
ALGORITHMS FOR THE DESIGN OF SYSTEMS WITH

TOLERANCE ERRORS

by

Alexander Voreadis

A Thesis submitted for the Degree

of Doctor of Philosophy

July 1981

Department of Electrical Engineering

Imperial College of Science and Technology,

University of London.

ALGORITHMS FOR THE DESIGN OF SYSTEMS WITH

TOLERANCE ERRORS

by

Alexander Voreadis

ABSTRACT

In this thesis the problem of synthesizing a system from

components whose values are known only to certain tolerances is considered.

In the pure tolerance case the design objective is the determina-

tion of a set of nominal system parameters so that all the specifications

are met whatever the actual system parameters are, as long as they fall

within a tolerance region centered on the nominal values. Quite commonly,

very tight tolerances are necessary for a solution to the pure tolerance

problem to exist. The introduction of post-manufacture tuning allows the

adoption of higher parameter tolerances and may be desirable in order

to reduce manufacturing costs. The tolerance-tuning problem is the

determination of a set of nominal system parameters so that whatever

the actual parameters are - within a tolerance region - the specifications

can be met by tuning.

Conceptual and implementable algorithms for the solution of

the pure tolerance and the tolerance-tuning problems are proposed. The

algorithms solve the general non-convex problems and belong to the class

of cut map algorithms of Eaves and Zangwill. Convergence is established,

numerical examples are presented and comparisons with other methods

in the literature are made.

To my Family

4

ACKNOWLEDGEMENTS

I would like to express my most sincere thanks to my

supervisor, Professor D.Q. Mayne, for his invaluable help and

advice during the course of the research that led to this

thesis.

The encouragement and help from my fellow research

students will be always remembered with gratitude.

I would also like to thank Mrs. Moriarty for typing

this thesis.

A large part of the work that led to this thesis was

financially supported by the B.odossaki Foundation, Athens, Greece.

5

C O N T E N T S Page

ABSTRACT: 2

4
ACKNOWLEDGEMENTS:

GENERAL NOTATION: 7

C H A P T E R I: INTRODUCTION

/

1.1 Computer-aided design. 9

1.2 Statement of the problems. 10

1.3 Outline and contributions of the thesis. 17

1.4 Cut map algorithms. 18

C H A P T E R II: CUT MAP ALGORITHMS FOR THE TOLERANCE PROBLEM.

II, 1 Introduction. 21

11.2 A conceptual algorithm for the tolerance problem. 25

11.3 Implementable algorithms for the tolerance problem. 36

C H A P T E R III: IMPLEMENTATION OF THE ALGORITHMS FOR THE

TOLERANCE PROBLEM.

111.1 Introduction. 50

111.2 On the solution of the feasibility subproblem. 50

111.3 On the computation of the separator estimates. 62

111.4 Examples. 72

111.5 Discussion. 97

6.

Eage

TUNING PROBLEM.

i

IV. 1 Introduction. 99

IV.2 A conceptual algorithm for the tolerance-

tuning problem. 102

IV. 3 An implement able algorithm for the

tolerance-tuning problem. 110

C H A P T E R V: IMPLEMENTATION OF THE ALGORITHM FOR THE

TOLERANCE-TUNING PROBLEM.

V.l Introduction* 119

V.2 On the solution of the feasibility subproblenu 119

V.3 On the computation of the separator estimates. 120

V.4 Examples. 132

V.5 Discussion. 161

C H A P T E R VI; CONCLUSION 1 6 3

REFERENCES: 1 6 8

APPENDIX I
 1 7 1

APPENDIX II 175

7.

GENERAL NOTATION

1. R n denotes the Euclidean space of ordered n-tuples

of real numbers. Supercripts are used to denote the

components of a vector in R n .

2. f denotes a function. If A is the domain of f and

B its range, we then write f: A*B.

3. Given a function f: R n + R we denote by^7f(x) its

gradient at x.

4. We denote by ^ (x * ^) the following set in R n:

{x feR n
x-x'H^e} 9 (open ball with the Euclidean norm).

5. The max norm in R n is defined as :

x | | M = m^x{ |x11
x

i-1,•••,n} .

6. We denote by B^ (x,e) the following set in R n :

{x T£R n| 11 x T-x|| n (open ball with the max. norm).

7. F denotes the closure of the set F.

8. F° denotes the interior of the set F,

9. F denotes the complement of the set F.

10. Z + denotes the set of positive integers including zero,

i.e. Z =(0,1,2,3,....} .

AUB denotes the union of the sets A and B.

AHB denotes the intersection of the sets A and B.

A£B denotes that A is a subset of B.

A\B denotes the set that contains all the elements

of the set A not belonging to the set B.

R n n

2 denotes the set of all subsets of R ,

9.

CHAPTER X

I N T R O D U C T I O N

1.1 Computer-aided design

In recent years the role of the digital computer in solving

engineering design problems has been invaluable. Design, as opposed

to synthesis, is iterative in nature since the often imprecise objectives

and constraints require constant interaction with a decision maker - the

designer. However, synthesis techniques which solve precisely specified

problems are useful tools for solving subproblems which may recur, in the

design process.

Many engineering problems can be formulated as constrained

optimization problems or inequality solving problems, in which the

inequality constraints correspond to the design specifications. The

solution of such precisely formulated problems is only one stage of the

design process. The designer has to interact at each stage modifying tlie

constraints and thus trading off one desirable quality for another.

Hence constrained optimization or inequality solving algorithms play an

important role in computer-aided design.

Many of the design specifications can be transcribed into standard

inequality constraints, so that standard algorithms may be employed.

However, surprisingly often, [13 , design specification lead to

functional (or infinite dimensional) constraintswhich cannot be treated

with standard methods. The pure tolerance and the tolerance-tuning

problems that are examined in this thesis belong to this class of problems.

Hence the development of algorithms suitable for infinitely constrained

problems was stimulated and infinite dimensional analogues of finite

dimensional algorithms have been derived. These algorithms are conceptual

10

since they require the solution of infinite dimensional linear programmes.

It seems that the only iraplementable algorithms (requiring a

finite number of operations at each iteration) suitable for infinitely

constrained problems are the feasible directions algorithms of C2] and

[33 and the outer approximations algorithm of [4] • A summary of these

new algorithms and a description of their use can be found in Cl] .

1.2 Statement of the problems.

Consider the problem of synthesizing a system from components

whose values are known only to certain tolerances. Uncertainties on

the values of the components arise from fluctuations inherent in the

production processes or identification errors. Such deviations from

the nominal values may cause failure to meet imposed specifications and

hence may lead to low production yields. It is thus necessary to take

into account these possible parameter deviations in the design stage.

The design objective is to choose a set of nominal parameter values so

that certain specifications will be met whatever the actual values are,

as long as they fall in a certain tolerance region. Such problems

frequently occur in circuit design where they are known as centering

problems [6] , [7] , [8] , [14] , but also arise in control system design

since the properties of transducers, actuators etc., are known only to a

certain degree of accuracy.

Let x e R n denote the nominal value of the parameter vector and

t the manufacturing error so that the actual value of the parameter vector

is x+t; t lies in a known tolerance region T, a subset of R n . Suppose

that the system must satisfy certain specifications no matter what the

tolerance error is. This problem can be expressed as :

u .

P^ : Find a point (nominal design) x such that :

f J(x+t)£ 0 , j=l,....,m , for all te.T. (1)

The functions f^sR^R define the design constraints. The problem can

be normalized so that T can be defined by :

T - {t€Rn||tx|*1 , i = 1, ,n> . (2)

Note that the constraint (1) is infinite dimensional. An equivalent foun

for this design problem is :

P_ : Find a point a satisfying :

0 T(x)S 0 (3)

where 0̂ ,: Rn-»- R is defined by:

6 T(x) = max(ijj (x+t) t£T} (A)

and is defined by:

max (f ̂ (x) j-1, » . (5)

Let G denote the feasible set for the problem P T . The determination of

e
T(x), given x, is a global optimization problem and is sometimes referred

to as the worst case problem (WCP) in the literature t9l , C 10] . Bamdl-er,

C.7] , C8 3 , refers to a design satisfying <3) as a worst case design. Let

V denote the set of vertices of T and F the set of feasible nominaL

designs i.e.:

V = { t £ ' R n | t i | = 1 , i=l,....,n} (6)

and

12

F = {xcR11 V»Cx> S 0 } . (7)

Bandler [6] has shown that if F is one-dimensionally convex the

(infinite dimensional) problem P T is # equivalent to the (finite

dimensional) feasibility problem defined by:

P^ : Find a point x such that:

iKx+t)S 0 for all t€V

(i.e. satisfying 8 y(x) « max^(x+t) j t^V^O).

In principle a standard algorithm can be employed for P^ although the

cardinality of V can be very large. In [8] Bandler considers the problem

of minimizing a cost function subject to 0 T(x)$O for the case when F

is one-dimensionally convex (so that 0^(x)£ 0 can be replaced by

® v(x)£ 0). A procedure for replacing V by a relatively small subset of

V is presented. This (heuristic) procedure determines which vertex is

likely to violate which constraint by sensitivity (gradient) analysis,

so that only the "worst case" vertices are utilized. In [9] Schjaer-

Jacobson and Madsen present an interval arithmetic algorithm for solving

(WCP) in the general case and a more efficient algorithm for the one-

dimensionally convex case. They also present algorithms for the fixed

(FTP) and variable (VTP) tolerance problems (min{6T(x) | xeR
n
} and

max (w 6~(x)$ 0 }, T = ft t
1
! ^ } respectively). These algorithms require

at each iteration solution of the WCP and seem to assume incorrectly the

differentiability of the function ^ (x) = max {f^(x+t) teT} . More

sophisticated algorithms for the fixed and variable tolerance problems

(FTP and VTP) are presented by Brayton et a l , C10] . One-dimensional

convexity is assumed. The non-differentiability of the functions <f>*'(x),

j=l,...,m is coped with by "function splitting"; if f
J
(x+t) achieves

its maximum at t^ and 1 2 (i.e. ^ (x) = f^x+t^) = f J(x+t 2)) both

13

Vf J(x+t^) and Vf^(x+t2) are employed in the optimization algorithms.

The function ^ (x) is non—differentiaible at x but possesses a

generalized gradient [18] which is the convex hull of Vf J (x+t^) and

A vertex list updated at each iteration defines the

function and gradient information applied to a quadratic program to

determine a search direction; this list is a subset of the set {f ̂ (x*v-) |

j=l,...,m, veV) . Because of the very complex nature of the rules of

updating the vertex list, the algorithms in [10] are not explicitly

stated but are only vaguely described.

All these algorithms are, in the main, restricted to' the case

where F is one-dimensionally convex. They possess heuristic features

in order to improve efficiency and, hence, do not have guaranteed

convergence. It seems that the only algorithm suitable for the infinite

dimensional non-convex problem P^ which has guaranteed convergence

properties is the outer approximation algorithm of [40 (the algorithms

of [2] and [33 are restricted to the case in which T is a subset of R),

This replaces the infinite dimensional problem P^, by an infinite sequence

of conventional (finite dimensional) feasibility problems {P™.} where
i

T. is a finite subset of T and P„ is defined by :
l T_. J

P : Determine an x such that :

iKx+t) $ 0 for all teT. .
i

Since T. is a subset of T, the feasible set for the problem ?„,. is an

outer approximation to the feasible set G for the problem P^,. At

iteration i the algorithm solves P T , a conventional feasibility
Ai

problemjusing a standard algorithm yielding x... It then solves

(approximately) WCP (max{^(x^+t) teT}) yielding t.; T ^ is then formed

by adding t- to T^ and discarding other points which are judged to be

14

irrelevant. Precise rules for increasing the accuracy of the

solution of WCP and for updating are given in [4] , which ensure

convergence for non-convex problems. The set T^ may be regarded as

an extension to non-convex problems of the "vertex list" concept of

Brayton et al ,[10]; of course the elements of T^ are not necessarily

vertices.

In the cut map algorithms proposed in this thesis the complement

of the feasible set G for the problem P^ is approximated at each

iteration by the union of a finite number of very simply described

regions. Typically at iteration i, G (the complement of G) is approximated

by W. = U (B (x . , 6 .) j<i) (or a subset of this set) where B(x.,S.) denotes
i J J J' J

an open ball with centre x^ and radius > 0 such that GnB(xj,6j) <j>

c c

Clearly G c W . so that W^ is an outer approximation to G of a

particularly simple kind. The class of cut map algorithms of Eaves and

Zangwill are discussed in more detail in section 4.

All the methods described so far are deterministic in nature.

There also exist some methods for the tolerance problem which utilize

a statistical approach. These are now briefly described. In til] the

tolerance problem is tackled by approximating the assumed convex

feasible set F by a polyhedron. Then a maximal hyperellipsoid is

inscribed in the polyhedron to provide a design center and a set of

parameter tolerances. All the computations required for the above

operations are performed by linear programmes. In [12] this method is

extended to the case of arbitrary distributions (in [11] the case of

joint Gaussian distributions is only considered). In [13] the tolerance

problem is formulated as a minimization problem of the variance of some

performance index which relates to the design specifications. Finally

in Ll5] a deterministic algorithm for yield maximization is proposed.

15

At each iteration the search direction is computed to be the direction

of the line joining the centres of gravity of the feasible and non-

feasible parts of the tolerance region (estimated by Monte Carlo analysis).

The step length rule is heurist'ic.

Quite commonly very tight tolerances are required for a

solution to the tolerance problem to exist. Tight tolerances make

manufacture costly or even impossible.. To overcome this difficulty

post-manufacture tuning or trimming of certain parameters, is usually

introduced [16] , [1 7] . The problem now becomes to determine a set

of nominal parameter values so that whatever the actual values are -

within a tolerance region - the specifications can be met by timing.

Suppose that the first I parameters can be tuned or trimmed and let
& n

the map r: R-*R be defined by:

r q
1 if i S SL

r X(q)»
qeR . (8)

L 0 if n

Also let the tuning region Q be defined as :

(9)

£
where a J 0, H 0, a e R . The tolerance-tuning problem can be

expressed as:

P T Q : Find a point x such that for each teT there exists

some q€Q satisfying:

f J(x+t+r(q))S 0, j-1 m.

16

An alternative form for the problem P is the following:

P _ : Find a point x such that:

A

6 T n(x) = max min i|>(x+t+r(q)) < 0. (10)

tcT qeQ

It is clear that the determination of 0_ n(x) is considerably more

difficult than (the already prohibitively difficult) WCP of determining

6 . As shown in [183 e
T n is Lipschitz continuous but not differentiable;

in fact it may even fail to have directional derivatives. Polak and

Sangiovanni-Vincetelli, [183, formulate the general engineering problem

when tuning is permitted and propose an algorithm for its solution. This

algorithm consists of two parts : an outer approximation algorithm which

replaces T by an infinite sequence{T\} of discrete subsets of T

and an inner subalgorithm which solves the resulting simpler subproblems.

Because the inner subalgorithm utilizes non-different iable optimization

ideas, it has two major disadvantages. The first is that it is

computationally expensive and-the second that it is applicable to the case

where there is only one constraint function. Recently, Polak has

shown that by employing certain simple transformations these inner

subproblems are equivalent to ordinary differentiable optimization

problems so that they can be solved by standard algorithms. Hence in [19 3

an outer approximations algorithm that does not possess the computational

disadvantages caused by the need for a subalgorithm suitable for

non-differentiable problems is presented.

Bandler [8 3 , tackles the tolerance-tuning problem by

distinguishing between effectively toleranced and effectively timed

parameters. A (finite dimensional) reducdd problem can be obtained in

this way, which under assumptions of one-dimensional convexity can be

I
17.

shown to be equivalent to the original problem. For non-convex problems

the reduced problem is more restrictive (i.e. it may fail to have a

solution, although a solution to the original problem exists). Hence

Bandler Ts approach is strictly applicable only when one-dimensional

convexity is present. To further simplify the reduced problem, heuristic

procedures are employed in [8J . Note that it is precisely in cases in

which the set F is strongly non-convex (e.g. when it possesses "black

holes"), that one hopes to obtain large increases in the component

tolerances by the introduction of tuning.

In the second part of this thesis a cut map algorithm for
\

the non-convex problem P^, q is proposed, which has the same general features

as the cut map algorithm proposed in the first part for the pure tolerance

problem P^.

1.3 Outline arid contributions of the thesis.

In Chapter II the complete theoretical development of

specialized cut map algorithms for the problem P^, is presented. Conceptual

and implementable algorithms are proposed and convergence is established.

In Chapter III the implementation details of these algorithms are

discussed. Numerical examples are presented and conclusions about the

performance of the algorithms are drawn.

In Chapter IV the ideas of Chapter II are extended to the case

when tuning is also permitted. Hence, specialized conceptual and

implementable algorithms for the problem P^, g are proposed and convergence

is established. Chapter V is concerned with the implementation details

of the algorithms of Chapter IV. Numerical examples are presented

and the properties of the algorithms are discussed. Finally, Chapter VI

contains concluding remarks and comparisons with the rest of the methods

18

in the literature for the problems P_ and P .
I 1

Each of the specialized algorithms presented in this thesis

is believed to be completely original. More specifically it seems that

algorithms for the problems P and P utilizing the concepts of cut J. <1- 9X
maps and separators, C20], have not been proposed before. In Chapters XEI

and V the procedures that (approximately) solve the specialized global

optimization problems for the computation of the separator estimates were

especially developed for the algorithms proposed in Chapter II and TV

respectively.

I 4 Cut map algorithms •

The class of cut map algorithms has been examined in a general

way by Eaves and Zangwill [203 and by Hogan [213 . The key concepts

• c
employed are those of separators and cut maps. A function 6 : G + R

c n
where G is the complement of a closed set G in R is a separator, [20], if

(i) <S(x)> 0 for all X E G C (1 1)

Jc it
(ii) x^ x and ^ (x j -*• 0 as i « imply that x €G. (12)

It is shown in C203 that any positive lower semi-continuous function mapping

G° into R, is a separator. The significance of a separator 6 is that if an

infinite sequence (x^} satisfies :

x. _ i B(x., 6 (x.)) , j=l,...,i. (13)
i + l J J

*
for i » 1,2,..., then any accumulation point x of the sequence {x^} lies

in G. The reason for this is simple. Suppose there is a subsequence

J *
of "fx.^ indexed by J such that x. x as i 0 0. Hence the

19

distance between successive points in this subsequence converges to zero.

This can only happen if <5(x^)-* 0 as i-+°°, i e J. It follows from

*

the definition of a separator that x £G. The balls in (13) can be open

or closed and can be defined using any norm. We now define cut maps as

follows :

Let L be the class of closed sets defined by :

L ± (z<=Rn Z=>G, Z closed) . (14)

c I>
A point to set function w: G 2 (the set of all subsets of I) is

c
a cut map if there exists a separator 6: G R such that :

ZnB(x,5(x)) (15)

for each xcG and each Zcw(x) • A set ZeL is a cut if Z € w(x) for some

xeG C. It is shown in [20] that G is the intersection of all cuts in

Note that if for all x€GC, 0 <6 (x)$ d(x,G) = min {||y-x|| yeG} , then

c • •
x_,'B(x,fi (x)) is a simple example of a cut map. The reason for this is

c c

that G # B (X , 6 (X)) for all xeG . We can now state the following model cut

map algorithm.

Algorithm i

Step 0 : Set i=0, W 0 = <j> *

Step 1 : Compute any x.e

If x^e G stop; else proceed to step 2.

Step 2 : Set W.^, = W.u Z. C

— i+l i i

where Z^ £ w(x) and w is a cut map.

Set i = i+l and go to step 1.

n

Theorem 1, [2 0]

(i)

(ii)

Hence a cut map algorithm generates approximations to the set G

by forming intersections of finite numbers of cuts. At each iteration

a point in the current approximation of the setrG in computed and then

the approximation is updated by the introduction of a new cut involving

the latest point. Jhe importance of utilizing cut maps is that outer

approximations to the set G are only generated.

The above algorithm is due to Eaves and Zangwill and contains the

essential features of cut map algorithms. The other algorithms

presented in their papers incorporate schemes for dropping cuts (in

algorithm 1 a new cut is introduced at each iteration). Since these

schemes are mot appropriate in our case, different cut dropping schemes

will be employed.

If the algorithm stops at x^, then x.eG.

* . . If x is an accumulation point of a sequence i x j

*
generated by algorithm 1, then x e G .

•

21

CHAPTER II

CUT MAP ALGORITHMS FOR THE TOLERANCE PROBLEM

II.1 Introduction

In this Chapter the complete theoretical development of

conceptual and implementable algorithms for the tolerance problem is

presented. - The algorithms belong to the class of cut map algorithms

of Eaves and Zangwill [20] and the concepts of separator functions and

cut maps are utilized for establishing their convergence properties.

Suppose that xeR" is the 'vector of nominal- values of the

design parameters of a certain system. The object of a possible design

procedure is to choose x so that all the specifications will be met,

whatever the actual parameter values are, as long as they fall in a

certain given tolerance region. Hence one way of formulating the

tolerance problem in a normalized form is the following :

P T : Find a point in the set G defined by ;

G * {x£R n f J(x+t)S 0, j=l,... ,m, for all t€T } (1)

where

T i (t£R n M S I , i = 1,..., n) . (2)

The functions f J : Rn-* R, j-l,...,m specify the inequality constraints

that represent the specifications of the design. Also T is a compact

subset of R n (hypercube) that specifies the tolerance region. Hence

for i=l,...,n, the maximum possible deviation of the ith parameter

from its nominal value is unity. The tolerance problem belongs to the

class of problems with infinite dimensional constraints (t can take

infinitely many values) and therefore is computationally complex. It

is clear that it is not even possible to test if a point belongs to the

set G or not, since an infinite number of constraints has to be evaluated,

Let V denote the set of vertices of the set T so

that :

V 4 {t£R n I t1! = 1, i = 1,... ,n} . (3)

Note that the cardinality of V is 2 n , i.e. it increases very rapidly with

the problem dimension. Let

F A = { 2 E R n f J(x) * 0 , j=l,...,m}. (4)

Definition

A set A=R n is said to be one-dimensionally convex if for any

any ye A such that y = x + a e j s o l n e and some j£ {0 91 92,... ,nj all the

points z = x + ^ (y-x)Xe[o,l] also belong to A.

Note that e^ above denotes the jth unit vector. Now consider

the following (finite dimensional) problem P^:

P v : Find a point in the set G^ defined by :

• A R TI
G v = t x£R f J(x+t)S 0, j=l,...,m, for all teV } . (5)

Theorem (Bandler l e i) .

A solution to the reduced problem P^ is a solution to the

original problem P T and vice versa, if the set of feasible nominal designs

F is one-dimensional ly convex.

23

A two-dimensional example illustrating the above theorem is

shown in Figure I. Its validity is based on the fact that "worst case"

points of a certain design x , (i.e. the points in x+T that mostly violate

the specifications) are always vertices, if the set F is one-dimensionally

convex. One-dimensional convexity is the fundamental property required by

most existing methods for tackling the tolerance problem, as discussed

in Chapter I, since it allows the adoption of finite dimensional non-linear

programming algorithms. As the number of vertices increases very rapidly

with the problem dimension all these methods incorporate procedures for

selecting only a small number of vertices at each iteration. Because of

the heuristic nature of these procedures, none of these methods has

established convergence properties. The only algorithm with established

convergence properties which is suitable for general non-convex infinite

dimensional problems seems to be the outer approximations algorithm

of [4] . In this Chapter specialized cut map algorithms for the tolerance

problem will be proposed that possess the following general features :

(i) They construct sequences of points that converge

(if convergence occurs) to solutions of the non-

convex problem P T .

(ii) They have established convergence properties.

(iii) They are directly implementable, i.e. truncation rules

are given for every infinite computation, so that each

iteration requires a finite number of operations on a

digital computer.

(iv) They are particularly suitable for interactive

computer-aided design.

24

FIGURE I

F is one-dimensionally convex.

In section 2 assumptions are made and results are proven that

lead to the definition of a separator function for the tolerance problem

and to the statement of a conceputal algorithm. In section 3

implementable algorithms are proposed and discussed. Implementation details

and numerical examples are presented in Chapter III.

II.2 A conceptual algorithm for the tolerance problem.

We firstly make some definitions and assumptions necessary for

the analysis that follows. Let :

i/; (x) = max { f ̂ (x) | j=l,...,m} (6)

U = {xcR n | rp (x) * 0}. (7)

Figure II illustrates the sets F,G and U. The following assumptions are

made :

Al: The functions f^ : Rn-»-R, j-l,...,m are continuous.

A2: The sets G and F are not empty and the set F is

equal to the closure of its interior.

A3: F° (the interior of F) satisfies :

F° = (xeR n| ̂ (x) < 0 } .

All these assumptions are mild. Al is a standard assumption.

A2 excludes isolated points, whiskers etc. from the set F and together

with A3 is required to prove results that lead to the definition of a cut

map for the tolerance problem.

26

FIGURE II

The sets F, U and G.

27

Consider the function n: Rn-+ R defined by:

TI (x) = m i n {||Y-X|| y e u } (83

Because is continuous (i.e. the set U is closed), ||'y™x'|| is bounded

from below for fixed x and || y-x|| 00 as || y » the minimum exists

We are now in a position to define a separator for the tolerance problem

Let <S:Rn-)-R be defined by :

6 (x) - 1 - ri(x). (9)

Proposition 1

The function <5(x) is a separator for the problem P^.

Proof

(i) 6 (x) > 0 for all s E G C .

• c
Choose any x e G • By the definition of G there exists some

ye-(x+T) such that *Ky)> 0. Since x+T is equal to the closure of its

interior and ^ is continuous, there exists some y
f
€(x*-T)° such

i A

that # (y) > 0. Let y be a minimizer associated with x, then :

n (x) = 11 x-ylL*llx-y'!!«,< 1. c
Hence n(x) £[0,1) for all xeG and the result follows from (9).

28

(ii) 6(x) is continuous.

We prove that n(x) is a continuous function and use (9).

Suppose that y is a minimizer associated with x (yf with x f) , then we liave:

n(x) = II x~y S II x~y'll„ = || x-x'+x'-y'H ^ 4

S || x-x'l| + |x'-y»||, - n (x>) + I x-x'll^

Similarly :

n(x') * n(x) + llx-x'H^

Combining the two results we have :

| T1(X) - T L (X ') U II X - X ' I L

which establishes continuity.
•

Note that <5 (x) - 1 for all xeU. We next prove some results

that follow directly from our assumptions and will lead to the definition

of a cut map for the tolerance problem P T»

Proposition 2

(i) The set U is equal to the closure of its interior

(i.e. U =(11°) , where the overbar denotes closure).

(ii) The interior of U satisfies :

U° = {x^R 0 | <J>(x) > 0 } .

29.

Proof

We firstly note that by the continuity of "J>:

F° ={x <Kx) > o} c u°. (io)

(i) We have that (U°) c U since U is a closed set. Let

A(F) = {xeR n

() - 0}

Choose any xeA(F), then :

xe A(F) = 0 = W F °

by assumption A3. Hence for any e ̂ 0

Bw(x,e) inl F
c / j>.

Using (10), for any e> 0:

B W (X , e) n U° * <j> x£(U°)

Hence A (F) c i(U°). Now :

U « C F C U A (F)]c E U ° u A (F)] c

i
Cu°u(u0)] = (u°) .

(ii) Suppose, contrary to what is to be proven that xeU° and

*Kx) = 0. Then x€F and since F = (F°) by assumption A2, there

exists an infinite sequence i*
1
 converging to x. By

assumption A3, 0 for all j and thus x. e U for all j ,

which contradicts the fact that xeU°.

•

30

Proposition 3

Suppose that :

W = u {B^ (y,l) yeU}

W 1 = u iZjy,!) | yeU°} .

Then W=W f.

Proof

(i) Obviously W'^W.

(ii) Note that both W and W' are open sets since they are equal

to the union of open sets. Let XEW SO that xsB oo(y,l) for

some y^U. If y€U° we also have xsW f. Thus consider the

case where ^ (y) ® 0. Since U = (U°) by proposition 2, there

exists a sequence {yJ- in U° converging to y so that :

ar-y.IL* lx-y | |o o+l ly-y i IL<
 1 for all i"*i 0 ,

for some ig> 0.

Thus x£B (y. ,1) and since y. e U° we have that xeW f so 00
 I 0 a

that W CW*.

•

Proposition 4

G = n{ B^ (y, 1)

Proof

IT-}- W c . (11)

We prove that G 85 (W*) and use proposition 3.

31

(i) GoflW*)c

If this is not true, there exists some x€(Gf\Wf).

Hence there exists some yeU° such that :

(a) <J>(x+t)S 0 for all t^T (since x^G).

(b) 11 x-y11 <1 (since x^W 1).
00

(c) ^(y) > 0 (by proposition 2(ii)).

Let t T = y-x. Using (b) we have that t'eT. Also ^(y) = ^(y-x+x) ®

^(x+t')S 0 using (a). But this contradicts (c) so that (i) is true.

(ii) (W') C cG.

• c c
Suppose this is false. Then there exists some xe(W') n G .

Now x€G implies that there exists a teT such that ^(x+t)> 0. Hence

by the continuity of there exists some y e (0,1) such that i^(x+yt)> 0.

Also llx+ Yt - x l L = Y || tlL< 1. Thus x e B^ (x+Yt,l) and ^(x+Yt)>0

so that x£W*,.a contradiction.

•

Let:

w(x) = {y€Rn Hy)* 0, II x-yII «« ri(x)}. (12)

w(x) is the set of minimizers of (8).

Proposition 5

The maps :

(i) x B ^ (y,l) c, yew(x)

(ii) x-v B^ (x,6(x))c

are cut maps.

Proof

c '
It is sufficient to prove that for any xsG , yeW(x):

Bro (x, 6(x))c B<jo(y,l) c G° . (13)

Q

Let xeG , yew(x). Suppose that ze B (x, 6(x)), then :
00

||z-y||^||z-x||o+ ||x-y||a)<6(x) + n (x) - 1.

Hence z€B00(y,l) and the left hand side of (13) is true. The right

hand side follows from the fact that yeU and proposition 4.

•

Figure III illustrates the definitions of <5 (x), n (x) and the

c c
cut maps x"*"B00(x,<S(x)) and x-^B00(y,l) , ysw(x). The validity of

proposition 5 is based on the following intuitive result. If a point x+t

in x+T, (x+T = B^x,!)) , does not satisfy the specifications, then x should

be moved through a distance of at least 1- ||t Jl^for the trtiole tolerance

region x+T to lie in F and thus for x to lie in G. Hence if yew(x), x

should be moved by at least 1 - !|x-y 11^= 1 -n (x) = <5(x) for x+T to

lie in F , which implies that Bco(x, <S(x))
 c G°. Note that if XEU we have

that :

B „ C y . D

FIGURE III

The definitions of the separator and the cut maps.

34

B j x ^ x)) = Z(y,l) = B j x , !)

since w (x) « (x>

We are now in a position to state a conceptual algorithm for

the problem P T <

Algorithm 1

Step 0; Set k=0, W = f .

Step 1: Compute any x ^ W ^ .

If x^eG stop; else proceed to step 2.

Step 2: Compute yk€w(x^.), < 5 ^) « 1 - ll\"y kIL-«

Step 3; Set W k + 1 = u B 0 0(y k,l)

C o r W k + 1
 = W k u Bjx k,6(x k)).] .

Set k^k+l and go to step 1.

Theorem 1

•

(i) If the algorithm stops at x^, then x^eG.

is
(ii) If x is an accumulation point of an infinite sequence

*
{ x^.} generated by the algorithm, then x eG.

Proof

(i) The result is obvious.

(ii) The result follows from theorem 1 of Chapter I and the

fact that, as shown, the maps x-> B^tyjl) , y€w(x) and
g

x -^B^ (x,<5 (x)) are cut maps.

•

c •

Note that the utilization of cut maps ensures that each W^ is an outer

approximation to the set G. Algorithm 1 possesses the following

practical disadvantages.

(i) A feasibility subalgorithm is needed in step 1 to solve a

non-differentiable problem. Hence unless such an algorithm

is available, the computation is step 1 is not possible.

(ii) Hie test in Step 1 requires an infinite number of operations.

(iii) An exact global minimization is required in step 2 to compute

v

(iv) The subproblems in step 1 increase in complexity with k ,

since a new constraint is introduced at each iteration.

In the next section we proceed to obtain implementable algorithms, i.e.

algorithms which do not have the disadvantages (i) - (iv) listed above.

36

II.3 Implemehtable algorithms for the tolerance problem.

To employ a standard finite dimensional feasibility subalgorithm

in step 1 of algorithm 1, we need to have continuously differentiable

constraint functions. We can modify the cut maps defined in the previous

section by observing that :

B 9 (X , 6 (X)) C B (X , S (X)) and B 9(y,l) c B (y,l).
Z 0 0 L 00

Hence the maps x-*- B 2(x,S (x))
C and x-v[B2(x,S (x)) u B 2 (y , 1)]

 C , y e w (x)

are cut maps. Note that B 2 (x, <S(x)) is not a subset of B 2(y,l). The

relation x' tf B2(x,<5 (x)) can be expressed as the following continuously

differentiable inequality:

g O 0 - 5(x) 2 - || x -x f || 2 * 0. (14)

Further details about the implementation of step 1 can be found in

Chapter III.

Our next task is to replace the exact global minimization

involved in Step 2 by a finite procedure.

Proposition 6

For any x ^ G
0
, let y

T
^ x + T be such that Tp(y')2 0 and let

5 = l-ll x-yT l I • Then :
0 0 *

37.

Proof

We have :

i - II y
T
- x L s i - n (x) = s(x).

Hence:

B 2 (X , 6 ") C B 2 (X , 6 (X)) C G C .

•

The important consequence of proposition 6 is that if we replace

y^w(x) by some approximate minimizer y* ex+T satisfying \fj (y') £ 0, the

map x">"B2(x,
,5) c , where 1 - || x-yf|| , possesses the same basic

property of cut maps (see proposition 5).

Let a map S: R n x Z+-).Rn be such that for any xeR n and

+
jeZ , S(x,j) is the result of applying t(j) iterations of a certain

algorithm to the problem:

min {||y-x|| U (y) > 0 }

y

where j : Z + Z + is a monotonically increasing truncation function

(TCj)"*"09' as j"* 0 0). We now impose the following conditions on S:

p
A4: (i) For all XSG , there exists an integer I(x) such that :

|| JS (x,j) - x|| ̂ <1, ^(S(x,j))5 0 for all j* I(x)

• • c
(ii) For any compact subset X of G

| n(x) - ||S(x,j) - x|| I"*" 0 as j 00 uniformly in x for xeX.
oo

38

c • •

The purpose of (i) is to ensure that at each xeG an approximation to

the separator 6(x) having the property of proposition 6 can be generated

in a finite number of iterations. Hence if we define

J(x,j) 4 l - n (x , j) - 1 -II S(x,j) - x|| w (15)

c
we observe that for any xeG , we have :

0 < 6 (x , j) S 6 (x) for all j * I(x).

Condition (ii) ensures that the approximation of <5(x) is of increasing

accuracy as j increases and is required for establishing convergence.

c
It is clear that if C xj} is a convergent sequence in G , then :

I 6(Xj,j) -6(Xj)|-> 0 as j* co .

Procedures that generate S(x,j) and satisfy A4 are presented in Chapter III.

To avoid having to solve an increasingly complex subproblem in

Step 1,> a procedure for dropping cuts should be incorporated in our

algorithm. It is possible to utilize the scheme proposed in [4] • It

has the property of accumulating constraints and dropping them en masse

when certain conditions are satisfied. However it is preferable to adopt

the scheme proposed by Gonzaga and Polak in [5] . It requires more

storage, but does not have an oscillatory behaviour, resulting in better

computational properties.

f kt

Let a double indexed sequence satisfying:

(i) e^ > 0 if j < k , e ̂ » 0 otherwise.

39

(ii) e# as uniformly in j. (16)

(iii) e*. \ 0 as j
J •

Examples of such sequences are :

e j = Y max (0 , } , Y>0, 5 £(0,1) (17)

and

k 1 1
e = Y max { 0 , m - r ^ } , Y > 0 , <5>0. (18)

J (1+j) 1' (l+k) 1 7

Let the set J(k) be defined by:

A r +
J (k) =» {j£Z j S k , ^"(Xj,j) > ej }. (19)

The set J(k) is, in a sense, the set of "most important" constraints

at iteration k . The criteria according to which an iiidex j associated

with the point x^ is contained in J(k), k£j, are the magnitude of

the value of j relative to k . Hence J (k) contains

the indeces of the most recent points whose separator estimates are large

enough. In the implementable algorithm that will be presented, it

• • • c
specifies the balls utilized to form the next approximation (W ^ j) t o

the set G.

We are now in a position to state an implementable algorithm

for the problem P^.

Algorithm 2

Notes

Step 0: Set k=0, W Q *» <j> .

c
Step 1: Compute any x^e W^ .

Step 2: Compute y k » SCx^jk) .

Step 3: If t|/(yk) < 0 or || - xfc ||j»l

s e t v i 3 v wk+i3 V k 53 k + 1

and go to step 2.

Else proceed to step 4.

Step 4: Compute 5(2^,k) = 1 - 11 I

Set W k + 1 = u{B 2(X j,5(X j,j))|jeJ(k)}

Set k=k+l and go to step 1.

•

(i) The algorithm is directly implementable since each step

requires a finite number of operations.

(ii) If during the operation of the algorithm a point x k

in G is generated the algorithm will jam up, i.e.

will start cycling between steps 2 and 3 increasing

the accuracy of the estimation of ' H ^) and

establishing assymptotically that <S(xk) is not

positive.

(iii) The cut dropping scheme works as follows. A ball

involving the point x^ is kept for all subsequent

41

iterations if <$(x.,j)^ e.. If not, it is kept

— . k
until k becomes large enough for <S(xj,j)£e. to be

k

satisfied. In (17), <5 determines how faste j tends

to Gj and Y should be chosen to provide the right

scaling. J(k) may be regarded as that subset of

,...,k^ which (approximately) defines the most

important constraints. Roughly speaking these

correspond (at iteration k) to those balls B w (x^, 5(x^))

for which ^(xj) largest and j is close to k.

Once a constraint is dropped it does not reappear.

Q

(iv) As already discussed each set W^ can be represented by

a set of continuously differentiable inequalities as

follows :

W, C « {x
k

where

g J(x)$ 0, for all j € J (k-1)} (20)

g j(x) 4 6(x.,j) 2 - ||x.-x|| 2
2 . <21)

Let

X k(x) i max (gj(x)[j€ #(k-l)} . <22)

k c
Then X 0 implies that x

k
€ \ •

(v) It is possible to improve the convergence properties

of algorithm 2 by modifying Step 1 to Step 1*

as follows :

Step 1': Compute any x^ such that :

" k £ (w k c n G k)

where

A
G^ =» CxeR n f J(x+t)S 0, j=»l,... ,m, for all t£T > (23)

and T^ is a finite subset of T. Any heuristic rule for specifying

T^ can be employed. For example T^ can be some subset of the set V

of vertices of T. The designer, can use any knowledge about the

problem to include the "worst case" vertices only. Since G ^ G ^ ,

the maps x (x,<5 (x)) cn are cut maps. The reason of this

c
modification is that W^ n g^ is a much better outer approximation

to the set G than WT . The introduction of these conventional
k

constraints assumes that the functions f J , j=l,...,m are continuously,

differentiable. Further implementation details are discussed in

Chapter III.

(vi) Let :

T, A r „n
H = {xeR h*(x)$ 0 , I = l , . . . , p } (24)

I n

where h : R + R , SL =l,...,p are continuously different iable.

Suppose we want to find a point in GnH. In other words suppose that

we also have a set of conventional constraints to satisfy. Then

Step 1 can be modified to Step 1" as follows:

Step 1": Compute any x^ such that :

Xĵ € (W k
c
n G kn H) .

• • • Q
(vii) Finally note that since the map x B (y,l) , yew(x) 00

is also a cut map, it is possible to employ it in our

43.'

algorithms if a subalgorithm suitable for the non-

different iable feasibility subproblem *SC'U{B (y.,1) jej(k)}]
00
 J

is available.

Theorem 2

*

Any accumulation point x of a sequence {x^} constructed

by algorithm 2 lies in G.

Proof

Case 1: The algorithm starts cycling between steps 2 and 3 so that

it it ie it
x =» x^ for all l^k , for some k > ©. This implies that at x tl>e

subalgorithm utilized in the definition of the map S cannot find a

it

point ye(x +T)° satisfying iKy)^0 in a finite number of iterations.

By assumption A4(i) this implies that x $ G , so that x eG.

Case 2; Suppose that step 4 is entered infinitely many times and

it

let K be the set of indeces k of a sequence converging to x so

K * that x^ x . Take any with j<k. By construction of the algorithm

we have :

Hence :

Xĵ <*B2(Xj, 6(Xj,j)) if je J(k-l)

0 < 5(x.,j)$ if J(k-l).
J J J

0 < «(x j Sj) s l j ^ - Xj[| 2 if je J(k-l)

0 < if j/ J(k-l)

for j j<k. Combining the above :

44

0 < «(xj,j) ^max{ej ,|| x^-x^l| 2> x k-x j|| 2

Hence, using (16):

, j) 0 as (25)

* c c
Suppose, contrary to what is to be proven, that x €G . Then, since G

*\ c
is open by (11) there exists a compact neighbourhood N(x)c G . By

* . *

convergence, there exists some j*> 0 such that Xj gN(x) for all j .

Hence by A4(ii), I " ^"(xj>j)| 0 as j 00 and using (25)

we see that <5 (Xj)"*" 0 as j 0 0. By the continuity of <S, the above
g

implies that <$ (x*)= 0, a contradiction to x * g G . Hence x*£G.

n

The computation of y^= S(x^,k) in step 2 combined with the tests

of step 3 has the following two purposes:

(i) It estimates using a finite number of operations if

x^ lies in G (assumption A4(i)), replacing the

conceptual test in step 1 of algorithm 1.

(ii) It generates a suitable approximation to the separator

6(x^) that allows convergence results to be established

(assumption A4 (iiJ).

However, a procedure that only performs (i) above may be computationalI7

cheaper than one that performs both (i) and (ii). Consider the following

assumption:

45.

Q
A5: Suppose that for all y£rQ the set

A(X) ^ { y x-y|| = 1} ae)

satisfies

A (x) n U ° * L C27)

Note that :

A(x) = {(x+T) \ (x*-T)° } . (28)

This assumption should be frequently satisfied in practice. In simple

words it requires that the set F does not possess "black holes" that

can be totally contained in x+T for some X g R n . The

following proposition defines a class of special but common cases for which

A5 is true.

Proposition 7

Suppose that :

(i) For all x€GC

(x+T)C n U £ j

(ii) The interior of U is connected.

Then A5 is satisfied.

Proof

Choose any xeG C. Since (x+T)C nU ^ j and U = (U°) by

proposition 1 we have that :

(x+T) cnu° £<j>. (29)

46.

• c
Also since xeG :

(x*T)° nu° + <f. (30)

Now suppose, contrary to what is to be proven that :

A(x)n U° aj . (31)

We then have using (28) and (31):

U° = C(x+T)°n U°] U [(x+T) Cn U°] u[A(x)nU°] =* AUB

= C(x+T)°n U°] u [(x+T)cn U°]

o c

where A and B are non-empty by (29) and (30). Because (xfT) and (x+T)

are open and disjoint, also A and B are open and disjoint and hence

they are separated (i.e. AnB =<J> and AnB =<|>). But then U° is the

union of two separated sets and thus is not connected, which is a

contradiction. •

Note that (i) in the statement of proposition 7 will be

satisfied for any practical problem. Suppose that A5 is true, then :

G = (x A(x)nU° = ft- {x T|>(x)i-0 for all A (x)>. (32)

Relation (32) can be utilized*to obtain procedures that satisfy A4(i) (but

not A4 (ii)) and are computationally cheaper than those that generate S.

Suppose that the map S*: R n x Z + -»-Rn is defined by such a procedure

(see Chapter III for implementation details). Then :

«(x) * 1 - llx-S'Cxo)!!, for all j * I(x)

for some I(x) > 0, w A m x G t r '

To present our final algorithm for the problem P^ we first state a

slightly stronger version of assumption A4.

A4 r: For any compact set X of G :

(i) There exists an integer I such that
X

ns(x,j» * 0 ,11 S(x,j) - x||oo< 1 for all jzi^,

for all x£X.

(ii) |ti(X) - II x-S (x, j) || J + 0 as 00 uniformly in

x for" x^X.

We are now in~a position to state our last implementable algorithm for

the problem P^.

\

Algorithm 3 .

Step 0; Set k=0, W Q = f .

c
Step Is Compute any

Step 2: Compute
S(x k,k) if xfc f

k ' s ' (V k) i f *k • V l j •

Step 3: If ^(y k) <0 or II y ^ x J L * 1 set

x k + = x f c, W k + 1 = W f c, k= k+1 and go to step 2.

Else proceed to step 4.

Step 4: Compute 5 (x^k) - 1 ~ If x ^ T ^ I L •

Set W k + 1 = u (B2(x./(x.,j)) j eJ(k)} .

' Set k=k+l and go to step 1.
•

48.

Theorem 3

Suppose that the map S satisfies assumption A4* and the map

S f assumption A4(i). Then any accumulation point x* of an infinite

sequence generated by algorithm 3 lies in G.

Proof

Case 1: Suppose that the algorithm starts cycling between steps 2 and

3 so that x* - x ^ ® Sf (x ^ k) for all k* k* for some k*> 0. Then

X * £ G by exactly the same arguments as in the proof of theorem 2 since S f

satisfies A4(i).

Case 2: Suppose that step 4 is entered infinitely many times and that

x^ x*. Also suppose that x*€Gc.There there exists a compact

c *
neighbourhood N(x*)cG and some k* > 0 such that N(x*) for all k £ k .

/ *
Let I„ be an integer associated with the map S and the compact set N(x)

N

in the sense of A4*(i). We observe that for k > m a x { I ^ k } > step 2 of

algorithm 3 will always generate y^ - S(x^,k) as the conditions of step 3

will always be satisfied (assumption A4 t(i)). Hence by exactly the
*

same arguments as in the proof of theorem 2 we can conclude that <5(x) 3 0

* c *
which contradicts x eG , so that x eG.

•

All the discussion, concerning algorithm 2 also applies

to algorithm 3. The difference is that in algorithm 3 a computationally

cheaper subprocedure is utilized in order to estimate if a certain point x^

c •
lies in G or not. Hence algorithm 3 should be computationally more

efficient than algorithm 2, especially in cases in which an indefinite

cycling between steps 2 and 3 eventually occurs (i.e. a point in G is

generated).

49.

In the next Chapter implementation details of the algorithms

proposed are presented, numerical examples are given and conclusions

about the properties of the algorithms are drawn.

50.

CHAPTER III

IMPLEMENTATION OF THE ALGORITHM FOR THE TOLERANCE PROBLEM

111*1 Introduction.

This chapter is dedicated to the implementation details of

the algorithms in Chapter II. Computational efficiency and overall

practicability are very much dependent on the way the algorithms

are implemented. In Section 2 ways of solving the subproblem of step 1

are discussed. Procedures for the global optimization problem of

step 2 that satisfy assumptions A4 and A4 1 are proposed in section 3.

Numerical examples are presented in section 4. Finally, in section 5

conclusions are drawn about the properties and the performance of the

algorithms.

Ill o2 On the solution of the feasibility subproblem.

£

We recall that each set W^ which is the intersection of the

complements of a finite number of balls, can be represented by a set of

continuously differentiable inequalities as follows :

W / - { x g j(x) < 0 for all j -e J(k-l) } (I)

where

g j(x) = S C x ^ j) 2 -|| Xj-xjj ^ (2)

and

V g^(x) = 2 (x. -x) . (3)
x J

The first important consideration is that the sets W^ are bounded so that a

c .
linear search in any direction will yield a point in W^. A suitable search

51.

direction is (^ - l ^ k - l ^ since, usually, moving in this direction will

yield points that lie nearer the set G. Hence starting from

• c
and taking steps in the above direction will produce some x^eM^

A suitable step length for these steps is a<5(Xk_^,k-l) where a < l . Note

that solving the subproblem x ^ 6 ^ i-n this way is computationally very

cheap since the evaluation of constraints of the form of (2) is only

required. More sophisticated methods that take into account all the

active constraints in (1) for the determination of the search direction

can be employed.

The simple approach described is crude and has the disadvantage

that other conventional constraints * cannot be included in the

feasibility subproblem of step 1. A much better method is to employ

a standard inequality solving algorithm. The algorithm in [22] which

is summarized in the appendix is very suitable for this purpose. It

combines the quadratic rate of convergence of Newton's method with the

finite convergence of first order algorithms. At iteration k it

generates x^ in the interior of each constraint set, thus increasing

the probability of x^ lying in G.

The general subproblem in step 1 of the algorithms of Chapter II

has the following form: N

P^ : Find a point x^ in the set W^ n Hn G^ defined by
k

the constraints :

and

g J(x) < 0 , j € J(k-l)

(4)

h \ x) < 0 , Ze L
IC

where each g J (x) has the form of (2) and L is some finite set (for

52.

Xj

notational simplicity we assume that the constraints h (x) <0,

& ei^ correspond to both the set H and the set G^). Let :

n / i
X^(x) 3 max i g (x)

A a
<l>k(x) = max {h (x)

j eJ(k-l)}

^ (x) = max {X k(x), <J>k(x)> .

(5)

(6)

(7)

Also let:

g J(x) = £ k (x) }

I^Cx) - U e L ^ h ^ x) = ^(x)} .

(8)

(9)

The standard assumption employed to prove convergence results for the

modified Newton algorithm of [22] is the following :

Al: The set{V xg
J(x) jeJ k(x); V x*f (x)k€Lk(x)}

is positive linearly independent for all x

such thati|;k(x)^ 0.

This assumption ensures that all x such that i|;k(x) ^ 0, a descent

direction for ^ k (x) exists and hence the algorithm cannot jam up at

a non-feasible point. Now clearly in the case of the problem P^ theye
— k

are some non-feasible points that do not satisfy Al. For example

th
at the centre of the (k-1) ball:

k-1
V = - V i > - 0

and hence if (k-1) e (u s u a l l y true), Al is violated at x ^ ^ ,

53.

Also if two balls intersect, there is usually some point on the line

segment connecting their centers which does not satisfy Al. Because all

these points are either local maxima or "saddle points" of the function

^^(x) (and all algorithms always reduce ^ at each iteration), they

do not usually create any practical problems since it is very improbably

for an algorithm to jam up at them, unless they are used as initial 'points,

From the above we conclude that is a suitable initial point

for the problem P-_ • .A suitable initial point for this problem is :
W k

K 3 v i + X (x k - i - y k - i }

where

A = a S C x ^ . k - l) / l l x ^ - y ^ H ^ a<l

and y^-}. ™ ^k^-i'k-l). The above initial point has the highly

desirable property that it . usually, lies nearer the set 6 than

Hence the probability of x^ lying nearer G than is large. If

*k-l * y k - l w e c a n r e P l a c e V l " yk-l b y V l * *k-2 i n t h e

expressions above-

From the above discussion we conclude that for each subproblem

P there exists a set of known "singular points" that do not satisfy
\

Al. Almost always these points do not create practical problems so that

a solution to the problem P ^ can be efficiently obtained by direct
k

application of the algorithm iii C22] employing the initial point rule.

proposed above. However, it is not theoretically guaranteed that jamming

at these points will not occur. Let the set X ^ contain all these

known "probable" singular points, i.e. those which are either centres of

balls or lie on the line segment connecting the centers of two intersecting

balls. More explicitly, X T T will contain the ball centers x.,jeJ(k-l). \ 2

5-4.

J 1
Also considering the balls corresponding to the constraints g (x) and

J 2 11 12
g (x), i 1 > i 2

 t h e gradients V x g (x) and V x g (x) are

linearly dependent on the line segment connecting their centers. This

segment can be described by the equation :

y =• a x . + (1-a) x. , 0 <a$ 1. (10)
31 J2

Substituting and solving for c<x in the equation :

h J 2
g (y) a g Cy)

we obtain :

J 1 , J 2
a , - . •• J 1 2 Jj J2 2 . (11)

2 l>j. II 2
J 1 ' J 2 z

Suppose that y.. . is the point obtained if a .. . from (11) is
J t > J 2 J 1 > J 2

substituted in (10). Then y. . will be included in if the
J 1 , J 2 \

following conditions are satisfied :

The satisfaction of these conditions implies that Al is probably

violated at y. . • From all the above it is clear that x™ i-s a

set of known probable singular points that can be analytically computed

for each k. Let :

dfc = min{^ k(x) x eXy } . (12)
k

55.

By the definition of X^ we have that

d k ^ 0. (13)

We make the following assumption: :

A2: d^ > 0.

Note that this assumption mild, since <^=0 will only happen if two

balls are tangent to each other. Now suppose that we have a point x

satisfying :

0 < x k (x) < d k . (14)

It will be shown later that such a point can be computed by a finite

procedure. Choose 1 such that :

C k X k (x) > / C l 5)

Note that when no conventional constraints are present (L^ empty) c^

can be taken equal to unity. Let :

A
^ k (x , c) max { c x k (x) , ^ (x) } . (16)

Then using all the above relations :

A —
\(x,c* k) - o k x k (x) < c k ^ ^ c-kxk(x) <c ̂ k(x, c. k)

for all x e ^ . (17)

Now consider the problem:

56.

P^, : Find a point in the setCW^) defined by
k

g , j (x) * 0 , jeJ(k-l) C18)

where

h *(x) < 0 , I e

g l j (x) - c ^ g j (X) . (19)

It is clear that W^ 3 ^ since (^ > 0 . Also by the definition of X ^
k

we see that:

\ = \ < 2 0)
k k

where X-., is the set of probable singular points of the sort considered
k

and is defindd for P^i in the same way that X „ is defined for P .
k k %

Let :

<j£(x) =» m a x { X £ (x) , <J>k(x)} ' (21)

where

X£(x) = max { g , J (x) |j€j(k-l)} . (22)

Clearly :

£(>• = • (23)

Let the set C^ be defined by

c. = { X
k * £ < *) * • (24)

Using (14), (17), (20), (23) and (24) we deduce that

w k - (w k) C C G k

C k " V = f <25)

X € C, .
k

A c
In words, we have a point x in a set C^ that contains the set (W£)

and does not contain any singular points oif the sort considered for the

problem P ^ . Let J£(x)and l£(x) be defined for P^, in-the

same way that J k(x) and ^ (x) are defined for P . Then we make the
k

following assumption in the place of Al:

Al*: The set {V xg^(x)jj € J^Cx); V x tu(x) JUL-^x)}

is positive linearly independent for all xeC^

such that 0 .

We c a n now directly apply the algorithm of 1223 to the,problem P,,

starting from the initial point xeC^. Because the algorithm always

reduces ^ (x) at each iteration we see that (by (24)):

x e < y - » A(x) e

where A(x) is the algorithm model map (see definition in [221).

Hence Al
f
 ensures that the convergence theory of [2 2] is valid and

• c
any accumulation point generated should lie in the interior of

c •
(and hence of W k). Note that if no conventional constraints are

c

present, the algorithm should generate a point in the interior of W k

in a finite number of iterations even if the sequence produced is not

convergent, since W, is compact.

58.

To summarize, it is possible by choosing x and c^ to

ensure that at all the "probable" singular points of the sort considered

the value of the maximum of the constraints is greater than its value

A

at the initial point x. Hence since the algorithm in [22] always reduces

the maximum of the constraints at each iteration, it is not possible for

it to jam at any of these singular points.

It is possible to generate some x that satisfies (14) with

a finite procedure because of the special form that the constraints g**(x)

have. Note that X^(x)-»- - 0 0 as || x H ^ -»-.«> . For practical reasons it

is advantageous to generate x satisfying the following relation instead

of (14), to avoid the parameter c^ being chosen too large

unnecessarily.

o < - f < x k (x) < dfc • (26)

A

The following algorithm will compute some x satisfying (26) in a

finite number of iterations. The first three steps perform a linear

search to generate points z^ and z^ satisfying :

v i > *

W s T •

a
The rest of the steps implement a bisection procedure to generate x.

59.

Algorithm I

Data: (i) <*> 0 , 0

a 5 (x ^ j k - l)
(A suitable value for a is a = , a < 1).

II II2

(ii) y 1 ^ " R
n such that x k (y 1) (i.e. y ^ ^)

k

(A suitable value is y^ =

(iii) y 2 e R n .

(For reasons discussed in the definition of the initial

point rule it is advantageous to use y 2 - y ^ ^ •

Step 0: Set i«l, j-1.

Step 1: Compute z. =» y^ + j a ^ - y ^) .

Step 2: If x k (Z j) ^ d k set j=j+l and go to step 1.

Else proceed to step 3.

9 sr°P a n a s e c x " 2j

• h j /
Else set a:.- ~ z., z. 3 z. - and proceed to step 4.

i J i J-l

Step 3: If X k (Z j)
> — * stop and set x - z..

h I
z. + z.

Step 4: Set x.̂ = —- —

Step 5: If 2~ < X k ^ x i ^ < * d k s t o p a n d s e t x = x £ *

Else proceed to step 6.

h a sl
Step 6: If X k (x i) ^ d k , set z = x ^ z . + 1 ® z £

d k h h ' *
~2

I f V x i) * 4 ' s e t z i + i = z l • Z i + 1 = x -

Set i=i+l and go to ^tep 4. •

60.

Theorem 1

The algorithm generates some x satisfying (26) in a finite

number of iterations (i.e. one of the "stop" commands is executed

after a finite number of iterations).
i

Proof

By construction of the algorithm once step 3 has . been

entered steps 1 and 2 are not used again. We have that:

- « as ||z.
J

Z j l L + 00 a s J

Hence there exists some finite j>0 such that x^Czj)* ^ and step 3

will be entered after a finite number of cyclings between steps 1 and 2.

N'ow suppose that none of the stopping commands (steps 3 and 5)

is executed so that the algorithm cycles indefinitely often between steps 4

h I

and 6. Then two infinite sequences {z^ } and {z^ } are generated that

have the following properties :

z
h
 - / II Zi+1 Zi+1 11 2 - I t - M i r

\
(z

i
) 5 d

k
 { 2 7)

Hence :

h &
zV - z. II 0 -»• 0 as i (2 8)
l l "2

61.

Since ^ ^ a n c* a Qonq)act set (the line segment joining

z^ and z^), they have accumulation points &nd by (28) they have

common accumulation points. Suppose z* is such an accumulation point

p. h "̂ h .
so that , zv ->• z* and z^ -»• z*. By the continuity of x k

and (27) we have :

h "Sc
X f c(z*) = lim x k 5 \ >

i-> oo

i £ I h

Jl "Sc
Xfc(z*) = lim x (z p S

i oo

iel
S;

This is a contradiction and hence the theorem is valid.

•

To summarize, it is possible by employing the techniques

described to readily solve the subproblem in step 1 of the algorithms

of Chapter II. If no constraints on the vertices of the tolerance region

are present (G^ - R n) , the solution is computationally very tiheap

since evaluation of the design constraints and their derivatives is not

required. The advantage of employing "vertex constraints" is that the

C -
set nHHG k is a much better approximation of G than or rrH.

Other conventional constraints (e.g. "box" constraints on the parameter
i ; ,

values) that define the set H improve the convergence properties of the

algorithm without seriously affecting computational efficiency. Note

that compactness of H guarantees the generation of accumulation points.

The initial point rule proposed causes the very desirable "centering

62.

effect" described which greatly speeds up convergence. The introduction

of conventional constraints has the sole purpose of improving the

convergence properties of the algorithms and does not affect the

convergence proofs presented in Chapter II. Hence these constraints

may be relaxed or removed if any difficulties occur during the

computation of x^ in Step 1 (e.g. jamming at a non-feasible point)

due to assumptions Al or Al v being violated (see appendix for a jamming

criterion). An interactive program allowing the specification of the

conventional constraints (i.e. the sets G^ and H) according to the

progress of the algorithm, is thus very suitable for the implementation,

of the algorithm.

Ill.3 On the computation of the separator estimates.

We recall from Chapter II that S(x,j) is the result of applying

~t(j) iterations of a certain algorithm to the global optimization

problem:

n(x) = min{ I y-x K y) a o } (29)

where T is a monotonically increasing truncation function. The estimates

of ri(x) and <S(x) are defined as :

n(x/j) x- S(x,j) |l (30)

and

A • s(x,j) =* l - n(x,j)*

This is where the inherent complexity of the non-convex problem P^

occurs. Problem (29) is equivalent to the determination of the "worst

case" points of the other methods in the literature. It is only in

63.

the one-dimensionally convex case that this computation can be replaced

by a finite dimensional problem involving the vertices only. The

general methods for global optimization that exist in the literature

[23] , C243, C25] are yet at an early stage. They utilize heuristic

principles and convergence proofs are not available. However the

problem (29) is considerably simpler than the general global optimization

problem. Note that (29) is equivalent to :

min (w |y J-x^|^w, j=l,...,n, <Ky)*0>.
y,w 1

(31)

The procedures proposed below for computing S(x,j) will- be shown to

satisfy assumptions A4 and A4 f of Chapter II. They utilize sets of "mesh

points" in (x+T). In this way uniform convergence to the global

minimum can be established since certain continuity properties are

present.

Procedure 1

Compute T (j)"uniformly spaced" points Z. (x) ® T A S ^ ,... ,zT in

(xfT)° where x(j) -*•
 00
 as j-*

0 0
. Order these points so that

II z. - x|| increases with i. Set y. = z.* where z.* is 1 1 1 "00 3 1 1

the first point in the ordered sequence such that ^(z.*)^ 0. Set

S(x,j) • y^ and n(x,j) -||x - S(x,j||00 . If no such point exists

set n(x jj) = 1.

Procedure 2 ,

Compute T(j) points Z. (x) in (x+T)°

spaced so that tends to zero as j"*" where :

e. = max min£ ||z-z
3 r e x+T, r = 1,...,x(j) } . (32)

Order these points and compute S(x,j) as in Procedure 1 above,

64.

Procedure 3

Compute a set Z^(x) of points as in procedure 2. Apply

an optimization algorithm for problem (29) using each of these points

as an initial point, stopping the algorithm when some optimality
!

condition is approximately satisfied. This yields an improved set

of points Zj(x). Order these and compute S(x,j) as in procedure 1.

Notes ^

(i) Most pseudo-random number generators should satisfy (32).

(ii) By the definition of the procedures the number of system

analyses -evaluations of $ -r required for the computation

of S(x,j) is N(j) where :

N(j) - i* J x(j) ^(x,j) n. (33)

Initially when the yield is small (rr(x) small), N(j) will be small.

(iii). Any heuristic procedure that improves on the estimate of

T i (x,j) generated by the above procedures can be employed

without affecting the validity of assumptions A4 and A4
f
 of

Chapter II. A simple technique is to employ a linear search

starting from S(x,j) and moving in steps along the line

segment joining S(x,j) to x. The step length should be

' • » .

chosen according to the density of the mesh points in Z.(x).

Figure I illustrates the operation of this technique

(||x-S(x,j)|| is the improved estimate of n(x)).

65.

FIGURE I

The linear searching technique.

1- IIx-S(x,j)II is the improved separator estimate.

6 6 .

(iv) The procedures proposed generate S(x,j) given x and j.

If algorithm 2 of Chapter II cycles between steps 2 and 3, j

is increased while x remains constant (this only happens

if all points in Z. (x) satisfy \JJ(Z)< 0). The mechanism

for generating Z^ +^(x) should be such that when j is increased

to j+l,T(j+l) - T(j) extra points are generated, i.e. Z.+^(x) »

Zj(x) uiz j +^(x). The extra points are ordered and S(x,j+1)

set equal to the first element Zr satisfying *Kzr)£ 0 in the

ordered extra set. This procedure is repeated when j+1 is

increased to j+2 etc.

(v) As discussed in note (ii) the proportion of points in Z.(x) .

that has to be tested for S(x,j)to be computed is small when

x is far from G. However as x approaches G this proportion

becomes larger and larger. It is possible to utilize the

following artifice (proposed by Soin and Spence C15]) to save

a considerable amount of computation. Suppose that x^ is

close to G so that 5(x.) is small, then x. L_ will be
i * i+l

close to x^ and (x^+^+T) will overlap a lot with X.+T.

Therefore many points in ^ (k -) can be employed in

saving re-evaluation of for these points. (This artifice was

not employed in the examples presented in the next section).

(vi) The choice of the truncation function x(j) is important for

computational efficiency. It is desirable for t(j) to be

small and increase slowly as long as this permits the computation

of S(x,j) satisfying (S(x,j)) £ 0. However if algorithm 2

cycles between steps 2 and 3, T(j) should be increased

considerably to avoid a large number of such cyclings before a

suitable S(x,j) is generated. One possible definition employed in the

filter examples of the next section is the following : ,

x(j+l) = x(j) + 100 if x . + 1 + Xj

x(j+l) - 2T(j) if X j + 1 - Xj

where T(0) is specified a priori (e.g. T (, O) = 100). Ideally, an

interactive program allowing the specification of the truncation

function as the algorithm progresses should be utilized.

Theorem 2

Procedures 1-3 that generate S(x,j) satisfy assumptions A4 and

A4 f of Chapter II.

Proof

Firstly note that procedure 1 also satisfies ê -* 0 as j

where e^ is defined by (32). Also Ti(x,j)£ n(x), by the definition

of the procedures $for all xeG . >

c

(i) Choose any x^G . Since U is equal to the closure of its

interior the open set (x+T)
0
nU° is not empty. Hence there

exists some y€Rn and some e >0 such that : x

Boo (y , M c f e + T) ° n u °] .

e
Now choose I(x) large enough so that e. < — for all j £ I(x).

J

Then, by construction of the set Z.(x), at least one point

A
 e

x
z. » (x+cr'.) € Z. (x) lies in Bfy,-^) for all j 5l(x).
J J J

 00
 z

Hence z! =• (x'+ a.) € Z. (x
f
) lies in B M (y,e) for all

J J J x
e
x

x'eB^Cx,) and for all ji* 1 0 0 . We then have :

o
 e

x
z! £ (x'+T), ^(z!)^ 0 for all x'eB (x,-^) ,
J J z

for all j £l(x)

where 2;! eZ^Cx'). By the procedure definitions, all

the above imply that :

e
II x* - S(x

f
,j)|L< 1, iKS(x',j)) for all x'eB^ (x , ^)

for all j *I(x).

e x c
Hence A4(i) is satisfied. Now the family of balls B_(x,—=-), xeX<=G

z

forms an open cover for the compact set X and there-exists a finite

subcover so that :

£

Xcu { B^ (x, - |) J xeX}

where X is a finite set.' Taking I » max (I(x) xeX} we see that
X. '

x-S(x,j)IL < 1, 4>(S(x,j))* 0 for all j S ^

for all xeX

so^ that assumptions A4*(i) is also satisfied.

69.

• c

(ii) Choose any xeG and let y€w(x) (recall that w(x) is

the set of minimizers of (29)). Choose any e > 0.

As in the proof of (i) above the open set

Y (y) - B . (y, |)n (x+T)°nU°

is not empty. Choose y'eR11 ande* > 0 such that :

B J y V) c Y^,(y) .

By arguments similar to those in the proof of (i), there exists

A

some integer N(x) > 0 such that at least one point y^ = (x + a j) e Zj (x)

lies in B o o(y
,,| l) for all j *N(x). Hence y! - (xT+<^) ez.(x«) lies

in B^y'je') (and in U°) for all x,€B00(x,|) and for all j*N(x). We

then have :

o * T<xf)£ Ti(xf ,j)*||xf-y! Il^^lla II w "llx-yj H

* llx-yll^ ly-yj \\j n(x) + f for all x
1
 e B w. (x, |)

for all j *N(x).

By the continuity of rTi(x) there exists some 6> 0 such that :

InCx) -nCx
f
) for all x'eBjx, <?).

Taking 6 = min{<Sr, — 0, we have :

| r<x
T
) - n(x

T
, j) | * e for all x' €B J x ,

for all j *N(x).

70.

The family of balls-Boo(x, ̂), xeX forms an open cover for the compact

C * •
set X<=G and there exists a finite subcover, so that :

X C U {B (x,6) I xeX} 00 x

A I A

where X is a finite set. Setting » max(N(x) x.ex) we have that :

|n(x) - "n(x,jj $ e for all j £N > X, for all x^X

so that A4 (ii) and A4* (ii) are satisfied.

•

We finally turn out attention to defining procedures that

satisfy A4(i) only and hence generate S'(x,j) for algorithm 3 of

Chapter II. Recall that :

A(x) $ Cy llx-yll - 1 >. (34)

Procedure 4

..J Compute x(j) "uniformly spaced" points Z! (x) =

ixi A (x). Set z! equal to the first point z^ eZj(x) that satisfies

iKz^) Then, by performing a linear search along the line segment

joining at to x and using a bisection procedure if necessary, compute

A A

a point z such that K z) > 0, || x-zll^l (this is always possible
A

by the continuity of if>). Set S T(x,j) = z. If no point z^ as above

exists, set S f(x,j) -

71.

Procedure 5

Compute x(j) points Z! (x) = { z n , . . . , z in A (x)
J 1 x vj J

spaced so that g! 0 as j « where :

G ! = max m i n { | | z - z II z e A (x) , r»l,..., t(j)} . (35)
j z r r11 oo i

Then proceed as in procedure 4 above.

•

Notes

(i) Procedures 4 and 5 that generate S'(x,j) are cheaper

computationally than those that generate S(x,j) since

no ordering of points is necessary. Also since A(x)

is of dimension n-1 (where as x+T is of dimension n),

for a given j the value of T(J) may be chosen to be

smaller (less points are necessary to form a mesh of

a certain density in A(x) than in x+T).

(ii) All the points in Z!(x) satisfy ||z-x|| = 1 (i.e.
J

lie on the boundary of x+T) and are more likely to

violate the specifications than points in the interior of x+T.

Hence to estimate if a point lies in G or not,- it is

advantageous to compute S f(x,j) instead of S(x,j)

(given that assumption A5 of Chapter II is satisfied).

Theorem 3

Suppose that assumption A5 of Chapter II is satisfied. Then

procedures 4 and 5 that generate S f(x,j) satisfy assumption A4(i)

of Chapter II.

Proof

c «

Choose any x^O . Since assumption A5 is satisfied (see

Chapter II, relations (27) and (32)), there exists some ye A(x)

such that if;(y) > 0* By the continuity of ip there exists some s >0

such that :

iKy') > 0 for all y
T
e [B m (y,e)n A(x)] .

By the definition of the sets Z!(x), we can choose an integer I(x)

large enough so that at least one point z^e Z!(x) lies in B^ (y,e A(x)

and hence satisfies I (J(Z^)> 0, for all I(x). The desired result

now easily follows from the procedure definitions.

•

III.4 Examples.

Algorithm 2 of Chapter II was programmed in FORTRAN I? and

several examples were studied. Six of these examples are presented.

The first three are two-dimensional and are intended to highlight the

properties of the algorithm. The last two are practical filter

design problems and were kindly provided by R. So in

Example 1

2
The set F ^ is defined by the constraints :

fVx) » -x 2 + x 2 - 1.5 S 0

f 2(x) » x x- 0.5 (x £-l)
2 - 1.5 S 0

f 3(x) = -0.2 x x
2 - x 2 - 0

f 4(x) = -x 1 -(2X 2 -l)
2 - 1* 0'

f 5(x) = x 2 + X 2
2 - 13 s 0.

Note that in the above equations the notation has been modified for

convenience, so that x^ is the first component of the vector x and so on.

Also :

T ={ t € R 2
It1 U l , i = 1,2} .

The values of the parameters utilized in the algorithm are a 3 y =» 6>

0.5 (see (17) of Chapter II). Procedure 1 of section 3 that generates

the separator estimates was implemented by simply taking Z^(x) to be the

set of uniformly spaced mesh points in (x+T)° such that the distance

between adjacent points is — — , where :
a(k)

a(k+l) = a(k) + 1 if x k + 1 f ^

cr(k+l) =• 2a(k) if x k + 1
= \

and cr(0) =» 4. All the vertices and the nominal point were utilized in

the definition of the set G^ at each iteration, except when difficulties

were encountered (e.g. jamming of the feasibility subalgorithm) in step 1.

In these cases all the vertices were removed from T^ and the computation

in step 1 was allowed to proceed with no conventional constraints present.

Tables 1, 2 and 3 summarize the results of three runs from different

initial points ((4,4) for run 1, (-5,-2) for run 2 and (-4,4) for run 3).

The progress of the algorithm for these runs is illustrated in figures 1, 2

and -3 respectively. The operation of the algorithm was stopped when cr(k)

reached the value of 100 and 5(2^,k) did not satisfy the conditions in

Step 3. ISUB denotes* the number of iterations that the feasibility

subalgorithm performed in step 1. Starred points are points at which

the "vertex constraints" had to be removed. Note that in run 3, when k^O,

the feasibility subalgorithm failed to find a point in G^ (i.e. a

74.

point x such that the vertices of x+T satisfy the specifications) and jammed

A A

up at a point x. Then x^ was taken to be equal to x and the algorithm .

was allowed to proceed from then on in the normal way. Several trial runs

with less "vertex constraints"were performed. As expected, these

required more iterations for convergence to occur. If the initial

point lies reasonably close to the set G convergence can be obtained with

no conventional constraints at all. However, it is recommended to include

at least the nominal point in each set T , so that the initial point rule k
operates in the desired manner.

\

k
• a k

I SUB
y k S C x ^ k) k

• a k
I SUB

1
, x

2
X

1
V

2
v

S C x ^ k)

0 4 4 0.700 0.461

1 8 if i» 1.575 0.711 0.125

2 9 1 0.515 0.305

3 18 tt tt

4 36 tt it

5 72 it it 1.502 0.944 0.039

6 100 1 0.488 0.279

TABLE 1 (Initial point (4;4))

75.

k a k
ISUB

\ y k
5(x k,k)

k a k
ISUB

X L x2 y 1 y2

5(x k,k)

0 4 4 -1.553 0.125 -1.803 0.125 0.750

1 5 1 -0.370 0.061 -1.170 0.461 0.200

2 6 1 -0.094 -0.154

3 12 if II -1.010 0.513 0.083

4
' I 3 1 0.075 -0.166 -0.232 -1.012 0.154

5 14 1 0.263 0.052

6 28 II it

7 56 it ti

8 100 0.263 0.052

TABLE 2 (Initial point (-5,-2))

k o (k) ISUB * k y k 6 (x ^ k)

1 X 2 X 1
y

2
y

* 0 . 4 6 -1.481 1.815 -0.981 2.565 0.250

*
1 5 1 -1.778 1.500 -2.378 0.900 0.400

2 6 2 -0.524 0.669 -1.024 0.502 0.500

3 7 1 0.426 0.226

4 14 it II

5 28 it it

6 56 it it

7 100 0.4.26 0.226

TABLE 3 (Initial point (-4,4))

2
x

-5 -4

H

| x6
" v ©

I 4

_ 3 J

FIGURE I

Example 1, run 1.

FIGURE 3

Example 1 , run

5-, x

Example 2

2 .
The feasible set F=R is defined by

f 1(x) « X - 2 S 0
2

f 2(x) -x 2 - 3 S 0

f 3(x) ® -x - 2 sin 2X 9 * 0
1 ^

A
f (x) a x 1 - 2cos 2x 2 -

All the rest of the data and conventions are as in Example 1.

Tables 4,5 and 6 summarize the results of three rims from different

initial points. These runs are illustrated in figures 4,5 and 6.

As before, starred points are points that have been computed after

the vertex constrains have been removed because of difficulties (e.g.

jamming) in step 1. Note that in this example, because T contains all
J& .

the vertices of T each G^ consists of three disjoint subsets one of

which contains G. Hence, if the point x
0
e G(y (computed in the first

iteration) lies in one of thpse subsets that do not contain G, it is

probable that jamming will occur in step 1 at a certain iteration and

that the "vertex constraints" will have to be removed at some stage,

(this happened in all three runs presented).

80.

k a(k) I SUB fiCs^k)

. x* y V y 2

fiCs^k)

y V y 2

0 4 8 2.116 -1.992 1.866 -2.242 0. 750

. 1 5 2 3.234 -1.835 • 3.434 -1.835 0.300

2, 6 1 1.890 -1.916 1.557 -2.250 0.^67

3* 7 1 2.428 -0.874 3.143 -1.588 0.286

4 8 1 1.837 -0.785

5 16 tt it

6 32 tt it

7 64 it it

8 100 1.837 -0.785
•

TABLE 4 (Initial point (-3,-4))

k aCk) I SUB y k « < V k) k aCk) I SUB

2
X T 1

T 2

« < V k)

0 . 4 6 2.575 1.000 3.075 1.500 0.500

1 5 1 2.025 0.700 1.825 0.700 0. 800

2* 6 1 - 3.368 0.700 3.535 1.198 0.500

3 7 2 2.700 0.081 1.984 0.800 0.286

4 8 2 3.158 0.000

5 16 tt it

6 32 tt ii

7 64 « ti

8 100 3.158 0.000

TABLE 3 (Initial point (-4,4))

a i .

k <*k) I SUB
f (V k)

k <*k) I SUB
1 X x 2 y 1 y 2

f (V k)

0 4 5 2.286 -1.994 1.786 -2.494 0.500

1 5 1 3.345 -1.870 3.545 -1.870 0.800

2 6 1 2.002 -1.881 1.668 -2.214 0.667

3* 7 1 2.592 -0.890 3.164 -1.462 0.429

4 8 2 1.842 -0.785

5 16 »»

6 32 »»,

7 64 »»

8 100 1.842 -0.785

TABLE 6 (Initial point (5,-4))

FIGURE 4

Example 2 , run 1 .

I

I

» (-3,-4)

F 1
x

0;

00
N3

-4 A

-5-"

FIGURE 5

Example 2, run 2.

00
UJ

2
x

FIGURE 6

Example 2, run

85.

Example 3

2
The set E&R i s defined b y the constraints :

f X (x) - x.j-4 SO

f 2 (x) = -x^-2 SO

f 3 (x) - -0.5 x x sin2 X
x
 + x

2 " 3 , 9

f 4 (x) » 1.5 cos 2 x x - x 2 S 0

f 5 (x) - x 1 - (X 2 - 2)
2 - 0.5 S O .

Tables 7,8 and 9 summarize the results of three runs which are illustrated

in Figures 7,8 and 9 respectively. Note that removal of the "vertex

constraints" was necessary at some stage in all three runs.

(3-9 = f)

k
a
(k) ISUB

*k k
5 (\ , k) k

a
(k) ISUB

1
. . . X-

2
x

, 1 y 2
y

5 (\ , k)

0* 4 6 -2.749 -0.225 -2.749 -0.225 1,000

1* 5 1 -1.590 1.015 -1.590 1.015 1.000

2 6 2 -0.154 2.170 -0.655 1.670 0.500

3 7 1 . 0.539 2.669

4 14 it tt

5 28 ri rt

6 56 it tt

7 1000.5392.669 .

TABLE 7 (Initial point (-4,-2))

8 6 .

k o(k) ISUB
X
k

y k "sOc^k)

1
X .

2
x_ 1-

V
2

y •

0* 4 8 -2.147 4.178 -2.147
i /

4.178 1.000

1* 5 1 -0.501 4.500 -0.501 4.500 1.000

2 6 13 0.737 2.589

3 12 tf t t

4 24 tt i t

5 48 tt tt

6 96 tt tt

7 100 0.737 2.589

TABLE 8 (Initial point (-4,4))

k c(k) ISUB
*k y k

^ 1
X

2
x_ 1.

y 2
y

0 4 10 2.994 1.639 2.994 1.389 0. 750

1 5 2 2.670 2.708 2.470 2.708 0 . 8 0 0

2 6 2 2.993 1.889 2.993 1.389 0 . 500

3* 7 , 1 4.522 2.726 4.522 2.726 1.000

4 8 8 2.815 1.371 2.940 1.246 0.875

5 9 1 2.271 2.578 2.271 2.800 0 . 778

6* 10 1 0.849 1.277 0.449 0.877 0 . 600

7 11 2 0.820 2.449

8 22 tt i t 0.002 1.495 €.045

9 23 2 . - 0.718 2.623

10 46 t J i t

11 92 I t tt *

12 100 0.718 2.623 .

TABLE 3 (Initial point (-4,4))

FIGURE 9

Example 3, run

90.

Example 4.

3-
The set FcR is defined hy the constraints :

f XCx)

f 2(x)

X 1 " X 2 ~ 1 , 2

-2x 1 + x 2 $ 0

f 3(x)

f 4(x)

- x t - 0.5 (x 3-l) - 1 $ 0

2 2 2
x x + x 2 + x 3 - 8 * 0 .

Tables 10 and 11 summarize the results of two runs.

k <*(k) ISUB
V yk.

k <*(k) ISUB 1
X

2
X

3
x w

1 V 2
y

3
y

0 4 12 -0.310 -0.699 0.835 -1.060 -1.499 0.835 0.250

1 5 1 -0.006 -0.394 0.835 -0.006 -0.006 -0.435 0.600

2 6 5 0.000 -1.085 0.606

3 12 u II it

4 24 n it it

5 48 ii it it

6 96 ii it ii

7 100 .0.000 -1.085 0.606

•

TABLE 10 (Initial point (-3,3,3))

91.

i

*k
y k

k /
a(k) ISUB

1
X 2

X
• 3
X

. 1 y 2
y

3
y

*
0 4. 6 1.511 -0.057 0.000 1.511 -0.057 0.000 l.OOO

1 5 9 0.274 -0.585 0.943 0.074 0.015 0.343 0.400

2 6 4 0.000 -1.022 0.684

3 12 rt if it

4 24 rr rr rr

5 48 Tf ri ti

6 96 ft tr it

7 100 0.000 -1.022 0.684

TABLE 11 (Initial point (2,0,-2))

Example 5

This is a three-dimensional low-pass filter design example normalized

in frequency C8 3 . The ̂ circuit details and specifications are shown in the

appendix. The parameter values shown on the circuit diagram are given

typical values and were used as the initial point. Procedure 2 of section 3

was employed to implement step 2. The points constituting each sdt Z.(x)

were generated by a pseudo-random number generator. The truncation

function defined in section 3 was utilized and the linear searching technique

described was employed to improve the separator estimates. All the

nominal points generated by the algorithm were required to lie in F , but

no other conventional constraints were introduced. The values of the

parameters used are T=-l, £ - 0 . 8 , a = ^ • Table 12 summarizes the

results of four runs with different parameter tolerances. The initial

yields were estimated by Monte Carlo analysis involving 100 points, where

as the final yields by Monte Carlo analysis involving at least 1000 points.

The percentage tolerances shown are with respect to the final point. IT

denotes the number of iterations and N the total number of circuit

analyses performed in step 2 of the algorithm. Tables 13, 14 and 15 shov

in detail the progress of the algorithm for runs 2, 3 and 4 respectively,

Almost all the subproblems in step 1 were solved in one iteration. N(k)

denotes the number of circuit analyses performed in step 2 of the

i

algorithm at iteration k . The yields at intermediate iterations were

estimated by Monte Carlo analysis involving x(k) points. It can be

observed that very few circuit analyses are necessary for the separator

estimations at low yield points. The number of circuit analyses increases

as x approaches G. Hence at high yield points it is necessary to

employ the artifice that takes advantage of the overlap of successive

tolerance regions (see section 3) to ensure an efficient implementation.

(This artifice was not employed in the examples presented). An interactive

program allowing the specification of the truncation function x(k) as

the algorithm progresses would also be desirable. Note that in run 4 thfe

tolerances of the parameters are near their maximum values (see Bandler

C 8]).

Run

T O L E R A N C E S Initial
yield

Final
yield IT N Run L 2 (H) C(F)

Initial
yield

Final
yield IT N

1 0.085

5.1%

0.085

5.1%

0.055

5.0%

64% 100.0% 1 9

2 0.100

6.0%

0.100

6.0%

0.070

6.3%

62% 99.8% 2 188

3 0.120

7.1%

0.120

7.0%

0.075

6.9%

61% 99.4% 3 217

4 0.200

10.5%

0.200

10.6%

0.075

7.7%

59% 98.7% 4 162

TABLE 12

Jc L X (H) L 2 (H) C(F) tKxj^k)
Yield r(k) NCO Jc

0

1

2

1.600

1.671

1.658

1.600

1.688

1.674

1.050

1.118

1.106

0.700

0.13,8

64.0%

98.5%

99.8%

100

200

12

176

0

1

2

1.600

1.671

1.658

1.600

1.688

1.674

TABLE 13 (RUN 2)

94.

k
L ^ H) L 2 (H) CCF) Yield T(k) N(k>

0 1.600 1.600 1.050 0.737 61.0% 100 14

1 1.689 1.710 • 1.135 0.411 88.5% 200 53

2 1.639 1.663 1.103 0.247 97.7% 300 150

3 1;684 1.707 1.086 99.4%

TABLE 14 (Run 3)

k L , (H) L 2 (H) 0 (F) 6 (V k) Yield T(k)

0 1 . 6 0 0 1 . 6 0 0 1 . 0 5 0 0 . 8 3 1 59.0% 100 19

1 1 . 7 3 5 1 . 7 7 5 . 1 . 1 7 4 0 . 9 7 9 43.0% 2 0 0 14

2 1 . 8 7 2 1 . 8 5 4 1 . 0 4 1 0 . 4 4 9 90.7% 300 47

3 1 . 7 8 9 1 . 7 7 8 0 . 9 7 9 0 . 4 3 0 93.2% 4 0 0 82

4 1 . 8 9 1 1 . 8 7 8 , 0 . 9 8 7 . 98.7%

TABLE 15 (RuM 4)

Example 6

x This is a seven-dimensional high-pass filter design example.

The circuit details and specifications are shown in the appendix. Table 16

summarizes the results of four runs with different parameter tolerances

and Table 17, 18 and 19 the progress of the algorithm for runs 1,2 and 4

respectively. All the conventions and algorithm parameters are as in

example 5 except that no conventional constraints at all were employed in

this example.

95.

Run

T O L E R A N C E S
Initial Final

Yield IT N Run x^ (nF) x 2(nF) X 3 (H) x 4(nF) X 5 (t iF) xfi(H) x ?(nF) Yield
Final
Yield IT N Run x^ (nF) x 2(nF)

1 0.33

3.0%

1.11

3.0%

0.12

3.1%

0.33

3.0%

2.70

3.0%

0.09

3.0%

0.45

3.0%

86% 99.7% 2 64 1 0.33

3.0%

1.11

3.0%

0.12

3.1%

99.7% 2 64

2 0.47

4.1%
\

1.44

4.0%

0.16

4.1%

0.41

3.9%

3.40

3.8%

0.13

4,2%

0.60

4.0%

75% 98.9% 4 198

3 0.72

5.8%

1.85

5.1%

0.20

5.1%

0.50

4.9%

4.50

5.0%

0.15

5.3%

0.70

4.9%

62% 98.7% 4 164

4 0.76

6.0%

2.10

5.8%

0.22

5.7%

0.61

6.0%

5.20

5.8%

0.16

5.7%

0.81

5.7%

57% 98i6% 4 166 4 0.76

6.0%

2.10

5.8%

0.22

5.7%

0.81

5.7%

57% 98i6% 4 166

TABLE 16

x x(nF) x 2(nF) X3(..H) x 4(nF) x,.(nF) X 6(H) x^(nF) i K x ^ k) yield T(k) N<k) i K x ^ k)

1

2

11.00

10.67

10.82

37.00

36.54

36.70

4.00

3.95

3.94

11.00

10.66

10.51

90.00

89.48

89.79

3.00

2.96

2.97

15.00

14.65

14.80

0.585

0.202

86.0%

96.0%

99.7%

100

200

29

35

TABLE 17 (RUN 1)

96.

k x ^ n F) x 2(nF) x,(H) x 4(nF) x 5(nF) x f i(H) x ?(nF) 5(x k,k) Yield r(k) N(k)

0 11.00 37.00 4.00 11.00 90.00 3.00 15.00 0.322 75.0% 100 21

1 11.21 37.23 4.02 10.79 89.55 3.03 15.21 0.664 64.0% 200 9

2 11.70 36.50 3.97 10.30 88.68 3.08 14.71 0.279 95.3% 300 67

3 11.43 3(5.15 3.93 10.57 88.24 3.10 14.99 0.179 97.5% 400 loi

4 11.58 35.96 3.91 10.42 88.51 3.09 14.84 98.9%

TABLE 18 (RUN 2)

k x x(nF) x 2(nF) X 3 (H) x 4(nF) x 5(nF) X 6 (H) x ?(nF) fitx^k) Yield x(k) N(k)

0

1

2

3

4

11.00

11.61

12.00

12.40

12.67

37.00

37.62

37.14

36.67

36.34

4.00

3.93

3.87

3.92

3.89

11.00

10.39

10.77

10.37

10.11

/
90.00

/

91.28

90.73

89.90

90.38

3.00

2.93

2.89

2.84

2.82

15.00

14.39

14.00

14.40

14.14

0.459

0.449

0.358

0.220

57.0%

82.5%

89.0%

96.2%

98.6%

100

200

300

400

8

3

53

102

TABLE 19 (Run 4)

97 .

III.5 Di.3cuasi.oii.

As the numerical examples reveal the cut map algorithm

(algorithm 2 of Chapter II)performs well, mainly because of the

following reasons. Firstly, the feasibility subalgorithm, [22J , works

well finding points in the interior of each constraint set very efficiently.

Secondly, because the constraints that define the cuts are very simple

(much simpler than the circuit constraints), the suhproblem in step 1,

is usually solved in one or two iterations. The initial point rule

adopted causes the very desirable "centering effect" (i.e. encourages

the generation of new points that lie nearer the set G and have smaller

separator values and substantially reduces the total number of iterations),

In addition, the cut dropping scheme ensures that the complexity

of the subproblems remains low throughout the operation of the algorithm.

The inclusion of conventional constraints either involving the vertices

or relating to the magnitudes of the parameters results in better

convergence properties since it ensures that each cut is a good

approximation to the set G . These constraints can be removed if problems
\

are created in step 1 since they are not necessary for the convergence

proofs in Chapter II. When a good initial point lying reasonably clos&

to the set G is used, it is not necessary to employ any conventional

constraints at all, because the "centering effect" of the initial

point—rule usually causes the algorithm to converge rapidly. In such

cases the derivatives of the constraints are not utilized and the

algorithm works by performing "pass-fail" tests only in step 2. Because

the feasibility subproblems are easily and efficiently solved, most of

the computational effort is dedicated to performing "pass-fail" tests.

Hence, skilful programming dramatically increases the efficiency of the

implementation. By adopting the techniques discussed in Section 3 in

an interactive program it should be possible to obtain further

improvements on the results presented. The points that constitute

the sets Z^(x) should be generated either so that they form a uniform

mesh in x+T (procedure 1 of section 3) or by employing a pseudo-random

number generator (Procedure 2 of section 3). Some loss of accuracy

in the estimation of the separators was (as expected) detected when

the second method was employed. However, since the programming

complexity of creating uniform meshes of points is great for high

dimensional problems, procedure 2 of section 3 is more appropriate for

practical applications.

Because the separator estimates are always smaller than

their exact values and the feasibility subalgorithm finds points in

tfid interior of each set, the algorithm is not sensitive to the

accuracy of the separator estimates. Combining the above with the

fact that at low yield points few pass-fail .tests (circuit aftaiyses)

are required for the generation of these estimates, we conclude that

large increases in yield can be efficiently obtained. In Chapter VI

the cut map algorithm is compared with the rest of the methods in

the literature.

99.

CHAPTER IV

CUT ' MAP ALGORITHMS FOR THE TOLERANCE—TUNING PROBLEM

IV.l Introduction.

In Chapter II cut map algorithms for the pure tolerance

problem have been proposed. Their purpose is to generate nominal values

for the components of a certain system so that the design specifications

are met whatever the actual values are, as long as they fall in a

certain given tolerance region. However,in practice it sometimes turns

out that very tight tolerances are necessary for a solution to the pure

tolerance problem to exist. Very tight tolerances may be very costly

or even impossible to produce. Hence it is standard practice to

permit post-manufacture tuning or trimming of certain components, so

that acceptable component tolerances can be adopted. The tolerance-

tuning problem is to find a set of nominal values for the components

so that whatever the actual values are - as long as they fall in a

certain tolerance region - the specifications can be met by tuning.

In this chapter the ideas of chapter II will be extended to problems

in which tuning is also present and algorithms for the tolerance-^

tuning problem will be proposed.

Suppose, as: before, that xeR11 is the vector of nominal values

of the components. Also suppose that the first I parameters can be

A n
tuned or trimmed. We now define the continuous map r : R R by:

. ' A q 1 if i S £

r (q) = , q e R . CD
0 if &<i £ n

The tolerance region is defined as before (after normalization) b y :

ICO.

T = { t e R n |tL| $ 1 , i =• l,...,n }. (2)

Let the tuning region be defined by;

„ A , £
Q =* 1 q€R -a . Sq

1 $$.} = { q
1 1

-a Sq S 0 (3)

Hence, as before, the maximum deviation of the ith parameter (isl,...,iO from

its nominal value is unity. Also the ith parameter (i=l,... ,1) can be

tuned by an amount specified by a. and 3^. Usually a. - 3^> 0.

If either, a^ or ^L id zero, we have one way or irreversible tuning

or trimming; an example is laser beam resistor trimming in the manufacture

of high quality integrated circuits. The tolerance-tuning problem can

now be stated as:

P_ _ : Find a point in the set G defined by:

G =» (x£R n| for all t-£T there exists some q^Q

such that f J (x+t+r (q)) $ 0 , j=l,...,m} . <4)

The functions f?: R n-*R, j=l,...,m specify as before the inequality

constraints that correspond to the design specifications. Let :

^(x) = max{ f^(x)|j=l,...,m} (5)

$(x,q) = A*(x+r(q)). (6)

* n &

Note that R x R + R is a continuous function by the continuity

of tp and r. Also note that G can be expressed in the following way :

(xeR n
for all teT there exists some qtfQ

such that $(x+t,q) $ 0 }. 0)

Bandler 181 tackles the tolerance-tuning problem by distinguishing

between effectively toleranced and effectively tuned components, as

discussed in Chapter I. All his results are based on the assumption

of one-dimensional convexity. Note that it is precisely in strongly

non-convex cases that one hopes to obtain large increases in the

component tolerances by the introduction of tuning. Polak and

Sangiovanni-Vincetelli discuss the tolerance-tuning problem in [18]

and present algorithms that employ non-differentiable optimization

techniques. Finally, Polak in [19] presents an implementable outer

approximations algorithm for the general engineering problem when

tuning is permitted.

It is the purpose of this Chapter to present specialized cut

map algorithms for the infinite dimensional problem P^ q which possess

the following features :

(i) They construct sequences of points whose accumulation

points (if they exist) are solutions of the non-

convex problem P T n .

(ii) They have established convergence properties.

(iii) They are directly implementable and are suitable for

interactive computer-aided design.

In section 2 theoretical results that lead to the statement

of a conceptual algorithm for the problem P _ are presented. An

102 v

implemetitable algorithm is proposed in section 3. Implementation details,
i

numerical examples and conclusions can be found in Chapter V.

II.2 A conceptual algorithm for the tolerance-tuning problem.

Let the sets F (the set of feasible nominal designs) and U be

defined in the same way as in Chapter II :

F i {x€Rn

A n
u » { x a r

1>(x)* 0 }

\p(x)*0} •

Also let :

Y »{ xeR n $(x,q) * 0 for all qeQ } „

C8)

O)

CLO)

As it will be shown, the interior of Y consists of all those nominal

points, which cannot be tuned to satisfy the specifications(i.e. to lie in F),

Figure I illustrates the definitions of the sets F,U,G and Y. The following

assumptions are made:

Al;

A2:

A3:

The functions j=l,...,m are continuous.

The sets F and G are non-empty and F is equal

to the closure of its interior.

The interior of F satisfies:

A4:

F° -{ x£R n
1> (x) < 0 > .

The set Y is equal to the closure of its interior.

(LI)

The first three assumptions are the same as those of Chapter II. Note

that A2 and A3 do not imply A4. (Consider F ={

and Q "(qeR | - 1 S q S 1} so that U = { x€R2 [x1 N i l and Y = (x€R2 x 1 = 0>;

clearly Y has no interior).

I x 1 ! * - 0 }

x+T

FIGURE I

The sets F, U, Y and G when

x^.is tuned. The arrows point

to the set boundaries.

104.

Now consider the function TI : R -*R defined by:

n(x) = min (lly-xll.lyff}. (.12)

Since Y is a closed set, II y-x ll̂ is bounded from below for fixed x
A

and II x-y IL, 00 as II y II^ 00 , the minimum exists. Nbte that ^Cx) is

defined analogously to n(x) in Chapter II except that the set U is

replaced by the set Y . Let :

fit*) - 1 - Tl(x). (13)

Proposition 1

The function <5(x) is a separator for the problem P_ n .

Proof
A

(i) $(x) >0 for all xgG°.

Choose any x^G . Then there exists some ye (x+T) such that :

$(y,q) > 0 for all q eQ. (14)

Using the continuity of , the fact that x+T is equal to the closure

of its interior and the compactness of Q, there exists some y f £(x+T)0

that satisfies (.14) (i.e. lies i n ^) . Hence :

n(x) *ll x-y T II <1 »*S(x)> 0.

(ii) <5(x) is continuous,

This follows by exactly the same arguments as in the proof

of (ii) in proposition 1 of Chapter II.

•

105.

We have thus obtained a separator for the problem P T , Q
by simply extending the ideas that led to the definition of the separatoT

for the problem P^,. The next step is to define suitable cut maps.

Proposition 2

The set U satisfies :

(i) U ' V (U°)

(ii) U° {x eR
n ip(x) > 0}

Proof

See proposition 2 of Chapter,II.

Proposition 3

Let :

W - ^ {B (y,1) ye Y}

W r = u {B (y, 1)1 ye Y°}

Then W=W r.

Proof

n

The proof is exactly the same as that of proposition 3 of

Chapter II except that Y replaces U . (Y = (Y°) by assumption A4).

•

106.

Proposition 4

The interior of Y satisfies :

$(y,q)> 0 for all qeQ}

Proof

* O
(i) YcY°

* A

Suppose that yeY, then ^(y,q)> 0 for all qeQ. By the

continuity of $ and the compactness of Q, tihere exists somee> 0

such that :

$ (y T , q) * 0 for all y ' e B (y,e) and all q £ Q .

Hence y'eY for all y 1 e BB(y,e), so that

o *
(ii) Y C Y

Suppose that yeY° and that (contrary to what is to be proven)
A A

^(yjQ) = 0 for some qeQ. By proposition 2 (ii) and (6) we have ;
\

^(y+r(q)) = 0 y + r(q)^U°. (15)

Since y^Y0 there exists some e>0 such that :

B 0 0(y,e)
cY.

Hence:

Ky T,q)* 0 for all y fe B00(y,e) and all q*Q

107.

so that :

A A

K y T , q) =iKyT+r(q))* o for all y ' c B ^ y ^) .

Hence:
A

If>(z)£ o for all z e B^Cy+r (q) ,e)

A ^

which implies that y+r(q) eU , a contradiction to (15). Hence

the proposition is true.

Proposition 5

G « n{B (y,l)C yeY} = W c . (16)

Proof

We prove that G = (WT) and use proposition 3.

(i) G<=(W')C

If this is not true there exists some xe(GnWr) so that there

exists some y^Y 0 satisfying :

(a) For all t^T there exists some qeQ such that

$(x+t,q)S0 (as x^G)

(b) I * - y l L < l (as x£W')

(c) $(y»q) > 0 for all qeQ (by proposition 4).

Let t = y - x , so that teT by (b). Then

108.

A A A A A A A A

" (y+x-x,q) = i|>(.x+t,q)$ 0 for some qeQ.by (a).

But this is a contradiction to (c) so that (i) is true.

(ii) (WT)°cG

c c
If this is not true, there exists some x£(W f) n G . Hence

A A A

there exists some t^T such that *Kx+t,q)> 0 for all qeQ. By the

A

continuity of) and the compactness 4>f Q, there exists some y€ (0,1)

such that :

i//(x+-£,q) > 0 for all q€Q.

A Q A , ^

Hence (x+-yt) € Y by proposition 4. Also ||x+yt - x || = y||t || < 1 .
00 00

Therefore x ^ B (x+Yt,l) and (x+y£)e Y° which is a contradiction to

x€(W')C.

Let :

•

w(x) = {yeY || x-y|| = ^ (x) } (17)
0 0 *

A
v (x) is the set of minimizers of (12).

i
Proposition 6 . 1

The maps :

x + B j x , 5(x))°

x B (y,l) c, y e w (x)

00

are cut maps.

Proof

The proof is exactly the same as the proof of proposition 5

of Chapter II. •

109.

It is now possible to state a conceptual algorithm for the

problem P T n , analogous to algorithm 1 of Chapter II.

Algorithm 1

Step 0; Set k=0, W q = j>

c
Step 1: Compute any x ^ e ^ •

If x^eG stop; else proceed to step 2.

A

Step 2: Compute y f c€ w ^) and 6(2^) = 1 - H ^ - y ^ ^ .

Step 3: Set W k + 1 = u B j y ^ l) .

\ + i = V B . < V

Set k=k+l and go to step 1.

Theorem 1

D

(i) If the algorithm stops at x^, then x^eG.

(ii) Any accumulation point of an infinite sequence generated

by the algorithm lies in G .

Proof

The proof is exactly the same as the proof of theorem 1

A
of Chapter II since £(x) is a separator for the problem P^, Q.

•
Algorithm 1 above possesses the same practical disadvantages as

algorithm 1 of Chapter II, which for completeness are repeated

110.

below :

(i) The computation in step 1 cannot be performed by a

standard algorithm, since the constraints are non-

differentiable.

(ii) The test in step 1 is conceptual.

(iii) An exact global minimization is required in step 2

to compute y^.

(iv) The subproblem in step 1 increases in complexity with k

since a new constraint is introduced at each iteration.

In the next section we proceed to obtain an implementable

algorithm that does not possess the disadvantages (i) to (iv) listed

i
above.

IV.3 An implementable algorithm for the tolerance-tuning problem.

Difficulties (i) and (iv) listed above can be overcome in

* £
exactly the same way as in Chapter II. The cut maps x-^B (x, 6 (x))

00

C A * C
and x B , (y ,D » yeft(x) can be replaced by x-*-B0(x, 6 (x)) and

c

x-»- [B2(x,§(x))u B^(y 9l) J t yew(x) so that the subproblem in step 1

can be solved by a standard inequality solving algorithm. The same

cut dropping scheme can also be employed to keep the number of constraints

low.

To avoid the need of an exact maimization in step 2, the

separator values have to be approximated in some suitable way. In

111.

Chapter II the separator estimates, are required to he smaller than

or equal to the exact values s-o that only'outer Approximations- to the

set G of the problem P T are generated. In the case of the pure

tolerance problem it is pos-siBle to generate such estimates with a

finite number of operations Because the set U is defined B y a finite

number of constraints. Another consequence of employing such estimates

is that the algorithms of Chapter II jam iup (i.e. start cycling

between steps 2 and 3) once a point X J£G is generated since a positive

estimate of the separator at x^ can -never be computed. In the case

of the tolerance-tuning problem P T n the global optimization problem
A

for the determination of ti (x) is infinitely constrained. Hence,

because it is not possible to test if a certain point lies in the

set Y or not, we cannot compute separator estimates that are always

smaller than the exact values with a finite number of operations. A

consequence of this is >that an implementable algorithm for the problem

P_ n will not necessarily jam up when a point in G is found, since a

positive separator estimate may be computed at this point.

We recall that ;

and

Let :

and

n(x) = min{||y-x|| y€YY> C18)

<S(x) = 1 - Ti(x). (19)

n(x) ^ min {1, ^(x)} (20)

6(x) = max { 0, 6(x)}. (21)

Note that ;

6(x) = 1 - n (x) .

112.

6(x) is also a separator for the problem P since it is continuous.

We have :

6(x) = 6(x)> 0 for all x€G
C

(22)

6(x) = 0 for all xeG.

c

Hence the map x -^B^Cx, <S(x)) is a cut map. It can be easily shown

that :

G = n { B 2 (x , 6(x))
C
'| x e R

n
} . (2 3)

Now consider the problem of evaluating ti(x) where :

tXx) = min { 1, min[||x-yfl ly^Y}} (24)
CO I '

Suppose that the map S: R n x Z+-*- R n is defined so that S(x,j) is the
i

result of applying r(j) iterations of a certain algorithm to the

+ + . '
problem of (24), where x Z + Z is a monotonically increasing

truncation function (t (j) -»• 00 as j*••»). Let :

n"(x,j) A= ||x - s (x,j)||TO C.25)

6"(x,j) - 1 - ftfr.,j) . C26)

To obtain convergence, we impose the following condition on S:

A5; For any compact subset X of R n

|fi(x) - <S(x,j) h 0 as j"*00, uniformly in x for x^X .

Note that A5 does not contain the equivalent of assumption A4(i) of

Chapter II. Hence even for very large values of j , <$ (x,j) will not

necessarily be smaller than or equal to <$(x) „ This implies that the

113.

G •

map x-^-B^Cx, <5 (x,j)) will not necessarily possess, the fundamental

property of cut maps, i.e, :

G n B 2 (x, £(x,j)) C J> <27)

Although A5 is sufficient for establishing convergence properties, (27)

implies that the generation of accumulation points may be hindered by

the fact that the approximations to the set G will not necessarily

be outer approximations. In other words, the cuts generated by an

i

implementable algorithm may contain only some subset of G (or may even

be disjoint with G) and hence the generation of accumulation points

may become unlikely (or even impossible) • To avoid this undesirable

feature, it is necessary to keep updating the separator estimates of the

points that have not been dropped by the cut dropping scheme, to ensure

approximations to the set G of increasing accuracy.

Suppose that denotes the latest estimate of the separator

6(x), (i.e. the estimate of <$(x) at iteration k). As in Chapter II, let

k
an infinite double sequence {e^ } satisfy:

k k
(i) Ej > 0 if j < k , Ej = 0 otherwise.

k -
(ii) z . z » as k uniformly in j. (28)

J J

Xiii) E . ̂ 0 as ' »,

The set of "most important" balls at iteration k which is used for

the formation of W^+l (the next approximation to G), is defined by:

J(k) j^kj 6 k (X j) > e h . (29)

114.

Hence in the implementable algorithm to he presented the latest

estimates of the separators are employed to determine which points are

to "be dropped. To keep the number of separator re-estimations as

A
small as possible, we also define the set J(k) as follows :

J<k) , s U < k j 6 k _ 1 (x) > e * } . (30)

J(k) contains all these points which according to their separator

estimates at iteration k-1 are predicted to belong to J(k). Only

the separators of the points in J(k) are re-estimated at iteration k

(see step 4 of algorithm 2 below). Note that:

J(k) c J(k-l)•

Suppose that K is some infinite subset of Z + (the set of positive integers).

For example, K may be the set of multiples of some positive integer. In

the algorithm below the separators of the points in J(k) are re-estimated

only if keK, so that the number of re-estimations is kept small (see step 4) .

Algorithm 2

Step 0:

Step 1:

Step 2:

Step 3:

Step 4;

Step 5:

Set k=0, W 0 » j .

Q

Compute any x^€ W ^ .

Compute S^Cx^) =
 5
 (x ^ k) .

If ^ (x ^ S 0 set 6 k (x .) •
 f o r k 1 1

 j
 < k

»
 s e t

 \ + i * \ >
J J

set - x^, set k=k+l and go to step 2. Else proceed to

step 4 .

If keK set 6. (x.) = 6(x.,k) for all jeJ(k), set 6, (x.) =6, , (x.) K J J K J I C - X J for all j/j(k), j<k.

Else set 6 (x.) = S.-ite.) for all j<k,
K J R — X J

S e t W k + 1 = u { B 2 (x ^ , 6 k (x j)) je J (k) } .

Set k=k+l and go to step 1. •

1 1 5 .

Notes

(i) The algorithm is directly implementable since each computation

can be performed with a finite number of operations.

(ii) The difference between the above algorithm and algorithm 2 of

Chapter II is that the separators of the active points (i.e.

the points that have not been dropped), are re-estimated every

some finite number of iterations. Hence the cut dropping

scheme performs a double role. Firstly, it ensures that the

number of re-estimations is small and secondly it keeps

the complexity of the subproblem in step 1 low.

(iii) The above algorithm, unlike the algorithms of Chapter II will

not necessarily jam up start cycling between Steps' 2 and 3)

when a point in G is generated.

(iv) The subproblem in step 1 has the same form as that in the

algorithms of Chapter II and hence all the remarks about its

solution made in Chapters II and III are valid.

(v) The cut dropping scheme operates as described in Chapter II

except that the latest separator estimates are now utilized

in the definition of the set J(k). Once a. point is dropped

it does not re-appear and its separator is not re-estimated.

(vi) The approximations to the set G can be improved at each

iteration by the introduction in step 1 of conventional

constraints, either relating to the parameter, magnitudes or

involving the vertices of the tolerance region. Let G^=> G

116.

be defined by ;

A

that f J(x+t+r(q)) £0, j=l,...,m } (31>

A r n
G^ = {X£R J for all there exists some qeQ such

where T^ is a finite subset of T (for example the set V of vertices

of T). Suppose that L^ specifies the elements of T^ so that :

T k = {t z €T U e l ^ } (32)

where L^ is a finite set • As discussed in [19] , finding a point in

the set G^ is equivalent to computing a point x satisfying :

f J (x + t £ , q £) < 0 , j=l,... ,m (33)

where

Following Bandler C8] we call the variables q^ ,£€ L^ slack variables.

Hence G^ corresponds to a set of continuously differentiable inequality

constraints (assuming that the functions f ** » j-l,...,m are continuously

differentiable). Step 1 of algorithm 2 can now be modified to Step 1*

as follows :

Step 1: Compute any x^e (W^ 0 n G^ n H)

where H is the set corresponding to any other conventional constraints

present. Any heuristic rule for specifying T^ can be employed.

117.

Theorem 2

Any accumulation point x* of a sequencetx^} generated by

algorithm 2 lies in G.

Proof

Case 1: Suppose that the algorithm starts cycling between steps 2

A * *
and 3 so that x^ • x^* - x* for all k £k , for some k >0. Also

• * c
suppose, contrary to what is to be proven, that x £G so that

*v
6 (x) =6 >•(). By A5 we have :

4c — 4c
<5(x) - 6 (x ,k) | 0 as k-»-«>.

Hence there exists some k>0 such that :

6"(x*,k)£ | > 0 for all k * k.

By the construction of the algorithm we have :

6 (x*,k) = S 0 for all k*k*

4c
which is a contradiction. Hence x £6.

Case 2: Suppose that x^ x*. By the construction of the algorithm

for any j , k e I, j< k we have :

either (x j ^ k - l ^ j ^ i f ^ €

or 0 $ 6 (x .) * e ^ 1 < e . if j /j(k-l)
** j 2 '

Hence for any ^ k :

118.

so that :

-»• 0 as j + », j e I. (34)

Also by the construction of the algorithm:

V l (x j) = , j (k)) f o r S o m e j* (3 5)

By assumption A5 and because j (k) :

(Xj, j (k)) - 6 (X j) | - * 0 as jc-I. (36)

i

Combining (34), (35) and (36) we have that :

6 (Xj) 0 as > j€ I .

. * * Hence, by the continuity of 6 , S(x) - 0 and x e G .

n
Algorithm 2 solves the tolerance-tuning problem in the sense that it

constructs sequences whose accumulation points are solutions to the

problem P T n . In the next Chapter imp lamentation details are given,

numerical examples are presented and conclusions about the properties

of the algorithm are drawn.

119.

CHAPTER V

IMPLEMENTATION OF THE ALGORITHM FOR TOLERANCE-TUNING PROBLEM

V.l Introduction.

In this Chapter the implementation details of the algorithm

presented in Chapter IV for the tolerance-tuning problem are discussed.

As for the algorithms for the pure tolerance problem, these are very

important for computational efficiency. In Section 2 the subproblem

of Step 1 is examined. Procedures for the infinitely constrained

global optimization problem of Step 2 are proposed in Section 3. In

Section 4 numerical examples are presented and finally in Section 5

the properties of the algorithm are discussed.

V.2 On the Solution of the feasibility subproblem.

We recall that the general subproblem in Step 1 of algorithm 2

of Chapter IV has the following form:

P w : Find a point x^ in the set W^ n G^n H.
k

As already discussed, P corresponds to a set of continuously
k

differentiable constraints and has exactly £he same form as the subproblem

of Step 1 of the algorithms of Chapter II. Hence P„ can be solved by
k

employing the techniques of Section 2 of Chapter III. The same initial

point rule should be utilized for the modified Newton algorithm of [22].

However note that in the case of the tolerance-tuning problem, G is
c • • • •

not necessarily a subset of each W ^ . Hence it is important to utilize

an interactive program Allowing the specification of the sets T^ (that

define G) and K (that defines the frequency of the separator re-estimations) Xv as the algorithm progresses.

120.

The designer may choose to relax the "vertex constraints"

that define G^ or re-estimate the separators of the active points,

if difficulties (e.g. jamming) occur when solving the subproblem of

Step 1 at a certain iteration. As before, if no "vertex constraints"

are present (G^ = R n) the solution of this subproblem is computationally

very bheap, since repeated evaluation of the design constraints and

bheir derivatives is not required..

V.3 On the computation of the separators-estimates.

The global optimization problem that is involved in the computation

of the separator at x is :

. A

n(x) = 'min{l, min{|| xrry|| ^ ycY}} = min {l,n (x)} (1)

where

Y = {y€RnJi?(y,q) * 0 for all qcQ }. \ (2)

In this section procedures that generate separator estimates and satisfy

assumption A5 of Chapter IV will be proposed. We recall that

rKx,j) = || x-S (x,j)|| (estimate of n(x)) (3)
00

and

6(x,j) = 1 — ti (x, j) (estimate of 5(x)) (4)

where S(x,j) is the result of applying f(j) iterations of a certain

algorithm to the problem of (1) above and T (J) is a moiiotonically

increasing truncation function. Suppose that Yj is an

approximation to the set Y generated by one of the following two

methods.

121.

Method 1

Discretize Q to form Q^ by considering T (j) "uniformly

spaced" points in Q, where T(j)
 00

 as j •*•
 0 0
. Let :

Y . - {y£R
n
 I J(y,q) 5 0 for all q£ Q.} . - (5)

J I J

Method 2

Discretize Q to form Qj by considering T(J) points

{ q^, q2 »•••., q^ (j)} Q spaced so that e^ ->• 0 as j where :

- A
e . = max min { ||q-ql| q eQ, r = 1,...,t (j)}« (6)

J q r 00 '

Let Yj be defined as above by (5).

A A
Note that is suffices that ip(y9q) < 0 for some qeQ* for the point y not

0

to lie in Y.. Hence testing if a point lies in Y . or not does not
J 3

A.

necessarily involve the evaluation of ^<y,q) for all q^Qj- The following

two procedures for computing the .separator estimates 5(x,j) will be

shown to satisfy A5»

Procedure 1

Compute x(j) "uniformly spaced" points Z . (x) = }

in (x+T)° where x(j) 00 as j-* 00 . Order these points so that

11 z • - x H ^ increases with i. Set S(x,j) = (n(x,j) | x-S(x, j) ||),
X 1 00

where z.* is the first point such that z . * e Y . . If no such point ,
1 1 J

exists, s'et n(x,j) = 1 so that 5(x,j) = 0.

Procedure 2

o
Compute x(j) points Z.(x) = {z_,...,z / • v J in (x+T)

J 1 taJ/

spaced so that e. 0 as j 00 where :

e. = max min(||z-z || |ze(x+T), r=l, •.. »x(j)}. (7)
J r 001

z r 1

Order these points and compute <$(x,j) as in procedure 1 above.

•
Notes

(i) The sets of points Q^ and Z.(x) that satisfy (6)

and (7) respectively can be computed using a pseudo-

random number generator.

(ii) The number of tests zeY^ required for the computation

_ it
of S(x,j) is i where :

i* = T(j) ,"(x,j)n. (8)

Hence i will be small at low yield points. From the ordered points

in Z . (x) that lie in Y^ only the first one will be tested, by the

definition of the procedures. Note that it is precisely for these

points that the test ZeY^ is most computationally expensive, since

$jz,q) has to be evaluated for all qeQj•

The procedures proposed compute 6(x,j) given x

and j. It is possible that x remains constant while j

is increased to j+k. This may happen either because

the algorithm cycles between steps 2 and 3., or because

the separator at x has to be re-estimated. The

mechanism for generating (x) should be such that

T(j+k) - x(j) extra,points are generated in x+T, i.e.

Z j + k (x)
 = Zj (x) u Z j + k (x) . From the points in Z ^ ^ C x)

all the points in Z.(x) that have been found not to lie

in Yj (and hence is Y) are discarded. The rest of the

points are ordered and S(x,j+k) is set equal to the first

point z? satisfying z7 e ^j+k*

The artifice that takes advantage of the overlap of

successive tolerance regions described in Section 3

of Chapter III can be employed (after a slight

modification) to greatly improve computational efficiency,

Also the linear searching technique described in the

same section can be utilized to improve the separator

estimates.

The truncation function x(j) should be chosen as in

the pure tolerance case. Hence x(j) should be kept small

as long as this permits the computation of 5(Xj»j)> 0

but should be increased considerably if 8(x^,j) - 0.

On the contrary, the difference between t(j+1) and x(j)

should be small if 6(x^,j) = 0. Note that if, as

is usually the case, the dimension of Q (i.e. the number

of tuned parameters) is small, small values of x(j)

are sufficient for Y^ to be a good approximation to Y .

Ideally t(j) and t (j) should be specified interactively

124.

according to the progress of the algorithm.

We next prove some results that are necessary for establishing

the fact that procedures 1 and 2 satisfy A5. Let :

' I %

4>(y) - m i n { J (y ,q) q e Q } (9)

and

A A I
<My) = m i n {i|>(y,q) qeQ.} (10)
J I J

so that

Y = (y j <f>(y)Z 0} (11)

and

Yj - { y (y) * o } . (12)

Also let:

A .
T W (x) = min{ || x-y|| y e Y . } (13)
J 001 j

and

A A

T I J (x) = m i n , { l , T I J (x) } . (1 4)

Note that from all the above definitions the following relations are

true :

YcY. (15)
J

rl.(x) Z (16)

Tlj (x) $ T1(X) * 1 (17)

T).(x) Z ri(x,j) (18)

<Ky) s • j (y) . (19)

125,

Proposition 1
A

For any compact set Y of R n :

| cf>(y) ~<f> j (y)|+ 0 as j->- oo, uniformly in y, for

Proof

Firstly note that Methdd 1 of discretizing Q also satisfies

(6). Now suppose that q£Q is a minimizer associated with y so that

(J> (y) = \fj(y,q). Choose any e > 0, then by the continuity of ^ there

exists some 6 > 0 such that :

I i (y » q) - i (y , , q ,) | ^ "I for ail q ' e B (q,6)
Z CO

and all y T <'€ B^ (y,$)

where ^ (q,6) {qf€R* J || q - q f | L « $ > .

By the definition of Qj (see (6)), there exists some integer N(y)> 0

such that at least one mesh point lies in B<x>(q,5) for all

j^N(y). Hence :

i K y M s ^ y 1) * M y f , q j) ^ (y , q) + § - <Ky) + f (20)

for all y teB c o(y,6) and all j£N(y),

By the continuity of <J>, there exists some 6 f> 0 such that s

[• C y ') - * (y) T * § for all y l£B o o(y,6\) (21)

Combining (20) and (21) and taking = min {6,<5f}> 0 we have that

for any y£R n and any e> 0 there exists some integer N(y) > 0 and some

<5 >0 such that :
y

126.

I <Ky T) (y f) I S E for all y ' z B j y J) and all j^N(y).
j y

A A

The family of balls B^Cyjfi^), yeY forms an open cover for Y and,

A

since Y is compact, there exists a finite subcover so that :

Y c i K B j y ^ y j y e Y } "
a | _

where Y is some finite subset of Y . Setting N* = max {N(y)|yeY}

we have that:

I <t> (y) - < k (y) U e for all yeY and all j^N*

which proves the proposition.

D •

Proposition 2

Suppose that y.(x)eY. is a minimizer associated with
A J J

TK(x). Then for any compact subset X of R n and any £>0, there exists

some j 0 such that :

Tl(y.(x)) £ e for all j and all xeX.
J X

Proof

Suppose the result is not true. Then there exists some

infinite subsequence {y! } , jeJ and some e > 0 such that :

y \ - y.(x)e Y. for some xeX 3 3 3
and (22)

A
T 1 (y p > e for all j>0, j € J,

Choose any y^Y, then since Y^Yj and X is compact we have

x-y! II ro= tk (x) * n (x) S || x-y

< M = max {p-y|L|x€X}.

127.

Hence, for any

jl x-yt H ^ I S r x I L + I x-y! || j a m

A A I
= max {|| x-x H J a e X } + M

by the compactness of X. Hence the subsequence {y!} is bounded so

jt ^

that it has accumulation points. Suppose that y! y . Since y! c

we have £hat:

Also by proposition Is

I ̂ (yj) - <Kyj)| + 0 as j -*», je J f

Hence by the continuity of <f> we have :

lim <Ky!) = <Ky*) * o y * e Y . (23)

j £ J t

Combining (22) and (23) :

II yj - y * L ^ (y p > ^ > 0 for all j > 0 , jeJ 1

J *
*

which is a contradiction to y! y . Hence the proposition

has been proven.

•

Proposition 3 1

For any compact subset X of R n :

tî (x) - n(x)|-*0 as j-v oo 9 uniformly in x for x€X.

128,

Proof

Choose any e > 0. By proposition 2 there exists some

j > 0 such that :
X

T1 (y. (x)) S e for all i„ and all x e X.
j *A

Suppose that y(x)eY is a minimizer associated with n (x) and

y!(x)£Y with n (y . G O) so that ^ (y. (x)) =||y.(x) - yi(x)||
J J J J J 00

Then :

n . (x) * * (x) = || x-y (x)|| <: ||x-y! (x) || *
j CO 00

II x-y (x) 11 + II y (x) - y!(x)|| = ̂ (x) + ̂ (y.(x)) <:
J 00 J J . J J

A

n . (x) + e for all j ̂ .j and all xtX.
J X-

Hence :

n.(x) - n (x) e for all j and all xeX
J

which proves the proposition.

Proposition 4

Proof

For any compact set X of R n :

ilj (x) - n (x) I 0 as j"*"
 00
 uniformly in x for x£X<

We prove that i|n̂ (x) ~ r\ (x)| $|t1J(x) -ti (x) | and

use proposition 3.

(i) min (A,B) - min (C,D) £ max (A-C,B-^D)

•

[Proof: max(A-C,B-D) 5 A-C *min (A,B)-C —*

C>.min (A,B) - max (A-C,B-D) .

Similarly: D^min (A,B) - max (A-C,B-D) .

Hence: min(C,D) £ min(A,B)' - max (A-C,B-D)] .

(ii) | min(A,B) - min (C,D)| *raax (| A-C| ,| B-D|) .

C Proof: min(A,B) - min(C,D) £max(A-C,B-D)'$max(| A-C| ,| fc-D|)

min(C,D) - min(A,B) £max(C-A,D-B) $max(| A-C| ,|iB-D|) .
\

Hence: | min(A,B) - min (C,D)| $nax(|A-C |, |B-D |)] .

We now have :

I I I * ' * • | R I J (x) - n (x) I = | rain (l , T I J (x)) - rain(l,n (X)) | $

max (|l-l| 9 \ t \ . M -^(x)|) =|^(x) - n (x)| .

D

We finally prove that procedures 1 and 2 that generate the

separator estimates satisfy A5.

Theoriem 1

For any compact set XcR n the estimates *?i(x,j) generated

by Procedures 1 and 2 satisfy :

|n(x,j) - n(x)|->- 0 as ~ , uniformly in x for x£X
Proof

(i) Choose any Suppose that y is some minimizer
A A

associated with TT(X) = n (x) (yew(x)). As in the

proof of theorem 2 in Chapter III, for any e> o the

open set

I 130.

*e<y) = n < X + T)° n Y °

is not empty. Hence there exist some y T €Rn and some e,f > 0 such

that :

B«,(yf,ef) c Y e(y).

As in the proof of theorem 2 in Chapter III there exists some

integer N^(x) > 0 such that at least one point y. = (x+a.)eZ.(x)

E » A
lies in ^ (y 1 , -) for all j ̂ N ^ x) . Hence yj = (x T + a) e Z ^ x *) lies

in B ^ y V 1) (and hence in Y° and Y.) for all xT€B (x,|*) and all <K)
' J CO I , \

We then halve :

n(x\j> <||x'-7j||- II.KlLHIx-y.ll^ *

x-y II + II TTti I Lsi (x) + T for all x" «B (x, f)
100 J 00 Z

By the continuity of fl (x) there exists some 5 f > 0 such that

I n(x) - n (x
?) U | for all).

, E»
Taking <$ = min {6, - } >0, we have :

X z

Tl(x l,j)$n(x T) + £ for all x f 6 B (x,6) (24)
oo X

and all j^N^(x).

By proposition 4, there exists an integer ^ (x) > 0 such that :

n (x f) $ n. (x*) + E for all x'€B (x,<5)
J • x

and all j (x)
(25)

131.

Combining (24) and (25) with (18) and setting N(x) = max { ^ (x) , N 2(x)}

we get:

N(x f,j) - T \ (X V) | £ E .for all ,xfeB (x,<5) oo X

and all j ^N(x).

(ii) Take any xeG, so that n(x) » 1. By the continuity

of n, for any E >0 there exists some 6 X > 0 such

that :

TI(X) -T!(xf) |*f for all x f*B (x , 6 J . (26)
£. 00 X

so that :

Osj 1 - ,T}(x*) ̂ f for all xf:€B (x,6) . JL 0 0 X

By proposition 4, there exists some integer N(x)> 0 such that s

n(x') - n . (x') u | for all X?£B (x, *) J Z 00 X

and all j £ N(x).

Hence :

0* 1 .(x f) * e for all x 1 £B fx,6) j 00 » j j '

and all j £ N(x).

Using (18) and the fact that n (x f) S 1 we have :

n(x f) - fl(x\j)S 1 - "n(x\j)S 1- H.(x f)* s for all x'eB (x,6)
J 00 X

and all j $N(x)

so that

132.

nCx 1)* n(x f,j) + e for all x feB (x,<5) (27) 00 , X
and all j £ N(x).

Also since n (xf,j) £ 1 = TI(X)," we have by (26).:

T1 (x',j) sn (x) £ n(x ?)+e for all x'e B (x,5) (28) 00 x

and all j > 0,

Combining (27) and (28) we have :

n(x T) - n(x*, j)| £ e for all x'ci^Cx,6) and all j*.N(x).

Combining (i) and (ii) we have that for any x£R n and any E> Q there

exist some <$ ^ 0 and some integer N(x) > 0 such that : X

nCx1) - T)(xf,j) | S e, for all x ' e B j x . S J

and all j^N(x).

The desired result now follows as in the proof of theorem 2 in

Chapter III by the compactness of the set X.

•

V«4 Examples.

Five examples are presented. The feasible sets F are

the same as those in Chapter III, but the introduction of tuning allows

considerable increases in the parameter tolerances.

133.

Example 1

2
The set FcR is defined as in example 1 of Chapter III.

The values of the parameters utilized by the algorithm are

a = Y= 1 . 5 , <5 = 0.7. The set K was defined as the set (3, 7, 11, 15,..

«

Procedure 1 of section 3 th&t generates the separator estimates was

implemented by taking Zj^x) t o t* i e s e t uniformly spaced mesh

points in (x+T)° such that the distance between adjacent points is

—— , where :

o (k+1) + 1 if x k + 1 jfe x^

<7(k+l) = 2<r(k) if X f c + 1 = x^
* N

and cr(0) = 4. Each set Q C R (only one parameter is tuned for

was discretized by taking Q^ to be the set of x(k) uniformly

points in Q where :

T(k) = 2k + 3.

(Hence method 1 of section 3 was employed). Only the nominal point

was included in the definition of each set T^ , so that only one

slack variable was introduced. Table 1 lists the tolerance and tuning

regions corresponding to each run. Tables 2, 3, 4 and 5 summarize the

results for these runs. Separator re-estimations were performed when lc~3

in runs 1 and 2 (see Tables 2 and 3). The operation of the algorithm

was stopped when cj(k) reached the value of 100 and 6(x^,k) « 0.

Most of the feasibility subproblems were solved in one iteration.

Figures 1,2,3 and 4 illustrate the four runs presented. Note that

the tolerances of the parameters are considerably larger than those in

example 1 of Chapter III.

each run)

spaced

134.

Run
T 0 L E R A N C E S Tuned

parameter
Tuning
region

Run
1 X 2 X

Tuned
parameter

Tuning
region

1 2.00 1.50"
1 X + 1.00

2 1.50 1.20
1 X + 0.50

2.00
2

3 2.00 1.75 X + 0.75

2.50
2

MM

4 2.50 2.00 X, + 1.00 X,

TABLE 1

K <* K) x(k) *k Oi
l \

** K <* K) x(k)
1 X 2 X -

Oi
l \

**
* •

0 4 3 -2.000 1.000 0.844 0.849

1 5 5 -0.156 2.677 0.892 0.892

2 6 7 0.656 1.294 0.181 • -

3 7 9 1.015 0.912 0.192 —

4 8 11 0.485 1.332 0.191 -

5 9 13 0.215 0.744 0 . 0 0 0 >

6 18 15 tt it II

7 36 17 »» ft I I

8 72 19 tt I I I I •

9 100 21 0.215 0.744 0 . 0 0 0

TABLE 2 (Run 1, Initial point (-2,1)

135.

k °(k) T(k)
*k

V \ > V * k >
k °(k) T(k) 1

X 2
X

V \ > V * k >

0 4 3 -1.000 1.000 0.638

1 5 5 -0.713 2.756 0.820 0.902

2 6 7 0.064 1.651 0.858 0.859

3 7 9 1.064 0.509 0.286 -

4 8 11 0.340 0.509 0.000 • -

5 16 13 ; tt n i»

6 32 15 it it tt

7 64 17 it it it •

8 100 19 0.340 0.509 0.000 . \

TABLE 3 (Run 2, Initial point (-1,1))

k °<k) 7 (k) * f c
. 1
X

2
X

0 4 3 1.300 1.300 0.725

1 5 5 -0.086 1.809 0.624

2 6 7 -0.099 0.493 0.000

3 12 9 ii it ti

4 24 11 t> ti 0.058

5 25 13 -0.268 0.353 0.000

6 50 15 it it it

7 100 17 -0.268 0.353 0.000

TABLE 4 (Run 3, Initial point (1.3,1.3))

136.

- k a (k) T (k)
* k W - k a (k) T (k)

1
X

2
X

W

0 4 3 1.000 1.000 0.600

1 5 5 -0.500 0.910 0.200

2 6 7 -0.996 0.326 0.000

3 12 9 II II 0.083

4 13 11 -0.707 0.088 0 . 0 0 0

5 26 13
I I I I I I

6 52 15 it I I II

7 100 17 -0.707 0.088 0 . 0 0 0

TABLE 5 (Run 4, Initial point (1,1))

I
I H

GJ

LO
oo

OJ VO

o

141.
Example 2

2 .
The set F CR is defined as in example2 of Chapter III. All

the conventionsand parameters ard as in example 1. Table 6 summarizes

the tolerance and tuning regions of each run. Tables 7,8,9 and 10

present the results for these runs which are illustrated in figures

5,6,7 and 8 respectively. Note that separator re-estimations are

performed only in run 2 when k=3.

T 0 L E R A N C E S Tuning Tuning
Run 1 X 2 X

parameter region

1 2.00 2.00
1 X- +2.00

2 1.00 2.00
1 X +1.00

3 2.00 1.50
2 X +0.75

4 3.00 1.50
2 X + 1.00

TABLE 6

k o(k) T(k) w k o(k) T(k)
1 JC 2 X .

w

0 4 3 1.233 1.233 0.613

1 5 5 2.687 -0.220 0.000

2 10 7 IT I I I I

3 20 9 I I I I it

4 40 11 M u I I

5 80 13 I I M tt

6 100 15 2.687 -0.220 0.000

TABLE 7 (Run 1, Initial point (1,1))

k a(k) W k a(k)
1 X 2 X

W

0 4 3 1.233 1.233 0.763 0.731

1 5 5 3.316 2.000 0.996 0.998

2 6 7 4.464 0.405 0.508 0.590

3 7 9 3.675 -0.554 0.571 -

4 8 11 2.590 -0.312 0.000

5 16 13 IT u tt

6 32 15 It t> tt

7 64 17 tt tt tt

8 100 19 2.590 -0.312 0.000

TABLE 8 (Run 2, Initial point (1,1))

k o(k) x(k) 6"k (xk } k o(k) x(k)

1 X 2 X

6"k (xk }

0 4 3 1.199 1.999 0.306

1 5 5 2.387 0.811 0.200

2 6 7 2.040 0.355 0.000

3 12 9 tt tt

4 24 11 tt it

5 48 13 tt it 0.043

6 49 15 2.169 0.249 0.000

7 98 17 tt it it

8 100 19 2.169 0.249 0.000

TABLE 9 (Run 3, Initial Point (1,1)

•143.

k <7(k) T(k)
*k

w k <7(k) T(k)
1

X 2
X

w

0 4 3 1.199 1.199 0.856

1 5 5 3.915 0.386 0.264

2 6 7 3.078 -0.273 0.000

3 12 9 it ti n

4 24 11 ii it 0.061

5 25 13 2.870 -0.109 0.000

6 50 15 it it tt

7 100 17 2.870 -0.109 0.000

TABLE 10 (Run 4, Initial point (1,1))

-4H

FIGURE 6

Example 2, run 2.

X

Example 3

2
The F CR is defined as m example 3 of Chapter III.

All the conventions and parameters are as in examples 1 and 2.

Table 11 lists the tolerance and tuning regions for the four

runs presented. Tables 12, 13, 14 and 15 summarize the

results which are illustrated in figures 9,10,11 and 12

respectively. Separator re-estimationshave been performed

in runs 1,2 and 3 when k=3.

Run
T 0 L I F R A N C E S Tuned Tuning

Run
1

X
2

X
parameter region

1 2.50 2.00
1

X. + 1.00

2 2.50 1.50
1

X + 0.75

3 2.50 1.50
2

X + 1.00

4 2.00 1.00
2

X + 0.75

TABLE 11

TABLE 12 (Run 1, Initial point (0,0))

k T(k) ~ W w k T(k)
1

X
2

X
~ W w

0 4 3 0.000 0.000 0.688 -

1 5 5 0.000 2.302 0.344 -

2 6 7 0.827 2.948 0.292 0.301

3 7 9 1.649 2.194 0.000

4 14 11 it it 0.071

5 15 13 1.446 2.387 0.000

6 30 15 r» if 0.037

7 31 17 1.345 2.274 0.000
8 62 19 it u u

9 100 21 1.345 2.274 0.000

149.

k a (k) T (k)
\

V V
6 3 < V k a (k) T (k)

1
X

2
X

V V
6 3 < V

0 4 3 2.000 0.000 0.625 —

1 5 5 0.329 1.386 0.216 -

2 6 7 1.239 1.386 0.194 0.155

3 7 9 0.712 1.824 0.155

4 8 11 1.296 2.287 0.000

5 16 13 ti ii it

6 32 15 II II it

7 64 17 it it it

8 100 19 1.296 2.287 0.000

TABLE 13 (Run 2, Initial point (2,0))

k a(k) T(k)
6 (x. V

W k a(k) T(k) 1
X

2
X

V V W

0 4 3 1.000 1.000 0.638 —

1 5 5 2.705 2.413 0.472 0.478

2 6 7 1.440 3.462 0.706 0.620

3 7 9 -0.064 2.280 0.306

4 8 11 1.165 2.375 0.000

5 16 13 it II
0.104

6 17 15 0.917 2.146 0.000

7 34 17 II II II

8 68 19 II II
0.028

9 69 21 1.035 2.214 0.000

10 100 23 it II
0.010

11 100 25 1.002 2.183 0.000

TABLE 14 (Run 3, Initial point (1.1))

k oOO T (k) \ W k oOO T (k)

1 X 2 X

W

0 4 3 1.000 1.000 0.600

1 5 5 2.262 1.994 0.000

2 10 7 it tt 0.127

3 11 9 1.987 2.212 0.000

4 22 11 it it n

5 44 13 M it it

6 88 15 it tt it

7 100 17 1,987 2.212 0.000

TABLE 15 (Run 4, Initial point (1.1))

1 FIGURE 10

Example 3, run 2.

J 3

Ln
N)

1
5

3
.

154.

Example 4

This is the three-dimensional low-pass filter problem examined in

Chapter III (example 5 of Chapter III). The cases of either L^ or C

tuned have been considered. Procedure 2 of section 3 was employed

for the computation of the separator estimates. The points of each set

Z^(x) were generated by a pseudo-random number generator and the

truncation function x(k) defined in section 3 of Chapter III was utilized.

A linear searching technique was also employed to improve the separator

estimates. The tuning region Q was discretized using method 1 of

section 3, as in examples 1,2 and 3 (x(k) = 2k+3). No conventional

constraints were employed at all. The techniques discussed in section 3

concerning the re-estimation of separators and the utilization of the

overlap of successive tolerance regions were not employed, so that great

improvements on the computational results presented below should be

possible (all separator re-estimations were done from scratch without

using any previous information). In a practical design procedure a suitable

initial point for the tolerance-tuning algorithm would be some nominal

point obtained from solving a pure tolerance problem. However the

points obtained in Chapter III turned out to be very nearly solutions

of the tolerance-tuning problem as well, so that to demonstrate the

properties of the algorithm different initial points were chosen.

Table 16 summarizes the results of six runs and tables 17,18,19,20,21

and 22 contain details of each run. All the percentages shown are with

respect to the final parameter values. The final yields were estimated

by Monte Carlo analysis involving at least 400 points and with the tuning

region discretized by considering T(IT) points, where IT denotes the

total number of iterations performed by the algorithm for each run. Hence

156.

the yield estimates should be smaller than the exact values.

N denotes the total number of circuit analyses required by the algorithm,

where as N(k) the number of circuit analyses performed at iteration k.

Note that in this example no separator re-estimations were necessary.

It can be observed that the introduction of tuning allows considerable

increases in the parameter tolerances (see run 4 of example 5 in

Chapter III). Most of the feasibility subproblems were solved in one

iteration.

Run

T 0 L E R A N C E S
Tuned

parameter
Tuning
region

Final
Yield

Run
LjCH) L 2(H) C(F)

Tuned
parameter

Tuning
region IT

Final
Yield N

1
0.420

20.0%

0.380

20.8%

0.100

11.1%

L i

+0.50

+23.8%

3 99.5% 446

0.280 0.280 0.090 +0.20
2

15.6% 13.3% 10.1%
h

+9.5%
3 99.5% 294

0.230 0.250 0.083 +0.10
3

12.1% 11.9% 9.4%
L i

+5.3%
3 99.3% 180

0.400 0.400 0.200 +0.35

4

22.2% 21.9% 17.0%

C

+29.6%

2 99.7 % 279

0.300 0.300 0.145 +0.145

5

15.7% 15.6% 15.0%

C

+15.0%

2 99.9% 147

0.260 0.260 0.100 +0.075

6

13.3% 13.2% 10.8%

C

+8.1%

2 99.9% 166

TABLE 16

k
L <H) L 2 (H) C(F) W x(k) T (k) N(k)

0 2.150 2.150 1.070 0.808 100 3 36

1 2.264 1.988 0.938 0.300 200 5 112

2 2.155 1.883 0.857 0.171 300 7 298

3 2.100 1.824 0.901

TABLE 17 (Run 1)

k

\
~ W

T(k) T(k) N(k) k L 1 (H) L 2 (H) C(F)
~ W

T(k) T(k) N(k)

0 2.150 2.150 1.000 0.688 100 3 15

1 1.974 2.299 0.873 0.447 200 5 74

2 1.868 2.174 0.950 0.283 300 7 205

3 1.795 2.102 0.894

TABLE 18 (Run 2)

k * k
L X (H) L 2 (H) C(F) W T (k) T (k) N (k)

0 2.150 2.150 1.000 0.816 100 3 16

1 2.046 2.278 0.896 0.386 200 5 55

2 1.961 2.176 0.944 0.352 300 7 109

3 1.896 2.098 0.887

TABLE 19 (Run 3)

*lr
k L X(H) L 2 (H) C(F) W x(k) x(k) N(k)

0 2.150 2.150 0.900 0.729 100 3 32

1 1.887 1.918 1.108 0.231 200 5 247

2 1.798 1.828 1.179

TABLE 20 (Run 4)

k L X (H) L 2 (H) C(F) W x(k) x(k) N(k)

0 2.200 2.200 0.900 0.708 100 3 29

1 2.008 2.031 1.050 0.369 200 5 118

2 1.910 1.927 0.968

TABLE 21 (Run 5)

k
*k

W T O O T(k) N(k) k L 2 (H) L 2 (H) C(F) W T O O T(k) N(k)

0 2.200 2.200 0.900 0.563 100 3 52

1 2.056 2.076 1.006 0.439 200 5 114

2 1.956 1.970 0.925

TABLE 22 (Run 6)

159,

Example 5

This is the seven-dimensional high-pass filter

example examined in Chapter III (example 6 of Chapter III). The

cases of or x , tuned have been considered. All the conventions and
3 6

parameters are as in example 4. Table 23 summarizes the results of

four runs. Tables 24, 25, 26 and 27 show in detail the progress of the

algorithm for these runs. Note that separator re-estimations have been

performed in runs 1,2, and 4 when k=3 and these have caused the values

of N(k) and N to increase. However, by adopting the techniques of

section 3, it should be possible to greatly improve on these results.

Run

T o ^ t \ A V N c e/i

T
u
n
e
d

P
a
r
a
m
e
t
e
r

T
u
n
i
n
g

R
e
g
i
o
n

[T
Final
Yield

i

N
Run

(nF)

X 2
(nF)

X 3
(H)

X 4
(nF)

X 5
(nF)

X6 on X7
(nF) T

u
n
e
d

P
a
r
a
m
e
t
e
r

T
u
n
i
n
g

R
e
g
i
o
n

[T
Final
Yield

i

N

1
0.87

8.3%

2.90

7.9%

0.30

8.0%

0.80

8.5%

7.00

7.9%

0.21

7.3 %

1.20

7.6%
x 3

0.30

+8.0%
4

99.4% 458

2
0.70

6.5%

2.30

6.6%

0.25

6.1%

0.65

7.2%

5.80

6.6%

0.20

6.7%

1.00
6.2%

X3

0.16

+3.9%
4 99.6% 448

3

0.95

8.0%

2.50

6.7%

0.26

6.8%

0.75

7.8%

6.80

7.3%

0.22

7.7%

1.20

8.6%
X6

0.35

+12.2%
3 100.0% 241

4

0.74

5.9%

2.30

6.5%

0.24

6.1%

0.60

6.2%

6.00

6.3%

6.18

6.4%

0.90

6.1%
X6

0.18

+6.4%
4 99.6% 259

6.18

6.4%

0.90

6.1%
X6

0.18

+6.4%
4 99.6% 259

TABLE 23

160.

x(k) >M(k: k X 1
X2

x3
X5 *6

X 7 W W x(k) t(k >M(k:

(nF) (nF) (H) (nF) (nF) (H) (nF)

0 11.00 36.00 4.00 11.00 90.00 3.20 15.00 0.733 0.457 100 3 37

1 12.10 34.76 3.84 9.87 91.86 3.07 16.11 0.461 0.610 200 5 59

2 11.46 35.68 3.76 10.48 90.83 2.99 16.77 0.348 0.370 300 7 57

3 11.02 36.28 3.71 10.05 90.02 2.94 16.35 0.284 400 9 305

4 10.43 36.92 3.77 9.46 88.86 2.87 15.76

TABLE 24 (Run 1)

V
k X 1 X2 X 3 X 4 X5 X 6 X 7 W V3^ <k) Xk) N(k)

(nF) (nF) (H) (nF) (nF) (H) (nF)

0 11.00 36.00 4.00 11.00 90.00 3.20 15.00 0.360 | 100 3 19

1 11.87 35.11 4.09 10.14 88.47 3.11 15.87 0.369 - 200 5 54

2 11.35 35.68 4.15 9.62 87.36 3.05 16.40 0.421 0.448 300 7 71

3 10.87 35.01 4.09 9.15 88.11 3.00 15.92 0.092 400 9 304

4 10.79 34.84 4.07 9.02 87.96 2.98 16.05

TABLE 25 (Run 2)

Xk:

k X 1 X 2 X 3 X 4 X 5 X6 X 7 W T(k) < T (k > - N(k)

(nF) (nF) (H) (nF) (nF) (H) (nF)

0 13.00 36.00 4.00 11.40 90.00 3.00 15.00 0.601 100 3 39

1 11.55 37.55 3.85 9.96 92.72 2.85 13.54 0.140 200 5 117

2 11.73 37.79 3.84 9.79 92.38 2.83 13.72 0.185 300 7 85

3 11.94 37.50 3.81 9.58 92.61 2.86 13.94

TABLE 26 (Run 3)

161.

k X 1
(nF)

X2
(nF)

X 3
(H)

X4
(nF)

X5
(nF)

X6
(H)

X 7
(nF)

W v v T(k) T(10 N(k)

0 13.00 36.00 4.00 11.00 93.00 3.00 15.00 0.492 - 100 3 11

1 13.61 35.32 3.91 10.38 94.07 2.93 15.61 0.343 - 200 5 28

2 12.88 36.10 3.99 9.64 95.45 2.85 14.87 0.176 0.268 300 7 93

3 12.69 35.83 3.96 9.83 95.17 2.83 15.07 0.216 400 9 127

4 12.48 35.56 3.93 9.62 94.86 2.80 14.85

TABLE 27 (Run 4)

V. 5 Discussion.

In Chapter IV, the ideas presented in Chapter II for the pure

tolerance problem are extended to the case in which tuning is also possible.

Hence a cut map algorithm for the tolerance-tuning problem has been

obtained. The algorithm shares many characreristics with the algorithms

of Chapter II. The subproblem of Step 1 has the same simple form and

can be very efficiently solved by the modified Newton algorithm of [22],

Conventional constraints either relating to the magnitudes of the

parameters or involving the vertices of the tolerance region can be

included to improve the convergence properties. The initial point

rule increases the probability of convergence, especially when no

conventional constraints are present. In such cases the derivatives

of the constraints are not required and only "pass-fail" tests are

performed in Step 2.

162.

The main difference between the algorithm of Chapter IV

and those in Chapter II is that the separator estimates are not necessarily

smaller than or equal to their exact values. To avoid poor convergence

properties it is thus necessary to keep re-estimating the separators

of the active points. Hence the cut dropping scheme keeps the

complexity of the subproblem of step 1 low and also ensures that a small number

of re-estimations is performed. The optimum frequency of these re-

estimations depends on the dimension of the tuning region Q. If, as

in many practical problems, the number of tuned parameters is small, a

discretization of Q involving only a few points is enough to ensure a

good approximation to the set Y and hence to generate separator estimates

that are not much larger than the exact values. In such cases few re-

estimations will be necessary.

As in the case of the pure tolerance algorithms, computational

efficiency is very much dependent on the way the algorithm is implemented.

By employing the techniques of section 3 in an interactive program that

allows the specification of the truncation functions, the frequency of

separator re-estimations and the conventional constraints utilized as

the algorithm progresses much better computational results than those

presented should be possible. In Chapter VI comparisons between the cut-

map algorithm for the tolerance-tuning problem and the rest of the methods

in the literature are made.

163.

CHAPTER VI

CONCLUSION

In this thesis specialized algorithms for the infinitely

constrained tolerance and tolerance-tuning problems that belong

to the class of cut map algorithms of Eaves and Zangwill, have

been proposed. The algorithms possess the following general

features.

(i) They solve the general non-convex problems P^ and

P T n and have established convergence properties.

(ii) They are directly implementable since specific

truncation rules are given for every infinite

operation.

(iii) They approximate the sets of solutions of the problems

by the complement of the union of a finite number of

very simply described regions (balls). A consequence

of this is that the feasibility subproblem at each

iteration can be solved very efficiently by standard

algorithms, since the evaluation of the design

constraints and their derivatives is not required.

The initial point rule proposed exploits the geometrical

structure of the problem and usually causes rapid

convergence.

(iv) The global optimization procedures proposed for the

generation of the separator estimates require only "pass-

fail" tests and are computationally cheap at low yield

points. By employing the techniques described in

164.

Chapters III and V in an interactive programme

large increases in yield should be efficiently

obtained.

(v) They incorporate a cut dropping scheme to keep the

complexity of the feasibility subproblem low.

(vi) They are very suitable for interactive computer-

aided design and any extra knowledge about a

specific problem can be easily utilized by introducing

conventional constraints either involving' the

vertices of the tolerance region or relating to the

parameter magnitudes. The introduction of such

constraints improves the convergence properties of

the algorithms since it ensures that better approximations'

to the sets of solutions of the problems are generated.

(vii) They are simple to code.

It should be noted that, as one expects from algorithms

with established convergence properties, the cut map algorithms

proposed will not converge if the set of solutions is empty (i.e.

if 100% yield is not possible). However if (some) vertex constraints

are included, they will tend to improve yield and then jam, being

unable to solve the subproblem in Step 1.

Most, if not all, of the deterministic methods for the

pure tolerance problem in the literature rely on one-dimensional

convexity both for their convergence and their efficiency. In

BandlerTs paper C 8] , the method of choosing the "worst case"

165.

vertices is not described but seems to rely on a priori

information about each particular problem. In [9] , an interval

arithmetic approach is presented for solving the worst case'

problem (WCP) in the general case and a more efficient algorithm

for the convex case. The algorithms proposed for the fixed and

variable tolerance problems do not have established convergence

properties and it seems that jamming is possible. The most advanced

and efficient of all the deterministic methods in the literature

seems to be the quasi-Newton algorithm proposed by Brayton et al ,

C10] . Because of the complexity of the procedure utilized to form

and update the vertex list, the algorithm is not explicitly stated

but only vaguely described. Convergence proofs are not presented

and hence it is not guaranteed that cycling will not occur. In

the most complex example in this paper 67 circuit analyses and 67

gradient evalutions were required. In the filter examples of

Chapter III, 10-200 circuit analyses and less than 10 gradient

evaluations were required. Direct comparison with the cut map

algorithm is difficult because the examples differ considerably

and final yields are not specified in [10] .

To summarize, the advantages of the cut map algorithm when

compared with all the above methods are that it is suitable for

non-convex problems (see for example the strongly non-convex examples

of Chapter III), that it has established convergence properties,

that it can operate by performing "pass-fail" tests only (i.e.

not requiring any gradient evaluations) and that it is very simple

to code. It seems that when efficiently implemented the cut map

algorithm warrants consideration even for convex problems.. ,

166.

The only other algorithm with established convergence

properties that is suitable for the problem P^, seems to be the

outer approximations algorithm of [4] . This algorithm should be

computationally more expensive than the cut map algorithm for the

specialized problem P^ for two reasons. Firstly, it requires

repeated estimation of the function Q^Cx) which is more expensive

than the estimation of 6(x), especially at low yield points (the

difference in computational effort between these estimations decreases

as x approaches G). Secondly the feasibility subproblem to be

solved at each iteration requires repeated evaluation of the design

constraints and their derivatives, which implies that the

computational effort is larger and the probability of jamming is

greater. However, the outer approximations algorithm is more

flexible since it solves the general infinitely constrained

engineering design problem.

The algorithm of Chapter IV for the problem P T n is very

similar to the algorithm for the problem P T . The difference is

that the separator estimates are not always smaller than their exact

values. Hence it is necessary to keep re-estimating the Separators

of the active cuts to avoid poor convergence properties. For

computational efficiency, it is important to specify the frequency of

these re-estimations interactively according to the progress of the

algorithm. If the number of tuned parameter?is small, a discretization of

Q involving only a few points is enough to ensure a good approximation

to the set Y. In such cases the operation of the algorithm for the

problem P T n will be very similar to that of the algorithm for P_

since few or no separator re-estimations will be necessary. Note that

the results of Chapters IV and V can be easily extended to cases in

which Q has a different form (e.g. when correlated tuning is only

permitted).

167.

As opposed to the pure tolerance case, very few methods

exist for the solution of the tolerance-tuning problem, Bandler's

approach, [8] is restricted to the one-dimensionally convex case

and employs heuristics to improve efficiency. Note that it is

precisely in strongly non-convex problems that one expects to 6bt:ain

large increases in the parameter tolerances by the introduction

of tuning (e.g. when the feasible set possesses "black holes").

Polak^ outer approximations algorithm : [19] should be computationally

more expensive than the cut-map algorithm for the specialized problem

P T n for two reasons. Firstly it requires repeated estimation

of the function 0_ n(x) which is more expensive than the estimation

of <5(x) at both low and high yield points (this is because testing if a

point x lies in Y^ or not is usually cheaper than evaluating ^(x);

see (10) of Chapter V). Secondly the feasibility subproblem requires

repeated evaluation of the design constraints and their derivatives.

However the algorithm in [19] is more flexible since it solves

the general infinitely constrained engineering design problem with

tuning also present. Direct numerical comparison between the three

methods is not possible since no numerical results are presented in

[19] and those in [8] do not specify the number of circuit analyses.

It is our hope that the simple and robust cut map algorithms

proposed in this thesis will prove to be useful for tackling the

computationally complex but important tolerance and tolerance-tuning

problems.

168.

REFERENCES

Becker R.G., Heunis A., Mayne D.Q., "Computer-aided

Design of Control Systems via Optimization". Proceedings

IEE, Vol. 126, No.6, June 1979.

Polak, E. and Mayne D.Q., "An Algorithm for Optimization

Problems with Functional Inequality Constraints", IEEE Transactions

on Automatic Control, Vol. AC-21, No.2, April 1976.

Gonzaga C., Polak E. and Trahan R., "An Improved Algorithm

for Optimization Problems with Functional Inequality Constraints",

IEEE Transactions on Automatic Control, Vol. AC-25, No.l,

February 1980.

Mayne D.Q., Polak E. and Trahan R., "An Outer Approximations

Algorithm for Computer-Aided Design Problems", JOTA, Vol.28,

No.3, 1979.

Gonzaga C. and Polak E., "On Constraint Dropping Schemes and

Optimality Functions for a Class of Outer Approximations

Algorithms", SIAM J. on Control and Optimization, 17, No.4.

Bandler J.W., "Optimization of Design Tolerances Using Non-

linear Programming", JOTA, Vol. 14, No.l, July 1974.

Bandler J.W., Liu P.C. and Chen J.H.K., "Worst Case Network

Tolerance Optimization", IEEE Transactions on Microwave

Theory and Techniques", Vol. MTT-23 No.8, 1975.

Bandler J.W., Liu P.C. and Tromp H., "Non-linear Programming

Approach to Optimal Design Centering, Tolerancing and Tuning",

IEEE Transactions on Circuits and Systems, Vol. CAS-23, No.3

March 197 6.

Schjaer-Jacobsen H. and Madsen K., "Algorithms for Worst-case

Tolerance Optimization11, IEEE Transactions on Circuits and

Systems, Vol. CA5-26, No.9, Sept. 1979.

169.

10. Brayton R.K., Director S.W MHachtel 6.D. and Vidigal L.M.,

"A New Algorithm for Statistical Circuit Design Based on

Quasi-Newton Methods and Function Splitting", IEEE Transactions

on Circuits and Systems, Vol. CAS-26, No.9, September 1979.

11. Director S.W. and Hachtel G.D., "The Simplicial Approximation

Approach to Design Centering", IEEE Transactions on Circuits

and Systems, Vol. CAS-24, No.7, July 1977.

12. Brayton, R.K., Director S.W., and Hachtel G.D., "Yield

Maximization and Worst-Case Design with Arbitrary Statistical

Distributions", IEEE Transactions on Circuit and Systems,

Vol. CAS -27, No.9, September 1980.

13. Iyer R.K. and Downs T., "A Variance Minimization Approach to

Tolerance Design", IEEE Transactions on Circuits and

Systems, Vol. CAS-27, No.9, Sept. 1980.

14. Pinel J.F. and Roberts K.A., "Tolerance Assignment in Linear

Networks Using Nonlinear Programming", IEEE Transactions

on Circuit Theory, Vol. 19, No.5, September 1972.

15. Soin R.S. and Spence R., "Manufacturing Yield Optimization

by Statistical Exploration", Proc. of the Conference on the

CAD of Electronic Components, Circuits and Systems,

Brighton 1979, (IEE Conference publication 175).

16. Pinel J.F., "Computer-Aided Network Tuning", IEEE Transactions

on Circuit Theory, January 1971.

17. Lopresti P.V., "Optimum Design of Linear Tuning Algorithms",

IEEE Transactions on Circuits and Systems, Vol. CAS-24, No.3,

March 1977.

18. Polak E. and Sangiovanni-Vincetelli A., "Theoretical and

Computational Aspects of the Optimal Design Centering,

Tolerancing and Tuning Problem", IEEE Transactions on

Circuits and Systems, Vol. CA&-26, No.9, September 1979.

170.

19. Polak E., "An Imp lenient able Algorithm for the Optimal

Design Centering, Tolerancing and Tuning Problem",

Dept. of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory, University

of California, Berkeley, California 94720.

20. Eaves B.C. and Zangwill W.I., "Generalized Cutting

Plane Algorithms", SIAM J. on Control, Vol.9, No.4,

1971.

21. Hogan W.W., "Applications of a General Convergence Theory

for Outer Approximations Algorithms", Mathematical

Programming 5 (1973).

22. Mayne D.Q., Polak E. and Heunis A., "Solving Non-linear

Inequalities in a Finite Number of Iterations",

Publication No: 79/3, Dept. of Computing and Control,

Imperial College, London SW.7. England.

23. Dixon L.C.W. and Szego G.P., "Towards Global Optimization",

North-Holland Publishing Co. 1975.

24. Dixon L.C.W. and Szego G.P., "Towards Global Optimization II1,'

North Holland Publishing Co.

25. Dixon L.C.W., Spedicato E. and Szego G.P., "Non-linear

Optimization Theory and Algorithms", Birkhauser 1980.

26. Polak E., "Computational Methods in Optimization", Academic

Press, 1971.

27. Rudin W.}"Principles of Mathematical Analysis",

McGraw Hill, 1976.

28. Berge C./'Topological Spaces", Oliver and Boyd Ltd., 1963.

171.

APPENDIX II

We now briefly state the feasibility algorithm of [22]

for completeness. Suppose that we want to find a point in the set W

defined by :

W ={x£ R n
g J(x)$ 0, j=l, ,m} . (A.l)

Let:

ip(x) = max {g J(x) j = l,....,m} (A.2)

A A i i
\fj (x, p) = max{g (x)+ <Vg J (x) ,p> j - 1,...,m} (A. 3)

e(x,p) = i|<(x,p) - ip(x). (A.4)

.n
For any x£R , a Newton step is any vector in the solution set of the

following linear program L^(x) :

min { || p

P

ip (x,p) £ 0} (A. 5)

n 1 2
For any xeR , any Newton step p we define an additional step p which

2 1
any vector m the solution set of the following linear program L (x,p)

Q^Cxjp"1")^ min{ QCxjp^+p) H P II > (A. 6)

,n
for some e > 0. Hence for any xeR the modified Newton step generated

by the algorithm is :

1 2
p = P + p . (A.7)

172.

The Newton step may not exist or may be unsatisfactory. In such cases

3
the algorithm employs a first order step p which is any vector in the

3
solution set of the following linear program L (x):

0 (x) = min (9(x,p)

P
$1} . (A. 8)

A standard test on the magnitude of the Newton step is employed to

judge whether it is satisfactory or not. We are now in a position to

state our algorithm.

Algorithm A1

Parameters: Ye(0,£), 3e(0,l) , e> 0, L>1 .

Data:
n

Step Q:

Step 1:

Step 2:

Set i=0.

If ijj (x^) $ 0 stop.

Solve L^(x^) to obtain p"'". If a solution exists

1 2 1 2 and ||p || ^ L , solve L (x., p) to obtain p .
00 1

1 2
Set p^ = p + p .

1 1 3
If L (x^) has no solution or ||p |j>L solve L (x^)

3 3
to obtain p and set p^ = p .

Step 3:

Step 4:

Determine the smallest integer 0 such that :
k. k. 1

iKx.+ 3 1 p i) - xKx.) S Y3
 1 9(x i,p i).

Set x.,n = x. +
l+l l

k.
, l

Set i= i+1 and go to step 1.

•

173.

Theorem A1 C 22J

Suppose that :

(i) The functions g J : Rn-* R , j=l,...,m

are continuously differentiable.

(ii) The set {VgJ(x)|jeI(x)} where

g J(x) =iKx)} I(x) = { j e {1,....,m}

is positive linearly independent for all x such that

<Kx) ^ 0.

Then, any accumulation point generated by algorithm A1 lies in the

interior of the set W.

•

Notes

(i) A direct consequence of theorem A1 is that if a

bounded sequence {x^} is generated by the algorithm,

then there exists a finite integer j such that x^eW.

(ii) Condition (ii) in the statement of the above theorem

ensures that at 'all non-feasible points the maximum of

the constraints 0/0 can be reduced by the algorithm

and hence the algorithm cannot jam up at a non-feasible

174.

point. If this is not satisfied, the algorithm may

jam up at such a point. A criterion of jamming can be

obtained by testing the value of 0(x£,p..) at iteration

i since this is a first order estimate of how much

can be reduced at this iteration.

(iii) The following values for the parameters can be

employed :

8 = 0.1, y = 0.1, e = 0.01 , L = 10.

175.

APPENDIX II

1. The low-pass filter.

The circuit diagram and specification§for the low pass

filter utilized in the examples of this thesis are shown in Figure I.

The frequencies of interest are {0.45, 0.50, 0.55, 0.60, 1.0, 2.5}

rad/sec, (6 constraints). The magnitude of the transfer function

can be calculated as :

V 12

— (jo») I = (1 - < W C oj2/2)2 +
v 2

CO2(L1 + L 2 + C - L L 2 C U)2)2/4.

The insertion loss is defined as :

I l o . e (j a > = 2 0 l o g 1 0
V i r . db

and the relative insertion loss as

^ o s s ^
 =

 ^ o s s - ^ o s s
 d h

 •

(u> = 0 is the reference frequency), Toleranced components

are marked with an arrow.

176.

A
V.

L o w - p a s s f i l t e r .

ra d

s e c

F I G U R E I

177.

2. The high-pass filter.

The circuit diagram and specifications for the high-pass

filter utilized in the examples of this thesis are shown in

Figure II . The frequencies of interest are : { 170, 350, 440, 630, 650,

720, 740, 750, 940, 1040, 1800} Hz, (12 constraints). Table I

summarizes the specification constraints :

f

RELATIVE INSERTION LOSS

f Upper Bound (db) Lower bound (db)

170 + 45.00

350 - + 49.00

440 - + 42.00

630 +4.00 - 0.75

650 - - 0.75

720 +1.75 -

740 +1.75 -

750 +1.75 -

940 - - 0.75

1040 - - 0.75

1800 +1.75 —

TABLE I

The relative insertion loss is defined as for the low pass filter

except that now the reference frequency is 990 Hz. Toleranced

components are marked with an arrow. The transfer function can be

calculated by using the following relations :

Z 1 = - j/(i) X 7

z 2 " ^ x 6 "

z 3 = - j/u x^

Z, = jwx. - j/03Xr 'A J 3

A
= R - j/ujx-

s i

a = Z 1 Z2 ' Z l +

b = a + z«

c = b z./ b + z,
4 4

d = z 2 R l/Z 4 (Z ; l

e =
z. - c
4

z,. + c

Then :
V

V 1

2
- (jo>) = d.e

179.

A A A -

13.2 K 11 nF

X 2
37 nF

5 i f 4.0 H

t H
4

II nF

X s

90 nF

X 6 3.0 H

15 nF

L
10 K

4 5 - r m

H i g h » p a s s f i l t e r

M-M 4.0

170 350 440

1.75
s f

630 ^ ^ 990 1800
I I I I I II I I I II I I M l I 1 -0.75

H z

F I G U R E I!

