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ABSTRACT

In this thesis the problem of synthesizing a system from

components whose values are known only to certain tolerances is considered.

In the pure tolerance case the design objective is the determina—
tion of a set of nominal system parameters so that all the specifications
are met whatever the actual system parameters are, as long as they fall
within a tolerance region centered on the nominal values. Quite commonly,
very tight toierances are necessary for a solution to the pure tolerance
problem to exist. The introduction of post-manufacture tuning allows the
adoption of higher parameter tolerances and may be desirable in order
to reduce manufacturing costs. The tolerance-tuning problem is the
determination of a set of nominal system parameters so that whatever
the actual parameters are — within a tolerance region - the specifications

can be met by tuning.

Conceptual and implementable algorithms for the solution of
the pure tolerance and the tolerance~tuning problems are proposed. The
algorithms solve the general non-convex problems and belong to the class
of cut map algorithms of Eaves and Zangwill. Convergence is established,
numerical examples are presented and comparisons with other methods

in the literature are made.



To my Family




ACKNOWLEDGEMENTS

I would like to express my most sincere thanks to my
supervisor, Professor D.Q. Mayne, for his invaluable help and
advice during the course of the research that led to this

thesis.

The encouragement and help from my fellow research

students will be always remembered with gratitude.

I would also like to thank Mrs. Moriarty for typing

this thesis.

A large part of the work that led to this thesis was

financially supported by the Bodossaki Foundation, Athens, Greece.



CONTENTS

ABSTRACT:

ACKNOWLEDGEMENTS :

GENERAL NOTATION:

CHAPTER I:

I.1
I.2
1.3

1.4

CHAPTERII:

I1.1
I1.2

II1.3

CHAPTERTIIIL:

Page

2

A

7

INTRODUCTION

Computer—aided design. 9
Statement of the problems. 10
Outline and contributions of the thesis. 17
Cut map algorithms. 18

‘CUT MAP ALGORITHMS FOR THE TOLERANCE PROBLEM.

Introduction.
A conceptual algorithm for the tolerance problem,

Implementable algorithms for the tolerance problen.

"IMPLEMENTATION OF THE ALGORITHMS FOR THE

ITI.1
I11.2
IIT.3
III.4

II1.5

" “"TOLERANCE "PROBLEM,

Introduction,

On the solution of the feasibility subproblem.
On the computation of the separator estimates.
Examples;

Discussion.

21
25

36

50
50
62
72

97



CHAPTER IV:

"CUT MAP 'ALGORITHMS FOR THE TOLERANCE-

Iv.1

Iv.2

Iv.3

CHAPTER V:

" TUNING PROBLEM,

i
Introduction.

A conceptual algorithm for the tolerance-
tuning problem,
An implementable algorithm for the

tolerance-tuning problem.

IMPLEMENTATION OF THE ALGORITHM FOR THE

V.1l
V.2
V.3
V.4

V.5

CHAPTER VI:

REFERENCES:

APPENDIX 1

APPENDIX II

"TOLERANCE-=TUNING PROBLEM.,

Introduction.

On the solution of the feasibility subproblem.

On the computation of the separator estimates.

Examples,

Discussion.

" 'CONCLUSION

99
102

110

119
119
120
132

161

163

168

171

175



GENERAL NOTATION

1. R" denotes the Euclidean space of ordered n-tuples
of real numbers. Supercripts are used to denote the

.
components of a vector in R,

2, f denotes a function., If A is the domain of f and

B its range, we then write f£: A+B.

3. . Given a function f: R™ R we denote by V£(x) its

gradient at x.

4. We denote by Bz(x,e) the following set in R":

{x'er™ || x-xq[2<e} » (open ball with the Euclidean norm).

5. The max norm in R" is defined as :
x|l _ & maxt|x"| | i=1,...,n} .
i
6. We denote by B_ (x,e) the following set in R":

{x'eR" |!x'-x|L”<€L(open ball with the max. norm).

7. F denotes the closure of the set F.

8. F° denotes the interior of the set F.
9. F® denotes the complement of the set F.
+ .y s . . .
10. Z denotes the set of positive integers including zero,

ie. 20 =00,1,2,3,....} .
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12.

13.

14,

15.

AUB denotes the union of the sets A and B.

ANB denotes the intersection of the sets A and B.
A5B denotes that A is a subset of B.

A\ B denotes the set that contains all the elements

of the set A not belonging to the set B,

n .
ZR denotes the set of all subsets of Rp.

1
I
b
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CHAPTER I

INTRODUCTTION

I.1 Computer—aided design

In recent years the role of the digital computer in solving
engineering design problems has been invaiuable. Design, as opposed
to synthesis, is iterative in nature since the often imprecise objectives
and constraints require constant interaction with a decision maker - the
designer. However, synthesis techniques which solvg precisely specified
problems are useful tools for solving subproblems whiéh may recur, in the

design process.

Many engineering problems can be formulated as constrained
optimization problems or inequality solving problems, in which the
inequality constraints coéreSpond to the design specifications. The
solution of such precisely formulaﬁed problems is only one staée of the
design process. The designer ﬁas to‘interaét at each stage modifying the
constraints and thus trading off one deéirable quality for another.

Hence constrained optimization or inequaliyy solving algorithms play an

important role in computer—aided design.

Many of the design specifications can be transcribed into standard
inequality constraints, so that standard algorithms may be employed. '
However, surprisingly often, [13 , design specification lead to
functional (or infinite dimensional) constraintswhich camnot be treated
with standard methods. The pure tolerance and the tolerance-tuning
problems that are examined in this thesis belong to this class of problems.
Hence the development of algorithms suitable for infinitely comstrained
problems was stimulated and infinite dimensional analogues of finite

dimensional algorithms have been derived. These algorithms are conceptual
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since they require the solution of infinite dimensional linear programmes.

It seems that the only implementable algorithms (requiring a
finite number of operations at each iteration) suitable for infinitely
constrained problems are the feqsible'directions algorithms of [2] and
EBJ and the outer approximations algorithm of [4] . A summary of these

new algorithms and a description of their use can be found in (1] .

1.2 Statement of the problems.

Consider the problem oflsynthesizing a system from components
whose values are known only to certain tolerances. Uncertainties on
the values of the components arise from fluctuations inherent in the
production processes or identification errors. Such deviations from
the nominal values may cause failure to meet imposed specifications and
hence may lead to low production wields. It is thus necessary to take
into account these possible parameter deviations in the design stage.
The design objective is to choose a set of nominal parameter values.so
that certain specifications will be met wﬁatever the actual values are,
as long as they fall in a certain tolefance region. Such problems
frequently occur in circuit design ﬁhere they are known as centering
problems [6] , [7] , [8] , [14] , but also arise in control_system.design
since the properties of transducers, actuators etc., are known only to a

certain degree of accuracy.

Let xe R" denote the nominal value of the parameter vector and
t the manufacturing error so that the actual value of the parameter vector
is x+t; t lies in a known tolerance region T, a subset of R". Suppose
that the system must satisfy certain specifications no matter what the

tolerance error is. This problem can be expressed as 3
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P : Find a point (nominal design) x such that :
fJ(x+t)s 0, j=l,e.s.,m , for all teT. (1)

The functions fJ:R>R define the design constraints. The problem can

be normalized so that T can be defined by :
A, ..nf 1 .
T = {teR 'lt s1 , i=1,e0..,n} . (2)

Note that the constraint (1) is infinite dimensional. An equivalent form

for this design problem is :

PT : Find a point a satisfying :
where GT: R"+ R is defined by:
8o (x) = max{\b(xﬂ:)l te T} . (B

and ¥:R™ R is defined by:

¥ (x) 4 max {ﬁj(x)|j=1,.....,nﬂ.. (5)

Let G denote the feasible set for the problem PT' The déterﬁination of
9T(x), given x, is a global optimization problem and is sometimes réferred
to as the worst case problem (WCP) in the literature [9] , [10]. Bandler,
Ly 1,81, refers to a design satisfying?(B) as a worst case design. Let
V denote the set of vertices of T and F the set of feasible nomigal

designs i.e.:

VL-\—-{t'e’Rnltil =1, i=l,....,n} (6)

and
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F& (xR o) c0}. )
Bandler [6] has shown that if F is one-dimensionally convex the
(infinite dimensional) problem PT is = equivalent to the (finite

dimensional) feasibility problem Py defined by:
%{ ¢ Find a point x such that:

Y(x+t)< 0 for all teV

(i.e. satisfying O (x) A max b () tev}<0).

In principle a standard algorithm can be employed for fv_although the
cardinality of V can be very large. In [8] Bandler considers the problem
iof minimizing a cost function subject to GT(x)SO for the case when F

is one~dimensionally convex (so that ST(x)s 0 can be replaced by

ev(x)S 0 ). A procedure for replacing V by a relatively small subset of
V is presented. This (heuristic) procedure determines which vértex is
likely to violate which constrainﬁ by sensitivity (gradient) analysis,

so that only the "worst case" vertices are utilized. In"[QJ Schjaer-
Jacobson and Madsen present an interval arithmetic algorithm for solving
(WCP) in the general case and a more efficient algori;hm for the one-
dimensionally convex case. They also ﬁresent algorithms for the fixed.
(FTP) and variable (VIP) tolerance problems (mih{eT(x)lxeRn} and

max {w éé(x)s o0}, T & fe 'ti’SW} respectively). These algorithms require
at each iteration solution of the -WCP and seem to éssume incorrectly the
differentiability of the function ¢j(x) é max‘{fj(x+t)|teT} . More
sophisticated algorithms for the fixed and variable tolerance problems
(FTP and VIP) are presented by Brayton et al,[10] . One-dimensional
convexity is assumed. The non-differentiability of the functionms ¢j(x),
j=l,...,m is coped with by "function splitfing"; if fj(x+t) achieves

its maximum at t1 and t2 (i.e. ¢J(x) = fJ(x+tI) = fJ(x+t2)) both
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‘ij(x+t1) and ij(x+t2) are employed in the optimization algorithms.
The function ¢j(x) is non-differentiable at x but possesses a
generalized gradient ElB] which is the convex hull of ij(x+t1) and
ij(x+t2). A vertex list updated at each iteration defines the
function and gradient information applied to a quadrétic program to
determine a search direction; this list is a subset of’the set'{fj(x*v)
3=lyee.,m, veV} « Because of the very complex nature of the rules‘of
updating the vertex list, the algorithms in [10] are not explicitly

stated but are only vaguely described.

All these algorithms are, in the main, restricted to the case
where F 1is one-dimensionally convex. They possess heuristic features
in order to improve efficiency and, hence, do not have guaranteed
convergencé. It seems that the only algorithm suitable for the infinite
dimensional non-convex problem P, which has guaranteed convergence
prdperties is the outer approkimation algorithm of [ 4] (the zlgorithms
of [2] and [3) are restricted to the case in which T is a subset of R).

This replaces the infinite dimensional problem P,, by an infinite sequence

T

of conventional (finite dimensional) feasibility problems'{PTi} where
i

T, is a finite subset of T and PT is defined by :
' 1

PT-: Determine an x such that :
1

V(x+t) £ 0 for all thi .

Since Ti is a subset of T, the feasible set for the problem PT is an

1

‘outer approximation to the feasible set G for the problem P At

T.

iteration i the algorithm solves PT' , a conventional feasibility
i

problem,using a standard algorithm yielding X5 It then solves

(approximately) WCP (max{w(xi+t) teT}) yielding tss Ti+1 is then formed

by adding t, to Ti and discarding other points which are judged to be
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irrelevant., Precise rules for increasing the accuracy of the

solution of WCP and for updating Ti are given in[ 4 ], which ensure
convergence for non-convex problems. The set 'I‘i may be regarded as

an extension to non-convex problems of the "vertex list" concept of
Brayton et al .[10]; of course the elements of Ti are not necessarily

vertices.

In the cut map algorithms proposed in this thesis the complement

of the feasible set G for the problem P,, is approximated at each

T
iteration by the union of a finite number of very simply described

regions. Typically at iteration i, c® (the complement of G) is approximated
by W, = U'[B(xj,6j) j<i} (or a subset of this set) where B(xj,Sj) denotes
an open ball with centre xj and radius 652'0 such that GnB(xj,Gj) =+ ;
Clearly GtiW&c so that Wic is an outer approximation to G of a

particularly simple kind. The class of cut map algorithms of Eaves and

Zangwill are discussed in more detail in section 4.

All the methods described so far are deterministic in nature.
There also exist some methods for the'toler;nce probleﬁ which utilize
a statistical approach. These are now briefly described. In [11] the
toleranée problem is tackled by approximating the assumed convex
feasible set F by a polyhedron. Then a maximal hyperellipsoid is
inscribed in the polyhedron to provide a design center and a éet of
parameter tolerances. All the computations required for the above
operations are performed by linear programmes. In [12] this method is
extended to the case of‘arbitréry distributions (in [11] the case éf
joint Gaussian distributions is only comsidered). In [13] the toleramce — -
problem is formulated as a minimiZation problem of the variance of some
performance index which relates to the design specifications.. Finally

in [15] a deterministic algorithm for yield maximization is proposed.
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At each iteration the search direction is computed to be the direction
of the line joining the centres of gravity of the feasible and non-
feasible parts of the tolerance region (estimated by Monte Carlo analysis).

The step length rule is heuristic.

Quite commonly very tight tolerances are required for a
solution to the tolerance problem to exist. Tight tolerances make
manufacture costly or even impossible. To overcome this difficuity
post-manufacture tuning or trimming of certain parameters. is usually
introduced [16] , [ 171 . The problem now becomes to determine a set
of nominal panametér values so that whatever the actual valués are —.

within a tolerance region = the specifications can be met by tuning.

Suppose that the first { parameters can be tuned or trimmed and let

L
the map r: R+R" be defined by:

q if i< ®
rt(q)= , R . ‘ (8)

0 if %<ign

Also let the tuning region Q be defined as :

Q21 ¢ |- cq 8} » (9)

.where & 30, B20, o ,B € Rz . The tolerance~tuning problem can be

expressed as:

PT Q ¢ Find a point x such that for each teT there exists
s

some q€Q satisfying:

fJ(x+t+r(q))S o, J=lyeee.,m,
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An alternative form for the problem PT is the following:

»Q

P ¢ Find a point x such that:
TaQ C
A . -
6 ¢ Q(x) = max mnin VY(x+t+r(q)) < O. (10)
, .
teT qeQ

It is clear that the determination of 6 (x) is considerably more

I,Q
difficult than (the already prohibitively difficult) WCP of determining

6 As shown in [18] 6 is Lipschitz continuous but not differentiable;

T T,Q

in fact it may even fail to have directional derivatives. Polak and

Sangiovanni-Vincetelli,[18],formu1éte the general engineering problem
when tuning is permitted and propose an algorithm for its solution. This
algorithm consists of two pérts ¢ an outer approximation algorithm which
replaces T by an infinite sequence{Ti} of discrete subsets of T

and an inner subalgorithm which solves the resulting simpler subproblens.
Because the inner subalgorithm utilizes non—differentiable optimization
idéas, it has two major disadvantages; The first is that it is
computationally expensive and the second that it is applicable to ‘the case
where there is only one constraint function. Recently, Polak has

shown that by employing certain simple transformations these inmer

subproblems are equivalent to ordinary differentiable optimization

problems so that they can be solved by standard algorithms. Hence in[19 T
an outer approximations algorithm that does not possess the computatic¢nal
disadvantages caused by the need for a subalgorithm suitable for

non-differentiable problems is presented.

Bandler [ 8 1, tackles the tolerance-tuning problem by
distinguishing between éffectively toleranced and effectively tumed
parameters. A (finite dimensional) reducdd problem can be obtained in

this way, which under assumptions of one-dimensional convexity can be
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shown to be equivalent to the original problem. For non-convex problems
the reduced problem is more restrictive (i.e. it may fail to have a
solution, although a solution to the original problem exists). Hence
Bandler's approach is strictly applicable only when one-dimensional
convexity is present., To further simplify the reduced problem, heuristic
procedures are employed in [8] . Note that it is precisely in cases in
which the set F 1s strongly non-convex (e.g. when it possesses "black
holes"), tha? one hopes to obtain large increases in the component
tolerances by the introduction of tuning.

In the secogd part of this thesis a cut map algorithm for
the non-convex problem\PT,Q is propdsed, which has the same general features
as the cut map algorithm proposed in the first part for the pure tolerance
problem P

Tl

I.3 Outline and contributions of the thesis.

In Chapter II the complete theoretical development of

specialized cut map algorithms for the problem P, is presented. Conceptual

T
and implementable algorithms are proposed and convergence is established.
In Chapter III the implementation details of these algorithms are

discussed. Numerical examples are presented and conclusions about the

performance of the algorithms are drawn.

In Chapter IV the ideas of Chapter II are extended to the case
when tuning is aléo permitted. Hence, specidalized conceptual and
implementable algorithms for the problem PT,Q are proposed and convergence
is established. Chapter V is concerned with the implementation details
of the algorithms of Chapter IV. Numerical examples are presented
and the properties of the algorithms are discussed. Finally, Chapter VI

contains concluding remarks and comparisons with the rest of the methods
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in the literature for the problems P and PT Q"
’

Each of the specializéd algorithms presented in this thesis
is believed to be completely original. More specifically it seems that
algorithms for the problems PT and PT,Q utilizing the concepts of cut
maps and separators, [20], have not been proposed before. In Chapters 1IT
and V the procedures that (approximately) solve the specialized global
optimization problems for the computation of the separator estimates were

especially developed for the algorithms proposed in Chapter II and IV

respectively.

1.4 Cut map algorithms.

The class of cut map algorithms has been examined in a general
way by Eaves and Zangwill [20] and by Hogan [21] . The key concepts
employed are those of separators and cut maps. A function §: G¢+R

where G° is the complement of a closed set G in R" is a separator, [ 20], if :
(i) &8(x)> 0 for all xeGS : v (11)
* . . *
(ii) X, + x and 6(xi) +0 as 1=« 1imply that x €G. (12)

It is shown in [20] that any positive lower semi-continuous function mapping -
¢® into R, is a separator. The significance of a separator ¢ is that if an
infinite sequence'{xi} satisfies :

X

141 ¢ B(xj, 5(Xj)) s J=1l,400,1. : (13)

_ _ N ' .
for i = 1,2,..., then any accumulation point x of the sequence-{xi} lies

in G. The reason for this is simple. Suppose there is a subsequence

*
of {xi} indexed by J such that x; S x as i~ =, Hence the
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distance between successive pointis in this subsequence converges to zero,
This can only happen if 5(xi)-> 0 as i+>, i ¢ J. It follows from

the definition of a separator that x*eG. The balls in (13) can be open
or closed and can be defined using any norm. We now define cut maps as

follows :

Let I be the class of closed sets defined by :
A n
L= {zR"| 256, Z closed} . (14)

: . L ' .
A point to set function w: ¢t + 2 (the set -of all subsets of L) 1is

a cut map if there exists a separator §: ¢® + R such that :
ZnB(x,6()) = ¢ (15)

for each xeG® and each Zew(x) . A set Zelr 1is a cut if Zew(x) for some
x€GS, It is shown in [20] that G is the intersection of all cuts in L,
Note that if for all xGS, O <6(x)s d(x,G) = min {lly-xlllyec} , then
x> B(x,§ (x))c is a simple example of a cut map. The reason for this is

that G ¢B(x,5(x))c for all xG°. We can now state the following model cut

map algorithm,

Algorithm 1

StEE 0 : Set i=0, WO = *v
Step 1 : Compute any xiE W;.
If xieG stop; else proceed to step 2.
. . - c
Step 2 : Set Wi+1 Wiu Zi

where Zi ew(x) and w 1is a cut map.

Set i = i+l and go to step 1.
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Theorem 1, [20 ]

(i) If the algorithm stops at X; s then xieG.

» & * - . *
(ii) If x 1is an accumulation point of a sequence {xi} .

*
generated by algorithm 1, then x € G .

Hence a cut map algofithm generates approximations to the set G
by forming intersections of flinite numbers of cuts. At each iteration
a point in the current approximation of the setiG in computed and then
the approximation is updated by the introduction of a new cut involving
the latest point. The importance of utilizing cut maps is that outer

approximations to the set G are only generated.

The above algorithm is due to Eaves and Zangwill and contains the
essential features of cut map algorithms. The other algorithms‘
presented in their papers incorporate_schemes for dropping cuts (in
algorithm 1 a new cut is introduced at each iteration). Since thése
schemes are mot appropriate in our case, different cut dropping schemes

will be employed.
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CHAPTER II

CUT ‘MAP ALGORITHMS FOR THE TOLERANCE PROBLEM

II.1 Introduction

In this Chapter the complete theoretical development of
conceptual and implementable algorithms for the tolerance problem is
presented, . The algorithms belong to the class of cut map algorithms
of Eaves and Zangwill [20] and the concepts of separator functions and

cut maps are utilized for establishing their convergence properties.

Suppose that xR" is the ‘vector of nominal values of the
vdesign parameters of a certain system. The object of a possible design
procedure is to choose x so that all the specifications will be met,
whatever the actual parameter values are, as long as they fall in a
certain given tolerance regipn. Hence one way of formulating the

tolerance problem in a normalized form is the following :

PT ¢ Find a point in the set G defined by :

A 1
= {xeRn' £3 (x+t)s 0, j=1,...,m, for all teT } [¢))

. @
I

where

]
]

A'ﬁ{teRnl leY <1, i=1,..., 0} . | (¢3)

The functions fj: R R, j=l,...,m specify the inequality constraints
that represent the specifications of the design. Also T 1is a compact
subset of R (hypercube) that specifies the tolerance region. Hence
for i=l,...,n, the maximum possible deviation of the ith parameter

from its nominal value is unity. The tolerance problem belongs to the
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class of problems with infinite dimensional constraints (t can take
infinitely many values) and therefore is computationally complex. It
is clear that it is not even possible to test if a point belongs to the

set G or not, since an infinite number of constraints has to be evaluated.

Let V denote the set of vertices of the set T so
that :

VA {eer |t = 1, i=1,0..,m) . (3)

Note that the cardinality of V is 2n, i.e. it increases very rapidly with

the problem dimension. Let
Fh{zr"| @< 0, j=1,...,m}. ' )

Definition

A set AR" is said to be one-dimensionally convex if for any XA,

any yeA such that y = x+aej for some acR and some je{0,1,2,...,n} all the

points 'z = x + A (y~x), A€[0,1] also belong to A.

Note that ej above denotes the jth unit vector. Now consider

the following (finite dimensional) problem Pv:

Pv : Find a point in the set GV defined by :

A .
GV ={3=R" | FI(x+t)S 0, j=1,...,m, for all tev}, (5)

Theorem (Bandler [6] ).

A solution to the reduced problem PV is a solution to the
original problem PT and vice versa, if the set of feasible nominal designs

F is one—dimensionally convex,
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A two-dimensional exémple illustvating the above theorem is
shown in Figure I. Its validity is basgd on the fact that.“worst case"
points of a certain design x, (i.e. the points in x+T that mostly violate
the specifications) are always vertices, if the set F is one-dimensionally
convex, One-dimensional convexity is the fundamental property required by
most existing methods for tackling the tolerance problem, as discussed |
in Chapter I, since it allows the adoption of finite dimensional non-linear
‘programming algorithms. As the number of vertices increases very rapidly
with the problem dimension all these meﬁhods incorporate procedures for
selecting only a small numbgr of vertices at each iteration. Because of
the heuristic nature of these procedures, none of these methods has
established convergence préperties. The only algorithm with established
convergence properties which is suitable for general non-convex infinite
dimensional problems seems to be the outer approximations algorithm
of [4 ]. In this Chapter specialized cut map algorithms for the tolerance

problem will be proposed that possess the following general features :

(i) They construct sequences of points that converge
(if convergence occurs) to solutions of the non-
convex problem PT'

(ii) They have established convergence properties.

(iii) They are directly implementable, i.e. truncation rules
are given for every infinite computation, so that each
iteration requires a finite number of operations on a

digital computer,

(iv) They are particularly suitable for interactive

computer—aided design.
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F is one-dimensionally convex.
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In section 2 assumptions are made and results are proven that
lead to the definition of a separator function for the tolerance problem
and to the statement of a conceputal algorithm., In section 3
implementable algorithms are proposed and discussed. Implementation detaiis

and numerical examples are presented in Chapter III.

I1.2 A conceptual algorithm for the tolerance problem.

We firstly make some definitions and assumptions necessary for

the analysis that follows. Let :
A j . .
Vv(x) =max {£'(x)] j= 1,...,m} _ (6)

i g{xeR“,zp(x)g 0}. - ()

Figure II illustrates the sets F,G and U. The following assumptions are

made

Al: The functions f"j : Rn+R, j=lyee.,m are{ continuous.

A2: The sets G and F are not empty and the set F is
equal to the closure of its interior.

A3: F® (the interior of F) satisfies :

FO = {xR% ¥ (x)<01}.

All these assumptions are mild. Al is astandard assumption.
A2 excludes isolated points, whiskers etc. from the set F and together
with A3 is required to prove results that lead to the definition of a cut

map for the tolerance problem.
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The sets F, U and G.
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Consider the function n: R+ R defined by:

n(x) & min{|ly| _|yev) (8

Because ¥ is continuous (i.e. the set U is closed),lly—xﬂLﬂ is bounded
from below for fixed x and ||y—ﬂ|aﬁ-m as ||y ”5~+~°,'the minimum exists.
We are now in a position to define a separator for the tolerance problem .

Let 8:R">R be defined by :

§x) 2 1-n). ' o ©)

Proposition 1

The function 6(x) is a separator for the problem PT.
Proof

(i) 6(x)> 0 for all xG°.

Choose any x€G°. By the definition of G there exists some
yex+T) such that ¥(y)> 0. Since x+T is equal to the closure of its
interior and V¥ 1is continuous, there exists some y'e(x-l-T)o such

thatjﬁ(f)>’0. Let ; be a minimizer associated with x, then :
n (x) =” x—§H,,,st-y'Hw < 1,

Hence n(x) ¢[0,1) for all %G and the result follows from (9).
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(ii)d §(x) is continuous.

We prove that n(x) is a continuous function and use (9).

Suppose that y is a minimizer associated with x (y' with x'), then we have:

n =|lx=yll_ s =y, =lxx"+x'-y"|_s

-

$lzxtlls Dx'=yll, = nGx) +]ex|]

Similarly :

nx') s nx) + el
Combining the two results we have :
| nx) - nx" s | =x'll,

which establishes continuity.

0

Note that 8 (x) = 1 for all x€U. We next prove some results
that follow directly from our assumptions and will lead to the definitien

of a cut map for the tolerance problem PT.

Proposition 2

(1) The set U is equal to the closure of its interior

(i.e. U =(U°) , where the overbar denotes closure).

(ii) The interior of U satisfies :

1 = {xeR® | ¥(x) >0} .



29.

Proof
We firstly note that by the continuity of W:
F¢ ={xl ¥(x) > 0}<u®, (10)
(i) _We have that (U°) ¢ U since U is a closed set. Let
A n
A(F) = {xR . {y(x) = 0} .

Choose any xcA(F), then :

%< AF) =» ¥(x) = o=,~.x/1«*°

by assumption A3, Hence for any £€>0 :
B (x,e) N FC A .
Using (10), for any €> O:

B (x,6) n U° # 4’-9 x‘E(?’).

Hence A (F) <iu®). Now :

v=[5Sa@mlcl v° vaE)lc

(%0 @] = @ .
(11) Suppose, contrary to what is to be proven that xeU°  and
¥(x) = 0. Then x€F and since F = (F_o) by assumption A2, there
exists an infinite sequence >{xj} in F° converging to x. By

assumption A3, IP(xj)< 0 for all j and thus x; eU® for all 3,

. . o
which contradicts the fact that xeU .
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Proposition 3

Suppose that :

wd {B_ (y,1)|yeU}

W' =vu {B_(y,1) ’}’EUO} .

Then W=W', .

Proof

(i)

(ii)

Obviously W'sW,

Note that both W and W' are open sets since they afe equal
to the union of open sets. Let xW so that x%B «(y,1) for
some y€U, - If yEU° we also have »W'. Thus consider the

case where ¥ (y) = O. Since U = w®) by proposition 2, there

. - . .0 . :
exists a sequence {yi} in U  converging to y so that :

I x—yi”ws | x-y”w+ I yé’eyilL< 1 for a}l iz iy »

for some io> 0.

Thus xéBm(yio,l) and since y; € U° we have that xeW' so

Q
that WewW',

‘Proposition 4

Proof

¢ =n{B (y,1)%¥U}= W, (11}

We prove that G = (W")€ and use proposition 3.
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() Gegu')

If this is not true, there exists some x& (GNW').

Hence there exists some yEUo such that :
(a) ¥(x+t)s O for all t€T (since x€G).
(b) 1|x-y|| <1 (since x€W'),

(c) V(>0 (by proposition 2(ii)).

R .
Let t' = y-x. Using (b) we have that t'€T. Also V(y) = ¥(y-x+x) =

P(x+t')$ 0 using (a). But this contradicts (c) so that (i) is true.

(ii) W) Cec.

Suppose this is false. Then there exists some xe(W’)cn .
Now x€G° implies that there exists a t€T such that Y (x+t)> O. Hence
by the continuity of ¥, there exists some v € (0,1) such that ¥ (x+yt)> 0.
Also ”x+ Yt - x'lw =Y "tIL< 1. Thus =x€B, (x+Yt,1) and V(x+rt)>0

so that x€W',.a contradiction.

w@x) 2 {y€R“| ¥z 0, eyl .= (3. (12)

w(x) is the set of minimizers of (8).



Proposition 5

The maps :
1) =x+B_ D yew)

(ii) =x=+ B (x,6(x))c

are cut maps. .

Proof

It is sufficient to prove that for any xEGc, ng(x):
B, (x,8(x))<B_(y,1)<6" . (13)

Let xch, yew(x). Suppose that =ze go(x,G(x)), then :

oyl sllz=sd] ¢ fxsll <60 +n G0 = 1.

Hence z€B_(y,1) and the left hand side of (13) is true. The right
hand side follows from the fact that yeU and proposition 4.
0
Figure III illustrates the definitiogs of § (x), n (x) and the
cut maps X'*Bw(x,ﬁ(x))C and x-*Bm(y,l)c, yEw(x). The validity of

proposition 5 is based on the following intuitive result, If a point x+t

32.

in x+T, (x+T = Ew(x,l)), does not satisfy the sPecificatiAns, then x should

be moved through a distance of at least 1-||tl|u)for the whole tolerance
region x+T to lie in F and thus for x to lie in G, Hence if yew(x), x
should be moved by at least 1 -ilx-yllaf 1 -n‘(x) =8(x) for x+T to

lie in F, which implies that B_(x, §(x)) cc®, Note that if xU we have

that ¢
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et I

FIGURE TIII

The definitions of the separator and the cut maps.



B (x,8(x)) = B_(y,1) = B_(x,1)

since w(x) = {x} .

. We are now in a position to state a conceptual algorithm for
the problem PT.
Algorithm 1
Step O: Set k=0, ﬂb = %_ .

. Step 1: Compute any xkgﬁf.
If xkec stop; else proceed to step 2.
Step 2: Compute ykew(xk), B(xk) =1 - "xk-yk]Lﬂ'

Step 3: Set W .4 = W u B, (y,»1)

=
|

[ or

1 ™ M ¥ Bo(xp 80y
Set k=k+1l and go to step 1.

‘"Theorem 1

1) If the algorithm stops at X then x, €G.

- * - * [ L L] L
(i1) If x 1is an accumulation point of an infinite sequence

. : *
{ xk} generated by the algorithm, then x «G.

34.
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Proof
(1) The result is obvious.
(ii) The result follows from theorem 1 of Chapter I and the

fact that, as shown, the maps x*-Q”(y,l)c, yew (x) and

x"*Bm(x,G(x))c are cut maps.,
ad

Note that the utilization of cut maps ensures that each WE is an outer
approximation to the set G, Algorithm 1 possesses the following

practical disadvantages.

(1) A feasibility subalgorithm is needed in step 1 to solve a
non—-differentiable problem. Hence unless such an algorithm

is available, the computation is step 1 is not possible.

(ii) The test in Step 1 requires an infinite number of operations.

(iii) An exact global minimization is required in step 2 to compute
yk'

@1v) The subproblems in step 1 increase in complexity with k,

since a new constraint is introduced at each iteration.

In the next section we proceed to obtain implementable algorithms, i.e.

algorithms which do not have the disadvantages (i) - (iv) listed above.
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IT.3 Implementable algorithms for the tolerance problem.

To employ a standard finite dimensional feasibility subalgorithm
in step 1 of algorithm 1, we need to have continuously differentiable
constraint functions. We can modify the cut maps defined in the previous

section by observing that :

Bz(x,G(X))<=Bw(x,6(x)) and B,(y,1) <B (y,1).

Hence the maps x- B, (x,8 (x))€ and x*—)-EBz (x,6 (x))u Bz(y,l)] c’ y ew(x)
are cut maps. Note that B2 (x, €x)) is not a subset of Bz(y,l). The
relation x' ZBZ (x,6 (x)) can be expressed as the following continuously

differentiable inequality:
A ,
gh = 50?2 -] x -x' | gso. (14)

Further details about the implementation of step 1 can be found in

Chapter III.

Our next task is to replace the exact global minimization

involved in Step 2 by a finite procedure.

Proposition 6 .

For any x€G°, let y'€x+T be such that ¥(y') 20 and let

§= 1~ x—y'“ .« Then :

-

Bz(x,E)c cC.
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Proof

We have :

§ =1-[y'=x[_s1-n =sx).
Hence:

B, (x,§) ©B, (x, §(x)) =G,

d

The important consequence of proposition 6 is that if we replace
yew(x) by some approximate minimizer y'ex+T satisfyingy (y') 3 0, the
map x"'Bz(x,G—)c, where §=1 - | x—y'”w, possesses the same basic

property of cut maps (see proposition 5).

Let a map S: R® x Z+->Rn be such that for any %R"  and
P ey o . ey o - .
jéZ  , S(x,j) is the result of applying t(j) iterations of a certain

algorithm to the problem:

min {y-x, [v)3 0}
in

+ o+ . - . . . .
where T: Z > Z is a monotonically increasing truncation function

(t(j)* >~ as j*=~). We now impose the following conditions on S:

A4: (i) For all xeg® , there exists an integer I(x) such that :

s - =l <1, ¥(s(x,1))% 0 for all j3 I(x).
(ii) For any compact subset X of.Gc

| n(x) = |s(x,3) - x|| >0 as j * = uniformly in x for xeX.

2]



38.

The purpose of (i) is to ensure that at each xeGS an approximation to
the separator §(x) having the property of proposition 6 can be generated

in a finite number of iterations. Hence 1if we define

566 & 1-Ti & 1-]se,i) - x|l (15)

we observe that for any xch, we have :

0< §(x,j)s 8(x) for all j3 I(x).

Condition (ii) ensures that the approximation of 6(x) is of increasing
accuracy as j 1increases and is required for establishing convergence.

- s " . » c
It is clear that if {xj} is a convergent sequence in - G, then :

| E(xj,j) - G(Xj)‘+10 as jr o .
Procedures that generate S(x,j) and satisfy A4 are presented in Chapter III.

To avoid having to solve an increasingly complex subproblem in
.Steﬁ"l,ra‘prbcédure.féf"dropping éﬁééﬁsﬂéﬁld be incbrﬁofated in our
algorithm., It is possible to utilize the scheme proposed in [4] . It
has the property of accumuiating constraints and dropping them en masse
when certain condiﬁions are satisfied. However it is preferable to adopt
the scheme proposed by Gonzaga and Polak in [5] . It requires more

storage, but does not have an oscillatory behaviour, resulting in better

computational properties.

LetI{E?} be a double indexed sequence satisfying:

(i) 8? >0 if j <k, E?? = O otherwise.
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(ii) eIJf/' e‘J as k>*=, uniformly in j. (16)
(iii) € N 0 as j*°
. i

Examples of such sequences are :

5? = Y max ‘{O, gi_g&k }, v>0, § €0,1) (17)
and
* . 1 1 :
€, = Y max10, - , Y>0, 650, (18)
] (1+) P (1+10) 1P

Let the set J(k) be defined by:

A ’ - _
Tl = {32"|5 sk, $x;,5) 2 e‘J? }

. (19)
The set J(k) 1is, in a sense, the set of "most important" constraints

at iteration k. The criteria according to which an irdex j associated

~ with the point x, is contained in J(k), k3j, are the magnitude of

‘E(xj »j) and the value of j relative to k. Hence J(k) cbntan‘ms

the indeces of the most recent points whose separatof estimates are large
enough. In the implementable algorii;hm that will be presented, it
specifies the balls utilized to form the next approximation (W;_'_l) to

the set G.

We are now in a position to state an implementable algorithm

for the problem PT.
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Algorithm 2

- Notes

(i)

(ii)

Step O: Set k=0, WO =+ .

§£EE_1: Compute any xke W; .

Step 2: Compute Ve ® S(xk,k) .

Step 3: If ¢Kyk)< 0 OrIIYk - xle?l

set Xe1 = Fer Wk+1 = Wk, k = k+1

and go to step 2.

Else proceed to step 4.

Step 4: Compute EZxk,k) =1 -llyk-xd[w.

.Set‘_wk_’_l = U{Bz(xj,S(xJ.,j)) jeJ(k)}

-Set k=k+l and go to step 1.

The algorithm is directly implementable since each step

requires a finite anumber of operationms.

If during the operation of the algorithm a point X
in G is generated the algorithm will jam up, i.e.
will start cycling between steps 2 and 3 increasing
the accuracy of the estimation of G(Xk) and
establishing assymptotically that G(xk) is not

positive.

The cut drbpping scheme works as follows. A ball

involving the point xj is kept for all subsequent
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iterations if E(xj,j)) :Ej' If not, it is kept

until k becomes large enough for ?ij,j)sé? to be
satisfied. In (17), 6-determines how faste ? tends
to Ej and Y should be chosen to provide the right
scaling. J(k) may be regarded as that subset of
'{i,...,k} which (approximately) defines the most
important comstraints. Roughly speaking these
correspond (at iteration k) to those balls B, (xi,S(xj))
for which 6(xj) is largest and j 1is close to k.

Once a constraint is dropped it does not reappear.

(iv). As already discussed each set ch can be represented by

a set of continuously differentiable inequalities as

follows :
W ° = {x|g) 05 0, for all jeJ(k-1)} ©0)
* where
Foyn A Te a2 g o 2 |
g (x) = §(x,,3) | x4 x| ,° . : 1)
Let
k A : j . "“4'; . -
X (x) = max {g” (x)|{je Fk-1)}. _ (22)

k . . c
Then X (xk)s 0 implies that x € Wk .

) It is possible to improve the convergence properties

of algorithm 2 by modifying Step 1 to Step 1'

as follows :

‘Step 1': Compufe any X such that :
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% € WS N G

where

A ;
G = IXERplfJ(x+t)$ 0, j=l,...,m, for all GETk} (23)

and Tk is a finite subset of T. Any heuristic rule for specifying
'1‘k can be employed. For example Tk can be some subset of the set V
of vertices of T. The designer.. can use any knowledge about the

problem to include the "worst case" vertices only. Since GQ=Gk,

the maps x +[B2(x,6(x))cﬂ Gk] are cut maps. The reason of this

k

to the set G than ch . The introduction of these conventional

constraints assumes that the functions fJ, j=1l,...,m are continuously,

e ps . . c . . .
modification is that Wk NG, 1s a much better outer approximation

differentiable. Further implementation details are discussed in

Chapter III.
(vi) Let :

H Q {IKERn h'q'(X)S 0, 2 =1,---,P} (24)

A ' . . .
where h : R™» R, 2 =1,...,p are continuously differentiable.
Suppose we want to find a point in GnH. In other words suppose that
we also have a set of conventional constraints to satisfy. Then

Step 1 can be modified to Step 1" as follows:

‘Step 1": Compute any X such that :

x € (chn G H).

(vii) Finally note that since the map x -+ Bm(y,l)c s YeW(x)

is also a cut map, it is possible to employ it in our
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algorithms if a subalgorithm suitable for the non-
differentiable feasibility subproblem =x<l U{Qm(yj,l) jeJ(k)}]c

is available.

Theorem 2

. [ * :
Any accumulation point x of a sequence {xk} constructed

by algorithm 2 lies in G.

Proof

Case 1: .The algorithm starts cycling between steps 2 and ‘3 so that
x*= X for all E>k*, for some kﬁ'Q. This implies that at x* the
subalgorithm utilized in the definition of the map S cannot find a
point ye(x*+T)° satisfying ¥ (y)30 in a finite number of iteratioms.

* o %
By assumption A4(i) this implies that xﬁ#Gc, so that x €G, -

Case 2: Suppose that step 4 is entered infinitely many times and

. - - *
~ let K be the set of indeces k of a sequence converging to x so

*
that X X X . Take any j,keK with j<k. By construction of the algorithm

we have :
X, #8,(x;5 8(x,1)) i je J(e=1)
- . k-1 - . .,
0 < 8(x.,j)s €, ~<e, if j€ J(k-1).
3 i 3
Hence : —

0< B(x;,0) sl - xll, if je IG-D)

0 < 8(x;,i)e &, if jE J(k-1)

for j,keK, j<k. Combining the above :
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0 < G(xj,j) 5max{ej,”xk—xj” 5} 5€j+” xk-xj” g
Hence, using (16):
§(xj,j)+0 as je. (25)

Suppose, contrary to what is to be proven, that x*ch. Then, since c®
is open by (11) there exists a compéct neighbourhood N(x*)c S, By
convergence, there exists some.j*> O such that xj(;N(x*) for all j zj*.
Hence by A4(ii), "Xxj) - g(xj,j)|-+ 0 as j -+ « and using (25)

we see that G(Xj)*'O as j* =, B& the continuity of &, the above

implies that § (x*)= 0, a contradiction to x* €G®. Hence x*€G.

The computation of yk=Ska,k) in step 2 combined with the tests

of step 3 has the following two purposes:

(1) It estimates using a finite number of operations if
X, lies in G° (assumption A4(i)), replacing the

conceptual test in step 1 of algorithm 1.

(ii) It generates a suitable approximation to the separator
6(xk) that allows convergence results to be established

(assumption A4(ii)).

However, a procedure that only performs (i) above may be computationally
cheaper than one that performs both (i) and (ii). Consider the following

assumption:
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AS5: Suppose that for all #GS the set

4 A

Aex) & {y, Jxy]l . = 1} (26)
satisfies

Ax) n U° # 4, ' (27)

Note that :

Ax) = {(x+T) \ =+T)° }. ’ (28)

This assumption should be freéuently satisfied in practice. In simple
words it requires that the set F does not possess "black holes" that

can be totally contained in x+T for some XQERP « The

following proposition defines a class of special but common cases for which

AS is true,

Proposition 7

Suppose that :

(i) For all x€G°

(=+T)¢ n U ¢§

'(ii) The interior of U is commected.

Then A5 is satisfied.
Proof -
. c . c -3
Choose any G . Since (x+T) nU # * and U = (U") by

proposition 1 we have that :

(x+T)Cn U° # + . (29)
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Also since x€G°:

+1)° 0U° 4 4. | (30)
Now suppose, contrary to what is to be proven that @

AGx)n U° =f . | | (31)
We then have using (28) and (31):

[(x+T)% 0% u [ x+T)% v°7 u[A(x)nU®] = AUB

(=]
n

ne

[(x+T)%n U°1 u [ (=+T)%n U°]

where A and B are non-empty by (29) and (30). Because (x+'l')° and (x+'1‘)c
are open and disjoint, also A and B are open and disjoint and hence
they are separated (i.e. AmB =* and AnB =¢ ). But then U° is the
'1mion of two separated sets and thus is not connected, which is a
contradiction.
a
the that (i) in the statement of proposition 7 will be

satisfied for any practical problem. Suppose that A5 is true, then :

G = {x’A(x)nUO = +} = {x’w(x) <0 for all %= A®X)}. (32)
Relation (32) can be utilized to obtain procedures that satisfy A4(i) (but
not A4 (ii)) and are computationally cheaper than those that generate S.
Suppose that the map S': R" x Z-"->Rn is defined by such a procedure

(see Chapter III for implementation details). Then :
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S(x) 2 1 - ”x—S'(x,j)”°° for all j 2 I(x)
’ <
for some I(x)>O0, where x€G .

To present our final algorithm for the problem PT we first state a

slightly stronger version of assumption A4,

A4’ For any compact set X of c%:

(1) There exists an integer IX such that

Vse,id 20 LIl sei) = xll <1 for a1 jar,

for all xeX.

(ii) I“(X) -l x-S(x,j)'[&[*O as j* ® uniformly in

x for x€X.

We are now in—a position to state our last implementable algorithm for

the problem ET.

\

(

‘Alg orithm 3 .

| Step 0: Set k=0, Wy = $ .
~ Step 1: Compute any x € WE.
 Step 2: Compute .
T S(x k) if x #=x_,.
e T [ "s;r.(xk,k) if x = x_J-
' 'Steép 3: If w(yk) <0 orll yk-xkll’w? 1 set

xk+i X Wk+1 = Wk, k= k+1 and go to step 2.

Else proceed to step 4.

" Step 4: Compute g(xk,k) =1 -Ika-ykIIn,
oset W, =v 3,05 (x, 90| Ja@)

: Set k=k+1 and go to step 1. 0
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Theorem 3 -
Suppose that the map S satisfies assumption A4' and the map
S' assumption A4(i). Then any accumulation point x* of an infinite

sequence generated by algorithm 3 lies in G.

Proof

Case 1: Suppose that the algorithm starts cycling between steps 2 and
= = ' * *

3 so that x* X Vi S (xk,k),for all k32 k* for some k*> 0. Then

X*¢G by exactly the same arguments as in the proof of theorem 2 since S'

satisfies A4(i).

Case 2: Suppose that step 4_is entered infinitely many times and that
X 45 x*, Also suppose that x*¢G°.There there exists a compact
neighbourhood N(x*) c ¢¢ and soﬁe k*>0 such that X N(x*) for all kak*.
Let IN bé an integer associated with the map S and the compact set N(x*)
in the sense of A4'(i). We observe that for k> max { IN,R*} , step 2 of
algorithm 3 will always generate &R = S(xk,k) as the conditions of step 3
will aiways be satisfied (assumption A4'(i)). Hence by exacﬁly the

*
same arguments as in the proof of theorem 2 we can conclude that &x ) = O

. .. * ¢ * .
which contradicts x ¢G, so that x &G.

a
All the discussion. concerning algorithm 2 also applies
to algorithm 3. The difference is that in algorithm 3 a computationally
cheaper subprocedure is utilized in order to estimate if a certain point X
lies in G° or not. Hence algorithm 3 should be computationally more
efficient than algorithm 2, especially in cases in which an indefinite
éycling between steps 2 and 3 eventually occurs (i.e. a point in G is

generated).
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In the next Chapter implementation details of the algorithms
proposed are presented, numerical examples are given and conclusions

about the properties of the algorithms are drawn.
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CHAPTER TIII

"IMPLEMENTATION OF THE ALGORITHMA FOR THE TOLERANCE PROBLEM

III.1 Introduction.

This chapter is dedicated to the implementation details of
the algorithms in Chapter II. Computational efficiency and overall
practicability are very much dependent on the way the algorithms
are implemented. In Section 2 ways of solving the subproblem of step 1
are discussed. Procedures for the global optimization problem of
step 2 that satisfy assumptions A4 and A4' are proposed in section 3.
Numerical examples are presented in section 4. Finally, in section 5
conclusions are drawn about the properties and the performance of the

algorithms,

III1.2 On the solution of the feasibility subproblem.

We recall that each set ch which is the intersection of the
complements of a finite number of balls, can be represented by.a set of

continuously differentiable inequalities as follows :

W E ={_x'gj (x) €0 for all jeJ{k-1) } (1)
where

i - . 2 2 '

g (x) = 8(x,3) -l xJ.-X‘H 5 (2)
and

Ve gj (x) = 2(’xj-X). (3)

The first important consideration is that the sets W are bounded so that :a

linear search in any direction will yield a point in Wi. A suitable search
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direction is (xk_l-yk_l) since, usually, moving in this direction will
yield points that lie nearer the set G, Hence starting from X

and tgking steps in the above direction will produce some Xkech .

A suitable step length for thése steps is a@(xk_l,k-l) where a <1l. Note
that solving the subproblem xkech in this way is computationall& very
cheap since the evaluation of constraints of the form of (2) is only
required. More sophisticated methods that take into account all the

active constraints in (1) for the determination of tﬁe search direction

can be employed.

The‘simple approach described is crude and has the disadvantage
that other conventional constraints ~cannot be included in the
feasibility subproblem of step 1. A much better method is to employ
a standard inequality solving algorithm. The élgorithh-in [22] which
is summarized in the appendix is very suitable for this purpose. It
combines the quadra£ic rate of convergénce of Newton's method with the
finite convergence of first order algorithms. At iteration k it
generates X in the interior of each constraipt set, thus increasing

the probability of X lying in G.

The general subproblem in step 1 of the algorithms of Chapter II

~

has the following form:

P_: Find a point x_ in the set chn Hn G, defined by

the constraints :

g x) <0, jeI(k=1)
and ' (4)

hl(x) £ 0, Le Lk

where each gJ(x) has the form of (2) and Lk is some finite set (for
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. . . . . 2
notational simplicity we assume that the constraints h™ (x) €0,

2 GLk correspond to both the set H and the set Gk). Let :

Xk(x) =A=max {gj x)|j eTx-1)} (5)

¢k(x) 2 max {hz(x) Le Lk} (6)
A .
;Fk(x) = max {Xk(x), ¢k(x)} . (7)
Also let:
T, £ eJ(k-l)Igj (x) =P, ()} ' (8)

2 = TRC) | (9)

fk(x) £{2 eLk

The standard assumption employed to prove convergence results for the

modified Newton algorithm of [ 227 is the following .

Al: The :-iet{‘-ngj (x) je:fk x); Vv xlf‘ (x)2 'Eik (x)}

is positive linearly independent for all x

such thatEk(x)z 0.

This assumption ensures that all x such that ﬁk(x) 3> 0, a descent

direction: fori_"wk (x) exists and hence the algorithm cannot jam up at

a non—feasible point. Now clearly in the case of the problem PW there
' k

are some non-feasible pbints that do not satisfy Al, For example

at the centre of the (k-l)th ball:

-1 h _
Ve () =2k - xy) =0

and hence if (k-1) € Jk(xk_l) (usually true), Al is violated at x__,.
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Also if two balls intersect, there is usually some point on the line
segment connecting their centers which does not satisfy Al, Because all
these points are either local maxima or "saddle points" of the function
i;k(x) (and all algorithms always reduce ﬁk at each iteration), they

do not usually create any practical problems since it is very improbable
for an algorithm to jam up at them, unless they are used as initial paeints.
From the above we conclude that x _, is not a suitable initial pqiﬁt

for the problem PW .
k

X = Fep ARy T v)

.A suitable initial point for this problem is :

where

A= a8 ke vl o

and Vel ™ S(xk_l,khl). The above initial ‘point has the highly -
desirable property that it = usually. lies nearer the set G than X1
Hence the probability of X lying nearer G than X1 is large. If

X = yk_1 we can rep;ace X1~ Vi1 by Xy " Xp in the

expressions above.

From the above discussion we conclude that for each subproblenm

PW,k there exists a set of known "singular points" that do not satisfy

Al. Almost always these points do not create practical problems so that

W

‘application of the algorithm in [22] employing the initial point rule.

a solution to the problem P, can be efficiently obtaimed by direct

proposed above; However, it is not theoretically guaranteed that jamming
at these points will not occur. Let the set XW.k contain all these

known "probable" singular points, i.e. those which are either centres of
balls or lie on the line segment connecting the centers of two intersecting

balls. More explicitly, X will contain the ball centers xj,jeJ(k-l).
< .
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Also considering the balls corresponding to the constraints g 1(x) and

]

J J
g 2(x), jl,j2 ¢J(k-1), the gradients Vx g 1(x) and Vx g 2(x) are

linearly dependent on the line segment connecting their centers. This

segment can be described by the equation :

y=azx, + (1-0)x, , O0gag 1. (10)
3 12

Substituting and solving for c¢ in the equation :

] j
gl = g2

we obtain :

. - .. \2 : 2
g(xj )Jl)z - &5 (x. ,~'J2) +”X. - x.” 2
@, . o= .__.-1 = 12 3 J . (11)
Jq] . - —
1°-2 9 _ 2
||X3< 'Xj'llz
1 2
Suppose that y.. . 1is the point obtained ifa .. . from (11) is
‘ Jisdg 11939
substituted in (10). Then y. . will be included in XW if the
J1237 k

following conditions are satisfied :

g (y.. .)= gz(

, ¥. 2 ) = X, (y: )2 0.
13, T, k7305]

1772

The satisfaction of these conditions implies that Al is probably

violated at y. . . From all the above it is clear that Xy is a
JI’JQ' k

set of known probable singular points that can be analytically computed

for each k. Let :

& 4 min{xk(x)[xexwk}. (12)
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By the definition of Xw we have that :
k

-

dk> 0. _ (13)

We make the following assumption::

Note that this assumption iB-mild, since dk=0'will only happen if two
balls are tangent to each other. Now suppose that we have a point X

satisfying :
0<xk(x)< d - , (14)

It will be shown later that such a point can be computed by a finite

procedure. Choose(:k; 1 such that :

C X X > 4 () L | (15)
Note that when no conventional constraints are present (Lk empty) e

can be taken equal to unity. Let :

- A ’
1Pk(X,c) = max { ¢ xk(x), ¢k(x)} . (16)

Then using all the above relations :

for all xeXW . an
k

Now congsider the problem:
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P, : Find a point in the set(ul:)c defined by :

e
gl (@) <0 , jeJ(k-1) | CL8)
Rl <0, ne L

where

g £ ckgj(x)- (19)

- = ' » , : L - »
It is clear that Wk Wk since ck:>0. Also by the definition of ka

we see :that:

5 = Kp ' (20)

where XW' is the set of probable singular points of the sort considered
k

and is defindd for P,1 in the same way that xwk is defined for Pwk.

e

Let

w1;<x) = max{xl'((x) ,¢k(X)} ' (21)
where

X{(x) = max {g"d () ]jed (-1 i (22)
Clearly :

lPIL(x) = Ek(x,”ck) . | g (23)
Let the set Ck be defined by :

G, £ i« VI < vIR) . (24)

Using (14), (17), (20), (23) and (24) we deduce that :
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= ! c
e (W) "< C

- A -
In words, we have a point x 1n a set C

' that contains the set (Wl':)c

and does not contain any singular pointg of the sort considered for the

problem Pwl,( - Let Ji(x)and L (x) be aefiged for Pwi{ in' the
same way that Jk(x) andAﬂk(x) are defined for Py, - Then we make the

: k
following assumption in the place of Al:

e
Al': The set {V_g I (x)

jeJ{((x); v, bt (x) ZEI;(X)}

is positive linearly independent for all xeck

such that ¢é(x)§ 0.

We can now directly apply the algorithm of [22] to the problem Pw;
starting from the initial point ﬁeCk. Because the algorithm always

reduces ¢é(x) at each iteration we see that (by (24)):

x€Ck=-§ A(x) € Ck

where A(x) is the algorithm model map " (see definition in [22]).
Hence Al' ensures that the convergence theory of [22 ] is valid and
any accumulation point generated should lie in the interior of Wﬁc
(and hence of ch). Note that if no conventional constraints are

| present, the algorithm should generate a point in the interior of ch
in a finite number of iterations even if the sequence produced is not

convergent, since Wk is compact.

57.

@25)
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To summarize, it is possible by choosing X and ¢, to

ensure that at all the "probable'" singular points of the sort considered

at the initial point x., Hence since the algorithm in [22] always reduces
the maximum of the constraints at each iteration, it is not possible for

it to jam at any of these singular points.

It is possible to generate some 2 that satisfies (14) with
a finite procedure because of the special form that the constraints gj(x)
have. Note that X, (x)+ == as [ x|+ . For practical reasons it
is advantageous to generate =x satisfying the following relation instead
of (14), to avoid the parameter . being chosen too large

unnecessarily.
0<—< Xk(X) <d . : , (26)

The following algorithm will compute some X satisfying (26) in a
finite number of iterations. The first three steps perform a linear

. h L . .
search to generate points z, and z, satisfying :

-~

Xk(z?) = dk

dk

L

~

The rest of the steps implement a bisection procedure to generate x.
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Algorithm 1

Data: (i) ®>0, 4 >0

a (’5-(xk_1,k-1)
(A suitable value for o is a = , a<l),

[y P

.o » A § | ~e . ~
(ii) .yleR such that xk(yl) Bdk (i.e. yle%’k).
(A suitable value is vy, = xk—l)'
(iii) §'2€Rn.

(For reasons discussed in the definition of the initial

).

point rule it is advantageous to use §'2 = Vi1

Step 0:  Set i=l, j=1.

Step 1: Compute zj =y, + JG(YZ.'YI) .

‘Step 2:  If )(k(zj)ae‘].k set j=j+1 and go to step 1.

Else proceed to step 3.

~

‘Step 3: Ika(zj)> ;i , Stop and set x = zj.

3 i. j-1 and proceed to step 4.

| o -
Stegl;. Set xi . .

%

Step 5: If 7 < Xk(xi)<‘dk stop and set X=X, .

Else proceed to step 6.

h L 2
- . > = - =
Step 6: If Xk(xi) 'd'k’ set Z. ., =X, z; 4 z;
. d ')
Tk h _ .h

Set i=i+l and go to step 4. ' | O
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Theorem 1

The algorithm generates some % satisfying (26) in a finite
number of iterations (i.e. one of the "stop" commands is executed

after a finite number of iterations).
i

Proof
By construction of the algorithm once step 3 has been

entered steps 1 and 2 are not used again. We have that:

X(z) > == as |zl » =

”zjlla-*m as j-)mo
Hence there exists some finite j>O such that xk(z?)< dk and step 3

will be entered after a finite number of cyclings between steps 1 and 2,

Now suppose that none of the stopping commands (steps 3 and 5)
is executed so that the algorithm cycles indefinitely often between steps 4
and 6. Then two infinite sequences {zih} and {zﬁ } are generated that

have the followfng properties :

h L : 1 h Ly
W i+l zi+1 " 2 = E "zi _'zi” 2
h ,
xk(zi) x d : @27n
4
Xk(z'qli_) N -

"z? —z§£"2+0 as i+, (28)
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y ‘
Since { Ei} and {z?} lie in a compact set (the line segment joining
h

Z; and ziS, they have accumulation points and by (28) they have

common accumulation points. Suppose z* is such an accumulation point
2 I& h Ih . s

so that .2y > z* and zi + z*, By the continuity of X

and €27) we have :

%

h
z% = l]'m X 2z > D ——

i+

iel
“h

N

lep.

2
®) = 14
Xk(z ) 1lim X 1 (zi )

iel .
This is a contradiction and hence the theorem is valid.

To summarize, it is possible by employing the techniques

described to readily solve the subproblem in step 1 of the algorithms

of Chapter II. If no constraints on the vertices of the tolerance region

are present (Gg = Rp), the solution is computationally very theap

since evaluation of the design comstraints and their derivatives is not
required. The advantage of employing "vertex constraints” is that the

c . . . . '
set Wk ﬂHﬂGk is a much better approximation of G than-Wi{c or chﬁH.

Other conventional constraints (e.g. "box" constraints on the parameter

values) that define the set H improve the convergence properties of the
algorithm without seriously affecting computational efficiency. Note
that compactness of H guarantees the generation of accumulation points.

The initial point rule proposed causes the very desirable "centering

i
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effect" described which greatly speeds up convergence. The introduction
of conventional constraints has the sole purpose of improving the
convergenée properties of the algorithms and does not affect the
convergence proofs presented in Chapter II. Hence these constraints

may be relaxed or removed if any difficulties occur during the
computation of X in Step 1 (e.g. jamming = at a non-feasible point)
due to assumptions Al or Al' being violated (see appendix for a jamming
criterion). An interactive program allowing the specification of the
conventional constraints (i.e. the sets Gk and H) according to the
progress of the algorithm, is thus very suitéble for the implementation

of the algorithm.

" III.3: On the computation of the separator estimates.

We recall from Chaptér IT that S(x,j) is the résult of applying
—1(j) iterations of a certain algorithm to:bthe global optimization

problem:
nx) = min{ [ y=x|l | ¥ 20} (29)

where T is a monotonically increasing truncation function. The estimates

of rn(x) and 6(x) are defined as :

v

nGed) 2l == s, - Qo)

and

. - \
; 1- n(x’j)t

e

5(x,3)

This is where the inherent complexity of the non-convex problem PT

occurs. Problem (29) is equivalent to the determination of the "worst

case'" points of the other methods in the literature. It is only in
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the one~dimensionally convex case that this computation can be replaced
by a finite dimensional problem involving the vertices only. The

general methods for global optimization that exist in the literature
[231, [241, [25] are yet at an early stage. They utilize heuristic
principlqsland convergence proofs are not available. However the

problem (2§) is considerably simpler than the general global optimization

problem. Note that (29) is equivalent to :

min | Lw | |y3=d |sw, j=1,...,n, ¥(y)2 0L (31)
VoW
The procedures proposed below for computing S(x,j) will be shown to
satisfy assumptions A4 and A4' of Chapter II. They utilize sets of "mesh
- points" in (x+T). In this way uniform convergence to the global
minimum can be.established since certain continuity properties are.
present.
‘Procedure 1
Compute T (j)"iniformly spaced" points Zj (x) = {-xl,,..,z.r (j)}_ in
(x+T)O where t(j) +® as j>®. Order these points so that
lz, - xIL increases with i. Set yi = z;* vhere zi*' is
the first point in the ordered sequence such that W(zi*)? 0. Set
S(x,j) = Yj and 1N (x,j) =[|x - S(x,j“°° . If no such point exists

set n(x;3) = 1.

Procedure 2 : o

. . . N : . )
Compute T(j) points Zj(x) = {zl’°"’zT(j)} in (x+T)

. spaced so that Ej tends to zero as j™> ®, where :

Il >

max min{ ”z-zrll zextT, r = 1,...,7(3) }. (32)
z T *®

Order thése points and compute S(x,j) as in Procedure 1 above.
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Procedure 3

Compute a set ’Eg(x) of points as in procedure 2. Apply
an optimization algorithm for problem (29) using each of these points
as an initial point, stopping the algorithm when some optimality
\ :

condition is approximately satisfied. This yields an improved set

of points Zj(x). Order these and compute S(x,j) as in procedure 1.

Notes _ 0

(i) Most pseudo-~random number generators should satisfy (32).

(ii) By the definition of the procedures the number of system
analyses =evaluations of ¢ = required for the computation

of S(x,j) is N(j) where :

. % . - .
NG) =1 = t(3) n(x,J)n. (33)
Initially when the yield is small (n(x) small), N(3) will be small.

(iii), Any heuristic procedure that improves on the estimate of
ﬁ(x,j) generated by the above procedures can be employed
without affecting the validity of assumptions A4 and A4' of
Chapter II. A simple technique is to employ a linear search
starting from.S(x,j) and moving in.steps along the line
segment joining S(x,j) to x. The step length should be

. FY -
chosen according to the density of the mesh points in Zj(x).
Figure I illustrates the operation of this technique

(||xr§(x,jﬂ|m_ is the improved estimate of n (x)).
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FIGURE I

The linear searching technique.

- 1- ”x—-g(x, j)“a is the improved separator estimate.



(iv)

()

(vi)-

The procedures proposed gemerate S(x,j) given x and j.

If algorithm 2 of Chapter II cycles between steps 2 and 3, j
is increased while x remains comstant (this only happens

if all points in Zj(x) satisfy Y(z)< 0). The mechanism

for generating Zj+1(x) should be such that when j is increased

(x) =

to j+I,7T(j+1)-1(j) extra points are generated, i.e. Zj+1

Zj(x)lﬂzej+1(x). The extra points are ordered and S(x,j+1)

set equal to the first element Z; satisfying ¥(z-)2 O in the
1 i

ordered extra set. This procedure is repeated when j+1 is

increased to j+2 etc.

As discussed in note (ii) the proportion of points in Zj(x).
that has to be tested for S(x,j)to be computed is small when
x is far from G. However as x approaches G this proportion
becomes larger and larger. It is possible to utilize the
following artifice (proposed by Soin and Spence [15] ) to save

a considerable amount of computation. Suppose that X, is

close to 6 so that 6(xi) is Small, then X1 will be
close to X, and (xi+1+T) will overlap a lot with xi+T.
Therefore many points in Ziﬁci) can be employed in Zi+1(xi+1)

saving re-evaluation of ¥. for these points. (This artifice was

_not employed in the examples presented in the next sectiom).

'The choice of the truncation function T(j) is important for

computafional efficiency. It is desirable for t(j) to be

66,

small and increase slowly as long as this permits the computation

of S(x,j) satisfying V¥.(S(x,j)) > 0. However if algorithm 2
cycles between steps 2 and 3, T (j) should be increased

considerably to avoid a large number of such cyclings before a
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suitable S(x,j) is generated. One possible definition employed in the

filter examples of the next section is the following : ,

wj+1l) = 1(j) + 100 if x,

j+l # %

if x. = x,

T(j+l) = 27T (j) 5+1 5

where t(0) 1is specified a priori (e.g. 7T(0) = 100). Ideally, an

interactive program allowing the specification of the truncation

function as the algorithm progresses should be utilized.

Theorem 2

Procedures 1-3 that generate S(x,j) satisfy assumptions A4 and

A4' of Chapter II.

Proof

Firstly note that procedure 1 also satisfies %*‘0 as j*>,

where ej is defined by (32). Also n(x,j) > n(x), by the definition

of the proéedures,for all xeGS. ’

(1)

c . . .
Choose any x€G . Since U is equal to the closure of its
interior the open set (x+’I')°nUo is not empty. Hence there
exists some y€Rn and some %{>0 -such that :

B,, (v,8) <L) 1,

-

€
Now choose I(x) large enough so that ?i<-{§ for all j 2 I(x).

Then, by construction of the set Zj(x), at least one point
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zj = (x-#-oj)e Zj (x) lies in Bm(y,—}zc) for all j 2I(x).

A
Hence 25 2 (x'+GJ.) € Zj (x') lies in B (y,Ex) for all

© €
x'€B, (x, TK ) and for all 3 I(x). We then have :

e
zj e (x'+T)°, \U(zg); 0 for all x'eBw(x,—)z-c-) .

for all j 2I(x)

where z; er (x'). By the procedure definitioms, all

~ the above imply that :

€
Ix" - S(x',j)[L< 1, ¢(s(x',j)) 20 for all x'eB_ (x,?)_-}-{-

for all j 2I(x).

€
Hence A4(i) is satisfied. Now the family of balls Ba',(x,-—zis), xeX<G®

forms an open cover for the compact set X and thererexists a finite

subcover so that :

. € A’
Xcu {B,(x, = )'xsx}

where X 1is a finite set.' Taking IX. = max {I(x)|xX} we see that :

sl <1, w522 0 for all § 33y

for all xeX

so_that assumptions A4'(1) is also satisfied.
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(ii) Choose any x€GC and let yéw(x) (recall that w(x) is
the set of minimizers of (29)). Choose any € O,

As in the proof of (i) above the open set
' A £ 0. ..0
(y) = B (v, 3N (x+T) 00U

is not empty. Choose y'eRn and €' >0 such that :
Bw(y',s') < Yé,(y)' .

By arguments similar to those in the proof of (i), there exists

some integer N(x) >0 ;;uch that at least one point yj A= (x+Gj) € Zj (x)
lies in Bm(y',g') for all j 3N(x). Hence Y:!l g (x'+Uj) ezj (x') lies
in B_(y',€') (and in U°) for all x'€Bm(x‘,%') and for all j2N(x). We
then have :

05 nx')g R(x',jysllx'-y; Ilm=l|<3 1 =Hx-yj |

e

RS Hx—y”mi- ﬂy—yj ” s n(x) + ; for all x'€ B, (;:, EE)

for all j 2 N(x).
By the continuity of m(x) there exists some A6'> 0 such that :

In(x) =n(x") ls-z-e for all x'"eB_(x, &).

| o(x') = n(x',3) | < €for all x'eB (x,6)

for all j 3 N(x).
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The family of ballqu,(x,6 ), xeX forms an open cover for the compact
X

set X<G* and there exists a finite subcover, so that :

Xecu {B_ (x,Gx) ..xex}

A ~

where X 1is a finite set. Setting N = max{N(x)|x€X} we have that :

.ln(x) - 7Rx,jj § € for all j 2N,, for all x¢X

so that A4 (ii) and A4' (ii) are satisfied.
d
We finally turn out attentién to defining procedures thgt
satisfy A4(i) only and hence generate S'(x,j) for algorithm 3 of

Chapter II. Recall that :

Mx) =y | Ixy = 13,

-

Procedure 4
Compute T(j) "uniformly spaced” points Zg(x) ='{z1,...,zt(jyf
'in A({x). Set z§ equal to the first point zi'ezg(x) that satisfies

'w(zi) >0. Then, by performing a linear search along the line segment

joining z} to x and using a bisection procedure if necessary, compute

a point z such that w(;)> o, " x-z[L,<1 (this is always possible

fby the Continuity of ¥). Set S'(x,j) = z. If no point z; as above

exists, set S'(x,j) = z i)

(34)
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Procedure 5
Compute t (j) points Zj(x) = {zl,...,zr(j)} in A (x)

spaced so that 53 + 0 as j -+ » where :
A . .
-€3 < max m%n | z-zr[Ln z eA(x), r=l,...,7(3)}. (35)

Then proceed as in procedure 4 above.

(i) Procedures 4 and 5 that generate S'(x,j) are cheaper
computationally than those that generate S(x,j) since
no ordering of points is necessary. Also since A(x)
is of dimension n-1 (where as x+T is of dimension n),
for a given j the value of t(j) may be chosen to be
smaller (less points are necessary to form a mesh of

a certain density in A(x) than in x+T).

(i1) All the points in Zé(x) satisfy "z-x||w= 1 (i.e.
lie on the boundary of x+T) and are more likely to
violate the specificatioms than points in the interior of x+T.
Hence to estimate if a point lies in G or noty it is
gdvantégeous to compute S'(x,j) inétead of S(x,3)-

(given that assumption A5 of Chapter II is satisfied).

Theorem 3
Suppose that assumption A5 of Chapter II is satisfied. Then
procedures 4 and 5 that generate S'(x,j) satisfy assumption A4(i)

of Chapter II,
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Proof

Choose any xS, Since assumption A5 is satisfied (see
Chapter II, relations (27) and (32)), there exists some ye .A(%)
such that y(y) >0. By the continuity of ¢ there exists some £ >0

such that :

¥(y') >0 for all y'e [B_ (v,e)n A(x)].

By the definition of the sets Zg(x), we can choose an integer I(x)
large enough so that at least one point zje,Zg(x) lies in B, (y£)7 A(x)
and hence satisfies w(zj)> 0, for all j2 I(x). The desired result

now easily follows from the procedure definitioms.

ITI.4 Examples.
Algorithm 2 of Chapter II was programmed in FORTRAN IV and

several examples were studied. Six of these examples are presented.
The first three are two-dimensional and are intended to highlight the
properties of the algorithm. The last two are practical filter

design problems and were kindly provided by R. Soin .[151 .

Exa_n_rE 31e "1

The set F-¢R2 is defined by the constraints :

fJ(X)

2 - <
xl + Xz 1.550

2 (x) = x- 0.5 (xz-l)z - 1.550
3 2
£f(x) = =0.2 L 1€0
f4(x) = -x —(Zx2 -1)2 - 150
fs(x) = x12+ x22 - 13 gO.

Note that in the above equations the notation has been modified for



73.

convenience, so that x, is the first component of the vector x and so on.

1
Also :

T 4 e er?| et A, i=1,2).

The values of the parameters utilized in the algorithm are a = %, Y = 6
6= 0,5 (see (17) of Chapter II); Procedure 1 of section 3 that generates
the separator estimates. was implemented by simply taking Zk(x) to be the

set of uniformly spaced mesh points in (x+T)° such that the distance

between adjacent points is , where :

o(k)

o(ktl) = o(k) +1 if x ., # x

ok+l) = 20(k) if Xl = Xk

and 0(0) = 4, All the vertices and the nominal point were utilized in
the defiﬁiﬁion of the set Gk at each iteration, except when difficulties
were encountered (e.g. jamming of the feasibility subalgorithm) in step 1l.
In these cases all the vertices were removed from‘Tk and the computation
in step 1 was allowed to proceed with no conventional constraints present.
Tables 1, 2 and 3 summarize the'resultsbof three runs from different
initial points ((4,4) for fﬁn 1, (-5,-2) for run 2 and (=4,4) for run 3).
The progress of the algorithm for these runs is illustrated in figures 1, 2
" and 3 respectively. The operation of the algorithm was stopped when ¢ (k)
reached the value of 100 and S(xk,k) did not satisfy the conditions in
Step 3. 1ISUB denéteS‘the number of iterations that the feasibility
subalgorithm performed in step 1. Starred points are points at which

the "vertex constraints" had to be removed. Note that in run 3, when k20,

the feasibility subalgorithm1failed to find a point in G, (i.e. a
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point x such that the vertices of x+T satisfy the specifications) and jammed

up at a point o

was allowed to proceed from then on in the normal way.
with less "vertex constraints''were performed.

required more iterations for convergence to occur.

Th
en x,

was taken to be equal to X and the algorithm .

As expected, these

If the initial

Several trial runs

point lies reasonably close to the set G convergence can be obtained with

no conventional constraints at all.

However, it is recommended to include

at least the nominal point in each set Tk’ so that the initial point rule

operates in the desired manner.

. o ISUB 1 — - Yk - 8 (x, 5k)
- i X X Y v
"o 4 4 0.700 0.461
1 8 " " 1.575 | 0.711] 0,125
2 9 1 0.515 0.305
3 18 " "
4 36 " "
5 72 " " 1.502 | 0.944| 0.039
6 100 1 0.488 0.279

TABLE ‘1 " (Initial point (444))
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o ISUB - 5 - k 2 80k 5 k)
- y .
4 4 ~1.553 0.125 -1.803| 0.125 | 0.750
5 1 ~0.370 0.061 -1.170| 0.461 | 0.200
6 1 -0.094 | -0.154
12 " " -1.010 | 0.513 | 0.083
L1301 0.075 | -0.166 -0.232 | 2,012 | 0.154
14 1 0.263 0.052
28 " n
56 " "
100 0.263 0,052
TABLE 2 (Initial point (=5,-2))
o(k) ISUB X Vi § (%, ,k)
- | 2 y1', yz '
4 6 ~1.481 | 1.815 -0.981| 2.565 | 0.250
5 1 -1.778 | 1.500 -2.378] 0.900 | 0.400
6 2 ~0.524 | 0.669 ~1.024| 0.502 | 0.500
7 1 0.426 | 0.226
14 " 3
28 " 0
56 o "
100 0.426 | 0.226
]
TABLE 3 (Initial point (=4,4))
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Exgggle 2

The feasible set F=R2 is defined by :

fl(x) = x =-2%50
£2 (x) = =x

~f3(x) = -x1 - 2-8in 2x, £0

2

fz‘(x) = %X - 2cos 2x2 -;5 £0,

All the rest of the data and conventions are as in Example 1.

Tables 4,5 and 6 summarize the results of three runs from different
initial points. These runs are illustrated in figures 4,5 and 6.

As before, starred points are poiﬁts that have been computed after
the vertex constrains have been removed because of difficulties (e.g.
jamming) in step 1. Note ;hat'in‘this example, because Tk contains all
the vertiées of T each Gk consists of three disjoint subseﬁs one of
which contains»G. Hence, if the point xQ€G0' (computed in the first
iteration) lies in one of thpse subsets that do not contain G, it is
probable that jam@ing will occur in step 1 at a certain iteration and
that the "vertex constraints" will have to be removed at some stage.

(this happened in all three runs presented).

9.
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k o (k) ISUB % Y 33 5k)
xl Cx yl y2

0 4 8 2.116 -1.992 1.866 | =-2.242| 0.750
1 5 2 3.234 -1.835 | -3.434 | -1.835| 0.300
2. 6 1 1.890 | -1.916 | 1.557 | ~-2.250| 0.667
3% 7 1 2.428 | -0.874 3.143 | -1.588] 0.286
4 8 1 1.837 -0.785
5 16 " "
6 32 " "
7 64 " "
8 100 1.837 -0.785

TABLE 4 (Initial point (=3,-4))
K oK) TSUB X Y § (% k)

P x° vyt | y2 |

0 4 6 2.575 1.000 3.075 | 1.500] ©.500
1 5 1 2.025 | 0.700 1.825 | 0.700| ¢.800
2% 6 1. 3.368 0.700 3.535 1.198| 0.500
s |7 2 2.700 0.081 1.984 0.800| ©.286
& 8 2 3,158 0.000
5 16 " "
P 2 o .
7 64 « "
s w0 || sasm | oooo | |

—

(Initial point (6,3))
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K (k) ISUB & T ¢ k)
x' x? yl y2,

0 4 5 2.286 -1.994 1.786 | =2.494 { 0,500
1 5 1 3.345 -1.870 3.545 | -1.870 | 0.800
2 6 1 2,002 -1.881 ' 1.668 | =2.214 | 0.667
3% 7 1 2.592 -0.890 3.164 | =1.462 [ 0.429
4 8 2 1.842 -0.785

5 16 "

6 .32 "

7 64 L

8 100 1.842 -0.785

TABLE 6 (Initial point (5,=4)) .
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'Exg;mgle 3

The set R.Cj{z is defined by the constraints 3

£1(x) = x4 20
2 Ve
£ (x) = -~x,-2 €0
: 1 ,
3 . ' L. 5T
£7(x) 0.5 x; sin2 X, *+ x, 3,950 . (3.9 ¢ R

f[‘(x) = 1,5 cos 2x1 - xzs 0

fs(x) ~x) T (x2-2)2 - 0.5 €0,

Tables 7,8 and 9 summarize the results of three runs which are illustrated

in Figures 7,8 and 9 respectively. Note that removal of the "vertex

3 114 ..' 3
constraints’ was necessary at some stage in all three runms.

. L e ey

k (k) ISUB x, 7 3,k
................ }Ll x2 *yl_ y2

0% - 6 ~2.749 -0.225 |=-2.749 | -0.225| 1.000

1% 5 1 -1.590 1.015 |-1.590 | 1.015 1.000

2 -0.154 2.170 | -0.655 | 1.670| 0.500

3 £ 0.539 2.669

4 14 oo "

Sv 28 n 114

6 56 1t "

7. 100 | ...0.539. . | . 2669 | . | . .
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k o(k) ISUB k T LS
xt x> v v2
o* 4 8 -2.147 4,178 | =2.147 | 4.178" | 1.000
1% -0.501 4,500 | -0.501 | 4.500 | 1.000
2 13 0.737 2.589
3 12 ' " "
4 24 " "
5 48 " "
6 96 " "
7 100 0,737 2.589
TABLE 8 (Initial point (-4,4))
k o(k) ISUB X b E(Xg,k)
.‘Xl xz. yl' . y2
0 4 10 2,994 1.639 2.994 | 1.389 | 0.750
1 5 2 2;670 2,708 2.470 | 2.708 | 0.800
2 6 2 2.993 1.889 | 2.993 | 1.389 | 0.500
3% 7 1 4.522 2.726 4.522 | 2.726 | 1.000
4 8 8 2.815 1.371 2.940 | 1.246 | 0.875
5 9 1 2.271 2.578 2.271 | 2.800 | 0.778
6% 10 1 0.849 1.277 0.449 | 0.877 | 0.600
7 11 2 0.820 2.449
8 22 n " 0.002 | 1.495 | 0.045
9 23 2 . 0.718 2.623
10 46 n "
11 92 " "
12| 100 o.ms. | o2we23 | L
"TABLE 9 ' (Initial point (6,7))
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Example 3, run 1.
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Exa_.mn‘ le 4.

The set FcRB.is defined by the constraints :

fl(x) = X X, = 1.2 O
fz,(xj = =2x 2 + x, <0

£ = -x = 0.5 (D% - 150
fa(x) = x +x22+x - 8%50.,

90.

Tables 10 and 11 summarize the results of two rums.
L
, e Yie, B'.("ﬁé"k)
- 70 e %" x> B Ea y2 v |
0 4 12 -0.310 | -0.699 {0.835 | =1.060{ -1.499 0.835| 0,250
1 5 1 -0.006 | -0.394 | 0.835 | -0.006| —-0.006-0.435| 0.600
2 6 5 0.000 ;1.085' 0.606
'3 12 n w "
4 2 . “ | ow
5 48 w " "
6 96 " " "
7| 100 0,000 | -1.085| 0.606)
TABLE 10 " (Initial point (=3,3,3))
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% Vi | §¢550

o()| ISUB 1 2 -3 1 2 3 |
X x X y y y

4| 6 1.511 | =0.057 {0.000 |1.511 |-0.057|0.000 | 1.000
5 |9 0.274 | -0.585|0.943 |0.074 0.015 [ 0.343 | 0.400
6 | 4 0.000 | -1.022 |0.684
12 " " "
24 " " "
48 " " "
}96 " " "
100 0.000 | -1.022 |0.684

TABLE 11 (Initial point (2,0,-2))
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Exgggle 5

This is a three-dimenéionallow-pass filter design example normalized
in frequency [81. The:circuit details and specifications are shown in the
appendix. The parameter Qalues shown on the circuit diagram are given
typical values and were used as the initial point. Procedure 2 of section 3
was employed to implement sﬁeﬁ 2. The points constituting each sdt Zj(x)
were génerated by a pseudo-random number generator. The truncation
function defined in section 3 was utilized and the linear searching technique‘
~described was employed to improve the separator estimates. All the
nominal points generated by the algorithm were required to lie in F, but
no other conventional constraints were introduced. fhe values of the
parameters used are‘Y4;1, §= 0.8, a = % . Table 12 summarizes the
results of four runs with different parameter tolerances. The initial
yields were estimated by Monte Carlo analysis involving 100 points, where
as the'finai yieldsby Monte Carlo analysis involving at least 1000 points,
Ihe percentage toierances shown are ﬁith respect to the final point. IT
:denotes the number of iterations and N the total number of circuit
analyses performed in step 2 of the algorithm._ Tables 13, 14 and 15 show
in detail the progress of the algorithm for runs 2, 3 and 4 respectively,
Almost all the subproblems in step 1 were solved in §ne iteration. N(k)
denotes the number of circuit analyses performed in step 2 of the
algorithm at iteration k. The yields at intermediate itefations were
estimated by Monte Carlo amalysis involving t(k) points. It can be
observed that very few circuit analyses are necessary for the separator
estimations at low yield ﬁointé. The number of circuit analyses increases
as x ‘approaches G. Hence at high yield points it is necessary to
employ the grtifice that takes advantage of the overlap of successive
tolerance regions (see section 3) to ensure an efficient implementation.

(This artifice was not employed in the examples presented). An interactive
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program allowing the specification of the truncation function (k) as
the algorithm progresses would also be desirable. Note that in run 4 the

tolerances of the parameters are near their maximum values (see Bandler

Ts 1),

. TOLERANCES Initial Final
Run L, (H) LZ(H) C(F) yield yield IT N
1 0.085 0,085 0.055 647 100,02} 1 9
5.1% 5.17 5.07%
2‘ 0.100 0.100 0.070 627 99,872 2 188
6.07% 6.07% 6.37%
3 0.120 0.120 0.075 617 99,471 3 217
7.17% 7.07 6.97
4 0.200 0.200 0.075 597 98.7% 4 162
10.5% 10.67 7.7% .
" "TABLE 12
. STy oy T2 T TR o R I
0 1.600 1;600 1.050 0.700 64.07 100 12
1 1.671 1.688 1.118 0.138 98.5%Z| 200 | 176
2 1.658 1.674 | 1.106 | | 99.8%)

" TABLE 13 (RUN: 2)
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k o ~ - .
L, () L, (H) C(F) §(x ,k) | Yield |[t(k) N(k)

0 1.600 1.600 | 1.050 0.737 61.0% | 100 L4
1 1.689 1,710 < | 1.135 0.411 88.5% | 200 53
2 | 1.639 1.663 .| 1.103 0.247 97.7% | 300 150
3 | 1.684 1.707 -| 1.086 99.4%

TABLE 14 (Run 3)
k L, () L, (H) C(F) E(Xk,k) Yield | t(k) N(k)
0 1.600 1.600 |1.050 0.831 59.02 | 100 19
1 1.735 1.775. [1.174 0.979 43,0% | 200 14
2 1.872 1.854 |1.041 0.449 90.7% | 300 47
3 1.789 1.778 [0.979 0.430 93.27 | 400 82
4 1.891 1.878 10,987 98.7% |

TABLE 15 (Ru 4)

Example 6

. This is a seven-dimensional high-pass filter design example.

The circuit details and specifications are shown in the appendix. Table 16

summarizes the results of four runs with different parameter tolerances

and Table 17, 18 and 19 the progress of the algorithm for runs 1,2 and 4

respectively. All the conventions and algorithm parameters are as in

example 5 except that no conventional constraints at all were employed in

this example.
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TOLERANCES ir . .
_ Initiall Final
Run| x. (oF) x, @F)| x,,(H)| x, (nF) |x_(nF) |x, (H) |x_(nF) | Yield | Yield | IT} N
17 2 R D IRl B Dbl R yAUnEdl Tkt et
1]0.33 |1.11 [o0.12| 0.33 | 2.70 | 0.09] 0.45 |86% 99,7%| 2 | 64
3.02 | 3.02 |3.12 | 3.0% | 3.0%Z | 3.0%] 3.0%
2 | 0,47 [1.46 |0.16 | 0.41 | 3.40 | 0.13] 0.60 |752 |98.92 |4 |198
4,1% | 4.0% |4.1%7 | 3.9% | 3.8% | 4,2%| 4.0%
3 |0.72 | 1.85 [0.20| 0.50 | 4.50 | 0.15| 0.70 622 | 98.72 |4 | 164
5.82 | 5.1%2 |5.12| 4.92 | 5.0Z | 5.3%Z| 4.9%
4 10,76 | 2.10 [0.22| o0.61 | 5.20 | 0.16] 0.81 (5727 | 98i6%Z |4 |166
6.02 | 5.82 |5.72) 6.0Z | 5.82 ) 5.72| 5.7%
TABLE 16
| % | % ) =, (F) |2 C.B) |x, (aF) | x; (aF) [z () | x, (0F) |8(x k) Fieldr(k) NGe) |
"0 | 11.00{ 37.00 | 4.00 |11.00 [90.00 | 3.00| 15.00] 0.585 |86.0% 100] 29
1 | 10.67 ) 36.54 | 3.95 |10.66 [89.48 | 2.96| 14.65] 0.202 }96.0%| 200| 35
2 | 10.82136.70 | 3.94 |10.51 |89.79 | 2.97| 14.80 99,72

' "TABLE '17 (RUN 1)
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| EL0EEY [ty (E 5 B |3 (F) |5 GRED) 20 G0 |, GIF) (3. 1) Fheld () | NCR)

11.00 |37.00} 4,00 }11,00 90;00 3.00 { 15.00{ 0,322 { 75.0%Z | 100{ 21
11.21 [37.23 | 4,02 {10.79 |89.55{ 3,03 | 15.21| 0.664 | 64.0%Z | 200{ 9
11.70 |36.50| 3.97 }10.30 |88,.68 | 3.08 14.71 0.279 | 95.3% | 300{ 67
11.43 |36.15} 3,93 |10.57 ‘88.24 3.10 | 14.991 0,179 | 97.5Z} 400} 101

11.58 |35.96 | 3.91 |10.42 |88.51| 3.09 | 14.84 98.9%

TABLE 18 (RUN 2)

xl(nF) 'xz(nF) x3(H) x4(nE) :.{S(I}F)MXG‘(H) x7(nF) G(xk,k) Yield. TA(k) Nk)

/
11.00 [ 37.00 (4,00 | 11.00| 90.00| 3.00| 15.00 | 0,459 |57.0Z {100 | 8
oL !
11.61 |37.62 |3.93 | 10.39f 91.28| 2.93| 14.39 | 0,449 [82.5%Z |200 | 3
12,00 |37.14 |3.87 | 10.77{ 90.73| 2.89 | 14.00 | 0.358 [89.0% [300 | 53

12.40 [ 36.67 {3.92 ] 10.37) 89.90| 2.84| 14.40 0,220 [96.27 400 { 102

12,67 {36.34 |3.89 | 10.11} 90.38| 2.82| 14.14 ( 98.67

"TABLE 19 (Run 4)
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III.5 ‘Discussion.

As the numerical examples reveal the cut map algorithm
(algorithm 2 of Chapter II)performs well, mainly because of the
following reasons. Firstly, the feasibility subalgorithm, [22] , works
well finding pdints in the interior of each constraint set very efficiently.
Secondly, because the constraints that define the cuts are very simple
(much simpler than the circuit comstraints), the suhproblem in step 1,
_is usually solved in ome or two iterations. The initial point rule
adopted causes the very desirable "centering effect" (i.e. encourages
the generation of new points that lie nearer the set G and have smaller
separator values and substantially reduces the total number of iterations),
In addition, the cut dropping scheme ensures that'the complexity
of the subproblems remgins low throughout the qpération of the algorithm.
The inclusion of conventional constraints either involving the vertices
or relating.to ;he magnitudes of the parameters ;esﬁlts in better
cdnvergence properties since it ensures that each cut is a good
approximation to the set G. These constraints can be removed if problems
" are created in step 1 since ﬁhey are.not necessary for'the'conve%gence
'pr;qfs in Chapter II. When a good initial point lying reasonably close
to the set G is used, it‘is not necessary to employ any conventional
constraints at all, because the "centering effect" of the initial
point-rule usually caﬁses the algorithm to converge rapidly.  In such
cases the derivatives~of.the constraints are not utilized and the
algorithm works by performing '"pass—=fail" tests only in step 2. ' Because
the feasibility subproblems are-easily and efficiently solved, most qf
the computational effort is dedicated to performing "pass—fail" tests.
Hence, skilful programming dtamatically increases the efficiency of the

implementation. By adopting the techniques discussed in Section 3 in

an interactive program it should be possible to obtain further
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improvements on the resulté presented. The points that constitute

the sets Zj(x) should be generated either so that they form a uniform
ﬁesh'in x+T (procedure 1 of section 3) or by employing a pseudo-random
number generator (Procedure 2 of section 3). Some loss of accuracy

in the estimation of the separators was (as expected) detected when
‘the seéond method was employed. However, since the programming
complexity of creating uniform meshes of points is great for high
dimensional problems, procedure 2 of section 3 is more appropriate for

practical applications.

.Because the separator estimates are always smaller than
their exact values and the feasibility subalgorithm fimds points in
the intefior of each set, the algorithm is not sensitive to the
accuracy of the sepafator estimates, Combining the above with the
fact fhat.at low yield pointé few pass-fail'tests (circuit analyses)
'are required for the genéfation of these estimates, we conclude that
large increases in field caﬁ be efficiently obtained. ' In Chapter VI
the cut map algorithm is compared with the rest §f the methods in

the literature.
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" CHAETER "IV

" "CUT 'MAP "ALGORITHMS FOR THE TOLERANCE-TUNING PROBLEM

Iv.1 " Introduction.

In Chapter II cut map algorithms for tﬁe pure tolerance
problem have been proposed. Their purpose is to generate nominal values
for the components of a certain system so that the design specifications
are met whatever the actual values are, as long as they fall in a
certain éi§en tolerance region. However,in practice it sometimes turns
outlthat very tight tolerances are necessary for a solution to the pure
tolerance problem to exist. Very tight tolerances may be very costly
or even impossible to produce. Hence it is standard praqtice to
permit post-mahufacture tuning or trimming of certain components, so
that acceptable éomponent tolerances can be adopted; The tolerance-
tuning problem is to find a set of nominal values for the components
so that whatevef the actual values are'- as long as they fall in a
‘ certain tolerance region - the specifications can be met by tuning.
in this chaptér the ideas of chapter II will be extendedbtoﬁproblems

in which tuning is also present and algorithms for the tolerance-

tuning problem wili be proposed.

Suppose, as before, that xeR" is the vector of nominal values
of the components. Also suppose that the first { parameters can be

tuned or trimmed. We now define the continuous map r : R > R by:

o - ’

: q if 15 2 2 ‘

r (Q) - ’ q ER . (1)
0 if 4<i &n

Il >

The tolerance region is defined as before (after normalization) by :
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T4 {ter® [t*] g1, i=1,...,n1}. 2)

Let the tuning region be defined by

Q4 tee? -aiSqi 8.} ={q|-asqepl. ())

Hence, as before, the maximum deviation of the ith parameter (i=1,...,n) from
its noininai~value is unity. Also the ith parameter (i=l,...,.{) .can be

tuned by an amount specified by a, and. Bi' Usually a; = Bi> 0.

1If either @, or 3.]._ idlzero, we have one way or irreversible tuning

or trimming; an example is laser beam resistor trimming in the manufacture
of high quality integrated circuits. The tolerance-tuning problem can

now be stated as:

PT Q : Find a point in the s'eth defined by:
? .

A . S
G = {xR™| for all t€T there exists some qeQ

N .

‘ such that £ (x+t+r(q)) €0, j=l,ee.,m} . )

The functions £1. g% +R, j=1,...,m specify as before the inequality

 constraints that correspond to the design specifications. Let :

¥(x) 2 max {£30]3=1,...,m3 | (5)

4

P *,q) £ V(x+r(q)). )

.« | 2 . . . . a
Note that $-~ R x RS>R 1is a continuous function by the continuity

-

" of Pand r. Also note that G can be expressed in the following way :
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.G = {xeRn for all teT there exists some qe¢Q

such that 9 (x+t,q) s 0 }. M

Bandler [8] tackles the tolerance-tuning problem by distinguishing
between effectively toleranced and effectively tuned components, as
discussed in Chapter I; .A11 his results are based on the assumption
of one-dimensional convexity. Note that it is prgcisely in strongly
non—-comvex c;ses that one ﬁ0pes\to obtain large increases in the
component tolerances by the introduction of tuniqg. Polak aﬁd
Sangiovanni-Vincetelli discuss the éolerance-tuning problem in [18]
and present algorithms that employ non-differentiable optimization
technidﬁes. Finally, Polak in [19] presents an implementable outer
approximationsalgorithm for the general engineering problem when
tuning is permitted.

Ié is the purpose of this Chapter to present specialized cut

map algorithms for the infinite dimensional problem'PT Q which possess
. . 4

the following features :

" (1) They construct sequences of points whose accumulation
points (if they exist) are solutions of the non-

convex problem P

T,Q"
(ii) They have established convergence properties.
(iii) They are directly implementable and are suitable for

interactive computer—aided design.

In section 2 theoretical results that lead to the statement

of a conceptual algorithm for the problem P are presented. An

T,Q
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implementable algorithm is propogsed in section 3. Implementation details,

numerical examples and conclusions can be found in Chapter V.

II.2 A conceptual algorithm for the tolerance=tuning problém.

Let the sets F (the set of feasible nominal designs) and U be

defined in the same way as in Chapter II :

r & {xeRn’\b(x)s 0} )
U={xR |¥x)201}. ®
Also let :
| Y 3{ id{n"xﬁ(x,q)a 0 for all qeQl} . ‘ (10)

As it will be shown, the interior of Y consists of all those nominal
pdints.which cannot be tuned to satisfy the specifications(i.e. to lie in F).
Figure I illustrates the definitions of the sets F,U,G and Y. The following

assumptions are made?

Al: The functions fJ,Jj=1,...,m are continuous.
"A2: The sets F and G are non-empty and F is equal
to the closure of its interior.
A3: The interior of F satisfies:
FO ={xeR" | ¥ (x) <0}, o (11)
Ade

The set Y is equal to the closure of its interior.

The first three assumptions are the same as those of Chapter II. Note

d[xl(*wls 0}

|x1‘61} and Y =f x€R2

that A2 and A3 do mot imply A4. (Consider F ={ xR’

= O};

and Q ={geR l.-ISqS 1} so that U ={ x€R2

clearly Y has no interior),



FIGURE I

The sets F, U, Y and G when

X, .1s tuned. The arrows point

1
to the set boundaries.

*€01
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A

Now consider the function n: R® >R defined by:

:1 (x) 4 min { ”y-x” - , y &% (12)

Since Y is a closed set, ”'y-x ”,is bounded from below for fixed x
and\"x—y IL + ® gg ” y "4* @ , the minimum exists. Nbte that AN(x) is
defined analogously to n(x) in Chapter II except that the set U is

replaced by the set Y. Let :

e Y1 - . (13)

Proposition 1

The function §(x) is a separator for the problem.PT Q"
1

Proof

1) §(x) >0 for all x€G°,
Choose - any xéGc._ Then there exists some y€ (x+T) such that :
‘P(y,q) >.0 for all q €Q. . (14)

R ‘
Using the continuity of ¥ , the fact that x+T is equal to the closure
of its interior and the compactness of Q, there exists some y' &x+T)°

that satisfies (14) (i.e. lies inY ). Hence :
n(x) sl x=y'll <1 =8x)> o.

~
(ii) 8§ (x) is continuous.

This follows by exéctly the same arguments as in the proof

of (ii) in proposition 1 of Chapter II.
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We have thus obtained a separator for the problem PT Q
. b4

by simply extending the ideas that led to the definition of the separator

for the problem P The next step is to define suitable cut maps.

T.

Proposition 2 A

The set U satisfies :

(1) U= w

(ii) 0 = (xR y(x) > 0} .

Proof: .

See proposition 2 of Chapter II.

Proposition 3

Let :

ye Y}

=
u

U {B_ (y,1)

w'

ye YO}

U {B_ (y,1)

Then W=W',

Proof -

The proof is exactly the same as that of proposition 3 of

Chapter II except that Y feplaces U. (Y= €°) by assumption A4).
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Proposition 4

The interior of Y satisfies :

PN A )
Y°=Y ={ yeRn $(y,q)> 0 for all qeQ} .
Proof
1) fev°

Suppose that ye"f, then $(y,q)> 0 for all qeQ. By the
continuity of $and the compactness of Q, there exists somee> 0

such that :
$(y',q) 2 0 for all y'eB_(y,£) and all Q.
Hence y'eY for all y'e B_(V¥,€), so that yEYo.

(ii) Y% ¥

Suppose that ¢Y® and that (contrary to what is to be proven)
y

V(y,q) = 0 for some aeQ. By propos;ition 2 (ii) and (6) we have :
\
P(y+r(q)) = 0 =3 y + r(q)¥ U°, (15)
Since y€Y° there exists some £>0 such that :

B, (v,E)C Y.

Hence:

¥(y',q)2 O for all y'€ B (y,€) and all q€Q
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so that :

Vr',a) =b(y'+r(@))3 0 for all y'eB (y,€) .

Hence:

¥(z)2 0 for all z €B_(y+r(q),€)

which implies that y+r(q) €U°, a contradiction to (15). Hence

the proposition is true.

Proposition 5

6 =alB, (y,1)%|yer} = w°, | (16)

Proof

We prove that G = (W')€ and use proposition 3.
(i) G ©

If this is not true there exists some xe(GNW') so that there

exists some y€Y° satisfying :

(a) For all t€T there exists some q€Q such that
Pexrt,q) €0 (as  x€G)

(b) “x—y|lm'<1 (as  *%EW')

(c) ﬁ(y,q) >0 for all q¢Q (by proposition 4).

Let t = vy - x , so that et by (b). Then :



‘I’(y,a) = JJ(Y*'X"X,&) = \IJ(.x-P;.,:l)s 0 for some aezQ.by (a).

But this is a contradiction to (c) so that (i) is true.

(i1) W) ee

If this is not true, there exists some xe(W')cn c%. Hence
there exists some t€T such that lb(x+?:,q)> 0 for all geQ. By the

continuity of ¥ and the compactness 6f Q, there exists some ve (0,1)

such that :
¥ (x-Fyt“,q) >0 for all qeQ.

Hence (x+*y£) € Yoby proposition 4. Also ”x+YAt - x| = Y”'{ | <1.

" o . . . o
Therefore x €B _ (x+Yt,1) and (x+Y2)e Y, which is a contradiction to

1

x€ (WHE.

Let :
v = {yet |l 2yl =70 )

Ww(x) is the set of minimizers of (12).

Proposition 6 : '

The maps :

x > B_(x, g(x))c

X > B-(Y:l)c’ y GQKX)

are cut maps.

Proof

The proof is exactly the same as the proof of proposition 5

of Chapter II.

108,
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It is now possible to state a conceptual algorithm for the

problem PT qQ°’ analogous to algorithm 1 of Chapter II.
b4

Algorithm 1

Step 0:  Set k=0, W = }

c
Step 1: Compute any xk€Wk .

If,xkgG stop; else proceed to step 2.
Step 2: Compute y, ¢ W(x ) and G(Xk) =1 - ”xk - yle .

Step 3:  Set W ., =W u B_(y.,D).
[or W, =W u B (x, §(x))1.

Set k=k+1 and go to step 1.

O
Theorem 1
(1) If the algorithm stops at X» then Xk€G'
(ii) Any accumulation point of an infinite sequence generated

by the algorithm lies in G.

‘Proof
The proof is exactly the same as the proof of theorem 1

of Chapter II since'a(x) is a separator for the problem Py qQ°
’

O

Algorithm 1 above possesses the same practical disadvantages as

algorithm 1 of Chapter II, which for completeness are repéated
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below :

(i) The computation in step 1 cannot be performed by a
standard algorithm, since the constraints are non-

differentiable.
(i1) The test in step 1 is conceptual.

(1iii) An exact global minimization is required in step 2

to compute ¥, .

(iv) The subproblem in step 1 increases in complexity with k

since a new constraint is introduced at each iteration,

In the next section we proceed to obtain an implementable

algorithm that does not possess the disadvantages (i) to (iv) listed

\

above.

Iv.3 An implementable algorithm for the toleérarnce~tuning problem.

Difficulties (i) and (iv) 1listed above can be overcome in
exactly the same way as in Chapter II. ’The cuf mapé x->Bm(x,3 (xN°
and x~+3B_ (y,l)c, ye%(x) can be replaced by‘x7+Bz(x,3 (x))€ and
x-?EBz(x,g(x))v Bz(y,l)]i‘yea(x) so that the éubproblem in step 1
can be solved by a standard inequality solving algorithm. The same
cut dropping scheme can also be employed to keep the number of constraints

low.

To avoid the need of an exact mimization in step 2, the

separator values have to be approximated in some suitable way. In
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Chapter II the separator estimates are required to he smaller than

set G of the problem PT are genératéd; Iﬁ tﬁé céée of the pure
tolerance problem it is~possi51é fo g;nééafé sﬁcﬁ.estimates~with a'
finite number of operations Eeééu;é tﬁé SQ£ U i;-défined By a finite
number of constraints: Anotﬁér"ééngéqﬁénéé of ;mploying such estimates
is that the algoritﬁms;of Cﬁaptér'II_j;ﬁnup (i:é.,start cycling
between steps 2 and 3) once a point‘xkgG is‘éenerated since a positive
estimate of the separator at %, can.never be computed. In the case

~of the tolerance-tuning problem P the globél‘optimization problem

. T,Q
for the determination of n(x) is infinitely constrained. Hence,

because it is not possible to test if a certain point lies in the

set ¥ or not, we cannot computé separator estimates that are always
smaller than the exact values with a finité number of operatipns. A
‘consequence of this is that an implementable algoriﬁhm for the problem
PT,Q will not necessarily jam up when a point ian is fouﬁd, since a

positive separator estimate may be computed at this point.

We recall that :

n) = min{||y-x|||yer?
and

§(x) =1- ;(x).
Let @

nG & min (1, 363
and

§(x) 4 max { O, g(x)}.

Note that :

8(x) =1-n(x).

(18)

(19)

(20)

(21)
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8(x) is also a separator for the problem P since it is continuous.

sQ

We have :

§x) = &(x)>0 for all x€G®

(22)
8(x) = 0 for all =xeG.
Hence the map x +B2(x, §x)C is a cut map. It‘cén.be easily shown
that :
G?tn{Bz(x,Gﬁo)c1 xeRn} . o o (23)
Now consider the problem of evaluating N(x) where :
Wx) = min {1, min||x~y] lye'Y}} o (24)
Suppose that the map S: R® x 27> R° is defined so that S(x,j) is the -
. 1 . . :
result of applying 1(j) iterations of a certain algorithm to the
probtem of (24), where 1:2+2" isa monotonically increasing:
truncation function (T (j) + » as P «), Let :
- .y A . . '
n(xi =lx-s @l | (25)
e . A = . ' ,
§(x,j) =1 -nk,j) . (26)

To obtain convergencé, we impose the following condition on S:

: For any compact subset X of R®

[6(x) = g(x,j)|* 0 as j»°, uniformly in x for x€X .

Note that A5 does not contain the equivalent of assumption A4(i) of
Chapter II. Hence even for very large values of j, 6§ (x,j) will not

necessarily be smaller than or equal to §(x). This implies that the
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map x-+B2(x, a(x.,j))c will not necessarily possesgs the fundamental

property of cut maps, i.e, :

G nBy (x, 86,0 £ 4 | @7)

Although A5 is sufficient for establishing convergence properties, (27)
implies that the generation of accuﬁulation points may be hindered by
the fact that the approximations to the set ¢”wi11‘ﬁot necessarily

be outer approximations. In other words, the cuts generated by an
implementable algorithm may contain on1y some subsét of G‘(or may even
be disjoint with G) and hence the'geﬁeration of'accuﬁulétion'points
may become unlikely (or even imposéible). To,avoid this undésirable

feature, it is necessary to keep updating the separator estimates of the

pbints that have not been dropped by the cut dropping scheme, to ensure

approximations to the set G of increasing accuracy.

Suppose that Ek(x) denotes' the latest estimate of the separator
8(x), (i.e. the estimate of &§(x) at iteration k). As in Chapter II, let

an infinite double sequence.{;?} satisfy:
.k A | .
(i) Ej >0 if jJ <k, sj = 0 otherwise.
oy ko= : .
(ii) EJf Ej as k »>o, uniformly in j, o (28)
(iii) ;{j\ 0 as j+ o

The set of "most important" balls at iteration k which is used for

the formation of Wk+1 (the next approximation to 6%, is defindd by:

Iy 4 iex Zs'k(xj)>elj‘} : S (29)
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Hence in the implementable algorithm to he presented the latest
estimates of the separators are employed to determine which points are
to be dropped. To keep tﬁe number of separator re—estimations as
small as possible, we also define ﬁhe set 3(k)'as-follows ::

36 ={i<k|8 <xj>>e1j‘}_. = (30

‘ . M N
J(k) contains all these points which according to- their separator
estimates at iteration k-1 are prediéted to belong to J(k). Only
N L] y - 6 Ld - L
the separators of the points in J(k) are re—estimated at iteration k

(see step 4 of algorithm 2 below). Note that:

3Ck) < 3Ck-1).

Suppose that K is some infinite subset of Z (the set of positive integers).
For example, K may be the set of multiples of some positive integer. In
the algorithm below the separators of the poiﬁts in J(k) ave re—estimated

only if keK, so that the number of re-estimatibns is kept small (see step 4).

* Algorithm 2

‘Step 0: Set k=0, W, = zf
‘Step 1: Compute any x € w ©.

Step 2: . Compute Ek(xk) = g(xk,k) .

Step 3: If Ek(xk)g 0 set Ek(xj) = gk—l(xj) for all j<k, set Wk+1= Wk;
set Kol = o set k=k+1l and go to step ?. Else proceed to
step 4.
- Step 4: If kéK set Gk(xj) = 5(Xj,k) for all jeJ(k), set ak(xj) =6k_1(xj)

for all i#T(k), j¢k.
Else set 6k(xj) = Gk_l(xj) for all Jfk,A
‘Step 5: Set W, = {Bz(xj,ak(xj)) je J(k)}. |

Set k=k+l and go to step 1.
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‘Nates

1) The algorithm is directly implementable since each computation
can be performed with a finite number of operationms.

(ii) The difference between the above algorithm and algorithm 2 of

Chapter II is that the éeparators of the active points (i.e.
the points that have not been dropped):éré.re-estimated every
some finite number of iterations;bHepcé the cut dropping
scheme‘performﬁ a double role. JFirstly, it ensures that the
number of re-estimations is small and sécondly it keeps

the complexity of the subproblem in step 1 low.

(iii) The above algorithm, unlike the algorithms-df Chapter II will
not necessarily jam up (i.e. start éycling between Steﬁéﬂz and 3)

when a point in G is genmerated. =~ ' \

(iv) The subproblem in step 1 has the same form as that in the
algorithms of Chapter II and hencé all the remarks about its

solution madein Chapters II and III are valid. .

v) The cut dropping scheme operates as deScribed in Chapter II
except that the latest separator estimates are now utilized
in the definition of the set J(k). Once a point is dropped

it does not re-appear and its separator is not re-estimated.

(vi) The approximations to the set G can be improved‘at'each
iteration by the introduction in step 1 of conventional
constraints, either relating to the parameter magnitudes or

involving the vertices of the tolerance region. Let Gka G
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be defined by :

A .
G, = {xeRp_ for all teTk there exists some qeQ such

that £ (x+t+r(q)) €0, §=1,...,m ) S (31)

where Tk is a finite subset of T (for example the set V of vertices

of T). Suppose thet Lk specifies the elements of Tk so that :
A " _ ' :
T, = {ty €T 251.1(} ‘ : . (32)

where Lk is a finite set . As discussed in [19] , finding a point in

the set Gk is equivalent to computing a pointAi satisfying :

£(x+ty, q,) €0, 2ely, J=lyeee,m | L (33)
where

"'asqz < By RE Lk'

Following Bandler [8] we call the variables qé’,zeLk slack variables.
Hence Gk corresponds to a set of continuoﬁsl§‘difféfehtigblé inequality
constraints (assuming that the functions fjs jél,;..,m'are continuously
differentiabie). Step 1 of algorithm 2 can now be modified.ta Step 1'

as follows :
P } c
Step 1: Compute any xkf(Wk NG, nH)

where H 1is the set corresponding to any other conventional constraints

present. Any heuristic rule for specifying Tk can be employed.
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Theorem 2

Any accumulation point x* of a sequence{xk} generated by

algorithm 2 lies in G.

Proof

Case 1: Suppose that the algorithm starts cycling between steps 2
and 3 so that X = xk* 4 x* for all k Zk*, for.soﬁe'k?;>b. Also
suppose, contrary to what is to be proven, tﬂat 'x*éGc' so that

)
§(x ) =6 >0, By A5 we have :

[6¢x") - Tx", k)| >0 as kre.

-~

Hence there exists some k>0 such that :

- % . ' ~
5(x ,k)2 §>0 for all kzk.

By the construction of the algorithm we have :

. ) , .
§(x ,k) = Gk(xk) < 0 for all kzk

which 1s a contradiction. Hence x €G.

Case 2: Suppose that X i x*, By the constrﬁction of the algorithm

for any j, k€I, j< k we have :

either x ¢B, (=, ,Sk_l(xj)) if je J(k-1)-

kel = ...
or 0 s k— (x)\EJ <sj 1fJfJ(k-1).

Hence for any j,k€I, i<k:

0¢8 {% - s o=
€ k—l(xj) $ max { Ej,” xj x-k” 2}5'% +“ xj xk” 2



so that :

gk—l(xj) > 0 as j+», jelI,

Also by the construction of the algorithm:

Ek_l(xj) = Etxj,j(k)) for some j(k)z j.
By assumption A5 and because j(k) 3%j :
|5(xj,j(k)) -G(xj)] +0 as P o, jeI.

Combiming (34), (35) and (36) we have that :

G(Xj)+ 0 as =, JI.

. i * %
Hence, by the continuity of 6, dx ) =0 and x ¢G. -

Algorithm 2 solves the tolerance~tuning problem in the semse that it

constructs sequences whose accumulation points are solutions to the

problem PT, Q°

numerical examples are presented and conclusions about the properties

of the algorithm are drawn.

In the next Chapter implementation details are given,

118.
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CHAPTER V

IMPLEMENTATION OF THE ALGORITHM FOR TOLERANCE-TUNING PROBLEM

V.l Introduction.

In this Chapter the implementation details of the aigorithm
presented in Chapter IV for the tolerance-tuning prdblem-ﬁ:e discussed.
As for the algorithms for the pure tolerance problem, these are very"
important for computational efficiency. In Section 2 the subproblem_
of Step 1 is examined. Procedures for the infi#itéiy constrained
global optimization problem 6f Step 2 are proposed in Section 3. In
Section 4 numerical examples are.presénted and finaily in Sec&ioﬁ‘S

1

the properties of the algorithm are discussed,

V.2 On the Solution of'the‘feasibiiity subpro‘blein.~

We recall that the general Subproblem in Stép 1 of algorithm 2

of Chapter IV has the following form:

; . . . c
Pwk‘ Find a point x 1in the set Wk n Gkn Hf

As already discussed, P corresponds to a set of continuously

"

differentiable constraints and has exactly the same form as the subproblem

of Step 1 of the algorithms of Chapter II, Hence PW can be solved by
k

employing the techniques of Section 2 of Chapter IIIL. AThg,same initial
point rule should be ugilized for the modified . Newton algorithm of [ 22].
However mnote that in fhe case of the tolerance-tuning problem, G is
not necessarily a subset of each ch. Hence it is important.to utilize
an interactive program allowing the specification of the setska (that

define Gk) and K (that defines the frequency of the separator re—estimations)

as the algorithm progresses.
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The designer may choose to relax the "vertex constraints"

that define G, or re-estimate the separators of the active points,

k
if difficulties (e.g. jamming) occur when solving the subproblem of

Step 1 at a certain iteration. As before, if no "vertex constraints"
are present (Gk = R") the solution of this subproblem is computationally
very bheap, since repeated evaluation of the design.coﬁstraints‘and
their derivatives is not required,.

V.3 On the computation of the separatorcestimates.,

The global optimization problem that is involved in the computation

of the separator at x 1is @

n(x) ='min({l, min{|x3y||_[ye¥}} =min {10 &)} (1)
where '

Y ='{yeRp W (y,q) 3 0 for all qéQ }e. . i o (2)

In this section procedures that generate separator estimates and satisfy

assumption A5 of Chapter IV will be proposed. We recall that g

NGi) = || x5 (x,3)]]_ (estimate of n(x)) . (3)
and ' . '

8§ (x,3) =1-E(x,j)_ . (estimate of- §(x)) S (4)

where S(x,j) is the result of applying f(j) iterations of a certain
.algorithm to the problem of (1) above and t(j) is almﬁnotonicallyi
increasing truncation function. Suppose that Yﬁ is an
approximation to the set Y generated by one of the following two

methods,
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Method 1

Discretize Q to form Qj by considering 7(j) "uniformly

spaced" points in Q, where T(j) + = as j + =, Let :
A n|*

Y, = {yeR" | ¥(y,q9) 3 O for all qe Qj} . o | (5)

Method 2

Discretize Q to form ijby considering ;(j) points

{q1’§2"'°"q?(j)} in Q spaced so that Ej + 0 as j>+ w, wherei;

|
ne

max min {”qvqr” q EQ, r = Lyeeest (3)}e . (6)
q r «

Let Yj be defined as above by (5).

Note that is suffices that a(y,a) <0 for‘some-aerfor tﬂé point y not
to lie in Yj’ Hence testing if a point lies ip;Yg.or'ﬁot does not

necessarily involvg the evaluation of @Qy,q) for all qﬁQi. The follovdng :
two procedures for computing the.separator‘estimates 3(x,j) will be

shown to satisfy AS.

Procedure 1

}

Compute T(j) "uniformly spaced" points Zj(x) =‘{z1,...,zT(jj
in (x+T)° where T(j) -+ ® as j* ® . Order these points 'so. that
”zi -x ”°° increases with i, Set S(x,j) =22i* (n(x,3) =||x-S(x,5) ][] ),

where zi* is the first point such that zi* eYj. If no such point

exists, Set n(x,j) =1 so that &(x,j) = O.



122,

Procedure 2

Compute (i) points Z.(xX) = { Z_.5ee052 ,:<} in (x+T)°
- J 1 (3>

spaced so that ej -0 as j» = where :

A o ,
Ej = max min{llz—zrl]m,ze(x+T), r=l,,e4,1t(j)}, o (7)
z T ‘ : :

Order these points and compute 6(x,j) as in ffocédute 1 above.

O
Notes
) The sets of points Qj and Zj(x) that Satisfy (6)
and (7) respectively can be computed using a pseudo-
tandom number generator.,
(ii) The number of tests ze’Yj required fdr fhe cbmputation
- *
of 6§ (x,j) is 1 where :
.* » . - P ¢ 8 . ) : ’ N -
i = t(3) nx,j) . . S - (8

* ' ‘ ' :
Hence i will be small at low yield points. From the ordered points -

in Zj(x) that lie in Yj only the first omne will be tested, by the
definition of the procedures. Note that it is precisely for these
points that the test ZEYj is most computatinnally expensive, since

0€,q) has to be evaluated for all quj.



(iii)

(iv)

)

2. (x) = 2.(x) u 2t
J+k() J()uJ

‘point z{ satisfying z;

The procedures proposed compute 6(x,j) given x

and j. It is possible that x remains c&nstant whilé‘j
is increased to j+k. This may happen eithef because
the algorithm cycles between steps 2 and 3, or because
the separator at x has to be re-estimatéd; The.
mechanism for generaging Zj+k (x) shou1d<$e such that

t(j+k) - t(j) extra points are generated in x+T, i.e.

(x). From the points in Zj. i‘:k(x)

+k
all the points in Zj(x) that have been found not to lie
in Yj (and hence is Y) are discarded. The rest of the

points are ordered and S(x,j+k) is set equal to the first

i € Yj"’k..

The artifice that takes advantage of the overlap of
successive tolerance regions described in Section 3

of Chapter III can be empioyed (after a slight
modification) to greatly improve computatibﬁﬁl efficiency.
Also the linear searching technique described in the
same section can be utilized to improve the separato¥
estimates. |

The truncation function T(j)yshould be chésen'és in

the pure tolerance case. Hence T(j) should be kept small
as long as this permits the computatioﬁ of E(Xj,j)> 0

but should be increased considerably if E(xj,j) = 0,

On the contrary; the difference bétween';(j+1) and 7 (j)
should be small if 'a'(xj,j)' = 0. Note that if, as

is usually the case, the dimension of Q (i.e. the number
of tuned parameters) is small, small values of t (j)

are sufficient for Yj to be a good approximation fo Y.

Ideally t(j) and ;(j) should be specified interactively

123.
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We next prove some results that are necessary for establishing

the fact that procedures 1 and 2 satisfy A5. Let

6(y) & nin { i(y,q)

and

¢j(Y)
so that

Y =
and

Ho=
Also let:

. (x

nJ( )
and

nj(X)

Note that from all the above definitions the‘following relations are

true :

YcY.

J

n. (x
J( )

« \X

nJ( )

nj(X)

o (y)

A

A

N\

A

qeQ}

min {i(y,q)

quj}

{y '¢(y)a o}

{yI¢j (y)z 01} .

ne>

ming || =y]] | vev,)

min;{l,ﬁj(x)} .

;(X)
nx) <1

n(x,j) g 1

¢j(y).

©

(10)

(13)

(12) -

'(13)

(14)

(15)
(16)
an

(18

(19
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Proposition 1

A

For any compact set Y of R':

| oCy) =¢ j(yX-p 0 as j» o unifqmly-in y, for y.

Firstly note that Methdd 1 of discretizing Q also satisfies
(6). Now suppose that qéQ is a minimizer assoéiated with y so that.
o(y) = &(y,q). Choose any ¢ > O, then by the cqntiﬁgify of ; there

exists some § >0 such that :
| ¥(7,) ¥ ('sa")[s § for all q'eB (q,8)
and all y'+€B_ (y,8)
| o L .
where B, (q,8) ={q'eR" | || qa-q"||_<s}.
By the definmition of Qj (see (6)), there exists some integer N(y)> O

such that at least one mesh point. qjer liesfin'Bé(q,S) for all

j2N(y). Hence :

PO G £ BGTa) @D +§ = eG) +§ 20

T oNIm

for all y'eB_(y,8) and all j;N(yS‘-

By the continuity of ¢, there exists some 6§'> O such that :

[6r") = ¢3¢ 5 for all y'eB (y,6" - (21)

Combining (20) and (21) and taking Gy = min {6,8'}> O we have that

1

for any y€Rp and any £> 0 there existssome integer N(y) >0 and some

.Gy >0 such that :
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| o¢y") —¢j(y')| $ € for all y'éB_(y,6,) and all PN(Y).

l-\ * ~
The family of balls Bm(y,Gy), y€Y forms an open cover for Y and,

~

since Y 1is compact, there exists a finite subcover so that :

Y cu{Bm(y,ay).ye§}

where '; is some finite subset of Y. Setting'-N&s = max {N(y) ye§}

we have that:

[6 () -%(y)ls e for all yeY and all j;"N§ '

which proves the proposition.

Proposition 2 A . o

Suppose that y:i (x)e Y."I is a minimizer associated with

»nj(x)._ Then for any compact subset X of R® and any E>0, there exists

some jx? 0 such that :

h(yj(x)) £ e for all jz jX and all xeX.
Proof

Suppose the result is not true., Then there exists some

infinite subsequence {yJ! }, j¢J and some € >0 such that :

yi = yj (x) € Yj for some x=X
and : (22)
n(y'§)> € for all 30, jeJ.

1

Choose any y€Y, then since YC.Yj and X 1is éompact-we have :

ey llm 800 ¢ N < | xmy

A

<M max {!P<-9||w xeX }



Hence, for any ZR"

KNP R Ed

4 max ] x=x ”stx} + M

by the compactness of X. Hence the sfubsequence' {§§} is ‘bounded so

LI
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that it has accumulation points. Suppose t:ha.t:vy__'i ;{ y . Since y:'ie Yj

we have that:

$.(y!)2.0.
J(}'J) .
Also by proposition 1:
0. = eGDI> 0 a5 § sw, e I' .
J 73 J
Hence by the continuity of ¢ we have :
. Lk .
1im ¢(y:']) = dy )z 0O =-» ye¥Y.
j-»woo . '
jegr

Combining (22) and (23) : .

lys - ¥l >re> 0 for all §>0, je'

J'
* . o -
which is a contradiction to y:'i- >y . Hence the proposition

has been proven.

Proposition 3

For any compact subset X of R"

| nj (x) - n(x)|->0 as j+ o , uniformly in x for xe€X,

(23)
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Proof

Choose any € > O, By proposition 2 there exists some

j > 0 such that :
X

T\(yj (x)) £ &€ for all j2 and all xeX,

JXY

Suppose that y(x)éY is a minimizer associated with n(x) and

y}(0EY with n(y, () so that n(y; G =y, @ - ¥, .

Then :
15 € 16 = ey @l <l (x)”’mln”s
AR FPACESHONNC RN +?‘,<yj(x>>;
ﬁj(x) + e for all 5%y and all xeX.
Hence :

ln‘j (x) = n(x) lis efor all j an and all %X

which proves the proposition.

Proposition 4

For any compact set X of R" :
Inj (x) = nx)|+ 0 as j* © uniformly in x for x€X,
Proof

We prove that '!lnj (x) -n (x)| sl; 3 (x) —; (x) | and

use proposition 3.

(i) min (A,B) - min (C,D) < max (A-C,B-D)



[Proof: max (A-C,B-D) 2 A-C 2min (A,B)-C s

C 2min (A,B) - max (A-C,B-D) .

Similarly: DI>min (A,B) - max (A-C,B-D) .

Hence: min(C,D) 2 min(A,B) - max‘ (A—C_,B—D) 1.
(i) | min(4,B) - min (C,D)| gmax (|A=C| ,|B-D| ).

[ Proof: min(A,B) = min(C,D) ¢max(A-C,B-D) (sma};(l A-_-CI ,I B-DI )
min(C,D) - min(A,B) smax(C-A,D-B) sméx(l A=C| ,|B-D|]) .
Hence: | min(A,B) - min (C,D)smax(|A-C|, [B-D])] .

We now have :
In;@ ~n@ | =|nin (n;@) = niall,n )|

max ( | 1-1 ,lnj(x) -1 &)|) =Inj(X) ~-n@)| .
O
We finally prove that procedures 1 and ‘2 - that generate the

separator estimates satisfy A5. -
Theorem 1

For any compact set X<R" the éstima’tes_ '%(x,j) generated

by Procedures 1 and 2 satisfy :

Proof

1) Choose any xe(f‘. Suppose that y 1is some minimizer
associated with r(x) =;1 (x) (yew:\r(x)).y As in the
proof of theorem 2 in Chapter III, for any e>Q the

open set

|ﬁ(x,j) - nx)|+ 0 as j> o , uniformly in x for xeX .

129.
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A £ 0 °
Y (y) = By (y,5) 0 G+T)° nY

is not empty. Hence there exist some y'éRn and some €' > 0 such

that :

Boo(y"e') < YE(Y)-

As in the proof of theorem 2 in Chapter III there exists some
integer N1 x) >0 such that at least onme point yj é'}(x-l-oj )eZj (x)

e , ,
lies in B,(y',-z- ) for all j>,N1(x). Hence y} 4 (x'+ cj) er (x') 1lies

1] ' ' )
in B(y',€') (and hence in Y° and 'ffj) for all x'e B_ (x,% ) and all 5¥N1(’€)-
We then have :

!

nex',9) sl ==yl el sl =yl <
: ;

"x—y “m+ ” y-yj”';sn(x) + 5 for all x'eBm(!.{,5§ ) .‘

By the continuity of N(x) there exists some &'> O such that 3

e
I nx) - nx"yls = for am1 x'€B (x,67).
2 (-]

. . . e . ‘
Taking 6x = min {5, E} >0, we have :

’

n(x',j)s n(x') + e for all x"e B (x,.(S'_x) ' ' (24)

and all jz/Ni(x).

By proposition 4, there exists an integer N2 (x) >0 such that :

n(x') < nj (x') +e for all x'€B_ (x,ﬁx)

(25)
and all j >,N‘,2 (x).



131.

Combining (24) and (25) with (18) and setting N(x) = max {Nl(x), Nz(x)]

we get:
In(x',3) - n(x")| 5 e for all -x'eBm(x,sx)
and all j 3N(x).
(ii) Take any x€G, so that m(x) = 1. By the continuity
of n, for any € >0 there exists some 5:'( > 0 such
that :
| n@x) =n(x') [¢5  for all x'eB_(x,6 ). (26
© X .
so that :

051 - nx"s§ for all x"@ (x,5) .

By proposition 4, there exists some integer N(x)> 0 such that :

for all x'e8_(x, 5x)

[ nx') - nj(X')Ils 5

and all j2 N(x).
Hence :
051 -nj(x')5 € for all bx'eBw(x,G #)

and all j2N(x).

Using (18) and the fact that N(x')$ 1 we have :

nx') - T-l(x',j)s 1 - -ﬁ(x',j)s 1- nj (x'")g e for all x'eBm(x,ax)

and all j 3N(x)

so that :
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n(x') g -ﬁ(x',j) + g for all x'eBw (x,8 x) @y

and all j 3 N(x).
Also since n (x',j) €1 = n(x), we have by (26):

n—(x',j) n (x) sn(x")+e for all x'% Bw'(x,é i) ' - (28)

~and all j>.0,
Combining (27) and (28) we have :-
| nx'y - nex', )l £ € for all x'€B_(x,5 x)‘ and all RN(x).

Combining (i) and (ii) we have that for any x€R® ‘and aﬁy E>0 there

exist some Gx ¥ 0 and some integer N(x) > O such that :

| n(x") - nx',3) | € & for all x'éBm(x,ﬁx)" “

and all j3N(x).

The desired result now follows as in the proof of theorem 2 in

Chapter III by the compactness of the set X.

Vo4 . Exa_E 2 1es.

1

Five examples are presented. The feasible sets F are
the same as those in Chapter III, but the introduction of tuning allows

considerable increases in the parameter tolerances,
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Example 1

The set FeR® is defined as in example 1 of Chapter III.
The values of the parameters utilizéd by the algorithm are
as= %, Y= 1.5,8 = 0.7. The set K was &efined as the set {3, 7, 11, 15,...7f;
Procedure 1 of section 3 that generates the separaté; estimapes_was |

implemented by taking Zk(x) to be the set of uniformly spaced mesh

points in (x+T)® such that the distance between adjacent points is

, where @
o (k)

0 (k+l) =0(k) + 1 if X1 # X

o(k+1) = 20(k) if el = X

A

~
.

and 0(0) = 4, Each set QSR (only one parameter is tuned for each rum)
was discretized by taking Qk to be the set of ‘g(k) uniformly spaced

points in Q where :

T(k) = 2k + 3.

(Hence method 1 of section 3 was employed). Only the nominal point

k

slack variable was introduced. Table 1 lists the tolerance and tuning

was included in the definition of each set . T, , so that.only one

regions corresponding to each run. Tables 2, 3,.4 and 5 summarize the
results for these runs, Separator re—estimations were pqrformed when k=3
in runs 1 and 2 (see Tables 2 and 3). The operation of the algorithm
was stopped when 0(k) reached the value of 100 and ‘3(xk,k) = 0,

Most of the feasibility subproblems were solved in one iteration.

Figures 1,2,3 and 4 illustrate the four rums presénted° Note that

the tolerances of the parameters are considerably‘largef than those in

example 1 of Chapter III,



Run TOLERANCES Tuned Tuning
1 5 parameter region
b4 %
. 1

1 2.00 1.50 x + 1.00

2 1.50 1.20 x + 0,50

3 2.00 1.75 X + 0,75

4 2.50 2.00 X +1.00 .

TABLE 1
k o(k) (k) ‘Gk(xk) , 63(xk’)'
1 D .
X __X:

0 4 3 -2.000 1.000 0.844 0.849
1 5 5 -0.156 2.677 0.892 0.892
2 6 7 0.656 1.294 0.181 -
3 7 9 1.015 0.912 0.192 -
4 8 11 0.485 1.332 0.191 -

5 9 13 0.215 0.744 0.000

6 18 15 1411 " . "

7 36 17 11} ” ‘"

8 72 19 1] 1" n ‘

9 | 100 21 0.215 | 0.744 | 0,000

TABLE 2

(Run 1, Initial point (-2,1)
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o) T(k) I . > 8, (x) 8,(x)
X X

4 3 -1.000 1.000 0.638 - -

5 - 5 -0.713 2.756 0.820 | 0.902
6 7 0.064 1.651 0.858 0.859
7 9 1.064 0,509 | 0.286 -

8 11 0.340 0.509 | _0.000 | -
16 13 " " £s

32 15 " " "
64 17 ) " " ne

100 19 0.340 0.509 0.000- .

TABLE 3 (Run 2, Initial point (-1,1))

o T ' e
(k) T(k) X | : k(:&()
1 T2
X X
4 '3 '1.300 1.300 0.725
5 5 -0.086 1.809 0.624
6 7 ~0.099 0.493 10,000
12 9 " ” n
24 11 " " 0.058
25 13 ~0.268 0.353" 0.000 -
50 15 " 1" 143
100 | 17 ~0.268 0.353 0.000

TABLE 4 (Run 3, Initial point (1.3,1.3))




N K ofk) | T (k) ' 8 (%)
xl x2
0 4 3 1.000 1.000 10,600
1 5 5 -0.500 0.910 o.éoo
2 6 7 -0.996 0.326 0.000
3 12 9 - " " .6.083
4 13 11 -o.707 0.088 ' o.éoo
5 26 13 " "o !
6 52 15 " " K
7 100 17 -0.707 0.088 0.000
.. TABLE 5 (Run 4, Initial point (1,1))

136.
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FIGURE 2
Example 1, run 2.
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Example 1, rum 3.
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Example 2

The set FCR2 is defined as in example2 of Chapter III. All
the conventionsand parameters ard as in example 1. Table 6 summarizes
the tolerance and tuning regions of each run., Tables 7,8,9 and 10
present the results for these runs which are illustrated in figures
5,6,7 and 8 respectively. Note that separator re-estimations are

performed only in run 2 when k=3,

TOLERANCES Tuning Tuning
Run 1 2 parameter region
X ' x
1 2.00 2.00 xt +2.00
2 1.00 2.00 x! #1.00
3 2,00 1.50 X +0.75
4 3.00 1.50 2 + 1.00
TABLE 6
K ok) | T(k) K 8, (%)
1 2
X x .
0 4 3 1.233 1.233 0.613
1 5 5 2.687 -0.220 0.000
2 10 7 11 " 1
3 20 9 " 1] "
4 40 11 " " n
5 80 13 13} n "
6 100 15 2.687 -0,220 0.000

TABLE 7 (Run 1, Initial point (1,1))
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- X -
g T I 5
k (k) (k) : 5 k(xk) 3(xk)
X X
0 4 3 1.233 1.233 0.763 0.731
1 5 5 3.316 2.000 0.996 1 0.998
2 6 7 4,464 0.405 0.508 0.590
3 7 9 3.675 -0.554 0.571 -
4 8 11 2.590 -0,312 0.000
5 16 13 1w 17 11]
6 32 15 1" n 1"
7 64 17 1] n 1"t
8 100 19 2,590 -0.312 0.000
TABLE 8 (Run 2, Initial point (1,1))
_ *x
k o(k) T (k) 8y (%)
1 2
X X
0 4 3 1.199 1.999 0.306
1 5 5 2.387 0.811 0.200
2 6 7 2,040 0.355 0.000
3 12 9 " 7"
4 24 11 " "
5 48 13 " " 0.043
6 49 15 2.169 0.249 0.000
7 98 17 " " 1"
8 100 19 2.169 0.249 0.000
TABLE 9 (Run 3, Initial Point (1,1)
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- *x _
o (k) (k) 1 2 Gk(xk)
0 4 3 1.199 1.199 0.856
1 5 3.915 0. 386 0.264
2 7 3.078 -0,273 0.000
3 12 9 " " "
4 24 11 " " 0.061
5 25 13 2.870 -0,109 0.000
6 50 15 " " "
7 100 17 2.870 -0.109 0.000

TABLE 10 (Rum 4, Initial point (1,1))




ol

FIGURE 5

Example 2, run 1.

o~

o

Li4,




145,

e

FIGURE 6

Example 2, run 2.
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Example 2, run 3.
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Example 3

The FCRZ

is defined as in example 3 of Chapter III.

All the conventions and parameters are as in examples 1 and 2,

Table 11 lists the tolerance and tuning regions for the four

runs presented.

Tables 12, 13, 14 and 15 summarize the

results which are illustrated in figures 9,10,11 and 12

respectively.

in runs 1,2 and 3 when k=3,

Separator re—estimationshave been performed

Ru TOLERANCES Tuned Tuning
n 1 2 parameter region
X X
1
1 2,50 2.00 X. + 1,00
1
2 2.50 1.50 x + 0,75
2
3 2.50 1.50 X + 1,00
2
4 2.00 1.00 x + 0.75
TABLE 11
TABLE 12 (Run 1, Initial point (0,0))
s - - -
' k () | (k) > Sy (1) 84(%)
X X
0 4 3 0.000 0,000 0.688 -
1 5 5 0.000 2.302 0.344 -
2 6 7 0.827 2.948 0.292 0.301
3 7 9 1.649 2.194 0.000
4 14 11 " " 0.071
5 15 13 1.446 2.387 0.000
6 30 15 " " 0,037
7 31 17 1.345 2,274 0.000
8 62 19 11 1" 11
9 100 21 1,345 2.274 0,000

148.
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3 X, B )
a (k) T (k) 8, (x ) §,(x% )
1 ; K 3% %
x X
4 3 2.000 0.000 0.625 -
5 5 0.329 1.386 0.216 -
6 7 1.239 1.386 0.194 0.155
7 9 0.712 1.824 0.155
8 11 1.296 2.287 0.000
16 13 1] " "
32 15 " 1" 11]
64 17 " " "
100 19 1.296 2.287 0.000
TABLE 13 (Run 2, Initial point (2,0))
Xk _ | _ b
ko] T [T 5 8 () 85(x)
x x
0 4 3 1.000 1.000 0.638 -
1 5 5 2,705 2,413 0.472 0.478
2 6 7 1.440 3.462 0.706 0,620
3 7 9 ~0.064 2.280 0.306
4 8 11 1,165 2.375 0.000
5 16 13 " " 0.104
6 17 15 0.917 2.146 0.000
7 34 17 1t 111 11
8 68 19 " " 0.028
9 69 21 1,035 2,214 0.000
10 100 23 " " 0.010
11 100 25 1.002 2.183 0.000

TABLE 14 (Run 3, Initial point (1.1))




o(k) (k) § (%)
1 2
X x
4 3 1.000 1.000 0.600
5 5 2.262 1.994 0.000
10 7 " " 0.127
11 9 1.987 2.212 0.000
22 11 1" " "
44 13 " 11] 1"
88 15 1A " 1"
100 17 1.987 2.212 0.000
TABLE 15 (Run 4, Initial point (1.1))

150.



FIGURE 9

Example 3, rum 1.
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FIGURE 10

Example 3, rum 2.

=

= = == = e




—— s o ey omen

FIGURE 11

Example 3, run 3.
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FIGURE 12

Example 3, run 4.
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Example 4

This is the three-dimensional low-pass filter problem examined in
Chapter III (example 5 of Chapter III), The cases of either L1 or C
. tuned have been considered. Procedure 2 of section 3 was employed
for the computation of the separator estimates. The points of each set
Zk(x) were generated by a pseudo-random number generator and the
truncation function t(k) defined in section 3 of Chapter III was utilized.
A linear searching technique was also employed to improve the separator
estimates., The tuning region Q was discretized using method 1 of
section 3, as in examples 1,2 and 3 (t(k) = 2k+3). No conventional
constraints were employed at all. The techniques discussed in section 3
concerning the re—estimation of separators and the utilization of the
overlap of successive tolerance regions were not employed, so that great
improvements on the computational results presented below should be
possible (all separator re-estimations were done from scratch without
using any previous information). In a practical design procedure a suitable
initial point for the tolerance-tuning algorithm would be some -nominal
point obtained from solving a pure tolerance problem., However the
points obtained in Chapter III turned out to be very nearly solutions
of the tolerance-tuning problem as well, so that to demonstrate the
properties of the algorithm different initial points were chosen.
Table 16 summarizes the results of six runs and tables 17,18,19,20,21
and 22 contain details of each run. All the percentages shown are with
respect to the final parameter values. The final yields were estimated
by Monte Carlo analysis involving at least 400 points and with the tuning
region discretized by considering T (IT) points, where IT denotes the

total number of iterations performed by the algorithm for each run. Hence
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the yield estimates should be smaller than the exact values,

N denotes the total number of circuit analyses required by the algorithm,
where as N(k) the number of circuit analyses performed at iteration k,
Note that in this example no separator re-estimations were necessary.

It can be observed that the introduction of tuning allows considerable
increases in the parameter tolerances (see run 4 of example S in

Chapter III). Most of the feasibility subproblems were solved in one

iteration.

TOLERANCES
Run Tuned Tuning Final
LI(H) LZ(H) C(F) parameter region | IT| Yield J N
0.420 | 0.380 | 0.100 +0.50
1 L, 3 | 99.5% {446
20.02 | 20.82 |11.1% +23.8%
0.280 0.280 | 0.090 +0,20
2 L, 3 | 99.57 |294
15.6%2 | 13.32 |10.1% +9.,5%
0.230 0.250 | 0.083 +0.10
3 L, 3 | 99.32 |180
12.1% 11.92 | 9.4% +5,3%
0.400 0.400 | 0.200 +0.35
A c 2 | 99,77 {279
22.2% 21.9% | 17.0% +29.6%
0. 300 0.300 | 0.145 40,145
5 c 2 | 99.92 {147
15.7% 15.6%7 | 15.0% +15,0%
0.260 0.260 | 0.100 © 40,075
6 c 2 | 99.97 {166
13.3% 13.22 | 10.8% +8.17%

TABLE 16
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k e
L® [ L@ | c® | ) | w0 | T |

0 2.150 2.150 1.070 0.808 100 3 36
1 2.264 1.988 0.938 0.300 200 5 112
2 2.155 1.883 0.857 0.171 300 7 298
3 2.100 1.824 0.901

TABLE 17 (Run 1)

e _

k Ll (H) L2 (") C(F) ak(xk) (k) (k) N (k)
0 2.150 2.150 1.000 0.688 100 3 15
1 1.974 2.299 0.873 0.447 200 74
2 1.868 2.174 0.950 0.283 300 7 205 .
3 1.795 2.102 0.894

TABLE 18 (Run 2)
K *x _ _

L@ [ L® | @ | 5&) | | T |yw

0 2.150 2.150 1.000 0.816 100 3 16
1 2.046 2.278 0.896 0.386 200 5 55
2 1.961 2.176 0.944 0.352 300 109
3 1.896 2.098 0.887

TABLE 19 (Run 3)
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%

L | L c® 5 ) [t [T | NG
2.150 2.150 0.900 0.729 | 100 3 32
1.887 1.918 1.108 0.231 | 200 5 247
1,798 1.828 1.179

TABLE 20 (Run

% i i,
LM [ L | C® 5,00 T | T | N
2.200 2.200 0.900 0.708 100 3 29
2.008 2,031 1.050 0.369 200 5 118
1.910 1.927 0.968

TABLE 21 (Run 5)

i _ _
L | L@ @) 5 ) |t | T | e
2,200 2,200 0.900 0.563 100 3 52
2,056 2,076 - 1.006 0.439 200 5 114
1.956 1.970 0.925

TABLE 22 (Run 6)
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Example 5

This is the seven—~dimensional high-pass filter
example éxamined in Chapter I1I (example 6 of Chapter III). The
cases of Xy O X, tuned have been considered. All the conventions and
parameters are as in example 4, Table 23 summarizes the results of
four runs., Tables 24, 25, 26 and 27 show in detail the progress of the
algorithm for these runs. Note that separator re-estimations have been
performed in runsl,2, and 4 when k=3 and these have caused the values
of N(k) and N to increase. However, by adopting the techniques of

section 3, it should be possible to greatly improve on these results.

Tolena wcen g
&
gl o0 ¢
. o E g2 o0 .
@F) |[@F) (@) [@F) |@F) () | @) |8 a8 8
0.87 | 2.90| 0.30} 0.80| 7.00{ 0.21} 1.20 0.30 99,47 458
1 X3 4
8.3% | 7.9%2 | 8.0%| 8.5%2) 7.92 | 7.3%2| 7.6% +8.0%
0.70 | 2.30] 0.25] 0.65) 5.80 1} 0.20| 1.00 0.16
2 X, 4 199.6% (448
6.52 | 6.6%2 | 6.12] 7.27| 6.6Z| 6.7%2] 6.2% +3.97
0.95| 2.501 0.26) 0.75] 6.80} 0.22} 1.20 0.35
3 Xg 3 }100.027| 241
8.0216.7%1 6.82) 7.821 7.321 7.7%{ 8.6% +12.2%
0.74] 2.30| 0.24] 0.60] 6.00] 6.18{ 0.90 0.18
4 x, 41 99.6%7| 259
2 15,92.) 6.57] 6.1%] 6.221 6.3%Z1{ 6.4%| 6.13 +6.47

TABLE 23
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% < N
ki %, X, X X, x5 X, X5 Gk (xk) 63 (xk) T (k)jr(k) ¥ (k)
(nF) (nF) (1) (nF) (nF) () | (oF)
o 11.00]| 36.00 | 4,00 {11.00 | 90.00 |3.20 |15.00 [|0.733 |0.457 | 100 |3 {37
112,10 34,76 | 3.84 9,87 {91.86 |3.07 |16.11 | 0.461 [0.610| 200 |5 |59
2 111,46 | 35.68 | 3.76 110,48 | 90.83 {2,99 |16.,77 {0.348 |0.370 | 300 |7 |57
311,02 | 36.28 | 3.71 |10.05 {90.02 {2,94 |16.35 {0.284 400 | 9 | 305
4 110,431 36.92 |3.77 9.46 | 88,86 | 2,87 |15.76
TABLE 24 (Run 1)
xk'
k| x x, X, x, X, x % §k(xk) 53(XQ1(k) Tk) N(k)
(nF) (nF) (H) (mF) | (aF) (1) (nF)
0 ({11,001 36.00 [ 4.00 {11.00 | 90,00 | 3,20 { 15,00 | 0,360 |- 100 | 3 19
11)11.871] 35.11 | 4,09 | 10.14 | 88.47 | 3.11 | 15.87 | 0,369 |- 200 | 5 54
2 111,35 35.68 | 4,15 9.62 187,36 1{3,05 (16,400,421 |0.448 | 300 | 7 71
3 110,87 35.01 | 4.09 9,15 88,11 | 3,00} 15.92 | 0,092 400 | 9 | 304
4 110,79 | 34.84 | 4,07 9.02 {87.96 2,981 16.05
TABLE 25 (Run 2)
el *p X, X, x, %, x, x, 6k (xk) ) Ty N
(nF) | (oF) (H) | @F) | @F) | (4) | (aF)
0o [13.00| 36,00 | 4,00| 11,40 | 90,00} 3,00 | 15,00 | 0,601 |100 3 39
1{11.55| 37.551| 3.85 9.96 | 92.72| 2.85{ 13.54{ 0.140 {200 5 117
2 111,731 37.79 | 3.84 9,79 192.38] 2,83} 13.72 | 0,185 }300 85
3 111.94| 37.50 | 3.81 9.58 192,61 2,86 13.94

TABLE 26 (Run 3)
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"k
o O R O B N N I N Bl e A R R R R ORISR
(H) [ @F) | (F) | (H) | (oF)
0{13,00| 36,00} 4,00 {11.00 | 93.00 | 3.00 | 15.00} 0.492 | - 100{ 3 11
1}13.61) 35.32 | 3,91 {10.38 | 94,07 | 2,93 | 15.61| 0.343}| - 200| 5§ 28
2)12.88 ) 36.10 [ 3,99 | 9.64 | 95,45 ]2.85 | 14.87| 0.176| 0.268} 300| 7| 93
3{12.69| 35.83 | 3,96 | 9.83 95,17 { 2.83 | 15.07| 0.216 400 9 127
4112.48 | 35.56 [ 3.93 | 9.62 [ 94.86 ( 2.80 | 14.85
TABLE 27 (Run 4)
V.5 Discussion.

In Chapter IV, the ideas presented in Chapter II for the pure

tolerance problem are extended to the case in which tuning is also possible,

Hence a cut map algorithm for the tolerance-tuning problem has been

obtained.

The algorithm shares many characreristics with the algorithms

of Chapter II.

The subproblem of Step 1 has the same simple form and

can be very efficiently solved by the modified Newton algorithm of [22],

Conventional constraints either relating to the magnitudes of the

parameters or involving the vertices of the tolerance region can be

included to improve the convergence properties.

The initial point

rule increases the probability of convergence, especially when no

conventional constraints are present.

of the constraints are not required and only "pass-~fail" tests are

performed in Step 2.

In such cases the derivatives
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The main difference between the algorithm of Chapter IV
and those in Chapter II is that the separator estimates are not necessarily
smaller than or equal to their exact values. To avoid poor convergence
properties it is thus necessary to keep re-estimating the separators
of the active points. Hence the cut dropping scheme keeps the
complexity of the subproblem of step 1 low and also ensures that a small number
of re-estimations is performed. The optimum frequency of these re-
estimations depends on the dimension of the tuning region Q. If, as
in many practical problems, the number of tuned parameters is small, a
discretization of Q involving only a few points is enough to ensure a
good approximation to the set Y and hence to generate separator estimates
that are not much larger than the exact values. In such cases few re-

estimations will be necessary.

As in the case of the pure tolerance algorithms, computational
efficiency is very much dependent on the way the algorithm is implemented.
By employing the techniques of section 3 in an interactive program that
allows the specification of the truncation functions, the frequency of
separator re-estimations and the conventional constraints utilized as
the algorithm progresses much better computational results than those
presented should be possible, In Chapter VI comparisons between the cut-
map algorithm for the tolerance—-tuning problem and the rest of the methods

in the literature are made,



CHAPTER VI

CONCLUSION

In this thesis specialized algorithms for the infinitely

constrained tolerance and tolerance-tuning problems that belong

to the class of cut map algorithms of Eaves and Zangwill, have

been proposed. The algorithms possess the following general

features,

(i)

(ii)

(iii)

(iv)

They solve the general non-convex problems PT and

P and have established convergence properties.

T,Q
They are directly implementable since specific
truncation rules are given for every infinite

operation,

They approximate the sets of solutions of the problems

by the complement of the union of a finite number of
very simpli'described regions (balls). A consequence

of this is that the feasibility subproblem at each
iteration can be solved very efficiently by standard
algorithms, since the evaluation of the design
constraints and their derivatives is not required.

The initial point rule proposed exploits the geometrical
structure of the problem and usually causes rapid

convergence,

The global optimization procedures proposed for the
generation of the separator estimates require only "pass-
fail" tests and are computationally cheap at low yield

points, By employing the techniques described in

163,
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Chapters III and V in an interactive programme

large increases in yield should be efficiently

obtained.

v) They incorporate a cut dropping scheme to keep the

complexity of the feasibility subproblem low,

(vi) They are very suitable for interactive computer-
aided design and any extra knowledge about a
specific problem can be easily utilized by introducing
conventional constraints either involving the
vertices of the tolerance region or relating to the
parameter magnitudes. The introduction of such
constraints improves the convergence properties of
the algorithms since it ensures that better approximations

to the sets of solutions of the problems are generated,
(vii) They are simple to code.

It should be noted that, as one expects from algorithms
with established convergence properties, the cut map algorithms
proposed will not converge if the set of solutions is empty (i.e.
if 1007 yield is not possible). However if (some) vertex constraints
are included, they will tend to improve yield and then jam, being

unable to solve the subproblem in Step 1.

Most, if not all, of the deterministic methods for the

pure tolerance problem in the literature rely on orne-dimensional

convexity both for their convergence and their efficiency. 1In

Bandler's paper L 81, the method of choosing the "worst case'
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vertices is not described but seems to rely on a priori

information about each particular problem. In [ 9] , an interval
arithmetic approach is presented for solving the worst case’
problem (WCP) in the general case and a more efficient algorithm
for the convex case. The algorithms proposed for the fixed and
variable tolerance problems do not have established convergence
properties and it seems that jamming is possible., The most advanced
and efficient of all the deterministic methods in the literature
seems to be the quasi-Newton algorithm proposed by Brayton et al ,
L10]. Because of the complexity of the procedure utilized to form
and update the vertex list, the algorithm is not explicitly stated
but only vaguely described. Convergence proofs are not presented
and hence it is not guaranteed that cycling will not occur. In

the most complex example in this paper 67 circuit analyses and 67
gradient evalutions were required. 1In the filter examples of
Chapter III, 10-200 circuit analyses and less than 10 gradient
evaluations were required. Direct comparison with the cut map
algorithm is difficult because the examples differ considerably

and final yields are not specified in [10].

To summarize, the advantages of the cut map algorithm when
compared with all the above methods are that it is suitable for
non-convex problems (see for example the strongly non-convex examples
of Chapter III), that it has established convergence properties,
that it can operate by performing "pass—=fail" tests only (i.e.
not requiting any gradient evaluations) and that it is very simmle
to code., It seems that when efficiently implemented the cut map

algorithm warrants consideration even for cenvex problems.
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The only other algorithm with established convergence
properties that is suitable for the problem PT seems to be the
outer approximations algorithm of [4] . This algorithm should be
computationally more expensive than the cut map algorithm for the

specialized problem P, for two reasons, Firstly, it requires

T

repeated estimation of the fune¢tion eT(x) which is more expensive
than the estimation of &(x), especially at low yield points (the
difference in computational effort between these estimations decreases
as x approaches G). Secondly the feasibility subproblem to be
solved at each iteration requires repeated evaluation of the design
constraints and their derivatives, which implies that the
computational effort is larger and the probability of jamming is
greater., However, the outer approximations algorithm is more

flexible since it solves the general infinitely constrained

engineering design problem,

The algorithm of Chapter IV for the problem P is very

1,Q
similar to the algorithm for the problem PT. The difference is

that the separator estimates are not always smaller than their exact
values, Hence it is necessary to keep re-estimating the deparators

of the active cuts to avoid poor convergence properties, For
computational efficiency, it is important to specify the frequency of
these re—estimations interactively according to the progress of the
algorithm. If the number of tuned parametersis small, a discretization of
Q involving only a few points is enough to ensure a good approximation

to the set Y, In such cases the operation of the algorithm for the

problem P will be very similar to that of the algorithm for Py

T,Q
since few or no separator re-estimations will be necessary., Note thit
the results of Chapters IV and V can be easily extended to cases in

which Q has a different form (e.g. when correlated tuning is omnly

permitted).
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As opposed to the pure tolerance case, very few methods
exist for the solution of the tolerance—tuning problem. Bandler's
approach, [8] is restricted to the one-dimensionally convex case
and employs heuristics to improve efficiency. Note that it is
precisely in strongly non-convex problems that one expects to obtain
large increases in the parameter tolerances by the introduction
of tuning (e.g. when the feasible set possesses '"black holes™).
Polak's outer approximations algorithm:[197] should be computationally

more expensive than the cut-map algorithm for the specialized problen

PT 9 for two reasons. Firstly it requires repeated estimation
s

of the function GT Q(x) which is more expensive than the estimation
9’

of &x) at both low and high yield points (this is because testing if

point x lies in Yj or not is usually cheaper than evaluating ¢j(x);
see (10) of Chapter V). Secondly the feasibility subproblem requires
repeated evaluation of the design constraints and their derivatives.
However the algorithm in [19] is more flexible since it solves

the general infinitely constrained engineering design problem with
tuning also present, Direct numerical comparison between the three
methods is not possible since no numerical results are presented in

[19] and those in [8] do not specify the number of circuit analyses,

It is our hope that the simple and robust cut map algorithms
proposed in this thesis will prove to be useful for tackling the
computationally complex but important tolerance and tolerance-tuning

problems,
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APPENDIX I

We now briefly state the feasibilitw algorithm of [22]
for completeness. Suppose that we want to find a point in the set W
defined by :

W g{xe Rnl gJ(x)s 0, j=l,eeeee,m} . (A.1)

Let:

¥ (x) 4 max'{gj(x) 3= lyeaas,m} (A.2)
vGop) & maxted o+ wed@,pe |5 = 1,...m (A.3)
8(x,p) = t;(x,p) - ). (A.4)

n . . .
For any xR, a Newton step is any vector in the solution set of the

following linear program Ll(x)

min {|lp |l | ¥ G,p) < 0O}. (A.5)
p (o]

For any xeRn, any Newton step p1 we define an additional step p2 which 1is

any vector in the solution set of the following linear program Lz(x,pl):

ez(x,pl)é min{ 6(x,p1+p) | p IL»S'E } (A.6)
p

for some € > O. Hence for any xeR" the modified Newton step generated

by the algorithm is :

P=PpP +7P. (A.7)
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The Newton step may not exist or may be unsatisfactory. In such cases
the algorithm employs a first order step p3 which is any vector in the

solution set of the following linear program L3(x):

3x) =min {8Ge,p) | [pll, 1} . (A.8)
P

A standard test on the magnitude of the Newton step is employed to
judge whether it is satisfactory or not., We are now in a position to

state our algorithm,

Algorithm Al

Parameters: ye(0,}), Be(0,1) , > 0, L>1 .

Data: ¥ R

Step 0: Set 1i=0,

Step 1: If w(xi)s 0 step.

Step 2: Solve Ll(x.) to obtain p1 If a solution exists
l *

and ”plliégL, solve L2 (xi, pl) to obtain pz.
1 2
- Set P; =P +p .
1, . 1 3
If L (xi) has no solution orljp [E»L solve L (xi)

to obtain p3 and set p; = p3.

Step 3: Determine the smallest integer kia 0 such that :
k. k.
i i
w(xi+ B pi) w(xi) s yv8 G(Xi,pi).
ki
Step 4: Set X T %07 8 P;.

Set i= i+l and go to step 1.



Theorem Al [22]

(1)

(ii)

Suppose that :

The functions gJ : R'»R s J=lyeee,m
are continuously differentiable.

The set {Vgd (x)|jeI(x)} where

I(x5 8¢ je{l,een.,ml , gj(x) = P(x)}

is positive linearly independent for all x such that

¥(x) 2 O,
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Then, any accumulation point generated by algorithm Al lies in the

interior of the set W.

Notes

(i)

(i1)

A direct consequence of theorem Al is that if a
bounded sequence '{xi} is generated by the algorithm,

then there exists a finite integer j such that xjeW.

Condition (ii) in the statement of the above theorem
ensures that at'all non-feasible points the maximum of
the constraints (Y) can be reduced by the algorithm

and hence the algorithm cannot jam up at a non-feasible
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point. If this is not satisfied, the algorithm may

jam up at such a point. A criterion of jamming can be
obtained by testing the value of e(xi,pi) at iteration
i since this is a first order estimaté of how much V¥

can be reduced at this iteration.

The following values for the parameters can be

employed :

8 =0,1, y=0,1, € =001 , L =10,
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APPENDIX II

1. The low-pass filter.

The circuit diagram and specificationsfor the low pass
filter utilized in the examples of this thesis are shown in Figure I.
The frequencies of interest are {0.45, 0.50, 0.55, 0.60, 1.0, 2.5}
rad/sec, (6 constraints)., The magnitude of the transfer function

can be calculated as :

v 2
l 1 (Guw) = (1 - (L1+L2) C w2/2)2 +

AP

2 . 2.2
w (L1 + L2 +C L1 L2 C w)"/4.

The insertion loss is defined as :

I, G & 201 ‘ kit (Gu) | db
loss 3 %810 v, Jw
and the relative insertion loss as
I Go & 1 Go) - I (03) db
loss 3 = ‘1oss ‘¢ loss ' y

(w

0 1is the reference frequency). Toleranced components

are marked with an arrow.
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2. The high-pass filter.

The circuit diagram and specificationsfor the high-pass
filter utilized in the examples of this thesis are shown in
Figure II , The frequencies of interest are :{ 170, 350, 440, 630, 650,
720, 740, 750, 940, 1040, 1800} Hz, (12 constraints), Table I

summarizes the specification constraints :

RELATIVE INSERTION LOSS
f Upper Bound(db) Lower bound (db)
170 - + 45,00
350 - + 49,00
440 - + 42,00
630 +4,00 - 0,75
650 - - 0.75
720 +1,75 -
740 +1.75 -
750 +1.75 -
940 - - 0.75
1040 - - 0.75
1800 +1.75 -

TABLE 'I

The relative insertion loss is defined as for the low pass filter
except that now the reference frequency is 990 Hz. Toleranced
components are marked with an arrow. The transfer function can be

calculated by using the following relations :
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T
z, = jw Xg = jlw X
Zy = - jlw x,

z, = jux, - j/u.)x2
Zg 8 g - j/mx1

a = z; 2, / z, * 2,
b = a+ zg

c = b 24/ b+z,

d = z, RL/Z4 (zl + 22)
e = 4" ° .
25 + c

Then :
Y2
~ (jw) = d.e
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