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ABSTRACT

This thesis describes the development of a passive optical
system for the formation, in real time, of the two dimensional cosine
Fourier transform of a polychromatic, incoherent, two dimensional intensity
distribution. The generated transform is itself an intensity distribution
and as such can be either processed by an optical filter, or be directly
recorded, by a conventional technique, for subsequent electronic processing.

The system is based on the wavefront folding and shearing
interferometer which conventionally produces an interference pattern
whose spatially varying visibility is directly related to the input object's
Fourier transform. The interferometer requires that the two dimensional
input object be spatially incoherent and quasi-monochromatic. The
particular development described here is the extension of the interferometer
to accommodate source emission over the full visible spectrum. This is
achieved by introducing spatially and chrematically varying degrees of shear
to create an achromatic interference pattern. The necessary shearing
function has been realised with a pair of mutually inclined diffraction gratings.

A theoretical analysis of the instrument is presented for two
dimensional input objects and their transforms, comparing the spectrally
compensated interferometer with other techniques for producing Fourier
transforms, and with other achromatic fringe systems. The design and
realisation of a one dimensional implementation of the instrument is discussed.

An experimental investigation of the one dimensional interferometex
is detailed, showing the manner in which the Fourier transformwas obtained
from a 1 cm wide object illuminated with white light., The sinc function transform
of the slit modulates the visibility of over 400 essentially white carrier fringes.
The 5th side lobe of the transform was detectable. Finally, the effects of the
bias intensity level on a subsequent reconstruction of the original distribution
are discussed.
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CHAPTER 1

Two Dimensional Information

Many two variable functions describing disturbances of interest
may be presented as two dimensional light distributions. Typical examples
of such light distributions would range from astronomical sources to
microscopic images and from C.R. T., displays to laser signals. Not
all two variable functions when displayed in two dimensional space are
in such a form that the information about the event of interest is readily
discernable., Hence some form of two dimensional signal processing is
necessary in order to extract the required information. This processing
may involve recognising characters, either alphanumerics or some
predetermined patterns,enhancing the edges of the given function and
removing image degradations.

The various two dimensional signal processors that have been
devised to date can be divided into two groups; those that operate in the
image plane where the function is displayed, and those which produce
one of several possible transforms of the function and then operate on
this transform. The main advantage of the former group is that the
information is processed directly without the need to pass through several
intermediate stages, where some of the information could be lost or
distorted. Against this, the fundamental disadvantage is that any processing
of a given feature first requires that the entire image plane be scanned to
locate the given feature. In contrast, using a judicious transform, the
information about the given feature can be located in a specified area
regardless of the exact position of the feature in the image plane. The
apriori knowledge of the character's transform greatly facilitates
processing the original function.

1.1. General Signal Processing

The two most successful techniques developed to date to implement
two dimensional signal processing are based on digital electronic systems
and on optical analogue systems. The actual form of processing performed
by the digital systems will depend to a large extent on the computing facilities
available. The general purpose computers are better suited for image
plane filtering due to their ability to utilise a large range of flexible computer
programs. This enables the computers to implement a wide range of mathematical "
operations designed for digital filtering (Crouchiere and Oppenheim 1975). '



The most widely used concept in this type of processing is
correlation for feature recognition (Wood and Treitel 1975, Stockham
et al 1975) and deconvolution for removing image degradations
(Sondhi 1972). However, these general purpose computers are
usually much slower in generating various transforms of the input
data than special, purpose built, computer systems (Allen 1975,
Freeny 1975) which have been designed to produce and then filter
only one specific transform.

In general, digital signal processing, based on computers
has the merits of flexibility in design and in languages, and hence in
programs, giving the processor a wide and powerful operating range.
Secondly, the operations involved are virtually noise free and hence
are infinitely repeatable. The two major disadvantages stem from
the fact that the operations of all electronic systems are limited to
one dimension. Primarily this implies that the input image must
be sequentially sampled at an appropriate rate and a binary nhumber
associated with the magnitude of the light signal at the particular
sample. This digitisation of the input must inevitably introduce a
certain amount of error. Secondly, due to the limitation of operating
on a function of one variable at a given instant, the two dimensional
input signal has to be considered as a sequence of one dimensional
signals. Clearly, this is time consuming and presents a finite time
delay between the arrival of the signal and the presentation of the
processed information. Hence, processing signals in real time, that
is with a time delay which is of no consequence in a practical system,
may be very difficult.

Two dimensional signal processing can also be performed
by optical analogue systems. A two dimensional wave propagating
through an optical system will be modified by the two dimensional transfer
function of the system. Hence, if the transfer function can be made to
represent some form of filter, then the two dimensional information on
the wave will be processed instantaneously. This ability to handle two
dimensional information in real time gives the optical signal processors
a distinct potential advantage over the digital systems.

Optical analogue systems can also operate directly on the image
or produce a transform of the image. In the first instance, the transfer
function could be some form of matched filter recognising a given
character from a known alphabet. Or, secondly, and more usually,
the transfer function of the optical system gives rise to an output which
can be related to the Fourier transform of the original input function.
Different optical processors generate outputs that have diversified



relationships with the exact Fourier transform of the input. Thus
before proceeding with a discussion of the various processors it is
useful to clarify the meaning of a Fourier transform of a spatial
function,

1.2. Fourier Transforms

A two dimensional Fourier transform can be associated with a
two dimensional energy distribution, g ( X,y) provided that this input
function has only a finite number of discontinuities and that it is
integrable over its spatial extent, If these conditions are satisfied
then the Fourier transform is defined by

o0

G(p,q) = // g (x,y) exp- j2Ixp + yq) dxdy 1.1

i00

where p and q represent the Fourier frequencies. Since g (X,y) is
a spatial distribution, G (p,q) must also represent an energy
distribution in two dimensional space. Thus the Fourier spatial
frequencies p and q are directly proportional to the distances
along an orthogonal set of axes in the co-ordinate frame defining the
transform plane. The above integral can also be considered as
representing the transfer of energy, or information from a particular
spatial periodicity in the image plane, to a point whose precise position
in the transform plane, is determined by the wavelength of the periodicity.
Thus the input object can be described in terms of a set of spatial
periodicities whose complex amplitudes are given by G (p,q).

Perhaps the most significant advantage of the Fourier plane
over the image plane in signal processing is that the magnitude of the
spatial frequency spectrum is independent of the input function position
in the image plane. Thus if equation l. 1. represents the spatial
spectrum of the function g(x, y)then for a shift in the position of the

function of (+a,+b) to g (x+a,y+b) the transform becomes
o0
G'(p,q) = f/ g (x+a , ytb) exp - j2Ii(xptyq) dxdy
S



o0
= expi2[l(pa + gb) f / g (x+a, y+b) exp - j2M1{p(x+a)+ q (+b)} d (x+a) d(y+b)

-00
= expj2[I(pa +gb) G (p,q) 1.2

Which is clearly the transform of the original undisplaced
function multiplied by a phase term. Hence, the location of the spatial
spectrum remains invariant for input function displacements. Knowing that
the transform of a given feature will always appear in the same area,
regardless of the feature's position in the image plane, greatly facilitates
the processing of the given feature. One of the simplest forms of processing
in this Fourier plane is to place a binary mask at the centre of the transform,
thus removing the low spatial frequencies in order to enhance the edges or
differentiate the input function. Clearly, more complicated masks, even
holograms containing phase information, can be placed in the Fourier plane
to realise other forms of processing.

This form of filtering can be considered as a product, in the
transform plane, of the filter function H (p,q) and the transform of the
function, G (p,q) . This product can be related to an operation in the
image plane by taking the Fourier transforms, thus

/ 00
O(x,y) =/f H (p,q) G (p,q) exp j2[I(px+qy) dpdq
~00
o0
O
) ]fH(p,q){ [fg(r,S)exp-J‘2H(pr+qs)drdS}exp j2 I(px+ qy) dpdq
-00 —o .
o0 oo
N ﬂ’g (r,S){ff H (p,q)exp j2(p{x-r}+aq{y-s}) dpdq: drds
00 944
S
= "/ g(r,s) h (x-r, y-s) drds 1.3
400

which can be recognised as a convolution integral. Hence, complicated
convolution operations in the image plane reduce to simple multiplications
in the Fourier plane.



The Fourier transform as defined in equation 1. 1., is a
linear and unique mapping from the image plane x,y to the spatial
frequency plane p,q and hence the inverse transform can be
readily written as

eol

!
g(x,y) =/f// G (p,q) exp j2Il(px+ qy) dpdq 1.4

~00 |

Thus the information in the processed transform can be
readily transferred back to the image plane by performing the inverse
Fourier transform as defined above. However, a result of far greater
practical significance is the consequence of performing two successive
positive transformations on a given signal. Thus, the result of such an
operation g'(x',y') is given by

wr
g' (x',y')=ff/G(p,q') exp - j2II(px' + qy') dpdq
2 |

[s.0]

m\ -
ffz ]ﬂg x,y) 'eXp—j2H(px+qy)dxdyf exp-j2[1(px'+qy') dpdg
-~00 . '

"m/

o / . )
[/]//g (x,¥) eXp—'j2H3p(r.<+x') +q(y+s’)$ dxdy dpdq

o0

J

The integral inside the brackets may be expressed as follows:~

1

! Ci)/
g(x,y){ J'f//exsw-ﬂﬂgp(xm') + q(y¥y' )f dpdq} dxdy
-0 ‘

+a
= l;n.:m f]//exp-jZH{p(X+x') +q (y+y')} dpdq
- :



_ lim {sin ola (x+x') sin 2[a (y+y')
PR 2mx +x") 21y +y')

= S(x+x')o(y+y'")

o
g'(x',y')=// g(X,y) 6(x+Xx') 8(y+y') dxdy
-0
g(x',y') = g(-x', -y" 1.5

Thus a real system producing a transform of an input function
can be used to reconstruct the function. The only difference between
this reconstruction and that obtained with an inverse transform is that
this reconstruction is inverted. However, for all practical situations
this is of little or no consequence.

1.3. Propagation of Light

The mode of operation of the optical system as suggested in section
1.1., depends on the propagation of light waves, hence it is necessary to
consider the nature of optical sources and the fields that are generated by
them. Although information when displayed as a light distribution is always
perceived as an intensity function, a single point radiating at a discrete
wavelength generates an electro-magnetic field over which the amplitude
and phase are well defined. Therefore, when considering the effect of an
optical system on such an elementary point radiator, that point must be
described in terms of a complex amplitude, or even more precisely in terms
of its electric and magnetic vectors.

The rigorous Maxwellian electro-magnetic approach does not
readily lend itself to complete solutions in all but the simplest situation
(Somerfeld 1954). However, provided cerfain restrictions are admitted,
a simpler scalar technique, based on the amplitude of the electric vector
can be successfully used. These restrictions are significant when the
behaviour of electric and magnetic components of the light waves is
important, notably in the vicinity of objects with dimensions comparable



to the wavelength of light. Therefore, small apertures, field distributions
within several wavelengths of the source and polarisation effects must be
treated with caution. However, in practical circumsfances these restrictions

are rarely an imposition.

The propagation of a light wave can be described by the general
wave equation

a1 3w
Teean

Where V* is the Laplacian differential operator and ¢ is
the speed of light in vacuum. Foran isotropic point source situated at
x',y',0 ina cartesian co-ordinate system, this wave equation will be

satisfied by a propagating function of the form

A
y= a cos{k {(x—x')’+ (y—y')n-*-z’} —wt—CD}
2

Where a and & are positive real constants and Kk
is the particular radiation wavenumber defined by

21
k_)\

Although this propagation function is not defined at the source
X,y,0 it does not lose its validity in the general field more than
several wavelengths from the source where the scalar theory is applicable.
For ease of mathematical manipulation, the above function can be

represented by an exponential

%

a 2 N
v =3Vexpi{ ki(x-x")+(y-y'V+z} - wt 1.6

Where V is a complex constant.



Due to the ease with which the propagation of a plane wave
through a system can be analysed, it is convenient to describe this
spherical wave emanating from the elementary point source in terms
of a set of plane waves propagating in directions normal to the
spherical wavefront. Thus if each of these plane waves is assigned
an appropriate amplitude and initial phase, the complex amplitude
distribution across the source will be exactly represented. A
typical uniform plane wave, of complex amplitude U propagating
in a direction such that its normal makes angles of ¥, x, ¥ with the
X, y, z axes respectively, can be represented by

U expj { 2H(xu+yv+zw)-wt}

where u,v,w are spatial frequencies defined by

u_cosd v _ €oSs X w — cos ¥
A A A

This equation can be simplified by omitting the propagation
term wt which remains invariant whilst the wave propagates
through an isotropic medium, and by omitting the spatial frequency

w as it is determined by the values of the other two spatial
frequencies in the relationship

ut o+ v+ wt o= 1 1.7
Hence, the typical plane wave can be written as

U (1, v) exp j2 [ (ux + vy)

with u,v determining the direction of propagation of the plane wave
and U, (u,v) its amplitude. As suggested earlier, the source complex
amplitude can be expressed by the sum of a number of plane waves each
of which propagates in a different direction. Therefore, the complex



amplitude distribution V (x,y) in the source plane is given by

/

®
Vi(x,y)= .[/Us( u,v) expj 21 (ux + vy) dudv 1.8

This description is known as the angular spectrum of plane
waves. The limits of integration are taken from -® to + @@  in
order to have the integral in the standard Fourier form, however, they
must be treated with caution. Clearly for valuesof u and v  greater
than |1. /}\ ‘ the direction cosines are larger than unity, in which case
propagation can only be defined in terms of imaginary angles. The plane
waves produced under such conditions are evanescent waves which oscillate
in planes parallel to the source plane, but are attenuated exponentially in
the normal direction. Thus their contribution to the field beyond the
immediate vicinity of the source plane is negligible and the practical
integration in equation 1. 8., is performed between + 1 /}\ . With
this equation it is possible to associate an inverse, that is, the positive
Fourier integral

o ~
U u,v) = f/V (x,y) exp - j2I1(ux + vy) dxdy ) 1.9

4
~00/

which clearly def ines the amplitudes of all the individual plane waves
representing the radiation from the source.

A plane wave propagating from the source plane to the plane
of interest £, through an isotropic medium will be altered in
phase only by an amount ¢ given by

¢ = expj2llzw

Which on expressing w from equation 1.7 gives

¢ = expj2lz (I - u® - v )%

This phase term applies equally to all the plane waves in the
spectrum propagating from the source. Thus it is possible to define an

_9-




angular spectrum in the plane £, 7 in terms of the source spectrum
as follows

]
a
a -u —v&}z

U' (u,v) =Y u,v) expj2ll {%‘

For directions of propagation limited to small angles with
respect to the 2z axis, the square root in the exponent can be
simplified by reducing it to the first two terms of the Binomial expansion

U' (u,v) =U(u,v) expjkz. exp- jIirz (u®+v?)

The amplitude distribution in this plane is given by the inverse
Fourier transform of the angular spectrum in the plane £,% thus

-l

V(&) =expikz Eﬂ;usw,wexp—jmzz (u*+v?2 )
-1

where En 3 cee % denotes the inverse Fourier transform of the
expression inside the brackets, related to the ¢, n  plane. This
expression can be broken up by the convolution theorem into

-1 -1
V(E&,7) =expjkz F ;Us(u,v)f @F ;exp—jﬂkz_ .(u:l + V’ ) 1.10
gn in )

The second Fourier transform is a standard result which
is
-

. a _ 1 L ay
E“ 3eXpJU)\z(u + vt ){- = epr)\Z(s +7°)




The first expression can at the moment, be expressed as
a function F (£,n ) which clearly is related to V (x,y) through the
change of variables. Equation 1.10., can be written as

V(g y = el F(Lv) ® exp Il (£+n*)
1Az Nz

On performing the convolution and noting that

F (x,y) =V (x,y)

the amplitude distribution at a given point in the field is given by

o | . 1 '
expikz (7 . (f-x) * (7= y)
V(E,77)=j)\z [[V(x,y)exp]k 2 7 dxdy 1.11

~0Q | .

This is a general expression for the light distribution over a limited
range of the field generated by a monochromatic light source. It is
valid so long as V(x,y) is a true description of the complex amplitude
of the monochromatic light in the source plane. If the field is restricted
still further by the Fraunhofer condition (Goodman 1968), that is

?kﬂ >> (x“+‘g“) , (y*+ 2% )

then equation 1.1l. , can be written as

pjk -j2 11
Vv (E,ﬂ )_ej);‘ - z :/ﬁv (x,y) exp N z (tx +‘7)y) dxdy 1.12
: /

-00/

which when compared with equation 1. 1., can be recognised as a product
of a constant phase term with a scaled Fourier transform of the original
light distribution. The real dimensions in the plane of interest are £ »




hence the scaling factor which determines the amplitudes and positions
of the spatial frequencies is 1 /)\ z . Although this is not a perfect
Fourier transform relationship, the phase being multiplied by expjkz,
it does offer a very simple first stage of an optical signal processor.

There are, however, two fundamental restrictions regarding
the light distribution in the image plane. Primarily, it must be
monochromatic as the wavelength is an important factor in determining
the scaling of the transform. A spread of wavelengths would introduce
a range of transforms with different scalings which would result in a
pattern too complex to be useful. Secondly, in defining the Fourier
transform integral it was stated, as a condition, that the function must
have only a limited number of discontinuities. However, in some light
sources, say a C.R,T., screen, a radiator will-emit a photon independently
of its neighbouring radiator. Thus a discontinuity, which varies randomly
in time, exists between every pair of radiators and as such it is impossible
to describe the complex amplitude distribution in such a manner as to
satisfy the condition for the existance of the Fourier integral.

Although such sources do not naturally produce their Fourier
transforms in the far field, it is possible to deduce the light distribution
due to such a source by considering it as a composition of point radiators,
each of which can take on a different complex amplitude. The ampiitude
and phase at a point in the field generated by a single pomt situated at x',y'
of complex amplitude V', is given from equation 1.11.

A k '
V(g,n) =iz P~ ; 22+ (£- x')+(n -y') 1.13

On comparing this expression with equation I. 6. , it can be
seen that the complex amplitude V is given by

2v!
iA

V =

Thus equation 1.13., will satisfy the general wave equation.
Clearly, so will the propagation from a neighbouring point with a different
complex amplitude. Invoking the linearity of the wave equation, then
their sum will also satisfy the wave equation. Clearly, this argument




can be extended to an infinite number of source points giving an expressmn
for the hght in the field as

Ene ' (Xn ’ yfn) _.l{_.. a 1.*. - )i
V(E’")=szj i Nz exp j o 2z° + (g~ X, )+ (1= ¥y

n=-QQM==C0O, 1.14

If the complex amplitude V (x,,¥, )of the point sources is expressed
in terms of an amplitude and phase distribution

V (X0, ¥m) = A (X,,Ym ) exp- ik ®(X,,m )

then equation 1. 14. , becomes

A (x4 k
V(E,m)= ZZ ,)\—;L) exp j —;Z-{ 22% (£ %, ) + (1= ) - 22(%,,9m )
N=-Q0 m=-CO 1.15

Thus even with & (x.,Ym )as a random function the instantaneous
complex amplitude could be evaluated although it does not resemble any
~ defined transform and hence is not very useful from the signal processing
viewpoint. If @ (x, ;¥m) were a well behaved function then the double
summation could be replaced by a double integral and equation 1.15. ,
would be identical to equation 1.11.

Hence equation L. 14. , defines the amplitude and phase at any
point in a limited field which has been generated by a monochromatic light
source. The extension to a polychromatic source is achieved by simply
summing a set of expressions like l.14. , one for each wavelength. However,
a point of greater significance is that the nature of the source, through the
function @ (x,,y. )determines the exact form of the far field light dis tribution.

1.4, Real Light Sources

In observing any light pattern, detectors need to react throughout
a finite time interval, typically at least one nanosecond in order to record
the light distribution. Such periods of time are very long compared with
the fundamental period of light wave, hence the records are of the average light
distribution during the recording period. Hence if a light distribution related to




the power spectrum of the source is to be faithfully recorded, then the original
light distribution must remain constant during the recording process.

Apart from imposing a maximum temporal frequency band on the

input function, it also demands that the light displaying the function

must have a constant phasefront. Clearly, for light sources where

individual point radiators emit photons independently of each other

the phase across the screen is constantly changing, making it

impossible to record a discernable pattern related to the Fourier

transform in the far field.

Thus the conditions for producing and recording the Fourier
transform in real time of a light source, are that it must be monochromatic
and that all the individual radiators must be coupled to each other. The
" most common way of satisfying these requirements is to present the
information on a photographic transparency which is then illuminated
by a spatially filtered laser wave.

Other forms of light sources displaying two dimensional
functions usually consist of C.R. T., displays for radar, oscilloscope
and computer consoles, or arrays of L. E.D,s. These sources are
in general presented with the information as an electrical signal.
Individual elemental radiators absorb some energy from the electrons
carrying the information and emit photons. As the elemental
radiators are, in the main, independent of each other, so are the
photons that they emit. Hence, there is no coupling between photons
from various radiators and as such these sources will not produce a
recognisable Fourier transform in the far field.

There is a third way of displaying two dimensional information
which does not fall into either of the two above groups. There are light
distributions which have a limited degree of coupling between the point
radiators. Such distributions occur when an uncoupled source is imaged
through an optical system onto the input image plane. Due to the finite
size of the optical components and also due to some possible component
defects, a point in the original source is mapped onto a finite area. Clearly,
secondary point radiators in this area are coupled as the light originated
from one point. Although these light distributions presented as real or
virtual images are partially coupled, the degree of coupling is not usually
sufficient to enable the source to produce a wide spectrum transform.



It is possible to derive expressions for a light distribution
in the far field due to various sources in terms of the cross-correlation
of the light at any two points in the field. However, such an approach
based on the Mutual Coherence Function does not contribute a great
deal in this case except mathematical rigour to the above discussion.
The main result, that only information presented on a plane monochromatic
wave readily produces its Fourier transform appears an inescapable fact

at this stage.



CHAPTER 2

Optical Signal Processing

In the previous chapter it was shown, albeit only qualitatively,
that optical signal processors appear to have a fundamental advantage, that
of an extra dimension over their electronic counterparts. Inevitably, the
optical signal processors have several inherent restrictions which must
be understood and surmounted if the potential of these optical techniques
is to be realised. One common obstacle, developed towards the end of
the last chapter, is the constraint that the light source must produce a
well defined phasefront. Coupled with the need to have a readily detectable
amount of light in the observation plane, thus precluding highly filtered
broadband sources, this restriction limits useable sources to lasers.

Various schemes have been proposed and developed in attempts
to overcome the dependence on the laser, and these schemes will now be
discussed. However, prior to this appraisal, coherent light signal
processors will be examined in order to provide an insight info the potential
of optical signal processing.

2.1 Coherent Light Signal Processors

It was shown in chapter 1, specifically by equation 1.12 that in
a plane at a large distance from the coherent source, the complex light
amplitude distribution will represent the Fourier transform of the
complex amplitude at the source. However, the condition defining this
distance between the plane of observation and the source plane is rather
fearsome. For typical values of object size 25 mm. and a light wave-
length of 0. 63 um., the required distance was given by

k(xa+y’)

z
>> P

z >> 1, 5 km



which clearly is a prohibitive criterion for a practical signal processor.

This difficulty was overcome by noting that a convex lens will
display in the back focal plane the Fourier Transform of the complex
amplitude distribution present in the front focal plane. If V&,y) denotes the
complex amplitude in the input plane, then the output plane complex
amplitude can be written by approximating the Fresnel-Kirchoff diffraction
formula as

oo
V (u,v)= 3—)—1—; [/ V (x,y) exp jkrdxdy
~co

Where r is the distance between any point in the input plane
and any point in the output plane. This distance can be evaluated by
considering a plane wave in the front focal plane with its phasefront at
angles § and v relative to the X,y axes. Such a wave will be
focussed to a point ( u,v ) in the output plane, where

u=Fsinég
v=FsinY

implying that the distance between any point on the plane wave and the
point (u,v ) is constant and equal to 2F, where F is the lens focal
length, The distance from a point (X,Yy) on the plane wave to the input
plane is

- (xsing +ysinY)
which can be re-written as

- (Xos g

F F

giving the distance r as
_xXu _ yv
r = 2F — —_—
F ¥

and hence the amplitude distribution in the back focal plane is

exp]k k
V (a,v)= ﬂV(XY)eXP‘J 7 (ux+vy)dxdy 2.1

which, when compared with equation 1. 1. can be recognised, to within

a relatively unimportant constant phase term, as a scaled Fourier transform
of the complex amplitude in the front focal plane. This result was utilised
(Rhodes 1953, Cutrona et al. 1960) to produce a coherent light signal processor,
as shown in Figure 2.1.



An input function g (x,y)is presented on a photographic transparency
in the first focal plane and is illuminated by a plane monochromatic wavefront.
The first lens displays the scaled Fourier transform G(u,v) in the back focal
plane, where a complex filter H(u, v) on the second transparency operates
simultaneously on all the Fourier frequencies present in the signal. This
plane alsoconstitutes the input to the second lens which produces in its back
focal plane, the modified and processed information.

The main forms of processing information by this coherent optical
technique have been concerned with extracting a given feature from background
noise. In this application noise implies all the signals present in the input
function apart from the desired information. The desired feature may be
either multiplied by the noise, added to the noise or convolved with the noise;
each case requiring a different form of filtering.

In the first case where the signal is multiplied by the noise, the
required information can, under certain restrictions be extracted by a simple
binary mask., A practical situation demonstrating this form of filtering is in
removing the half tone dot structure from photographs printed in newspapers.
Such a printed photograph can be considered as the original scene s ( X,y ) '
multiplied by the convolution of the dot size n(x,y) with the two dimensional
lattice delta function COMB g‘-(, %) . Thus with subscript ¢ denoting dummy
convolution variables ‘

X Y
= COMB (=, =
g(x,y)=8(x,5) 3 n(xy) & (X,Y)i

which when presented on a transparency in the input plane of Figure 2.1.,
becomes in the transform plane

M Xu,  Yv,
G(uv)=8(yv) ® ; N (u,v,). COMB (Xf‘ ’)\-F) ;

If the original scene has a limited resolution, its transform S (u,v)
will be space limited in a region U,V . In order fo preserve the information
in the original scene the dots must be closely spaced with their size being
smaller than the finest detail, Hence the spatial extent of the transform of
a single dot N(u,v) is larger than the transform of the original scene. Thus
the product of the transform of the original scene with the transform of the
dot will be non-zero only within the region U,V . However, the spacing
between successive delta functions in the transform of the COMB function
is inversely proportional to the spacing of the dots. Hence if the distance
between adjacent delta functions in the COMB transform is greater than the
size of the region U,V then successive products will not overlap each other.
Thus if a simple binary mask which will transmit only one such product and
exclude the others is placed in the transform plane, then the input to the
second lens will be

G(uv)=S(uv) N(uv)



which will be transformed to produce in the output plane
g(xh,y')=s(xL,y') @ n(x,y)

This can be considered as the original scene imaged through an
optical system with a point spread function n(x',y')which implies that the
half tone dot structure has been removed.

In the second case, where the noise in the input function is
additive, the input to the optical processor is of the form

g(x,y)=s(xy)+n(x,y)

which becomes in the transform plane

G(u,v)=8S(uv)+N(uv)

If this is now multiplied by a filter function which is the complex
conjugate of the transform of the sought for signal, then the input to the
second lens becomes

G (wv)=8(uv)S{uv)+N (uv)siuv)

Noting that

3

gs?u;v)z =8 (-x', -y')
Xy' :

the output of the signal processor is

g(x,y')=s (xL,y') ® 8(-xL-y)+n(xLy) ® s (-%,-3')

This can be recognised as the auto-correlation of the original
signal added to the cross-correlation of the signal and the noise. The auto-
correlation term compresses all the signal energy into one well defined
point, while the cross-correlation term spreads the energy over an
appreciable area. Hence the presence of a high intensity point in the output
indicates the existance of the signal in the input function. This technique has
been widely used in recognising characters and determining their positions in
the input plane. From equation l.2. a character positioned at (x,y) will be
transformed to ' o

G(uv)=S(uv)exp - & (xu+yv)

which when multiplied by the filter and transformed by the second lens
becomes
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g(xy')y=s(x,5/) @ s(x,y}) ® s (x-%,y"-y)

which is quite clearly the auto-correlation of the signal centred on (x,y) .
Therefore, the presence of the requisite character and its position relative
to the input plane centre are well defined.

The last case of filtering to be considered, that of idenﬁfying a
signal convolved with noise is shown in clearing a blurred photograph. In
this case the input function to the signal processor is

g(xy)=8s(X%y) @ n(xy)

which will be transformed to

G(u,v)=S(u,v)N(uv)

Clearly a filter function I/N (w,Ywill remove the noise and isolate
the transform of the signal which can then be readily retransformed.

One of the first problems in utilising the above concept is to
physically realise the required filters. It has been shown that the phase content
of the filter function can be recorded in the standard holographic fashion
(Vander Lugt 1964), thus enabling the types of filter necessary in character
recognition to be realised. However, a filter for true deconvolution or
division in the transform plane is in general impossible. The transform of
the noise function will have its normalised amplitude varying between 0 and
1. 0, thus its inverse, the filter function amplitude must vary from oo
to 1. 0, which for a passive system is physically unrealisable. A limited
degree of decpnvolution is possible with filters that only compensate for the
phase of the noise transform. ‘ '

A second difficulty arises from the fact that the filters and the
input function are usually recorded on photographic emulsions. During
development the emulsion and the acetate base shrink and distort, thus
introducing a spatial phase distribution across the transparency, which
increases the ambient noise level, hence reducing the signal to noise ratio.
This can be overcome by presenting the transparency, whether filter or
input function, in a liquid gate where the index matching fluid between parallel,
optically flat, glass plates effectively eliminates any film irregularities.

Another source of error stems from the inaccurate positioning of
the filter in the transform plane. The physical dimensions in this plane
represent Fourier frequencies, hence a misaligned filter modifies a given
frequency by an inappropriate amount. It has been shown that for a typical
-system with a focal length of Im and an input function size of 25 mm,a
reduction in the signal to noise ratio by a factor of 2 will result if the filter
position is in error by lumfor uniform noise and by 3pymfor nonuniform noise
(Vander Lugt 1967).
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Finally, perhaps the most important limitation of the coherent
light optical signal processor is its inability to operate in real time. As
discussed in section 1. 4, the majority of real light sources do not have
sufficient coherence to generate their Fourier transforms in the far field.
Hence the information displayed by such a source must be reproduced
on a photographic film, which in turn must be developed, before being
presented to the signal processor. This inability to operate in real time
all but nullifies the advantages of optical signal processors over their
electronic counterparts. '

There are two possible approaches by which this limitation may
be overcome; one is to produce a real time two dimensional coherent light
modulator, the other is to develop a process that will operate directly on
incoherent light signals.

2.2, Real Time Spatial Modulators

Real time spatial modulators are active units intended to transfer
the two-dimensional image presented as an incoherent light distribution
onto a monochromatic plane wave in real time. One such spatial modulating
technique has been to impose the input function onto a continuously moving
roll of film. The exposed frames are passed through a rapid developer and
onto the input plane of a coherent processor. However, this only reduces
the magnitude of the problem without solving it.

A more complete solution has been based on composite crystal
devices utilising the crystal's birefringence dependence on electric fields
(Vohl et al. 1973). A typical device consists of an anisotropic, uniaxial, electro-optic
crystal with a transparent composite insulator-electrode on one face, and
only a transparent electrode on the opposite face, as shown in Figure 2, 2a,
The crystal is also a semiconductor, Wlth a wide energy gap, displaying
photo-conductive characteristics.

In the usual mode of operation, a uniform constant electric field
is applied across the device. In the absence of light the crystal acts as an
insulator which results in the electric field remaining uniformly distributed
across it. The writing incoherent light pattern is focused onto the crystal
through the transparent electrode and insulator. On reaching the crystal,
the photons with an energy greater than the crystal band gap are absorbed,
generating electron hole pairs. The electrons are swept away across the
crystal leaving the holes trapped at the crystal-insulator interface. These
trapped holes reduce the field across the crystal in proportion to their
density, as shown in Figure 2. 2b. As this charge density pattern is a direct
consequence of the input photon density distribution, the resulting, modified
field across the crystal represents the initial image intensity.



The crystal, apart from being a semiconductor, is also electro-optic and
anisotropic, which means that the dielectric tensor and hence the
refractive index in different directions, depends on the external
electric field vector. The crystal is cut and aligned in such a manner
that the direction of the applied field and the direction of the reading
light propagation are parallel to one of the three crystal axes. Then the
field dependent refractive index variations along the two remaining crystal
axes modify plane waves, polarised in a direction which bisects the
angle between the two axes, to elliptically polarised waves. The
magnitude of the minor axis of the polarisation ellipse is directly
proportional to the strength of the external field.

Thus if the reading light is a monochromatic plane wave
polarised in the required direction, the initial image will exist
unambiguously as an amplitude distribution present on the minor axis
of the polarisation ellipse. This amplitude can be readily isolated by
a polariser crossed with the original direction of polarisation. However,
it must be noted that the original intensity distribution is now an amplitude
distribution and care must be taken if the contrast levels are to be
maintained. -

The real time transfer of information from incoherent light
to coherent light is made possible by placing a band pass interference
filter on the insulating layer. The incoherent writing wave with its
spectral distribution centred on this band is transmitted and hence
focussed onto the crystal. However, the coherent reading wave, ata
wavelength outside this transmission band, entering the device at the
opposite face, passes through the crystal and is reflected back through
it by the interference filter. The information carrying reflected wave
leaving the crystal can be readily isolated from the incoming reading
wave by means of a beam splitter., Thus the information can be written
in on one side and read out through the other in real time.

The successful operation of these crystal devices depends on
several important crystal characteristics, which also introduce several
problems. The energy gap in the semi~conductor determines which
photons will be absorbed and which will be transmitted. Clearly, it
must be so chosen as to divide the visible spectrum; absorbing the short
wavelength, and hence the more energetic photons, while transmitting
the longer wavelength photons. However, the absorbtion characteristics
at room temperature of typically used crystals (Oliver et al. 1971) do
not have sharp cut-offs. Hence for maximum photon absorption the
writing wavelength must be well into the absorbtion spectrum. Similarly,
to prevent reading photons from being absorbed and thus obliterating
the image information, the reading wavelength must be well clear of the
absorbtion spectrum. '



This implies, and is bourne out by reported experiments
(Oliver et al, 1970 & 1971, Hou et al. 1971) that writing must be achieved
with ultra-violet or blue light while reading is performed with red light.
Such division is rather unfortunate as the majority of C.R. T. phosphors
and L. E.D.s emit green or red light, but not blue (leverenz 1950), which
limits the applicability of the device. Clearly there is a trade-off between
reducing the band gap to accomodate longer wavelength writing light and
preserving the information when reading it.

There exists a second trade-off, namely that between reading
intensity and reading time, which is shown by recently reported devices
(Lipson, Nienson 1974) having a band gap of 3. 25 eV which corresponds
to a wavelength of 0.382 p m,and need a writing energy at 0. 366 p m of
2. 5}4h3'/cm5l . On readout at0.633pm the information is destroyed by 1.2 m& /cm
Another important characteristic, the ability to retain the electric field
pattern in the absence of reading light is limited by the finite resistivity
of the semiconductor and is limited to several hours (Feinlab, Oliver 1972).

The polarisation of the reading wave is mainly modified by the
birefringence variation across the crystal, thus transfering the original
information from an electric field distribution to an amplitude variation.
However, the polarisation is also perturbed by impurities and strains in
the crystal as well as piezo-electric bending caused by the applied field,
and thickness variations. Some of the crystals used also display optical
activity which rotates thedirection of polarisation, but this is automatically
overcome when the reading wave travels forward and back through the
crystal, the second passage compensating for the rotation incurred in the
first, (Nisenson Iwasa 1972). The other phase perturbations are not so
easy to remove (Feinlab Oliver 1972) and tend to degrade the final image.
The efficiency of the Pockels effect, measured as the ratio of light power
in the transmitted image to the amount of reading light power falling on
the crystal, is approximately 10%, which when taken together with the
maximum permissable reading energy gives rather low intensity images.

Finally, the devices compare well with T.V. system quality
as regards resolution, typically 100 lines per mm, and frame rates, again

a typical write and erase cycle takes 5m sec.

2.3. Incoherent Light Signal Processors

The other possible technique of achieving real time two dimensional
signal processing, is to process directly the incoherent light distribution
displaying the signal. Optical systems which operate on incoherent light
information displays can be divided into the two general signal processing
groups described in Chapter 1. The first group, operating in the image
plane, utilises the ray properties of light and generally produces correlations



of the input signal with some other predetermined function. The second
group based on the wave nature of light produces interference patterns
which are related to the input intensity distribution by a recognisable
transform.

One of the earliest needs for an incoherent optical correlator
arose out of the work performed by X-ray crystalographers. A crystal
illuminated by X-rays produced a far field diffraction pattern which was
the magnitude of the Fourier transform of its lattice configuration.

Taking a transform of this intensity distribution produced the auto-
correlation of the lattice configuration. As a direct analysis of the
auto-correlation was impossible, an iterative technique was suggested,
where the auto-correlation of a proposed structure was compared with

the experimental auto-correlation. Obviously a fast and simple correlator
was necessary if the iterative technigue was fo be successful. Robertson
(1932) and later others (Haag 1944, Philips 1954, McLochlen 1962)
proposed the correlator shown in Figure 2. 3.

The two functions € and h to be correlated are presented
as transmission variations in two separate planes. A uniform incadescent
source is focussed onto the first function, so that any radiating point with
a strength determined by the value of the function at that point, will
illuminate the entire second function. A ray of intensity dg(x,y) from a
typical point (x,y) in the first plane will pass through a point (x'y') in
- the second plane, where it will be reduced in intensity according to the
local transmission factor dh(x',y'l Hence the incremental intensity at
P (u,v) in the output plane is given by .

dP (u,v)=dg (x,y)dh (x',y') 2.2.

If the second plane is midway between the output plane, and
the first plane, the system will naturally be convergent giving

x-u = 2(x'-u)

x = 3 (x+u) 2.3.
similarly
y' = L (y+v) - ' S 2.4,

which on substituting in equation 2. 2. gives

dP (u,v) = dg(X,Y)dh‘{ %(X+u),%(y+v)}



Clearly the total intensity at P(u,v) is given by the summation
of all rays leaving the (x,y) plane, passing through the second plane and
falling on the pomt P

P (u,v) [/g(xy)h { 2(x+u),2(y+v)} dxdy 2.5,

Thus if the function h is to half the scale of g , then the
true correlation will be presented in the output plane to the same scale
as g . Thus a reasonably fast and very simple.technique was
developed for displaying, in two dimensional space the cross—correlation
of a pair of two dimensional functions. Although the initial incentive
came from X-ray crystalography, this correlator does have other
potential applications. Several other techniques for producing correlations
of two functions have been proposed (Kovasznay 1957, Felstead 1967,
Schneider 1975) but they do not offer any real advantages over the system
just discussed. A

This correlator has been used as the basis of a character
recognition system which determines the presence of specific Fourier
coefficients in the input signal (Leifer et al. 1969). The Fourier
coefficient at a specified spatial frequency, of a given signal, is
. obtained by presenting the signal g(x,y) in the first plane, and a
cosinusoidal function h(x}y') at twice the required spatial frequency in
the second plane. If

h(x)y') = 1+cos 2 D(wx' +wy")

then on substituting into equation 2, 5. with appropriate co~ordinate
changes, the intersity distribution in the observation plane becomes

oo/ : . |
P(uv) = Jg(x,y) §.1.+0052H ‘_f’_x(x+u)+(£,(y+v)$ }dxdy
~&5 ' 2 2 |

which on using a standard frigonometric identity can be written as

. og
P (u,v) “-1/]/' g (x,y) dxdy

-00 /

+cos 21 ? w,u+w s -[/g(xy)COSZ'Igwxx-&-w i dxdy
2
- sin 211 jw,u+w,v$ %(xy)smzﬂ {%X‘i‘ g’,yi dxdy
2 2

2 -/



where the value of the integrals determines the amplitude and phase
of the Fourier coefficient at a frequency ®x, @, ., This expression
can be re-written as z

P (u,v)=const. +c¢. sin 2 [] g Weu + WY cbg

2 2
where ¢ = ‘
- Y
a /) | A
;f]g(x,y) cos 2 [I {&’:x+3Y}dxdyf+ jﬂg(x,y) sin 2] { °_’*X+9x3'} dxdy}
z 2 (A ’ 2 2
—m .
and & = |
oot
‘ .
- " W, w,
tan co | g(X,Y) cos 2 ]I "2‘X+'-2~y dXdy
0
fﬁ g (x,y) sin 21 {_‘_"xx-f-g’ry } dxdy
oo / o >

Thus the magnitude and phase of a Fourier coefficient is
presented as the contrast and position of the shadow fringes in the
observation plane.

To determine more than one Fourier coefficient of a given _

signal, a composite filter consisting of several spatially separated ‘
periodicities is placed in the second plane. The signal is positioned
eccentrically in the first plane and is rotated about the system’'s ‘ -
axis of symmetry, thus scanning the composite filter. As a particular

spatial frequency in the filter is illuminated by the signal, shadow

fringes at half that frequency, modulated by the Fourier coefficient

will appear in the observation plane. A photodetector in this plane
‘will produce a frequency and amplitude modulated signal from which

the Fourier coefficients at given frequencies can be decoded by

electronic techniques. In order to determine the phase of the coefficient

an appropriate reference signal is required.

In view of the more established Fourier systems reviewed in
section 2. 1., this sampled transform at first appears to be rather
limited. However, Leifer et al.- have shown that some Fourier
coefficients are more useful in differentiating between characters
than others, hence only several coefficients need to be known. This
can be interpreted as, in Fourier space, highlighting the tail in the
letter Q to distinguish it from the letter O. This concept, coupled with
the relative ease with which the sampled transform of incoherent light
paiterns is obtained, has made this character reading technique a practical



system. However, as a more general signal processor it does have
several limitations.

Primarily the transform is not presented in twvo dimensional
space, but has to be electronically decoded and hence appears as a time
dependent signal. This sequential generation of Fourier coefficients
inhibits true real time two dimensional parallel processing. . Secondly,
only a sampled transform is produced with the number of samples being
rather low, typically about four (Leifer et al. 1969, Rogers 1974).
Notwithstanding that this may be.adequate for recognising characters,
it is clearly insufficient to filter and subsequently reconstruct all but
- the simplest objects.

A different approach to character recognition and matched
filtering with incoherent light, centred on optical correlators has been
suggested (Lohmann 1968). It was shown that an optical system with a
predetermined pupil function will produce an image similar to the output
"of a matched filter when the input object contains the desired information.
An image can be considered as the convolution of the object and the
impulse response of the optical system

IMAGE = OBJECT @ IMPULSE RESPONSE

‘However the impulse response is no more than the Fourier transform
of the pupil function, hence the image can be expressed as

IMAGE = OBJECT ® F 3PUPIL FUNCTION |}

Clearly, if the pupil function is the inverse Fourier transform of the
required character, then the appearance of that character in the object
distribution will generate an image comprising a delta function
positioned in accordance with the location of the character in the object.
This output is identical to that obtained from the more conventional
matched filters. The requisite pupil function, containing amplitude

and phase information can be readily obtained in the form of a Fraunhofer
hologram, recorded either in the standard fashion or generated by a
computer. The fact that a Fourier transform, rather than the required
inverse is obtained will only invert the information in the image plane,
which once noted, is of no consequence.

This system was designed for character recognition only
and as such does not readily lend itself to general processing. However,
even as a matched filter it does have several limitations. In order to
recognise more than one character, several Fraunhofer holograms must
be recorded on the same emulsion. Although they can be recorded with
different reference waves, great care would have to be exercised when
deciding whether the output represents a particular character, or a
different character in another position.



Secondly, because the complex amplitude of the impulse response
must be recorded accurately, this filtering technique suffers from positioning
problems similar to those associated with coherent light processors. 1Its
main advantage over the coherent light systems is that quasi-monochromatic
inputs can be used, or if the holograms are recorded on thick emulsions,
nominally white light objects can be recognised.

In a further development (Maloney 1971a & 1971b), this system was
improved by having a set of spatially independent subholograms as the pupil
function. Each subhologram was the Fraunhofer distribution of the required
character’'s distinctive features. However, the improvements achieved
appear to be marginal.

A different approach to incoherent light signal processing is to
generate an interference pattern from the input signal, where the two are
related through a Fresnel or Fraunhofer transform. Such interference
can be produced from incoherent sources by wavefront shearing interferometers,
Although there are many types of wavefront shearing interferometers, they
differ only in the construction and not in the principle of operation.

The underlying concept consists of producing two mutually sheared
virtual objects in the virtual input plane from the one real input light source
presented in the real input plane. Light from these two virtual sources is
brought together in a specified plane where interference occurs and can be
observed. Hence a real input object g (x,y) , a function bounded by the
region (X, Y) is amplitude divided and sheared by an amount ( x,; x)
such that a typical point (X,y) becomes situated at (X=x}X,y=y;*y) in the
first quadrant of the virtual input plane, and at (X7X;X,y=y-y)  in the
corresponding third quadrant, as shown in Figure 2.4. For a quasi-
monochromatic input object, the amplitude distribution in the observation
plane due to a single point(x,,y,)in the first quadrant is given by equation
1.13 as '

~ aVv (x . ‘ ik & _ 2 _ a
dA,(u,v)—~j——{-41;\YLL exp - § K d(%3,) exp L 2F + (x7u) + (y-u)
| 2.6.
where dV (x,y) is the amplitude of the virtual point andexp -jk (x,y) is
its initial phase.

Similarly, the amplitude dis tribution in the observation plane due
to a different point in the third quadrant will be

dA(u,v)=TEaY5) exp-jk d(x,y) exp 1.3 oF + (x;u)1+ (y+v)
. : 3
JA\F , 2F :
2.7.



where

These two amplitudes will add to produce an interference
pattern whose intensity will be

dIi(uv)=Re {3dAl(u,v)+dA3(u,v)£ . ;dA,(u,v)+dA3(u,v)f }

which on substituting from equations 2.6 and 2.7. and noting that

Re {7z} =®e {7°7,)

gives the incremental intensity as
-jk
dI(uyv)=Re dI' (x,5,: %) +dI'" (x5, x,y,) exp_:_z_J; 3 2u(x+x)
+2v(y'+y3)+(x x’)+(§§ 1)+ cb(x5y3)~ d(x,y,) }2.8.
a1 (x,y,: x ,yj)_dV(xy,)dV(x %) 4 AV (x,y,)dVix,y,)
NF? »r?

2dV(x,y,)dV(x,y,)

di" (x,y:X,y)=
)\zF:L

If the two points at (x,y) and (X,3) do not originate from the same
physical point on the real incoherent input object, then the difference of the
two initial phase terms®(x,y)and ® (%, §)in the above expression will take
on a random value. Thus the interference pattern between any two virtual
object points, describing different real object points is not defined analytically.

However, if the two virtual points at (x,y)and (x,3) do originate
from the same source point, then clearly the difference of the two initial
phase terms will be identically zero. Also (%,¥) become related to (x,Y)
through the relationships

X=X~ 2%, V=~ 25
Under these conditions equation 2. 8 becomes

dIi(u,v))=Re dI (X, y)+dI(x,y) exp :%’E {u(x+x,)+x’:—_x_>£,‘
2

+ v(y+yo)+yf'-'-_¥l,}§2. 9‘.
2

where _ .
d1(x,y)= 2dvV(x,y)dV(x,y)
XF*
Due to the random phase difference between any two real points
in the incoherent object, the incremental fringe patterns can add only intensify.
Thus the total intensity distribution in the observation plane is given by.

: Qo
I(u,v)=Re f 1(xy) { 1+ exp —?k { u ( x+x,) + x_(xX-x,) +
: 2

)\AF:L

v(y+y)+yly-y } ; dxdy
* 2.10



which is a definite, albeit slightly cambersome, description of the
interference intensity in terms of the various input and interferometer
parameters. A closer examination of equation 2.10 will reveal that
ifx,,y are made equal to zero, the interference pattern reduces to a
Fourier transform relationship.

The terms inx,,y,canbe removed from equation 2,10 by
noting that they originate from the assymmetric light distribution in
the virtual input plane. Hence if one of the virtual objects is given
a two dimensional fold with respect to the other, the light distribution
in the virtual input plane will be symmetrical and the output interference
pattern will be related to the Fourier transform of the input object. It
is possible that a wavefront folding and shearing interferometer
producing such an output from an incoherent light distribution could
realise the potential of optical, real time, two dimensional signal
processing.



CHAPTER 3

Wavefront Folding Interferometers

In the previous chapter it was shown that one of the more
promising techniques of achieving real time, two dimensional signal
processing is based on the wavefront folding and shearing interfero-
meter. The fundamental difference between this interferometer and
other shearing interferometers is that the light distribution in the
virtual input plane is symmetrical about the interferometer axis.
This symmetery, realised by folding one virtual object with respect
to the other, is achieved by having an odd number of reflections in
one arm and an even number in the other.

3.1. Theoretical Appraisal

It was shown in section 2. 3. , that the intensity distribution
in the observation plane of a wavefront shearing interferometer is

given by .

- . /,' —'k . ’
I(u,v) =Re )—\;LF—‘-;L/:/'I(X,y) 1+ exp ‘Ztlf ;411(X°+X)+4x° (x - x)
+4v (y +y) +4y(y,~ .Y)i { dxdy

which, for a folding interferometer, reduces to

o/ ' :
R | o -ik .
I(u,v)=Re ﬁ;ﬁI(x,y) ; 1+ exp —J_2F {4ux+ 4vy} g dxdy
LS |
3.1.

Thus the interference pattern in the output plane of the interferometer
is related to the input intensity distribution through a scaled Fourier = °

transform.



In order to relate this output pattern directly to the input
function, the virtual plane function I (X,¥) can be replaced by
the sheared real input plane function g (x+x, y+y,) . Hence
equation 3.1. becomes

0, ,
| "/ | ZiZk + v (y+ d(x+ d +
[(u,v) =Re ¢ | g (%, yiy) 1+ exp g { w(xx) + v (y#y) b A=) d(y+y)
-.m,” X -
3.2
which on using the Fourier shift theorem becomes
: .
2k | 2%y, ¥ ) 2k
I(u,v) =Re { exp j F (ux vy, _[[ Npe exp-iTy (ux* vy) dxdy, }
-0 '
} ' + const. »
. 2k
= Re expj (ux + vy) g(x_,%) + const,
i

3.3

The original input function can be written as the sum of its
even and odd parts, hence the transform can also be divided into the
sum of the transforms of the even and odd input functions. Thus
equation 3. 3 can be written as

, | .
I(u,v)=Re | expj -ié (ux+vy) {Ge(u,v)+G°(u,v) } + const.

However, the transforms of purely odd functions are imaginary,
and of even functions are real, hence the above expression can be written
as ' '

I(u,v) =G (u,v) cos Z,Fli (ux+vy) + G, (u,v) sin %15 (ux,+ vy,) + const.

3.4.



The constant in the above expression is given, from
equation 3. 2. as

_ -
const. = Re {ﬂ g (X ,yr ) dx, dy, }
. -CD/

The magnitude of this constant in relation to the magnitude
of the transforms G,(u,v) and G,(u,v) can be obtained from the
Schwartz inequality. Applied to this instance it states

a oq/ a O
<ﬂ| g (,¥)| dxdy, .[/
/ - -0 /

-00/
/

2k 2

G,(u,v) + G (u,v) exp - j F (wx+vy)| dxdy,

Noting that the second integral on the right hand side tends
to unity and that both G,(u,v) and G,(u,v) as defined in equation 3. 4
are positive and real, the inequality may be written as

o/ v
G (u,v) +G(u,v) <K /]. g (X,y,) dxdy : 3.5
R -oCD'/
with the equality occuring at u=v=o . ‘Thus the magnitude of the

constant is at least equal to, or larger than the magnitude of the Fourier
transform, The output pattern presented by equation 3, 4 can be
interpreted as the Fourier transform of the even part of the input
function amplitude modulating cosine carrier fringes, while the
transform of the odd part modulates sine carrier fringes. This

degree of modulation is always less than unity except at zero spatial
frequency when it equals unity. Thus the magnitude of the transform

is directly present as a visibility variation of the fringes, and as such

it is an intensity distribution which can be directly observed and
recorded.
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The periodicity of the fringes is in the first instance
determined by the interferometer parameters. Thus, within the
region where the transform is valid, the periodicity is a well
defined constant value. However, in general the frequency of the
fringes in the output plane will be modified by two extra factors.
Primarily, the positioning of the input function in the real input
plane will introduce a constant frequency shift. If an input function
g(x,y) is centred on its co-ordinates, then the output pattern

. will be given by equation 3. 4,repeated here for convenience

2k .2
I(u,v) =Ge(u,v) cos "‘P‘:" (ux,+vy) + G, (u,v) sin '? (ux +vy) + const.

However, if the input function is now repositioned so
that it is centred at (mef’ ) then the transform is given from

equation 1.2 as

2k
G' (u,v) = G (u,v) exp-j T (uxP+VyP)

hence equation 3. 4 becomes

I(u,v) =G,(u,v) cos -2;;5 g u(x+x) + v(y*y,) i

2k
+ G, (u,v)sin - 3 u(x,;+x) + v(y°+x,)§+const.

Thus the position of the input function is quite clearly portrayed in the
output plane as a constant fringe frequency shift.

Secondly, the fringe frequency is varied across the output plane
by the ratio of the transforms of the odd and even parts of the input function.
Equation 3.4 can be expressed, using a standard trigonometric identity in

the form
% 2k
2
I(u,v)= G:(u,v)+G,,<u,v)$ cos g——F { u(x,,+x,>+v<y,+y,,>}

)G, (u,v
{*‘L“"‘L} % + const. 3.6

+ tan
Ge(u,v)



Where the relative phase angle and depth of modulation at a given
point in the output plane uniquely define the Fourier transform of
the input function.

Finally, it is worth noting that the transform of a purely
odd function is identically zero at zero spatial frequency. Hence
the peak of a fringe will always be centred on the output plane origin.
Secondly, from equation 3. 5 it can be seen that the depth of
modulation is 2 maximum at the origin. Thus the centre of the out-
put plane will always be defined by the brightest fringe.

3. 2. Practical Range

The first limit to the validity and extent of the Fourier
transform stems directly from the assumption, made in Chapter 1
in deriving equation 1. 13,that the plane waves propagating from the
source made small angles with the axis. This enables the square
root phase term representing the direction cosine in the 2z- direction
to be approximated by the first two terms of a binomial expansion.
The error involved in such a truncation is

r?  df (ro)

E(r) =3 —x 0 <o |

Therefore, the error in the phase term of equation 2.6
describing the amplitude distribution in the observation plane due
to a point in one virtual object is .

2
Hx-u) + (3-v) }
8 F* '

w2}
32T | T+ (x-u)'+ (y-v)°

% < Eln) <
3.7a

Similarly, the error in the phase of equation 2, 7 describing the
amplitude distribution in the observation plane due to the same real
point, but presented in the other virtual object is

a2 2

i (x+uf+ (y +v )‘l }
sFT

2 2
..{(x+u) + (y+v) } < EB(r

¥ 7 IS

32F | F'+ (x+u) + (y+v) } i
o 3.7



In determining the intensity of the interference pattern
produced by the two amplitude distributions of equations 2.6 and 2.7
the difference of the two phase terms becomes the dominant factor.

Hence, the largest possible error in equation 3.1 describing
the intensity distribution, will be given by the difference between the
largest and smallest errors expressed by equation 3.7. This resulting
error will be given by

2 1
.{(x—u)1+(y—v)1} {(x+u)2+(y+v)4}
E(rye- 1,) = 5oF 1 F'4 (x-u)'+ (y-v)* }3/" * 8F* 3.8

This error must be sufficiently small so that it does not
change the phase in equation 3.1 by more than, say 7f'/l.O This
implies that

I

kKFE (r-r,) < 15

FE (5-1,) = _).‘..
20 3.9

On substituting equagtion 3. 8 into the above expression and
using typical values, F =10~ mm, A = 0. 55pm, x=y=10mm
we have condition 3. 9 satisfied by u* +v* = 110mm 3.10

From a more qualitative approach it can be seen that the
preceeding approximations made in describing the intensity distribution
in the observation plane are those that are usually associated with
Fresnel diffraction. However, due to the symmetrical disposition
of the virtual objects, the quadratic phase term used to distinguish
Fresnel from Fraunhofer regions disappears. Hence the output
distribution is the Fraunhofer diffraction pattern within the region
bounded by the less stringent Fresnel limits.



A second limitation on the accuracy of the scaled Fourier
transform generated by the interferometer stems from a finite degree
of coherence in an otherwise incoherent source. In deriving equation 3.1
it was assumed that the time average object intensity due to light from
two different, but possibly neighbouring points was identically zero. This
implies that any two point radiators in the object are statistically
independent and hence that the object is perfectly incoherent.

This need not be always true, as in the case of a source being
imaged onto the interferometer input plane by a lens, Clearly a point
in the source will become, in the interferometer input plane, an area
of light whose distribution will be determined by the point spread function
of the lens. For any real optical system this area of light will be
significant when compared with the original point radiator in the source.
It must also be noted that the light in this imaged area originates from
one point and as such will be partially coherent, - Thus the interference pattern in
the observation plane can no longer be adequately described by equation 3. 4.

The imaged input function in the interferometer input plane
can be considered as a convolution of the initial object and the point
spread function of the imaging optical system. Hence the distribution
in the observation plane can be anticipated to be the product of the far
field interference pattern due to the object and that due to the point
spread function. The interference pattern due to the point spread
function is obtained under conditions of coherent illumination and its
significance must be considered separately.

The two most important aspects of the interference pattern
produced by the point spread function are that waves from any given
secondary point in one virtual object will interfere with all the waves
emanating from the other virtual point spread function. Secondly, all
the interference patterns between any pair of secondary points in the two
virtual objects will add in amplitude, and not in intensity, with all the
other interference patterns generated by the remaining secondary points.

The amplitude distribution in the observation plane due to a
point radiator in the virtual point spread function present in the first
quadrant as shown in Figure & 1 is,from equation 1.13, given by

, ik )
A,(u,V)=\L%‘.‘X¥")exp _EJ_F_ 2Fa+(u-}5)+(v—x)2 3.11



Similarly, the amplitude distribution in the observation plane
due to a different point in the same point spread function in the third
quadrant will be given by

V(X,.5) -jk 2 2 a
Ay(u,v) = ——)\—fi—i- exp __211: 2F + (u+x,) + (vty) 3.12

However, all such waves from the point spread function in
the third quadrant will interfere with the.wave from the first quadrant,
as expressed by equation 3.11., Hence the amplitude of the resulting
interference pattern is

(o8]

A(u,v)=A(uy) + // A(u,v) dxdy,

—-Q0

and the intensity distribution is given by

O
I(u,v) =Be{A,(u,v) A'(u,v) + //Aa(u,v) A(u,v) dxdy,
-0
O
+ 2 ﬂA'( u,v ) Aj(u,v) dxgdy, }

~QO

However, such patterns will be generated for every point in
the virtual point spread function in the first quadrant. Thus the complete
intensity distribution in the observation plane will be given by
‘o

[e o)
I(u,v)=Re { /‘/JA'(u,V) A;‘(u,v)+ ,'//‘.Az(u,v) A;(u,v) dx’dys
-0 -
a0
+ 2 //A'(u,v)A:(u,‘V)dxgygf dxdy, }

-Q0



On substituting for A,(u,v) and A,(u,v) from equation 3.11 and
3.12 respectively and noting that x=x - x, the intensity distribution
becomes

(e 0]
2 -j2k
I(u,v)=const+Re {X{Ez //‘//V(X,y)V(x—x,, y—y,)exp"JF (ux +vy,)
Nes)

.expl_k (ux +vy )d (x -x)d (y-y) dxdy
F

The integral in the above expression can be espressed as

//V(x,y) //VYX-&, y -%) exp-jF‘f— (ux +vy )d (x-x)d(y-%)
-co

-j2k
e €Xp —-]-F.— (ux +vy) dxdy

The term inside the brackets can be recognised as the transform of
Vix,y) shiftedby (-X, -y ) , which on using the Fourier shift
theorem, allows the integral to be written as

-0

//V(x,y){g"(u,v) exp J'Fl,i (ux+vy)}exp :JFik- (ux +vy) dxdy 3.13

-0

[en}

jk
=g (uy) //V(x,y)exp % (ux + vy ) dxdy

-0

= ¢ (u,v)eg(u,v)

Therefore, the intensity distribution in the observation plane
due to a single point imaged onto the interferometer input by an optical
system with a point spread function P (x,y ) will be

I (u,v) = Re const. + p(u,v)p*(u,v)

It can be shown from an argument similar to that used in deriving
equation 3. 4 from equation 3.1 that the above expression may be written as



2k
I(u,v) = const. + cos T (ux + vy)

I (u,v)

2 a

3.14

2k
+sin"'P':"' (ux+vy)

ge( U.,V) go( u, V)

where g.(u,v) and g,(u,v) are the even and odd transforms

of the amplitude of the point spread function. However, it mustbe noted
that the transform of the point spread function as described in equation 3.13
is half the scale of the transforms obtained for incoherently illuminated
objects. This difference in scaling arises because in the former case the
transform is taken of a coherent amplitude distribution, while in the later,
the transform taken is that of an incoherent intensity distribution.

This consideration does not affect the periodicity of the carrier
fringes as they are dependent only on the various interferometer parameters
and not on the coherence of the virtual objects. Thus the interference pattern
in the observation plane due to a coherently illuminated distribution is the
spatial power spectrum of that distribution, amplitude modulating carrier
fringes.

The intensity distribution expressed by equation 3.14 can be
interpreted as the far field interference pattern produced by a point imaged
onto the interferometer input plane by a lens with a given impulse response.
If the lens were perfect and of infinite extent, the interferometer would
produce two virtual points situated at (x,y) and at (-x,-y). Therefore, if
a more general object is considered, consisting of a continuum of points,
each of which is imaged onto the input plane, the far field interference
pattern for this general object can be obtained by integrating equation 3. 14
over the virtual object plane, hence .

w .
/fl(.xy)cos-?-l—{-(ux+v - dxd )
g ] % 7 y ) dxdy

_m/ ) _ .

o/
2 2k
7 L{X,y) sin "; (ux +vy) dxdy
55 |

Clearly, this can be recognised as the scaled Fourier transform
of the original object multiplied by the power spectrum of the point spread
function of the lens imaging the object onto the interferometer input plane.
1t should be noted that both the transform and the power spectrum are
centred on the co-ordinate origin-of the observation plane. Hence for the
typical point spread functions obtained with reasonably well corrected
lenses (Born and Wolf 1970) the transform will be affected by the power
spectrum only at the higher spatial frequencies. This implies a loss of
resolution in the object for lenses with large point spread functions,which
is consistent with standard imaging properties of lenses.

*

2

= const. + ge(u,,v)

+

g (u,v)



Finally, the most crippling limitation of this wavefront folding
interferometer is the restriction of input objects to those with narrow
spectral widths, in order that the Fourier transform may be displayed
unambiguously. The effect of a wide spectral range on the far field
intexference pattern can be readily appreciated by considering the
special case of a polychromatic point situated at (+x, ty) in the
virtual object plane. From equation 3.4 the intensity distribution in
the observation plane due to a single wavelength will be

dl (u,v) = I(Kk) 1+c0531{5 (ux +vy) ¢ dk

A similar pattern will be produced by every wavelength
present in the source, however, as the waves at different wavelengths,
emanating from the point have a random initial phase, these patterns
in the output plane will add only in intensity. Thus the intensity
distribution in the observation plane will be

- _
2k
I(u,v) =/]I (k) { 1+cos T (ux+vy) } dk 3.15
o ' : :

which is the scaled cosine Fourier transform of the spectral distribution.

Thus if the spectrum is a rect,functioh of the form

I (k) = I, rect,( (;‘k )

then the intensity distribution in the observation plane, as given by
equation 3.15 becomes -

Lsin 2/F sk (ux+vy)
2/F (ux +vy)

COSZk/F (ux +vy)

I(uv)=1I,+



Thus the necessary constant visibility fringes defining the
Fourier transform of a point, are modified by the transform of the
source spectrum. Clearly the larger the bandwidth, the greater is
the departure from the true spatial transform. A working limit on
the spectral width can be imposed by requiring that the fringe
visibility is reduced by no more than half over the practical region
as defined by equation 3. 10, Thus

siny =~ =3 v = 0.61
12
Léi{—(ux-l-vy) = 0.61I
0
6)\ = 0.4A

Clearly, such a narrow bandwidth excludes most of the
standard systems for displaying or generating two-dimensional signals.

Thus, although the interferometer is capable of producing
from an extended incoherent source, two-dimensional patterns that
are directly related to the Fourier transform of the spatial extent of
the source, the inability to accommodate a large spectral bandwidth
frustrates its potential for. real-time processing of two dimensional
signals. -

3. 3. Realisations

Although Mertz and Young suggested this wavefront folding
interferometer, they themselves do not appear to have reported the
construction of such a device. It seems that the first successiul
experiment with this type of interferometer was performed by Murty
(1964) who was primarily concerned with generating a high contrast
interference pattern.

His interferometer consisted of a Twymann Green with a roof
prism in one arm, by means of which a single-fold rotation was infro-
duced. The source used, was a filtered, high pressure mercury
discharge lamp focussed onto a narrow slit. The far field intexference
pattern obtained was the scaled cosine Fourier transform of the slit
and this is clearly demonstrated in his paper. ,



A two-dimensional folding interferometer was built (Stroke
and Restrick 1965, Worthington 1966) in an attempt to produce holograms
of two-dimensional information illuminated by incoherent light. The
former overcame the spectral bandwidth problem by using a gas laser
as the source. The required degree of spatial incoherence was obtained
by moving a ground glass plate across the laser wave, thus introducing
a time varying, random phase variation across the wavefront. Worthington
solved the problem by using a highly filtered low pressure mercury
discharge lamp.

Both accounts are concerned with developing holography with
incoherent light, however, with such stringent restrictions on permissable
spectral bandwidths, they can be, at best, considered as monochromatic
demonstrations of the interferometer's potential. '

The most successful application to date of the interferometer has
been in astronomy. In one branch it was used to measure the perturbation
of light through turbulent air along a given path (Wendy 1970, Bertolotti 1970).
A laser source was located at one end of the path of interest, while the
interferometer was at the other. The laser light entering the interferometer
had its phase modulated by the air turbulence. This turbulence was presented
as a visibility variation of the fringe pattern in the cbservation plane, However,
as a laser was essential, the experiment had to be limited to light propagation
parallel to the ground.

The ' interferometer has also been used (Breckinridge 1972, 1974,
Dainty and Scaddon 1974 ) to estimate the diameter of stars. The former
used a complex, solid glass prism which sheared and folded the wavefront
in two dimensions, while the latter used a modified Michleson interferometer,
However, both interferometers have produced similar results. A star can
be considered as consisting of two separate functions; one representing its
spatial extent and the other its spectral distribution. As an approximation
it can be assumed that the interference pattern generated by the interferometer
will be the product of the individual transforms of these two functions.

The transform of the spatial extent of the star will be a circular
Bessel function which has well defined zeros. The exact position of these
zeros is dependent upon known interferometric parameters and on the star's
diameter. If a Gaussian or Lorentzian distribution is assumed for the
star's temporal spectrum, the corresponding transform will not have any
zeros within the range of the interferometer. Thus the distance between



zeros in the interference pattern can be measufed and the star's diameter
calculated. Clearly, with a broad spectrum it is difficult to ascertain the
‘exact location of these zeros and a filter may be necessary to reduce the
spectral width.

The major advantage of this interferometer over Michleson's
Stellar interferometer is that the transform of the star is displayed in
space which simplifies the task of determining the exact position of a zero.

Finally, interest has been shown (Lacourt et al 1972) in using
this interferometer to obtain the Optical Transfer Function of any optical
system. From linear systems theory it is clear that the frequency
response of a system is given by the Fourier transform of its impulse
response. Therefore, if the point spread function produced by an optical
system is focused onto the input plane of the interferometer, the Optical
Transfer Function will be presented in the observation plane as a
visibility variation. However, this system is limited to monochromatic
illumination and hence no information about the chromatic dependence of
the optical system is available.

- 44 -



CHAPTER 4

Spectrally Compensated Wavefront Folding Interferometer

In the previous chapter it was shown that the inability to accomodate
polychromatic input functions severely limited the potential of the wavefront
folding interferometer. The trivial solution of restricting the spectral range
of the source by a highly selective interference filter is very inefficient, as
only a very small amount of the source energy is made available to form the
interference pattern. A more practical solution would be to make the patterns
produced by different wavelengths identical, and hence independent of the
wavelength,

The initial attempts at overcoming the problems caused by the broad
optical spectrum were directed towards producing holograms with incoherent
light. One of the first reasonably successful incoherent light holograms
produced (Mertz and Young 1961), was based on the concept of considering a
hologram as a superposition of Fresnel zone plates produced by individual
points in the object (Rogers 1952). Thus the recorded pattern, or hologram,
is a convolution of the object distribution with a Fresnel zone plate.

Reconstruction can be achieved by illuminating the hologram with a
plane monochromatic wave, in which case the various zone plates refocus their
appropriate object points. A second possibility is to correlate the hologram
with a zone plate (Silva and Rogers 1975), which will produce the original object
convolved with the autocorrelation of the zone plate. As this autocorrelation
approaches a delta function, so the object can be observed unambiguously.

Although this technigue for overcoming the problems associated with
a broad band source has been used reasonably successfully in X-ray and in
Y -ray holography (Barret et al. 1972, Wilson et al. 1973, Barret et al. 1973)
it does not appear to have the same potential for real time two dimensional
signal processing, as did the wavefront folding interferometer. Thus in order
to overcome the effects of the temporal bandwidth, it is necessary to look for
a form of spectral compensation which will enable the object to generate identical
interference patterns for all wavelengths present.



4.1, Required Compensation

Without any spectral compensation, the interferometer produces
similar patterns, but with different scalings as shown in section 3.2. Thus
a typical virtual point, situated at (x,y) in the virtual.gbject plane, radiating
at a wavelength A will interfere with its corresponding point in the other
virtual object to produce a fringe pattern given by

I(uv)=A 1+cosé-g (ux +vy) 4.1
The same point also radiates with a wavelength X + &X and will

produce an interference pattern described by

4
I(u,v)=A{1+cos . (ux + vy) 4.2

(A+tdX) F

The two fringe patterns described by equations 4.1. and 4. 2., have
different periodicities. However, as they both have a maximum at the centre,
or coordinate origin, of the observation plane, they will become progressively
out of step for increasing positive and negative observation plane coordinates.
This phase angle between the two fringe patterns will equally limit the extent of
positive and negative Fourier frequencies that can be recognised. If an arbitrary,
but working condition restrains the relative phase angle to be no more than =
in order to maintain fringe visibility, then the maximum range U, V over
which fringes can be said to exist can be readily defined. However, such a
description of the fringe pattern depends not only on the spectral distribution of
the source, but also on various interferometer parameters. A much more
useful description would be in terms of the numbers of fringes that exist within
the working range. If within this range U,V | equation 4.1., describes N,
fringes, then equation 4. 2., will describe N- % fringes. Therefore

4 11

(Ux+Vy) = N2I
ANF

40 (ux+vy) = (N-3}) 20

(AN+3NF
from which
_ A+8\
o948



An expression similar to equation 4.2. can be written for the object
point radiating at the other extreme of the source spectrum, namely at A - §A
and on proceeding through an argument similar to that above, the number of
visible fringes will be limited to

A—3dM\

e ———

- 28\

This merely states that the fringes at the shorter wavelength will fall out of
phase sooner than the longer wavelength fringes. However, as the question
of whether a fringe is visible or not is rather subjective, for convenience the
number of visible fringes produced by a point source of spectral width 2 §A
centred on A can be defined as the mean of N,, and N_ , namely

N = - 4. 3.

This defines the number of fringes in the positive half range of the
observation plane, thus the total number of visible fringes produced by a
source will be 2N. This gives, for a white light source, the number of
detectable fringes as approximately 3.

This number of fringes could be increased if a parameter within the
cosine argument in equation 4.2, could be made a function of wavelength, such
that the argument became independent of the wavelength. Clearly, there are
only two possible parameters; F the distance between the virtual input plane
and the observation plane, and (X,y ) the virtual input plane coordinates. A
brief look at equation 4.2. will reveal that for a maximum bandwidth 2 &A
approximately equal to A , F mustbe halved, or (X,y) must be doubled.

For a more practical interferometer F  would be 107 mm while x,9 would
be 20mm, hence it is easiest, with the readily available dispersive elements, to
achieve a controlled display of the spectrum in the virtual input plane. Therefore,
if the virtual input plane coordinates are made wavelength dependent, as shown in
Figure 4. 1., then equation 4. 2. will become

4
I(u,v)=A {1+ cos ..._..E_.__ { (x+éx)u +(y+ gy )v 4.4
(A+ 8N)F



For ideal compensation, the fringe periodicities expressed in
equations 4.1, and 4.4. should be identical

41 (ux+ vy ) = :4___[1_.___ ((x+6x)u+(y+5y)v)
AF (A+6)\)F

which on re-arranging gives

u éx + vy 4.5

6 A
A ux + vy

This clearly defines the required displacements in the x and y
directions of a point radiating at a wavelength A + éA from the same original
point radiating at a wavelength A . An identical expression for negative
displacements can be obtained for the object point radiating at a wavelength A— éA
From now on where such symmetry prevails only the positive half of the spectrum
will be considered.

This form of compensation is fundamentally a technique for generating
achromatic fringe patterns, and various different systems have been suggested
for producing such fringes, mainly with incoherent light holography as a goal.
However, as will be shown in the next section, not one of these systems can be
successfully applied to wavefront folding interferometers.

4.2. Achromatic Fringe Systems

It would appear that the first successful demonstration of achromatic
fringes was achieved by Leith and Upatnieks (1967) although the possibility had
been previously discussed (Lohmann 1962). Leith and Upatnieks proposed a system
where a collimated beam, from a broad spectrum source illuminated a diffraction
grating, as shown in Figure 4. 2.

A lens, imaging the grating with unity magnification onto the observation
plane, produced in the back focal plane well defined areas of light, consisting of
a spatial display of the source spectrum, positioned at each of the diffracted orders.
The grating lines, as observed in the image plane can be thought of as fringes



formed by the interference of two or more of the areas of light in the back
focal plane, acting as secondary sources. However, in order to calculate

the spatial extent and location of these secondary sources, it is convenient

and accurate to a first order, to consider the effect of a diffraction grating

in terms of light rays. Thus with reference to Figure 4.2., the undiffracted
beam will form a polychromatic point on the axis. The extent of the secondary
source at the first diffracted order can be found by first considering its size in
the plane of the lens, thus

2FHa
cCos «

bx, =

L

where of is defined by the diffraction equation for normal incidence on a
grating of N lines per mm.

sine = AN

cosa.,§a = N&A
2

§x, = ZFTsA
cos’«

The secondary source at the first diffracted order, in the back focal
plane will have an extent half that at the lens. Noting that tan « can be
expressed in terms of the focal length and of the distance d between the
secondary source and the polychromatic point, we have

_d s\
o0x = __ 4.6.
A cos &«

which defines the spatial extent in the back focal plane of the displayed source
spectrum.

The system can be considered as an interferometer with the back
focal plane of the lens serving as the input plane, and the image plane as the
observation plane, as shown in Figure 4.3. The complex amplitude distribution
in the observation plane produced by the polychromatic point situated at (-x,y)
radiating at a wavelength A is given from equation 1.13 as



ik a
A(u,v)= V;()\)expé_l; ( 2F+(u+x)°+(v-y)’)

where V,( )\ ) is the magnitude of the spectral composition of the zero
order diffraction term. Similarly, the amplitude distribution due to a point

radiating at the same wavelength, situated in the first order diffraction term
at (x,¥) , is given by

A(,v)=V (X )exp L ( 2F’+<u-x>’+<v—y>‘) 4.7.
2r

These two distributions produce a fringe pattern whose intensity is
given by

Luvy= %A VIA) VAN ) V(N 4TTux
N F? PN o V2 N F
4, 8.

Comparable amplitude distributions can be written for the radiation
at A + 8\ , noting that it now originates at x+ §x in the dispersed first
order, and not from x . Thus the intensity of the fringe pattern produced by
points radiating at a wavelength A + &\ will be given by

I(u,v)= VoAt 3 X)), VI(A* 8N)

(A+ AT (A+ &N )F
2V A+ M) Vi (A+ §N) 4 11 < § x
cos __ u (x+-—)
2 2 2
F(A+ 8§ \) F(A+5)\)
-52‘ (5x+2x)) 4.9.

If achromatic fringes are to be produced, the periodicities expressed in
equations 4. 8. and 4. 9., must be equal, which, on ignoring the constant phase

shift & x(§x + 2x)/4 in equation 4. 9., gives the condition §x must
satisfy, namely



x+ 5 X
N+HS\ A
2x &) 4.10

On comparing this condition with equation 4. 5. it is clear, that for
small diffraction angles, this system will produce a high contrast fringe pattern.
Leith and Upatnieks suggested that this system could be used for producing
holograms by using the polychromatic point source as the wave illuminating
the object, while one of the first order diffracted terms would be the reference
wave., Clearly, the object is limited to a transmittance distribution and must
be placed in a plane between the back focal plane of the lens and the observation
plane. If this object plane is denoted by the coordinates x'y' and is ata
distance D from the back focal plane, then the amplitude distribution across
the transmittance object T (x',y') will be

A(x,y')= V,(\) exp_j__li__ ( 2DA+(x+X')1+(y+,Y')n>
AD 2D

Therefore, a typical point on the object, with a transmittance T (x]y")A(xy')
will produce an amplitude distribution in the observation plane given by

T(x',y') A (Xx'y' _ik
A(uv) = (x',y") (Y)exp =,

(F - D) 2(F - D)

1 1 1
( (F-D)+ (u+x'")+(v+y" )

If the object plane is midway between the back focal plane and the observation
plane, then

»
o

2xx'

2D=F and =
F F

On substituting for A (x',y'), the amplitude distribution in the observation
plane becomes

A(u,v)= T(X',y')Vo()\)exp_j_lf ( 2FA+(x+u)a+(y+v)Q>
F ) 2F



On combining this amplitude distribution with that produced by the reference
wave, expressed by equation 4.7., an interference pattern arises, whose
intensity is

2 2 PR |
I(uv)= H(A) o Vol AD)T(x', y')y | 2V,-()\)V°()\)T(x’,y')cos41rux
xFl X)Fl xAFl F

4.11.

Thus, the fringes, or the grating lines, are amplitude modulated
by the transmittance function T (x',y') and hence the information is recorded
holographically with incoherent light, There are however, several fundamental
limitations of this technique when applied to real time signal processing, or
even to practical holography.

Primarily, the constant phase term in equation 4.9. is a function of
wavelength and is only equal to zero for one well defined wavelength. Hence,
to justify its omission from the condition stated by equation 4. 19. , the spectral
range of the source must be restricted, typically to about 100 A.

Secondly, due to the fixed relationship between the polychromatic point
and the dispersed first order reference source, the possible objects are limited
to a point or to a transparency placed in a well defined plane. Due to the geometry
of the system, Fourier holograms are produced only for objects situated on the
polychromatic point source, hence these Fourier patterns are limited to single point
objects,

An attempt was made to produce Fourier transform holograms from
larger objects, by using a Fresnel zone plate, instead of a diffraction grating,
as the dispersive element (Kato and Suzuki 1969). The zone plate focussed the
undiffracted beam in one plane, and the first order diffracted term in a second
plane which became the object plane. The transparency was placed in the object
plane such that it would be illuminated by the diverging undiffracted wave. Hence
with the reference source and the object present in the same plane a Fourier
transform hologram, to within a quadratic phase term, was produced in the far field.
However, with the object limited to a transparency, the advantages of incoherent
light signal processing rapidly diminish.

Although for image plane holography the object size has been increased
by placing it in contact with the diffraction grating (Bryngdahl and Lohmann 1970),
the fundamental problem of a restricted spectral range and the need to present
the information on a transparency persist. If precise Fourier holograms are
desired then the object is limited to a single point in a well defined position.



4.3. Spectral Compensation for Extended Sources

A first possible step to improve the spectral range would be to remove
the constant phase term present in equation 4.9. This:‘can be achieved by having
two symmetrically dispersed sources producing the interference fringes, in
preference to the asymmetric light distribution in Figure 4.3. The required
dispersion can be produced by a pair of parallel gratings as shown in Figure 4. 4a,
from which a wavefront folding interferometer can readily produce two virtual,
sheared images as shown in Figure 4. 4b.

The first grating sends the light at different wavelengths into different
directions, while the second grating translates this angular dispersion into a
spatial dispersion. Thus the amount of dispersion § X for a spectral range 8 A\
introduced is dependent solely on the grating periodicities and the distance
separating the gratings. From Figure 4.4a, if P, is the path length of the
radiation at A\ between the gratings, then

COS

where o the diffraction angle is given by

cos (a+ §a )

rNSA

2
cos a cos (ax+da )

which for small diffraction angles reduces to

r N§A

3.
COSs «

dx = 4.12

Thus & X is directly proportional to &\ . From Figure 4.4b

and section 3.2 it is clear that the pair of points positioned at *x radiating



at a wavelength A will produce a fringe pattern whose intensity will be

I(u) = A (1+cos ~Hux )

AF

Similarly, the pair of points positioned at £(x+éx) radiating ata
wavelength (A +8 A)  will produce a fringe pattern whose intensity is

I(u) = A ( 1+cos AU (x+3x)
F(AN+38X)

These two periodicities will be equal if

X 8§\
A

dx = 4,18

However, § X is fixed, by the geometry of the grating, for a given &)\ ;
thus equation 4.13., defines a unique value of object position X at which the
compensation is ideal. Hence, this form of spectral compensation is limited to
an object consisting of a single point in a very well defined position. Although
this is clearly of limited value for signal processing, an identical, in principle,
form of compensation has been used for holography (Leith and Chang 1973,
Chang 1973) and for stellar interferometry (Cutler and Lohmann 1974).

However, if in equation 4.12 the dispersion & x could be made linearly
dependent on the object plane dimension X then clearly equation 4. 13 would be
satisfied for all x and thus presenting ideal spectral compensation across the
entire object plane. On combining equations 4.12 and 4.13 we have

r NA = x

3 4.14
cos «

which defines a relationship between the compensating system parameters and



the object plane dimensions. This is the fundamental requisite condition that the
gratings must satisfy in order to achieve spectral compensation for extended

- "‘
sources.

One possible way of achieving this is to vary N, the number of lines
per mm on the first grating. However, on expressing cos’a in terms of N,
equation 4. 14 becomes

r_NA
TR

Varying the number of lines per mm on a grating according to the
above relationship is clearly not easy. There is, however, another parameter
in equation 4.14, namely T the distance between the gratings which can be
made proportional to X . This can be achieved by inclining the second grating
relative to the first, as shown in Figure 4. 5.

Thus a polychromatic point situated at X along the first grating will
be dispersed into a solid angle bounded by « and o + 8« for wavelengths A
and A +§\ respectively. From Figure 4. 5.,

§x = 3x,cos e
_a._}ﬁ = B
§ o

cos (a + da + B)

Px = X Sin !3

cos (a+ )

XxsinB cos § b«
cos (a+ ) cos (& +8a + By 4.15

o
>
il

The angles in the above expressions are also dependent upon three
physical parameters in the dispersive system. These three parameters, the
periodicities of the two gratings and the angle between them, are related by
the grating equations and the appropriate derivatives, which for the first -



grating are

AN,
3 AN,

sin « L 4.16 a

cosa da 4,16 b

]

and for the second grating

1

AN,
§ AN,

sin(a+ 8) - sing 4.17 a

cos (a+B3) §a -cosf 886 4.17b

Substituting for § « from equation 4.16b into equation 4.15 gives

X &N sing cos§ tana

A cos (¢+ 8 ) cos (a+da+ f)

On comparing the above equation, which describes the wavelength dependent
displacement as a function of the grating parameters, with the equation 4.13
which defines the ideal displacements, we have that

sinf cog f# tana
cos (a + B) cos(a +da + 3)

= 1.0 4.18

which assuming that §a is small compared with o + g, gives

sin 8 cosf tana = 1, 0

4.19
cos*(a+ B )

This condition remains constant for all wavelengths and hence can be
readily satisfied by a suitable combination of the three available parameters. A
second condition which was implied at the beginning of this analysis, namely that



light at all wavelengths leaves the second grating at the same angle, gives a
second equation. Thus from equation 4.17 & 6 =0, hence

Nycos (a + g ) = N, 6 cos « 4,20

These two conditions can be satisfied by a continuous range of the
three variables. However, due to the complicated nature of these conditions
an analytic expression for the possible range of solutions would be far too
complex to be useful. Hence, the range of solutions was derived by numerical
methods on a computer, and is shown in Figure 4.6. Thus any pair of gratings
read off from the curve and inclined at the appropriate angle will produce a
nominally infinite number of fringes.

However, in deriving equation 4.19 it was assumed that § « was
small compared with « + 8 . The effect of this assumption can be observed
by estimating the limit imposed by the omitted term on the number of visible
fringes. Thus with equation 4.19 satisfied we have

However, if equation 4.19 is replaced by equation 4.18., but keeping
equation 4.19., satisfied, then we have

sx = X3A 1+ s{-s—)‘z‘—} 4,21
)

where E{ 8——)5—} represents the departure from ideal displacement caused by
the difference in equation 4.18., and 4.189.

If the number of visible fringes in the positive half range of the observation
plane is defined as in section 4.1, then a pair of points situated at + x radiating
at a wavelength A will produce N4 fringes such that

SN = 4Mux
* F A
and
2H(N+-% - 4Mu (x+dx)
F(N+d\)



which on combining and re-arranging gives

N = X (At X )
t 2 (x&X- NN8X)

Substituting for & x from equation 4.2l and eliminating X gives

N, = A +s A
28 A Ry

Similarly E{ )\}

N = )\"‘5)\

R
hence

A
N 23>\€{5_)\)\_} , 4.29

Clearly if the error term € { 5';‘*} is equal to zero then N tends
to infinity and the spectral compensation is perfect. On the other hand, if this
error term equals unity then equation 4.22 reduces to equation 4. 3 which defines
the number of fringes for an uncompensated polychromatic source, and the
effect of the spectral compensation has been eliminated.

This error term E{é%} has been evaluated for the ideal values of
the three grating parameters as defined by Figure 4. 6. The results for the
positive half of the spectral width are shown in Figure 4. 7. Those for the
negative half of the spectrum are not shown as they are similar in form to
those shown, differing only by a negative sign and a slight reduction in magnitude.

The main point to note is that for the full visible spectrum, 5)\/)\ =0.3
the error is far from insignificant offering at best only five times as many
fringes than for the uncompensated source. The main reson for such a large
error at small diffraction angles is that although a, and hence $a in
equation 4.18 are small, the angle between the gratings [ needs to be large
for grating pairs with low numbers of lines per mm , Thus within the argument
of a cosine even a small 8« when compared with a large angle can cause a
significant change in the resulting value of the cosine.



The physical significance of this error term E{é_{\_ }is that the spectral
components of the source are not displaced linearly as required by equation 4.18.,
hence they give rise to an incremental fringe pattern which after a while falls
out of step with the other incremental fringe pattern thus limiting the number of
constructive, hence visible fringes. However, it should be noted that although
the spectral compensation is not ideal it is independent of the position of the
polychromatic source and hence independent of source size.

4,4 Practical Limits and Aberrations
3\

The error termE{ A }had, in the preceeding section, been determined
only by a theoretical consideration, however, a departure by any one or a
combination of all of the three grating parameters from their ideal values will
also introduce a similar error term which will influence the performance of
the compensating system. From the previous section, the ideal relationship
between the displacement and bandwidth is

5 x. = x3 N sin@ cos 6 tan a 4. 93
A cos*(a +8)
provided that
56 = s JNcos (a+B) - Nycose =0 4.24
cos 8 cosa

Clearly, a small variation in any of the three grating parameters will
not only upset the coefficient of X  in equation 4. 23., but will also introduce
a similar error term which will in turn further perturb the relationship between

§ x and x . Thus thereal  &Xx, becomes
8
§x = _X&A 1 + €(3N, &N, B)
A
where as previously, €(9N,, N, , B) represents the departure of the

coefficient of x from the ideal. As suggested earlier, it consists of two
parts; £, , due to 2 non zero 56 and £, , adirect result of variation
of the grating parameters in equation 4. 23.

From Figure 4. 8 it can be seen that a non zero 6 decreases § X,
by an amount 3 x,

where §dx = P §6



and hence

PAQF) 8 0
§ x,;

€

From Figure 4. 8

P B X sinf
> D - cos (a+éa + @)
while from equation 4. 24
- 986 X )
56 = —AN + == AN + 086
BN, ' aNAA . aﬁ AB

Hence € can be evaluated. The second contribution € , tothe
overall error is given by

A8 X, 3 X, 3 x.
* AN, AN, + ON, Nao* o8 Ap

The total error term €‘+ € N has been evaluated and is shown in
Figure 4. 9.

The main point to note about these error curves is that it is possible
to compensate for the fixed errors in N, and N, by introducing a controlled
error into B . Thus within the assumption of small errors it is possible to
tune the compensating system to an optimum level.

This process, in fact, optimises the equation

A

N =
286N €

Thus for € less than unity, the compensating system enables more fringes

to be formed than would have been possible when using the source by itself.

As € approaches unity the number of extra fringes decreased until at £

equal to unity the number of fringes produced by the compensated and uncompensated
systems is the same.



However, an interesting point now arises, in thatif € increases
beyond unity, then this system will produce fewer fringes than would have been
produced by the source alone,

The readily available commercial gratings are obtained by cutting a
master grating and using it to press out the grating pattern on a suitable deformable
material. Hence two types of errors can arise. Primarily, local variations in the
numbers of lines per mm due to microscopic instability of the master cutting tool
and secondly due to pockets of impurity in the replica material. The second type of
error, an overall variation in the number of lines per mm is due to the contraction
of the replica material after the pressing operation.

However, with existing control methods, manufacturers do not expect
the number of lines per mm over a given area to vary more than one or iwo
per cent.

Finally, the gratings, even idealised ones, will produce image aberrations
when used in an optical focusing system. Thus a real, monochromatic point
source situated at S when viewed through a grating will appear as an extended
point situated at V  as in Figure 4.10. In order to calculate the wavefront
aberrations present, the method suggested by Beuther (1945) and developed by
Gillieson (1949) of expanding, as a power series, the path length difference
between the principle ray and any typical ray will be used. Thus the path length
difference W is given by

W = SB-VB- (SA-VA)

Expressions for the four lengths can be readily obtained by simple geometry
from Figure 4.10 to give

W=(U2+L2 )%-__L_‘_ U {COS“— COSO(/}
sin ( & - «')

Expanding the square root term and the trigonometric function as power series
gives
gt 4t ot at
W=1L {1+P__. U } - L+ U{l—E + esee =147 Z}
foma = e aah L }




However, in this particular circumstance the wavefront folding
interferometer requires paraxial rays, implying that L =>> U and that ¥
in Figure 4.10 is small. If a further condition is added ‘namely that the
number of lines per mm on the grating is small, giving rise to small
diffraction angles, then the aberration can be written as

2

U U
W = . + —_— q+o"
o1 A 5 ( )

while the grating equation can be written as
AN, = o

AN, = o'+ ¥

Substituting for « and o’ gives the aberrations as

w= 9 + T (an-v)
2L 2
From Figure 4.10 can be expressed as
U
¥ = I
W = A NTU

Thus for paraxial propagation the one dimensional aberrations
introduced by a low spatial frequency grating are limited to a linear phase
shift which signifies that a non zero diffraction order is being considered.
This is a result similar to that obtained by Bose (1977) who investigated
the effect of a diffraction grating on a point source in terms of its angular
spectrum of plane waves.



CHAPTER 5

The Construction of a White Light Interferometer

In the two preceeding chapters the theory behind the wavefront
folding interfe rometer and the spectrum compensating system, has been
developed. It is now necessary to unite and test these concepts in a
practical interferometer. After passing through several designs, the
experimental interferometer eventually built is shown in Figure 5.1.

The interferometer was one dimensional as it was felt that this would
adequately test the overall concepts while keeping constructional and
alignment problems to a minimum. The interferometer components
were mounted on a large steel table, which rested on six pneumatic
tyre tubes to isolate it from the building's vibrations.

5.1. The Design of the Interferometer

The light source and the spectrum compensating diffraction
gratings were mounted on one platform which could be moved relative
to the remainder of the interferometer. The unwanted diffracted orders
were removed by a spatial filter; thus the effective input to the wavefront
folding part of the interferometer was a unique bundle of chromatically
dispersed rays. Wavefront division was achieved by a glass block coated
with a 50% transmitting - reflecting layer of aluminium on the front
surface. This block was aligned at Brewster's angle in the horizontal
plane relative to the incoming rays so that reflections from the rear
glass-air interface would be kept to a minimum.

The wavefront rotation in one dimension, the horizontal, was
achieved by having an extra reflection in one of the arms of the
interferometer. This requirement, together with the wavefront
division could be satisfied by a single reflecting surface placed in the
manner of Lloyd's mirror. However, such a design does not offer any
control over the relative path lengths, while the positioning of the output
plane is dependent upon the relative separation of the real and virtual
sources. For experimental purposes a more flexible design was necessary.



In order to control the path length in one arm and hence, the
path difference between the two arms, a pair of mirrors was mounted
orthogonally on a common platform. Thus light incident on the first
mirror will leave the second mirror in a direction parallel to that of
the incident light. On moving the platform in a direétion parallel to
the incoming light, the path length can be varied without upsetting the
symmetery of the interferometer.

The separation of the two virtual sources can be introduced by
one of several possible techniques. However, for a flexible interferometer
two conditions must be satisfied; the separation must have a positive and
negative range without a discontinuity at zero, and secondly the output
plane must remain independent of the separation. The first condition can
be satisfied by bringing the light waves in the two arms together with a
semi-silvered beam splitter. The second requirement can be fulfilled
by noting that the interferometer produces from one real source two
virtual sources which are symmetrically displayed in the virtual input
plane. Thus a motion of the real source in a direction orthogonal to the
principle ray will cause the two virtual sources to move in opposite
directions. This motion of the virtual sources can be towards each other
or apart from each other depending upon the direction of folding introduced
by the interferometer and upon the direction of motion of the real source.

Thus virtual object separation was achieved by mounting the real
source on an input table which could be driven perpendicularly to the

interferometer optic axis.

5.1.1.  The Components Used

Ideally the input to the interferometer should be a self-luminous,
spatially distributed scene; for example a C.R.T., screen. However,
the light has to pass through two diffraction gratings and radiate through
approximately one metre of space, hence in order to have an easily
observable interference pattern in the output plane a more powerful
input source was necessary. Thus the ideal input was simulated by
focussing the filament of a tungsten halogen projector lamp onto a
photographic transparency located in the effective input plane. The lamp
used was a standard 250 watt projector lamp, type Al/223 with a filament
size of Tmm by 3. 5mm producing a nominal 8.5 10° lumens. Under an
optimum filament operating temperature of 3200K it hada spectral power
distribution as shown in the manufacturer's data, reproduced in Figure 5. 2.



The photographic transparency was mounted on a frame which
had a pair of horizontally and vertically adjustable jaws defining the
input function aperture. The filament of the projector lamp was
focussed, with unit magnification by a 4cm diametér lens, onto the
centre of this aperture. Thus adjusting the jaws controlled the
spatial extent of the input object to a maximum determined by the
width of the filament.

It appeared at first that choosing a pair of diffraction gratings
to optimise the various conditions expounded towards the end of the last
chapter would be quite difficult. However, the problem was reduced by
the limited range of readily available gratings, to finding a pair that
were close to the curve of Figure 4.6. The gratings eventually chosen
had . 590 lines per pm for the first grating and . 250 lines per pm
for the second.

From Figure 4. 6. it can be seen that for

N = 0. 590

47 . 63

it

N, = 0. 248 and g8

But N, is fixed at.250, thus introducing an error of ¢ N,=-0.002
lines per pm, which can be compensated for by an intentional error
in g . Thus from equation 4. 26 we have for zero residual error and
for T, = 0.
§g = - Ja X 8N
T,

which on using the data in Figure 4. 9., gives
§6 = - o0.01

Thus the initial grating parameters that were used in the
experiments are:

N, = 0.59 N, = 0.25 B8 = 47.62



The first grating, mounted in a frame, was attached securely to
the input platform with its plane orthogonal to the optic axis. The second
grating was fixed to an arm which could rotate about a vertical axis
located in the plane of the first grating. The arrangement is shown in
Figure 5.3. The gratings were arranged such that the two diffracting
surfaces were as close to each other as possible in order that the
theoretical model in Figure 4. 8., be maintained.

However, due to the finite thickness of the mounts and that the
grating lines close to the edge will be distorted, the real object did not
start at the origin of the object plane. This offset of the object from the
junction of the gratings must be reproduced in the virtual object plane
in order that the increased dispersion across the object will be correctly
positioned.

The gratings were blazed such that an appreciable amount of the
incident energy was transferred into one of the diffracted orders. Hence
the gratings were also organised such that the desired optical path, as
shown by the solid line in Figure 5. 3., was along the enhanced diffracted
orders. However, the amount of energy in the other diffraction terms
emerging from the second grating was not insignificant and had to be
removed by an appropriately positioned spatial filter.

Finally, the selected diffraction order passed through a polariser
which transmitted only the vertically polarised components of the light
waves. This was necessary to enable the reflections in the interferometer
to be restricted to metal - air interfaces.

The beam splitters used were 51 mm square and 25. 4 mm thick
and were made from a glass of refractive index 1. 5174 at a wavelength of
.6328 p m . The surfaces were flat to 1 XN and parallel to 0.5 minutes
of arc. The first beam splitter was mounted in a frame that could rotate
about the vertical axis and could introduce small tilts about an orthogonal
pair of axes in the plane of the steel table. The positioning of the second
beam splitter was very critical as it affected both the separation of the
virtual sources and the path lengths of both arms. Therefore, the mount
for this beam splitter had the same controls as for the first mount together
with a pair of micrometers that could move the beam splitter in a plane
parallel to the table. One face of each beam splitter was coated witha ,
semi-transparent layer of aluminium which gave an equal reflectance:
transmission ratio for red light incident at Brewster's angle.



With these beam splitters orientated to the incoming light at
such high angles of incidence, the dispersive properties of glass, coupled
with the appreciable thickness of the glass will introduce a significant
lateral spread of the spectrum. As can be seen froth Figure 5.4a, each
beam splitter affects the light in one arm only, however, in the output
plane the dispersion in both arms is of equal magnitude and is in the same
direction. The amount of shift 8 p for an increase in the wavelength
from A\ to A+ 8 N canbe obtained by simple geometry from a
consideration of the rays in either block. Thus

Sp’ = t &r
cosrcos (r+8r)
5p _ _teos i. 8r

cos (r+8r)cosr

The relationship between & r, the change in the refraction angle
and 8 A the change in the wavelength can be obtained from Snell's law
and from the Cauchy formula for the refractive index. From Snell's

law we have

sinr = sin 1
n
s siniSn
r - - 22 ol
n cos r

From Cauchy's formula we have

n(\) = A+]_i1.

where A and B are constants characteristic of the glass. Hence

dn = - 3}%8%



which on substituting gives

2Bt sinr cosi

3p = 3 2
N cos't cos (r+dr)n

which can be approximated to

2Bt sinr cos i
§p =

{ A\ cos r)3 n

For the beam splitters used, B = 3.7219 1073, Hence for
polychromatic light incident at Brewster's angle

p =  571.4 &)

This can be compared with the dispersion introduced by the
spectrum compensating system. From equation 4.13  we have

§x = 8
A
hence for X = 1mm
5x = 1.8 1006\
while for X = 9mm
§x = 1.64 1078\

Thus ¢ p represents a change of 3l. 4% at the near edge of the object
and 3. 5% at the far edge. This will probably manifest itself as a space



dependent resolution variation across the object.
Finally, the mirrors in the interferometer were front silvered,
covered with a transparent protective coating and were flat to A /10 over

the usable diameter of 45mm.

5.1. 2. Limitations due to Components

Due to the finite errors present in the various components, the
interference pattern observed will depart from the ideal. In the first
instance the two phase fronts brought together by the final beam splitter
will have small, but not necessarily insignificant, differences caused
by the minute surface variation in the mirrors and beam splitters. This
phase difference, which will be space variant, can be represented as a
phase perturbation & (Xx) in one of the virtual objects. The magnitude
of this phase perturbation will have a maximum contribution of 0.3 A
from the three mirrors and 2 A from the beam splitters. A second
perturbation of the wavefronts is caused by the dispersion introduced by
the beam splitters. This can be modelled by assuming that the ideally
displayed spectrum is shifted by an amount- & p in both virtual objects.

Thus a point source, situated at x , radiating with a wavelength
A will combine with its corresponding point, positioned at - X and
entertaining a phase lag & (X) in the other virtual object, to produce
an interference pattern whose intensity is given by

I (u) = 1+cos 21 { 2xu CID(X)}
A F

The same point in the real object but radiating with a wavelength
A +8 A will be positioned at x+ § x- & p  in the first virtual object and
at- (x +dx+ 38 p) in the second. Taking into account the relative phase
difference d(x+ § x) these two virtual points will produce an interference
pattern whose intensity is

I(u) = 1+ cos 211 { 2(X+5X)(u+8p)+®(x+3x)
A+EN) F

}



The maximum of the central fringe of the first pattern is located
at

u, = FCI)(X) . ’.u'
2 X '

while that due to the second pattern is located at

u, = Fd)(x+8x) - Sp

2 (x+d8x)

Thus the two interference patterns add with a relative shift Au which

when compared with the fringe wavelength A becomes
Al_l = d(x+8x) - d(x) _ 2xép
A A AF

The first term on the right hand side can take on a maximum
value of approximately 2, however due to the random nature of the errors
in the component surfaces, the overall shift should be small. The second
term, however, is not a random distribution and although it has a
maximum value of only 0.5 it will probably be the dominant term. The
overall effect will be to reduce the visibility of the output interference
pattern.

A problem which created difficulties in performing the experiment
was the low light intensity in the observation plane. This situation arose
out of the inefficient transfer of light by the gratings and the small solid
angle that the boundaries of the observation plane imposed by the aperture
of the mirrors made with the real input plane. K the projector lamp
filament is considered to be a lambertian source with a total irradiance I,
and that ¢ is the total solid angle subtended by the extent of the
observation plane at the input plane, then the intensity at the observation
plane will be

Y= pa %

2 /7:/ v cospde dpe

Y=o f=0
I(uv)= I,= Isin ¥

(X3 f:% -é—

/,
2” ¢ cospde dp

Y0 p=0




Although the diffraction gratings were blazed, the first grating
transmitted only 34. 3% of the incident light intensity into the dominant
order, while the second grating was more efficient at 57.2%. Thus
the spectrum compensating system passed only 19. 6% of the incident
power. The polariser removed another 50% and the .'final beam splitter
removed 50% from each beam, thus the intensity in the observation
plane became

.. lp
I(uv) =49 10 Isin 7
2

The solid angle ¥ was determined by mirror 3 in Figure 5.1.,
which had an aperture of 40mm and was typically 800mm from the input
plane. Thus

1

sin __"f =
2 40

2
The area of the observation plane was typically II (25 )mm and hence
the intensity per square mm. in the observation plane was

~a
I(u,v) = 0.624 I plumens mm

which for

-3
I,= 8.5 10 lumens

gives
I(uv) = 5.3m lumens mm

However, as was demonstrated in Chapter 1, the spatial extent of
the Fourier transform is inversely related to the extent of the object. Thus



in order to observe a significent number of fringes a broad spatial
transform is necessary, which implies a narrow object. Exact values
will be given and discussed in the next chapter, hbvgéver, suffice it

to say that an expedient object size was several P m rather than 8mm.
Thus the intensity per square mm in the observation plane would be
reduced by a factor of 103 to

I(u,v) = 5.3 plumens mmﬂ

~2
Unfortunately, the threshold of photoptic vision is 10 p lumens mm .

This problem was deferred to a manageable state by using, as the input
object, photographic transparencies with large apertures, containing
structured transmission patterns.

5.2. Fringe Localisation

As shown in Chapter 3, the Fourier transform of the object is
presented as a variation of fringe visibility. It has, however, been
tacitly assumed that fringes do exist in the observation plane. Clearly,
if the two arms of the interferometer are identical in all respects, then
fringes must potentially exist in the observation plane. However, it is
interesting to ask where else could the fringes exist and what determines
the exact location of such interference fringes.

Consider two sources, either real or virtual, which have been
sheared relative to each other by an amount X, and rotated through
an angle ¢ as shown in Figure 5.5. In order that a high contrast
interference pattern can exist at a point P ata distance =z from
the source plane, the optical path lengths from a typical pair of complementary
radiators in the sources must remain constant throughout the range of
radiation angles. This implies that in Figure 5. 5.

%I/(A r>= 0

From straightforward geometry we have

Ar = - X sin¢sin (¢ - ¢)
sin(¥ - ¢)



which on expressing ¢ as tan ™! (Y/x ;) and re-arranging, gives

Ar = (x$+x)tand>cos v - xssiny/z

Differentiating Ar with respect to ¢ and noting that x and ¥
are related, we obtain

d_ (A r>= cos Y tanq;f_i_’_‘f - (x$+x)tand>sin\//—xscos»’/ 5.1.
dvy dy

From the geometry in Figure 5. 5. an incremental change of
can be seen to give rise to a change in X defined by

coslgb

Thus equation 5.1 becomes

g_<Ar>= ztan ® (xx)tan ¢ sing - x.cos ¥
dy

cos ¥
which on equating with zero, gives the distance to the plane of highest
contrast fringes, from the source plane, as

z = xsin2¢ +xcosy(siny - S ¥ 5.2.
tan ¢

From the above equation it can be seen that for no relative
tilt, the fringes will be localised at infinity, sensibly independent of
the degree of shear X, present. This is consistent with the
requirement that the Fourier transform modulated fringe pattern
should be observed at infinity, If finite tilt is introduced, then for
non zero shear, Zz becomes finite and dependent upon ¥ such
that the surface of maximum fringe contrast is no longer a plane.



Hence, to observe and faithfully record the Fourier transform of a
spatially extended source as generated by the wavefront folding inter-
ferometer, it is necessary to have the two virtual sources parallel
and to observe the interference pattern at infinity. .

5.3. Alignment of the Interferometer

The interferometer was assembled with the help of a low
powered He~Ne laser, which was aligned such that its beam was in
a plane parallel to the steel table. The first beam-splitter and the
three mirrors of the wavefront folding section of the interferometer
wereplacedone at a time in their approximate positions, ensuring
that their reflecting surfaces were normal to the table. The final
beam-splitter was then positioned such that it superimposed the
two pencils of laser light. Thus at this stage the two arms of the
interferometer were parallel but not equal in length.

The path lengths were equalised to within 2mm by placing
a microscope objective in the path of the laser light, before the
first beam-splitter such that circular interference fringes were
formed in the observation plane, centred on the optic axis. Such
fringes could only be generated by two spherical wavefronts, with
different curvatures, originating from the two virtual images of
the focal plane produced by the microscope objective. The straight
line passing through these two virtual focal points also passes through
the centre of the circular fringes. Thus requiring that the fringes
be centred on the optic axis ensures that the microscope objective
does not introduce any lateral displacements.

The periodicity of the fringes is inversely related, through
the different radii of curvature of the wavefronts, to the separation
of the two virtual points. Thus altering the path length of one arm
such that the circular fringes appear to collapse into the centre,
reduces the path length difference between the two arms. However,
this technique could not reduce the path length difference to less
than 2mm, because at such small separations, as compared with the
interferometer length of 80cms., the size of the first circular fringe
was comparable with the observation plane apperture,

At this stage the laser and the microscope objective were
replaced by an extended white light source focussed onto approximately



the previous microscope objective focal plane enabling the interferometer

to be described as in Figure 5.6. The intensity distribution in the
observation plane can be described in a manner similar to that used

in section 4.2. Thus the amplitude distribution due to a pair of elementary
point radiators situated at + X at distances F and F+ 8§F from

the observation plane is

L a
A(u)=Aexp -jkF {1+(“:z) } +A.exp-jk(F+SF){I.-Z((‘;:’;I)?)Q}
2

This gives an intensity distribution due the entire source I(x) as

I(u) = f IS(X)<1+cosk{2;x - SF} > d x

source

which on assuming a simple rectangular function for the source spatial
distribution gives

I(u) = I+1Isin KUuX cos k { (s*+x)u SF}
F F

where s is the relative shear of the two virtual sources.

It can be clearly seen that whereas the transform is centred on

the optic axis, u=0 |, the carrier fringes are centred on
_ FdrF
u = -—
(s+ x)

which for typically

3
F =10 mm, §F=2mm, (s+x) = 10 mm

u = 200 mm



However, as shown in section 4.1, for a broad band source
interference fringes, for the typical parameters stated above, will
only exist over several mms. Thus if at the end of the laser assisted
alignment, § F remains finite, but of known sign",'“ then on replacing
the laser with a white source, the path length adjuster can be moved
so as to reduce 8F, Clearly, as & F approaches zero, the small
band of fringes moves towards the optic axis, andas & F passes
through zero, the fringes will be centred on the observation plane, It
was shown in section 4. 3., that the zero frequency component of the
Fourier transform will always have the largest amplitude, hence the
optic axis and thus zero path length difference can be located by noting
the position of the brightest fringe. By this technique it was possible
to equalise the two arms to within a fraction of a wavelength,

Having achieved this situation it was relatively easy to insert
the two diffraction gratings and rotate the entire input table such that
the principle ray leaving the second grating was parallel to the
interferometer optic axis.



CHAPTER 6

Interference Pattern Produced by the Interferometer

The experiments performed on the interferometer described in
the previous chapter, were designed to ascertain whether the number of
fringes can be increased and whether the fringe visibility is related to
the Fourier transform of the source. Hence, initial experiments were
performed on the interferometer without any spectral compensation to
obtain an estimate of the interferometer's performance, against which
the results of subsequent experiments with spectral compensation could
be compared. Finally, several attempts were made to retransform the
interference pattern in order to reproduce the original input object.

6. 1. Interferometer Without Gratings

The interferometer used throughout this set of experiments
was arranged as shown in Figure 6.1., and had an effective object plane
to image plane distance of 1 m,

In the first experiment, the source used was a high pressure
mercury discharge lamp, rated at 250 watts with an arc length of 10mm.
The arc was focused onto a 25mm wide and 7mm high slit, which
constituted the input object. The lamp, lens and slit were all mounted
on the common input table, as shown in Figure 6.1. The resulting

interference pattern in the observation plane consisted of constant frequency

fringes whose contrast was modulated by a simple periodic function. A
typical interference pattern is shown in Figure 6. 2.

In Chapter 3 it was shown that the intensity distribution in the
observation plane of a spectrally uncompensated wavefront folding
interferometer would be given by

///m
I(u)=const+ [fl(x,k)cos 2kux gy4k




As suggested in Chapter 3, the spatial and spectral transforms
can be considered separately, thus the contribution from the spatial

transform is ‘
s +r

I(u)=const+1I, /cos rkux  gx
. T

S

where S is the distance of the slit in the virtual object plane to the
interferometer axis, and 1r is the slit width

I,(u) = const 1 + sinc E._l.l_.f cos ku(2s+r) 6.1.
F F

The spectral transform contribution is given by
Ky

2kux

Il(u)=const+/‘1(k)cos - d-k
. F

k
In the first instance the spectral composition of the mercury
lamp can be approximated to a line at . 546 um and another of comparable
strength at . 578 um. This accounts for 75% of the visible output, but ignores
the fact that the lines will be broad. Within these approximations the
spectral transform becomes

I(u)=const | 1+cos ax k- k,) cos 22 (k+k) 6. 2.

F
/

On combining equations 6.1 and 6. 2 gives, to a first order
approximation, the intensity distribution as

1
I(u)=const {1+sinc 5 9T cos ux! (k- k) cos 2 k' ux
where k' = 4 n/()\.*-)\z)
x' = § + I‘/z



It can be seen from the above expression that while
the spatial transform is independent of object position,
the spectral transforms and fringe frequency are directly
proportional to the object position relative to thé‘,",'
interferometer axis. The extent of the central lobe of the
spatial transform is given by

2F (M+ A,)
4 r

u =

which for r = 25.0 ym gives
u = 22,48 mm

However, in order to quantitatively observe the
dependence of the spatial transform on object position, the
observation plane had to be viewed through a cathetometer
telescope with a graticule in the eye-~piece focal plane.

As the entrance pupil of this telescope was approximately
15 mm, the spatial transform can be safely ignored when
measuring the gspectral transform.

When the object position was varied, by moving the
entire input table, the period of the modulating spectral
transform was measured. The results are shown in Figure 6. 3.,
and as expected show an inverse relationship between the
object shear and spectral transform period. The individual
departures from the smooth curve result from the subjective
estimates of nulls in the modulating function.

Although the pattern observed and shown in Figure 6 2.,
is reasonably accurately described by the preceeding
discussion and associated assumptions, there remain two
unanswered questions. Firstly, it will be noticed from
Figure 6. 2., that as the modulating function approaches a null
another higher frequency modulating function appears, and
secondly the question of how many fringes have been formed.

In evaluating the spectral transform it was assumed
that the spectrum could be approximated by a line at
. 546 um plus a combination of the two yellow lines at



. 577 pm and . 579um to a line at . 578 pm of a strangth equal to the
green. In fact the visible spectrum has 3 more lines ( Harrison,
Lord and Loafburrow 1957 ); a pair in the red at . 623 pm and

. 615 pm of strength relative to the green of 0.1 and 0. 2 respectively,
and a blue line at . 435 pm of relative strength . 2, Thus

assuming the red to be a single line at . 618 p m of relative

strength 0. 3, equation 6. 2., describing the spectral transform
becomes

I(u) = const { 1+ {0.25 cos ‘_1_3‘_' (ks 13)"‘0032_}2(1{71‘)}
F F

. COS _E_}f_ (k'+k’)
F

where kjand k , represent the red and blue lines.

The first point to note is that the magnitude of the red and
blue cosine is small and hence will only be noticeable when the main
modulating cosine approaches a null. Secondly, the ratio of the
periodicities of the two modulating functions is

R = f‘_’ = Eg.—_l.{_‘ = 5,7
Pas k.‘ k,

Comparing the number of fringes, as shown in Figure 6. 2.,
in the two periodicities gives a ratio of 5.2 ., Although not in very
close agreement, the ratios are sufficiently similar to accept the red
and blue lines as the source of the higher frequency, lower amplitude,
modulating function.

The second question, regarding the total number of fringes
formed was not so easy to answer. The theoretical limit on the number
of fringes is determined by the source spectrum. Thus if the spectrum
is defined as a set of lines, each broadened, or convolved with a common
broadening function, then the spectral transform will be the product of
the cosine term due to the discrete lines, with the transform of the
broadening function. A probable broadening function would have a
Guassian distribution, hence its transform would also be Guassian with
an inverse relationship between the widths of the two Guassian curves.
The broadening function for the lamp used would be relatively narrow,



as the two yellow lines, separated by 204 could be readily resolved,
hence its transform was necessarily wide. Thus with a slowly varying
transform and no zeros it was difficult to sensibly obgerve and place
limits on the range over which fringes existed.

In order to have a wider spectrum and hence fewer fringes,
and to give greater flexibility in the choice of spatial distributions, the
mercury arc was replaced by the tungsten halogen projection lamp
whose characteristics have been presented in Figure 5. 2.

The object size was kept at 25 P m such that the interference
pattern would be dominated by the transform of the lamp's spectrum.
From Figure 5. 2., this spectrum can be approximately described by

I(k) =a + 213
k

where a = 0.1

a

2.67 per pm

Thus the interference pattern is given by

%4
I{(u)=const+ fI(k)cos 2kux dk
F
a7

The above integral does not readily lend itself to be expressed
in a simple analytical form, hence it has been evaluated numerically and
the resulting fringe pattern for a visibility greater than 10% is shown in
Figure 6.4a. From this figure it can be seen that only 3 well defined
fringes will be formed and that this interference pattern will be symmetrical
about the optic axis.

However, taking into account the dispersive beam splitters, the
interference pattern in the observation plane will be given by

Wy
= ; 2kx
I(u)=const+ f I1(k) cos (u+ 8§p) dk
: F
2%.7

where 8§ p = 571.4 , 2II (TIF - TIE')
]



The above equation has also been evaluated by numerical techniques
and the resulting fringe pattern is shown in Figure 6.4b. Although the
three dominant fringes will exist, they now appear off centre and are
not of a symmetrical disposition. It should also be noted that there is
an increase in the number of low visibility fringes.

The interference pattern actually observed in the output plane
produced by the tungsten halogen lamp, focussed onto a 25 pm hole is
shown in Figure 6.5, The first interesting observation is that there are
many more fringes than predicted from Figure 6, 4b. , however, this
might be explained by a non-linear recording process enhancing some
of the lower visibility fringes. This explanation is substantiated by the
fact that only 3 black and white fringes were observed while the
remainder were coloured.

These extra fringes were predominantly green on one side
of the central black and white fringes, and red on the other side.
Furthermore, there were approximately twice as many red fringes
visible than green ones. The exact reason for this is not clear.

6.2, Interferometer with Gratings

The diffraction gratings were added to the interferometer as
shown in Figure 6. 6.

For the first experiment, the source was the same mercury
lamp used in the previous section, focussed onto the same 25 p m glit.,
It was shown in Chapter 5 that due to the construction of the mount for
the gratings, the virtual objects had to be sheared from the axis by an
amount equal to the offset of the real object from the imaginary junction
of the two gratings. It was further shown that a departure in the virtual
plane from this exact shear would greatly reduce the number of fringes.
Hence a simple, but powerful way in which to observe the performance
of the spectrum compensating system as the wavelength dependent
displacements approached ideal values, would be to vary the offset of
the virtual objects from the interferometer axis.

Thus with the angle between the gratings set to 47. 0 degrees,
the virtual objects were gradually pulled apart from an initial position
of zero shift. Initially, the fringe pattern observed was of the same
format as in the previous section, with a dominant low frequency term



modulating higher frequency carrier fringes. However, the number
of fringes observed between a pair of nulls was only 16, as shown in
Figure 6.7a., compared with 26 in the previous section. As the
virtual objects were moved away from the axis the periodicity of the
fringes decreased, but contrary to the same experiment without

the gratings, the periodicity of the modulating function increased

as in Figure 6.7b. The increase of the modulating function periodicity
slowed down and stopped while the fringe periodicity was decreasing,
thus the number of fringes in a modulating function period was
increasing, up to a maximum, as shown in Figure 6.7c. The
corresponding optimum shear was 1.0mm. Finally, the modulating
function periodicity began to decrease at a rate such that the number
of fringes within a period decreased.

The rings visible in the centre of the photographs in
Figure 6.7 are Newton's rings formed by the composite lens structure
of the telescope objective. The two broad fringes on the left side of
Figure 6.7b., are caused by an unwanted diffraction order passing
through a spatial filter. A more detailed description of the observed
dependence of the number of fringes on the virtual object separation
is shown by the solid line in the graph of Figure 6.8. The theoretically
expected number of fringes is shown in Figure 6.8 by the interrupted
line.

The differences between the observed and expected numbers
of fringes can be explained firstly by noting that the theoretical curve
was evaluated on the assumption that the spectrum consists of a line
of .546 pm and another at . 578 pm. In the previous section it was
shown that the region around a null is somewhat confused by the presence
of the other lines in the spectrum, however, the fringes were counted
between two successive nulls and no estimate was made of the exact
position of the null of the dominant modulating function. Secondly, the
extra dispersions introduced by the beam splitters will distort the
dispersions produced by the gratings and thus reduce the number of
fringes.

On the experimental evidence so far it is possible to say that
the interferometer with the gratings behaves, to a first order approximation
at least, as expected for a polychromatic point source. To extend the
system's operation to larger sources, it is necessary to model such sources
as the sum of several point sources. Thus if no interferometer parameter



is varied, positioning a point source at different locations in the input
plane will give an indication of the performance of a continuous source
sampled at these points. Finally, if there is no marked difference in
the interference patterns produced by the various points, then it may be
concluded that a continuous source will not limit the fringe forming
potential of the interferometer.

Thus the 25 p m slit was repositioned in 5 locations at . 5mm
intervals. The resulting number of fringes in a fundamental modulating
period, as a function of virtual plane shear are shown, together with the
previous scan in Figure 6. 9.

It can be clearly seen that the number of fringes, produced by
the point sources in different lateral positions, peaks at intervals of
0.5mm. Thus each of the five point sources has its spectrum correctly,
or at least equally, compensated. Therefore it can be concluded that
if the space covered by the point sources were occupied by a continuous
source, then every point in that source would be spectrally compensated.

In the next set of experiments, the mercury arc lamp was
replaced by the tungsten halogen lamp, with its filament focussed onto
the variable slit. Due to the weaker nature of this source, in terms
of lumens per source unit area, the smallest slit that could be
accommodated consistent with having a detectable amount of light
in the observation plane, was 0.11lmm. This object size will produce
a 5.5 mm central lobe of the sinc function in the transform, and hence,
cannot be considered as a point source for a direct comparison with
previous experiments. However, with the number of fringes maximised,
the interference pattern should represent the Fourier transform of the
object spatial distribution.

Thus the interference pattern was observed for different
object slit widths and photographed by placing the photographic emulsion
directly in the observation plane. The photographs, together with the
object slit sizes are shown in Figure 6.10. The expected position of the
nulls in the transform is given by equation 6.1. , and has also been
shown in the figure. The observed transform appears to be somewhat
smaller than expected although it is of the correct shape. This would
imply a degree of magnification of the object within the interferometer,
however, this occurrence will be discussed later when accurate
measurements can be made in the transform plane.



The depth of modulation of the carrier fringes for this
particular object is determined by a sinc function na;_r'lely

sin (kux)
F

kux
F

In the photograph, although the central lobe can be seen
very clearly only the first and sometimes the second lobes can be
recognised. Therefore, assuming that the fringes do exist, it can
be concluded that the magnitude of the third lobe in the modulating
function is too small to be readily distinguished from the background
noise. The magnitude of the third lobe of the sinc function is 9.1 10
which when compared with the central zero frequency term of unity
implies that spatial frequencies of magnitudes less than 9% of the
zero frequency will be lost.

-2

However, this conclusion is based on simple direct
observations and does not take into consideration any form of noise
reduction, either optical of electronic. Clearly any such image
enhancement technique, applied to the interference pattern will reduce
the minimum necessary object contrast.

Finally, in Figure 6.10c a band of fringes is visible on
either side of the centre, at a distance of 1. 2cm. These bands are
due to the fine structure of the filament, which appeared in the object
aperture. The filament consisted of a wire 300 p m thick, looped
round with 300 pm gaps in between successive loops. Thus the input
object was a narrow rectangular function, the wire thickness convolved
with a comb function, the wire spacing, all multiplied by a large
rectangular function representing the object aperture.

The transform of such an input object would be a narrow sinc
function, the transform of the object aperture, convolved with a comb
function all multiplied by a wide sinc function being the transform of the
wire thickness. For the measured filament sizes the comb function in
the transform plane should have a spacing of 1.83mm, and. the sinc
function representing the wire thickness should have its first zero at
0.91 mm. These figures are in reasonable agreement with the measured
distances in Figure 6.10, although again the observed transform appears
to be smaller than expected.



In order to obtain an estimate of the number of fringes formed
by this interferometer, it is necessary to produce a transform with a large
amplitude at high spatial frequencies, and still have enough light in the
observation plane to see the fringes. Therefore, the next input function,
in an attempt to fulfill the above requirements was a’computer generated
binary grating of 10 lines per mm witha 6 to 1 mark to space ratio. This
object grating was mounted as close as possible to the variable slit such
that the overall width of the object could still be controlled. Hence, the
input object can be considered as the convolution of a comb function
defining the grating periodicity, with a rectangular function, defining the
grating profile, all multiplied by the effective aperture. The expected
interference pattern is shown schematically in Figure 6.11.

The interference pattern produced was recorded by placing the
photographic emulsion in the observation plane, and a typical record is
shown in Figure 6.12. The most important point to note is that eleven
bands of fringes are clearly visible. These bands correspond to the zero
frequency and the first five, positive and negative frequencies present in
the grating. As the contrast of the carrier fringes in the absence of any
Fourier transforms is constant, or at least slowly varying, it is safe to
assume that if fringes exist at both extremities of a transform, then they
will exist across the region bounded by the above extremities. The real
distance in the observation plane between the positive and negative fifth
orders is 33.5 mm., while the fringe periodicity in the observation
plane is 89.3um. Thus the number of fringes produced in the observation
plane is

33.5 - 4.

. 0893

which is convincingly inexcess of the 3 fringes produced in section 6. 1.

The width of these eleven bands is determined by the transform
of the overall extent of the object, while their amplitudes are determined
by the transforms of the individual grating slit size. Thus for an object’
size of Imm the width of each band should be

[3
AF .55 10
= b

10?

I

w = 0. 55mm



while the visibility of the nth  band relative to the central band is given
by

]

. kux
vV = sin N =
Nkux
¥

which for successive bands becomes 95%, 83%, 63%, 41% and 19%
It can be seen from Figure 6, 12 that the values recorded correspond
with the above calculated values, although the visibility estimate is
necessarily subjective.

Finally, the separation of the bands is determined by the
transform of the grating periodicity, Thus a grating of 10 lines per mm
implies a band separation of 5.5mm . However, the measured band
separation is sensibly constant at 3.35mm. As this difference is a
constant multiplicative factor some form of magnification can be assumed
responsible. Such a magnification could result from the non-linear manner
in which points across the input object are treated by the pair of gratings.
Thus if a plane wavefront of width  x is incident on the first grating,
as shown in Figure 6.13 , then it will leave the second grating with a
width W . From Figure 6.13.

AC = XC05 ¢
cos (a+ )

= = A Ccos 6
w = COS a COS 6
X cosia-*-@i

On substituting current values for the angles, the ratio w/x
becomes equal to 1.4€ , which corresponds closely to the ratio of the
observed and expected band separations.

6. 3. Object Reconstruction

It has been shown in the previous section, that it is possible to
obtain a wide band Fourier transform of an extended polychromatic object.



Hence it is possible to consider the construction of a real time, two
dimensional signal processor. Clearly the front part of such a processor
would be the wavefront folding interferometer, producing the Fourier
transform of the input object. Subsequently the processing of this transform
may be performed either optically, electronically or a combination of the
two.

However, retransformation of the filtered object from the
processed transform is made difficult by the bias level in the transform
plane. This can be appreciated by considering a straightforward system
of an interferometer producing the transform which is recorded and
presented to the input plane of another interferometer. Thus if the input
object is a sinusoid of frequency v and of finite extent

I(x)=1+cos vx for!x{< r

illuminated with unit intensity per length. Then the interference pattern
in the transform plane will be
s+7r

2kux

(u)= f(1+cos 9% ) (1 + cos ) dx
:

where s+1/2 is the lateral shear introduced by the interferometer.
Performing the integration and assuming that > 1/y

I(u)=r+rsinckru cos ku(st+r)
* r/2 sinc /2 (&_1};5_ - v )cos { ku I%S::_I)-@}
+ 1/2 sinc /2 (2ku + v ) cos { ku(2st1) + ¢ }
i3 F 6. 3.
where ¢ = v(2s+7r) /2 and represents a phase shift in the

fringes determined by the position of the input frequency relative to the
interferometer axis. For the sake of simplicity let ¢ = 0.



If this interference pattern is recorded on a film of width w
such that

and then presented as the input to the interferometer, the original
object will be reconstructed. Thus the intensity distribution in the input

plane u' is
I(u)=r+cos KW (2s+T) rsinc KT8 + r/2sinct (2kW_ )
F F F
2 ku
+r/2 sinc r/2 + v
where u'=u+w/2+v / /2 ¥ )
and v represents lateral shear introduced by interferometer.
Hence the intensity distribution in the output plane becomes
v+s
1 ]
I(x')= / I(u') (1+cos 3-1‘1‘:—“——"— )y du
v
The above integral may be simplified by replacing the sinc
functions with rect. functions of width w  where
W‘ = )\ F
T
Thus the output intensity pattern is
I(x') = rw+rwsinc KXW cos kX' (2v+w)
F F
!
+ rw'sinck_‘ﬂ'(zx'+2s+r)cos { kx' (2v+w)+ o
2F F
+ rw!sinc E¥. (2x'- 25 -r) cos { (2v+w)- ¢'}
2F
+ rw'sine KW' (2x'+25+r) cos {kwx’ '} cos {'k—}-{-'(zV“FW)'“’!}
2F F F
+ rw' sinc .k__“l(zxv_zs_r) cos {kwx‘ - ¢'}cos {1_{._7‘_1 (2v+w)—¢>'}
2F F F

6. 4.



The first term represents the overall bias offset, while the
second is the transform of the bias level in the input plane. The next
pair of terms consist of sinc functions positioned at x' = T s + /2
and of width F A\ /w' which on substituting for w' gives a width
of r . Thus these terms represent the bias in the original input
object, sheared from the axis by an identical amount, although now
the object is reconstructed as positive and negative spatial
frequencies. This reconstructed bias level appears as an implitude
modulation of carrier fringes due to the offset of the zero frequency
term in the input from the interferometer axis.

Finally, the last two terms consist of similar sinc functions as
in the previous terms, however, there is an added modulating cosine term
with a frequency w/\ F which on substituting for w gives a frequency
of v . Thus the original object can be perfectly reconstructed.
However, the magnitude of this reconstructed object is rw' which
is superimposed on a bias level rw . Hence the object to bias ratio
is W' /W which becomes FX/rw.

Typically, FA= 5.10° Pm, while r =104 pmand .
w=25 J.O4m, hence

~3
FN = 2.10
Trw

Thus the reconstructed object will be submerged in the bias level.

There are two possible methods of overcoming this problem.
The first involves the removal of the bias level by electronic filtering,
and clearly is only applicable when the transform has been recorded by
a television camera. The second technique would be to perform the
retransformation optically in a coherent light Fourier transform bench,
thus concentrating the bias level into a single point at the centre of
the output plane.

In order to verify experimentally, that the interference patterns
produced in the previous section were Fourier transforms, the photographic
records of the fringes presented in the input plane of a coherent light
Fourier transform bench. However, this technique gives rise fo an
artefact which can be understood on considering the coherent light
retransformation of the Fourier transform in the previous example. The
input to the coherent processor becomes

A (u') =r+Tcos El' @s +r) | sinc kra' 4 1giner/( 2k’ _, )
F F F

-, 2ku'
+%sincr/2'(—F'.!—.1- + v )

Hence the amplitude distribution in the output plane becomes



w/2
A(x') = /A(u')expj-k—‘%ﬂ du' o

-w/2

As in the preceeding example the calculation can be simplified
by approximating the sinc function in A (u') by a rectangular functions.
Hence the intensity in the output plane can be shown to be

I(x') = r(w+w') sinc '5"' (w+w')
+ rzw'smc’%,ﬁﬂ(28+r+x’)+ _z;zx' sinc”;'v;’" (28 +r-x')
+ r;‘"smc’%'(23+’r+x')c()s%“_’ (2s+T+x")
+ r

w' sinc* KW' (9g+r-x")cos KW (2s+1r-%)
2 E’F“( ) T

On comparing the above equation with equation 6. 4., it can
be seen that the overall bias level is contained within a small region about
the centre of the output plane., The second point to note is that the object
sinc functions, although of the correct width, are positioned at twice the
original shear, i.e., atx' =7 2 s +r. This double shear arises because
the carrier fringes in the transparency representing the original shear appear
as amplitude fringes in the coherent processor and not as the intensity fringes
that were initially recorded.

In the first instance, the recorded transforms of 2 1lmm wide input
grating sheared by 1. 0Omm from the axis was positioned in the input plane of
a coherent light Fourier transformer, and the observed output intensity
distribution is shown in Figure 6.14. Clearly, twenty-five to thirty
vertical bands within a distance of 3mm can be distinguished. The shear
from the central spot is approximately 2mm which is, as expected, twice
the original shear. The height of the reconstructed images is purely a function
of the coherent processor as the transforms produced by the interferometer



was one dimensional and hence all height information was lost. Finally,
the star-like nature of the central spot is due to a fourteen element
variable aperture stop controlling the extent of the coherent light.

Records of interference patterns produced by wider input
object gratings were also reconstructed in a similar manner to that
above. Although the reduced light intensity in the larger reconstructed
objects made accurate measurements difficult, it became clear that
the reconstructed images were smaller than the original input objects.
This may result from a non-linear recording of the interference pattern.
If the carrier fringes in equation 6. 3., were not sinusoidal but more
squared, then the input to the coherent processor would be described
as the product of the various sinc functions with a comb function at
the fringe frequency, all convolved the width of the squared fringe.
Thus the output would be as previously described, but now multiplied
by the transform of one squared fringe.

If, as suggested, these squared fringes were produced by a
non-linear recording process, then their width would be sensibly one
half of the ideal sinusiodal fringe period, thus

The intensity distribution of the transform of such an amplitude function
is

2 k x! ¥

I ( x') = sinc

which gives an effective width of 4 s + 2 r. However, the reconstructed
images are of width r and sheared from the axis by 2s + T / 2,

thus the overall extent of the reconstructionis 4s + 3 r. Hence

for r larger than s the extent of the reconstructed objects will

be significantly reduced.



CHAPTER 7

Review of the Interferometer

In the opening chapters the intrinsic interest of a wavefront folding
interferometer as a real time two dimensional signal processor was unfolded.
The following chapters developed the theory and principles of operation of a
white light wavefront folding interferometer. Finally, the results of various
investigations into the interference pattern produced by the interferometer
have been reported. Hence, it is now possible to re-appraise the potential of
the spectrally compensated wavefront folding interferometer as a two dimensional
real time signal processor.

7.1, Results Achieved

Initially, it was shown how the visibility of the fringe pattern in the
absence of any spectral compensation, depended on the spatial and spectral
source distributions. When the experiments were repeated with the spectral
compensation introduced, it was seen that the fringe visibility was determined
solely by the Fourier transform of the input object's spatial extent. This was
clearly demonstrated by using a 10 lines per mm binary grating as the input
object. In that experiment over four hundred potential fringes were produced
using the full spectrum of a tungsten halogen lamp.

Thus it has been demonstrated, albeit in one dimension, that it is
possible to produce in real time, an achromatic fringe pattern whose visibility is
directly related to the input source's spatial Fourier transform. Hence, this
interferometer could be used in any signal processing environment requiring
real time presentation of Fourier transform patterns. Typical examples of possible
applications might include deconvolutions, especially in processing radar signals
or two dimensional feature enhancement or character recognition.

The two dimensional capability of the interferometer could be used to
perform some filtering or correlation operation simultaneously on large arrays
as for example in automatic speech recognition where a large number of templates
must be correlated with the incoming speech waveform.



Finally, the achromatic potential of the interferometer may be used
advantageously where monochromatic processing is restrictive. Two immediate
examples would be in the various derivatives of the Michelson Stellar
Interferometer and secondly in measuring the O. T F. , of optical systems for
the complete optical spectrum.

7.2, Practical and Fundamental Difficulties

The largest single difficulty experienced was in aligning the interferometer
and ensuring that the path lengths in the two arms were equal. The problems existed
mainly because it was difficult to ascertain whether individual components were
positioned to the required accuracy until the entire interferometer was built.
However, at that stage there were too many degrees of freedom to make any but
the smallest improvements. Clearly, this adjustment problem would be much
worse for a two dimensional interferometer.

A related problem was that of mechanical stability. The normal
vibrations in the building were successfully damped by the massive table and
the pneumatic tyre tubes. However, the sensitivity of the individual components
to accidental repositioning was very high. This stability problem may be
eliminated and the alignment problem reduced to a single occurrence by
constructing the interferometer from two glass prisms, in the manner of
Breckinridge (1974) and Dainty and Scaddon (1974) . However, such an
interferometer, even if made from suitably chosen glasses, may well have
different optical path lengths for different wavelengths.

The other set of problems, the very low light levels in the observation
plane were the direct result of the interferometer's inefficient use of the source
light intensity. The main losses were due to the diffraction gratings and due to
the large extent of the interferometer. Clearly, the solid glass interferometer
suggested above would reduce the overall size, although it would be as the
expense of the input object size. Secondly, more light might be usefully retained
by using prisms, instead of gratings, as the dispersive elements. However,
these ideas have not been fully developed.

The first theoretical drawback of this interferometer is the restriction
of input functions to intensity distributions. Although in the real world this may
not prove to be a serious limitation, it is nevertheless a disadvantage when
compared with the coherent light Fourier transform processor. A second drawback
is the need to record the transform, or the filtered transform, before it can be
retransformed by the interferometer, as quite clearly a given point in the transform
plane cannot be considered as radiating independently of all the other points. However,



when it is appreciated that many filtering operations can be performed
optically and that the interference pattern is an intensity distribution,

and as such is readily recorded by electronic techniques, which in themselves
have a lot to offer, this disadvantage can become minimal.

7.3. Comparison of the Interferometer With Othér Processors

The most common versatile data processor against which any signal
processor must be compared is the electronic computer. With the advent of
Large Scale Integration techniques, the mini~computer and microprocessor have
made computing widely available, resulting in a wealth of algorithms increasing
the capabilities of one dimensional digital processors.

A fundamental advantage of electronic processors over their purely
optical counterparts, is the ability to amplify a given signal. Clearly, the
interferometer, without recourse to any recording process, cannot increase
the absolute magnitude of any part of the transform. A second advantage of
computers is their versatility and apparent intelligence in making decisions,
resulting in the ability to implement a vast range of filtering and processing
techniques. However, this advantage is not fundamental but merely the result
of intensive research and development during the last three decades.

Against this, the computer is limited to one dimension, hence any two
dimensional work is time consuming, whereas the interferometer operates
directly on two dimensional signals.

On comparing the interferometer with the coherent light Fourier
processor, its fundamental advantage is that it presents the transform as
an intensity distribution. Its dis-advantages are that it is limited to real input
functions and that the transform must be recorded if the processed object is
to be re-transformed. However, bearing in mind the comparative ease with
which the interferometer's output can be recorded electronically, this
disadvantage may well be significantly overcome by the advantages of electronic
processing.

Clearly the interferometer by itself, as is true for most optical
processors, cannot compete with electronic computers. However, a hybrid
system combining the interferometer, with its parallel filtering capabilities,
and electronic processing with amplifying power could produce a very powerful
signal processor.
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igure 6.12. Observed interference pattern for Compensated extended periodic object.




Figure 6.13. Magnification due to gratings.
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A wavelength compensated wavefront folding interferometer is described which produces over 200 achromatic fringes

from extended polychromatic objects.

In a wavefront folding interferometer, light from a
two-dimensional, quasi-monochromatic incoherent
light distribution is amplitude divided, and one of the
beams subjected to a shear and to a two-fold rotation,
before interference fringes are formed. The intensity
distribution in the fringe pattern’represents directly
the two-dimensional cosine Fourier transform of the
initial intensity distribution, with the point of folding
as the co-ordinate centre [1,2]. For a polychromatic
input the number of fringes visible is limited, thus re-
stricting the range of spatial frequencies observable
in the transform [3,4].

Consider the operation of a typical interferometer
with a polychromatic input and, for simplicity, a single
fold. By taking a single fold, the {ringe pattern repre-
sents only a one-dimensional transform of the input
distribution, and can usefully be applied only to line
inputs or to inputs with no variations in the ortho-
gonal direction. A point source, spectral width £8A
about A, would appear as two sources, at say xx from

A R
XX

F

e

Fig. 1. The fringe pattern for a polychromatic point source
P, with no dispersed displacement.

B (ABRIR (M) RMR(ABN)

Fig. 2. The fringe pattern for a polychromatic point source P,
with correct displacements. The radiation at (A + 8\) appears
to be shifted to (x +6x) so that the periodicity of all the

. R . 1 _1
fringes, A, is constant i.e. A = 3AF/x = 3(A+6A)F/(x+56x).

the axis, as shown in fig. 1. These virtual polychroma-
tic point sources would produce approximately
fringes of periodicity AF/2x, where NV = A/286\. For
white light, N =~ 3,

If a critical amount of dispersed displacement can
be introduced in the interferometer, so that radiation
from the point source at (A +5)) appears to originate
at #(x +8x), (fig. 2) then it can easily be shown that 2
large number of white fringes will be observed if

Odx =x 3N\ 1)

These fringes are produced by the superposition of
many separately monochromatic fringes of the same
periodicity.

Thus the possibility of compensating for the wide
optical spectrum exists. A number of authors have de-
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Fig. 3. The point sources P and P arc at the extremitics of a line source with displacements such that visibility is determined by
the IFourier transform of the source intensity, and not its spectral composition.

scribed techniques, usually involving a pair of parallel
gratings, or their equivalents, for obtaining achroma-
tic fringe patterns, which are essentially similar to
this {5-8].

An obvious limit to the usefulness of this type of
compensation, for the applications considered here,
is that the required displacements are functions of
source position x, as well as 8X {eq. (1)]. Hence this
form of compensation, in which 8x is proportional to
6], is ideally valid only for a point object situated in
a unique position. If the displacements can themselves
be made to vary linearly with source position, then
many achromatic fringes can be realized with objects
of any dimension (fig. 3).

One way in which this can be approached is by
means of two transmission gratings with different
numbers of lines, mutually inclined at a suitable angle.
Such an arrangement has been investigated in a single
fold interferometer, as shown in fig. 4. The gratings
had 590 and 250 lines per mm respectively and were
mounted with an angle of 48° between them. These
gratings do not form an ideal combination, but were
the nearest readily available. The object used was a
10 lines per mm binary transmission grating, with a
mark to space ratio of 4:1. A tungsten halide projec-
tion lamp was focussed onto this object grating.

The light distribution in the output plane was re-
corded on a photographic emulsion, which was sub-

308

sequently analysed on a microdensitometer. A typical
result is shown in fig. 5. The fringe visibility is an ex-
pected for the cosine Fourier transform of the grating.
The most significant feature of the result is that
white fringes have been formed over a wide range of
the output plane; the equivalent number of visible
fringes being in excess of 200. The size of each patch
of fringes is determined by the overall object width,
which in this case was 1.2 mm. If this is increased,
the width of each path is correspondingly reduced,
but the range over which patches are observed, and

_-____-_:Z;

_.\_-_}.

-——— =

Fig. 4. Schematic view of the interferometer, showing folding
and dispersion. © — object plane; G;,G, — transmission grat-
ings (G =590 lines/mm, G =250 lines/mm) By, By —~ beam
splitters. —— path followed by light, wavelength A; — — —
path followed by light, wavelength A + 6.
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Fig. 5. Microdensitometer record of a photograph of white trmgcs formed with the interferometer, for a binary grating object.

hence the equivalent number of fringes. is not reduced.

Object dimensions up to 1 cm have been used with-
out a decrease in spatial resolution. This limit is im-
posed by the size of the lamp filament.

It is interesting to note that to achieve this number
of fringes without dispersion, a filter of width =30 A
would be required. This system can thus be regarded
as offering an effective power gain of = 85 by making
the full spectral width of the source available.

One possible area of application for this technique,
extended to two-dimensions, is in the real time pro-
cessing of information presented as a self-liminous dis-
tribution, e.g. a C.R.T. screen or an astronomical
source. The transform could either be recorded, or
processed with a two-dimensional filter in the inter-
ference plane and read-out with a camera tube. Alter-
natively, the camera video signal could be filtered con-

ventionally with the re-transformation being sub-
sequently carried in a second interferometer.
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ACHROMATIC FRINGES FROM
EXTENDED SOURCES
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ABSTRACT

A wavelength compensated wavefront folding interferometer is described which
produces over U4OO achromatic fringes from extended polychromatic objects.

INTRCDUCTION

The inherently two-dimensional nature of optical wavefronts leads to the
expectation that the potential of parallel optical signal processing would
prove considerable. The technique most widely developed so far involves
coherent light, its power deriving from the remarkable Fourier transform
property of lenses. While there are many applications for which this system
is admirable, there are many others for which the requirement that the infor-
mation has to be impressed onto a coherent carrier is very restrictive.
Furthermore, coherent processing relates the transforms of complex amplitudes,
so that the Fourier transform of a signal cannot be recorded directly with a
detector.

If we consider the form in which two~-dimensional signals are likely to occur
in practice, among the most obvious examples might be photographic trans-
parencies, optical images (i.e. intensity distributions) and cathode ray tube
displays. Only the first of these is readily imposed onto a coherent beam.

One useful development might therefore be towards parallel processing systems
that can use direct signals as inputs. We have chosen to aim for a system

that could use, for example, a C.R.T. screen display directly as an input
signal. The system must therefore be able to operate with spatially incoherent,
polychromatic signals in real time.

The system we are investigating is based on the wavefront folding interfero-
meter (Refs. 1-4). 1In this instrument, the light from a two-dimensional
incoherent source is amplitude divided, with one beam then being subjected to
a relative two-fold rotation and shear. Thus the intensity g (x,y) at a point
in the original source will become g(x-X,, y-Yo) and g(-x-X5, -y-Y,) in the
two virtual sources for shears of * (Xo, Yo), respectively. Subsequent inter-
ference between the beams is effected in the plane of a screen or detector
some distance from the source, Fig. 1. If we represent the source as an array
of mutually indePendent point sources, then only corresponding points in
(abcd)and (ab'c'd') can interfere in the output (% ,y ) plane. The
complementary sources at (x,y) and (-x,-y) will produce a sinusoidal intensity
distribution in the output plane. These fringe patterns for each pair of
points will add in intensity, leading to the intensity distribution in the
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Fringe patlérn from
elementary, comphmentary
sources at (x,y),(-x,-y}

Fig. 1 ntensity distributions ir the input and output
la

I
planes of a wavefront folding interferometer

output plane (for large ¥’

-~ @ -
I(E,m) = /I(x,y) {" + cos"F—k [§x+'qy]} dxdy ("3
()

CP)°

where I(x,y) = g(x—Xo, y—Yo). Thus the output contains z spatial representa-
tion of the cosine Fourier transform of the source intensity distribution

which can be filtered, and also directly recorded.

We can obtain further insight into the nature of the output if eqn.(1) is
written in the form:

1 2 28 27 oE P
I(E,M) = N [Ge(Xf , Xf) cos {Zn (Xf X+ 2l Yo]

T S [, {27: (%Fg-xo +§1YO)]]+C1

where G, and G are the Fourier transforms of the even (ge) and odd (go) parts
respectively of the function g(x,y) and C, is a constant. Thus it is evident
that the output consists of three parts:
(a) a cosine fringe pattern modulated by the transform of the
even part of the input signal,

(b) a sine fringe pattern modulated by the transform of the odd
part of the input,

(¢) a constant intensity which allows the sinusoidal terms to be
directly observed.



Achromatic fringes

133

Since the transform of 8¢ is real and the transform of 8, is imaginary, com-

plete information about the complex transform is available in the form of a

real signal in the output plane. This
calculated one dimensional outputs for

glx) = rect(%). (1 + cos
glx) = rect(%). (1 + sin
(a)

is illustrated, Fig. 2, by means of the
input functions.

%) (purely even)
g) (odd + even)

b

= asEE e

Fig. 2 Plots of output intensity for

(a) g(x) =

]

(b) g(x)
both for b = d.

rect(%) (1 + cos

X
r

X . X
rect(g) (1 + sin E)

The ability of the interferometer to distinguish and display both transforms

is clear.

A calculated two-dimensional fringe pattern for a rectangular slot is also
shown, Fig. 3, where the phase information in the transform is apparent in

the fringe displacements.

Fig. 3 2-dimensional fringe pattern for a rectangular slot

input
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It should be noted that the input to the interferometer is in the form of an
intensity distribution and hence g(x,y) can only be real and positive. It is
therefore not possible to have a truly odd input function and the output
intensity distribution always has its maximum at the centre.

Bandwidth Restriction

One important restriction limits useful application of the instrument in the
form so far described. As we move from the centre of the output plane, the
visibility of the fringes from each pair of point sources will fall, due to
their finite temporal coherence. Since regions further from the centre dis-
play the higher spatial frecuencies of the source, some trade-cff must exist
between the optical bandwidtn, wimum detectable spatial
frequency, w.. From eqn.(7} show that the displacement from
the origin R{w ) representing o is

w (2)

whereas the maximum range, R(max), for ‘ringe formation by a pair of sources
at =(x,y) is

nF A
Rmax - V- an ()
;.2 272
kix“+y%)
Combining eqn.(2) and (3},
1 A
W = en —— = .
s 7, X
(x2+y2) 2

For fairly wide bandwidths, say A/AA =~ 10, and spatial frequencies up to, say,
10 lines/m.m., source dimensions of only 1m.m. can be accommodated. Alterna-
tively we could use a large source and increase X/Ax with a filter. Thus a
T.V. screen, dimension say %f would have spatial frequencies up to about

3
2n OO/D, which for A = 6000 A, would reguire AN = 20A. These restrictions
would be clearly unacceptable in many cases.

The Achromatic Interferometer

A considerable increase in useful bandwidth can be achieved by making the
fringe period, A, from any particular pair of sources independent for a
one dimensional source. From egn.(1)

FA

A= 2x !

thus if all source points could be displaced so that their positions linearly
shifted according to wavelength as

oA
-
then achromatic fringes would be obtained. The required displacement is thus
not only a function of wavelength but also of the position of an object point
from the interferometer axis. This can be achieved, for example, with a pair
of mutually inclined transmission gratings, as shown in Fig. 4. A suitable
choice of Nq, Np and € leads to the formation of a large number of fringes.

6x = x



Achromatic fringes 135

R (xy) Py (xz)
__________ - — Object Ptane

G1(Ny lines/mm)

Fig. 4+ The passage of two rays through a pair of inclined gratings

The ray representation indicated in Fig. 4 allows z simple illustrative
analysis to be performed, but contains an uncertain level of approximation.

”

A more rigorous treatment is outlined below.

A point source in the input plane is represented by a uniform spectrum of
plane waves. The passage of each component wave through the gratings can
then be described accurately by the grating equation. In Fig. 5, the compo-
nent waves from a source S(xq, Yqs 0) propagate through gratings 7 and 2;

after diffraction these components are modified in amplitude and phase and are
expressed in the co-ordinate system (x3, yB, 23). This system is then rotated

by 6, and translated by 'a' and 'b' to the final system (xs, Yo 25), centre

Os. The zs—axis is the interferometer axis and the plane 25=O is the folding
p?ane.
6, s(x,,y;,0)
Xy
p
~ 6, Grating 1
—TIg

23
2, e Q(E.n.F)

Fig. 5 Co-ordinate systems for plane wave analysis

The contribution to the field at a distant point Q(§ , q,F), in the output
plane, from any component wave can be written as
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dE = daA - j + + F —
exp Jk[(a5 £+ BgM + YSF) ¢5]
where dA depends upon the source amplitude, grating dimensions and other
standard factors; a5, B5' ‘Ys are the direction cosines of the particular
component and ¢5 is a phase term which depends on the system configuration and
grating parameters. For small Cls, 85, we have
¢5Q—*[a5 Xg + 35y5+ (wo-w1 u52- W2 352) + higher order terms in ag» 65:, ’
where x

N N

) Rl
1 2

5 y5, WO' Wq, w2 are dependent on the grating and system parameters
d, 80 8 and A. The dimensions Fos Yo can be interpreted as effective
displacements from the interferometer axic.

By a suitable choice of parameters, we can make W1:g’ﬁ [: 25/2‘]

so that > > <

Q’Sa[as X5 + B5y5+ 25(1 - 222 - -Bai ) + W + higher terms]

where W is a constant independent of‘a5, B5. This phase term implies that

the elementary plane wave can be interpreted as originating from a virtual
source at x5, y5. 25 and propagating with an intrinsic phase determined by W

and the higher order terms. For regions far away from the source, the
stationary phase method (Ref. 3) can be used to determine the amplitude at Q.
Denoting the stationary point by uo5. BoS and restricting our argument to one

dimensional folding, we obtain

aOS = f(gvns F) 5 B05=O; YO5 = 1-a

Thus the stationary phase solution leads to

EQ = A exp - j}<@105 §+WY05F) - (a05 s + Y5 ZS) - W - higher terms]
where A is the complex amplitude. Interference between the wave from
x5, y5, z5 and its folded companion from -x5, -y5, 25 occurs at Q. As Q
varies, a fringe pattern is generated.
On substituting typical experimental values, the contribution of the higher
order terms to the intensity at Q is found to be at least 3 orders of magni-
tude smaller than the dominant (sinusoidal) term. Thus it is evident that

the aberrations introduced by the gratings are small, at least in the one-
dimensional case.

The expression for x5 is of the form

xg = [{A + P} + (B« FE(A)}] X,
and describes the mapping of x5 into the virtual object plane. The constants

A, B and the functions Fq, F_ depend on the system parameters and can be chosen

2
to yield the maximum number of polychromatic fringes. The optimum condition
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is determined by a numerical analysis.

EXPERIMENTAL OBSERVATIONS

The achromatic system was tested in a one-dimensional version for simplicity.
The configuration of the interferometer is shown in Fig. 6. The source used
was a photographic transparency with a tungsten halide projection lamp
focussed onto it. The lamp, lens and transparency were mounted on the same
plate, along with the two gratings. This plate could be rotated and displaced
linearly with respect to the rest of the system.

. M,

)
(o)

Fig. The experimental interferometer arrangement

The arrangement of beam splitters and mirrors achieved the necessary 1-fold
rotation by introducing an even number of reflections on one path and an odd
number in the other. The careful positioning of the second beam splitter for
superposition of the two virtual objects is useful in aligning the interfero-
meter. Mirrors 2 and 3 were mounted on a common plate which could be moved
with a micrometer drive so that the path lengths of the two beams were equal-
ized to within 1um. The required shear, X_, was introduced by dr 1g the
complete object plate perpendicular to the interferometer axis. This ensured
that both virtual objects were displaced by the same distance from the axis
but in opposite directions, thereby maintaining overall alignment.

When an object transparency, in the form of a one-dimensional binary grating,
10 lines/m.m., mark-space ratio 4:1, is illuminated in the interferometer,
the output pattern is as shown in Fig. 7.

Fig. 7 Output fringe pattern for an input binary
grating of 10 lines/m.m., mark-space ratio 4:1
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As expected, the transform of the input varies the visibility of a set of
carrier fringes. The positions of the bands of fringes are determined by the
grating periodicity, while their width is determined by the overall aperture.
The maximum fringe visibility in each band is governed by the mark-space ratio.
The extent of the transform is not in fact limited by loss of achromaticity,
but by the exit aperture of the final beam splitter. The range over which
fringes can be observed in the present system shows that approximately 250
black and white fringes can be formed from a white source. In other examples,
up to 450 have been obtained.

For the purposes of demonstration, the object width was limited to 1.5m.m.,
so that several fringes could be clearly seen in each patch. However, if the
object size is increased to 8m.m. a comparable number of fringes can be
obtained, showing that achromaticity is maintained for extended objects. .The
limit of 8m.m. was imposed purely by the size of the lamp filament.

It should be possible to use the output transparency subsequently as the input
to the interferometer, hence reforming the original input directly. However,
the normal output contains a large uniform background component, which, on a
second transit through the interferometer, would swamp the useful signal.

This difficulty could be overcome using electronic techniques in conjunction
with a T.V. camera tube as the detecting element.

CONCLUSION

We have shown that a one-dimensional wavefront folding interferometer can be
made essentially achromatic for extended objects. The extension of the tech-
nique to two-dimensions should not present any further difficulty. Since the
interferometer output is a display of the cosine Fourier transform of the
object as an intensity distribution, it can be recorded with a camera tube,
the video signal then being available for electronic processing. This feature
makes the system potentially attractive as a hybrid optical-electronic real-
time processor.
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ABSTRACT

A wavelength compensated wavefront folding interferometer is described which
produces over LOO achromatic fringes from extended polychromatic objects.

INTRODUCTICN

The inherently two-dimensicnal nature of optical wavefronts leads to the
expectation that the potential of parallel optical signal processing would
prove considerable. The technique most widely developed so far involves
coherent light, its power deriving from the remarkable Fourier transform
property of lenses. While there are many applications for which this system
is admirable, there are many others for which the requirement that the infor-
mation has to be impressed onto a coherent carrier is very restrictive.
Furthermore, coherent processing relates the transforms of complex amplitudes,
so that the Fourier transform of a signal cannot be recorded directly with a
detector.

If we consider the form in which two-dimensional signals are likely to occur
in practice, among the most obvious examples might be photographic trans-
parencies, optical images (i.e. intensity distributions) and cathode ray tube
displays. Only the first of these is readily imposed onto a coherent beam.

One useful development might therefore be towards parallel processing systems
that can use direct signals as inputs. We have chosen to aim for a system

that could use, for example, a C.R.T. screen display directly as an input
signal. The system must therefore be able to operate with spatially incoherent,
polychromatic signals in real time.

The system we are investigating is based on the wavefront folding interfero-
meter (Refs. 1-4). 1In this instrument, the light from a two-dimensional
incoherent source is amplitude divided, with one beam then being subjected to
a relative two-fold rotation and shear. Thus the intensity g (x,y) at a point
in the original source will become g(x-X5, y-Yo) and g(-x-Xo5, -y-Y,) in the
two virtual sources for shears of * (X,, Yo), respectively. Subsequent inter-
ference between the beams is effected in the plane of a screen or detector
some distance from the source, Fig. 1. If we represent the source as an array
of mutually independent point sources, then only corresponding points in
(abcd)and (ab'c'd") can interfere in the output ( £,y ) plane. The
complementary sources at (x,y) and (-x,-y) will produce a sinusoidal intensity
distribution in the output plane. These fringe patterns for each pair of
points will add in intensity, leading to the intensity distribution in the
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a =

Fringe pattérn from
elementary, complimentary
sources at (x,y),(-x,-y)

Fig. 1 Intensity distributions in the input and output
planes of a wavefront folding interferometer

output plane (for large F)

-]
Iﬂ(g’n ) = ( 2)2 / I(x,y) (1 + cost—k [§x+'r|y]} dxdy (1)
AF

[e]

where I(x,y) = g(x-Xo, y-Yo). Thus the output contains a spatial representa-
tion of the cosine Fourier transform of the source intensity distribution
which can be filtered, and also directly recorded.

We can obtain further insight into the nature of the output if egn.(1) is
written in the form:

1 2 28 28 2
T(g.m) :W [Ge(ﬁ v 57) cos {21: GF X, *'XFBYO}

. 2t 2 . 2 2
- § 6,5, ;—Fn) sin {27: ('XF'E" X, + -ﬂ‘;yoﬂ] +C,

where G_ and G are the Fourier transforms of the even (ge) and odd (go) parts
respectively of the function g(x,y) and C, is a constant. Thus it is evident
that the output consists of three parts:
(a) a cosine fringe pattern modulated by the transform of the
even part of the input signal,

(b) a sine fringe pattern modulated by the transform of the odd
part of the input,

(c) a constant intensity which allows the sinusoidal terms to be
directly observed.
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Since the transform of 8, is real and the transform of 8, is imaginary, com-

plete information about the complex transform is available in the form of a
real signal in the output plane. This is illustrated, Fig. 2, by means of the
calculated one dimensional outputs for input functions.

g(x) = rect(%). (1 + cos %) (purely even)

g(x) = rect(%). (1 + sin gﬁ (odd + even)

Wt
e ¥e ke e Bu de ad RS Nar dE—EEi—Nd EENETNE Ns ba La he v Re YE %5 8. 4e B4 de de 45 S AETEE e

(a) (b)
Fig. 2 Plots of output intensity for
(a) g(x) = rect(%) (1 + cos %)

(b) g(x) = rect<§> (1 + sin §>
both for b = d.

The ability of the interferometer to distinguish and display both transforms
is clear.

A calculated two-dimensional fringe patfern for a rectangular slot is also
shown, Fig. 3, where the phase information in the transform is apparent in

the fringe displacements.

Fig. 3 2-dimensional fringe pattern for a rectangular slot input
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It should be noted that the input to the interferometer is in the form of an
intensity distribution and hence g(x,y) can only be real and positive. It is
therefore not possible to have a truly odd input function and the output
intensity distribution always has its maximum at the centre.

Bandwidth Restriction

One important restriction limits useful application of the instrument in the
form so far described. As we move from the centre of the cutput plane, the
visibility of the fringes from each pair of point sources will fall, due to
their finite temporal coherence. Since regions further from the centre dis-
prlay the higher spatial freguerncies of the source, some trade-off must exist
between the optical bandwidth, A/ﬁx , and the maximum detectable spatial
freguency, w.. From egn.(1) we can simply show that the displacement from
the origin R‘ms) representing w_ is

W (2)

s

Rlw ) =
g

whereas the maximum range, R{max), for fringe formation by a pair of sources
at *(x,¥) is

UL S
Rmax N 5> y& AN (3)
k(x=+y%)
Combining eqn.{2) and (3},
- R N 5
o = 2n an

7
(x2 +y2)/2

For fairly wide bandwidths, say A/ZA = 10, and spatial frequencies up to, say,
10 lines/m.m., source dimensions of only 1m.m. can be accommodated. Alterna-
tively we could use a large source and increase M/a) with a filter. Thus a
T.V. screen, dimension say %, would have spatial freguencies up to about

3
2n oo/D, which for A = 60004, would require AN = 20 A. These restrictions
would be clearly unacceptable in many cases.

The Achromatic Interferometer

A considerable increase in useful bandwidth can be achieved by making the
fringe period, A , from any particular pair of sources independent for a
one dimensional source. From eqn.(1)

A

A= 2x

thus if all source points could be displaced so that their positions linearly
shifted according to wavelength as

62
-5
then achromatic fringes would be obtained. The required displacement is thus
not only a function of wavelength but also of the position of an object point
from the interferometer axis. This can be achieved, for example, with a pair
of mutually inclined transmission gratings, as shown in Fig. 4. A suitable
choice of N4, Ny and 6 leads to the formation of a large number of fringes.

0x = x
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R (xy) Py (xp) .
— ===t~ =—Object Ptane

G (Ny inesfmm)

Fig. 4 The passage of two rays through a pair of inclined gratings

The ray representation indicated in Fig. 4 allows a2 simple illustrative
analysis to be performed, but contains an uncertain level of approximation.
A more rigorous treatment is outlined below.

A point source in the input plane is represented by a uniform spectrum of
plane waves. The passage of each component wave through the gratings can
then be described accurately by the grating equation. In Fig. 5, the compo-
nent waves from a source S(xq, Yq» 0) propagate through gratings 1 and 2;

after diffraction these components are modified in amplitude and phase and are
expressed in the co-ordinate system (x3, Y3 23). This system is then rotated

by 90 and translated by 'a' and 'b' to the final system (x., y5, z5), centre
Oc. The z.-axis is the interferometer axis and the plane 2_.=0 is the folding
p%ane. > >

[ s(x,y;,0)

Xy

6, Grating 1

Zs s Q(E.qm.F)

Fig. 5 Co-ordinate systems for plane wave analysis

The contribution to the field at a distant point Q(¥ , 4F), in the output
plane, from any component wave can be written as
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dE = dA exp - jk[(a5§+[351] + Y F) -Q!S]

where dA depends upon the source amplitude, grating dimensions and other
standard factors; as. Bs, YS dre the direction cosines of the particular

component and ¢5 is a phase term which depends on the system configuration and
grating parameters. For small a5, BB‘ we have
~ 2 2 . ;
¢5~[a5 Xg + Bsy5+ (wo-w,lcr.5 - W2 [35 ) + higher order terms in ags 65].
where xs, y5, W
Ny Ny, 51 Yg
displacements from the interferometer axis.

o' w1, W2 are dependent on the grating and system parameters

d, 90 68 and A. The dimensions x can be interpreted as ef{ective

By a suitable choice of parameters, we can make qung [: 25/2,]

so that 5 5
¢5=‘"[a5 X5 + Bsy5+ 25(‘1 - 222 - -@55— ) + W + higher terms]

where W is a constant independent oi‘a5, BS. This phase term implies that

the elementary plane wave can be interpreted as originating from a virtual
source at xs, y5, z5 and propagating with an intrinsic phase determined by W

and the higher order terms. For regions far away from the source, the
stationary phase method (Ref. 3) can be used to determine the amplitude at Q.
Denoting the stationary point by aoB’ 305 and restricting our argument to one

dimensional folding, we obtain

2
05 o5 = T - aoS

Thus the stationary phase solution leads to

a = f(gvnv F) 3 BOS=O; Y

EQ = A exp - jlckzos §+‘Y05F) - (a05 X5 * Yo 25) - W - higher terms]
where A is the complex amplitude. Interference between the wave from
x5, ys, z5 and its folded companion from —xs, —y5, 25 occurs at Q. As Q

varies, a fringe pattern is generated.

On substituting typical experimental values, the contribution of the higher
order terms to the intensity at Q is found to be at least 3 orders of magni-
tude smaller than the dominant (sinusoidal) term. Thus it is evident that
the aberrations introduced by the gratings are small, at least in the one-
dimensional case.

The expression for Xg is of the form

*g = [(A + F1(k)} + (B + Fa(k)}] %,
and describes the mapping of x5 into the virtual object plane. The constants

A, B and the functions Fq, F_ depend on the system parameters and can be chosen

2
to yield the maximum number of polychromatic fringes. The optimum condition



Achromatic fringes 137

is determined by a numerical analysis.

EXPERIMENTAL OBSERVATIONS

The achromatic system was tested in a one-dimensional version for simplicity.
The configuration of the interferometer is shown in Fig. 6. The source used
was a photographic transparency with a tungsten halide projection lamp
focussed onto it. The lamp, lens and transparency were mounted on the same
plate, along with the two gratings. This plate could be rotated and displaced
linearly with respect to the rest of the system.

Fig. © The experimental interferometer arrangement

The arrangement of beam splitters and mirrors achieved the necessary 1-fold
rotation by introducing an even number of reflections on one path and an odd
number in the other. The careful positioning of the second beam splitter for
superposition of the two virtual objects is useful in aligning the interfero-
meter. Mirrors 2 and 3 were mounted on a common plate which could be moved
with a micrometer drive so that the path lengths of the two beams were equ:
ized to within 7Tum. The required shear, X_, was introduced by driving th
complete object plate perpendicular to the interferometer axis. This ensured
that both virtual objects were displaced by the same distance from the axis
but in opposite directions, thereby maintaining overall alignment.

When an object transparency, in the form of a one-dimensional binary grating,
10 lines/m.m., mark-space ratio 4:1, is illuminated in the interferometer,
the output pattern is as shown in Fig. 7.

Fig. 7 Output fringe pattern for an input binary
grating of 10 lines/m.m., mark-space ratio 4:1
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As expected, the transform of the input varies the visibility of a set of
carrier fringes. The positions of the bands of fringes are determined by the
grating periodicity, while their width is determined by the overall aperture.
The maximum fringe visibility in each band is governed by the mark-space ratio.
The extent of the transform is not in fact limited by loss of achromaticity,
but by the exit aperture of the final beam splitter. The range over which
fringes can be observed in the present system shows that approximately 250
black and white fringes can be formed from a white source. 1In other examples,
up to 450 have been obtained.

For the purposes of demonstration, the object width was limited to 1.5 m.m.

1

so that several fringes could be clearly seen in each patch. However, if the
object size is increased to 8m.m. a comparable number of fringes can be
obtained, showing that achromaticity is maintained for extended objects. .The
limit of 8m.m. was imposed purely by the size of the lamp filament.

It should be possible to use the output transparency subsequently as the input
to the interferometer, hence reforming the original input directly. However,
the normal output contains a large uniform background component, which, on a
second transit through the interferometer, would swamp the useful signal.

This difficulty could be overcome using electronic techniques in conjunction
with a T.V. camera tube as the detecting element.

caNcLusTON

We have shown that a one-dimensional wavefront folding interferometer can be
made essentially achromatic for extended objects. The extension of the tech-
nique to two-dimensions should not present any further difficulty. Since the
interferometer output is a display of the cosine Fourier transform of the

/ object as an intensity distribution, it can be recorded with a camera tube,

! ) the video signal then being available for electronic processing. This feature
makes the system potentially attractive as a hybrid optical-electronic real-

\ time processor.
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