t rans forms of the even and odd input functions. Thus 
equation 3 . 3 ^can b e writ ten as 

I ( u, v ) = Be exp j (ux+vyo) •{ G,( u , v ) + Go( u , v ) | + const. 

However , the t rans forms of purely odd functions a r e imaginary , 
and of even functions a r e r e a l , hence the above expres s ion can be wri t ten 
a s 

2k 2k 
I ( u, v ) = G ( u, v ) cos ( uxo+ vyo) + G e( u , v ) s in — ( uxo+ vy0) + const. 

® F i? 

3 . 4 . 
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The constant in the above expres s ion is g iven , f rom 
equation 3 . 2 . a s 

CO' 

const . g ( * r »yr ) } 
-00/ 

The magnitude of this constant in relation to the magnitude 
of the t rans forms Gg(u, v) and GQ( U, V ) can be obtained f r o m the 
Schwartz inequality. Applied to this instance it s ta tes 

00/ 

G , ( U , V ) + G ( U , V ) < l l / \ e M 

CO I 2k 
exp - j F (ux,+ vyr) 

-CO! -cot 

dx£yr 

Noting that the second integral on the right hand s ide tends 
to unity and that both Ge ( u, v ) and G0 (u, v ) a s defined in equation 3. 4 
a r e posit ive and r e a l , the inequality may be writ ten a s 

G 4 ( U , V ) + G e ( u , v ) ^ 

00/ 

g ( x , y r ) dxdy 3 . 5 

-co 

with the equality occuring at u=v=o . Thus the magnitude of the 
constant is at l e a s t equal to, o r l a r g e r than the magnitude of the F o u r i e r 
transform. The output pattern p r e s e n t e d by equation 3 . 4 can b e 
interpreted as the F o u r i e r t rans form of the even part of the input 
function amplitude modulating c o s i n e c a r r i e r f r i n g e s , whi le the 
transform of the odd part modulates s i n e c a r r i e r f r i n g e s . This 
d e g r e e of modulation is a lways l e s s than unity except at z e r o spatial 
frequency when it equals unity. Thus the magnitude of the transform 
is d i rec t ly presen t a s a v i s ib i l i ty var iat ion of the f r i n g e s , and as such 
it i s an intensity distribution which can b e direct ly observed and 
recorded. 
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The periodic i ty of the f r i n g e s is in the f i r s t instance 
determined by the i n t e r f e r o m e t e r parameters . Thus, within the 
reg ion where the transform i s val id , the periodicity is a we l l 
def ined constant value. However , in general the frequency of the 
f r inges in the output plane wi l l b e modif ied by two extra fac tors . 
P r i m a r i l y , the positioning of the input function in the real input 
plane wi l l introduce a constant frequency shift . If an input function 
g ( x , y ) i s centred on its c o - o r d i n a t e s , then the output pattern 

wi l l be g iven by equation 3 . 4 , r e p e a t e d h e r e f o r convenience 

2k „ 2k , 
I ( u , v ) = G , ( u , v ) cos — (ux+vy0) + G 0 ( u , v ) s in (ux,+ v y j + const. 

However , if the input function is now reposi t ioned s o 
that it is centred at (x

p,yp ) then the transform is given f r o m 
equation 1.2 as 

2k 
G' ( u , v ) = G ( u , v ) e x p - j jT (uxp+vyf>) 

hence equation 3. 4 b e c o m e s 

I ( u , v ) = G c ( u , v ) c o s ~ | u ( x + xp) + v ( y o + y p ) | 

2k \ / 
+ Go( u , v ) s i n ~ \ u ( xo+ xp) + v ( yo+ yp) | + const. 

F 

Thus the posit ion of the input function i s quite c l ear ly portrayed in the 
output plane as a constant f r inge frequency shift . 

Secondly, the f r inge frequency is var ied a c r o s s the output plane 
by the rat io of the trans forms of the odd and even parts of the input function. 
Equation 3 . 4 can b e e x p r e s s e d , us ing a standard tr igonometric identity in 
the f o r m 

I ( u , v ) = | G e
a ( u , v ) + G ^ ( u , v ) | cos | { u ( x + x , ) + v ( y # + y , ) | 

-»I Go( u, v ) I ) 
+ tan \ — T } T + const. 3. 6 
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Where the relat ive phase angle and depth of modulation at a given 
point in the output plane uniquely define the Fourier transform of 
the input function. 

Final ly, it is worth noting that the transform of a purely 
odd function is identically zero at zero spatial frequency. Hence 
the peak of a fr inge wil l always b e centred on the output plane origin. 
Secondly, f r o m equation 3. 5 it can be s een that the depth of 
modulation is a maximum at the origin. Thus the centre of the out-
put plane will always be defined by the brightest fr inge. 

3. 2. Pract ical Range 

The f i r s t l imit to the validity and extent of the Fourier 
transform s t e m s direct ly f rom the assumption, made in Chapter 1 
in deriving equation 1.13, that the plane waves propagating from the 
source made smal l angles with the axis . This enables the square 
root phase term representing the direction cos ine in the z direction 
to be approximated by the f i r s t two terms of a binomial expansion. 
The error involved in such a truncation is 

r* d f (re) rs ^ a ^ , 
E ( r ) = 2.r - 3 ? — 

Therefore , the error in the phase term of equation 2 . 6 
describing the amplitude distribution in the observation plane due 
to a point in one virtual object i s 

- \ (x -u) a + ( y - v ) 3 j* < E . } { ( x - u f + (y -v )* } 
32F j Fa+ (x-u)A+ (y -v )* ^ 8 F + 

a 

3 . 7 a 

Similarly , the error in the phase of equation 2 . 7 describing the 
amplitude distribution in the observation plane due to the same real 
point, but presented in the other virtual object is 

- { (x-Hi)*4- ( y + v)A
 < \ (x-HQ-f- ( y + v )* [ 

1 a a. , a )3/x ' ^ + 
32F { F + (x+u) + (y+v) } 8 F 

3. 7b 
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In determining the intensity of the interference pattern 
produced by the tvvo amplitude distributions of equations 2. 6 and 2 . 7 
the difference of the tvvo phase terms becomes the dominant factor. 

Hence, the larges t poss ib le error in equation 3 . 1 describing 
the intensity distribution, wi l l be given by the difference between the 
largest and smal l e s t errors e x p r e s s e d by equation 3. 7. This resulting 
error will be given by 

J ( x - u )* + ( y - v )* }3 j ( x + u ) 3 + ( y + v ) A f 
r2-7) " 32F \ F*+ (X-U)a+ ( y - v f \ V x + 8F* 3 .8 

This e r r o r must be suff ic iently smal l so that it does not 
change the phase in equation 3 . 1 by more than, say This 
implies that 

kFE ( r - r , ) < JL ' a/ ^ 10 

F E ( i;-ra) = A . 
20 3 . 9 

On substituting equation 3. 8 into the above express ion and 
using typical va lues , F = 1.0 m m , \ = 0. 55 [J m, x = y = 10mm 
we have condition 3. 9 sat i s f ied by + v4" = 110mm9 , 3. 10 

F r o m a more qualitative approach it can be seen that the 
preceeding approximations made in describing the intensity distribution 
in the observation plane are those that are usually associated with 
F r e s n e l diffraction. However, due to the symmetr ica l disposition 
of the virtual objects , the quadratic phase term used to distinguish 
F r e s n e l f rom Fraunhofer regions disappears. Hence the output 
distribution is the Fraunhofer diffraction pattern within the region 
bounded by the l e s s stringent Fresne l l imits . 
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A second limitation on the accuracy of the scaled Fourier 
transform generated by the interferometer s tems from a finite degree 
of coherence in an otherwise incoherent source. In deriving equation 3 . 1 
it was assumed that the time average object intensity due to light from 
two different, but possibly neighbouring points was identically zero. This 
implies that any two point radiators in the object are statistically 
independent and hence that the object is perfectly incoherent. 

This need not be always true, as in the case of a source being 
imaged onto the interferometer input plane by a lens. Clearly a point 
in the source will become, in the interferometer input plane, an area 
of light whose distribution will be determined by the point spread function 
of the lens. For any real optical s y s t e m this area of light will be 
significant when compared with the original point radiator in the source. 
It must also be noted that the l ight in this imaged area originates from 
one point and as such will be partially coherent. Thus the interference pattern in 
the observation plane can no longer be adequately described by equation 3. 4. 

The imaged input function in the interferometer input plane 
can be considered as a convolution of the initial object and the point 
spread function of the imaging optical sys tem. Hence the distribution 
in the observation plane can be anticipated to be the product of the far 
f ield interference pattern due to the object and that due to the point 
spread function. The interference pattern due to the point spread 
function is obtained under conditions of coherent illumination and its 
significance must be considered separately. 

The two most important aspects of the interference pattern 
produced by the point spread function are that waves from any given 
secondary point in one virtual object wil l interfere with all the waves 
emanating from the other virtual point spread function. Secondly, all 
the interference patterns between any pair of secondary points in the two 
virtual objects will add in amplitude, and not in intensity, with all the 
other interference patterns generated by the remaining secondary points. 

The amplitude distribution in the observation plane due to a 
point radiator in the virtual point spread function present in the f i r s t 
quadrant as shown in Figure 3L1 i s , f r o m equation 1 .13 , given by 

A , ( u , v ) = exp | 2 F \ ( u V + ( v V j 3 * 1 1 
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Simi lar ly , the amplitude distribution in the observation plane 
due to a different point in the s a m e point spread function in the third 
quadrant wi l l be given by 

V (x-,y.) - i k \ a a a 
A s ( u , v ) = exp j 2F + (u+x,) + (v+y3) | 3 . 1 2 

However, all such waves f r o m the point spread function in 
the third quadrant wil l interfere with the.wave f rom the f i r s t quadrant, 
as e x p r e s s e d by equation 3 . 1 1 . Hence the amplitude of the result ing 
interference pattern is 

oo 

A ( u , v ) = A ( ( u , v ) + J J A 3 ( u , v ) dxjiy, 
- o o 

and the intensity distribution is given by 

oo 

I ( u , v ) = E e | A ( ( u J v ) A ; ( a , v ) + JJ A 3 ( u , v ) A*(u ,v) dxdy, 

* -oo 

oo 

+ 2 JJ A,( u ,v ) A*(u ,v ) dx£y3 

-co 

However, such patterns wi l l be generated for every point in 
the virtual point spread function in the f i r s t quadrant. Thus the complete 
intensity distribution in the observat ion plane will be given by 

oo oo 

I ( u , v ) = Be { I I j A ( u , v ) a ; ( u , v ) + J J A^(u, v ) A*(u, v) dxdy j 

-CO 
If ^ 

- oo 

CO 

+ 2 

-co 

J J A ( ( u, v ) A*( u, V ) d x ^ | dxdy, 
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On substituting for Af( u,v ) and u,v) from equation 3.11 and 
3.12 respectively and noting that x=x - x, the intensity distribution 
becomes 

CD 

<xlJ* / / / / V(x,y)V(x-x, y - y ) exp ^ I(u,v)=const + Ee j^ipt J J J J V (x,y)V(x -x, y -yt) exp F (ux + vy() 

-CD 

, exp J^ (ux + vy ) d (x - xf) d (y -yt) dxdy 
F 

The integral in the above expression can be espressed as 

oo co 

Jlj^V (x,y)j j j v \ x - x ^ , y-y,) exp 2 L (ux + vy ) d (x -x) d (y -yj 

, exp (ux + vy)dxdy 

The term inside the brackets can be recognised as the transform of 
V*(x »y ) shifted by ( -x, -y ) , which on using the Fourier shift 
theorem, allows the integral to be written as 

oo 

J J v (x,y) jg*(u,v) exp ^T (ux + vy)|exp ( ux + vy ) dxdy 3.1.3 

-oo 

CO 

= g*(u,v) II V (x,y) exp ( ux + vy ) dxdy 

-co 

= G ( U, V ) U , V ) 

Therefore, the intensity distribution in the observation plane 
due to a single point imaged onto the interferometer input by an optical 
system with a point spread function P ( x,y ) will be 

I ( u,v ) = Be const. + p ( u, v) p ( u, v) 

It can be shown from an argument similar to that used in deriving 
equation 3.4 from equation 3.1 that the above expression may be written as 
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2k 2k 
I (u, v ) = const. + cos -jr ( ux + vy) ^ ( u , v ) + sin ( ux + vy ) g i u, v ) o 

3.14 

where g e( u , v ) and g0( u, v ) are the even and odd transforms 
of the amplitude of the point spread function. Plow ever , it must be noted 
that the transform of the point spread function as described in equation 3 . 1 3 
is half the s c a l e of the transforms obtained for incoherently illuminated 
objects. This difference in scal ing a r i s e s because in the former case the 
transform is taken of a coherent amplitude distribution, while in the later , 
the transform taken is that of an incoherent intensity distribution. 

This consideration does not affect the periodicity of the carr ier 
fr inges a s they are dependent only on the various interferometer parameters 
and not on the coherence of the virtual objects. Thus the interference pattern 
in the observation plane due to a coherently illuminated distribution is the 
spatial power spectrum of that distribution, amplitude modulating carr ier 
fr inges . 

The intensity distribution expressed by equation 3 .14 can be 
interpreted as the far f ie ld interference pattern produced by a point imaged 
onto the interferometer input plane by a lens with a given impulse response. 
If the lens were perfect and of infinite extent, the interferometer would 
produce two virtual points situated at (x,y) and at ( -x , -y ) . Therefore , if 
a more general object is cons idered , consisting of a continuum of points, 
each of which is imaged onto the input plane, the f a r f ie ld interference 
pattern for this general object can b e obtained by integrating equation 3 .14 
over the virtual object plane, hence 

I (u,v) = const. + ge( u,v ) 

oo 

U x , y ) cos 
- o o 

2k 
F ( ux + vy ) dxdy 

.(u,v) 

C O / 

2k 
I „ ( x , y ) s i n ~ ( ux + vy ) dxdy 

Clearly , this can be recognised as the sca led Fourier transform 
of the original object multiplied by the power spectrum of the point spread 
function of the lens imaging the object onto the interferometer input plane. 
It should be noted that both the transform and the power spectrum are 
centred on the co-ordinate origin of the observation plane. Hence for the 
typical point spread functions obtained with reasonably well corrected 
lenses (Born and Wolf 1970) the transform will be affected by the power 
spectrum only at the higher spdtial frequencies . This implies a loss of 
resolution in the object for l e n s e s with large point spread functions*which 
is consistent with standard imaging properties of l e n s e s . 
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Final ly , the m o s t crippling l imitation of this wavefront folding 
inter ferometer is the re s tr i c t ion of input objects to those with narrow 
spectral widths , in order that the Four i er transform m a y b e displayed 
unambiguously. The e f fec t of a wide spectra l range on the far f ie ld 
interference pattern can be readi ly appreciated by considering the 
spec ia l c a s e of a polychromatic point s ituated at ( ± x , ± y ) in the 
virtual object plane. F r o m equation 3 .4 the intensity distribution in 
the observation plane due to a s i n g l e wavelength wil l be 

dI ( u, v ) = I ( k ) \ l + cos 
2k 
F 

(ux + vy ) f dk 

A s i m i l a r pattern wi l l b e produced by every wavelength 
present in the s o u r c e , however , as the waves at di f ferent wavelengths , 
emanating f rom the point have a random initial phase , these patterns 
in the output plane wil l add only in intensity. Thus the intensity 
distribution in the observat ion plane wi l l be 

oo . . 

I (u ,v ) = j j f I ( k ) | 1. + cos ( ux + vy ) > dk 3 . 1 5 

o / * ' 

which is the s c a l e d cos ine F o u r i e r transform of the spectra l distribution. 

Thus if the spec trum is a rect , function of the f o r m 

I ( k ) = I o r e c t . < J ^ - ) 

then the intensity distribution in the observation plane, a s given by 
equation 3.1.5 b e c o m e s 

l^sin 2 / F 5 k ( ux + vy ) 2k/ct . A , 
I ( u , v ) = I 0 + ~ * ~ cos / F ( u x + v y ) 

2 / F ( ux + vy ) 
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Thus the neces sary constant vis ibi l i ty fr inges defining the 
Four ier transform of a point, are modified by the transform of the 
source spectrum. Clearly the l arger the bandwidth, the greater is 
the departure from the true spatial transform. A working limit on 
the spectral width can be imposed by requiring that the fringe 
visibil i ty is reduced by no m o r e than half over the practical region 
as defined by equation 3 . 1 0 . Thus 

s in t = i xf, = o . 6 n 

2 8 k ( ux + vy) = 0 . 6 11 
F 

5 X = 0 . 4 A 

Clearly, such a narrow bandwidth excludes m o s t of the 
standard sys tems for displaying or generating two-dimensional s ignals . 

Thus, although the interferometer is capable of producing 
from an extended incoherent source , two-dimensional patterns that 
are directly delated to the Four ier transform of the spatial extent of 
the source , the inability to accommodate a large spectral bandwidth 
frustrates its potential for, r e a l - t i m e process ing of two dimensional 
s ignals . 

3 . 3 . Realisations 

Although Mertz and Young suggested this wavefront folding 
interferometer, they themse lves do not appear to have reported the 
construction of such a device. It s e e m s that the f i r s t successful 
experiment with this type of interferometer was performed by Murty 
(1964) who was primarily concerned with generating a high contrast 
interference pattern. 

His interferometer cons i s ted of a Twymann Green with a roof 
p r i s m in one arm, by means of which a s ingle- fo ld rotation was intro-
duced. The source used, was a f i l tered, high p r e s s u r e mercury 
discharge lamp focussed onto a narrow sl i t . The f a r f ie ld interference 
pattern obtained was the sca led cos ine Fourier transform of the s l i t 
and this is c learly demonstrated in his paper. , 
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A tvvo-dimensional folding interferometer was built.(Stroke 
and Res tr i c t 1965, Worthington 1966) in an attempt to produce holograms 
of two-dimensional information illuminated by incoherent light. The 
former overcame the spectral bandwidth problem by using a gas l a s e r 
as the source . The required degree of spatial incoherence was obtained 
by moving a ground g las s plate a c r o s s the laser wave , thus introducing 
a time varying, random phase variation across the wavefront. Worthington 
solved the problem by using a highly f i l tered low p r e s s u r e mercury 
discharge lamp. 

Both accounts are concerned with developing holography with 
incoherent light, however, with such stringent restr ict ions on permissable 
spectral bandwidths, they can b e , at b e s t , considered as monochromatic 
demonstrations of the interferometer ' s potential. 

The most success fu l application to date of the interferometer has 
been in astronomy. In one branch it was used to m e a s u r e the perturbation 
of light through turbulent a ir along a given path (Wendy 1970, Bertolotti 1970). 
A la ser source was located at one end of the path of interest , while the 
interferometer was at the other. The l a ser light entering the interferometer 
had its phase modulated by the a ir turbulence. This turbulence was presented 
as a vis ibi l i ty variation of the fr inge pattern in the observation plane. However, 
as a l a s e r was essent ia l , the experiment had to be l imited to light propagation 
parallel to the ground. 

The*interferometer has a l so been used (Breckinridge 1972, 1974, 
Dainty and Scaddon 1974) to e s t imate the diameter of s tars . The f o r m e r 
used a complex, sol id g la s s p r i s m which sheared and folded the wavefront 
in two dimensions , while the latter used a modified Michleson interferometer. 
However, both interferometers have produced s i m i l a r results . A star can 
b e considered as consist ing of two separate functions; one representing its 
spatial extent and the other its spectra l distribution. As an approximation 
it can be assumed that the interference pattern generated by the interferometer 
wi l l be the product of the individual transforms of these two functions. 

The transform of the spatial extent of the s t a r will be a c ircular 
B e s s e l function which has wel l defined zeros . The exact position of these 
zeros is dependent upon known interferometric parameters and on the s tar ' s 
diameter. If a Gaussian or Lorentzian distribution is assumed for the 
s tar 's temporal spectrum, the corresponding transform wil l not have any 
zeros within the range of the interferometer . Thus the distance between 

- 43 -



zeros in the interference pattern can b e measured and the s tar ' s diameter 
calculated. Clearly, with a broad spectrum it is difficult to ascerta in the 
exact location of these zeros and a f i l t e r may be n e c e s s a r y to reduce the 
spectral width. 

The major advantage of this interferometer over Michleson's 
Stellar interferometer is that the transform of the s tar is displayed in 
space which s impl i f i e s the task of determining the exact position of a zero. 

Final ly, interest has been shown (Lacourt et al 1972) in using 
this interferometer to obtain the Optical Transfer Function of any optical 
sys tem. From l inear s y s t e m s theory it is c lear that the frequency 
response of a s y s t e m is given by the Fourier transform of its impulse 
response. Therefore , if the point spread function produced by an optical 
sy s t em is focused onto the input plane of the interferometer, the Optical 
Transfer Function wil l be presented in the observation plane as a 
visibil ity variation. However, this s y s t e m is l imited to monochromatic 
illumination and hence no information about the chromatic dependence of 
the optical s y s t e m is available. 
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CHAPTER 4 

Spectrally Compensated Wavefront Folding Interferometer 

In the previous chapter it was shown that the inability to accomodate 
polychromatic input functions severe ly l imited the potential of the wavefront 
folding interferometer. The trivial solution of restricting the spectral range 
of the source by a highly se lect ive interference f i l ter is very inefficient, as 
only a very small amount of the source energy is made available to form the 
interference pattern. A more practical solution would be to make the patterns 
produced by different wavelengths identical, and hence independent of the 
wavelength. 

The initial attempts at overcoming the problems caused by the broad 
optical spectrum were directed towards producing holograms with incoherent 
light. One of the f i r s t reasonably success fu l incoherent light holograms 
produced (Mertz and Young 1961) , was based on the concept of considering a 
hologram as a superposition of Fresne l zone plates produced by individual 
points in the object (Rogers 1952). Thus the recorded pattern, or hologram, 
is a convolution of the object distribution with a Fresnel zone plate. 

Reconstruction can be achieved by illuminating the hologram with a 
plane monochromatic wave, in which c a s e the various zone plates refocus their 
appropriate object points. A second possibil i ty is to correlate the hologram 
with a zone plate (Silva and Rogers 1975) , which will produce the original object 
convolved with the autocorrelation of the zone plate. As this autocorrelation 
approaches a delta function, so the object can be observed unambiguously. 

Although this technique for overcoming the problems associated with 
a broad band source has been used reasonably successful ly in X-ray and in 
y - ray holography (Barret et al. 1972, Wilson et al. 1973, Barret et al. 1973) 
it does not appear to have the same potential for real time two dimensional 
signal processing, as did the wavefront folding interferometer. Thus in order 
to overcome the effects of the temporal bandwidth, it is necessary to look for 
a form of spectral compensation which wil l enable the object to generate identical 
interference patterns for all wavelengths present. 
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4.1. Required Compensation 

Without any spectral compensation, the interferometer produces 
s imi lar patterns, but with different scal ings as shown in section 3 .2 . Thus 
a typical virtual point, situated at ( x , y ) in the virtual.jpbject plane, radiating 
at a wavelength \ will interfere with its corresponding point in the other 
virtual object to produce a fringe pattern given by 

I ( u ,v ) = A 4 n 1. + cos ( ux + vy ) 
XF 

4 . 1 

The same point also radiates with a wavelength 
produce an interference pattern described by 

X + <5A and will 

I ( u , v ) = A 1 + cos 
4 n 

(X+5X) F 

( ux + vy ) 4. 2 

The two fringe patterns described by equations 4 .1 . and 4. 2 . , have 
different periodicities. However, as they both have a maximum at the centre, 
or coordinate origin, of the observation plane, they will become progressively 
out of step for increasing positive and negative observation plane coordinates. 
This phase angle between the two fringe patterns will equally l imit the extent of 
positive and negative Fourier frequencies that can be recognised. If an arbitrary, 
but working condition restrains the relat ive phase angle to be no more than * 
in order to maintain fringe visibil ity, then the maximum range U , V over 
which fringes can be said to exist can be readily defined. However, such a 
description of the fringe pattern depends not only on the spectral distribution of 
the source, but also on various interferometer parameters. A much more 
useful description would be in terms of the numbers of fringes that exist within 
the working range. If within this range U,V , equation 4 . 1 . , describes N+ 

fr inges , then equation 4. 2. , will describe N+- \ fringes. Therefore 

U L - ( Ux + Vy ) = N+2 n 
X F 

4 n 
(X + 5X)F 

from which 

( Ux + Vy ) = ( N+- i ) 2 n 

2 S \ 
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An expression s imi lar to equation 4 . 2 . can be written for the object 
point radiating at the other extreme of the source spectrum, namely at X - 5X 
and on proceeding through an argument s imilar to that above, the number of 
vis ible fringes will be limited to 

X 

2 6 X 

This mere ly states that the fringes at the shorter wavelength will fall out of 
phase sooner than the longer wavelength fringes. However, as the question 
of whether a fringe is vis ible or not is rather subjective, for convenience the 
number of vis ible fringes produced by a point source of spectral width 2 5 A 
centred on X can be defined as the mean of N + and N_ , namely 

N = 
2 5 X 

4. 3. 

This defines the number of fr inges in the positive half range of the 
observation plane, thus the total number of visible fringes produced by a 
source will be 2N. This g ives , for a white light source, the number of 
detectable fringes as approximately 3. 

This number of fringes could be increased if a parameter within the 
cosine argument in equation 4. 2. could be made a function of wavelength, such 
that the argument became independent of the wavelength. Clearly, there are 
only two possible parameters; F the distance between the virtual input plane 
and the observation plane, and ( x , y ) the virtual input plane coordinates. A 
brief look at equation 4. 2. will reveal that for a maximum bandwidth 2 
approximately equal to X , F must be halved, or (x,y) must be doubled. 
For a more practical interferometer F would be 1.05 mm while (x,y) would 
be 20mm, hence it is eas iest , with the readily available dispersive elements, to 
achieve a controlled display of the spectrum in the virtual input plane, Therefore, 
if the virtual input plane coordinates are made wavelength dependent, as shown in 
Figure 4 .1 . , then equation 4. 2. wil l become 

I ( u , v ) = A 1 + cos 
4 n 

(X + 5 X ) F 
( x + 6 x )u + ( y + <5y ) v. 4 . 4 
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For ideal compensation, the fr inge periodicities expressed in 
equations 4 . 1 . and 4. 4. should be identical 

4 n ( ux + vy ) = 4 n ( ( x + 5x ) u + ( y +8y ) v 
X F ( X + <5 X ) F 

which on re-arranging gives 

<5A _ u 6 x + v 5 y 

^ ux + vy 

This c learly defines the required displacements in the x and y 
directions of a point radiating at a wavelength A + 5A from the same original 
point radiating at a wavelength A . An identical expression for negative 
displacements can be obtained for the object point radiating at a wavelength A- 6A 
From now on where such symmetry prevai ls only the positive half of the spectrum 
will be considered. 

This form of compensation is fundamentally a technique for generating 
achromatic fringe patterns, and various different sys tems have been suggested 
for producing such fr inges , mainly with incoherent light holography as a goal. 
However, as will be shown in the next sect ion, not one of these systems can be 
successful ly applied to wavefront folding interferometers. 

4. 2. Achromatic Fringe Systems 

It would appear that the f i r s t success fu l demonstration of achromatic 
fringes was achieved by Leith and Upatnieks (1967) although the possibility had 
been previously discussed (Lohmann 1962 ). Leith and Upatnieks proposed a sys tem 
where a collimated beam, from a broad spectrum source illuminated a diffraction 
grating, as shown in Figure 4. 2. 

A lens, imaging the grating with unity magnification onto the observation 
plane, produced in the back focal plane wel l defined areas of light, consisting of 
a spatial display of the source spectrum, positioned at each of the diffracted orders . 
The grating l ines, as observed in the image plane can be thought of as fringes 
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formed by the interference of two or more of the areas of light in the back 
focal plane, acting as secondary sources. However, in order to calculate 
the spatial extent and location of these secondary sources, it is convenient 
and accurate to a first order, to consider the effect of a diffraction grating 
in terms of light rays. Thus with reference to Figure 4. 2., the undiffracted 
beam will form a polychromatic point on the axis. The extent of the secondary 
source at the first diffracted order can be found by first considering its size in 
the plane of the lens, thus 

where o( is defined by the diffraction equation for normal incidence on a 
grating of N lines per m m . 

sin a = X N 

cos a.8a = N 5 X 

_ 2 F N $ X 
d x t -

cos* a 

The secondary source at the first diffracted order, in the back focal 
plane will have an extent half that at the lens. Noting that tan a can be 
expressed in terms of the focal length and of the distance d between the 
secondary source and the polychromatic point, we have 

d 5 X 

X cos ot 

d x = 4.6. 

which defines the spatial extent in the back focal plane of the displayed source 
spectrum. 

The system can be considered as an interferometer with the back 
focal plane of the lens serving as the input plane, and the image plane as the 
observation plane, as shown in Figure 4. 3. The complex amplitude distribution 
in the observation plane produced by the polychromatic point situated at (-x, y) 
radiating at a wavelength X is given from equation 1.13 as 
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A,(u,v ) = V X > exp jk 

2F 
Fa+ ( u + x ) + ( v - y )" 

where V0( \ ) is the magnitude of the spectral composition of the zero 
order diffraction term. Similarly, the amplitude distribution due to a point 
radiating at the same wavelength, situated in the f i r s t order diffraction term 
at (x, y) , is given by 

A ( ( u , v ) = V ( X ) exp J L 
2F ( 2 F*+ ( u - x ) a + ( v - y ) A 4. 7. 

These two distributions produce a fringe pattern whose intensity is 
given by 

I ( u , v ) = l i l i +
 V . ' < * > +

 2 V « < X ) V , ( X ) C Q S 4 0 u x 

X*F* X*F* X V X F 

4. 8. 

Comparable amplitude distributions can be written for the radiation 
at X + 6X , noting that it now originates at x + 6 x in the dispersed f irst 
order, and not from x . Thus the intensity of the fringe pattern produced by 
points radiating at a wavelength X + 5X will be given by 

i ( u , v ) = v Q U + ^ ^ ) + v,A(X+ a x ) 

(X+ 5 X ) V ( X + s x F1 

2 v (X+ 5 x ) V, (X+ 8 x ) 40 + cos 
F*(X+ 5 X )* F (X + 5X) 

- ilJL- ( 5 x + 2 x ) ] 4 .9 . 
4 / 

If achromatic fringes are to be produced, the periodicities expressed in 
equations 4. 8. and 4. 9. , must be equal, which, on ignoring the constant phase 
shift 6 x (6 x + 2x ) /4 in equation 4. 9. , gives the condition S x must 
sat isfy, namely 
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5 x 
x + — = ^ 

X + 5 X X 

Sx =
 2 X 5 X 4 - 1 0 

On comparing this condition with equation 4. 5. it is c lear , that for 
smal l diffraction angles , this s y s t e m wi l l produce a high contrast fringe pattern. 
Leith and Upatnieks suggested that this s y s t e m could be used for producing 
holograms by using the polychromatic point source as the wave illuminating 
the object, while one of the f i r s t order diffracted terms would be the reference 
wave. Clearly, the object is l imited to a transmittance distribution and must 
be placed in a plane between the back focal plane of the lens and the observation 
plane. If this object plane is denoted by the coordinates x' ,y' and is at a 
distance D from the back focal plane, then the amplitude distribution a c r o s s 
the transmittance object T(x' ,y') wi l l b e 

A ( x ' , y ' ) - V Q ( X > exp ( 2D*+ ( x + x' ) + ( y + y' ) J 

X D 2D ' 

Therefore , a typical point on the object, with a transmittance T (x ,y')A(xJy l) 
wil l produce an amplitude distribution in the observation plane given by 

T ( x ' , y f ) A ( x ' y ' ) - i k / a x i 
A ( u, v ) = _ : — J — — _ exp [ (F-D) + ( u + x' ) + ( v + y') 

( F - D ) 2(F - D) 

If the object plane is midway between the back focal plane and the observation 
plane, then 

2 D = F and 1 ! = 
F F 

On substituting for A ( x ' , y ' ) f the amplitude distribution in the observation 
plane b e c o m e s 

A ( u, v ) = T ( X ' ' y , ) V ° < X ) exp i S ( 2 F* + ( x + u f + ( y + v 
F X 2F 
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On combining this amplitude distribution with that produced by the reference 
wave, expressed by equation 4. 7. , an interference pattern ar i s e s , whose 
intensity is 

I ( u , v ) = V.3( X ) + V0
3( X ) T a ( x ' , y ' ) + 2 V ) ' ( X ) V ( X ) T ( x ' , y ' ) c o g 4 i r u x 

x V X'F1 7 T X C O S - T -

4.11. 

Thus, the fr inges , or the grating l ines , are amplitude modulated 
by the transmittance function T (x',y') and hence the information is recorded 
holographically with incoherent light, There are however, several fundamental 
limitations of this technique when applied to real time signal processing, or 
even to practical holography. 

Primari ly , the constant phase term in equation 4. 9. is a function of 
wavelength and is only equal to zero for one well defined wavelength. Hence, 
to justify its omission from the condition stated by equation 4.10. , the spectral 
range of the source must be restr icted, typically to about 100 A. 

Secondly, due to the f ixed relationship between the polychromatic point 
and the dispersed f i r s t order reference source , the possible objects are limited 
to a point or to a transparency placed in a well def ined plane. Due to the geometry 
of the sys tem, Fourier holograms are produced only for objects situated on the 
polychromatic point source , hence these Fourier patterns are l imited to single point 
objects. 

An attempt was made to produce Fourier transform holograms from 
larger objects, by using a Fresnel zone plate, instead of a diffraction grating, 
as the dispersive element (Kato and Suzuki 1969). The zone plate focussed the 
undiffracted beam in one plane, and the f i r s t order diffracted term in a second 
plane which became the object plane. The transparency was placed in the object 
plane such that it would be illuminated by the diverging undiffracted wave. Hence 
with the reference source and the object present in the same plane a Fourier 
transform hologram, to within a quadratic phase term, was produced in the far field. 
However, with the object l imited to a transparency, the advantages of incoherent 
light signal processing rapidly diminish. 

Although for image plane holography the object s i ze has been increased 
by placing it in contact with the diffraction grating (Bryngdahl and Lohmann 1970), 
the fundamental problem of a restr icted spectral range and the need to present 
the information on a transparency pers is t . If precise Fourier holograms are 
desired then the object is l imited to a s ingle point in a well defined position. 
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4 . 3 . Spectral Compensation for Extended Sources 

A f i r s t possible s tep to improve the spectral r^nge would be to remove 
the constant phase term present in equation 4. 9. T h i s c a n be achieved by having 
two symmetrical ly d ispersed sources producing the interference fr inges , in 
preference to the asymmetr ic light distribution in Figure 4. 3. The required 
dispersion can be produced by a pair of parallel gratings as shown in Figure 4 . 4 a , 
from which a wavefront folding interferometer can readily produce two virtual, 
sheared images as shown in Figure 4. 4b. 

The f i r s t grating sends the light at different wavelengths into different 
direct ions, while the second grating translates this angular dispersion into a 
spatial dispersion. Thus the amount of dispersion 5 x for a spectral range 5 X 
introduced is dependent so le ly on the grating periodicities and the distance 
separating the gratings. From Figure 4 . 4 a , if P x is the path length of the 
radiation at X between the gratings, then 

px = 
COS a 

where a the diffraction angle is given by 

X N, = s in a 

5 x = P, 
5 Q cos (a + 8 a ) 

c r N 5 X 
ex = ! 

3L 
COS a COS ( ce + B Or ) 

which for small diffraction angles reduces to 

t r N , 5 X 

5 x = i—- 4.12 
cos cc 

Thus 5 x is directly proportional to 5 X . From Figure 4 .4b 
and section 3 . 2 it is c lear that the pair of points positioned at - x radiating 
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at a wavelength X will produce a fringe pattern whose intensity will be 

I ( u ) = A ( 1 + cos 4 r i u X ) 
X F 

Similarly, the pair of points positioned at ±( x + 8 x ) radiating at a 
wavelength (X +5 X) will produce a fringe pattern whose intensity is 

I ( u ) = A ( 1 + cos 4 l I u + ) 
F (X + 5 X) 

These two periodicities will be equal if 

5 x = x 8 ^ 4.13 
X 

However, 5 x is fixed, by the geometry of the grating, for a given 6 X ; 
thus equation 4 .13 . , defines a unique value of object position x at which the 
compensation is ideal. Hence, this form of spectral compensation is limited to 
an object consisting of a single point in a very well defined position. Although 
this is clearly of limited value for signal processing, an identical, in principle, 
form of compensation has been used for holography (Leith and Chang 1973, 
Chang 1973) and for stellar interferometry (Cutler and Lohmann 1974). 

However, if in equation 4.12 the dispersion 8 x could be made linearly 
dependent on the object plane dimension x then clearly equation 4.13 would be 
satisf ied for all x and thus presenting ideal spectral compensation across the 
entire object plane. On combining equations 4.12 and 4.13 we have 

r N' ^ = X A 1A 4 . 1 4 
cos 3 a 

which defines a relationship between the compensating system parameters and 
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the object plane dimensions. This is the fundamental requisite condition that the 
gratings must sat is fy in order to achieve spectral compensation for extended 
sources . , ' 

One possible way of achieving this i s to vary N, the number of lines 
per mm on the f i r s t grating. However, on expressing c o s 3 « in terms of N, 
equation 4.14 becomes 

r N,X 

Varying the number of l ines per mm on a grating according to the 
above relationship is c learly not easy. There i s , however, another parameter 
in equation 4.14, namely r the distance between the gratings which can be 
made proportional to x . This can be achieved by inclining the second grating 
relative to the f i r s t , as shown in Figure 4. 5. 

Thus a polychromatic point situated at x along the f i r s t grating will 
be dispersed into a solid angle bounded by a and a + 5 a for wavelengths X 
and X + S\ respectively. From Figure 4. 5. , 

$ x = 5 XjCos a 

= p> 

cos (a + 8 oc + 0 ) 

x sinff 
cos ( Or + ) 

= x sin cos 6 6 or 

cos (a + 0) cos (a- +<5a + fy 4 .15 

i i 
$a 

Px 

8 x 

The angles in the above express ions are also dependent upon three 
physical parameters in the dispersive sys tem. These three parameters , the 
periodicities of the two gratings and the angle between them, are related by 
the grating equations and the appropriate derivat ives , which for the f i r s t 
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grating are 

X N, = sin oc 

5 X N, = cos a 8oc 

4.1.6 a 

4 .16 b 

and for the second grating 

X N4 = s in ( a + j3 ) - s in 6 

5 X Na = cos ( a + 0 ) S a - cos 9 8 

4. 17 a 

4 .17 b 

Substituting for 8 tf f rom equation 4 .16b into equation 4.15 gives 

8 x = 
x 6 X sin 0 cos Q tan a 

cos (cc + jS ) cos ( cr -b 5 a + 0 ) 

On comparing the above equation, which describes the wavelength dependent 
displacement as a function of the grating parameters , with the equation 4.13 
which defines the ideal displacements , we have that 

s in /3 coa 6 tan a 
cos ( a + 0 ) cos ( a + 8 a + ) 

= 1.0 4.1.8 

which assuming that 6 a is smal l compared with a + f} gives 

sin ff cos 6 tan a = o 

cosA( a + 0 ) 
4 . 19 

This condition remains constant for all wavelengths and hence can be 
readily sat isf ied by a suitable combination of the three available parameters. A 
second condition which was implied at the beginning of this analysis , namely that 
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light at all wavelengths leaves the second grating at the same angle, gives a 
second equation. Thus from equation 4.17 5 0 = 0 , hence 

N cos ( a + (3 ) = N A cos cf 4 .20 

These two conditions can be sat is f ied by a continuous range of the 
three variables. However, due to the complicated nature of these conditions 
an analytic expression for the possible range of solutions would be far too 
complex to be useful. Hence, the range of solutions was derived by numerical 
methods on a computer, and is shown in Figure 4 .6 . Thus any pair of gratings 
read off from the curve and inclined at the appropriate angle will produce a 
nominally infinite number of fringes. 

However, in deriving equation 4.19 it was assumed that 5 a was 
small compared with a + @ . The effect of this assumption can be observed 
by estimating the limit imposed by the omitted term on the number of visible 
fringes. Thus with equation 4.19 satisf ied we have 

6 x = 

However, if equation 4.19 is replaced by equation 4 .18 . , but keeping 
equation 4 .19 . , satisfied, then we have 

5 x = x S X r-1 + £ 4. 21 

where £. represents the departure from ideal displacement caused by 
the difference in equation 4.18. , and 4.19. 

If the number of visible fringes in the positive half range of the observation 
plane is defined as in section 4.1. then a pair of points situated at ± x radiating 
at a wavelength X will produce N+ fr inges such that 

2 TIN = 4 n u x 
+ F X 

and 

2 H ( N - J ) = 4 n u ( x + * x ) 
F (X +8 X ) + 
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which on combining and re-arranging gives 

N = ) 
+ 2 (x<$>- X 8 x ) 

Substituting for 8 x from equation 4 .21 and eliminating x gives 

X X N+ = 

Similarly 

N = 

hence 

N = 

2 5 X £ 

m 

X - S X 

2$ X £ j6 X \ 4 .22 
m 

Clearly if the error term £ j ^ ^ to zero then N tends 
to infinity and the spectral compensation is perfect. On the other hand, if this 
error term equals unity then equation 4 . 2 2 reduces to equation 4. 3 which defines 
the number of fringes for an uncompensated polychromatic source , and the 
effect of the spectral compensation has been eliminated. 

This error term c l ^ j " has been evaluated for the ideal values of 
the three grating parameters as defined by Figure 4. 6. The results for the 
positive half of the spectral width are shown in Figure 4. 7. Those for the 
negative half of the spectrum are not shown as they are s imi lar in form to 
those shown, differing only by a negative sign and a slight reduction in magnitude. 

8 X 
The main point to note is that for the full visible spectrum. "Xx - o. 3 

the error is far from insignificant offering at best only f ive times as many 
fringes than for the uncompensated source . The main reson for such a large 
error at small diffraction angles is that although a , and hence 8 a in 
equation 4.18 are smal l , the angle between the gratings /3 needs to be large 
for grating pairs with low numbers of l ines per mm , Thus within the argument 
of a cosine even a small 5 a when compared with a large angle can cause a 
significant change in the resulting value of the cosine. 
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The physical significance of this error termE|"j^ | i s that the spectral 
components of the source are not displaced linearly as required by equation 4 . 1 8 . , 
hence they give r ise to an incremental fringe pattern which after a while fal ls 
out of step with the other incremental fringe pattern th.us limiting the number of 
constructive, hence visible fringes. However, it should be noted that although 
the spectral compensation is not ideal it is independent of the position of the 
polychromatic source and hence independent of source s ize . 

4 . 4 Practical Limits and Aberrations 

M l 
The error term£l \ / had, in the preceeding section, been determined 

only by a theoretical consideration, however, a departure by any one or a 
combination of all of the three grating parameters from their ideal values will 
a lso introduce a s imi lar error term which will influence the performance of 
the compensating system. From the previous section, the ideal relationship 
between the displacement and bandwidth is 

g x _ x 8 X ( sin (3 cos d tan a 

X ( c o s a ( a + / 3 ) 
4. 23 

provided that 

S e = S X j N'cos ( a + 0 > - N'cos B I = 0 4.24 
I C O S 6 COS a ) 

Clearly, a small variation in any of the three grating parameters will 
not only upset the coefficient of x in equation 4. 23 . , but will also introduce 
a s imilar error term which will in turn further perturb the relationship between 

S x and x . Thus the real $ xr becomes 

S x r - X S\ 1 + e(SN„foa,/3) 

where as previously, E ^ N , , & ) represents the departure of the 
coefficient of x from the ideal. As suggested earlier, it consists of two 
parts; E, , due to a non zero 8 6 and £ , a direct result of variation 
of the grating parameters in equation 4 .23 . 

From Figure 4. 8 it can be seen that a non zero S 6 decreases S x . 
by an amount 3 x f 

where B x£ = + 
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and hence 

e = 
• 8 x. i 

From Figure 4. 8 

x sin (3 
P cos ( a + 6 a + (3 ) 

while from equation 4. 24 

Hence £ can be evaluated. The second contribution £ n to the 
overall error is given by 

£ x = — — A n , + - — ^ A N , + -7-r A/3 

The total error term £(+ has been evaluated and is shown in 
Figure 4. 9. 

The main point to note about these error curves is that it is possible 
to compensate for the fixed errors in N and Na by introducing a controlled 
error into j3 . Thus within the assumption of small errors it is possible to 
tune the compensating system to an optimum level. 

This process, in fact, optimises the equation 

X N = 
2 S X £ 

Thus for £ less than unity, the compensating system enables more fringes 
to be formed than would have been possible when using the source by itself. 
As £ approaches unity the number of extra fringes decreased until at £ 
equal to unity the number of fringes produced by the compensated and uncompensated 
systems is the same. 
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However, an interesting point now arises, in that if E increases 
beyond unity, then this system will produce fewer fringes than would have been 
produced by the source alone. 

•• i 

The readily available commercial gratings ai'e obtained by cutting a 
master grating and using it to press out the grating pattern on a suitable deformable 
material. Hence two types of errors can arise. Primarily, local variations in the 
numbers of lines per m m due to microscopic instability of the master cutting tool 
and secondly due to pockets of impurity in the replica material. The second type of 
error, an overall variation in the number of lines per m m is due to the contraction 
of the replica material after the pressing operation. 

However, with existing control methods, manufacturers do not expect 
the number of lines per m m over a given area to vary more than one or two 
per cent. 

Finally, the gratings, even idealised ones, will produce image aberrations 
when used in an optical focusing system. Thus a real, monochromatic point 
source situated at S when viewed through a grating will appear as an extended 
point situated at V as in Figure 4.10. In order to calculate the wavefront 
aberrations present, the method suggested by Beuther (1945) and developed by 
Gillieson (1949) of expanding, as a power series, the path length difference 
between the principle ray and any typical ray will be used. Thus the path length 
difference W is given by 

W = SB - VB - ( SA - VA ) 

Expressions for the four lengths can be readily obtained by simple geometry 
from Figure 4.10 to give 

W = ( U 2 + L 2 L + u { cos oc - cos | 
sin ( <* - <*') I 

Expanding the square root term and the trigonometric function as power series 
gives 

W = L { 1 + 
A 

U u 
4 / ° x

 «+ «*- I 
- . . . . I • T i + U 1 1 - 2 + 1 •>•• - f 

2La 8L4 > /«-«'- (s£_JEL> _ (« I 
l 3: 5: / 
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However, in this particular circumstance the wavefront folding 
interferometer requires paraxial rays , implying that L U and that ^ 
in Figure 4.10 is small . If a further condition is added namely that the 
number of l ines per mm on the grating is smal l , giving r i se to small 
diffraction angles , then the aberration can be written as 

W - a. U 

X — (C< + <* ) 2L, 2 V 

while the grating equation can be written as 

XN, = o< 

XN, = a' 4 > 

Substituting for « and <x' gives the aberrations as 

a. 
W = + ^L ( 2 X N - ^ ) 

2La 

F r o m Figure 4.10 can be expressed as 

* • 5 

W = X N. U 

Thus for paraxial propagation the one dimensional aberrations 
introduced by a low spatial frequency grating are limited to a linear phase 
shift which s ignif ies that a non zero diffraction order is being considered. 
This is a result s imi lar to that obtained by Bose (1977) who investigated 
the effect of a diffraction grating on a point source in terms of its angular 
spectrum of plane waves. 
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CHAPTER 5 

••• i 

The Construction of a White Light Interferometer 

In the two preceeding chapters the theory behind the wavefront 
folding interferometer and the spectrum compensating sys tem, has been 
developed. It is now necessary to unite and test these concepts in a 
practical interferometer. After passing through several designs, the 
experimental interferometer eventually built is shown in Figure 5.1. 
The interferometer was one dimensional as it was felt that this would 
adequately test the overall concepts while keeping constructional and 
alignment problems to a minimum. The interferometer components 
were mounted on a large steel table, which rested on s ix pneumatic 
tyre tubes to isolate it from the building's vibrations. 

5.1. The Design of the Interferometer 

The light source and the spectrum compensating diffraction 
gratings were moimted on one platform which could be moved relative 
to the remainder of the interferometer. The unwanted diffracted orders 
were removed by a spatial f i l ter; thus the effective input to the wavefront 
folding part of the interferometer was a unique bundle of chromatically 
dispersed rays. Wavefront division was achieved by a g lass block coated 
with a 50% transmitting - reflecting layer of aluminium on the front 
surface. This block was aligned at Brewster's angle in the horizontal 
plane relative to the incoming rays so that reflections from the rear 
g l a s s - a i r interface would be kept to a minimum. 

The wavefront rotation in one dimension, the horizontal, was 
achieved by having an extra ref lect ion in one of the arms of the 
interferometer. This requirement, together with the wavefront 
division could be satisf ied by a s ingle reflecting surface placed in the 
manner of Lloyd's mirror. However, such a design does not offer any 
control over the relative path lengths, while the positioning of the output 
plane is dependent upon the relative separation of the real and virtual 
sources . For experimental purposes a more flexible design was necessary. 
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In order to control the path length in one arm and hence, the 
path difference between the two a r m s , a pair of mirrors was mounted 
orthogonally on a common platform. Thus light incident on the f i rs t 
mirror will leave the second mirror in a direction parallel to that of 
the incident light. On moving the platform in a direction parallel to 
the incoming light, the path length can be varied without upsetting the 
symmetery of the interferometer. 

The separation of the two virtual sources can be introduced by 
one of several possible techniques. However, for a flexible interferometer 
two conditions must be sat isf ied; the separation must have a positive and 
negative range without a discontinuity at zero, and secondly the output 
plane must remain independent of the separation. The f i r s t condition can 
be satisfied by bringing the light waves in the two arms together with a 
semi - s i lvered beam splitter. The second requirement can be fulfilled 
by noting that the interferometer produces from one real source two 
virtual sources which are symmetr ica l ly displayed in the virtual input 
plane. Thus a motion of the real source in a direction orthogonal to the 
principle ray will cause the two virtual sources to move in opposite 
directions. This motion of the virtual sources can be towards each other 
or apart from each other depending upon the direction of folding introduced 
by the interferometer and upon the direction of motion of the real source. 

Thus virtual object separation was achieved by mounting the real 
source on an input table which could be driven perpendicularly to the 
interferometer optic axis. 

5.1.1. The Components Used 

Ideally the input to the interferometer should be a self- luminous, 
spatially distributed scene; for example a C . R . T . , screen. However, 
the light has to pass through two diffraction gratings and radiate through 
approximately one metre of space , hence in order to have an easily 
observable interference pattern in the output plane a more powerful 
input source was necessary. Thus the ideal input was simulated by 
focussing the f i lament of a tungsten halogen projector lamp onto a 
photographic transparency located in the effective input plane. The lamp 
used was a standard 250 watt projector lamp, type Al/223 with a filament 
s i ze of 7mm by 3. 5mm producing a nominal 8. 5 10 lumens. Under an 
optimum filament operating temperature of 3200 K it had a spectral power 
distribution as shown in the manufacturer's data, reproduced in Figure 5. 2. 
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The photographic transparency was mounted on a frame which 
had a pair of horizontally and vertically adjustable jaws defining the 
input function aperture. The f i lament of the projector lamp was 
focussed, with unit magnification by a 4cm diametdr lens, onto the 
centre of this aperture. Thus adjusting the jaws controlled the 
spatial extent of the input object to a maximum determined by the 
width of the fi lament. 

It appeared at f i r s t that choosing a pair of diffraction gratings 
to optimise the various conditions expounded towards the end of the last 
chapter would be quite difficult. However, the problem was reduced by 
the limited range of readily available gratings, to finding a pair that 
were c lose to the curve of Figure 4. 6. The gratings eventually chosen 
had . 590 lines per |j m for the f i r s t grating and . 250 lines per p m 
for the second. 

From Figure 4. 6. it can be seen that for 

But Na is f ixed at . 250, thus introducing an error of <5 -0 . 002 
lines per p m , which can be compensated for by an intentional error 
in (3 . Thus from equation 4. 26 we have for zero residual error and 
for Tf = 0. 

which on using the data in Figure 4. 9. , gives 

N= 0 . 590 

Na = 0 . 248 and Q = 47 . 63 

0. 01 

Thus the initial grating parameters that were used in the 
experiments are: 

N. = 0. 59 N, = 0 . 2 5 x (* = 47 .62 
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The f irs t grating, mounted in a frame, was attached securely to 
the input platform with its plane orthogonal to the optic axis . The second 
grating was fixed to an arm which could rotate about a vertical axis 
located in the plane of the f i r s t grating. The arrangement is shown in 
Figure 5. 3. The gratings were arranged such that-the two diffracting 
surfaces were as c lose to each other as possible in order that the 
theoretical model in Figure 4. 8. , b e maintained. 

However, due to the finite thickness of the mounts and that the 
grating lines c lose to the edge will be distorted, the real object did not 
start at the origin of the object plane. This offset of the object from the 
junction of the gratings must be reproduced in the virtual object plane 
in order that the increased dispersion across the object will be correctly 
positioned. 

The gratings were blazed such that an appreciable amount of the 
incident energy was transferred into one of the diffracted orders. Hence 
the gratings were also organised such that the desired optical path, as 
shown by the solid line in Figure 5. 3. , was along the enhanced diffracted 
orders . However, the amount of energy in the other diffraction terms 
emerging from the second grating was not insignificant and had to be 
removed by an appropriately positioned spatial f i l ter. 

Finally, the selected diffraction order passed through a polariser 
which transmitted only the vertical ly polarised components of the light 
waves. This was necessary to enable the reflections in the interferometer 
to be restricted to metal - air interfaces . 

The beam splitters used w e r e 51 mm square and 25. 4 mm thick 
and were made from a glass of refract ive index 1. 5174 at a wavelength of 
. 6328 fj m . The surfaces were f lat to 1 X and parallel to 0. 5 minutes 
of arc. The f irst beam splitter was mounted in a frame that could rotate 
about the vertical axis and could introduce small tilts about an orthogonal 
pair of axes in the plane of the s tee l table. The positioning of the second 
beam splitter was very critical as it affected both the separation of the 
virtual sources and the path lengths of both arms. Therefore, the mount 
for this beam splitter had the same controls as for the f i r s t mount together 
with a pair of micrometers that could move the beam splitter in a plane 
parallel to the table. One face of each beam splitter was coated with a / 

semi-transparent layer of aluminium which gave an equal reflectance: 
transmission ratio for red light incident at Brewster's angle. 
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With these beam spl itters orientated to the incoming light at 
such high angles of incidence, the d ispers ive properties of g lass , coupled 
with the appreciable thickness of the g lass will introduce a significant 
lateral spread of the spectrum. As can be seen frorh Figure 5.4a, each 
beam splitter affects the light in one arm only, however, in the output 
plane the dispersion in both a r m s is of equal magnitude and is in the same 
direction. The amount of shi f t 8 p for an increase in the wavelength 
from X to X + 8 X can be obtained by simple geometry from a 
consideration of the rays in either block. Thus 

The relationship between 6 r , the change in the refraction angle 
and 8 X the change in the wavelength can be obtained from Snell's law 
and from the Cauchy formula for the refractive index. From Snell's 
law we have 

$ P 
t 8 r 

cos r cos ( r + 8 r ) 

S p 
t cos i. 8 r 

cos ( r + Sr) COS r 

sin r sin i 
n 

& r 
sin i S n 

n cos r 

From Cauchy's formula we have 

M X ) A + ±L 
X* 

where A and B are constants characterist ic of the g lass . Hence 

8 n 
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which on substituting gives 

e 2 B t sin r cos i 
p =

 — * ; — 7 , A cos r cos ( r + <t r ) n 

which can be approximated to 

c 2 B t sin r cos i 
o P = 3 

( X cos r ) n 

_ o 
For the beam splitters used, B = 3. 7219 10 . Hence for 

polychromatic light incident at Brewster's angle 

S p = 571. 4 S X 

This can be compared with the dispersion introduced by the 
spectrum compensating system. From equation 4 .13 we have 

S x S X 

hence for x = 1 mm 

8 x = 1. 8 103 S X 

while for x = 9 mm 

S x = 1.64 1 0 4 £ X 

Thus S p represents a change of 31. 4% at the near edge of the object 
and 3. 5% at the far edge. This will probably manifest itself as a space 
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dependent resolution variation across the object. 

Finally, the mirrors in the interferometer were front silvered, 
covered with a transparent protective coating and were flat to V i 0 ( 
the usable diameter of 45mm. 

Due to the finite errors present in the various components, the 
interference pattern observed will depart from the ideal. In the f irs t 
instance the two phase fronts brought together by the final beam splitter 
will have small , but not necessari ly insignificant, differences caused 
by the minute surface variation in the mirrors and beam splitters. This 
phase difference, which will be space variant, can be represented as a 
phase perturbation <$(x) in one of the virtual objects. The magnitude 
of this phase perturbation will have a maximum contribution of 0. 3 X 
from the three mirrors and 2 X from the beam splitters. A second 
perturbation of the wavefronts is caused by the dispersion introduced by 
the beam splitters. This can be modelled by assuming that the ideally 
displayed spectrum is shifted by an amount- 8 p in both virtual objects. 

Thus a point source, situated at x , radiating with a wavelength 
X will combine with its corresponding point, positioned at - x and 

entertaining a phase lag c£> (x) in the other virtual object, to produce 
an interference pattern whose intensity is given by 

The same point in the r ea l object but radiating with a wavelength 
X X will be positioned at x+ £ x - 5 p in the f i r s t virtual object and 
a t - ( x + £ x + 5 p ) in the second. Taking into account the relative phase 
difference <J>(x + 8 x ) these two virtual points will produce an interference 
pattern whose intensity is 

5.1. 2. Limitations due to Components 

I4( u ) = 1. + cos J L £ 2 ( x + £ x ) ( u + £ p ) + q ( x + S x ) 

(X +8 X) F 
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at 
The maximum of the central fr inge of the f i r s t pattern is located 

u F <$>( x ) 

2 x 

while that due to the second pattern is located at 

u F 3>( x +S x ) 

2 ( x + <5 x ) 

S P 

Thus the two interference patterns add with a relat ive shift A u which 
when compared with the fr inge wavelength A becomes 

A u c£( x + 8x ) - <$> ( x ) 

X 

2 x Sp 

A X F 

The f i r s t term on the right hand s ide can take on a maximum 
value of approximately 2, however due to the random nature of the errors 
in the component sur faces , the overal l shift should be smal l . The second 
term, however, is not a random distribution and although it has a 
maximum value of only 0. 5 it wi l l probably be the dominant term. The 
overall e f fect will be to reduce the vis ibi l i ty of the output interference 
pattern. 

A problem which created diff icult ies in performing the experiment 
was the low light intensity in the observation plane. This situation arose 
out of the inefficient transfer of light by the gratings and the smal l sol id 
angle that the boundaries of the observation plane imposed by the aperture 
of the mirrors made with the real input plane. If the projector lamp 
f i lament is considered to be a lambertian source with a total irradiance 
and that is the total so l id angle subtended by the extent of the 
observation plane at the input plane, then the intensity at the observation 
plane will be 

i>=o r=o 
I = I s in ^ (9 0 

2 

I ( u ,v ) = 
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Although the diffraction gratings were blazed, the f i r s t grating 
transmitted only 34. 3% of the incident light intensity into the dominant 
order, while the second grating was more efficient at 57. 2%. Thus 
the spectrum compensating s y s t e m passed only 19. 6% of the incident 
power. The polariser removed another 50% and the final beam splitter 
removed 50% from each beam, thus the intensity in the observation 
plane became 

I ( u ,v ) = 4. 9 10 1 Iosin 
2 

The solid angle </> was determined by mirror 3 in Figure 5 .1 . , 
which had an aperture of 40mm and was typically 800mm from the input 
plane. Thus 

* 1 
sin _ = 

2 40 

a 
The area of the observation plane was typically II ( 2 5 )mm and hence 
the intensity per square mm. in the observation plane was 

I ( u ,v ) = 0. 624 Ie p lumens mm 

which for 

- 3 
l 0 = 8. 5 10 lumens 

gives 

-a 
I ( u,v ) = 5 .3 m lumens mm 

However, as was demonstrated in Chapter 1, the spatial extent of 
the Fourier transform is inversely related to the extent of the object. Thus 
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in order to observe a significent number of fringes a broad spatial 

transform is necessary, which implies a narrow object. Exact values 

will be given and discussed in the next chapter, however, suffice it 

to say that an expedient object size was several JJ m rather than 8 m m . 

Thus the intensity per square m m in the observation plane would be 

reduced by a factor of 10^ to 

I ( u,v ) = 5. 3 p lumens m m 

Unfortunately, the threshold of photoptic vision is 10 JJ lumens m m . 

This problem was deferred to a manageable state by using, as the input 

object, photographic transparencies with large apertures, containing 

structured transmission patterns. 

5.2. Fringe Localisation 

A s shown in Chapter 3, the Fourier transform of the object is 

presented as a variation of fringe visibility. It has, however, been 

tacitly assumed that fringes do exist in the observation plane. Clearly, 

if the two arms of the interferometer are identical in all respects, then 

fringes must potentially exist in the observation plane. However, it is 

interesting to ask where else could the fringes exist and what determines 

the exact location of such interference fringes. 

Consider two sources, either real or virtual, which have been 

sheared relative to each other by an amount x y and rotated through 

an angle <$> as shown in Figure 5. 5. In order that a high contrast 

interference pattern can exist at a point P at a distance z from 

the source plane, the optical path lengths from a typical pair of complementary 

radiators in the sources must remain constant throughout the range of 

radiation angles. This implies that in Figure 5. 5. 

( i r ) = 0 
d y A / 

F r o m straightforward geometry w e have 

^ r = x sin</> sin (<p - \f/) 

s in (V - ) 
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which on expressing 4> as tan ' ( ^/x^) and re-arranging, gives 

A r = ( x$+ x ) tan <P cos rp - x^sin , 

Differentiating A r with respect to \f/ and noting that x and \p 
are related, we obtain 

( A r ) = cos ^ tan 0 - ( x + x ) tan^sin ^ - x scos ^ 5.1. 
/ diA 

From the geometry in Figure 5. 5. an incremental change of <A 
can be seen to give r i se to a change in x defined by 

«x = _ L 2 £ 
X I cos y 

Thus equation 5 .1 becomes 

d_ U r \ = z tan 0 _ ( Xj.+ x ) tan <t> sin <A - x^cos 

d ) ^ ' cos 0 

which on equating with zero, gives the distance to the plane of highest 
contrast fr inges, from the source plane, as 

z = | x sin 2 + x^cos ( sin - c o s f ) 5. 2. 
tan <f> 

From the above equation it can be seen that for no relative 
tilt, the fringes will be local ised at infinity, sensibly independent of 
the degree of shear x$ present. This is consistent with the 
requirement that the Fourier transform modulated fringe pattern 
should be observed at infinity. If f inite tilt is introduced, then for 
non zero shear, z becomes finite and dependent upon y- such 
that the surface of maximum fringe contrast is no longer a plane. 
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Hence, to observe and faithfully record the Fourier transform of a 
spatially extended source as generated by the wavefront folding inter-
ferometer , it is necessary to have the two virtual sources parallel 
and to observe the interference pattern at infinity. ,, 

5 . 3 . Alignment of the Interferometer 

The interferometer was assembled with the help of a low 
powered He-Ne laser , which was aligned such that its beam was in 
a plane parallel to the s tee l table. The f i r s t beam-splitter and the 
three mirrors of the wavefront folding section of the interferometer 

were placed one at a time in their approximate positions, ensuring 
that their reflecting surfaces were normal to the table. The final 
beam-spl i t ter was then positioned such that it superimposed the 
two pencils of l a ser light. Thus at this stage the two arms of the 
interferometer were parallel but not equal in length. 

The path lengths were equalised to within 2mm by placing 
a microscope objective in the path of the la ser light, before the 
f i r s t beam-spl i t ter such that c ircular interference fringes were 
formed in the observation plane, centred on the optic axis. Such 
fringes could only be generated by two spherical wavefronts, with 
different curvatures, originating from the two virtual images of 
the focal plane produced by the microscope objective. The straight 
line passing through these two virtual focal points also passes through 
the centre of the circular fr inges . Thus requiring that the fringes 
be centred on the optic axis ensures that the microscope objective 
does not introduce any lateral displacements. 

The periodicity of the fringes is inversely related, through 
the different radii of curvature of the wavefronts, to the separation 
of the two virtual points. Thus altering the path length of one arm 
such that the circular fringes appear to collapse into the centre, 
reduces the path length difference between the two arms. However, 
this technique could not reduce the path length difference to l e s s 
than 2mm, because at such smal l separations, as compared with the 
interferometer length of 80cms. , the s i z e of the f i r s t circular fringe 
was comparable with the observation plane apperture. 

At this stage the l a s e r and the microscope objective were 
replaced by an extended white light source focussed onto approximately 
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the previous microscope objective focal plane enabling the interferometer 
to be described as in Figure 5. 6. The intensity distribution in the 
observation plane can be described in a manner s imilar to that used 
in section 4. 2. Thus the amplitude distribution due to a pair of elementary 

S F from 

s F ) / i - i i n > 

l 2 (F + SF)a 

I s ( x ) as 

d x 

source 

which on assuming a s imple rectangular function for the source spatial 
distribution gives 

I ( u ) = 1 + I (sin !L|i5 cos k | ( s + x ) u _ S F J 

where s is the relative shear of the two virtual sources . 

It can be clearly seen that whereas the transform is centred on 
the optic axis , u = o , the c a r r i e r fr inges are centred on 

F $ F u = 

( s + X ) 

which for typically 

3 
F = 1.0 mm, £ F = 2 mm, ( s + x ) = 10 mm 

u = 200 mm 

point radiators situated at +. x at distances F and F + 
the observation plane is 

a 
A ( u ) = A,exp - j k F i l . + ( U + X ) i + A , e x p - j k (F + 

I 2 F
a
 ' 

This gives an intensity distribution due the entire source 

I<(u) = f I ( x ) ( l + c o s k | - ) 
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However, as shown In sect ion 4.1, for a broad band source 
interference fr inges , for the typical parameters stated above, wil l 
only exist over several mms . Thus if at the end of the la ser ass i s ted 
alignment, $ F remains f inite, but of known sign,"' then on replacing 
the laser with a white source , the path length adjuster can be moved 
s o as to reduce 8 F. Clearly, as <5 F approaches zero, the small 
band of fringes moves towards the optic ax i s , and as S F passes 
through zero, the fr inges will be centred on the observation plane. It 
was shown in sect ion 4. 3. , that the zero frequency component of the 
Fourier transform will always have the largest amplitude, hence the 
optic axis and thus zero path length difference can be located by noting 
the position of the brightest fringe. By this technique it was possible 
to equalise the two arms to within a fraction of a wavelength. 

Having achieved this situation it was relatively easy to insert 
the two diffraction gratings and rotate the entire input table such that 
the principle ray leaving the second grating was parallel to the 
interferometer optic axis . 
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CHAPTER 6 

Interference Pattern Produced by the Interferometer 

The experiments performed on the interferometer described in 
the previous chapter, were designed to ascertain whether the number of 
fringes can be increased and whether the fringe visibility is related to 
the Fourier transform of the source . Hence, initial experiments were 
performed on the interferometer without any spectral compensation to 
obtain an estimate of the interferometer's performance, against which 
the results of subsequent experiments with spectral compensation could 
be compared. Finally, several attempts were made to retransform the 
interference pattern in order to reproduce the original input object 

6.1. Interferometer Without Gratings 

The interferometer used throughout this se t of experiments 
was arranged as shown in Figure 6 . 1 . , and had an effective object plane 
to image plane distance of 1 m. 

mercury discharge lamp, rated at 250 watts with an arc length of 10mm. 
The arc was focused onto a 25mm wide and 7mm high sl it , which 
constituted the input object. The lamp, lens and s l i t were all mounted 
on the common input table, as shown in Figure 6.1. The resulting 
interference pattern in the observation plane consisted of constant frequency 
fringes whose contrast was modulated by a simple periodic function. A 
typical interference pattern is shown in Figure 6 .2 . 

In Chapter 3 it was shown that the intensity distribution in the 
observation plane of a spectral ly uncompensated wavefront folding 
interferometer would be given by 

In the f i r s t experiment, the source used was a high pressure 

/ co 

I ( u ) = const + 
F -oo 
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As suggested in Chapter 3, the spatial and spectral transforms 
can be considered separately, thus the contribution from the spatial 
transform is 

s + r 

u) = const + I 0 J cos r k u x d x 

where s is the distance of the s l i t in the virtual object plane to the 
interferometer axis , and r is the s l i t width 

u ) = const . k u r k u ( 2 s + r ) 1 + s ine cos v ' 6.1. 

The spectral transform contribution is given by 

I . ( u ) = const + / I ( k ) cos £ ^ u x d k 
2 . / F 

k, 
In the f i r s t instance the spectral composition of the mercury 

lamp can be approximated to a line at . 546 /um and another of comparable 
strength at . 578^111. This accounts for 75% of the visible output, but ignores 
the fact that the l ines will be broad. Within these approximations the 
spectral transform becomes 

I ( u ) = const 1 + cos 1JL ( k - k ) cos N I x' 
F 

u X 

F 
( k + k ) \ i i> 6.2. 

On combining equations 6.1 and 6. 2 gives, to a f i r s t order 
approximation, the intensity distribution as 

I ( u ) = const i . k' u r u x 1 + s ine cos 
2 k ' u x ' ( k - k ) cos 

F F 

where k - = 4 n / ( X ( - + - X4) 

x' = s + r / 2 
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It can be seen from the above expression that while 
the spatial transform is independent of object position, 
the spectral transforms and fringe frequency are directly 
proportional to the object position relative to the ' 
interferometer axis . The extent of the central lobe of the 
spatial transform is given by 

u = A J 

4 r 

which for r = 25. Ofjm gives 

u = 22.48 mm 

However, in order to quantitatively observe the 
dependence of the spatial transform on object position, the 
observation plane had to be viewed through a cathetometer 
telescope with a graticule in the eye -p iece focal plane. 
As the entrance pupil of this telescope was approximately 
15 mm, the spatial transform can be safe ly ignored when 
measuring the spectral transform. 

When the object position was varied, by moving the 
entire input table, the period of the modulating spectral 
transform was measured. The resul ts are shown in Figure 6. 3. , 
and as expected show an inverse relationship between the 
object shear and spectral transform period. The individual 
departures from the smooth curve result from the subjective 
estimates of nulls in the modulating function. 

Although the pattern observed and shown in Figure 6 2. , 
is reasonably accurately described by the preceeding 
discussion and associated assumptions, there remain two 
unanswered questions. First ly , it wil l be noticed from 
Figure 6. 2. , that as the modulating function approaches a null 
another higher frequency modulating function appears, and 
secondly the question of how many fringes have been formed. 

In evaluating the spectral transform it was assumed 
that the spectrum could be approximated by a line at 
. 546 U m plus a combination of the two yellow lines at 
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. 577 pm and . 579pm to a line at . 578 p m of a strangth equal to the 
green. In fact the vis ible spectrum has 3 more lines ( Harrison, 
Lord and Loafburrow 1957 ); a pair in the red at . 623 f jm and 
. 615 p m of strength relative to the green of 0.1 ai}d 0. 2 respectively, 
and a blue line a t . 435 p m of relative strength . 2, Thus 
assuming the red to be a single l ine at . 618 p m of relative 
strength 0. 3 , equation 6. 2. , describing the spectral transform 
becomes 

I ( u ) = const 1 + < 0. 25 cos ( k - k) + cos ^ ( k - k j [ 
' F 4 F ' / 

cos 
u x 

(k+ig 

where k 3 and k 4 represent the red and blue l ines. 

The f i r s t point to note is that the magnitude of the red and 
blue cosine is small and hence wil l only be noticeable when the main 
modulating cosine approaches a null. Secondly, the ratio of the 
periodicities of the two modulating functions is 

A B k - k 

Comparing the number of fr inges , as shown in Figure 6. 2. , 
in the two periodicities gives a ratio of 5 .2 . Although not in very 
c lose agreement, the ratios are sufficiently s imi lar to accept the red 
and blue l ines as the source of the higher frequency, lower amplitude, 
modulating function. 

The second question, regarding the total number of fringes 
formed was not so easy to answer. The theoretical l imit on the number 
of fringes is determined by the source spectrum. Thus if the spectrum 
is defined as a s e t of l ines , each broadened, or convolved with a common 
broadening function, then the spectral transform will be the product of 
the cosine term due to the discrete l ines , with the transform of the 
broadening function. A probable broadening function would have a 
Guassian distribution, hence its transform would also be Guassian with 
an inverse relationship between the widths of the two Guassian curves. 
The broadening function for the lamp used would be relatively narrow, 
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as the two yellow l ines, separated by 2oA could be readily resolved, 
hence its transform was necessari ly wide. Thus with a slowly varying 
transform and no zeros it was difficult to sensibly,observe and place 
l imits on the range over which fringes existed. 

In order to have a wider spectrum and hence fewer fringes, 
and to give greater flexibility in the choice of spatial distributions, the 
mercury arc was replaced by the tungsten halogen projection lamp 
whose characteristics have been presented in Figure 5.2. 

The object s i ze was kept at 25 p m such that the interference 
pattern would be dominated by the transform of the lamp's spectrum. 
From Figure 5. 2. , this spectrum can be approximately described by 

I ( k ) = a + 2 n a ' 
0 k 

where a9 = 0 . 1 

a, = 2. 67 per p m 

Thus the interference pattern is given by 

I ( u ) = const + I I ( k ) cos 2 k u x d k 

The above integral does not readily lend itself to be expressed 
in a s imple analytical form, hence it has been evaluated numerically and 
the resulting fringe pattern for a visibility greater than 10% is shown in 
Figure 6. 4a. From this figure it can be seen that only 3 well defined 
fringes will be formed and that this interference pattern will be symmetrical 
about the optic axis. 

However, taking into account the dispersive beam splitters, the 
interference pattern in the observation plane will be given by 

I ( u ) = const + / [ I ( k ) cos 2 k x ( u + S p ) d k 
J F 

where 8 p = 571.4 , . 2 n ( * ' i - ) 
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The above equation has also been evaluated by numerical techniques 

and the resulting fringe pattern is shown in Figure 6.4b. Although the 

three dominant fringes will exist, they now appear off centre and are 

not of a symmetrical disposition. It should also be noted that there is 

an increase in the number of low visibility fringes. 

The interference pattern actually observed in the output plane 

produced by the tungsten halogen lamp, focussed onto a 25 fJ m hole is 

shown in Figure 6. 5. The first interesting observation is that there are 

m a n y m o r e fringes than predicted from Figure 6.4b. , however, this 

might be explained by a non-linear recording process enhancing s o m e 

of the lower visibility fringes. This explanation is substantiated by the 

fact that only 3 black and white fringes were observed while the 

remainder were coloured. 

These extra fringes were predominantly green on one side 

of the central black and white fringes, and red on the other side. 

Furthermore, there were approximately twice as m a n y red fringes 

visible than green ones. The exact reason for this is not clear. 

6.2. Interferometer with Gratings 

The diffraction gratings were added to the interferometer as 

shown in Figure 6. 6. 

For the first experiment, the source was the same mercury 

lamp used in the previous section, focussed onto the s a m e 25 \) m slit. 

It was shown in Chapter 5 that due to the construction of the mount for 

the gratings, the virtual objects had to be sheared from the axis by an 

amount equal to the offset of the real object from the imaginary junction 

of the two gratings. It was further shown that a departure in the virtual 

plane from this exact shear would greatly reduce the number of fringes. 

Hence a simple, but powerful w a y in which to observe the performance 

of the spectrum compensating system as the wavelength dependent 

displacements approached ideal values, would be to vary the offset of 

the virtual objects from the interferometer axis. 

Thus with the angle between the gratings set to 47. 0 degrees, 

the virtual objects were gradually pulled apart from an initial position 

of zero shift. Initially, the fringe pattern observed was of the s a m e 

format as in the previous section, with a dominant low frequency term 
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modulating higher frequency carrier fringes. However, the number 
of fringes observed between a pair of nulls was only 16, as shown in 
Figure 6.7a. , compared with 26 in the previous section. As the 
virtual objects were moved away from the axis the periodicity of the 
fringes decreased, but contrary to the same experiment without 
the gratings, the periodicity of the modulating function increased 
as in Figure 6.7b. The increase of the modulating function periodicity 
slowed down and stopped while the fringe periodicity was decreasing, 
thus the number of fringes in a modulating function period was 
increasing, up to a maximum, as shown in Figure 6.7c. The 
corresponding optimum shear was 1 . 0 m m . Finally, the modulating 
function periodicity began to decrease at a rate such that the number 
of fringes within a period decreased. 

The rings visible in the centre of the photographs in 
Figure 6.7 are Newton's rings formed by the composite lens structure 
of the telescope objective. The two broad fringes on the left side of 
Figure 6.7b. , are caused by an unwanted diffraction order passing 
through a spatial filter. A more detailed description of the observed 
dependence of the number of fringes on the virtual object separation 
is shown by the solid line in the graph of Figure 6.8. The theoretically 
expected number of fringes is shown in Figure 6.8 by the interrupted 
line. 

The differences between the observed and expected numbers 
of fringes can be explained firstly by noting that the theoretical curve 
was evaluated on the assumption that the spectrum consists of a line 
of . 546 p m and another at . 578 JJ m . In the previous section it was 
shown that the region around a null is somewhat confused by the presence 
of the other lines in the spectrum, however, the fringes were counted 
between two successive nulls and no estimate was made of the exact 
position of the null of the dominant modulating function. Secondly, the 
extra dispersions introduced by the beam splitters will distort the 
dispersions produced by the gratings and thus reduce the number of 
fringes. 

On the experimental evidence so far it is possible to say that 
the interferometer with the gratings behaves, to a first order approximation 
at least, as expected for a polychromatic point source. To extend the 
system's operation to larger sources, it is necessary to model such sources # 

as the sum of several point sources. Thus if no interferometer parameter 
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is varied, positioning a point source at different locations in the input 
plane wjll give an indication of the performance of a continuous source 
sampled at these points. Finally, if there is no marked difference in 
the interference patterns produced by the various points, then it may be 
concluded that a continuous source will not limit the fringe forming 
potential of the interferometer. 

Thus the 25 p m s l i t was repositioned in 5 locations a t . 5mm 
intervals. The resulting number of fringes in a fundamental modulating 
period, as a function of virtual plane shear are shown, together with the 
previous scan in Figure 6. 9. 

It can be clearly seen that the number of fr inges , produced by 
the point sources in different lateral positions, peaks at intervals of 
0. 5mm. Thus each of the f ive point sources has its spectrum correctly, 
or at least equally, compensated. Therefore it can be concluded that 
if the space covered by the point sources were occupied by a continuous 
source, then every point in that source would be spectrally compensated. 

In the next set of experiments , the mercury arc lamp was 
replaced by the tungsten halogen lamp, with its fi lament focussed onto 
the variable s l i t Due to the weaker nature of this source, in terms 
of lumens per source unit area, the smal l e s t s l i t that could be 
accommodated consistent with having a detectable amount of light 
in the observation plane, was 0 .11mm. This object s i ze will produce 
a 5. 5 mm central lobe of the s ine function in the transform, and hence, 
cannot be considered as a point source for a direct comparison with 
previous experiments. However, with the number of fringes maximised, 
the interference pattern should represent the Fourier transform of the 
object spatial distribution. 

Thus the interference pattern was observed for different 
object s l i t widths and photographed by placing the photographic emulsion 
directly in the observation plane. The photographs, together with the 
object s l i t s i z e s are shown in Figure 6 .10. The expected position of the 
nulls in the transform is given by equation 6.1. , and has also been 
shown in the figure. The observed transform appears to be somewhat 
smal ler than expected although it is of the correct shape. This would 
imply a degree of magnification of the object within the interferometer, 
however, this occurrence will be d iscussed later when accurate 
measurements can be made in the transform plane. 
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The depth of modulation of the carrier fringes for this 
particular object is determined by a sine function namely 

s in 

k u x 

In the photograph, although the central lobe can be seen 
very clearly only the f i rs t and somet imes the second lobes can be 
recognised. Therefore , assuming that the fringes do exist , it can 
be concluded that the magnitude of the third lobe in the modulating 
function is too smal l to be readily distinguished from the background 
noise. The magnitude of the third lobe of the sine function is 9 . 1 10 
which when compared with the central zero frequency term of unity 
implies that spatial frequencies of magnitudes l e s s than 9% of the 
zero frequency will be lost. 

However, this conclusion is based on simple direct 
observations and does not take into consideration any form of noise 
reduction, either optical of electronic. Clearly any such image 
enhancement technique, applied to the interference pattern will reduce 
the minimum necessary object contrast. 

Finally, in Figure 6 . 1 0 c a band of fringes is vis ible on 
either s ide of the centre, at a distance of 1. 2cm. These bands are 
due to the f ine structure of the f i lament , which appeared in the object 
aperture. The fi lament consisted of a wire 300 }J m thick, looped 
round with 300 }j m gaps in between success ive loops. Thus the input 
object was a narrow rectangular function, the wire thickness convolved 
with a comb function, the wire spacing, all multiplied by a large 
rectangular function representing the object aperture. 

The transform of such an input object would be a narrow sine 
function, the transform of the object aperture, convolved with a comb 
function all multiplied by a wide s ine function being the transform of the 
wire thickness. For the measured fi lament s i zes the comb function in 
the transform plane should have a spacing of 1. 83mm, and the sine 
function representing the wire thickness should have its f i r s t zero at 
0 . 9 1 mm. These f igures are in reasonable agreement with the measured 
distances in Figure 6 .10 , although again the observed transform appears 
to be smal l er than expected. 
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In order to obtain an est imate of the number of fringes formed 
by this interferometer, it is neces sary to produce a transform with a large 
amplitude at high spatial frequencies , and stil l have enough light in the 
observation plane to s e e the fr inges . Therefore, the-next input function, 
in an attempt to fulfi l l the above requirements was a'computer generated 
binary grating of 10 l ines per mm with a 6 to 1 mark to space ratio. This 
object grating was mounted as c lose as possible to the variable s l i t such 
that the overall width of the object could st i l l be controlled. Hence, the 
input object can be considered as the convolution of a comb function 
defining the grating periodicity, with a.rectangular function, defining the 
grating profi le , all multiplied by the effective aperture. The expected 
interference pattern is shown schematical ly in Figure 6 .11. 

The interference pattern produced was recorded by placing the 
photographic emulsion in the observation plane, and a typical record is 
shown in Figure 6 .12 . The most important point to note is that eleven 
bands of fringes are clearly vis ible . These bands correspond to the zero 
frequency and the f i r s t f ive , posit ive and negative frequencies present in 
the grating. As the contrast of the carr ier fringes in the absence of any 
Fourier transforms is constant, or at least slowly varying, it is safe to 
assume that if fr inges ex is t at both extremities of a transform, then they 
will exist across the region bounded by the above extremities. The real 
distance in the observation plane between the positive and negative fifth 
orders is 33. 5 m m . , while the fr inge periodicity in the observation 
plane is 89. 3yum. Thus the number of .fringes produced in the observation 
plane is 

. 0893 

which is convincingly in excess of the 3 fringes produced in section 6 .1 . 

The width of these eleven bands is determined by the transform 
of the overall extent of the object, while their amplitudes are determined 
by the transforms of the individual grating s l i t s ize . Thus for an object 
s i ze of 1mm the width of each band should be 

^
 F
 •

 5 5 1 0 6
 n « w = —^— = = 0. 55mm X 10* 
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while the visibility of the n^L band relative to the central band is given 
by 

• xt kux sin N 
V = f 

N k u x 
F 

which for success ive bands becomes 95%, 83%, 63%, 41% and 19% 
It can be seen from Figure 6.12 that the values recorded correspond 
with the above calculated values, although the visibility estimate is 
necessar i ly subjective. 

Finally, the separation of the bands is determined by the 
transform of the grating periodicity. Thus a grating of 10 lines per mm 
implies a band separation of 5. 5mm . However, the measured band 
separation is sensibly constant at 3.35 mm. As this difference is a 
constant multiplicative factor some form of magnification can be assumed 
responsible. Such a magnification could result from the non-linear manner 
in which points across the input object are treated by the pair of gratings. 
Thus if a plane wavefront of width x is incident on the f i r s t grating, 
as shown in Figure 6 . 1 3 , then it wil l leave the second grating with a 
width w . From Figure 6.13. 

A C =
 x c o s a 

cos ( a + (5) 

w = A C cos e 

W = COS a COS 8 

x COS ( a + p ) 

On substituting current values for the angles, the ratio w / x 
becomes equal to 1.4S , which corresponds c losely to the ratio of the 
observed and expected band separations. 

6 . 3 . Object Reconstruction 

It has been shown in the previous section, that it is possible to 
obtain a wide band Fourier transform of an extended polychromatic object. 
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Hence it is possible to consider the construction of a real time, two 
dimensional signal processor . Clearly the front part of such a processor 
would be the wavefront folding interferometer, producing the Fourier 
transform of the input object Subsequently the processing of this transform 
may be performed either optically, electronically or a combination of the 
two. 

However, retransformation of the f i l tered object from the 
processed transform is made difficult by the bias level in the transform 
plane. This can be appreciated by considering a straightforward system 
of an interferometer producing the transform which is recorded and 
presented to the input plane of another interferometer. Thus if the input 
object is a sinusoid of frequency v and of finite extent r 

I ( x ) = 1 + cos v x for |xj < r 

illuminated with unit intensity per length. Then the interference pattern 
in the transform plane will be 

s + r 

/

2 k u x 
( 1 + cos s> x ) ( 1 + cos — j — ) d x 

s 

where s+ r /2 is the lateral shear introduced by the interferometer. 
Performing the integration and assuming that r > l / i 

t / x , • k r u k u ( 2 s + r ) I ( u ) = r + r sine _ cos . ' 
F HF 

+ r/2 sine r / 2 ( 2 k u - v ) cos (  k  u (  2  s  +  r> " ® \ 
F I F f 

, /o • /o /2 k u ^ . o f k u ( 2 s + r ) + ^ 1 + r/2 sine r/2 ( p + f ) cos j ^ 

where 0 = " ( 2 s + r ) / 2 and represents a phase shift in the 
fringes determined by the position of the input frequency relative to the 
interferometer axis. For the sake of simplicity let 0 = 0 . 
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If this interference pattern is recorded on a f i lm of width w 
such that 

F i> w = —— 

and then presented as the input to the interferometer, the original 
object will be reconstructed. Thus the intensity distribution in the input 
plane u' is 

I ( u' ) = r + cos k u ' ( 2 s + r ) 
F 

r s ine J i ™ ' + r /2 sine J ( USJUl - » ) 
F F 

+ r / 2 sine r / 2 ( + " ) 
where u' = u + w / 2 + v * 

and v represents lateral shear introduced by interferometer. 
Hence the intensity distribution in the output plane becomes 

v + s 

l 2 k n1 x1 

I ( x ' ) = / I ( u ' ) ( l + cos p ) d u ' 

The above integral may be simplified by replacing the sine 
functions with rect. functions of width w where 

w* = X F 

Thus the output intensity pattern is 

I ( x' ) = r w + r w sine k w cos Jkx' ( 2 v + w ) 
F F 

+ r w ' s i n d S - ^ ' ( 2 x' + 2 s + r ) cos i JL2L' ( 2 v + w ) + <t> > 
2 F ' F

 } 

+ r w ' s i n c ^ l ( 2 x' - 2 s - r ) cos i , k . ( 2 v + w ) - <*>' > 
2F I F ; 

+ r w ' sine iL2Cf ( 2 x' + 2 s + r ) cos + (t> 1 cos i — ( 2 v + w ) + tf' 
2F I F ' ' F 

+ r w ' sine iL^'/ 2 X ' - 2 S - r ) COS I K ^ - Acos
 ( 2 v + w) - 0 

2 F < F J I F 

6. 4. 
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The f i r s t term represents the overall bias offset , while the 
second is the transform of the b ias level in the input plane. The next 
pair of terms consist of s ine functions positioned at x' = j" s + r/2 
and of width F X/w1 which on substituting for w' gives a width 
of r . Thus these terms represent the bias in the original input 
object, sheared from the axis by an identical amount, although now 
the object is reconstructed as posit ive and negative spatial 
frequencies. This reconstructed bias level appears as an implitude 
modulation of carr ier fringes due to the offset of the zero frequency 
term in the input from the interferometer axis. 

Finally, the last two terms consist of s imi lar sine functions as 
in the previous terms, however, there is an added modulating cosine term 
with a frequency w / X F which on substituting for w gives a frequency 
of v . Thus the original object can be perfectly reconstructed. 
However, the magnitude of this reconstructed object is r w ' which 
is superimposed on a bias level rw . Hence the object to bias ratio 
is w' / w which becomes F X / r w . 

Typically, F X = 5.10* fj m* while r = 10 4 }J m and 

Thus the reconstructed object wi l l be submerged in the bias level. 

There are two possible methods of overcoming this problem. 
The f i r s t involves the removal of the bias level by electronic filtering, 
and clearly is only applicable when the transform has been recorded by 
a television camera. The second technique would be to perform the 
re trans formation optically in a coherent light Fourier transform bench, 
thus concentrating the bias level into a single point at the centre of 
the output plane. 

In order to verify experimentally, that the interference patterns 
produced in the previous section w e r e Fourier transforms, the photographic 
records of the fringes presented in the input plane of a coherent light 
Fourier transform bench. However, this technique gives r i se to an 
artefact which can be understood on considering the coherent light 
retransformation of the Fourier transform in the previous example. The 
input to the coherent processor becomes 

w = 2. 5 1 0 4 m , hence 
- 3 

F X = 2.10 

r w 

A ( uT) = r + r cos (2 s + r ) s ine 
F 

ku' kru' + | s i n c r / 2 ( 2 k u ' - „ ) 
F F 

Hence the amplitude distribution in the output plane becomes 
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w/2 

i . . . t . . * 
d u' A (x' ) = j A ( u» ) exp j k ' 'M 

- w / 2 

As in the preceeding example the calculation can be simplified 
by approximating the sine function in A ( u' ) by a rectangular functions. 
Hence the intensity in the output plane can be shown to be 

I ( x' ) = r ( w + w' ) sine Ĵ iL' ( w + w' ) 
2 F 

+ rw 1
 g i n a k w' ( 2 s + r + x' ) + rw' sine

3 k w' / 2 s + r - x' ) 
2 2 F ^ 2 2 F

 7 

+ lEl sine3 Ji-W' ( 2 S + r+ X' ) COS llZ ( 2 s + r + x» ) 
Z Z Jb F 

+ r wf sine1 k W' ( 2 s + r - x' ) cos k w ( 2 s + r- x? ) 
2 2"F~ 

On comparing the above equation with equation 6.4., it can 
be seen that the overall bias level is contained within a small region about 
the centre of the output plane. The second point to note is that the object 
sine functions, although of the correct width, are positioned at twice the 
original shear, i. e. , at x' = t 2 s +r. This double shear arises because 
the carrier fringes in the transparency representing the original shear appear 
as amplitude fringes in the coherent processor and not as the intensity fringes 
that were initially recorded. 

In the first instance, the recorded transforms of a 1mm wide input 
grating sheared by 1. Omm from the axis was positioned in the input plane of 
a coherent light Fourier transformer, and the observed output intensity 
distribution is shown in Figure 6.14. Clearly, twenty-five to thirty 
vertical bands within a distance of3mm can be distinguished. The shear 
from the central spot is approximately 2mm which is, as expected, twice 
the original shear. The height of the reconstructed images is purely a function 
of the coherent processor as the transforms produced by the interferometer 
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was one dimensional and hence all height information was lost. Finally, 

the star-like nature of the central spot is due to a fourteen element 

variable aperture stop controlling the extent of the. coherent light. 

Records of interference patterns produced by wider input 

object gratings were also reconstructed in a similar manner to that 

above. Although the reduced light intensity in the larger reconstructed 

objects m a d e accurate measurements difficult, it became clear that 

the reconstructed images were smaller than the original input objects. 

This m a y result from a non-linear recording of the interference pattern. 

If the carrier fringes in equation 6. 3., were not sinusoidal but m o r e 

squared, then the input to the coherent processor would be described 

as the product of the various sine functions with a c o m b function at 

the fringe frequency, all convolved the width of the squared fringe. 

Thus the output would be as previously described, but now multiplied 

by the transform of one squared fringe. 

If, as suggested, these squared fringes were produced by a 

non-linear recording process, then their width would be sensibly one 

half of the ideal sinusiodal fringe period, thus 

w ' = F 

2 ( 2 s + r ) 

The intensity distribution of the transform of such an amplitude function 

is 

o k X ' 
I ( x ' ) = sine — 

2 F 2 ( 2 s + r ) 

which gives an effective width of 4 s + 2 r. However, the reconstructed 

images are of width r and sheared from the axis by 2 s + r / 2, 

thus the overall extent of the reconstruction is 4 s + 3 r . Hence 

for r larger than s the extent of the reconstructed objects will 

be significantly reduced. 
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CHAPTER 7 

Review of the Interferometer 

In the opening chapters the intrinsic interest of a wavefront folding 
interferometer as a real time two dimensional signal processor was unfolded. 
The following chapters developed the theory and principles of operation of a 
white light wavefront folding interferometer. Finally, the results of various 
investigations into the interference pattern produced by the interferometer 
have been reported. Hence, it is now possible to re-appraise the potential of 
the spectrally compensated wavefront folding interferometer as a two dimensional 
real time signal processor . 

7.1. Results Achieved 

Initially, it was shown how the visibility of the fringe pattern in the 
absence of any spectral compensation, depended on the spatial and spectral 
source distributions. When the experiments were repeated with the spectral 
compensation introduced, it was seen that the fringe visibility was determined 
sole ly by the Fourier transform of the input object's spatial extent. This was 
clearly demonstrated by using a 10 lines per mm binary grating as the input 
object. In that experiment over four hundred potential fringes were produced 
using the full spectrum of a tungsten halogen lamp. 

Thus it has been demonstrated, albeit in one dimension, that it is 
possible to produce in real t ime, an achromatic fringe pattern whose vis ibi l i ty is 
directly related to the input source 's spatial Fourier transform. Hence, this 
interferometer could be used in any signal processing environment requiring 
real time presentation of Fourier transform patterns. Typical examples of possible 
applications might include deconvolutions, especially in processing radar s ignals 
or two dimensional feature enhancement or character recognition. 

The two dimensional capability of the interferometer could be used to 
perform some fi ltering or correlation operation simultaneously on large arrays 
as for example in automatic speech recognition where a large number of templates 
must be correlated with the incoming speech waveform. 
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Finally, the achromatic potential of the interferometer may be used 
advantageously where monochromatic processing is restrictive. Two immediate 
examples would be in the various derivatives of the Michelson Stellar 
Interferometer and secondly in measuring the O. T. F . , of optical systems for 
the complete optical spectrum. ' 

7 . 2 . Practical and Fundamental Difficulties 

The larges t single difficulty experienced was in aligning the interferometer 
and ensuring that the path lengths in the two arms were equal. The problems existed 
mainly because it was difficult to ascertain whether individual components were 
positioned to the required accuracy until the entire interferometer was built. 
However, at that stage there were too many degrees of freedom to make any but 
the smal les t improvements. Clearly, this adjustment problem would be much 
worse for a two dimensional interferometer. 

A related problem was that of mechanical stability. The normal 
vibrations in the building were success fu l ly damped by the mass ive table and 
the pneumatic tyre tubes. However, the sensitivity of the individual components 
to accidental repositioning was very high. This stability problem may be 
eliminated and the alignment problem reduced to a single occurrence by 
constructing the interferometer f rom two glass pr i sms , in the manner of 
Breckinridge (1974) and Dainty and Scaddon (1974) . However, such an 
interferometer, even if made from suitably chosen g las se s , may well have 
different optical path lengths for different wavelengths. 

The other s e t of problems, the very low light leve ls in the observation 
plane were the direct result of the interferometer's inefficient use of the source 
light intensity. The main l o s s e s were due to the diffraction gratings and due to 
the large extent of the interferometer. Clearly, the solid glass interferometer 
suggested above would reduce the overal l s i ze , although it would be as the 
expense of the input object s ize . Secondly, more light might be usefully retained 
by using pr i sms , instead of gratings, as the dispersive elements. However, 
these ideas have not been fully developed. 

The f i r s t theoretical drawback of this interferometer is the restriction 
of input functions to intensity distributions. Although in the real world this may 
not prove to be a serious l imitation, it is nevertheless a disadvantage when 
compared with the coherent light Fourier transform processor . A second drawback 
is the need to record the transform, or the f i l tered transform, before it can be 
retransformed by the interferometer , as quite clearly a given point in the transform 
plane cannot be considered as radiating independently of all the other points. However, 
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when it is appreciated that many fi ltering operations can be performed 
optically and that the interference pattern is an intensify distribution, 
and as such is readily recorded by electronic techniques, which in themselves 
have a lot to offer , this disadvantage can become minimal. 

- "i 

7. 3. Comparison of the Interferometer With Other Processors 

The most common versat i le data processor against which any signal 
processor must be compared is the electronic computer. With the advent of 
Large Scale Integration techniques, the mini-computer and microprocessor have 
made computing widely available, result ing in a wealth of algorithms increasing 
the capabilities of one dimensional digital processors . 

A fundamental advantage of electronic processors over their purely 
optical counterparts, is the ability to amplify a given signal. Clearly, the 
interferometer, without recourse to any recording process , cannot increase 
the absolute magnitude of any part of the transform. A second advantage of 
computers is their versatil ity and apparent intelligence in making decis ions, 
resulting in the ability to implement a vast range of f i ltering and processing 
techniques. However, this advantage is not fundamental but merely the result 
of intensive research and development during the last three decades. 

Against this , the computer is l imited to one dimension, hence any two 
dimensional work is time consuming, whereas the interferometer operates 
directly on two dimensional s ignals . 

On comparing the interferometer with the coherent light Fourier 
processor , its fundamental advantage is that it presents the transform as 
an intensity distribution. Its dis advantages are that it is limited to real input 
functions and that the transform must be recorded if the processed object is 
to be re-transformed. However, bearing in mind the comparative ease with 
which the interferometer's output can be recorded electronically, this 
disadvantage may well be significantly overcome by the advantages of electronic 
processing. 

Clearly the interferometer by i tse l f , as is true for most optical 
processors , cannot compete with e lectronic computers. However, a hybrid 
system combining the interferometer, with its parallel f i ltering capabilities, 
and electronic process ing with amplifying power could produce a very powerful 
signal processor. 
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igure 6.12. Observed interference pattern for Compensated extended periodic object. 
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A wavelength compensated wavefront folding interferometer is described which produces over 200 achromatic fringes 
from extended polychromatic objects. 

In a wavefront folding interferometer, light from a 

two-dimensional, quasi-monochromatic incoherent 

light distribution is amplitude divided, and one of the 

beams subjected to a shear and to a two-fold rotat ion, 

before interference fringes are formed. The intensity 

distribution in the fringe pattern'represents directly 

the two-dimensional cosine Fourier transform o f the 

initial intensity distribution, with the point o f folding 

as the co-Ordinate centre [1,2]. For a polychromatic 

input the number o f fringes visible is l imited, thus re-

stricting the range of spatial frequencies observable 

in the transform [3,4]. 

Consider the operation o f a typical interferometer 

with a polychromatic input and, for simplicity, a single 

fold. By taking a single fold, the fringe pattern repre-

sents only a one-dimensional transform of the input 

distribution, and can usefully be applied only to line 

inputs or to inputs with no variations in the ortho-

gonal direction. A point source, spectral width ±5X 

about X, would appear as two sources, at say ±x from 

F>(X*6X)F?(X) R(X)R(X*6X) 

6x vx x 6x 

' i: v! VIVI VI vl vl \*7 \ / \ 

HAl 

Fig. 2. The fringe pattern for a polychromatic point source F, 
with correct displacements. The radiation at ( \ + 6 \ ) appears 
to be shifted to (x + 6x) so that the periodicity o f all the 
fringes, A, is constant i.e. A = \\F/x = 5 (X+6 \ )F / (x+6 j f ) . 

the axis, as shown in fig. 1. These virtual polychroma-

tic point sources would produce approximately N 

fringes of periodicity \F/2x, where N = X/26X. For 

white light, N — 3. 

I f a critical amount o f dispersed displacement can 

be introduced in the interferometer, so that radiation 

from the point source at (X + 5X) appears t o originate 

at ±(x + 5x), (fig. 2) then it can easily be shown that a 
large number of white fringes will be observed i f 

5x = *SX/X . (1) 

Fig. 1. The fringe pattern for a polychromatic point source 
Pi with no dispersed displacement. 

These fringes are produced by the superposition of 

many separately monochromatic fringes o f the same 

periodicity. 

Thus the possibility of compensating for the wide 

optical spectrum exists. A number o f authors have de-
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Fig. 3. The point sources Pj and P2 are at the extremities of a line source with displacements such that visibility is determined by 
the Fourier transform of the source intensity, and not its spectral composition. 

scribed techniques, usually involving a pair o f parallel 

gratings, or their equivalents, for obtaining achroma-

tic fringe patterns, which are essentially similar to 

this [5-8]. 

An obvious limit to the usefulness o f this type o f 

compensation, for the applications considered here, 

is that the required displacements are functions o f 

source position x, as well as 5A [eq. (1)]. Hence this 

form of compensation, in which 5x is proportional to 

5A, is ideally valid only for a point object situated in 

a unique position. I f the displacements can themselves 

be made to vary linearly with source position, then 

many achromatic fringes can be realized with objects 

o f any dimension (fig. 3). 

One way in which this can be approached is by 

means o f two transmission gratings with different 

numbers o f lines, mutual ly inclined at a suitable angle. 

Such an arrangement has been investigated in a single 

fold interferometer, as shown in fig. 4. The gratings 

had 590 and 250 lines per m m respectively and were 

mounted with an angle of 48° between them. These 

gratings do not form an ideal combinat ion, but were 

the nearest readily available. The object used was a 

10 lines per m m binary transmission grating, with a 

mark to space ratio o f 4:1. A tungsten halide projec-

tion lamp was focussed onto this object grating. 

The light distribution in the output plane was re-

corded on a photographic emulsion, which was sub-

sequently analysed on a microdensitometer. A typical 

result is shown in fig. 5. The fringe visibility is an ex-

pected for the cosine Fourier transform of the grating. 

The most significant feature of the result is that 

white fringes have been formed over a wide range o f 

the output plane; the equivalent number o f visible 

fringes being in excess o f 200. The size o f each patch 

of fringes is determined by the overall object width , 

which in this case was 1.2 m m . I f this is increased, 

the width of each path is correspondingly reduced, 

but the range over which patches are observed, and 

Fig. 4. Schematic view of the interferometer, showing folding 
and dispersion, o - object p lane;G i ,G2 - transmission grat-
ings (Gi=590l ines/mm, G2 = 250lines/mm) B j , B j - beam 
splitters. path followed by light, wavelength X; 
path followed by light, wavelength \ + 6 \ . 

308 



Volume 18, number 3 OPTICS COMMUNICATIONS August 1976 

Fig. 5. Mierodcnsitomcter record of a photograph of white fringes formed with the interferometer, for a binary grating objcct. 

hence the equivalent number of fringes, is not r e d u c e d . 

Object dimensions up to 1 cm have been used with-

out a decrease in spatial resolution. This limit is im-

posed by the size of the lamp filament. 

It is interesting to note that to achieve this number 

of fringes without dispersion, a filter of width ~ 30 A 

would be required. This system can thus be regarded 

as offering an effective power gain of ~ 85 by making 

the full spectral width of the source available. 

One possible area of application for this technique, 

extended to two-dimensions, is in the real time pro-

cessing of information presented as a self-liminous dis-

tribution, e.g. a C.R.T. screen or an astronomical 

source. The transform could either be recorded, or 

processed with a two-dimensional filter in the inter-

ference plane and read-out with a camera tube. Alter-

natively, the camera video signal could be filtered con-

ven t i ona l l y w i t h the re- t rans fo rma t ion being sub-

sequen t l y carr ied in a second i n t e r f e r ome t e r . 
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ABSTRACT 

A wavelength compensated wavefront folding interferometer is described which 
produces over 400 achromatic fringes from extended polychromatic objects. 

INTRODUCTION 

The inherently two-dimensional nature of optical wavefronts leads to the 
expectatiou that the potential of parallel optical signal processing would 
prove considerable. The technique most widely developed so far involves 
coherent light, its power deriving from the remarkable Fourier transform 
property of lenses. While there are many applications for which this system 
is admirable, there are many others for which the requirement that the infor
mation has to be impressed onto a coherent carrier is very restrictive. 
Furthermore, coherent processing relates the transforms of complex amplitudes, 
so that the Fourier transform of a signal cannot be recorded directly with a 
detector. 

If we consider the form in which two-dimensional signals are likely to occur 
in practice, among the most obvious examples might be photographic trans
parencies, optical images (i.e. intensity distributions) and cathode ray tube 
displays. Only the first of these is readily imposed onto a coherent beam. 

One useful development might therefore be towards parallel processing systems 
that can use direct signals as inputs. We have chosen to aim for a system 
that could use, for example, a C.R.T. screen display directly as an input 
signal. The system must therefore be able to operate with spatially incoherent, 
polychromatic signals in real time. 

The system we are investigating is based on the wavefront folding interfero
meter (Refs. 1-4). In this instrument, the light from a two-dimensional 
incoherent source is amplitude divided, with one beam then being subjected to 
a relative two-fold rotation and shear. Thus the intensity g (x,y) at a point 
in the original source will become g(x-X0 , y-Y0 ) and g(-x-X0 , -y-Y0 ) in the 
two virtual sources for shears of~ (X0 , Y0 ), respectively. Subsequent inter
ference between the beams is effected in the plane of a screen or detector 
some distance from the source, Fig. 1. If we represent the source as an array 
of mutually inde~endent point sources, then only corresponding points in 
(abc d) and (a b'c'd') can interfere in the output (~,~)plane. The 
complementary sources at (x,y) and (-x,-y) will produce a sinusoidal intensity 
distribution in the output plane. These fringe patterns for each pair of 
points will add in intensity, leading to the intensity distribution in the 
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Fig. 1 Intensity distributions ir. the input and output 
planes of a wavefront folding interferometer 

output plane (for large ;: : 

1<» { 2k I (X, y) 'i ~ cos F 

0 

[~x+ 1'] y] J dxdy 

where I(x,y) = g(x-X , y-Y ). Thus the output contains n spatial representa-
o 0 

tion of the cosine Fourier transform of the source intensity distribution 
which can be filtered, and also directly recorded. 

We can obtain further insight into the nature of the output if eqn.(1) is 
written in the form: 

I1( c:: ,, ) = _2_ [G (2~ 2lJ) cos {2n (2g X +~Yo) 
!:t (AF)2 e AF ' AF AF o M 

- . G (2~ £!1.) 
J oAF'AF sin 

where G and G are the Fourier transforms of the even (g ) and odd (g ) parts 
e o e o 

respectively of the function g(x,y) and C1 is a constant. Thus it is evident 
that the output consists of three parts: 

(a) a cosine fringe pattern modulated by the transform of the 
even part of the input signal, 

(b) a sine fringe pattern modulated by the transform of the odd 
part of the input, 

(c) a constant intensity which allows the sinusoidal terms to be 
directly observed. 
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Since the transform of ge is real and the transform of g
0 

is imaginary, com

plete information about the complex transform is available in the form of a 
real signal in the output plane. This is illustrated, Fig. 2 , by means of the 
calculated one dimensional outputs for input functions. 

g(x) 

g(x) 

( X) (1 + COS ~d) rect b . (purely even) 

( 1 + sin ~) 
d 

(odd + even) 

(a) 

Fig . 2 Plots 

(a) g(x) 

(b) g(x) 

r--- - -

' I 

of output intensity 

rect(~) (1 + cos ~) 
b d 

rectC~) ( 1 + sin ~) 
both for b = d. 

IJ I 
I J ' 

' I 

J. l 

I t. t u l 

I ~ - I 

( b ) 

for 

----, 

I' 

'f:• I 
•• • 

11 J',f· A(\ 
. •' 1\~ I. I/'.• v v I 

I' 

The ability of the interferometer to distinguish and display both transforms 
is clear. 

A calculated two-dimensional fringe pattern for a rectangular slot is also 
shown, Fig . 3 , where the phase information in the transform is apparent in 
the fringe displacements. 

Fig. 3 2-dimensional fringe pattern for a rectangular slot input 
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It should be noted that the input to the interferometer is in the form of an 
intensity distribution and hence g(x,y) can only be real and positive. It is 
therefore not possible to have a truly odd input function and the output 
intensity distribution always has its maximum at the centre. 

Bandwidth Restriction 

One important restriction limits useful application of the instrument in the 
form so far described. As we move from the centre of the output plane, the 
visibility of the fringes from each pair of point sources will fall, due to 
their finite temporal coherence. Since regions further from the centre dis
play the higher spatial frequencies of the source, some trade-off must exist 
bet,::een the optical band-.,·idtr:, A/~A., :;.Ld ·:~,(:: ;nf,:·:i:num cietectable spatial 
frequency, w~. From eqn.(~) ~e c~L ?imply ~to~ that the displacement from 
the origin R,w

5
) representi~P iE 

2k 
(2) 

whereas the maximum range, R(max), for :ringe formation by a pair of sources 
at ::: ( x , ~' ) is 

R 
max 

Combining eqn. (2) and C'i), 

w 
s 

n:F 

2 2 y2 
k(x +y) 

2rr ------

( 2 2)}'2 
X + y 

For fairly wide bandwidths, say ~16A. ~ 18, and spatial frequencies up to, say, 
10 lines/m.m., source dimensions of only 1 m.m. can be accommodated. Alterna
tively we could use a large source and increase A.f6A. with a filter. Thus a 
T.V. screen, dimension say D, would have spatial frequencies up to about 

3oo; o 
2rr D, which for A. = 6000 A., would require 6A. ~ 20 A. These restrictions 
would be clearly unacceptable in many cases. 

The Achromatic Interferometer 

A considerable increase in useful bandwidth can be achieved by making the 
fringe period, /\ , from any particular pair of sources independent for a 
one dimensional source. From eqn.(1) 

A = FA. 
2x 

thus if all source points could be displaced so that their positions linearly 
shifted according to wavelength as 

ox X 

then achromatic fringes would be obtained. The required displacement is thus 
not only a function of wavelength but also of the position of an object point 
from the interferometer axis. This can be achieved, for example, with a pair 
of mutually inclined transmission gratings, as shown in Fig. 4. A suitable 
choice of N1 , N2 and 8 leads to the formation of a large number of fringes. 
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F\ lx,J Pz (Xz) 
- -Object Plane 

Fig. 4 The passage of two rays through a pair of inclined gratings 

The ray representation indicated in Fig. 4 allows a simple illustrative 
analysis to be performed, but contains an uncertain level of approximation. 
A more rigorous treatment is outlined below. 

A point source in the input plane is represented by a uniform spectrum of 
plane waves. The passage of each component wave through the grati~gs can 

135 

then be described accurately by the grating equation. In Fig. 5, the compo
nent waves from a source S(x1 , y 1 , O) propagate through gratings '1 and 2; 

after diffraction these components are modified in amplitude and phase and are 
expressed in the co-ordinate system Cx

3
, y

3
, z

3
). This system is then rotated 

by 80 and translated by 'a' and 'b' to the final system Cx
5

, y
5

, z
5

), centre 

05 • The z5-axis is the interferometer axis and the plane z5=0 is the folding 
plane. 

e, 
~--------_.----------~-----x, 

p 

....... 82 Grating 1 l_ 
_.......,:::Zed------- x2 

z, .z 2 
........: ...,..., 
Gr~~c 

lf)g-2......_ X 

e b-~x: 
a Xs 

Z4 0 (~ .11. F) 
Zs 

Fig. 5 Co-ordinate systems for plane wave analysis 

The contribution to the field at a distant point Q( g, ~,F), in the output 
plane, from any component wave can be written as 
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where dA depends upon the source amplitude, grating dimensions and other 
standard factors; a 5, [35' y 5 are the direct ion cosines of the particular 

component and ¢
5 

is a phase term which depends on the system configuration and 

grating parameters. For small a 
5

, ~5 , we have 

¢5~ [ a 5 
x
5 

+ ~5 y5 + (W
0 

-W1 a 5
2

- w
2 
~~)+higher order terms in a

5
, B

5
] 

where x5' y5, wo, w1, w2 are dependent on the grating and system parameters 

N1 , N
2

, d, 8
0 

8 and A.. The dimensions x
5

, cccu1 be interpreted c-;s effectivE--

displncements from the interferometer nxic. 

By a sui table choice of parameters, we can make W 1~ ·w 
2 so that 

2 2 

¢s=::.[a5 x5 + 135y5+ z5(1 -!!f-- s;) + w +higher terms] 

where W is a constant independent of a 
5

, ~5 . This phase term implies that 

the elementary plane wave can be interpreted as originating from a virtual 
source at x

5
, y

5
, z

5 
and propagating with an intrinsic phase determined by W 

and the higher order terms. For regions far away from the source, the 
stationary phase method (Ref. 3) can be used to determine the amplitude at Q. 
Denoting the stationary point by a

05
, ~ 05 and restricting our argument to one 

dimensional folding, we obtain 

a o 5 f ( f , 11 , F ) ; ~ o 5 =0 ; y o 5 = j 1 - a o 52 

Thus the stationary phase solution leads to 

where A is the complex amplitude. Interference between the wave from 
x

5
, y

5
, z

5 
and its folded companion from -x

5
, -y

5
, z

5 
occurs at Q. As Q 

varies, a fringe pattern is generated. 

On substituting typical experimental values, the contribution of the higher 
order terms to the intensity at Q is found to be at least 3 orders of magni
tude smaller than the dominant (sinusoidal) term. Thus it is evident thnt 
the aberrations introduced by the gratings are small, at least in the one
dimensional case. 

The expression for x5 is of the form 

x5 [{A +F1(A.)} + {B + F
2

(A.)}] x1 

and describes the mapping of x5 into the virtual object plane. The constants 

A, B and the functions F1 , F2 depend on the system parameters and can be chosen 

to yield the maximum number of polychromatic fringes. The optimum condition 
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is determined by a numerical analysis. 

EXPERIMENTAL OBSERVATIONS 

The achromatic system was tested in a one-dimensional version for simplicity. 
The configuration of the interferometer is shown in Fig. 6. The source used 
was a photographic transparency with a tungsten halide projection lamp 
focussed onto it. The lamp, lens and transparency were mounted on the same 
plate, along with the two gratings. This plate could be rot8ted and displaced 
linearly with respect to the rest of the system . 

~ 
0 

}ig. 6 The experimental interferometer arrangemer. 

The arrangement of beam splitters and mirrors ach ieved the necessary 1- fold 
rotation by introducing an even number of reflections on one path a~d an odd 
number in the other. The careful positioning of the second beam splitter for 
superposition of the two virtual objects is useful in aligning the interfero
meter. t-lirrors 2 and 3 were mounted on a common plate v1hich could be moved 
\vith a micrometer drive so that the path lengths of the two beams ~:t: r·e r:. lu ul
ized to \·Jithin 1l-tm · The required shear, X

0
, 1<1as introduced by drivi:1[; th e 

complete object plate perpendicular to the interferometer axis . This ensu re ri 
that both virtual objects \:ere displaced by the same distance from the axis 
but in opposite directions, thereby maintaining overall alignment. 

When an object transparency, in the form of a one-dimensional binary grating, 
10 lines/m.m., mark-space ratio 4:1, is illuminated in the interferometer, 
the output pattern is as sho\-Jil in Fig. 7. 

Fig. 7 Output fringe pattern for an input binary 
grating of 10 lines/m.m., mark-space ratio 4:1 
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As expected, the transform of the input varies the visibility of a set of 
carrier fringes. The positions of the bands of fringes are determined by the 
grating periodicity, while their width is determined by the overall aperture. 
The maximum fringe visibility in each band is governed by the mark-space ratio. 
The extent of the transform is not in fact limited by loss of achromaticity, 
but by the exit aperture of the final beam splitter. The range over which 
fringes can be observed in the present system shows that approximately 250 
black and white fringes can be formed from a white source. In other examples, 
up to 450 have been obtained. 

For the purposes of demonstration, the object width was limited to 1.5m.m., 
so that several fringes could be clearly seen in each patch. However, if the 
object size is increased to 8m.m. a comparable number of fringes can be 
obtained, showing that achromaticity is maintained for extended objects .. The 
limit of 8 m.m. •,..ras imposed purely by the size of the lamp filament. 

It should be possible to use the output transparency subsequently as the input 
to the interferometer, hence reforming the original input directly. However, 
the normal output contains a large uniform background component, which, on a 
second transit through the interferometer, would swamp the useful signal. 
This difficulty could be overcome using electronic techniques in conjunction 
with a T.V. camera tube as the detecting element. 

CCXIJCLUSION 

We have shO\-m that a one-dimensional wavefront folding interferometer can be 
made essentially achromatic for extended objects. The extension of the tech
nique to two-dimensions should not present any further difficulty. Since the 
interferometer output is a display of the cosine Fourier transform of the 
object as an intensity distribution, it can be recorded with a camera tube, 
the video signal then being available for electronic processing. This feature 
makes the system potentially attractive as a hybrid optical-electronic real
time processor. 
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ACHROMATIC FRINGES FROM 
EXTENDED SOURCES 

G. R. Wloch, S. M. Bose and J. R. Cozens 

Electrical Engineering Department, Imperial College, London 

ABSTRACT 

A wavelength compensated wavefront folding interferometer is described which 
produces over 400 achromatic fringes from extended polychromatic objects. 

INTRODUCTICX-l 

The inherently two-dimensional nature of optical wavefronts leads to the 
expectatiou that the potential of parallel optical signal processing would 
prove considerable. The technique most widely developed so far involves 
coherent light, its power deriving from the remarkable Fourier transform 
property of lenses. While there are many applications for which this system 
is admirable, there are many others for which the requirement that the infor
mation has to be impressed onto a coherent carrier is very restrictive. 
Furthermore, coherent processing relates the transforms of complex amplitudes, 
so that the Fourier transform of a signal cannot be recorded directly with a 
detector. 

If we consider the form in which two-dimensional signals are likely to occur 
in practice, among the most obvious examples might be photographic trans
parencies, optical images (i.e. intensity distributions) and cathode ray tube 
displays. Only the first of these is readily imposed onto a coherent beam. 

One useful development might therefore be towards parallel processing systems 
that can use direct signals as inputs. We have chosen to aim for a system 
that could use, for example, a C.R.T. screen display directly as an input 
signal. The system must therefore be able to operate with spatially incoherent, 
polychromatic signals in real time. 

The system we are investigating is based on the wavefront folding interfero
meter (Refs. 1-4). In this instrument, the light from a two-dimensional 
incoherent source is amplitude divided, with one beam then being subjected to 
a relative two-fold rotation and shear. Thus the intensity g (x,y) at a point 
in the original source will become g(x-X0 , y-Yo) and g(-x-X0 , -y-Y0 ) in the 
two virtual sources for shears of~ (X0 , Y0 ), respectively. Subsequent inter
ference between the beams is effected in the plane of a screen or detector 
some distance from the source, Fig. 1. If we represent the source as an array 
of mutually inde~endent point sources, then only corresponding points in 
(abc d) and (a b'c'd') can interfere in the output (~,~)plane. The 
complementary sources at (x,y) and (-x,-y) will produce a sinusoidal intensity 
distribution in the output plane. These fringe patterns for each pair of 
points will add in intensity, leading to the intensity distribution in the 
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Fig. 1 Intensity distributions in the input and output 
planes of a wavefront folding interferometer 

output plnne (for large F) 

1 2 
I ( ~, 1) ) = (;\.F)2 j<%JI(x,y) 

0 

r 2k 
)_1 + cosT r~X+lJY]} dxdy ( 1 ) 

where I(x,y) "' g(x-X , y-Y ). Thus the output contains a spatial representn-
o 0 

tion of the cosine Fourier transform of the source intensity distribution 
which can be filtered, and also directly recorded. 

We can obtain further insight into the nature of the output if eqn.(1) is 
written in the form: 

I 1 ( g ,l)) = -L2 [G ( 2 ~ 211 ) cos {2Tt ( 2g X + ~ Y
0

) 
( ;\.F ) e t-.F ' t-.F t-.F o IU 

- . G (2g ~) 
J 0 ;\.F , ;\.F sin 

where G and G are the Fourier transforms of the even (g ) and odd (g ) parts 
e o e o 

respectively of the function g(x,y) and C1 is a constant. Thus it is evident 
that the output consists of three parts: 

(a) a cosine fringe pattern modulated by the transform of the 
even part of the input signal, 

(b) a sine fringe pattern modulated by the transform of the odd 
part of the input, 

(c) a constant intensity which allows the sinusoidal terms to be 
directly observed. 
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Since the transform of ge is real and the transform of g
0 

is imaginary, com

plete information about the complex transform is available in the form of a 
real signal in the output plane . This is illustrated, Fig . 2 , by means of the 
calculated one dimensional outputs for input functions. 

g(x) 

g(x) 

X 
( 1 ~) rect (b ) . + cos d (purely even) 

rect(~) . ( 1 + sin ~) 
d (odd + even) 

---- - ---, 

·J' ·j·' ' ' 

. 'l • '• I ' 

,, 
t .!- , j 

.. \ .' , .. . .. ... ...... . .. . .. .. .. . - ~-~! .. :': ·- •. ' . ~ - •.. .•. .. -

(a) 

Fig . 2 Pl ots 

( a) g(x) 

( b ) g( x) 

of output i ntensity 

rect (~) (1 + cos ~) 
b d 

( X) ( ~) rect b 1 + s in d 

both for b = d . 

( b ) 

for 

The abil i t y of t he i nte r fe rometer to distingui s h and display both transforms 
i s cl ear . 

A calcul a te d t wo - dimensional fringe pattern for . a rectangula r s lot is also 
s hown , Fi g . 3 , where t he phase information in the transform i s apparent in 
the fringe di spl acements . 

Fig. 3 2- dimens ional fringe pattern for a rectangular slot input 
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It should be noted thnt the input to the interferometer is in the form of an 
intensity distribution nnd hence g(x,y) can only be real nnd positive. It is 
therefore not possible to have a truly odd input function and the output 
intensity distribution always has its maximum at the centre. 

Bandwidth Restriction 

One important restriction limits useful application of the instrument in the 
form so far described. As we move from the centre of the output plane, the 
visibility of the fringes from each pair of point sources will fall, due to 
their finite temporal coherence. Since regions further from the centre dis
play the higher spatial frequencies of the source, some trade-off must exist 
beh;een the optical band·.vidth, A.J::.t.. , :md t~:e maximum detectable spatial 
frequency, w~. From eqn. ( 1) ·,:e c:cm simply sho•,: that the displacement from 
the origin Rfw~) representing w_ is 

·~ - b 

R (w ) 
s 

w s 
(2) 

whereas the maximum range, R(max), for fringe formation by a pair of sources 
at :!:(x,:r) is 

R 
TtF A. (3) 

max 2 2 y2 6'A 
k( X + y ) 

Combining eqn. (2) and Ul, 

2Tt 
1 A. 

w 

( 2 2/2 
6/.. s 

X + y 

For fairly wide bandwidths, say A/6t. ~ 18, and spatial frequencies up to, say, 
10 lines/m.m., source dimensions of only 1m.m. can be accommodated. Alterna
tively we could use a large source and increase 'Af6t. with a filter. Thus n 
T.V. screen, dimension say D, vJOuld have spatial frequencies up to about 

3oo; 0 

2n D, which for A. = 6000 A, would require 6'A ""=' 20 A. These restrictions 
would be clearly unacceptable in many cases. 

The Achromatic Interferometer 

A considerable increase in useful bandwidth can be achieved by making the 
fringe period, A , from any particular pair of sources independent for a 
one dimensional source. From eqn.(1) 

A = 
n. 
2x 

thus if all source points could be displaced so that their positions linearly 
shifted according to wavelength as 

ox at.. 
X. T 

then achromatic fringes would be obtained. The required displacement is thus 
not only a function of wavelength but also of the position of an object point 
from the interferometer axis. This can be achieved, for example, with a pair 
of mutually inclined transmission gratings, as shown in Fig. 4. A suitable 
choice of N1 , N2 and 9 leads to the formation of a large number of fringes. 
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II (x,) Pz ("o) 
- -Object Ploine 

Fig. 4 The passage of two rays through a pair of inclined gratings 

The ray representation indicated in Fig. 4 allows a simple illustrative 
analysis to be performed, but contains an uncertain level of approximation. 
A more rigorous treatment is outlined below. 

A point source in the input plane is represented by a uniform spectrum of 
plane waves. The passage of each component wave through the gratings can 
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then be described accurately by the grating equation. In Fig. 5, the compo
nent waves from a source S(x1 , y1 , O) propagate through gratings 1 and 2; 

after diffraction these components are modified in amplitude and phase and are 
expressed in the co-ordinate system (x

3
, y

3
, z

3
). This system is then rotated 

by 9
0 

and translated by 'a' and 'b' to the final system (x
5

, y
5

, z
5

), centre 

05 • The z
5
-axis is the interferometer axis and the plane z

5
=o is the folding 

plane. 

e, 
~--------------------~----x, 

p 

....._ 92 Grating 1 l___ __ .._:::red------- x~ 
z,,z~ 

...... ........ 
Gror~o 

ll)!l<' 

e b'~:: 
a_ Xs 

0 (~ .l).F) 
Zs 

Fig. 5 Co-ordinate systems for plane wave analysis 

The contribution to the field at a distant point Q( ~ , l],F), in the output 
plane, from any component wave can be written as 
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where dA depends upon the source amplitude, grating dimensions and other 
standard factors; a 5 , 13

5
, y

5 
<ire the direction cosines of the particular 

component and ¢5 is a phase term which depends on the system configuration and 

grating parameters. For small a 
5

, ~5 , we have 

¢5~[a 5 x5 + ~5 y5 + (W
0

-W1 a 5
2

- w2 ~~)+higher order terms ina
5

, ~ 5J 
where x

5
, y 

5
, vi 

0
, W 1 , W 2 are dependent on the grating and system parruneters 

N1 , N2 , d, 8
0 

8 and A.. The dimensions x
5

, y
5 

can be interpreted "" effectiv(· 

displacements from the interferometer axis. 

By a suitable choice of parameters, we can make w 1~w2 so that 

where W is a constant independent of~5 , ~5 . This phase term implies that 

the elementary plane wave can be interpreted as originating from a virtual 
source at x

5
, y

5
, z

5 
and propagating with an intrinsic phase determined by W 

and the higher order terms. For regions far away from the source, the 
stationary phase method (Ref. 3) can be used to determine the amplitude at Q. 
Denoting the stationary point bya05 , ~ 05 and restricting our argument to one 

dimensional folding, we obtain 

Thus the stationary phase solution leads to 

EQ = A exp - j k~a 05 g + y 
05

F) - (a05 x5 + y 05 z5) - IV - higher terms J 
where A is the complex amplitude. Interference between the wave from 
x5, y5, z5 and its folded companion from -x5, -y5, z5 occurs at Q. As Q 

varies, a fringe pattern is generated. 

On substituting typical experimental values, the contribution of the higher 
order terms to the intensity at Q is found to be at least 3 orders of magni
tude smaller than the dominant (sinusoidal) term. Thus it is evident that 
the aberrations introduced by the gratings are small, at least in the one
dimensional case. 

The expression for x
5 

is of the form 

+ F 1 (1-J} + {B + F
2
0.J}] 

and describes the mapping of x
5 

into the virtual object plane. The constants 

A, Band the functions F1 , F
2 

depend on the system parameters and can be chosea 

to yield the maximum number of polychromatic fringes. The optimum condition 
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is determined by a numerical analysis . 

EXPERIMENTAL OBSERVATIONS 

The achromatic system was tested in a one-dimensional version for simplici y. 
The configuration of the inte rferometer is shown in Fig . 6. The source used 
was a photographic transparency with a tungsten halide projection lamp 
focussed onto it . The lamp , lens and transparency were mounted on the same 
plate, along with the two gratings . This plate could be rotated and displaced 
linearly wit h respec t to the rest of the system . 

rie; . 6 The expe rimental interferometer arrangemer.L 

The arrangement of beam splitters and mi rrors ach i eved the necessary 1- fold 
rotation by introducing an e ven number of reflect ions on one path and an odd 
number in the other . The careful positioning of the second beam splitter f or 
superpos i tion of the two virtual objects is useful i n a ligning the interfero
meter . Mirrors 2 and 3 were mounted on a common plate which could be move d 
\·l ith a micrometer drive so that the path lengths of the tl-10 beams ·,:ere equ; ,l
ized to l·li thin 1 11m . The required shear , X

0
, Has introduced by dr iv ing the 

complete obj ect plate perpendicula r to the int erferometer axis . This ensurerl 
t ha t both virtual ob jects >:ere displaced by the same distance from the a xi s 
but in opposi te directions, thereby maintaining overall alignment . 

When an object transparency , in the form of a one- dimensional binary grating , 
10 l ines/m.m . , mark- space r atio 4: 1 , is illumina t ed i n the i nterferometer , 
the output pattern i s as shown in Fig . 7. 

Fi g . 7 Output fringe pattern for an input binary 
grating of 10 line s/m . m. , mark- space ratio 4: 1 
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As exp cted , the trans fo rm of the input varies the visibility of a s et of 
carri er fringes . The positions of the bands of fringes are det ermined by the 
gr a t ing periodicit y , while their width is determined by the overall aperture . 
The maximum f ringe vis i bility in each band is governed by the mark-spa ce r a tio . 
The ext ent of the transform is not i n fact limit ed by loss of achromaticity , 
but by t he exit aperture of the final beam splitter . The range over wh ich 
fring es can be obs erve d in the present system shows tha t approximat ely 250 
blac k and whit e f r inges can b e formed from a whit e source . In other examples , 
up t o 450 ha ve been obt a ined . 

For t he purposes of demons tra t i on , the ob ject wid t h was l imited to 1 . 5 m. m., 
so hat sever3l fringes c ould be clearly seen i n ea ch patch . Howeve r , if the 
obj ect s i ~e i s in creus ed t o 8m . m. a compar abl e number of fringe s can b 
obt a i ne d , s howing tha t a chromat icity i s maint a ined for ext ende d obj ec t s . . The 
limit of 8 m. m. •-::u; impos ed pu re ly by t he size of th e l amp f il ament . 

It s houl d be poss ible to use the output transpar ency subsequently as th e input 
t o th e int e r fero meter , hence reforming the or iginal input direct ly . How e ver . 
the norma l output conta i ns a large uniform backgroun d component, wh i ch , on a 
sec ond trans it t hrough t he interferometer , would swamp the useful s i gna l . 
This di f fi culty could be overcome using electroni c techniques i n con jun c ti on 
wit h a T. V. camer a tube as the detecting element . 

CaJ CLUSION 

vi e have s h01vn tha t a on e - dimens iona l wavefront f ol ding int er fe r ometer can b 
made essenti ally achromatic for extended objects . The extension of th e t ec h
niqu e to two- dimensions shoul d not present any further dif f iculty . Since the 
interferomet er output is a di spl ay of the cosine Fourier transform o f the 
object a s an i ntensity distribution, it can be recorded with a camera t ube , 
the vi deo signal then being avai lable for electronic processing . Th i s f eature 
makes the system pot entially attracti ve as a hybrid optical - elec tronic re a1 -
time proc es sor . 
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