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A B S T R A C T 

The thesis describes the design, construction, and use of an 

apparatus of the transient hot wire type which enables the accurate 

measurement of the thermal conductivity of liquids. The design of 

the instrument has been such as to permit operation over the pressure 

range 0.1 to 700 MPa and the temperature range 300 to 500K. When 

operating within this range, the precision of the thermal conduct-

ivity measurements thus obtained is estimated to be one of + 0.2%. 

Because most liquids absorb and reemit electromagnetic radiation, 

the effect of radiative heat transfer through a participating medium, 

during measurement on a transient hot wire apparatus, has been invest-

igated. As a result, a method of correcting for the systematic effect 

of radiative heat transfer has been found, so improving the absolute 

accuracy obtainable for thermal conductivity measurements on a liquid. 

Experimental data are reported for the thermal conductivity of 

n-Heptane, n-Nonane, and n—Undecane, in the temperature range 308,15K 

to 363.15K and the pressure range 50 to 500 MPa. The accuracy of 

these measurements is slightly worse than their precision due to the 

uncertainty in the optical properties of the liquids at elevated 

pressures. As a result of this uncertainty, only approximate correct-

ions for the effect of radiative heat transfer could be applied to 

the results and their accuracy is therefore estimated to be between 

+ 0.5% and + depending, primarily, upon the absolute temperature 

at which a measurement was performed. 

From investigation of these thermal conductivity data a method has 

been found and tested for extrapolating the liquid thermal conduct-

ivity data of an odd numbered n-Alkane. This enables the prediction 

of thermal conductivities outside the range for which measurements 

are available. 
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INTRODUCTION 

A critical survey of the results of measurements of the thermal 

conductivity of liquids by Jamieson et al [122] revealed the 

scarcity of reliable experimental data. It was estimated that 

even the results obtained from the most precise and carefully 

executed measurements, of which there are very few, had, at best, 

an uncertainty of + 2%9 and that most data on liquid thermal con-

ductivities were probably burdened with an uncertainty of at least 

+ 5^ and in certain cases a great deal more. Furthermore, the 

thermodynamic range covered by the experimental data was small and 

generally restricted to temperatures near ambient and pressures 

near the saturation vapour pressure. During the past decade, dev-

elopment of the transient hot wire technique for thermal conduct-

ivity measurement [56,57,58,68] has made possible the determination 

of the thermal conductivity of gases to an accuracy of + 0.2^ [41], 

while the recent application of the technique to the measurement of 

liquid phase thermal conductivities at the saturation vapour pressure 

and over a modest temperature range was reported by Castro et al 

[123,124] • The accuracy of the preliminary thermal conductivity 

data as reported by Castro et al was estimated to be one of + 0.6% 
but this estimate has since been revised. 

The principal advantages of the transient hot wire technique of 

measuring the thermal conductivity of a fluid are two-fold. Firstly, 

it provides an absolute method of measuring the thermal conductivity 

and secondly, the measurements obtained are devoid of the effects of 

convective heat transfer which are thought to be present in most of 

the alternative methods of measuring fluid thermal conductivities. 

Moreover, when performing measurements on fluids which are not trans-

parent to electromagnetic radiation the technique has an additional 

advantage in that the effects of radiative heat transfer are smaller 

than they are for steady state methods [71,72,73] . 
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The objective of the work undertaken for this thesis has been to 

develop the apparatus, and where necessary, the theory of the 

transient hot wire technique, so as to enable the accurate measure-

ment of liquid thermal conductivities at pressures elevated above 

atmospheric and over a moderate temperature range above ambient. 

The work is required to enable the gathering of accurate liquid 

thermal conductivity data. It is envisaged that the data thus 

obtained will be used both to examine liquid phase thermal cond-

uctivity theories, which have been developed and will be developed 

in the future, and also for the direct application in predicting 

thermal conductivities of pure liquids and mixtures of liquids at 

thermodynamic states for which measurements are unavailable. 
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CHAPTER 1 

Review of Experimental Methods of Thermal Conductivity Measurement 

1.1 Introduction 

The Thermal Conductivity of an isotropic fluid is formally defined 

by the Fourier equation of conductive heat transfer:-

Q = - X V T ( 1 . 1 ) 

Where X is the thermal conductivity, Q is the three-dimensional 

heat flux, and T the local fluid temperature. By convention X is 

a positive quantity and as heat transfer through a medium occurs 

in the direction of decreasing temperature, this necessitates the 

-ve sign in equation (1.1). 

Generally the transfer of heat through a fluid occurs by simultan-

eous conduction, convection and radiation. Conduction is the 

transmission of heat through a medium by intermolecular forces, 

vibrational or rotational field interaction, or random diffusion. 

Radiative heat transfer is the transfer of heat energy by the 

emission, absorption and scattering of electromagnetic radiation. 

Finally, convective heat transfer occurs by the bulk transfer of 

elements of a fluid due to velocity fields within the fluid medium. 

If the thermal conductivity of a fluid is to be obtained experi-

mentally, because the three mechanisms of heat transfer within a 

fluid are inseparable, the measurements must be performed on 

apparatus which either compensates for, or renders negligible the 

effects due to radiative and convective heat transfer. 

This chapter briefly, as an introduction to the subject, is a 

resume' of the important methods of thermal conductivity measurement 

and illustrates the process by which the transient hot-wire 

technique evolved. The review will be confined to direct methods 

of thermal conductivity measurement, as opposed to indirect 

measurements, whereby the thermal conductivity can be determined 
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from quantities like for instance the thermal diffusivity or 

Prandtl number. This is both in the interest of brevity and 

also because, as in the example of thermal diffusivity, the 

properties involved with the thermal conductivity in the measured 

quantity, (specific heat capacity and density in the case of 

thermal diffusivity) are for most fluids at most thermodynamic 

states unknown to the degree of accuracy required. The latter 

reason being even more relevant in regard to liquid thermal 

conductivity measurements. 

In this chapter the discussion is kept to the general case of 

fluid thermal conductivity measurement, rather than restricting it 

to the liquid case. This is for the sake of completeness as the 

principles of the methods are essentially the same whether it is a 

gas or liquid upon which the experiments are to be performed. 

The methods of fluid thermal conductivity measurement generally 

fall into two different catagories which reveal their different 

approaches, namely steady state, or stationary methods and time 

dependent or transient methods. The stationary methods can be 

subdivided into three subsections based on the geometry of the 

apparatus used namely parallel plate (planar geometry) methods, 

concentric cylinders (cylindrical geometry) methods, and concen-

tric spheres (spherical geometry) methods. Under the transient 

measurement catagory the only method requiring serious considera-

tion is the transient hot wire technique although other methods 

have been attempted with varying degrees of success. 

1.2 Steady State Methods 

The principles involved in the steady state measurement of fluid 

thermal conductivity are in essence relatively simple. It is 

possible to solve equation (1.1) in either plane, cylindrical 

polar or spherical polar, coordinate systems subject to simple 

boundary conditions. If the fluid under investigation is placed 

in a vessel of known geometry, a constant heat flux is applied 

at the boundary of the fluid, and the system is left to attain 
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equilibrium, then a steady state temperature profile will be 

established within the fluid. The thermal conductivity can then 

be calculated, as a consequence of the solution of equation (1.1), 

knowing the heat flux, the temperature gradient in the fluid and 

the geometry of the vessel. 

1.21 Parallel Plate Methods 

The parallel plate method was the first method used for measuring 

the thermal conductivity of fluids, and was first used by 

Hurry, Nicholson, Thomson 4 Rumford [1,2,3,4] . A vertical 

column of fluid was contained between two horizontal flat 

plates and to reduce the effects due to convection (convection 

was recognised as a major source of error even in the earliest 

methods) the heat flux was applied from above by heating the 

top plate. Following Siot's [5] formulation of a law of 

conduction, measurements of thermal conductivities were madp 

by Depritz [6] , Paalzov [7] and others using similar techniques 

employing as a working equation the planar solution to (1.1):-

Qd 
x = I v y

 ( 1 - 2 ) 

where Q is the heat flux across the plates separated by a 

distance d, and (T̂ — is the steady state temperature 

difference between the two plates. 

The method was developed, to suppress convection and reduce 

heat losses to the sides, by using thin layer techniques [8,9] 

where the ratio of the horizontal extent of the fluid to its 

vertical extent was of the order of one hundred. Towards the 

end of the 19th century guard rings were first used [10] to 

ensure that all the heat passed vertically through the fluid 

layer and so eliminated heat losses to the sides of the apparatus. 

Christiansen [11], Hennenberg [12], Jager [13] and others made 

measurements relative to air by using alternate layers of air 

and test fluid separated by horizontal plates to try and overcome 
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inherent errors, but the technique was better suited to 

absolute measurements [14], 

Bates [15,16] argued in favour of increasing the fluid layer 

thickness due to the difficulty in measuring small plate separa-

tions to the required accuracy and reported on apparent temperature 

jumps at the liquid/copper plate interface of his apparatus. 

Similar arguments were put forward later by Sakiadis & Coates 

[17,18] who used a horizontal liquid layer contained between the 

flat, chromed and polished ends of two steel bars, six inches in 

diameter. The bars and liquid were surrounded by a glass tube and 

incorporated guard heaters. The driving force for heat transfer 

was applied by circulating water at the upper and lower ends of the 

bars. 

The heat flowed through the liquid and then through a length of the 

steel bars in which thermocouples were evenly spread. The heat flux 

was calculated from the thermocouple readings and the conductivity 

of the steel. The resistance contribution, due to the steel and 

interfaces, was calculated with the bars in direct contact and 

subtracted from the overall resistance. The results obtained were 

four to five percent higher than those obtained from thin layer 

equipment using plate temperatures. This method has not been 

generally adopted by later workers. 

Probably the best parallel plate method apparatus was that 

described by Michels and Botzen [19] and later improved by 

Michels, Sengers and Van der Gulik [20] which used the guarded thin 

layer technique and provided measurements of thermal conductivities 

of gases up to 300 MPa. A diagram of the apparatus is shown, 

see fig. (1.1). The apparatus consists of an upper, (0), and a 
lower, ( Q , plate both made out of copper enclosing platinum wires 

which were used both as heaters and as resistance thermometers. 

The upper plate (u) is enveloped by a guard ring, © , which contains 

a similar heating, temperature measuring platinum wire, separated 

from each other by 1.4 mm glass spacers and screwed together by 
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insulated copper screws. This assembly was finally covered by 

an insulating cap ( D • The upper surface consisting of 

plate © a n d guard ring © and the lower surface, consisting of 

lower plate, © , between which the test gas resided, were 

machined flat to within a micron. The plates were then separated 

by a set of three glass washers which were either one, one and a 

half, or two and a half millimeters in thickness depending on the 

test fluid thickness required. 

Fig, (1,1) Apparatus used by Nichels 4 Botzen. 
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The washers were polished to be equal to each other's thickness 

within one micron and through them passed an insulated guide rod. 

The two halves of the cell were bolted together using insulated 

copper bolts. The cell was then hung from the lid (p) of the high 

pressure reservoir by three telescopic studs which ensured the 

cell rested properly on the bottom of the pressure vessel. The 

vessel was sealed using the lens ring the thrust ring © 

and eight bolts (v)• Twelve pressure tight insulated terminals 

were located in the lid through which electrical contact was 

made between the cell and the measuring equipment. The accuracy 

of the measurements made on this apparatus was estimated as + 

Fritz it Poltz [21] used a similar apparatus to measure fluid 

thermal conductivities and to determine the dependence of the 

contribution of convection and radiation to the total heat transfer 

upon plate separation. 

1,22 Concentric Cylinders Methods 

The principle of the concentric cylinders method is similar to that 

of the flat plate methods. Consider a test fluid contained between 

two concentric cylinders with heat being supplied to one of them 

(the emitter) at a constant rate while the other is kept at a 

constant temperature. Assume the system has been left to attain 

a thermal equilibrium and the heat dissipation to the fluid per 

unit length of the emitter as well as the dimensions of the 

cylinders are known. If the temperature difference across the 

fluid can be measured, and provided effects due to convection 

and radiation were eliminated or rendered negligible, then the 

thermal conductivity of the fluid can be calculated by solving 

equation (1,1) for a cylindrical geometry, subject to the 

appropriate boundary condition. From the solution one obtains:-

x - 2 v L n 
f2 

r
l 

(1-3) 
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where q is the heat dissipation to the fluid per unit length 

of emitter, r„ 4 r_ are the radii of the emitter and receiver 
' 1 2 

respectively and (T^- T^) is the temperature difference across 

the fluid. The system just described provides the basis for 

the concentric cylinders methods. 

The method was first used by Bridgman [22] as an alternative to 

the parallel plate instruments which were elaborate and required 

the use of guard rings which made them cumbersome and bulky. The 

apparatus used by Bridgman to investigate the effect of pressure 

on liquid thermal conductivity, consisted of two concentric 

cylinders ins in height held together by german-silver end rings, 

The external diameter of the inner cylinder was /8 ins, the 
13 1 

internal diameter of the outer cylinder was /32 ins and the /64 ins 

thick annulus between the two cylinders contained the test fluid. 

Although Bridgman realised that a driving force for convection 

would always be present in his apparatus, he believed that by using 

a small temperature difference across the liquid, the viscous forces 

in the relatively thin liquid layer would suppress, or render 

negligible, the effect. The results obtained from this apparatus 

are considered to be high [23] which is largely due to inadequate 

compensation for conduction through the connecting rings holding 

the two cylinders apart. 

The apparatus was significantly improved upon by Schmidt 4 Sellschop 

[24] who completely surrounded the central cylindrical emitter with 

fluid and used quartz spacers to position the outer cylinder, A 

geometric constant was obtained from the electrical capacitance of 

the cell and a correction was applied for the existance of ends to 

the cylinders. 

Inevitably, as in the evolution of parallel plate methods, guard 

heaters were used on the emitters to eliminate end effects [25] . 

These were separately heated cylindrical sections added to the ends 

of the emitters and were controlled to ensure that the temperatures 
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of the emitter and guard heaters were the same. 

At about the same time Kraussold [26] and Schmidt & Nilverton [27] 

produced correlations of convective heat transfer as a function 

of the Rayleigh number. It is on this work that subsequent 

workers relied to determine the maximum thicknesses of fluid 

layers allowable in their apparati before the debilitating effects 

of natural convection became significant. 

Ziebland, Burton 4 Needham [28,29,30,31] have performed measurements 

on a number of fluids in the temperature range 100 - 700K and at 

pressures up to 50 l*IPa with essentially the same apparatus. A 

diagram of the thermal conductivity cell and autoclave used by 

Ziebland & Burton [30] for the measurement of the thermal conduct>-

ivity of heavy water is shown in fig. (1.2). 

The emitter cylinder © and the two guard heaters (2) and (3), 

made of a high conductivity copper alloy, were mounted on a 

stainless steel sheath @ and heated by independently controlled 

constantan wire heaters © on a glass former © . The guard 

heaters were separated from the emitter cylinder by 1 mm thick 

mica washers © and ® , and the emitter cylinder and guard 

heaters were arranged coaxially within an outer receiving cylinder 

using mica leaves, held in place by grub-screws, so forming 

an annulus 0.2 mm in width. Stainless steel sheathed thermocouples 

were placed in holes drilled through the emitting and receiving 

cylinders, and the whole conductivity cell was placed within a 

Nonel autoclave ^o) • To reduce convection, the free space was 

filled with fired pyrophillite and the autoclave was filled with 

liquid through the connection in the lid (J2) . 

The autoclave was placed in a heavy gauge steel tube which 

carried on its external surface an electric heater. This heater 

in conjunction with a controller, which used the platinum resist-

ance thermometer (ij) within the wall of the pressure vessel as a 

sensing element, regulated the temperature of the system. 



Fig. (1.2) Cell and Autoclave used by Ziebland & Burton. 
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Aluminium powder was used to fill the space between the heating 

tube and the autoclave, thus ensuring good thermal contact 

whilst providing for the differential thermal expansion. 

Additional heaters were fitted to the top and bottom of the 

heating tube to compensate for end losses. 

The effect of radiation was treated by ignoring absorption and 

measuring transfer through the evacuated cell, Convective effects 

were presumed to be negligible if the Rayleigh number was kept 

below 1000 and additional checks were made by using different 

emitter powers. The accuracy of the reported data for liquids 

and dense gases was estimated as + 1.5/S and for low pressure 

gas and in the critical region as + 2%, 

A major advancement in the concentric cylinders method was the 

introduction of an electrically heated wire as the emitter. This 

innovation is acredited to Schliermacher [32] who attempted to 

avoid end effects by using potential leads to measure the power 

dissipation and average temperature over the central section of 

the wire. The wire is used simultaneously as the central cylinder 

(emitter) in the concentric cylinders method and as a resistance 

thermometer. 

Measurements on dilute gases to a stated accuracy of 0.5^ were 

performed by Taylor & Johnston [33] on a piece of apparatus 

incorporating a 0,025 cm diameter platinum hot wire tensioned by 

an 18 gm weight. Effects due to temperature jumps; axial heat flow 

in the hot wire and potential leads; geometrical constants; and 

radiation were calculated. Temperature differences of up to 26K 

were used and it was claimed that convective effects were negligible 

due to the low pressures used. 

Another major advancement is acredited to Goldschmidt [34] who 

proposed the use of two wires one long and one short, their 

resistances being compared in a Uheatstone Bridge, The difference 
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in resistance should then be equivalent to that of a finite 

segment, whose length is equal to the difference in lengths 

of the long and short wires, of an infinitely long wire. An 

analysis of the problem of how much the middle section of a 

hot wire differs from a segment from an infinite wire was later 

given by Blackwell [35] and more recently alternative analyses 

were given by Haarman [68] and Healy et al [57], results of which 

are used in §2,334 of this work. 

1,23 Concentric Spheres Method 

Consider a test fluid contained between two concentric spheres 

with heat being applied to the emitter (inner) sphere at a 

constant rate while the outer (receiving) cylinder is held at a 

constant temperature. Assume the system has reached thermal 

equilibrium and the temperature drop across the fluid, as well 

as the power dissipated into the fluid by the emitter and also 

the dimensions of the spheres are known. By solving equation (1,1) 

for a spherical geometry subject to the constant boundary condition; 

and provided effects due to convection and radiation can be 

ignored; then the thermal conductivity of the fluid is calculated 

as:-

4 7 r ( W r i r 2 

( 1 . 4 ) 

where q is the power dissipated by the emitter to the fluid, 

r^ and r^ are the radii of the emitter and receiver spheres and 

(Tj- T 2 ) is the temperature drop across the fluid. The system 

just described forms the basis of the Concentric Spheres Method 

for thermal conductivity measurement with equation (1,4) as its 

working equation. 

The method was used in order to avoid edge effects which occur 

in parallel plate and concentric cylinder based designs, Reidel [36] 
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constructed a cell consisting of a spherical copper emitter, 

28 mm in diameter, containing a heater and a resistance 

thermometer, supported within a spherical receiver containing 

another resistance thermometer. Careful alignment was necessary 

in order to ensure the spheres were concentric. The results 

obtained using this apparatus agreed to within 1% of his 

measurements using parallel plate and concentric cylinder cells. 

Schrock & Starkman [37] used a similar cell, to that used by 

Riedel, on measurements of hydrocarbons and water from 

200 - 300K. They attempted to demonstrate ,the absence of 

convection by showing the linearity of a plot of the emitter 

power versus the temperature drop across the test layer. 

Accuracy was claimed to be + 1.7^ and results on water agreed to 

within 0.3^ of those measured by Riedel. 

Richter & Sage [38] using a concentric spheres apparatus for 

measurements on methane and nitrogen with temperature drops in 

the range of 2 to 4K, found the measured thermal conductivity to 

be dependent on heat input to the emitter, even when the Rayleigh 

number was below 1000. They also observed an uneven temperature 

distribution over the surface of the emitter believed to be due 

to convective currents in the fluid. 

1.24 Inadequacies of Stationary Methods 

The biggest error incurred in using stationary methods for the 

measurement of the thermal conductivity of fluids is believed to 

be due to convection currents. These currents are caused by the 

steady temperature differences required by the methods and by non-

uniformities in the emitter. Convection currents when set up within 

the apparatus during a measurement provide another mechanism for 

heat transfer through the fluid, other than by pure conduction and 

so introduce errors in thermal conductivity measurements. In ordei to 

minimise the errors incurred due to convection, smaller thicknesses 

of fluid layers have been employed in steady state equipment 
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in an attempt to dampen convective currents. As a result of this 

the errors incurred in measuring the thicknesses of the fluid layers, 

used in steady state apparati, have become more significant as has 

the uniformity of the boundary surfaces* 

The other main source of error occurs due to the radiative contri-

bution to the heat transferred through the fluid during measurement. 

Unfortunately surface emissivities and absorbtivities are not 

accurately known and, for some fluids, their extinction coefficients, 

over most of their thermodynamic states, can only be estimated to 

approximate orders of magnitudes and, in the majority of cases, can 

be in error by more than 25^. This means that, even if it were 

possible to exactly solve the mathematical model for radiative heat 

transfer through the measuring apparatus, the effect due to radiation, 

if significant, would still not be accurately accounted for. However, 

non-steady state methods are, owing to approximate analyses,believed 

to be subject to smaller inherent errors, brought about by radiative 

heat transfer. Another inadequacy of steady state methods is that 

they often use measurements of heat losses in evacuated cells to 

determine emissivities and absorbtivities of the materials used in 

the cells. But, especially when the refractive index of the test 

fluid is significantly different from unity, these measurements 

often give erroneous results. [39] 

From the kinetic theory of gases, a relationship between the thermal 

conductivity and viscosity of monatomic gases was obtained thus 

enabling the examination of the accuracy of thermal conductivity 

measurements using viscosity data. [40] The relationship obtained 

for monatomic gases involved the Eucken factor:-

Eu x ° m w 2.5000 (1.5) 

where X'(T), /i°(T), are the thermal conductivity and viscosity of 
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the gas at temperature T, extrapolated to their hypothetical 

values at vanishingly small density, (zero density) respectively; 

is the molar heat capacity of the monatomic gas at constant 

volume; M is the molecular weight of the gas; and F(T) is a 

factor close to unity which can be calculated by evaluating 

corrections to the Chapman-Enskog expressions used to derive (1,5). 

The method for calculating these corrections to any required 

order has been detailed by Assael. [41] 

The inability of steady state method based equipment to produce 

data which satisfy equation (1.5) to the expected accuracy, 

corresponding to that estimated for the absolute thermal conduct-

ivities as measured on these apparati, has led to the belief that 

inherent errors exist even in the most sophisticated and carefully 

used steady state equipment. These errors, which limit the 

accuracy of the method, are believed to be due to convection, 

radiation, and perhaps other errors as yet unaccounted for. An 

error in the latter context may be due, for instance, to the 

experimental arrangement being too far removed from the theoretical 

treatment. 

As a result, emphasis has been placed on transient techniques which, 

as in the case of the transient hot wire technique based equipment 

have been able to produce data satisfying equation (1.5) to the 

expected accuracy [42] and do not seem to have the same limitations, 

1.3 Transient Methods 

Transient methods for the measurement of thermal conductivity 

were developed to overcome the inadequacies in steady state 

methods primarily due to convection. They were also thought to 

reduce errors due to radiation effects which, on the basis of 

approximate analyses or arguments (as a rigorous treatment, of the 

type given in chapter 3, had not as yet been possible) were thought 

to be larger for measurements performed on steady state equipment. 
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They are derived from:-

= k V ' T < 1 - 6 > 

which mathematically describes the transient conductive and 

convective flow of heat through an isotropic medium whose 

physical properties are independent of time or temperature. The 

essence of transient methods is that it is found that under certain 

conditions the convective terms contained in the substantial 

derivative in equation (1.6) can be neglected resulting in:-

S • k v 2 - r 

and it is upon the solution of (1.7) that the transient methods 

have been based. 

1,31 Transient Hot Wire Technique 

The method is based on the solution of equation (1.7) in 

cylindrical geometry for the initiation of a constant heat flux, 

supplied at time t=0, to an infinitely long line heat source, in 

a fluid of infinite extent, initially at constant temperature. 

The solution is of the form [43] :-

AT (r,t) = 47TX 
Ln 

4k t 

r 2C 

(1.8) 

subject to jjj- t (1.9) 

where; AT(r,t) is the local temperature rise of the fluid at 

time t, and at radial position r; q is the heat emitted to the 

fluid per unit length of the line heat source; k is the thermal 

diffusivity of the fluid and C is the exponent of Eule^s Constant. 
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In the transient hot wire technique, a thin electrically 

heated platinum wire takes the place of the line heat source 

and the resistance, corresponding to the wire's temperature 

rise, as a function of time, is measured and recorded following 

the instantaneous initiation of the heat flux. The thermal 

conductivity of the fluid is then obtained, as a consequence of 

equation (1*8) from the gradient of the measured temperature 

rise of the fluid at radial position a (the surface of the wire) 

versus the logarithm of time since the initiation of the heat 

flux in the wire. 

The technique was first used by Stalhane 4 Pyk [44] to measure 

the thermal conductivity of powders. Stalhane 4 Pyk empirically 

obtained the relationship for the temperature rise of a fine 

straight wire subjected to a step change in the heat input to 

the wire. They found that, after a short interval proceding 

the initiation of the step change, the following relationship 

could be used to describe the system:— 

The constants were found using fluids of "known" conductivity. 

The mathematical derivation of equation (1.8) was later formulated 

by Van der Held and Pfriem [45] developed the technique to obtain 

absolute values of the thermal conductivity. UJeishaupt [46] used 

a 10 cm, 70 pm diameter gold wire in one arm of a liiheatstone 

Bridge and photographed the spot from a galvanometer to record 

the bridge's imbalance as a function of time. The onset of 

convection was discussed in terms of modified Grashof numbers. 

Consideration was given to the errors due to the finite heat 

capacity and dimensions of the wire as well as to those errors 

incurred because of axial conduction at the wire ends. 

AT 
2 

+ B (1.10) 
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The effects of the fluid not being infinite in extent, and the 

wire's temperature rise not being constant across its diameter 

were also considered. The apparatus unfortunately had no potential 

leads and large end effects were inevitably present. 

Van der Held & Van Drunen [47] in order to attempt to eliminate 

effects due to 3-dimensional heat flow at the ends of the wire, 

and to reduce the variation in the power dissipation from the 

hot wire, used a copper/constantan thermocouple at the centre of 

a manganin wire heater. The thermocouple and manganin wire were 

enclosed in a thin glass tube to insulate the mangainin wire 

from the test fluid. This was claimed to prevent problems due 

to the bare wire being in electrical contact with the fluid, also 

the intention was to develop an apparatus capable of enabling 

measurements to be performed on all fluids including acids. The 

temperature rise during a measurement, typically 5 seconds in 

duration, was recorded by connecting the thermocouple output leads 

to a Nollgalvanometer and photographing the movement of the light 

spot. It was later shown [48] that the effect of the heat 

capacity of the heater and thermocouple enclosed in the glass tube 

was not negligible as thought. 

Gillam, Romben, Nisson & Lamm [49] used a bare 0.1 mm diameter 

platinum wire with two potential leads 10 cm apart in an out of 

balance Kelvin Bridge to measure fluid thermal conductivities 

and derived a correction to account for the change in power 

during a measurement. This change in power was caused by the 

variation in resistance of the platinum wire. 

An interesting variation of the transient hot wire technique was 

described by Hill [50] who developed a method using a thermocouple 

formed from wire alloys, having the same resistivity. The 

thermocouple was then drawn to a uniform diameter and heated by 

radio frequency alternating current. Unfortunately, the accuracy 

was low, + 105a. 
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Turnbull [51] made absolute measurements on molten salts using 

an apparatus in which a single platinum wire was divided into 

a long and short section by a single potential lead, the two 

sections were then connected into opposite arms of a Uheatstone 

Bridge. This had the effect of "subtracting" the ends from the 

long section and so one was essentially performing the experiment 

for the middle portion of the long section, thus eliminating end 

effects. The imbalance of the bridge was recorded using a chart 

recorder to which corrections for recorder response times and 

current variations were applied, the accuracy of the results was 

believed to be + 3^. 

Horrocks & flcLoughlin [52] developed the transient hot wire 

technique further and describe an apparatus they used to 

measure the thermal conductivity of liquid benzene, toluene, 

diphenyl and terphenyl to examine the relationship between the 

thermal conductivity and the coefficient of thermal expansion. 

The apparatus consisted of a platinum wire, 25 p,m in diameter, 

used as a four terminal resistance thermometer in order to 

correct for end effects caused by the wire not being infinite 

in length. Times of up to 30 seconds were used and accuracies 

of + 0.25/6 were quoted although this is generally considered to 

be an overestimate of the accuracy. Based on this work, Pittman [53] 

and Kandiyoti [54] designed instruments to measure the thermal 

conductivity of liquids and gases over large pressure and 

temperature ranges. Kandiyoti [54] measured the thermal 

conductivity of toluene up to 600 MPa using apparatus similar 

to that used by NcLoughlin. The apparatus consisted of a 25 pm 

diameter platinum wire, used as a four terminal resistance 

thermometer as well as a heat source, held vertically within the 

test fluid. The offset voltage from a potentiometer (see fig. (1.3)) 

was recorded following the initiation of a current through the 

platinum wire. Times of between 20 and 30 seconds and accuracies 

of + 5% were estimated over the pressure range. 
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Power Supply 

Fig, (1.3) Diagram of electrical circuit used by Kandiyoti. 

A major advancement occured as a result of the work by Haarman [55] 

who first introduced the concept of and used an automatic 

bridge to measure resistances. Great improvements in the perform-

ance of the instrument were achieved using the newly available 

high speed electronic switches and counters. The times at which 

the resistance of the hot wire attained predetermined values were 

recorded instead of indirectly measuring the temperature rise of 

the wire with time. This new bridge made possible a ten-fold 

reduction in the duration of an experiment, enabling the complete 

elimination of effects due to convection and greatly reducing other 

time dependent errors (see § 2.3). In the last ten years, work 

by de Groot, Healy, Kestin & Ulakeham [56,57,58] on the theory of 



the method has recently enabled the measurement by Assael [42] , 

and de Groot, Kestin & Sookiazian [56], of the thermal conduct-

ivity of a large number of gases and gas mixtures at 303K and up 

to 10 MPa to an accuracy of + 0,2%, 

Fig. (1.4) Measurement cell used by Castro 4 Wakeham. 
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In the liquid phase the best available measurements using the 

technique are probably those by Castro & bJakeham [59] . In their 

apparatus an automatic bridge similar to that used in the present 

work (see § 4.41), was used to perform measurements on toluene 

and several n-alkanes over a temperature range 275K - 330K, at 

their saturated vapour pressure. Two 10 Jim diameter wires were 

used as heat sources, and to eliminate end effects, (as explained 

in § 2.334) were mounted vertically and fixed between two terminals 

as shown in fig. (1.4). Times of up to 2 seconds were used for tho 

duration of a measurement and relatively high temperature rises of 

up to 15K were obtained. The accuracy of the results obtained 

was estimated to be one of + 0 . 5 ^ . 

1 # 3 2 Other Transient Methods 

Although the most widely used transient method adopted has been that 

using the hot wire, in order to encompass the entire range of methods 

used for direct thermal conductivity measurement, it should fre 

mentioned that other non steady state methods have been used. 

Most of this work has been performed by Russian scientists such 

as Danilov [60] and Petruchov & Ragulin [61] who performed 

measurements on concentric spheres apparati and Golubev [62] on a 

cooling concentric cylinders apparatus. 
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CHAPTER 2 

Theory of the Transient Hot Wire Technique 

2.1 Introduction 

In the transient hot uire method of measuring the thermal 

conductivity of a fluid, the temporal temperature rise of a thin 

platinum wire immersed in a test fluid, initially at thermal 

equilibrium, is observed following the application of a step 

voltage across the wire. The platinum uire acts as a heat 

source and produces a time dependent temperature field within 

the fluid. To a good approximation, the temperature rise of the 

wire, AT, can be expressed as:— 

AT(a,t) = E, I (2-1) . I 4k t I 

or:-

q 
AT(a,t) = L n 

I 

f H (2.2) 
a C 

Provided that:-

2 
a ^ 

4kt * 

(2.3) 

In equations (2.1) and (2.2); q is the heat per unit length 

emitted from the wire; a is the diameter of the wire; k is the 

thermal diffusivity of the test fluid; X is the thermal conduct-

ivity of the test fluid; t is the time lapse since the initial 

application of the step voltage across the wire and E. is the 

exponential integral. 

The wire, which is used simultaneously as a heat source and as a 

thermometer, forms part of an automatic bridge (described in 

§ 4.41). The bridge is used to record the times at which the 

temperature rise of the wire attains several predetermined values, 
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Each time recorded corresponds to the occurrance of a bridge 

balance condition and therefore to the time at which the wire 

attains a preset resistance associated with a known temperature 

rise. 

As implied by equation (2,2) the plot of the temperature rise of 

the wire, A T , versus the logarithm of the time lapse since the 

step voltage initiation, Lnt, would result in a straight line, 

the gradient of which is inversely proportional to the thermal 

conductivity. In practice, the physical model of the transient 

hot wire does not correspond exactly to the mathematical model 

used to derive equation (2,1). However the model is sufficiently 

close to it that, by applying corrections (detailed later in this 

chapter) to the observed temperature rise of the wire, the physical 

system can, within the required accuracy, be reduced to the 

mathematical model. What this in effect means is that provided 

the geometry of the hot wire cell as well as the physical properties 

of the fluid and platinum wire (other than the thermal conduct-

ivity of the fluid) are known then the thermal conductivity of the 

test fluid can be determined. This is done by correcting the 

observed temperature rise of the wire to its idealised temperature 

rise from which the thermal conductivity of the fluid can be 

calculated using:-

where ATid is the idealised temperature rise as defined by 

equation (2.4). 

The rest of the chapter details the mathematical model used and 

the corrections to the observed temperature rise of the wire 

required to enable the use of equation (2.4) for the measurement 

of the thermal conductivity of a fluid. The discussion of the 

corrections is kept to fluids in general, as most of the corrections 

(2.4) 
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are independent of whether the fluid under consideration is 

gaseous or liquid, but where this is not so the corrections 

are treated separately and for completeness, both are included. 

Most of the corrections detailed in § 2.3 are based on work 

which was available prior to the designing of the apparatus. 

The analyses used were originally developed for measurements on 

gases and where necessary they have been extended to include 

fluids in the liquid phase. The purpose of the correction analyses 

are two fold. Firstly, they provide,quantitatively, methods of 

correcting observed experimental quantities to those required 

for the determination of the thermal conductivity of a test fluid. 

Secondly, as the analyses are often approximate, and the corrections 

obtained are subject to their own errors, these corrections must 

therefore be kept small to minimise the error incurred in the 

absolute measurement of the thermal conductivity. The analyses 

are therefore used in the design of the apparatus, to ensure that 

these corrections and therefore the error in the thermal conduct-

ivities measured are kept to a minimum. 

Unfortunately, the results of the work described in chapter 3 

concerning the effect of radiative heat transfer on the thermal 

conductivity of a fluid, as measured on transient hot wire apparatii 

were not available prior to the apparatus construction and therefore 

could not be used as a basis for its design. 

2.2 The Idealised Mathematical Model 

Consider a section of a hypothetical infinitely long line heat 

source (no ends) immersed in an isotropic fluid of infinite extent. 

Assume the density and heat capacity of the fluid are independent 

of temperature, also that heat transfer through the fluid can only 

occur by conduction and let the system be in thermal equilibrium 

at temperature T q . A step function in the heat emitted by the 

line source to the fluid is applied at time t=0, resulting in a 

constant power per unit length of the line source being supplied 

after this time. 
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The system can be represented by the following mathematical 

model using equation (1.7) in a cylindrical polar coordinate 

system:— 

S = ( 2 ' 5 ) 

with initial condition:— 

AT ( 0 < T^QQf t<£0) = 0 (2.6) 

and boundary conditions:— 

i ) Lim AT(r, t > 0 ) = 0 (2.7) 
r-»oo 

r q 
ii) Lim r = - ^ p ^ = constant , t > 0 (2.8) 

r-»o L J 

where:-

AT(r,t) = T(r,t) - T (2.9) 
o 

The solution is [43]:-

q 
A T ( R > T ) = - 47TX E I ( - ^ R ) < 2 - 1 0 ) 

. o o x 

where E. (x) = / j — dx = - 7 - Lnx + x + 0 { x 2 } (2.11) 

x 

and 7 is Euler»s constant (0.5772156649...). 

At a distance r=a into the fluid (the position the surface of a 

wire would occupy were the line source replaced by a wire), 
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equation (2.10) yields equation (2.1) and therefore, subject to:-

* • i ( 2- 1 2> 

A T ( a , t ) = ^ L n j j i j (2.13) 

which by truncation yields the working equation:-

ix 

This is the model upon which the transient hot wire technique 

is based and all corrections due to the physical system and ideal 

system not being identical are applied to the observed temperature 

rises in the real physical system in order to obtain the hypothet-

ical idealised temperature rises from which using equation (2.4) 

the thermal conductivity can be calculated. 

2.3 Corrections 

In this section the ways in which the real physical system deviates 

from the idealised mathematical model are examined in detail. The 

effects of these deviations are quantified and those contributing 

errors of less than 0.01^ in AT i d are deemed negligible and ignored, 

while those constituting more than 0.01^ in ATid are examined to 

ascertain how mathematically an observed, temperature rise AT can bB 

corrected, for these effects, to the idealised temperature rise 

ATjd • It has been assumed that, because the required corrections 

to ideality are small, the combined effect can be taken to be 

additive. 

Hence:- ATjd = AT + T.5T (2.15) 

where ST- is a temperature correction due to the physical system 

in one aspect being non-ideal. 
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The discussion of the effects is presented under three subsections, 

namely for, those effects entirely eliminated, those effects which 

constitute a negligible correction in AT, and those effects for 

which a correction to AT is required, 

2.31 Effects Entirely Eliminated 

The major adv/antage of the transient hot wire technique is that 

effects due to conv/ection, the major source of error in steady 

state methods for thermal conductivity measurements, can be entirely 

eliminated using this technique. 

It is necessary to distinguish between two essentially different 

types of convection occurring in thermal conductivity measurement 

equipment. The first is due to gradients in the equipment even prior 

to measurement. This is caused by uneven temperature control of the 

apparatus whereby the volume of test fluid in a lower region of the 

apparatus is warmer and therefore less dense than that in an upper 

region, resulting in a velocity field within the fluid. This type 

of convection can and must be avoided by careful design of equipment 

and by setting up a small temperature gradient in the apparatus which 

opposes convection. This was implemented in the apparatus used by the 

indirect heating of the top of the pressure vessel containing the 

measurement cell (see § 4.23). This type of convection if present in 

the test fluid would exist whether or not a measurement was being 

performed and therefore whether or not heat was supplied to the emitter. 

The other type of convection occurs due to the fluid being heated 

by the emitter and therefore occurs only during measurement. The 

mechanism is best explained by considering what happens in the case 

of the hot wire apparatus. Consider an infinitely long, perfectly 

straight wire immersed vertically in a fluid of infinite extent 

down which there is a small externally applied temperature 

gradient which opposes convection. This means that at any constant 

radial distance into the fluid the temperature of the fluid increases 

with increase in the vertical direction. Thus, the system is in a 
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stable state which would not support convection. Now let a 

constant heat flux be emitted from the wire surface into the 

fluid and, assuming there to be no convective heat transfer, 

consider the hypothetical steady state the system would attain. 

The expected steady state temperature field in the fluid is 

shown in the pseudo-three dimensional (isometric) drawing fig,(2,1), 

Fig,(2,1) Hypothetical steady state temperature field surrounding 

a hot wire. 
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Consider the local temperatures T^ and T^ of tuo elements of 

fluid, A and B, closc to and at the same radial distance, r^, 

from the uire, but at different vertical heights, z^ and 

respectively. Temperature T^ is greater than temperature T^ 

and therefore there is no driving force for convection between 

elements A and B . The same can be said about elements C and D, 

tuo elements further auay from the uire surface, at radial 

distance temperatures T^ and T^ and vertical heights z^ and 

z2 respectively. But the temperature T^ of element B is greater 

than that, T^, of element C and, because the vertical height, z^, 

of element C is greater than that,z 2, of element B, there is a 

driving force for convection bstueen elements B and C . 

Initially, the argument made use of the assumption that there uas 

no convective heat transfer. But, based on this assumption, as has 

just been proven, convection uould occur and therefore the assump-

tion of there being no convective heat transfer is false. This 

proves that there is aluays a driving force for convection in a 

hot uire or by the same argument concentric cylinder arrangement 

at steady state not withstanding claims to the contrary. It should 

be noted here that by moving the uire from the vertical, using 

similar arguments as detailed above, the situation is aggravated 

and the driving forces for convection become larger. 

Consider also the case of a horizontal flat plate in contact with 

a fluid to which it supplies heat from above (to reduce convection). 

Assume there to be an inhomogeneity in the plate heater such that 

at one point it is slightly cooler than over the rest of the 

surface of the plate. The temperature field around the inhomo— 

geneity uill have the form shoun in fig. (2.2). 

Element A at height z^ is at the same temperature as element C at 

height z^ and so there is no driving force for convection between 

fluid elements A and C . But, element A at height z^ is at a lower 

temperature than element B at height therefore a driving force 

for convection exists and convection will occur as long as the 
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depicted regime is in existance. Since in practice a heating 

surface can never be perfectly homogeneous, by using the argument 

just prescribed it can be seen that there will always be convection 

in flat plate apparati used at steady state. 

Fig. (2.2) Temperature field around an inhomogeneity in a heating 
surface. 

In order to eliminate this second mechanism of convection, the 

transient hot wire technique relies on the fact that, due to 

inertial and viscous forces within real fluids, there is a 
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characteristic time before the buoyancy forces, which cause 

convection, can accelerate the fluid sufficiently to cause an 

appreciable effect on the rate of heat transfer through the fluid. 

By suitable arrangement of the apparatus, the characteristic time 

can be made large enough to be greater than the time required to 

perform the experiment. 

The great advantage the transient hot wire technique has over other 

methods of fluid thermal conductivity measurement is that, convection 

if present can be immediately detected. This occurs because, after 

applying the necessary corrections to the raw experimental data, 

obtained during a run on the apparatus, when the resulting temperature 

rises are plotted versus Ln t , then the expected temperature rise of 

the fluid versus Ln t has the form shown in fig. (2.3). 

1 

A T 

CONVECTION 

A T ®—< $ T C 

L N t 

Fig. (2.3) Effect of convection on the temperature rise of the wire. 
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In practice because of the existance of an outer boundary the plateau 

occurs at AT® - ST o b (see § 2.333). Where convective heat transfer 

occurs together with conduction then the plateau occurs at a signif-

icantly lower temperature rise because there is another mechanism 

for heat transfer. If the apparent thermal conductivity is observed 

during a run in which convection is believed to occur, then at first 

the apparent thermal conductivity is independent of time but after a 

characteristic time (dependent on apparatus and fluid measured) the 

apparent thermal conductivity is seen to increase dramatically with 

increasing time. The observed deviations from the straight line AT 

versus Ln t (see fig. (2.4)) are seen to be significantly larger than 

normal (cf. fig. (4.15)) and exhibit a systematic curvature. 

+0-2-

+ 0 - 1 

0-0-

- 0 - 1 

- 0 - 2 

-0-3 

0-050 0-135 0-368 1-000 2 718 
T I M E [S] 

Fig. (2.4) Deviations from the straight line A T versus Ln t 
(N-Undecane at 170 MPa and 300K) 

It should be mentioned here that only the second mechanism of convec-

tion can be detected, where initially convection is absent but starts 

following the initiation of an experiment. It is not certain whether 

a steady state convection field within the apparatus can be detected. 
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2.32 Effects Made Negligible 

This subsection quantitatively examines effects that either by 

suitable design of the apparatus or by their very nature 

contribute errors of less than 0.01^o to the idealised temperature 

rise, ATjd • This examination is performed to determine the 

conditions under which these effects are negligible, thus 

justifying their exclusion from consideration. 

2.321 Truncation Error 

The working equation (2.14) is a truncation of equation (2.13) 

and the error incurred is of order a /kt . The major part of 

the error is contained in the first neglected term and to make 

the error negligible therefore requires:-

10-4 Atd » a k (Set) ( 2 - 1 6 ) 

or 

10 
-4 

4kt Ln(4kt 

|a 2c 

(2.17) 

—8 —7 

which is satisfied for 70 m s < t ^ 1 s and 6 x 10 < k < 1 0 

by choosing a wire of radius a ~ 3 . 5 fxm. 

2.322 Finite Wire Diameter 

As in practice a heat source of finite diameter is used instead of 

a line source, the boundary condition (2.8) requires modification 

to:-

a ( ^ L = ( 2 - i 8 ) 

and therefore, by the solution of equation (2.5) subject to (2.6), 

(2.7) and (2.18), the temperature rise of the wire is found [63] 
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to be:— 

C° 2 
A T ( r < a , t ) / 0 - a * " 

7T a X 1 

4k t 
which for — 1 reduces to:-

r 

3 o(ur)Y 1(ua) - Y ^ u r j D ^ u a ) 

2 2 2 "I 
u (ua) + Y 1(ua)J 

du 

(2.19) 

A T ( r , t ) = z l l n + (2. 2Q) 

and at (r=a) equation (2.13) is recovered. 

2.323 Radiation (Transparent Media) 

In deriving the working equation (2.14) it was assumed that heat 

transfer occurred purely by conduction. In practice, however, 

simultaneous conductive and radiative heat transfer occurs through 

the test fluid, but, provided the fluid is transparent and the 

temperature rise of the wire is small ( ~ 5 K ) , then the error incurred 

due to radiation can be shown to be negligible. 

Assuming the fluid to be transparent, the radiative heat flux at the 

surface can be represented as:-

Q D = A E F . - aA.E.F. 
R a a ab b b ba 

(2.21) 

Using reciprocity the view factor F. is found as:-
oa 

A A 
F = F =-2-
ba ab A^ 

(2.22 

resulting in:-

Q R = fla<Ea - a E b > < 2 - 2 3 
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or:-

qR = 27Ta( c a T ^ - a a T ^ ) (2,24) 

If we assume:-

« ~
 a

 (2.25) 

then:-

qR = 27ra6<r(T 4 - T * ) (2.26) 

« 87Tae(rTo
3
 AT(a,t) (2.27) 

and from equation (2.14):-

3 
ST r q R 87Taeo-To 

S T = T = q A T< a» f c> ( 2 - 2 8 > 

The resulting correction is negligible in the present apparatus 

which employs a 3.5 /um diameter wire; a temperature rise of less than 

5K; a heat input per unit length of wire of approximately 0.7 Um 

and steady state temperature, T , of 353K, these conditions corres-

ponding to the worst encountered. 

For participating fluids, the full integro partial differential 

equation governing simultaneous conductive and radiative heat transfer 

requires solution and results in the prediction of an appreciable 

difference between the apparent thermal conductivity (that calculated 

from equation (2.14) assuming there only to be conductive heat 

transfer) and the actual thermal conductivity. 

In the case of these fluids which may absorb and re-emit radiation, 

there has been until now no exact solution of the integro partial 

differential equation governing simultaneous conduction and radiation. 

However, there have been a number of approximate treatments of the 

problem which indicate that the effects due to radiation are smaller 

in transient measurement apparati than in those operated at steady 

state. In transient measurement apparati the effects due to radiation 
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are believed to contribute an error of a feu percent uhich is small 

but not insignificant. Since the purpose of the present uork is to 

perform thermal conductivity measurements uith an accuracy of a 

fraction of it is clear that these approximate analyses are 

inadequate for the present purposes. Consequently, the next chapter 

is entirely devoted to a neu comprehensive numerical treatment of 

the problem of simultaneous conduction and radiation for the purposes 

of interpretating the present measurements. Meanuhile, the approx-

imate analyses are used merely as a guide to the design of an instru-

ment. 

2.324 Knudsen Effect 

The Knudsen effect is due to a temperature jump existing at the surface 

of the uire. This occurs uhen the diameter of the uire becomes of the 

same order of magnitude as the mean free path of a molecule of the fluid 

under observation, and .results in the temperature of the fluid at r=a 

being less than the temperature of the uire surface. 

Because the mean free path of a molecule of a liquid is never of the 

same order of magnitude as that of the platinum uire diameter (7 Aim) 

this effect does not present itself and is only applicable to gases 

at lou densities, and its inclusion is purely for completeness. 

The temperature jump at the uire surface can be described by the 

Smoluchouski equation [64,65] as:-

uhere g^ is an impirical factor proportional to the mean free path 

of the fluid. Nou by solving equation (2.5) subject to equations 

(2.6),(2.7), and (2.18) using equation (2.29) one obtains:-

(2.29) 

AT (a ft) = AT(a,t) + \(a,t) - T(a,t) (2.30) 
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where 

or:-

A V a ' 1
 > = s k [ ( r r ) + L n E ] + ° K ] J < 2 •-31 > 

q (29, | 
6 T K = W k \ — I < 2 - 3 2 > 

To a good first approximation, the temperature jump is independent 

of time and although g^ is not known its magnitude is not required 

for the calculation of the thermal conductivity because of the way 

in which the thermal conductivity is calculated. Prom equation (2.4) 

because the Knudsen effect does not change the gradient of AT(a,t) 

versus Lnt, it just shifts the line, we find that the value of the 

thermal conductivity obtained is unaltered. 

To a higher order approximation, it can be shown [57] that the effect 

of the temperature jump at the wire surface produces a temperature 

correction of the form:-

5T. q;\ 

t f = i ^ r < 2 - 3 3 > 

where A is the mean free path of a molecule in the fluid. 

By a suitable choice of the radius of the platinum wire, a, (3.5 /zm) 

at most temperatures, T q , and for all but very low pressures the 

effect can be rendered negligible. 

2.325 l/iscous Heating and Reversible Work of Compression 

As explained previously (§ 2.31 ) the temperature field set up in the 

fluid during a measurement by the transient hot wire apparatus is 

conducive to the consequent formation of a velocity field within the 

fluid. This velocity field causes viscous dissipation in the fluid 

which results in local temperature increases within the fluid and 

hence a reduction in the heat emitted from the hot wire. 
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In order to determine the correction due to viscous heating, what is 

required is the simultaneous solution of the equations of continuity:-

1 
at + r $ p 

= 0 (2.34) 

momentum in the radial, r, direction:-

r . ~ r __ 
r " p 3 r + 3 p 

„ 8 V 8 v/ \/ u r ® r r 
rdr + + 2 

o r r 
(2.35) 

momentum in the vertical, z, direction:-

z .. z 
+ V t — 

dt r ^r 

1 aP M 

P ^ + P + g (2.36) 

and Energy:-

at + r 6r 
1 O P + U FLP 

r + + p c T | 5 t + V 9 7 

+ TT 
4 ft 

3 P C p 

/ a v r \
2 p v f v P a v P 3 / a v / v 

\3r / + L rj " r flr + 4 \ Z F / 
...(2.37) 

Subject to the initial and boundary conditions:-

T(r,t) = T ( o ) ; p(r,z,t) = p ( o ) ( z ) ; P(r,z,t) = P ( o ) at t ^ O ..(2.30) 

r ~ 27Tta J v
r (

r » ^ ) = V z ( r , t ) = 0, at r=a and any t>0 ...(2.39) 

V (r,t) = V (r,t) = 0 and T(r,t) = T ^ , at r = » and t>0 ...(2.40) 

As the simultaneous solution of the partial differential equations, 

subject to the initial conditions, boundary conditions and an 
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equation of state for the fluid, is difficult, if not impossible 

to obtain and, as the effect is believed to be small, what is 

required is a first approximation to the solution similar to that 

obtained earlier for gases [57] • 

A first order estimate of the temperature field can be obtained by 

ignoring the convective, dissipative, and reversible uork terms in 

the energy equation, yielding:— 

1 dr ( 1 > d V 1 > + 
r $r 

d r 2 
(2.41) 

where the superscripts (o) and (1) denote the Zeroth (equilibrium), 

and first itteration respectively. 

The solution of (2.41) as for the solution of equation (2.5) results 

in:-

T P ) T(°) 
= q Ln & (2.42) 

for a > 1 (2.43) 

where a — 4kt , q = 

r 2 C 47rXT(o) 
(2.44) 

Because the fluid is almost infinite in extent, then to a very good 

first approximation, the change in pressure in the radial direction 

can be neglected. Ue therefore assume:-

P(r,t) = P(t) = P ( o ) 
( 2 . 4 5 ) 

and that:-

p p 1 T < ° ) ; 

(2.46) 
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which in practice is a good approximation provided — 1. 
T° 

Now implementing equation (2,42) in (2.46) one obtains:-

p O ) = p(°)(1 _ ) f o r ^ (2.47) 

(1) 
which used with equation (2.34) enables the radial velocity V ^ to 

r 
be found as:-

M r
( 1 )

* INR(
1
 - {IF )

( 1 L N S )
 (

2
-

4 8
) 

and using equation (2.35) results in:-

= ( 2 . « , 

where:-

{prj = = Prandtl No. (2.50) 

From equations (2.49) and (2.47) we find that:-

< - > 

for the experimental condition important here, so that the assumption 

of constant pressure in equation (2.45) is justified. 

By using the Boussinesq approximation that the variable density is only 

important in the buoyancy term of equation (2.36) one obtains:— 

Sr + a r 2 J + T ( o ) (2-52> 
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which to a first approximation [66] for r ^ 1 0 a gives:-

» Z
( 1 ) = <2.53, 

For the times used in practice 70 m s < t < 1 sec. it can be seen 

that:-

V z > V r a n d 

as is required by the need for consistency following the neglection 

of the convective term in equation (2.52). 

If the thermal conductivity and specific heat of the fluid are 

assumed constant then from equation (2.46) one finds the first 

itteration expression for the thermal diffusivity:-

k 0 ) = k(o) ^ (2.55) 

For the second itteration on the temperature rise from equation 

(2.37) using (2.53) we obtain:-

AR<2> .<0>JI ST<2>. a V 2 ) l _ ,<•)„- ^ oi ' * ,(0)j i oi ' ' . d t ' f ,(0?/,- , _ — fl dl*^ } d^rl 1 \ 
S T J r 5 r ~ | + ) 

U ( D ^ T + V _ ) V '^R 
r 5 7 + 3p(o^ \ r / r §r" 

(1)\ 2 „ O k , , 0 ) 

+ 

(2.56) 

where the terms on the right side of equation (2.56) refer to 

corrections for; the variation in thermal diffusivity; radial 

convection; viscous dissipation and reversible work of compression. 

As these corrections are small, they can therefore be assumed 



44 

additive to within adequate accuracy. 

The viscous dissipation term can be split into two parts, one 

for radial dissipation of the form:-

2-

P q i i 

PC, 
1 + 

0 
(2.57) 

and the other for vertical dissipation in the form:— 

2 i- -.2 

t 2 P C P r Ln 

2gt" 

4kt/(taf 
(2.58) 

of which the term for vertical dissipation is by far the greater 

at r=a, 70 m s < t < 1 s . 

The temperature correction due to viscous dissipation is obtained 

by solving:-

*T< 2> 

b t 
- k 

(o) i bji^ £ £ 2 ) 1 ^ 
+ b r 2 J 

q [Prjk (o) 2091 

r Ln ( 4 k t / c 2 a 2 ) 

(2.59) 

from which is obtained [63] the second itteration for the temperature 

rise at r=a:-

/ 2 L T
( o ) 

= q Ln(a) 

2 2 , 2 
1 + 

q{Pr}/3 g^t 

2 C Q T L n a 
P o 

(2.60) 

and so an expression for the temperature correction due to viscous 

heating:-

<5TW. 
Vise 

2 2 . 2 
qfprJ/S g t 

2C_T 
P o 

(2.61) 
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or: 

,2 2,2 

(2.62> 

For liquids where P r ~ 10, X « 0.15 u/m/K and C p « 2000 3/Kg/K, it 

is easily shown that for the experimental conditions employed in 

transient hot wire measurements, q 0.5 u/m, t ^ 1 s and T q 350K, 

this correction amounts to less than 0.01^ of the temperature rise 

and is therefore negligible. 

The last term in equation (2.56) is due to the reversible work of 

compression resulting from the temperature rise in the fluid during 

a measurement. Using equations (2.48) and (2.49) the term reduces 

to:-

which is even smaller than the viscous dissipation term and as a 

result the error due to the reversible work of compression is also 

negligible. 

Of course the validity of the entire analysis rests on assumption 

(2.46), but for the small temperature rises employed in the measure-

ments, A T ~ 3 K , the assumption of a linear temperature variation of 

the density is a good approximation. 

2.33 Significant Corrections 

In this subsection, the significant errors (those amounting to greater 

than 0.01% AT j d ) are examined, and using mathematical models are 

quantified so as to enable their use with the observed temperature 

rises in order to obtain the thermal conductivity of the test fluid. 

In practice one of the criteria used for the apparatus design is that 

(2.63) 



46 

none of these errors should ever contribute more than 1% in AT j d 

thus limiting inaccuracies due to the sometimes approximate error 

analyses used. 

2.331 Variable Fluid Properties 

This correction occurs owing to the fact that the density and thermal 

conductivity of the fluid vary with temperature. This results in the 

observed temperature rises differing from their ideal values, since 

in the ideal model the fluid properties are considered constant. 

The thermal conductivity of a test fluid is obtained from the slope 

of a plot of AT versus Ln t and in the present work the time domain 

within which measurements are recorded is between 70 ms - 1s and the 

change in the temperature rise during this time is less than 2K. 

Because the change in thermal conductivity during this period is less 

than 0.5% it is small enough to enable the use of the analysis given 

by Healy, de Groot, & Kestin [57]. It is found using this analysis 

that the temperature rise has the form:-

2 ( q ) 2 

AT(t) = AT j d - i*(AT) + W - ( X - 4 > ) Ln 4 (2.64) 
( o ) 

where by definition X (T,p) = X Q 0 + X A T ) (2.65) 

p C p = p oC p( 1 + <t> A T ) (2.66) 

The last term in equation (2.64) is time independent and does not 

influence the slope of AT versus Lnt and is therefore ignored. 

Now considering the temperature rise at either end of the range of 

measurement times AT(t,j) and A T ( t n ) (corresponding to the first 

and last bridge balance conditions, see § 4.41) from their difference 

we find:— 

q Lnft /t 1 
A T ( t ) - A T ( t ) = — y . <2-67> 

47tXq{i + i x [ A T ( t 1 ) + A T ( t n ) ] | 
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which using (2,65) is identical in form to the idealised temp-

erature rise with the properties evaluated at»— 

T r = T q + <5Tfp (2.68) 

= T o + i | A T ( t 1 ) + A T ( t n ) | (2.69) 

P = P ( V P Q ) (2.70) 

It is therefore implied that the fluid thermal conductivity obtained 

from the slope of the measured AT versus L n t line corresponds to 

the thermal conductivity at temperature T^ and density P r ( T r * P 0 ) as 

we have demonstrated the pressure to be invariant. 

2.332 Composite Cylinders 

In the mathematical model from which the idealised temperature rise 

of the fluid is calculated, heat is assumed to be emitted from a 

line source whereas in practice a hot wire with finite, non-zero 

physical properties different from those of the fluid is used thus 

incurring an error. To account for the error one requires the 

solution of coupled equations for the composite cylinder system 

(hot wire and fluid). The equations requiring solution are, 

for the wire:-

^ T q 

(pc n) \T"~ = X V T - —n O ^ r ^ a (2.71) 
P u nt w v w _ 2 N ' 

7Ta 

for the fluids-

P C P |t = X V 2 T r > a ( 2 ' 7 2 ) 

and by continuity we requires-
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T (a,t) = T(a ft) ; X 
UJ \ » / » w N ' r=£ 

- x f t i 
ibr, 

The initial condition is:— 

T ( r , t < 0 ) = T ( r , t < 0 ) = T 

r=a 

all r 

(2.73) 

(2.74) 

and the boundary conditions are:-

( S O - • • 

T(r—«,, t) = T 

27rXa 

t > 0 

t > 0 

t>0 

(2.75) 

(2.76 

(2.77) 

9 
The solution at large values of 4kt/r is found [P347 of 43] to be:-

q 
AT (r, t) = — 

u v * ' 47TX 
[ l - a

2 ( ( p c p ) u - p c p ) / 2 x t l L „ p g 

j_2ktj [Sk^t 

(2.78) 

During measurements on a fluid uhat is measured in the hot uire 

method, using the hot wire as a thermometer, is the average temper-

ature over the wire diameter as defined by:-

AT„(t) = 
fi , oAT u(r,t)rd r 

f rdr 
Jo 

(2.79) 
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l T , ( , 1 , S « | / , 2 K p C p l - p C p J X 

= W X - a 2Xt J 

q / a 2 a 2 X \ 

• ZFx ( W t ~ ZTt + i r j <2-80> 

It should be noted that the second term, including the reference 

temperature shift, q/87TA^, is negligible and therefore ignored, so 

resulting in the correction due to the finite physical properties of 

the hot u/ire being:-

6 t _ . A T . d 

cc V 2\t j id 

It should also be noted here that the error is largest at small times, 

decreases with increasing time and it accounts not only for the wire 

having finite physical properties but also for the averaging process 

used to obtain the wire temperature. 

(2.81 ) 

2.333 Outer Boundary Correction 

The mathematical model used to obtain the idealised temperature rise 

of the fluid as a function of time, assumes the fluid to be infinite 

in extent. However this is not the case and an outer concentric 

cylindrical boundary at r = b exists due to the need to contain the 

fluid. 

The existence of this outer boundary will modify the temperature 

field in the fluid and a correction to the measured temperature rise 

is required in order to recover the necessary idealised temperature 

rises, through which the thermal conductivity is calculated. It is 

expected that the correction due to the outer boundary will be small 

since b/a >1000 and will increase with time. This is because, in 

the idealised model, at small times the temperatures of elements of 

the fluid, at the position which would be occupied by the outer 

boundary in the real system will be very close to the initial temp-

erature of the fluid. The real and idealised models would therefore 
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be very similar at small times but, as these same elements in the 

idealised model increase in temperature with time, the effect is 

expected to increase. 

To obtain the deviation due to the outer boundary equation, (2.5) 

must be solved subject to initial condition (2.6) and boundary 

conditions (2.8) and 

AT(r. , t ^ 0 ) = 0 (2.82) 

The second boundary condition implies that the outer boundary is 

kept at the initial condition. In practice, the boundary cylinder 

is relatively massive and made of a metal with a large thermal 

conductivity, so making this an acceptable and valid approximation. 

The asymptotic form of the solution as derived by Fischer [67] is:— 

AT(a,t) = ^ 2 Ln 

oo © - £ " . - • > < " | l y s „ > 

v-0 

2 

subject to — 1 and 1 
3 c 

a 

...•(2.83) 

....(2.84) 

which results in a correction. , to the idealised temperature 

rise of:— 

5 T O B ~ ~ 47T\ 
Ln I S l • S - ^ V A ) ] ...(2.85) 

which in the present apparatus when performing measurements on 

liquid alkanes, as expected increases in magnitude with time, but 

amounts to no more than 0.1/b in AT : J . id 

2.334 End Effects 

The mathematical model, used to obtain the idealised temperature 

rise of the transient hot wire, is based on conductive transfer of 



51 

hoat emitted by a segment of an infinitely long line heat source. 

In practice, a hot uire is used which does not correspond 

sufficiently closely to a line heat source, as it has a finite 

radial extent and a finite heat capacity and thermal conductivity, 

(The effects of these discrepancies have already been examined in 

§ 2.322 and § 2.332.) But, since the hot wire requires electrical 

contacts and physical support it cannot be infinitely long and this 

departure from ideality must also be accounted for. 

Approximate analyses for the departures from ideality have been 

provided by Haarman [68] & 3.H. Blackwell [69], The latter predicts 

the factor, <5, by which the slope, in the middle (z=0) section of 

a wire, of length L, departs from that in an infinitely long wire 

as defined by:-

5 = 1 _ ^ d j V ( a , t ) ] u 

q df_n(4kt/a 2C) 

r L
2 / l 6 k t ^ 

7T 

5k t j L 
L a 

w (P QP>w' 

P Co 

(2.86) 

(2.87) 

The apparatus used employs two wires which are constructed so as to 

be as near identical (apart from their lengths) as is practically 

possible. The shorter wire is constructed to be of such a length 

that at the centre of the wire, 6 , obtained from equation (2.8 6) 
- 4 , 

is of the order of 10 (corresponding in' practice to a length of 

cm). Consider now the situation when the two wires are 

immersed in the same fluid, under identical thermodynamic conditions, 

and when during measurements the same current passes through both 

of the wires, emitting the same heat per unit length from each of 

the wires. The difference in resistance of the two wires then, to 

within the required accuracy, gives a measurement of the temperature 

of a hypothetical finite segment of an infinitely long wire, the 

length of the segment being equal to the difference in lengths of the 

two wires. Thus the end effects of the wires have been eliminated 
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by a practical cancellation. 

This cancellation requires that apart from their lengths the two 

wires be identical which in practice is impossible as due to the 

method of manufacture of the wires their diameter is subject to 

variation over their lengths. It is also not possible to exactly 

duplicate solder joints and connections to the wire ends thus 

introducing further dissimilarities. However, provided the 

resistances per unit length of the two wires differ from each other 

by less than a few percent, then an analysis given by Kestin & 

Uakeham [58] can be used. From the analysis the measured temperature 

rise of the middle section of the long wire can be calculated. This 

temperature rise is shown by Kestin & Uakeham to correspond, within 

the required accuracy, to the temperature rise of the middle segment 

of an infinitely long, long wire. The length of the segment is 

equal to the difference in lengths between the long and short wires. 

The means whereby this is achieved is delayed to a later section 

(§ A.53). 

2.335 Radiation (Absorbing Media) 

In real fluid systems heat transfer occurs through radiation as well 

as by conduction and convection (the effects due to convection have 

already been considered in § 2.31 and § 2.325). The effect due to 

radiative heat transfer through a transparent medium has already been 

quantified ( § 2.323) and found to be negligible. Uhen the fluid 

medium under consideration absorbs and reemirs heat, in the form of 

electromagnetic radiation, the effect is often not negligible and 

requires consideration. This is necessary because the additional 

mechanism for heat transfer destroys the ideal conductive temperature 

field within the fluid and alters the form of the temperature rise of 

the hot wire as a function of time, moving it away from ideality. 

To obtain the effect due to radiation, the full conduction — 

radiation problem requires solution. The problem is defined via a 
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Basic Equation:-

a 2 T + 1 b± = l l L + + 

^ 2 • r 6r ~ k bt + X br + Xr ( 2 # 8 0 > 

with Initial Conditions:-

T = T o ' ^R = 0 ( t = 0 » a < r < " ) (2.89) 

and Boundary Conditions:— 

+ = 2 ^ < t > 0 ' r = a > ( 2 ' 9 0 > 

Lim T(r,t) = T q ; Q R = 0 ( t > 0 ) (2.91) 

r—•» 

where Q D is the radiative heat flux. 
rt 

In the same fashion as for other corrections using:-

T - T 
o = " 4 i x + 5 T R < 2 ' 9 2 > 

2 
= ATid + 5 t R when ^ < 1 (2.93) 

from (2.92) one obtains:-

— = k 5 T ~
+
 xF 

with Initial Conditions:-

5 T R = 0, Q r = 0, t = 0, a < r< » (2.95) 
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and Boundary Conditions:-

+ Q D = 0 ( T O r = a ) ( 2 . 9 6 ) 
n 

a 6 T
R 

5Td = 0,
 1

- = 0 , Q D = 0, t ^ O (2.97) 

What is required is an analytic solution to equation (2.94) for, 

<5TR(a,t), the temperature rise correction due to radiation, this 

can then be applied to the measured temperature rise of the wire to 

obtain the idealised temperature rise of the wire from which the 

fluid thermal conductivity is obtained. 

Unfortunately, as yet, there is no available analytical solution 

to the problem and a numerical solution is found which could, in 

principle, be used in its place. But, as the solution requires an 

enormous amount of computing time and expense, a different technique 

must be used, implementing a newly developed analysis which is given 

in Chapter 3. The analysis is delayed to a later chapter due to the 

enormity of the task required in order to obtain the correction. 

2.336 Summary of Corrections 

The transient hot wire technique is based on the idealised solution 

for the temperature rise of a fluid of infinite extent initially at 

thermal equilibrium through which heat is conducted from an infinitely 

long line heat source within the medium. The solution at a distance 

a (the diameter of the hot wire) into the fluid, after truncation, 

supplies the working equation from which the thermal conductivity is 

calculated:-

AT. id 47rXfT) 
Ln 

4k t 
o 

a 2C 
(2.98) 
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From measurements on the hot wire apparatus the temperature rises of 

the wire, AT(t), at a number of times, following the initiation of 

the heat dissipation to the fluid, are found. From these experiment-

ally measured temperature rises the corresponding idealised temp-

erature rise AT j d must be calculated in order to use (2.98) to 

calculate \ ( T r ) . As stated previously it has been assumed that 

because the error corrections involved, in transforming the measured 

temperature rises to idealised temperature rises, are small their 

combined effect is additive. The idealised temperature rise is 

therefore obtained by summing the experimental temperature rise and 

individual temperature corrections:-

AT j d (t) = AT(t) (2.99) 

i 

Similarly the reference temperature T r at which the thermal conduct-

ivity is measured is obtained:-

T r = T o + 2 6 T i < 2 - 1 0 0 > 

i 

Limiting the inclusion of errors which contribute temperature 

corrections of greater than 0.01% in AT results ins-
id 

AT.d = AT(t) + ST + 5 T n q (2.101) 

where from ( § 2.332):-

ST 
cc 

a 
2 XT 

AT.d (2.102) 

and from ( § 2.333):-

BT 
08 

q 

47F\ 
Ln 

4k t 

b2c 

oo 2 / 2 
-g kt/b 

e v ' £ 
u = 0 

n v f g 
V O 

...(2.103) 
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The reference temperature to which the thermal conductivity 

calculated from (2.102) corresponds, is obtained from § 2.331 

as:— 

T r = T q + 5T* p (2.104) 

where 

5T* p = i { A T ^ ) + A T ( t 2 ) | (2.105) 

and the reference density is:-

P r = P < V P o ) 
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CHAPTER 3 

Simultaneous Conduction and Radiation 

Introduction 

As shoun in § 2.335 the effect of radiative heat transfer on the 

measured thermal conductivity of a fluid as obtained by transient 

hot uire experiments is negligible provided the fluid can be treat-

ed as a transparent medium. If the fluid cannot be treated as trans-

parent, the temperature field set up uithin the fluid is significantly 

perturbed from the corresponding temperature field for heat transfer 

by pure conduction. The purpose of this chapter is to calculate this 

perturbation. 

Estimates for the difference betueen the absolute, 'true', thermal 

conductivity and the apparent thermal conductivity (that obtained 

from measurement assuming heat transfer occurs entirely by conduction) 

have until recently been restricted to steady state transfer betueen 

infinite parallel plates at small temperature differences. Leidenfrost 

[70] estimated that during measurements on toluene radiative transfer 

could give rise to errors of about 2 per cent depending on emissivities 

and uall temperatures. A feu years later, Poltz & Dugel [71,72,73] 

concluded that the effect of radiation on the apparent thermal cond-

uctivity of toluene measured on steady state parallel plate equipment 

could be as high as a feu per cent even at room temperature and 

suggested that errors of the same order of magnitude uould be expected 

in measurements by the hot uire technique* 

The optically thick approximation has been treated by Diossler [74] 

and Grief & Clapper [75] using the Rosseland diffusion approximation [76] . 

In this approximation radiation is treated as a diffusion process in 

uhich the radiative heat flux is assumed to have the form:-

2 3 
16 n <r T dT 

3K dr (3.1) 
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This approximation is valid provided that the following condition 

on the optical thickness, KL, of the system holds true:-

KL > 1 .. (3.2) 

In equation (3.2) K is the mean extinction coefficient as defined 

by the absorption low for radiative transfer through an absorbing 

medium:-

I = I e ~ K L (3.3) 
o x ' 

where I is the incident radiative flux at 1 = 0, I is the radiative 
o 9 

flux at a distance, 1 = L, and L is some characteristic length. 

The application of such an approximation is not valid for the present 

work because close to the hot wire, used in the apparatus, for typical 

extinction coefficients of the fluids under measurement ( K ~ 1 0 0 0 m ) 

the system is optically thin:— 

K r < 1 (3.4) 

and at the outer cell boundary the system is optically thick:— 

K r > 1 (3.5) 

and somewhere inbetween the intermediate state exists:-

K r = 1 (3.6) 

As all three regimes, optically thin, intermediate, and optically 

thick exist within the apparatus used, it seems unlikely that a 

solution to the problem,based on an approximation valid for any single 

regime, will yield usable results. For this reason, Saito, Mani, 4 

Venart [77] proposed an approximate, combined, finite - difference 

and integral technique in which the fluid around the hot wire is 
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subdivided into three regions, one for each of the afore mentioned 

regimes. 

The method preferred for the present work involves a numerical 

solution to an approximate form of the full integro partial differ-

ential equation for simultaneous conductive and radiative heat 

transfer through an absorbing emitting medium contained within the 

annulus formed by the hot wire and the outer boundary of the measure-

ment cell. This approach has the advantage that it is generally 

applicable and eliminates the artificial discontinuities at boundaries 

in the fluid created by the model adopted by Saito e_t al. 

As for the other corrections (see § 2.33) the effect of the error 

due to this other mechanism of heat transfer, is assumed, additive 

and its effect on the observed temperature rise can be accounted for, 

along uith the other non negligible errors, using equation (2.99). 

lihat is therefore needed is a solution to equation (2.94) for simul-

taneous conductive and radiative heat transfer from a line heat " 

source into an infinite absorbing, reemitting medium, following a 

step heat emission from the line source. The form of solution 

required iss-

It is difficult, and sometimes, as in this case, undesirable to 

numerically solve partial differential equations uith boundary 

conditions at zero and infinity in one of the independent variables. 

For this reason the approximate numerical solution of equation (2.94) 

is obtained for an infinitely long hot uire (of radius a) concentric-

ally mounted uithin an outer cylinder of radius b (the radius of the 

measurement cell). The numerical solution obtained can then be 

uritten in the form:-

AT(a,t) = AT., (t) + 6T R(t) (3.7) 

AT(a,t) = AT., (t) + <5Tob (t) + 5T_(t) (3.8) 
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subjcct tos-

b/a 1 (3.9) 

and 

k t / a 2 > 1 (3.70) 

The conditions, (3.9) and (3.10), on equation (3.8) are due to the 

restrictions imposed by the solutions of the problems involving finite 

boundaries (see § 2.322 and § 2.333), and are not imposed to obtain 

a solution for the correction due to radiation. 

Having obtained a numerical solution, then using it in conjunction 

with equations (3.8), (2.14) and (2.85) the temperature rise correc-

tion for radiative heat transfer, 6T (t), can be obtained which in 

principle can be used to correct the observed temperature rises to the 

required idealised temperature for evaluation of the absolute thermal 

conductivity. The derivation of the governing equations; a detail 

of the method by which a numerical solution was obtained; as well as 

the use made of the numerical solution, now follows. 

3.2 Derivations of the Equations 

The formulation of the integro partial differential equation and 

relevant initial and boundary conditions for simultaneous radiative 

and conductive heat transfer through an absorbing medium bounded by 

concentric cylinders, is presented in this section. 

The fundamental equations requiring solution have been made as general 

as possible and during their derivation, approximations have been used 

and detailed as and when required to enable their solution. This has 

been implemented to enable the further development of the method 

using the same technique if or when better approximations to the real 

physical system are available and required. 
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3.21 Energy balance over elemental volume d\}-L 

Consider an element of fluid dl^ uithin the annulus formed by fluid 

contained betueen tuo concentric cylinders (see fig.(3,1)), Let the 

inner (emitting) cylinder be of radius r^ and the outer (receiving) 

cylinder be of radius r^ and let both cylinders be infinite in length 

(no ends). Assume the fluid is isotropic, grey, diffusely emitting 

and non-scattering and its physical properties are temperature indep-

endent, Also assume; the system to be in a state of local thermo-

dynamic equilibrium; the validity of Kirchhoff's Lau for emission 

and absorption of radiated energy by the fluid medium and surfaces; 

and the additivity of conductive and radiative heat fluxes. 

By using an energy balance over elemental volume, d\JL , uithin the 

fluid, ue derive the equation:-

cflt (pCp) §£ = d V . X V 2 T + Q y ^ d v d V £ + Q d u d U + d . ^ . . ( 3 . 1 1 ) 

Uhere the first term of equation (3,11 ) is due to conduction; the 

second, third and fourth terms account for the tuo way radiative 

transfer betueen dl/; , and; the rest of the fluid volume; the inner 

cylinder and the outer cylinder respectively. Equation (3,11) may 

be more conveniently uritten in terms of one uay flux gradients by 

introducing the total outgoing radiative heat flux E £ in the form:-

P C p f £ = X ? 2 t + V - d V + Q A ~ d U . + Q A - d > / . - 4 K . E i . — (3.12) 
> 1 c 2 ' 

The second, third and fourth terms of equation (3,12) account for the 

one uay transfer of radiation to d\lL by the fluid volume, the inner 

and the outer cylinders respectively and the final term accounts for 

the emission of radiation by d\Jt to the surroundings (into 4 7T 

steradians). Subscript 'o 1 refers to equilibrium conditions; •1• and 

, 2 I refer to conditions at the inner and outer cylinder surfaces; i 
refers to conditions in the fluid at the position of volume element 

dv/- ; and j refers to conditions in the fluid at the position of a 

second volume element dV 



z 

Fig. (3.1) The Cylindrical Polar Coordinate System 
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3.22 Boundary and Initial Conditions 

For the solution of equation (3.12) which is parabolic in form, 

two boundary conditions and one initial condition are required, Ths 

first boundary condition is obtained via an energy balance at the 

surface of the inner, emitting cylinder. 

Consider an element of surface dA^ on the surface of the inner 

cylinder, then:-

dAnq 
2wr = " -A, i § ) + V ^ A 2 d A 1 + "dA,* </dfl1 

27E7 = " X f e ) " " i V - d A , " « l V - d A , + — •('•""J 1 ^ 7r=r^ 2 1 1 

where as before the second and third terms of equation (3,13) account 

for the two way transfer of radiation between the surface element 

dA^ and the outer cylinder and between dA1 and the fluid volume 

respectively. In equation (3,14) the second and third terms account 

for the one way transfer of radiation from the outer cylinder and 

fluid volume to surface element dA^ while the last term accounts for 

radiative energy emitted from the surface element,** 

The second boundary condition is imposed assuming the heat capacity 

and thermal conductivity of the outer cylinder to be infinite, and c^n 

be taken to remain at a constant temperature, therefore:— 

T(r 2,0^t^oo) = T(r 2) = T q (3.15) 

**Note the difference between ^A2—•dA^ and dV/̂  (used earlier) 

which are notationally similar, but the former has dimensions of a 

a heat flux [lii/m2J and the latter a flux gradient |u/m3J • 
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which is exactly the condition imposed in obtaining the finite 

outer boundary correction in § 2.333 . 

The initial condition used the stipulation that at t ^ O the system be 

at thermal equilibrium and therefore:-

T ( r ^ r<r 2,t<0) = T 1 o 
( 3 . 1 6 ) 

3.23 Evaluation of terms due to radiative transfer 

In order to solve equation (3.12) the one way transfer terms in 

equations (3.12) and (3.14) require evaluation and in the following 

subsection the results for each term are presented in turn. The more 

detailed algebra leading to final equations is placed in Appendix 1 

to preserve continuity of the discussion. 

3.231 The One-Way radiation heat fluxes 

By considering the energy radiated from volume element 6\J . to 

surface element dA. (see fig. (3.2)) 1 

dA 

d V I 

Fig. (3.2) Heat transfer between fluid volume and surface elements. 

It may be shown that [78] :-
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dA 1cos0 
d ( W ,-dA? A 1 = E j 4 K j d U j — T - T < r > < 3 - 1 7 > 

j 1 4nr 

emission by fraction fraction 
dV. into 4n directed to- transmitted 
st^radians wards dA^ 

and so we find the heat flux to be:-

r f z 7(r)Kcos0 

V - d A , = K w . - ^ = H <3 '1 8 ) 
1 ^ j 1 nr J 

V 

where 7(r) = exp(-Kr) (3.19) 

Consideration of the energy radiated from surface element dA 2 on the 

surface of the outer cylinder to dA^ on the inner cylinder, see 

fig. (3.3), 

d A 2 

V / 
r / 

• v I 
I 7 / 

I W V W V x X W l / 
d A . 

Fig. (3.3) Heat transfer betueen surface elements, 

leads to the result that:— 
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(^2 + ^ dA2COS^2 
7T 

dA„ cos dA 1 1 
T(r) .(3.20) 

emission by d A 2 in 
direction 6 2 per 
unit solid angle 

solid angle 
subtended by 
dA 1 at dA 2 

fraction 
transmitted 

where R is the fraction of the energy flux falling on surface d A 0 

that is not absorbed. And therefore, the heat flux, Q^ ^ , is 

found as:- 2 1 

'A 2—dA 1 = 2 - « 1 = J — 

R 2)cos0 1cos^ 2 r(r)dA, 

n r 

(3.21) 

3.232 The One—Uay radiation heat flux gradients 

From consideration of the energy radiated from fluid volume element 

d\l . to element dVc (see fig. (3.4) we find that:-

A A 1 / 

/ • / 
dV : 

Fig. (3.4) Heat transfer between fluid volume elements. 
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K. K dV. dt/ . 7"(r)E . 
dqdi/ -dv. d Vi = 2 1 <3-22> 

j 1 nr 
(see appendix 1.1) 

and therefore the flux gradient 0,. ... is obtained as; l/—•'di/. 

V—dV/- = / d Q dv/.-^du. = / 
* J 1 ^ 

K. K . T(r) E .dU . 
J ......(3.23) 

nr 

Similarly from the energy radiation from the surface element, dA^, 

on the surface of the inner cylinder, to the fluid volume element 

d ^ (see fig. (3.5)) we find that:-

k \ \ w \ w \ \ | 
d A . 

d V 

Fig. (3.5) Heat transfer between surface and fluid volume elements. 

(E^ + R^) d A ^ o s ^ dV/i T(r)K; 
(3.24) 

nr 
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and therefore obtain the flux gradient, 0 A ... , as:-* du-1  1 

% ̂dV. = J d Q dA^dV. = J 

A1 
( 3 . 2 5 ) 

As before from the energy radiated from surface element, dA^, on the 

surface of the inner cylinder, to fluid volume element dV; we find 

immediately from equation (3.25) the flux gradient Q as:-A2—a 

f K (E + R )cos0 T(r)dA 7 

V * = — — £ — ( 3- 2 6 ) 
2 i J nr 

A2 

Using these one uay transfer terms in equations (3.12) and (3.14) 

enables their representation as:-

PCp f £ = \v : 
FT.K. T( r )E .d\/ ̂ f C (E^ + R ^ c o s ^ r(r)dA < J 

T + J j-* + / 2 

i nr J nr v/ Â  

. t e n Rl)cos0- r(r)dA, 

2 i i 
A " r 2 

- 4K. E. ...(3.27) 

and the boundary condition as:-
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2 nr. 

q 

1 
( E 2 + R 2)cosftjcos0 2 7(r)dA 

2 
nr 

1 2 

E . T(r)K .cos0 dV i Z i + e n20TT4 (3.28) 

The Simplifying Approximations 

In order to proceed certain approximations have been introduced which 

greatly simplify the solution of the simultaneous conduction and 

radiation problem, these are:— 

1) The extinction coefficient is independent of the temperature of 

the fluid and therefore:-

This approximation is used since it is in the spirit of a 

first order analysis and because the temperature differences 

involved are small ( ^ 5 K ) . 

2) The outer cylinder surface is black and therefore:-

K(r,t) = K = Constant (3.29) 

6 2 (3.30) 

resulting in:-

(3.31 ) 

and also:— 
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3, = 0 - « 1 ) { < v _ d f l i + Q A - d A J (3.32) 

This approximation is thought to introduce a negligibly small 

error because near the outer cylinders surface the fluid temp-

erature is close to that at equilibrium and most of the energy 

radiated by the hot wire and fluid is absorbed before reaching 

the surface of the outer cylinder. If it is thought necessary 

the measurement cells used in the transient hot uire apparatus 

can be blackened to reduce this error but this has not been 

thought necessary for the present cell, 

3) The absorbtivity and emissivity of the inner cylinder are equal 

and temperature independent and so:-

= ^ = € (3.33) 

Introducing the simplifying assumption in the one uay radiative 

transfer terms ue obtain:-

(E 7(r)cos0 dV 

W " * J 2 ' 
1 V r 

CE cos^cos0 T(r)dA 
2
> V d A = n) "2 (3.35) 

A 2 

2 Cz T(r)dV 

3> < W = H - 1 — r ( 3 , 3 6 ) 
1 r V 
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4) Q K /fE1 * ( 1 ~ 6 ) N - d A , + V d A l } ] -j — 

5) Q 
K [ E 2 C O s 0 2 T ( r 

=  nJ ,2 

)dA, 

(3.37) 

(3.38) 

Defining spherical coordinate axes uith reference direction the 

normal to elemental area dA^ on the surface of the inner cylinder 

and the reference plane parallel to the Z axis, normal to the 

reference direction and containing dA,. (see fig. (3.6)). 

Fig. (3.6) Diagram defining spherical coordinates. 
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Equation (3,34) may now be written:-
^ 

_ d A = x f J J t j T i r)cosfi |sin0 1d0 1d\f'dr (3.39 J 

In the cylindrical coordinate system about the axis through the 

centre of the inner cylinder and applying a shift in the azimuthal 

and vertical coordinates:— 

$ = l/j - ^ ; Z = Z j - z, (3.40) 

we then find (see appendix 1.2) that equation (3,39) may be written 

as :— 

1/ fff Z . T(r)cosd^. sinft. r .dr .d<i> dZ 

°U-dfl1 = $ J J J J 

U 
2 2 

r W r "sin <£ + Z 

„ fffE.(r.cos<*> - r )r .exp(-Kr)dr .d<|> dZ " JL/J — 1 — J — J — J ( 3 ' 4 2 ) 

v r 

cos l — l Vr./r2 J ' r.E.(r.cos4> - r. )exp(-Kr)dr dZ •1 -1 -1 1 1 J • * n f 
•'n  Jn J 

•i y , i 

3 
'0 -'o r 

S i (3.43) 
cos<|> 

or finally:-

r 2 

Q\y—dA 
4 K r°°r T V j/ r.E.(r.cos<£ - r<| )exp(-Kr)d$ dr^dZ 

1 n -6 J 1 r 3 
1 (3.44) 

where:— 

r r
1

? - c o s * + Z 2 (3.45) 



The limits of")integration are indicated in fig, (3,7) where the 

integral occurs ov/er the shaded volume. 

Fig, (3,7) Diagram indicating integration limits for Q 
\l-+ dA 

In a similar manner to that used to evaluate Q1# we find 

that:-

V 
fl2-dfl1 m 

cos0<Jcos02exp(-Kr)d^2dZ2 
(3 
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In the shifted cylindrical polar coordinates about the centre of 

the inner cylinder with:-

$ = - ^ J Z = z 2 - z 1 (3.47) 

we may writes-

E 2 r 2 / Y * ( r 2 C 0 S * " r l ^ r 2 ~ r 1cos^)exp(-Kr)d<|> dZ 
QA2-^dA = -t^JJ 7 

A 
2 (3.48) 

4 E 2 r 2 I j ( r 2 c o s $ -
 r<])( r

2 " r^cos^ )exp(-Kr)d<J> dZ 

= J 7 0 0 r 

(3.49) 

where 

r = y + r ^ 2 - 2r r c o s $ + Z 2 (3.50) 

and integration occurs over the area indicated in fig. (3.8). 

Fig. (3.8) Diagram indicating integration limits for Q 
A2—dA1 
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Defining spherical polar coordinates around d\A , equation (3.36) 

may be written in the form:-

2 

V»dU = IT f f f (3.51) 

V 

Now, by a transformation to cylindrical polar coordinates about 

the axis through the centre of the inner cylinder and using the 

shift :-

" " ; Z = Z j -  Zl ( 3 '5 2> 

it follows that:- (see appendix 1.2) 

E . r(r)sin#r .dr .d4> dZ 

Qw_H». =V III • . . •' J ..(3.53) 
K 2 f ff € t nrjsint/ryiry = ~ J 2 2 2. 

J J J ry r, sin z 
U 

- l / r 1 

C0S ' V r2 
exp(-Kr)drjd4> dZ - J ] P . 

0 0 r 1 

| j | E .r .exp(-Kr)dr .d<f> dZ 

I -1 
cos|4,-cos""YlL\| (3.54) 

or finally:- cos~ 1 P - l + c o s " 1 J 

« r 2 , W \ r j / / x 
E .r .exp(-Kr)d4> dr .dZ 

Q„ _,„ = ~"n I I I - J " J 2 J 

~0"r "0 r 
1 

2 00 2 /* Wdv. = J J 
(3.55) 
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where:-

r = - y r ^ + r. 2 - 2r< r cos<l> + 7 (3.56) 

The limits of integration are indicated in fig.(3.9) in which the 

integration occurs over the shaded v/olume. 

F i g . (3.9) Diagram indicating integration limits for 

1 
Using a similar technique to that used to obtain Q^ •cjv/ ^ r o m 

equation (3.37) we obtain the expression for __^^ as:-

„ r ( n / V c o s O r(r)d<fedZ O ^ * , . + + V D V J R I J J — 
(3.57J 
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In cylindrical polar coordinates about the axis through the centre 

of the inner cylinder, using the shift in azimuthal and vertical 

coordinates:— 

$ = - ^ ; 2 = z 1 - ZL (3.58) 

ue obtain:-

Kr r , a f f ( r . cos4>-r )exp(-Kr)d<i> dZ V * = V - V I L J ? — 
AI 

- i r i 
cos 

T , 

= ^ [ ^ ^ K - C A / v 4 J / 

(3.59) 

(r. cos4> -r„ )exp(-Kr)d4> dZ 
c i 

3 
(TO 

(3.60) 

uhere:-

r ^ r / 2 + v^ 2 - 2rr 1cos<l> + Z 2 (3.61) 

The limits of integration are indicated in fig. (3.10) in which 

integration occurs over the indicated surface. 

Finally, from equation (3.38) ue find that:-

„ /Vcos6 T(r)d^ 2dZ 

V ^ 
A2 

- l M - l / r l \ 
cos I—If cos - I

-
I 

V 7 \r2/ 
(r - r cos4> )exp(-Kr)d<i> dZ 

— E r l ^ J i 
" 2 21 I 3 

V o 

(3.63) 
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Fig. (3.11) Diagram indicating integration limits for Q 
d\/. 

^ t 
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where:-

r = ^ r ? + r 2
2 - 2r£ r 2cos3> + Z 2 (3.64) 

The limits of integration are indicated in fig. (3.11) in which, 

once more, integration occurs over the indicated surface. 

3»25 The Integro-Partial Differential Equation 

Using the derived integral forms of the one way radiative transfer 

terms, dA.,, QA 2~*dA.,, dV., ̂ A,,-* dl/. , & Q d A 2 ^ d V - in equations 

(3.12) and (3.14), results in the approximate integro-partial diff-

erential equation for simultaneous conductive and radiative heat 

transfer between concentric cylinders, containing an absorbing, 

emitting, non scattering grey medium. The equation is therefores-

p c p £ (r.,t) = V 2T(n,t) + Q t f - d t f . + Qfl d u . + Qfl _ d u . - W f f T 4 

c 1 i 2 

(3.65) 

with boundary conditions:-

V 1 
2nr 

- = - x ( | l ) - e o „ _ d . - e Q f l d / l + e n
2 ( r T 4 (3.66) 

1 > / r=r„ 1 2 1 

2) T ( r 2 , 0 ^ t < « ) = T q (3.67) 

and initial condition:-

T ( r i ^ r < r 2 , t ^ 0 ) = T o (3.68) 

where:-
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cos -1/r1 
< » r 2 

£ K n U f 
J0'r 0 

r .T(r t ) ( r .cos<t> -r„ )exp(-Kr )d<t> dr .dZ J .1 1 a J 
3 

(3.69) 

cos - 1 / r 1 

4r2nCTT(r2,t) 

0 0 

(r2cos</» -r1 )(r2-r1cos</>)exp(-Krb)d<^ dZ 

( 3 . 7 0 ) 

- i / M 
cos I — l+cos oor2 Vr;/ V r . 

4K 
CO Z. /• 

Cr^O 

J / T(r .t)4r.exp(-Kr )d4>dr.dz J J c J 

( 3 . 7 1 ) 

cos -1/r1 

4Kr r , (r. cos<£ -r „ ) 
* t i 

VO 

x exp(-KrH)d0 dZ (3.72) 

4Kr2n2(7T(r2,t)4 * 

- 1 M -1/P1 cos I—l+cos I— 

I 0 0 

(r2""rj cos< )̂exp(-Kre)d</> dZ 

(3.73) 

+ ^ " 2r1r̂ cos<̂ > + ? (3.7 A) 

V2 2 2 r 2 + r̂  - 2r1r2cos</> + Z (3.75) 

I 2 2 ~ 7 12 r . + r. - 2r. r .cos <f> + Z J 6 L J (3.76) 
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V7 2 2 
r ^ + r^ 2r^ r^ cos<£ + Z (3.77) 

r = V r_ 2 + r. 2 - 2r_r. cos<£ + Z 2 (3.78) 
e * 2 i 2 % ' 

3.3 Transformation of the Equations for Numerical Solution 

The integro partial differential equation derived in the previous 

section and detailed in equations (3.65) to (3.78) is parabolic, 

non linear and has as yet no analytical solution. For the reasons 

discussed in § 3.1 approximate solutions based on optical thicknesses 

are thought to be too far removed from the real physical situation. 

Thus, the only alternatives remaining are to find some other method 

of accounting for the error to the measured temperature rises induced 

by radiative heat transfer or to solve the equations numerically. As 

an alternative method for accounting for the error has not as yet 

been found the numerical solution approach must be adopted. 

Before a numerical solution can be attempted, equations (3.65) to (3,78) 

are normalised and the terms requiring integration are transformed 

into converging series (mechanical quadrature). This section details 

these operations. 

3.31 Normalisation and use of Quadratures 

Defining the dimensionless forms of the fluid temperature and position 

e = 
r i 

(3.79) 

The equation of heat transfer becomess-

de 
at 

P V i «-• 

d 2e 

dR' 
1 £§1 1 f n 
R dRj  +

 T o P C p La
V—dlA

 + J
A-dl/. + Q A^dlJ. 

- 4Kn <7 T 0(R o 
(3.80) 
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uith boundary conditions:-

2nT V - d A ^ QA2-dA1 
+ e n ^ r ^ ^ G d ) 4 

e ( R2,0<t<oo) = 1 

(3.81) 

(3.82) 

and initial condition:-

0 ( 1 ^ R ^ R 2 , t 4 0 ) = 1 (3.83) 

In these equations:-

C1R2 
COS 

0 V—dA 

2 4 4n <7KT o 
7T Lim 

r—• oo 

R.6(R.)4 R.cos0 -l| 
•i y L J 

0*1 0 
x exp(-KR r. )6<t> dR .dZ ....(3.84) 

a I j 

which through changing the limits of integration using:-

2Z = C„N + C„ 1 1 

can be written as:-

2n2(7KT 4C„ o 1 
Q., = Lim 

Cr<x> T 

(3.85) 

^ R2 cos 
" ( S ) 

c9n + c.) 
—— ->6<t> dR^n 

2 j 

(3.86) 

By employing the GaussiAn Quadrature formula [79]:-

1 

Jn 
f(x)dx = EH . . f ( a . ) (3.87) J J 

- 1 J 
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where a^ are the abscisae and Hj are the weighting coefficients, 

equation (3.86) becomes:- cos"'' — 

^ R J 
2 4 n i 

2n crKT C 1 - i C . a . + C . 

7T g H j | I f ^ . V ^ F " 2 ^ ^ " 

(3.88 

'1 j=1 
n,j—» 

"rlw0 

Similarly using:— 

= ( R ? - 1 ) N + R 2 + 1 (3.89) 

as before we obtain:— 

o a n 1
 n o 

2 n a K T Q
 C

1 

2L/ 2 / „ 
Q., .n = Lim — 7 — > H. x 
V - d A ^ 7T 2 k 

j=1 k=1 
n ^ o o 

cos 1((R2-1)ak+R2+1) 

X 
r ( <(R 0-1 )a. +R 0+1 C.a.+C.) 

{ 2 * 2 , - i - J - 1 } 

0 (3.90) 

and finally:— 

2 <5 n1 , n2 Hk c o s~l — — 2 — 1 2n aKTo C l Y ^ H .(R2-1) ^ V R2-1 )ak+R2+ i; 
%-df l , = * 2-J 2 2-i 2 

J o o J=1 k=1 n 1 , n 2 , n 3 - ^ « n 3 

x ^ "^H l g 1 ( a l , a k , a J ) (3.91) 
1=1 

where:-
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cos 

g 1 ( a l , a k , a j ) = f 

1 ((R-1)a^+R +1) a l + C 0 S " 1 ((R 2-1)a +R +l) 2 

(3.92) 

f (<M,,Z) = 
1 J 

(3.93) 

and:-

= ^ R J 2 + 1 - 2 RjCos <f> + ( Z / r ^ (3.94) 

In a similar manner equation (3.70) becomes:-

Q a d A = Lim 
2 1 C2-*« 

V " 2 ' 

— : — . . . ( 3 . 9 5 ) 
, D _2 _ 4 A / d v4p "1 H .cos (tt-I "2 2R2N (7TO W(R2) J 

s r 2 k=i 

u/here:— 

9
2

( a
l '

a
k > = f 

COS 
1
( T ) 1

3 K + C O S
"

1
( T ) . V I -

(3.96) 

. (R^cos 0 -l)(Ry- cos(f) )exp(—Kr. R, ) 

f (</>,Z) = — ^ - T — — (3.97) 

and:-

= ^ R 2
2 + 1 - 2R 2cos 0 + (z/ r i)

: (3.98) 
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Likewise, equation (3.71) can be transformed to:— 

> a N I N ? M 

7T Z j 9 Z ^ 1 C3-°° 

2K2naT V v ^ H cos 
2 - 1 ) a k + R 2 + 1 y 

r V n 2 , n 3 - *° > j=1 k=1 

2 H l 9 3 ( a l ' V a j ^ 
1=1 

where:-

9 3 ( a l » V a J > = I 
COS 

(R 2 - 1 ) a k + R 2 + C 3 a , -h C 3 (3.100) 

f (4>.R..Z) = e O / R ^ p H C r , ^ ) ( 3 > 1 0 1 ) 
•7 J O 

and:-

Rc = ^R j 2 + R.2 - 2RjR.cos0 + (z/^ ) 2 (3.102) 

Also, transforming equation (3.72) we obtain:-

1 .. - 1 M 1 n 2 

V d V i EH .COS . 

- J LR 
j=1 2 k=1 

'1 9"2 

C —• 00 ^ Z X V V ^ ( 3 - I O 3 ) 
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where:— 

9 4 ( a k , a j ) = f 
COS - 1 1 

a. + cos k 
-111 

w . C4a 1 + C4 (3.T04) 

2KC.<6n2(JT 4 0 ( 1 ) 4 + (1—C) Q w + Q > 
r = \ ° \ - d A j f ( 3 b 1 0 5 ) 

r 

f ( 0 , Z ) =  ( R i C O S < / > " 1 ) e x P ^ K R d r i ) (3.106) 

4 R 3 
R d 

and:-

R d 
= y R L

2 + 1 - 2 R . c o s 0 + ( Z / R ^ 2 (3.107) 

Finally, equation (3.73) can be transformed to:-

= Lim 

V n 2 

2Kn2aTol9(R2)4R2J^H 
-1 V -ir 1] COS 

R l + cos 7 — 
R l LF l2l L 

7Tr. E 5
V
 k* j 

j=1 k=1 

,(3.108) 

where:-

9 5 ( V a j ) = f COS cos"Ttl R„rak + c o s 
- 1 f l 1 -1 

R. 
+ cos 

L u ill R
" I

 C
5

a
j

 t C
5 

(3.109) 
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f ( 0 , Z ) = ( r
2 " R l c o s 0 ) e x p ( - K r 1 R e ) (3.110) 

ands-

R e 
2 

(3.111) 

3.32 Linearisation of Equations 

As presented in the previous section, the integro-partial different-

ial equation is non linear and requires a routine that is able to 

solve non linear partial differential equations. Routines of this 

type are available but require significantly more computing tima to 

solve non linear partial differential equations than linear equations, 

as additional itterations over the non linear terms are often required. 

For this reason and because the temperature rise during experiments 

is less than 2% of the equilibrium absolute temperature, T 0 , before 

implementing the previous derived equations they are first linearised, 

This approach is again consistent with the attempt at a first order 

treatment of the problem. 

Linearisation is performed usings-

T - T 

4 ^ = 9 - 1 © = -Y 
O 

(3.112) 
o o 

The energy balance equation from equation (3.80) becomes:-

(3.113) 



88 

With boundary conditions:-

q 
i) 

q _ x/ae\ til r 
^ o " AaR/R=r T

0 L ' 2 ' 1 

(3.114) 

ii) @ ( R 2 , 0 ^ t < ® ) = 0 (3.115) 

and initial condition:-

0 ( 1 = 0 (3.116) 

The linearised one way perturbation heat fluxes are now:— 

Q„ = Lim 'V—dA 

8n2aKTo4C1YkH.(R2-1)^HkCOS 1 

nl ,n2 ,n3~*c° 

where:-

7T 
L(R 2-I)a k+R 2+1 

k=1 j=1 n 3 

x j H l 5 l ( W j ) (3.117) 

1=1 

G 1 ( a l , a k , a j ) - E 
cos 1{(R2-1)ak+R2+l} 31 + °O S 1 { (R0-lK+R0+l} 2 - V R 2 + 1 

(R2-I)ak+R2+1' C^a.-K^ 
(3.118) 

E ( 0 , R . ,z) - R.ie(R1><R1COS0 - ^ ^ P C ^ V l ) (3.119) 

and:-

R = J R 2 + 1 - 2 R . C O S 0 +(f\ 
a K j J 

(3.120) 
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Of course, we then find that by definition:-

A 2 ~ * d A 1 = 0 

( 3 . 1 2 1 ) 

The linearised one way perturbation heat flux gradients are:— 

t C 3 — 
8K' 

T • A 9 1 
V " 2 ' " 3 

j=1 2 k=1 

^ H 1 G 3 ( a 1 , a k , a j ) (3.122) 

1=1 

where:-

G 3 < a i ' V a j ) = E 

cos 1{w"} + C 0 S" 1!(R2-1 )a2k+R2+l| a l + C 0 S " 1 f e } + C 0 S _ 1 | r ^ •2 - w : 

(R 2-1 ) a k + R 2 + 1 C 3 a + C 3 

t , J (3.123) 

E (<t>,n.,i) = Q ( R i ) R i e x p ( - K r i R c> 
i J o (3.124) 

and:-

= J R j
2 + R l

2 -2R.R.COS(t> (3.125) 

Similarly:-

Q« = Lim "r'llM f 
c 4 — 
n,j,n2—» j=1 

E ' 
k=1 

4 V k f j' 
(3.126) 
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uhere:-

2KC 

B 2 = 7 J T { « " ^ T 0 4 e ( 1 ) + (1-e) | V d f l i + Q A ^ M i 
. . . . (3.127) 

G 4(a k,a.) = E 
[ C 0 S _ 1 {R-|fk + C 0 S " 1 { ^ } C ,a . + C . 

4 J 4 
(3.128) 

E (0,Z) = ( Ri c o 3 <t> -Dexp^KR^) (3.129) 

ands-

= J r . 2 + 1 - 2R. cos0 + (3.130) 

And finally by definition:-

V d V • 0 (3.131) 

3.4 The Numerical Solution 

3.41 Introduction 

In order to obtain the temperature correction due to the additional, 

radiative mechanism of heat transfer through the fluid medium, what 

is required is a solution to the equations derived in the previous 

subsection. These linearised, normalised equations (equations (3.112) 

to (3.131)) are an approximate mathematical representation of the 

real physical system encountered in transient hot wire apparati. 
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At present no analytical solution to these equations has been found, 

and one has to resort to a numerical solution. The "Method of Lines 1 1 

was implemented to obtain this numerical solution as it was the only 

method tried, which was able to solve the problem to the required 

accuracy. 

3.42 The Method of Lines 

The method of lines [80] involves the conversion of partial different-

ial equations to systems of ordinary differential equations. To briefly 

explain the method, consider the equations-

2 
& - etc.) = 0 (3.132) 
U U US 

where s is a spatial variable. This equation has the same form as the 

energy equation, equation (3.113) which is to be solved numerically. 

Representing the function U at N points, across the spatial domain, 

by a series of approximating Lagrange polynomials in the spatial coord-

inate, Lj(s), results in:-

m 
U a ( s , t ) = 2 ^ L . ( S ) U L ( t ) (3.133) 

where (n>-1) is the order of the polynomial and m < N . The spatial 

derivatives U* and U" [ du dftJ) in equation (3.132) can now be re-

placed by expressions derived from differentiating equation (3.133); 

namely:-

m 
U f(s,t) = ^ L ' i (s)U-(t) (3.134) 

=1 

m 
U"(s,t) = £ V ; ( s ) U - ( t ) (3.135) 

i =1 
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Using equations (3.133) to (3.135), the partial differential equation 

(3.132) can be converted into a set of coupled ordinary differential 

equations, which can then be integrated in the time domain. 

In the specific application of the method of lines technique, involved 

in the numerical solution of the problem of simultaneous conduction 

and radiation, given a set of data points, (r^,f 1(t)),(r 2,f 2(t)) 

(r m,f m(t)), (these data points describing the temperature profile of 

the test fluid contained between concentric cylinders) the (m-1 )th 

degree polynomial through ths points is given by:-

Pm-1 ( r ' t } = E L l ( r ^ ( t > <3-136) L =1 
where:-

( r -^ ) (iwr. ^ ( i w r . ^ ) (rwrm> 
L i ( r > = U - r J ( r - r . Wr,-r. „)...(r.-r ) ( 3 ' 1 3 7 > x 1 17 t+1' x 1 m 

m 
n (r-r ) L , J ^ i (3.138) 
^ f r» r< 1 

j=1 
m (rrrp 

Since L. (r. ) = 1 and L^ ( r j ) = 0, j /i , ^ ^ 0, then P ^ f r - = f, (t) 

and the polynomial passes through the given data points. An important 

point to notice from equation (3.137) is that the points r^ need not 

be equidistant in the spatial domain. 

t) may therefore be used as an approximation to the unknown 

function f(r,t) defining the data points. Similarly, the derivatives 

of f(r,t) may be approximated by the derivatives of the polynomial at 

the approximate spatial station i , as:-
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D H I ) 

and:-

( ^ H Y ) 
¥ 

These equations just derived for the approximate forms of the unknown 

function f(r,t) and its derivatives are used, at the N spatially 

discretised points, to transform the partial differential equation 

(3.113) into N coupled ordinary differential equations. These 

ordinary differential equations when integrated in the time domain 

provide the temperature field in an absorbing, emitting fluid 

through which simultaneous conductive and radiative heat transfer 

occur. From the calculated temperature rise of the fluid at the 

surface of the hot wire the temperature rise correction due to 

radiation, 5T (t), as defined by equation (3.8), can be calculated. 

The coupled ordinary differential equations obtained by the trans-

formation just described are stiff and are therefore solved using 

an algorithm developed by Gear [81] and Hindmarsh [82] • The 

algorithm has the advantage over usual predictor - corrector methods 

in that the formulation allows variable order and step size integration. 

m 
^ L\ (r)f. (t) (3.13S) 

U = 1 

m m 
E n ( > t j 
'=1 k = 1 j A (3.140) 

1 1 (r - r ) j=i r j ' 

k 9 J 

m m m 
™ E E n . 

n (r - r .) 1 t i , j,k 

j-1 
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The algorithm used for the integration of a stiff set of equations 

of the form:-

© ( t ) = F ( 0 , t ) (3.142) 

consists of the following predictor - corrector set for each depend-

ent variable:-

© n + 1 , t = a 1 ® n , u + + Q ! k ® n - k + 1 , t
 + 0 1 h © V • — ( 3 ' 1 4 3 ) 

® n + 1 , i = a 1 ® n , c + + a k ® n - k + 1 , i + ® ' n + 1 , t — < 3 ' 1 4 « > 

where; © . is in the present application the reduced temperature rise 
n f L 

of the fluid at a spatial station t , a distance r^ into the fluid. 

The values of the constants Oi. - - - Of. , a„ a. and 8 . (3. are 
1 k 9 1 k "cr 

dependent upon the order of the integration used and are found by 

the method of undetermined coefficients, while h is the incremental 

time step length. 

Convergence is ensured using the Newton - Raphson method which 

requires that for the (m+1)th correction itteration in © ^ :-

® ( m + l U = e - . i " M "n*®. ,** ( 3 ' 1 4 5 ) 

where g ( © n ) is a linear function found by writing the correction 

equation in the form:-

9n - ^ / ( ' n . l ' V ) - ®n+1,L < 3 - 1 4 6 > 

— 1 
and Ul is the inverse of matrix liJ where:-

LJ = ( I + h (3q | (3.147) 
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I is the identity matrix and is the jacobian formed by the 
dr• W 

elements 1 resulting from the solution of the set of ordinary 

351 
differential equations. Fortunately the method is strongly converg-

ent and Id does not need to be known with much accuracy so its 

updating is therefore not performed very frequently. In this context, —1 

because Id is not required to great accuracy, an approximate matrix 

inversion technique developed by Curtis & Reid [83] is used to speed 

up integration. 

3.A3 Accuracy of the Numerical Solution 

In order to account for radiative heat transfer being present, during 

transient hot wire thermal conductivity measurements, on radiation 

absorbing, reemitting fluids, corrections to the fluids? measured 

temperature rises or the fluids 1 apparent thermal conductivities 

(those obtained neglecting effects due to radiation) are required. 

These corrections are to be obtained from numerical solutions to the 

previously defined (see § 3.22) radiation problem for sumultaneous 

conductive and radiative heat transfer from a hot wire through a 

participating medium. 

In order to establish confidence in the numerical procedure described 

above, one would like some assurance that the numerical solution, 

from which the corrections are found, was sufficiently accurate to 

result in these corrections being non-spurious. Idhat is required 

therefore is a method of checking the numerical solution to determine 

its accuracy. An absolute check is, of course, not possible as that 

would require another method of solving the radiation problem. There-

fore a problem is required, similar to the full radiation problem, but 

for which an accurately known solution exists. The problems which 

immediately spring to mind are the optically thin and optically thick 

approximations to the full radiation problem. Unfortunately, there is 

no readily available solution for the optically thin case [84] and for 

the optically thick approximation to be valid for the experimental 

arrangement used, the extinction coefficient of the fluid must be of the 
7 -1 

order of 3 x 10 m . This results in the radiative contribution to 
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the thermal conductivity, X ^ , which using the Rosseland approximation 

analysis [76] , is found to bes-

2 3 

K - f - r - < 3 - 1 4 8 > 

••7 2 

having a value of approximately 7 x 10 lil/m / K . This value is small 

when compared with the thermal conductivities of the test fluids on 

which measurements are to be performed, their thermal conductivities • •1 2 
being of the order of 1.5 x 10 U/m / K . This small contribution to 

the observed thermal conductivities would therefore result in an 

indiscernibly small temperature difference between the pure conductive 

temperature profile in a fluid and that incurred due to the additional 

mechanism of heat transfer. The only usable readily available solution 

is that for pure conduction through a fluid contained between 

concentric cylinders (see equations (2.78) and (2.83)). 

There are a number of factors which contribute to the accuracy of the 

numerical solution. The accuracy is governed by the number of spatial 

divisions used in reducing partial differential equation (3.113) to a 

system of ordinary differential equations (see § 3.42) and their dis-

tribution in the fluids 1 radial domain. The accuracy is also influenc-

ed by the order of the spatial coupling (degree of approximating 

Lagrange polynomials used) and the integration algorithm truncation 

limit used. 

Because of the expected fluid temperature profile which will be obtain-

ed from the numerical solution, the spatial distribution of the N 

points in the radial domain was chosen such that:— 

R. (3.149) 

where R^ is the reduced radial position of station i and (r^/r^) is the 

ratio of the radii of the outer and inner cylinders containing the fluid. 
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This distribution ensures that there are more points in the vicinity 

of the inner cylinder (wire) where the radial gradient of the temp-dS 
erature rise of the fluid is greater, and feu points further 

out into the fluid where this gradient is a lot smaller. Increasing 

the number of spatial divisions, N, and the order of coupling will in 

general increase the accuracy of the numerical solution as will the 

reduction of the algorithm truncation limit used. Unfortunately, 

increasing the number of spatial divisions will increase the stiffness 

of the resulting set of ordinary differential equations thus requii*-

ing smaller integration time steps, as will the reduction of the 

truncation limit. Increasing the coupling on the other hand increas-

es the time steps permissable but requires more computation for 

each time step. 

Reducing the truncation limit below 10 is not recommended as prob-

lems due to rounding errors can occur as a result and the limit is 

therefore set to 1 0 ~ 6 . Having set the truncation limit one has to 

decide whether to increase the number of spatial divisions or the 

order of coupling. Normally when solving parabolic problems increas-

ing the coupling is preferable to increasing the number of spatial 

divisions, but for the present problem it was found better to increase 

the number of spatial divisions. This conclusion was obtained by 

comparing pairs of numerical solutions to the pure conduction problem 

requiring essentially the same computing time, one using a higher 

order coupling and fewer spatial points; the other using a lower ordei 

coupling and using a larger number of points. 

Fig. (3.12) shows the numerical solutions to the pure conduction 

problem for transfer through a hypothetical fluid, whose physical 

properties are similar to those of n-heptane at atmospheric pressure 

and at 300K, contained within concentric cylinders. The numerical 

solutions obtained used third and fifth order couplings and between 

30 and 200 spatial divisions. The solution using a third order coup-

ling and 200 spatial divisions virtually superimposes the analytical 

solution. From fig. (3.12) one can see it is preferable to use largei 

numbers of points and third order couplings and it has been assumed 
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that this conclusion will be valid for the solution of the conduction-

radiation problem. 

Solution of the full integro-partial differential equation defining 

the radiation problem is, because of the above reasoning and assump-

tions, solved using the method of lines uith 301 spatial points and 

a third order spatial coupling. The comparison between the theoretic-

ally and numerically obtained solutions for pure conduction of heat 

through a liquid is given in fig. (3.13). It can be seen that the 

numerical solution for the reduced temperature rise of the wire is 

accurate to within + 0.07/6 of the analytical solution over the time 

range within which experiments are performed (Approx. 0.1 - 1.0 sees,). 

The solution for the pure conduction problem was obtained from the 

program used to solve the simultaneous conduction and radiation 

problem by setting the emissivity of the platinum wire and the mean 

extinction coefficient of the liquid, both equal to very small values 

(1 x 10 The solution of the pure conduction problem was 

therefore obtained using the identical algorithm as that which was 

used for the solution of the simultaneous conduction and radiation 

problem. For this reason the accuracy of the solution to the 

conduction - radiation problem is believed to be of the same order 

as that for the pure conduction solution. 

Distinction must be made between the accuracy of the numerical solution 

to the conduction - radiation problem and the accuracy of the temp-

erature rise corrections obtained from this numerical solution. The 

latter being dependent on the former as well as on how closely the 

mathematical model describes the behaviour of the real physical 

system and how accurately the physical constants of the system are 

known. This topic is dealt with later when estimating the accuracy 

of the absolute thermal conductivities obtained using the transient 

hot wire apparatus, but the distinction should be made here. 
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Problem requiring solution 

Conservation of Energys-

Boundary Conditions i):-

)9 __ X Eft) 1 Sol 

ii):- @ ( R 2 , O ^ t ) = 0 

Initial Conditions- 0 ( 1 t ̂ 0 ) = 0 

The analytical solution is: 
(see § 2.322 & § 2.333) 

AT-. ST 
e o f t ) = + 

o o 

subject tos- R2 and 
4k t >1 

Comparison of the Solutions 

Time 

M 
0(1, t ) 
Analytical 
Solution 

x 10 
- 2 

© 0 , t ) 
Numerical 
Solution 

x 10 
-2 

0.10 1.5128 1.5138 
0.15 1.5967 1.5973 
0.20 1.6562 1.6566 
0.25 1.7024 1.7026 

0.30 1.7401 1.7402 
0.35 1.7720 1.7720 

0.40 1.7996 1.7995 

0.45 1.8240 1.8238 

0.50 1.8458 1.8456 

0.55 1.8655 1.8653 
0.60 1.8835 1.8832 

0.65 1.9001 1.8998 

0.70 1.9154 1.9151 

0.75 1.9297 1.9293 
0.80 1.9431 1.9426 

0.85 1.9556 1.9552 

0.90 1.9674 1.9670 
0.95 1.9786 1.9781 

1.00 1.9892 1.9887 

l/alues of the physical 
properties and variables 
required for the solutions 

\ = 0.1282 lii/m/K 

T = 300K o 
R 9 = 1357 

-"6 

t^ = 3.5 x 10 m 

q = 1 . 0 UJ/m 

= 2 2 5 2 D/k9/K 

= 697 kg/ra3 

P 

P 

Fig. (3.13) Comparison of Numerical and Analytical Solutions 
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Use of the Numerical Solution 

The numerical solution to obtain <5T^(t) for n-heptane at an initial 

temperature, T q , of 308.15K and under 500 MPa hydrostatic pressure 

is given in fig. (3.14). From the solution, corrections can now, 

in principle, be made to the measured temperature rise of the uire 

recorded during measurements on n-heptane under the above thermo-

dynamic conditions. These temperature rise corrections would have 

to be made in the computer program used to analyse the experimental 

data (see § 4.61) and as this program requires an itterative proced-

ure, a second numerical solution for 5 T D ( t ) under slightly different 

conditions may be required. The acquisition of a numerical solution 

to the conduction — radiation problem is in computational terms very 

expensive ( a single solution requires + 750 cp sees and + 1 0 0 thousand 

words of storage on a CDC 7600 machine) and different solutions are 

required for each thermal conductivity measurement. This method of 

correcting for the effects of radiation on the measurement of the 

thermal conductivity by the transient hot wire method although 

possible is not feasible. 

The numerical solution can, however, be used to demonstrate that the 

effects of radiation on the thermal conductivity as measured by the 

transient hot wire technique increase with the time duration of an 

experiment. Neglecting the correction term ST (t) from equation (3.8) 
UB 

as this term is only significant at relatively long times (when 

1), one obtains:-a 

A T ( a , t ) = ATj(J (a, t) + 5T R(a,t) (3.150) 

where AT(a,t) is the temperature rise of the fluid at radial position,a, 

that would be obtained by measurement on the hypothetical system whose 

mathematical model can be described by equations (3.64) to (3.77). 

Now defining the apparent thermal conductivity by:-
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2 g 
then for small values of ttt" find from equations (3.151) and 4kt 
(3.150) that:-

q \dLnt J = 1 + 5T7TTJ (3.152) 
^app 1 v "' /r=r1 

The ratio of thermal conductivities X / X as obtained from app 
equation (3.152) is, of course, time dependent and a plot of ^-/\ app 

versus time is given for n-heptane at 500 MPa in fig. (3.15). 

The functions ^-/X ap p
 a r e smooth, approximately linear in the region 

close to time t=0 and pass through 1.0 at t=0. When neglecting 

effects due to radiation on the thermal conductivity, the thermal 

conductivities of fluids as measured on transient hot wire apparati 

are not absolute but apparent. However, it can be seen that the 

absolute thermal conductivity can be obtained by extrapolating the 

plot of the apparent thermal conductivity versus time back to zero 

time. 

It is also immediately apparent from fig. (3.15) that transient hot 

wire experi ments performed using shorter run time durations incur 

smaller errors in their measured thermal conductivities than those 

requiring longer time durations. 

As it is not practicable to solve the radiation problem for each 

measurement performed on the transient hot wire apparatus, another 

method for correcting for the effects of radiation is required, liie 

define a radiation defect in the thermal conductivity as:-

X _ n n ( t ) - X ( t ) 47rX (t)/^<5T„ \ 

i = app x ( t ) T — 1 l ^ r t ) r = a ( 3-1 5 3 ) 

where generally:-

/ / 

£ = £ (t,T0,q,n,X ,K,P,Cpfa,bf€ ) ( 3 . 1 5 4 ) 
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However, for experiments performed on liquids using the same piece 

of apparatus, the factor £ is dependent upon far fewer quantities 

and for a particular apparatus is:-

= £ V » T o , q , n , A a p p , K , P , C p ) (3.155) 

In the present work, measurements on a liquid are performed along 

isotherms, but, unfortunately there is no information available 

about the variation of the extinction coefficient, refractive index 

and specific heat capacity of the liquid with pressure. Consequently, 

it has been necessary to assume all of these quantities are pressure 

independent, and equal to their atmospheric pressure values. Although 

this is an Obvious and unquantified approximation we are forced to 

adopt it by the lack of any better information. In this case the 
j." 

radiation defect £ is a function of an even smaller set of variables 

x•e•s— 

£(t,q fX -P) (3.156) app 

or more correctly:— 

£"(t,q,X a p p) (3.157) 

since for a particular fluid the apparent thermal conductivity and 

density are not independent of each other. 

During measurements of a liquid's apparent thermal conductivity, 

along an isotherm and over a range of densities, the heat flux per unit 

length varied typically by only 1.0% (Max.) over a pressure range 

of 50 PlPa - 500 MPa. Also, owing to the mode of bridge operation used 

and by performing runs within the time range 0.08 - 1.0 seconds, 

making sure the smallest time used is between 0.07 - 0.09 seconds and 

the largest time is between 0.95 - 1 . 1 seconds, the times at which 

balance conditions occur are approximately the same for all measure-

ments along a single isotherm. For these reasons the radiation 
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u 
defect, £ , for a particular liquid along an isotherm and in the 

pressure range 50 MPa - 500 MPa is to a first approximation only 

dependent upon the apparent thermal conductivity and so:-

£ =  X aPP ~  X « i\ \ ) (3.158) 
X A P P 

In equation (3.158) X is the apparent thermal conductivity 
app 

calculated from measurements performed on the transient hot wire 

apparatus and is some time scaled mean of the time dependent appar-

ent thermal conductivity of the liquid. 

In the present work the approximate effect of radiation on the 

measurement of liquid thermal conductivities is accounted for through 

the use of equation (3.158). 

The required radiation defect, £ , is calculated from numerical sol-

utions to the mathematical model for the simultaneous conductive and 

radiative transfer of heat through the test fluid. The radiation 

defect is calculated at the extreme ends of the range of the apparent 

thermal conductivities over which the fluid is measured. The relevant 

physical properties of the fluid at these extremes are used in the 

mathematical model from which the defects are calculated and sub-

sequent defects at apparent thermal conductivities within the range 

are estimated by a linear interpolation. The radiation defect versus 

apparent thermal conductivies used for n-heptane along the 3 three 

isotherms at which experiments were performed are shown in fig. (3.16) 

and those used for n-nonane and n-undecane are shown in fig. (3.17) and 

fig. (3.18) respectively. It can be seen from these figures that the 

maximum error incurred in a measurement, due to radiative transfer, is 

approximately 2.8%. 

It has been found that, over the temperature range within which thermal 

conductivity measurements have been performed namely 308 - 363K, knowing 

the radiation defect, £ , for one of the test liquids at a particular 

apparent thermal conductivity and temperature, the radiation defect at 
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a slightly different temperature and the same apparent thermal 

conductivity can be found. This is done by assuming:-

(3.159) 

The radiation defects calculated in this manner have been found to 

agree uiith those calculated from numerical solutions to the math-

ematical model for simultaneous conductive and radiative heat tran-

sfer to within a few percent. Similarly, the defect,£ , has been 

found to have an approximately linear dependence upon the extinction 

coefficient. It should, however, be noted that these conclusions 

were drawn from a very limited number of observations as the perform-

ance of a detailed sensitivity analysis was not possible. 

3.45 Accuracy of the Radiation Corrections 

The accuracy of the correction made due to the extra mechanism for 

heat transfer through the liquid medium,namely radiation, is deter-

mined by a number of factors. These factors are; the applicability 

of the mathematical model used to describe the simultaneous transfer 

of heat by conduction and radiation; the error incurred by the numerw 

ical solution for the temperature correction due to radiation, ST.; 
r\ 

the inaccuracy due to errors in the physical properties of the liquid 

used in the mathematical model; and finally the error incurred due to 

the use of the radiation defect £ . 

The effect of radiation on the absolute thermal conductivity is 

such as to introduce a maximum error of about 2.5% in the thermal 

conductivity measured on the transient hot wire apparatus neglecting 

the effect. For this reason the accuracy of the correction has only 

to be to within + 20% to incur a maximum error of + 0.5$ in the 

absolute thermal conductivity. It is, however, necessary to estimate 

the accuracy of the correction in order to determine the maximum 

uncertainty in the absolute thermal conductivity measurements performed 

on the transient hot wire apparatus. 

f 3 
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Examining the factors contributing towards the uncertainty in turn, 

firstly the applicability of the mathematical model. The mathemat-

ical model, it is expected, will not produce more than a 1.0% error 

in the correction due to radiation (+ 0,025% in the absolute thermal 

conductivity). This error being due to such anomalies as the 

assumption of the system being in local thermodynamic equilibrium, 

and the liquid being non scattering, isotropic, and diffusely emitt-

ing. The error incurred by the numerical solution for the tempei>-

ature correction due to radiation, <$Tp, is, using the accuracy of thB 

solution to the problem of pure conduction as a guide, likely to 

introduce a maximum error of approximately + 0.05% in the absolute 

thermal conductivity. The error incurred due to the use of the 

radiation defect factor, as implemented in the present work, by 

calculating £ along an isotherm at either end of the range of the 

apparent thermal conductivity of a particular fluid, is thought to 

be approximately + 0.05% of the absolute thermal conductivity. 

The final factor contributing to the uncertainty in the correction 

due to radiation is provided by the errors in the physical properties 

used to describe the system. This factor is thought to introduce the 

bulk of the uncertainty in the correction factor. 

For the reasons indicated earlier it is not possible to estimate with 

any certainty the consequences of approximating the physical propert-

ies of the fluid such as the extinction coefficient, refractive index, 

and specific heat correction. To improve the situation it would 

ideally be necessary to carry out detailed studies of these quantities 

as a function of pressure and temperature. One uould then use these 

experimentally determined physical properties in new numerical cal-

culations. On the one hand the experimental effort is completely 

beyond this work and the computational effort entirely beyond the 

available computing resources. 

There remain two alternative strategies, first to allow an experiment-

al uncertainty in the 'radiation free* thermal conductivities of the 

magnitude of the computed radiation correction. Or secondly to obtain 
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a crude estimate of the likely uncertainty in this correction. 

Here we have adopted the latter course and based the estimate on 

the fact that the physical properties in question probably vary as 

the density of the fluid. In which case, the maximum error likely 

to be incurred in the correction from assuming them constant is 

about 20%. It therefore seems prudent to estimate the absolute 

accuracy of the radiation free thermal conductivity data as between 

+ 0.5%, for n-Heptane at 500 MPa and 308.15K, to + 0.8% for n-Nonane 

at 50 l*!Pa and 363.15K. However, it must be recognised that this 

estimate may need to be modified in the light of new experimental 

information becoming available. 
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CHAPTER 4 

Apparatus Design and Use 

4.1 Introduction 

This chapter details the design, construction and use of a transient 

hot uire apparatus, which is suitable for the measurement of the 

thermal conductivity of liquids in the pressure range 0.1 - 700 l*IP a 

and temperature range 300 - 380K. The design of the equipment both 

mechanical and electrical has been such as to produce an apparatus 

which conforms as closely as possible to the mathematical model 

analysed in chapter 2. The resulting instrument has a precision of 

+ 0.2% and has been used to perform measurements on n-heptane, 

n-nonane, and n-undecane, the absolute thermal conductivities of 

which have been determined to an accuracy of between 0.5% and 0.8%. 

4.2 High Pressure Equipment 

This section presents the design of the equipment used to control the 

temperature of, and produce the high pressure in, the test fluid whose 

thermal conductivity is to be determined. The equipment is composed 

of an autoclave, pressurising system and temperature controller each 

of which will be discussed separately. 

4.21 The Autoclave 

Although first consideration being given to the pressure vessel may 

seem out of context, often,and as occurred in the present procedure, 

when designing high pressure apparatus, the first piece of equipment 

designed and constructed is the pressure vessel and its associated 

pressurising system. This is understandable since the pressure 

vessel is often the most expensive single piece of apparatus and its 

manufacture is normally externally contracted. This is, therefore, 

the reason for the order of the apparatus design presentation as it 
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emphasises that the design procedure unfortunately adds an extra 

constraint on the design of other apparatus. As a result, the 

measurement cell and bellows (described in § 4,3) must be designed 

to fit within the pressure vessel, rather than the pressure vessel 

being designed to contain the measurement cell and bellows assembly. 

The pressure vessel ^ T ^ (see fig, (4,1)) used was manufactured by 

Pressure Products Inc. (U.K.) Limited from EN 25 stainless steel 

with a 39.5 mm bore and 0.305 m length, between the ends of the 

terminals in the plug ( F ) and the vessel bottom. The plug which, 

seals the vessel and carries the measurement cell (not shown) and 

bellows assembly ( z ^ was also made of EN 25 stainless steel. It is 

fitted with four terminals ( 4 ^ to enable electric contact to be made 

with the measurement cell, which during measurements is contained 

within the autoclave. The terminals were made of Invar and success-

ively lapped into conical Hilumina insulators (manufactured by 

Smith Industries, Ceramics Division) and the conical ends of passages 

machined into the bottom of the plug, as shown in the detail on 

fig. (4.1). 

The vessel is sealed using the plug, the thrust nut and two seals, 

A primary seal ( 7 ) made of PTFE seals upto + 35 HPa by which time 

the secondary seal ^ ^ made of cast, non porous, Phosphor-bronze, 

has taken over for the high pressure sealing. The two seals are held 

by a retaining ring ( J ) and threaded collar ^ 0 ) as shown in the second 

detail on fig. (4.1). The dimensions of the secondary seal are shown 

in fig. (4.2) 

The autoclave is pressurised using Shell fluid 41 (an aviation 

quality, non corrosive, flame retarded,hydraulic fluid) which is 

pumped into the autoclave from the pressurising system via the gland 

nut type, high pressure fitting at the bottom of the pressure vessel. 

The autoclave was designed for a working pressure of 700 l*lPa and has 

been tested up to 850 MPa. 



Fig. (4.1) The Autoclave (including details of the plug). 
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Fig. (4.2) The High Pressure Seal 

4.22 The Pressurising System 

The autoclave is pressurised by the pressurising system, a schematic 

representation of which is shown in fig. (4.3). The system consists 

essentially of a high and a low pressure side. The low pressure sida 

is for pressurisation of the autoclave and high pressure side up to 

200 MPa. After this initial pressurisation, the high pressure side, 

when isolated from the low pressure side by valve (?T) , pressurises 

the autoclave via an intensifier from 200 MPa up to 700 M P a . 

The specifications of the individual components of the pressurising 

system are listed below:— 

(T) Pressure vessel (autoclave) made by Pressure Products Inc. (UK) 

Limited and rated to 700 MPa working pressure (see § 4.21). 
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Fig. (4.3) The Pressurising System 

(2) Strain Gauge made by Coleraine Instruments, Gallway, Ireland 

and calibrated up to 700 MPa accuracy + 1 MPa at 700 M P a . (For 

calibration, see appendix 2.1.) 

(3) Vent valve, non rotating spindle, model no 1/1-110-100, made by 

Pressure Products Inc. and rated to 100,000 psi (700 MPa appro*.) 

(4) Pressure vessel isolation valve, specifications as for (3^) . 

(5) 10,000 atm pressure gauge, made by Budenberg Gauge Company, 

accurate to + 1% of full scale deflection (for calibration, see 

appendix 2.1). 
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(6) Intensifier, model no. A2.SJ, made by Haruood Engineering Co., 

U.S.A., with intensification factor of 15 and rated to 

200,000 psi (1400 MPa approx.). 

(7) Let down valve, non-rotating, spindle type, model no. V/—110—20^ 

made by Pressure Products Inc. Ltd. and rated to 20,000 psi 

(150 MPa approx.). 

(F) Pressurising pump, hand-operated, stainless steel bodied, model 

no. HP-218, made by McCartney Manufacturing Co. U.S.A., and 

rated at 60,000 psi (400 MPa approx.). 

(?) High pressure isolation valve, specification as for (3) . 

(l̂ o) 40,000 psi Gauge, made by Budenberg Gauge Company, accurate to 

+ 1% of full scale deflection (for calibration see appendix 2.1 ). 

© Lou pressure isolation valve, non rotating, spindle type, model 

no. I/-110-60, made by Pressure Products Inc. Ltd. and rated to 

60,000 psi (400 MPa approx.). 

(l^) Pressurising pump, specifications as for (J3 

(J?) Let doun valve, specifications as for (iT) • 

The tubing used in the pressure lines uas originally i n 0.0. 1/32" I.D. 

type 304 stainless steel tubing supplied by Tube Sales Ltd. But as the 

tubing had a rating of only 400 MPa it often burst at the higher 

pressures used # It uas subsequently replaced by 5/16" O.D.. 1/32" I.D. 

type 304 stainless steel seamless tubing also supplied by Tube Sales 

Ltd., as and uhen the J-" tubing sections ruptured. 

The entire pressurising system, apart from the hand-operated pumps 

(e) and (12) , is enclosed uithin, but electrically insulated from, 

a steel cabinet uith i n thick mild steel plate sides. The reason for 

the system being insulated from the enclosing cabinet is that the 

electrical apparatus (described later, see § 4.4) is sensitive to 

electrical noise induced by earth loops uhich uould have otherwise 

occurred. 
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The apparatus is pressurised by initially pumping on the low pressure 

side pressurising pump ^ 2 ) until about 200 MPa pressure is attained 

within the system and autoclave. The low pressure side is then 

isolated using the isolation valve (9) and the further pressurisation 

is performed using pump (S) . A full procedure for pressurisation is 

detailed in (appendix 2,2). 

4.23 Temperature Control 

The temperature rises recorded during measurements on a fluid are 

between 2K and 5K, therefore the maximum allowable temperature drift 
-4 

tolerable inside the autoclave during measurements is 2 x 10 K . 

Because a measurement is made up of a number of 1 second runs, sep-

arated by 60 second relaxation periods and is of approximately 

5 minutes duration, the maximum allowable fluctuation within the 

vessel is ca 3 x 10~"3K/hr. 

In order to achieve the required thermal stability, the autoclave 

was immersed and suspended within a temperature controlled, well-

stirred, oil bath, see fig. (4.4). The specifications of the indiv-

idual components of the temperature control system are given belows-

0 15 amp variac controlled booster immersion heater, supplied by 

Tubalox, rated at 3KU at 230/250 volts. 

(2) 2.54 cm thick blockboard case, housing vermicullite insulation. 

(3) 7.6 cm thick layer of vermicullite insulation surrounding sides 

and bottom of the galvanised iron tank. 

(4) 1/30 HP induction motors, mounted on the pressurising systems 

cabinet to prevent vibration of the autoclave. Motors are made 

by Klaxton Limited and produce 1425 r.p.m. The two motors, 

through a reducing gearbox, drive two stirrers, one longer than 

the other, incorporating 4" impellers and vertical fins mounted 

on a i" shaft. 



. (4.4) Plan view of the Temperature Controlled Oil Bath 
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(IT) thick mild steel plate bolted to the bottom of the pressure 

vessel and supporting the autoclave. 

(J) 1/8" thick duraluminium sheet formed into a cylinder, providing 

lagging for the autoclave by trapping a 1.5 cm stagnant layer 

of oil between itself and the pressure vessel. A heating element 

5 m long and 3 mm in diameter is wound in a bifilar position 

about the top 8 cms of the cylinder on its outer surface. The 

heater provides a temperature gradient in the outside of the 

pressure vessel of about 0.25K over its entire length and 

opposes natural convection which would otherwise occur due to 

cooling at the surface of the oil bath. 

(7) Autoclave (see § 4.21). 

(S) Oil bath, 20" long x 14" wide x 35" deep with a 4" flanged 

top constructed from 10 gauge galvanised iron sheeting. 

(9) Control Heater, rated 230/250 volts, 500 watts, manufactured 

by Tubalox. The power to the heater is supplied by the temp-

erature controller (not shown). 

^ 0 ) Booster Immersion Heater, specifications as for (T) . 

(iT) Platinum resistance thermometer,steel sheathed, manufactured by 

R.E.C. Ltd., model no. E666, 25 ohms nominal resistance, used 

as a sensing element for the temperature controller. 

12) Platinum 4 terminal class 1 resistance thermometer, manufactured 

by Oegussa, model no. 8130 0031, 100 ohms nominal resistance, 

calibrated using a triple point cell (for calibration to + 0.01K 

see appendix 2.3 ), strapped to the side of the pressure vessel 

and used to measure the absolute temperature of the autoclave. 

4.3 Design of the Measurement Cell and Bellows Assembly 

The design of the measurement cell and bellows assembly was based on 

experience gained through work on and the study of earlier cells used 

for measurements on both liquids and gases. The design incorporates 

the desirable aspects of earlier cells, while simultaneously 
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circumventing many of their undesirable features. The constraints 

imposed by operation up to 700 MPa and at temperatures above ambient, 

necessitated a somewhat different hot-wire cell design from that 

employed in work in the gas phase [91,85] • 

4.31 The Measurement Cell 

A number of criteria were used in the design of the thermal conduct-

ivity measurement cell, and these are given in their order of import-

ance. Firstly, the assembled cell when used in the transient hot-wire 

apparatus must enable the thermal conductivity of the test fluid to 

be measured to a precision of + 0.2% and an accuracy of + 0 . 6 % over 

the pressure range 0.1 MPa to 700 MPa, and the temperature range 

300K to 400K. Secondly, the cell and bellows assembly must when 

assembled be able to fit and operate within the autoclave described 

in § 4.21 . The cell should also be easily assembled and finally, 

the cost of manufacture and use of the cell must be kept to a minimum, 

To satisfy t h e f i r s t criterion, the cell must be mathematically 

reducible to the model upon which the transient hot wire technique 

is based ( a description of the model is given in § 2.2 ), or suff-

iciently close to the model to enable the use of the calculable 

corrections (see § 2.3 ). In this context, by the diagramatic 

representation of the range of applicability of corrections and errors 

obtainable as a consequence of § 2.3 , (see fig. (4.5)), it is seen 

that the cell must enable operation within the indicated area. 

One of the requirements of the mathematical model is a section of 

an infinitely long line heat source. As this is not physically 

possible, two thin wire heat sources, (the closest available substit-

ute for line heat sources) of different lengths are used, in which 

the central section of the sources differ, in behaviour, from that 

of an infinite line source by a negligible amount. The end effects 

of the heat sources are "subtracted", one from the other, by a 

practical cancellation, resulting in the behaviour of the "remaining" 

segment of the long wire being sufficiently close to that of a finite 
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section of a heat source of infinite length. By the use of the 

equations given in § 2.3 , for a liquid having properties typical 

of those whose thermal conductivities are to be measured, it is 

found that the wires must be longer than about 4 cm in lenth, 10 fim 

or smaller in diameter, and the outer boundary of the cells must be 

greater than 0.6 mm in diameter [84] • The means by which the 

"subtraction" is invoked is presented in § 4.5 . 
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Fig.(4.5) The required operation range for a measurement ceil. 



Fig. (4.6) The Measurement Cell 
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In the present apparatus, the cell employs tuo wire heat sources, 

differing only in length, mounted uithin two cylindrical compart-

ments contained within a single stainless steel cylinder (type EN85M) 

The cell was made up from two hemicylindrical sections as shown in 

fig. (4.6), machined and lapped to form the cylinder which is 

0.235 m long and 24.0 mm in diameter. Within the cylinder the 

compartments were formed by machining two cylindrical holes 9.5 mm 

in diameter, centred on the split diameter of the cylinder and 

parallel to its axis. The "active" half of the cylinder (7) carries; 

the cell top (?) which connects the cell to the pressure vessel plug; 

and the terminal posts (3) and (4) , which provide mechanical support 

for, and electrical connections to, the two platinum wires of 

the cell. The passive half of the cell (IT) forms a cover and, when 

fixed in position, provides a cylindrical outer surface for the two 

compartments of the cell. It is removable, so enabling the constr-

uction of the wire heat sources, within the two compartments. The 

active half also contains channels (T) and down which run the 

0.5 mm diameter, insulated, platinum connecting wires, which provide 

electrical contact with the upper terminal posts. The detail in 

fig. (4.6) is a crossectional view of the assembled cell and shows 

the positioning of the channels and compartments. 

The hot wire heat source and terminal posts are shown in fig. (4.7). 

The lower terminal post is fixed to the cell body (l^ by a screw 

through the stainless steel bushing (9) . The terminal connection 

is provided by the stainless steel screw ^0) which is insulated 

from the bushing (9) by a 1 mm thick flat ground glass disc (ij) 

and from the knurled threaded retaining collar ^2) by a 1 mm thick 

flat-ground glass washer ^ 3 ) . At its upper end, the terminal 

carries a threaded stainless steel cone ^ 4 ) and a knurled lock-nut (f5 

which, between them secure the 0.5 mm diameter platinum wire connec-

tion lead (1I5) . The cone ^ ^ is coaxial with the axis of the cell 

compartment and has a gold tip ^7) to facilitate soldering. 

The upper terminal post is constructed somewhat differently to allow 

for the vertical adjustment of its position. In a similar manner 



Fig. (4.7) Detail of the terminal posts. 
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the terminal connection screw (18̂ ) together with its gold-tipped 

stainless steel cone ^ 9 ) and lock-nut (20) are supported in a 

threaded stainless steel bushing (21) , and insulated from it by 

a 1 mm thick, flat ground, glass washer (22) and from the stain-

less steel cylinder ^3) by a 1 mm thick flat ground, glass disc (24)» 

The bushing (21) is, however, free of the cell body and screwed to 

the stainless steel cylinder (23) , thus holding the disc (24) , 

washer (22) and screw ^fT) in position. The stainless steel 

cylinder (23) has a tapped hole threaded along its axis which carries 

an adjustment screw (25) that passes through the cell top and is 

secured in position by means of a plate (20) • This plate fits into 

a groove machined in the head of the adjustment screw and is itself 

screwed to the cell top. The cylinder also has two guide holes (27) 

drilled into it which accomodate two cylindrical pins ^8) fixed intc 

the cell top (2^) • The result of such a construction is that rotation 

of the adjustment screw (25^ causes vertical movement of the terminal 

without its rotation and allows a total of 15 mm vertical adjustment. 

The insulated platinum connection wire [29J from the upper terminal 

is led out of the cell through channel ( 8 ) and through a hole (30 

in the cell top (T) • Whereas that from the lower terminal is run 

along channel ( V ) (in fig. (4.6)) and through another hole (not shown) 

in the cell top, where connection to the terminals in the pressure 

vessel plug occurs. 

The hot wires of the cell are made of 7.78 fim(7 fim nominal) diameter 

platinum wire, whose purity was greater than 99.9%, as supplied by 

Goodfellow Metals Ltd. (The diameter reported being the average of 

a number of measurements on samples of the wire whose diameters were 

determined by electron microscope.) Fig. (4.7) shows how this wire 

is attached to the terminal posts. At the upper terminal a platinum 

hook (32) (made of 0.75 mm diameter wire) is soldered to the gold-

tipped cone and the 7 jwm platinum wire and is attached to it using 

gold as a solder. At its lower end, the 7 fxm platinum wire is 

attached, using a gold sphere, to a cylindrical platinum weight (33) 

of approximately 50 mg. The upper end of the weight is electrically 
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connected to the lower terminal cone (14^ by a loop of gold (34^ 

attached at either end with a gold-tin solder. The loop (34) is 

manufactured by flattening a 2 cm piece of 0.06 mm diameter gold 

wire into a strip 1 mm thick followed by annealing at 1270K. In 

this way, a lower electrical connection of small electrical resist-

ance (0.15 - 0.20ft ) is obtained which exerts essentially no horiz-

ontal or vertical force on the lower end of the 7 fim platinum wire. 

The wire, therefore, hangs vertically and is subjected to a constant 

tension due to the weight, this tension being virtually independent 

of the thermal expansion of the elements of the cell at the various 

experimental temperatures used. In the present measurements, the 

tension in the wire amounts to approximately 10% of the yield stress 

of platinum. Furthermore, the electrical resistance of the various 

components providing electrical connection to the 7 /zm platinum 

wires amount to only 0.2 ohms, which is small by comparison with 

the resistances of the long and short wires (~450 ohms a n d 6 0 ohms 

respectively) so that a correction for this resistance may easily be 

applied. 

After assembly of the platinum wires in the active half of the cell, 

the wires are annealed whilst supporting the weight, by passing an 

electric current through the wires, producing a power generation of 

approximately 85 watts/m of wire, for 1 hr followed by a show current 

reduction. The lengths of the two 7 [im diameter platinum wires are 

then very carefully measured at room temperature by means of a cath-

etometer. Care is needed during measurement as the % error incurred 

in the measured thermal conductivity due to errors in measuring the 

wire lengths, will be equal to the % error in the measured difference 

in length of the two wires. The characteristics of one of the cell 

constructions used in the present work to perform measurements is 

given in § 5.1. 

The main advantage this cell design has over previous cells [41,85] 

is that if propertly constructed, the wires are under constant tension 

during measurement and do not become slack, due to differential exp-

ansion or any other reason. The weight also helps to ensure the wires 
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are vertical and so, to prolong the time period before the onset of 

convection in the test fluid during measurement. 

Sample lengths of the 7 (JLm platinum wire were calibrated in order to 

determine the temperature coefficient of resistance of the wires. 

The details of the calibration can be found in appendix 2.4 and 

all that need be stated here is that the samples of wire were found 

to behave sufficiently closely to that of pure platinum to enable 

the use of the correlation quoted for pure platinum by the International 

Practical Temperature Scale of 1968 [86] , which can be used in the 

form:-

y (273^15) = 1 + A ( T - 2 7 3 - 1 5 ) + B(T-273.15)2 (4.1 J 

where:— 

A = 3.98471 x 10~ 3 (4.2} 

B = -5.874557 x 10~ 7 K~ 2 (4.3 J 

and so the latter has been adopted for the present measurements. It 

should be noted that, in the temperature range of interest, this 

correlation is insignificantly different from the correlation quoted 

in the International Practical Temperature Scale of 1976 [87] but is 

simpler to implement. The coefficients A and B in equation (4.1) and 

whose values are given in equations (4.2) and (4.3) refer to pure 

annealed platinum under no applied stresses and under atmospheric 

pressure conditions. The effects of tensile stresses and hydro-

static pressures are examined in § 4.521 and § 4.522 . 

4.32 The Bellows Assembly 

The cell which has just been described requires an enclosure inside 

which it and the test fluid are contained during measurement. The 
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enclose is required in order to prevent contamination of the test 

fluid uith the hydraulic fluid used to pressurise the autoclave. 

It must therefore be capable of transmitting the pressure to the 

test fluid contained uithin it and of accomodating for a 30% re-

duction in volume of the test fluid required during pressurisation. 

It must also fit uithin the autoclave described above in § 4.21 . 

The bellous assembly designed and used for the present uork is 

shoun in fig. (4.8). It consists of a stainless steel tube (T) , 

(threaded at each end) made of typeEN85M stainless steel, uith an 

inner bore of 25.4 mm and outer diameter 37 mm uhich at one end is 

connected uith a lead seal (?) to the pressure vessel plug ( ^ and 

at the other to a bellous ( Z ) and a valved end piece (IT) . The 

bellous made by Teddington Bellous Ltd., is constructed from a 

seamed stainless steel tube and has 19 convolutions, an inner bore 

of 25.4 mm, an outer bore of 35 mm and a length of 105 mm. The 

bellous is uelded to a connector (6) , uhich in conjunction uith 

a lead seal ( ? ) joins the bellous (T) to the stainless steel tube (T) 

The bellous is uelded to the connector (?) and the valved end piece ^5) 

using uelding collars ( ? ) . The valved end piece (IT) has a channel 

sealed by a grub screu f9J , machined into it, uhich together uith 

the filling holes ^ o ) and ^ l ) in the end piece (IT) and stainless 

steel tube (?) are used for filling the assembly uith the test fluid, 

The filling hole closed off uith a lead seal (l?) and a 

screw (13) after filling. 

In order to prevent air being trapped in the cell and bellous the 

system containing the uires, uhich have already been assembled, is 

filled under vacuum. The bellous is supported mechanically during 

evacuation to prevent collapsing and the system is filled, from the 

bottom, through filling hole ^o) in fig. (4.8). Once the cell and 

bellous have been filled, the plug on uhich the cell and bellous 

assembly are mounted is placed into the pressure vessel. 

The pressure drop across the bellous during measurement is less than 

0.2 MPa and contributes a negligible error in the calculation-of the 



Fig. (4.8) The Bellous Assembly 
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test fluid density during measurement. It should also be mentioned 

in passing that in earlier designs of similar bellows assemblies 

[54] P.T.P.E. seals were used, but it uas found that under high 

hydrostatic pressures (and independent of the differential pressure 

across them) these seals were compressed sufficiently to enable the 

hydraulic fluid to leak into the cell and contaminate the test 

liquid. For this reason,lead seals were used in the present uork. 

4,4 Electronic Apparatus 

The function of the electronic apparatus is to provide the pouer 

to the hot uire heat sources and to record the times,follouing the 

initiation of this power, at uhich the difference in resistances 

betueen the two hot wires, immersed in the test fluid, attains 

certain predetermined values and so to indirectly determine the 

temperature rise of the middle portion of the long wire as a function 

of time. This section describes the components and use of the 

apparatus which enable these measurements to be performed. 

4.41 The Automatic Bridge 

The automatic bridge is based on that first used by Haarman [55] and 

its design and construction is detailed elsewhere [88,89] . A circuit 

diagram of the components is shown in fig. (4.9). The resistances 

of the long and short wires, mounted in the measurement cell, as 

described earlier (see § 4.3), are denoted by and Uî  respectively. 

Resistances are denoted using the prefix W and switches using S. 

The specifications of the various components used in the bridge circuit 

are given in Table (4.10). 

Power to the bridge is supplied by two constant voltage, D.C., power 

supply units, type 6112A manufactured by Hewlett Packard, and arranged 

such that the potential of point (7T) is close to earth and so keeps 

electrical noise, which can cause erronEous operation of the bridge, 

to a minimum. Changes in polarity across points (7T) and (IT) are 

detected by a high impedance, low noise level electronic comparator 
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BRIDGE COMPONENTS 

Bridge Resistors 

Resistor Make/Model No. Resistance 

y/alue 

K 

Tolerance 
+ % 

Power 

Dissipation 

UJ 

Temperature 

Coefficient 

ppm/°C @ 20°C 

V U 2 
l/ishay 1304 10" 5 1 0.005 0.20 2 

W 3 ' V W 9 ' U 1 0 
V/ishay HA412 2 0.001 0.25 0 

W 5 
l/ishay HA412 1 0.001 0.50 0 

U 6 
l/ishay HA412 2 0.001 0.50 0 

W 7 
Vishay HA412 4 0.001 0.50 0 

W 8 
Vishay HA412 8 0.001 0.50 0 

W 1 1 ' U 1 2 ' W 1 3 ' 

W 1 4 ' U 1 5 
Muirhead D805 E,F,G/1 10 1100 0.001 0.50 5 

WX Muirhead D825K 10~ 4 1 0.010 1.00 50 

Switches 

Switch Switch Type 

s i 

S
2 '

S
5 '

S
6 '

S
7

, S
8

, S
9 

S 4 

S 1 2 

S 1 0 

Mercury wetted reed relay 

High speed antibalance reed relays 

Single pole,single throw 

Single pole,single throw flow contact resistance 

Single pole,5—way,low contact resistance 

Capacitor C has a capacitance of 0-1 i*F 

Table (4.10) 
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uhich provides the input for the controlling logic circuit (see 

§ 4.43). 

The automatic bridge operates as follows. Prior to a run, mode 

and selection positions (discussed later in this section) are chosen 

and the ballast resistor UiX is set to be approximately equal to the 

sum of resistances of the long and short wires (this prevents current 

surges upon switching S1). In this "reset" position, by adjusting 

and lî  , to be approximately equal to the resistances of the 

short and long wires respectively, the bridge can be arranged such 

that the resistance of its upper right hand side, comprising resistors 

U9, and U11 to U15, is slightly in excess of that required to balance 

the bridge (zero voltage between (a) and (5) ). The bridge is then 

armed, S2 is closed and the comparator is switched into the circuit 

using switch S4. 

On firing the bridge, by switching S1, current starts flowing through 

the wires and simultaneously a DC signal is sent through the capacitor 

C, which produces a pulse that feeds the logic circuit. The logic 

circuit, which controls the operation of the bridge, on receiving the 

pulse, opens gates, between six electronic counters and a crystal 

controlled clock, initiating the timing sequence and reopening switch 

S2 after 3 ms. 

The current flowing through the wires causes the wires to dissipate 

heat and their temperatures to increase, thus increasing their res-

istances. As the temperature increase in both of the wires is essen-

tially the same, the resistance of the long wire increases by more 

than that of the short wire. This opposes the out of balance, caused 

by the resistances of the upper right hand side of the bridge, until 

eventually the voltage across points (A) and (ET) passes through zero, 

indicating a balance condition. When this polarity reversal is det-

ected by the comparators the logic circuit stops the first electronic 

counter and so records the time taken to reach the first balance point. 

It also adjusts (in a manner described later when discussing the mode 

switch) the right hand arm of the bridge so as to have a slightly 
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larger resistance than before, and thus throws the bridge out of 

balance again. 

As the resistance of the wires continues to increase, due to their 

continuing increase in temperature, the bridge moves towards a 

further balance point. Upon reaching this second balance point, the 

second counter is stopped, recording the time taken to reach the 

second balance condition, and the resistance of the upper right hand 

arm is readjusted as before. The process is continued six times in 

total until all six counters are stopped, recording the six times at 

which the bridge balances. The sixth balance point occuring when all 

five switches in the right hand arm of the bridge S5 to S9 are "open 

circuit". The logic circuit then returns the bridge to the reset mode, 

A run, therefore, is seen to yield six times at which the resistances 

of the wires attain six values, predetermined by the bridge configur*-

ation. Fig. (A.11) is a plot of the voltage across points (A) and (E[) 

versus Ln time during a run. The regular distribution in Ln time is 

accomplished by suitable choice of the resistors in the bridge [89] 

and is desirable due to the form of the working equation (2.2) from 

which the thermal conductivity of the test fluid is calculated. 

v. AB 

6 
TIME 

Fig. (4.11) Distribution of the balance points in time. 



137 

The logic circuit contains a mode switch which determines the manner 

in which the five resistors in the upper right hand side of the 

bridge, W11 to UJ15, are switched into or out of the circuit during 

a run. In one mode (mode A) all the resistors are initially in line 

(switches S5 to S9 are closed) and are switched out of circuit by 

sequentially opening switches S5 to S9, one at each balance point, 

resulting in the final balance point occuring when all the resistors 

are "open circuit". In the other mode (mode B ) resistor U11 is 

initially in line and at the first balance point this is replaced by 

U12 and by U13 at the second and so on until for the final balance 

point, all the resistors are "out of circuit". The Selector switch 

S10 (which has five positions) and S12 alter the bridge configuration 

requiring different values of wire resistances and to produce 

a bridge balance. These switches increase the number of balance 

times obtainable by a particular bridge configuration without chang-

ing any of the individual resistance values. Moreover, as the resis-

tances U11 to U15 are variable, decade resistors, a great deal more 

balance points are obtainable for a single measurement (at a particular 

thermodynamic state). This ensures a good distribution of points in 

the resulting AT (temperature rise) versus Ln time plot, from whose 

gradient the thermal conductivity of the fluid, at that particular 

thermodynamic state, is calculated. 

It should be noted that for any bridge resistance configuration, the 

final (sixth) balance time in a run occurs with switches S5 to S9 open 

and therefore is independent of the mode of operation and selector 

positions and can therefore be used as a check on the bridge operation. 

4.42 The Comparator 

The times at which the bridge balances are determined by recording 

the times at which the voltage across points (/T) and (B) in fig. (4.9) 

passes through zero. This is achieved using a comparator which is in 

essence a very sensitive electronic galvanometer. The circuit diagram 

of the comparator used is shown in fig. (4.12). It consists of two 

input buffer amplifiers (type 43K) which are balanced in a cross-
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coupled mode so as to achieve a very high input impedance (greater 
11 

than 10 ohms) and a common rejective ratio of greater than 80 db. 

The crosscoupled mode implemented insures that common mode signals 

are passed at unit gain while differential signals are amplified. 

The outputs of the two buffers feed a conventional differential 

circuit, that is provided uith a zeroing adjustment and a meter to 

allou offset adjustment. 

In this apparatus, the specifications of the comparator are a band 

uidth of 100 KHz, a gain of 4 x 10^ and a peak to peak noise level 

of approximately 20 n\J• These parameters are consistent uith the 

inherent noise level from the resistors used in the bridge and the 

time scale of the measurements. 

4.43 The Controlling Logic Circuit 

The operation of the automatic bridge is controlled by an electronic 

logic circuit uhich is responsible for the automatic sequencing of 

the resistors in the upper right hand arm of the bridge, (Resistors 

U11 to U15 in fig. (4.9), the gating of timing counters and the 

supply of pouer to the uires. 

A circuit diagram of the apparatus used is shown in fig. (4.13). The 

sequencing of the bridge resistors is accomplished using a six stage 

shift register, clocked by signals sent from the comparator, through 

a 2 ms monostable. The shift register (SN74174) operates four nand 

gates (in mode A) or four nor gates (in mode B), depending on the 

mode of operation. These gates drive high speed reed relays, S5 to 

S9, used to suitch the resistors U11 to U15 (see fig. (4.13)) into 

and out of the bridge circuit. The shift register also operates 

six nand gates uhich connect the quartz clock (ME0N type MCIOS-TM) 

to six timing counters (each 6 X SN7490). 

To initiate a run, the "Reset", "Arm", and "Start" buttons are 

sequentially depressed and the rest of the bridge operation is performed 
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automatically by the logic circuit. The "Reset" button resets all 

the timing counters and loads all the bistables to logic state • 1' f 

thus gating off all the timing counters and de-energising all the 

reed relays, S5 to S9, disconnecting the resistors from the bridge 

circuit. The "Arm" button enables the Starting monostable (?) and 

the Triggering monostable (3) ; and energises relay S2, connecting 

the comparator into the circuit. On depression of the "Start" button 

the 30 ms Starting monostable (3) is fired, energising relay S1 and 

initiating the flow of current through the wires. The current flow-

ing through the wires produces a pulse through capacitor C(in fig. 

(A.13), which fires the the 2 ms monostable (?) which in turn clears 

all the elements of the shift register setting them to logic state 

' O 1 . Should the triggering pulse not be detected, and monostable (2) 

not fired, then, after the 30 ms pulse, switch S1 will be deenergised 

thus removing the current from the wires and the system "fails safe". 

Assuming mode A operation and that monostable (2) is fired, then on 

clearing the elements of the shift register, this energises all the 

reed relays S5 to S9 and connects resistors W11 to W15 into the 

bridge circuit. The 2 ms pulse holds the shift register clear 

while the relays and comparator settle, (the relays exhibit a certain 

amount of bouncing on operation), masking any stray signals detected 

by the comparator during this period. 

When the first balance point is reached, the bridge polarity across 

® and ® in fig. (A.9) is reversed and detected by the comparator 

which in turn fires the 2 ms monostable (T) shifting a logic state 

11* to the first element of the shift register. This closes the 

nand gate between the clock and counter C1, so stopping this counter. 

With the first element of the shift register being in logic state '1' 

this simultaneously deenergises the relay S9 and removes resistor 

W15 from the circuit. During the 2 ms pulse produced by the firing 

of monostable (T) stray signals detected by the comparator due to 

relay bounce etc. are prevented from reaching the shift register 

because monostable (T) cannot be refired until after the pulse has 

subsided. For this reason the bridge is "dead" for 2 ms following 
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a balance condition and therefore the time between balance conditions 

must be made greater than 2 ms by the suitable choice of resistance 

values in the bridge [90] . 

Resistor W15 having been removed from the circuit, the bridge moves 

towards a second balance point whereupon monostable (?) is again fired; 

in a similar manner to that described the shift register has a second 

element set to logic state '1'; and the second counter is stopped 

and W14 is removed from the circuit. This continues until all the 

resistors have been removed from the circuit and all the counters 

have been stopped. After the final (sixth) balance condition, the 

gates to relays 51,S2 are closed thus removing the power to the wires 

and then the comparator is switched out of the bridge circuit. 

The prece ding description applies to mode A operation of the bridge. 

When operating in mode B the four nor gates between the shift register 

and relays S5 to SB are replaced by the five nand gates as detailed 

in fig. (4.13) and the bridge on reaching balance conditions will 

operate by sequentially replacing resistor W15 for W14 and then for 

W13 and so on until for the sixth balance condition none of the res-

istors are in the circuit. 

It should also be noted that by inhibiting the automatic operation of 

the bridge it is also possible to use the bridge to perform direct, 

steady state measurements of any resistance including that of either 

wire. 

4.5 Working Equations 

This section presents the mathematical equations used to obtain the 

resistance difference, between the long and short wires, at a balance 

point with the bridge in a particular configuration. Also included 

in the section are those equations used to determine the temperature 

rise of the middle portion of the long wire as well as the heat flux 

emitted from this portion to the fluid. These equations used in con-

junction with the relevant physical properties and dimensions of the 
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platinum wire, fluid and cell enable the determination of the wire 

temperature rise as a function of time and so the thermal conduct-

ivity of the fluid. 

4.51 The Bridge Balance Equations 

The bridge is at a balance condition when the voltage betueen points 

difference in resistance betueen the long and short uires at balance, 

U l s ( T ) uhen the bridge is in any particular configuration. 

Neglecting the tedious mathematical manipulation (uhich can be found 

elseuhere [88] )required to obtain the result, the resistance 

difference w i s ( T ) the b r i d 9 e configuration shoun in fig. (4.9) 

uith suitch S12 open, conveniently expressed as:-

(4.9), \l , is zero. We require to know the 

uhere:-

H (4.5) 

I =6-^ 1 v w (4.6) 

(4.7) 

W* = W5 + W6 + W7 + W8 ( 4 . 8 ) 

and because of the bridge design, see table (4.10):-

W3 = W4 = W9 = W10 (4.9) 
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WS as used in the above equations is the equivalent resistance of 

the parallel resistors in the upper right hand arm of the bridge 

and is dependent upon the switch positions of S5 to S9 f while (3 

is the fraction of Lii* in circuit between point (IT) and resistor W3. 

Similarly, the resistance difference ^ s ( T ) c a n a l s o found when 

switch S12 (in fig. (4.9)) is closed and results in an expression 

similar in form to that shown above. These expressions are to be 

found elsewhere[88]. 

In order to obtain w
l s (

T ) explicitly from equations (4.4) to (4.9), 

all we still require is the ratio of the resistances of the two wires 

at equilibrium, W^/li/s. As previously mentioned in § 4.43, when 

describing the automatic bridge operation, the resistances of the 

long and short wires at equilibrium, and W s o , c a n be determined 

directly. One can therefore write the ratio of the resistances of 

the wires during a measurement in the form of a perturbation as:-

U U 

sr = sr2*1 + ' > 
s so 

In equation (4.10) f represents a small quantity which is only very 

weakly temperature dependent. To a good zeroth approximation, it may 

be taken to be zero and better approximations are obtained subsequent-

ly using an iterative procedure as outlined in § 4.54. 

4.52 The Temperature Coefficient of Resistance 

The transient hot wire technique for measuring the thermal conductivity 

of a fluid employs a platinum wire section which is used both as a 

heat source and as a thermometer. The latter function is achieved 

using a pseudo-linear temperature coefficient of resistance for the 

platinum wire to obtain its temperature rise from its resistance using 

the following equation:-

W ] q ( T , S , P ) - U, (T ,S,P) 
A T = T - T o = , ( T ) S > P K / T J . P ) -..<*."> 
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In equation (4.11), Wj, ( T q , S,P) is the resistance difference betueen 

the long and short wires at equilibrium temperature and under an 

axial stress S and hydrostatic pressure P . 

The temperature coefficient of resistance, C^(T o,S,P) is also a 

function of these same quantities. From equation (4.1) ue see that 

under conditions of zero hydrostatic pressure, and axial stress, the 

temperature coefficient of resistance of pure platinum is:— 

A + B[(T-T ) + 2(T -273.15)] 
CK'(T ,0,0) = 2 2 (4.12) 

° 1 + A(T -273.15)+ B(T -273.15) 

The abov/e form of the temperature coefficient of resistance may be 

used provided that the platinum uire is aluays under the conditions 

appropriate to its calibration (zero hydrostatic pressure and axial 

stress). However, the cell design requires an axial tension to be 

imposed upon the uires uhich is not present during calibration and 

the instrument is also operated at elevated hydrostatic pressures 

not employed for the calibration. It is therefore necessary to 

investigate to uhat extent these effects influence the resistance 

temperature characteristics of the uire. Because the uire resistance 

itself is measured in direct, independent, measurements our only 

concern here need be uith the effect on the temperature coefficient 

of resistance a 1 . 

4.521 The Effect of Axial Tension 

For the purposes of the present and some of the later analyses, it is 

convenient to consider the resistance difference W^ s(T,S,P) to refer 

to the resistance of a segment of an infinitely long platinum wire, 

the length of the segment being the difference between those of the 

long and short wires. When therefore the hot wire is referred to, it 

is to be understood that it is the segment just described that is 

considered. 
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On the application of an axial stress, S, to the wire it affects 

both the geometry of the wire and the resistiv/ity of the platinum 

from uhich it is made. The relationship betueen U^ s(T,S,P) and 

U l 8 ( W ) can be shown to be :-

W 1 S ( T , S , P ) = W L S ( T , o , P ) ( I + e 1 S ) ( I + e 2 s ) (4.13) 

uhere:-

F1S = 0 + 2 V ) S / Y p t ( 4 < 1 4 ) 

and for platinum and the relevant conditions applicable to our 

measurements. 

V , = Poissons ratio = 0,35 
p t 5 

Y t = Young's Modulus = 1.6 x 10 MPa (4,15) 

e2S = 2 ' 7 7 X 1 0 " 7 W P a"" 1 ' 9 2 ' 

The present cell design results in the tension in the wire being 

invariant during measurement. Because of this, the resistance of 

the wire at the equilibrium temperature, T q , is measured under 

essentially the same longitudinal stress as is present at the raised 

temperatures occurring during thermal conductivity measurements. 

Although the quantities ^pt^pt*
 a n d €

2S
 a r e n o t u e a l < 1

y dependent 

on temperature, but because the increase in resistance of the wire, 

due to the axial stress imposed, is less than 0,02$6, we find the 

effect of the constant axial stress on the wire to be negligible and 

therefore we can write that:— 

a
f
( T , S = constant,P) = ^ ' ( T ^ P ) (4,16) 

4,522 Effect of Hydrostatic Pressure 

The effect of pressure on the coefficient of resistance of pure 

platinum can be expressed as (see appendix A2.4):-



147 

CX !(T,P) = Q;,(T,O)(I + e_P) (4.17) 

where it has been found that:-

6 p « 1.6 x 10" 6 (l*lPa)"1 (4.18) 

and at the highest pressures employed during experiments constitute 

about 0.08% in a ' . 

The applicability of thB form of equation (4.17) for the platinum 

wires used in a cell has also been tested and substantiated to 

within the experimental uncertainty of the automatic bridge when 

used to measure resistances (+ 0.1 Q ) . 

Equation (4.11) can now be replaced with:-

" l 8 ( T , S , P ) - W l s ( T o , S , P ) 

A T = a'(T o,0,ci» l s(T o,s,p)(i + epP) 

from which the temperature rise is calculated. 

4.53 The Temperature Rise of the Hot Wire 

The transient hot wire described and used in the present work employs 

two wire heat sources used in opposite arms of the automatic bridge 

to eliminate end effects caused by axial heat transfer through the 

wires to the terminals at their ends. Compensation to eliminate 

this effect is achieved by measuring the difference in resistance 

between the two wires. This would yield the temperature rise of the 

middle portion of the long wire, provided the wires were identical 

apart from their lengths. If the wires were long enough, this temp-

erature rise would differ from that occuring in a finite segment of 

a hypothetical infinitely long wire by a negligible amount, (see 

§ 2.334). Unfortunately, in practice the wires are never identical 

due to, among other things, non-uniformities in their radii. However, 

if the resistance per unit length of the two wires differ from each 
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other by less than a feu percent, their dissimilarity can be 

accounted for using an analysis by Kestin & Wakeham [58] • 

Ignoring all the temperature corrections arising from the non-ideal 

behaviour of the wires, uhich after all are small (see § 2.3) then 

the temperature rises of the long and short wire are adequately 

described by:-

(At)x = 
4ttX 

Ln 
4k t 

a ^ C 
(4.20) 

and 

(At). 
S 

4ttX 
Ln 

4k t 

a 2 C 
s 

(4.21) 

The subscripts 1 and s refer to the long and short wires respectively 

and the radii a. and a are suitable mean values for each uire. 
1 s 

As the temperature rise of a wire is experimentally obtained from 

it's measured resistance increase, an experimentally averaged temp-

erature rise, A T , is defined for the long and short wires as:-

AT. 
W 1 - U l o 
cx'w 

(4.22) 
lo 

and 

A T 
w - w 
s so 
a ' w s o 

(4.23) 

Where W^ and W g represent the resistances of the long and short wires 

at time t as would be measured during an experiment and and U s o 

refer to their resistances at equilibrium. 
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These experimentally averaged temperatures as defined by equations 

(4.22) and (4.23) differ from the idealised temperature rises by an 

amount dependent upon the heat conducted axially at the ends of the 

wires. Although we do not know the exact relationship between A T ^ 

and ( A T ) 1 we know that their difference will increase with increase 

in the heat flux in the wire and decrease with increasing wire length. 

Therefore we write:-

- q l 
AT1 = ( A T ) 2 " I J R I ( 4 - 2 * > 

A T s = < A T > S - r F s (*- 2 5> 
s 

where, F^ and F g are functions of their respective wires* radius, 

thermal conductivity and thermal diffusivity; and the wires' end 

geometry as well as being a function of time. 

Defining a further temperature rise A T ' where:-

A T . - ("lo-«.o> " l . - M l s o _ 
A t ' = tt'(u, -u , = - J i T ( 4 ' 2 6 > 

" v 10 so) « Iso 

we see that this temperature rise, AT* as defined by the directly 

measurable quantities in equation (4.26) above, is not as yet ident-

ifi able with the central portion of either wire. The object of the 

analysis is to relate this experimentally determinable quantity A T 1 

with the hypothetical temperature rise of the middle portion of an 

infinitely long, long wire ( A T ) ^ . 

Using equations (4.22) and (4.23) the temperature rise A T ' may be 

expressed in terms of the temperature rises AT . and A T as:— 

W. AT, - U AT 
A T . = - i s — i s o — 8 ( 4 # 2 7 ) 

ui, 
lso 
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After manipulation, this is seen to result in:-

AT* = ( A T M 1 + 
so 

lso b ( AT) S" 

r s T > 7 
( W r W s) 

Ui 
(4.28 

IsO 

where and O' are equilibrium mean resistances per unit length 

of the wires defined by:-

ffi = T 
10 

and ffs = 1 
so 

(4.29 

It is immediately obv/ious from equation (4.28) that if the two wires 

are identical with each other, apart from their lengths, then A T 1 

would be equal to ( A T ) ^ . In practice, this situation never exists 

and the general form of equation (4.28) is applicable. This equation 

contains two perturbation terms, the first arising due to the differ-

ence in the temperature rises between the long and short wires and the 

second due to the conditions of their ends not being identical. It 

can, however, be seen that if the resistance/unit length of the two 

wires differ by less than 2% then the second perturbation term is 

negligible as it is a second order effect. Using the fact that:-

( A T ) S 

TK757 

1 - p. 
(4.30) 

1 + 
Ln 

4kt 

a 2 C 
s 

equation (4.28) now becomes:-

( A T ) X 

where:-

A T ' 
1 + p. 

(4.31 

1 -
Os 
(7, (4.32) 
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P 2 = 

1 + ln 
4k t 

a 2 C 
L. S -

1 

Ln 
4k t 

a 2 C 
s 

( AT)J. - ( AT), 

( A T ) 1 

......«..• • •. (4.33) 

and:-

W c n P 9 so z 
lli. 
lso 

(4.34 

Using the bridge balance equation from § 4.51, with the zeroth order 

approximation that 
u. 
lo , enabling UL (t) to be calculated 

u T t T ~ u 1 3 

s x 7 so 
and when used with the previously derived equations, the temperature 

rise of the middle section of the hot wire, ( AT)^ is found. 

An improvement on the zeroth order approximation for the ratio of 

resistances ^ is now available as to a better approximation 

U (t) 

w i 0 \ ( W - + " { t t o h - i w . } | 

which in the present ratio is:— 

liL(t) UJ < ) 

u T t y - s r 1 1 + « ' < A T > i p 2 <*- 3 6> 
s v ' so l ) 

and results in an itterative procedure being required to calculate 

( A T ) ^ . In practice, it is found that the correction to the zeroth 

order approximation, as made through the use of equation (4.36), is 
under the worst condition encountered =»0.03/& and so the convergence 

of the itteration procedure is rapid. 
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4.54 The Heat Flux from the Hot Wire 

Hav/ing obtained the temperature rise of the middle portion of the 

long wire, the final quantity required to obtain the thermal cond-

uctivity of the test fluid is the heat flux per unit length from 

this portion of the w i r e . The bridge design shown in fig. (4.9) 

ensures that the same current flows through both the long and short 

wires. However, because the resistance per unit length of the two 

wires is not identical, this arrangement does not ensure that iden-

tical heat fluxes per unit length are emitted from the two wires. 

Using a similar technique to that used to obtain the temperature 

rise, it is found that the heat flux from the middle section of the 

long wire is [58] s-

"1 = o - p j ( I + P c ) (4-37:> 

where q ^ is the heat flux obtained assuming ideal wire compensation 

(the wires are identical apart from their lengths) and:-

/ V V 
q l 1 I W 1 ( t ) + W g ( t ) + W1 + W2 ) 

w 2(t) + w s(t) 

- f i " T i p -
....(4.38) 

In terms of the resistance difference W ^ s ( t ) , q ^ may be expressed 

as:-

U 2 w l s ( t ) / ( 1 1 - I s ) 
<11 

( 1 r V 

(4.39) 

+ W1 + W2 

which is true provided that:-

(4.40) 
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In equation (4.37):-

2 V i 1 ! 1 . 

« " ( l r l s ) ( U H W 2 ) + (U1(t)-li/8(t))(l1+lg)
 ( 4 ' 4 1 ) 

also:-

1 P-

p
5 = i 7 = - r < 4 - 4 2 > 

1 s 

and, p^ is defined v/ia (4.32); W1 and W2 are the bridge resistors set 

and recorded prior to measurement and V is the voltage applied across 

the bridge by the power supply units. 

4.55 Wire Lengths 

As the temperature at which measurements are performed is often sign-

ificantly different from that at which the wires 1 lengths were meas-

ured ( ~ 2 9 5 K ) , it is necessary to correct for this temperature diff-

erence. The correction used is:— 

K T 0 ) = l(Tm)(l + 7 ( T 0 - T J ) (4.43) 

where T is the temperature coefficient of expansion of platinum 
/ - 6 - 1 N 

( ~ 8 . 9 x 10 K ), is the temperature at which the wires' measure-

ments were performed, and 1 is the length of a wire. 

Because the temperature rise during a measurement is only ~ 5 K , a 

further correction is not required as this causes an error of less 

than 0.01^ in A T ^ . The correction to l ( T Q ) in practice accounts 

for at most (when (T -T ) « 70K) for a 0.06% change in the calculated 

thermal conductivity. 
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4,56 Lead Resistances 

Resistances of leads and connections are often significant in most 

transient hot wire apparati, and this is especially true for the 

present design of apparatus. The leads whose resistances are of 

importance are those connecting the long and short platinum wires to 

the bridge. In the present design, these leads include the golden 

loops (34) in fig. (4.7) uhich have a resistance of approximately 

0.2ft each. The design of the bridge is such that the effect is 

manifested in the calculation of the heat flux emitted from the 

wire but not in the measurement of its resistance. The resistances 

of these leads which would otherwise be included in the resistances 

of the platinum wires must instead be included in the resistances of 

the resistance boxes W1 and Ui2 of fig. (4.9). 

4.6 Calculation of Liquid Thermal Conductivities 

The previous sections have described how the instrument operates and 

the detailed working equations of the experimental method. In this 

section, the two are combined and it is shown how the thermal conduc-

tivity may be deduced from measurements with the transient hot wire 

technique. 

4.61 Data Processing 

The experimental measurements yield directly the times of bridge 

balances; the bridge configuration corresponding to each time; the 

bridge voltage used; the equilibrium resistances of the wires; the 

equilibrium bath temperature and the hydrostatic pressure within the 

measurement cell during the experiment. From these data we compute 

the idealised temperature rise, a s e9roent of the platinum 

wire as a function of time, during an experiment. This, as a con-

sequence of the working equation describing their relationship:-

A T 
id 4 Tr X( T , P ) \ r» r/ 

Ln 
4k t 

o 

a 2 C 
(2.98) 
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through a linear regression of Ln t on ^ T . ^ , yields the thermal 

conductivity of the test liquid. 

The algorithm for a computer program used to process these data 

follows. The program accepts the raw experimental data ss input and 

returns the thermal conductivity of the liquid X ( T f , P r ) as well as 

the corresponding reference temperature T r and density p r . 

Algorithm for calculation of the thermal conductivity of a test liquid* 

i Enter data and relevant physical properties of the wire, the 

measurement cell and the liquid. 

ii From the bridge resistances and configurations, using the zeroth 

order approximation equation (4.10), calculate the resistance 

difference, U, (t.), corresponding to each of the balance times, 
xS 6 

t• , (see § 4.51 ). 

iii Calculate the temperature coefficient of resistance, t from 

equation (4.17) by assuming (T—T ) in equation (4.12) to be zero. 

iv Calculate the temperature rises, A T 1 ^ ) , from equation (4.25) 

and ( A T ) ^ from equation (4.31). 

v Obtain the heat flux q^ from equation (4.37). 

vi Apply the temperature rise corrections to ( A T ) ^ , using equation 

(2.101), in order to obtain the idealised temperature rise, 

A T l d ( t t ) . In equation (2.101) ( A T ) X is equal to A T ( t - ) . 

vii Repeat steps ii to vi, until convergence on A T ^ . (Less than 

+ 0.01$ change in A T ^ on successive itterations). Use 

equation (4.36) in step ii instead of equation (4.10) and 

(T-T o) equal to ( AT)j, in step iii. 

viii Using the idealised temperature rises A T ^ f f y ) and their assoc-

iated balance times, t- , regress Ln t on and from the 

slope, obtain X ( T r , P p ) . 

ix Repeat steps vii and viii until convergence on \ ( T r , £>,). 

x Calculate T r from equation (2.104) and P r (
T
r »

p
0 ) « 
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The algorithm just described requires an approximate estimate for the 

thermal conductivity of the test liquid for use in the correction 

terms. This estimate can either be provided as input or obtained by 

neglecting those correction terms which require an approximate thermal 

conductivity, when first calculating the thermal conductivity. The 

value thus obtained after this and subsequent itterations is then usad 

in these small correction terms. 

In practice, measurements were performed on test liquids over the 

pressure range of 50-500 f*IPa at an approximately constant equilibrium 

bath temperatures T q . These measurements produced liquid thermal 

conductivities X ( T , P ) at different reference densities P and v r' r r 

slightly different reference temperatures T r* The difference in ref-

erence temperature over the pressure range being of the order of 1.5K 

which is due to the pressure dependence of the physical properties of 

the fluid and measurement cell. In order to examine the density dep-

endence of the thermal conductivity of a liquid, the thermal conduct-

ivity measurements were corrected to a nominal temperature T n using 

the linear equation:-

( T „ , p r ) = ( T r , P r ) + ( | ) p ( T n - T r ) ( 4 . « ) 

The derivative e c l u a t i o n (4.44) is obtained by first assum-

ing the thermal conductivity to be independent of temperature. This 

is done for a number of sets of measurements of thermal conductivity 
versus density at different equilibrium bath temperatures. From these 

(r\ A i 
measurements one can then obtain an estimate of (-rrr) which is then 

\ d V P 

used in equation (4.44). The Process is repeated and as convergence 

is rapid, usually two itterations are all that is required. 

In order to examine the pressure dependence of the thermal conductivity 

one corrects the values of \ ( T . P ) obtained from the measurements 
r

T
 r 

to a nominal temperature T usino:-r n 
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X ( T N , P 0 ) = X ( T R , P 0 ) + { § J ( V T R ) ( 4 . 4 5 ) 

The value of can be obtained by assuming it to be independent 

of pressure and using the values calculated from previous work on the 

thermal conductivity of the liquid at atmospheric pressure. The value 

of thus obtained from literature for n-heptane is between 

o O 

-2,5 X 1Cr 4 u/m/K and -3.0 x 1CT* w/m/K ; for n-nonane is between 

-2.5 x 1CT 4 u/m/K 2 and -3.5 x 10~ 4 w/m/K 2; and for n-undecane is bet-

ween -2.0 x 10~ 4 bd/m/K2 and -2.5 x 1o" 4 U / m / K 2 . 

Due to the large uncertainty in the values quoted in literature and 

because the value ofj^r) changes by almost an order of magnitude 

over the pressure range in question, a different approach was adopted, 

which is thought to be superior. This approach makes use of the fact 

that we can calculate the value (^yj a s described above and this 

changes by at most a factor of two over the pressure range. We 

therefore use:-

(A.46) 
p V /J V / p V ' / p 
r r r 'r 

From data on the pressure and temperature dependence of test liquid 1s 

density we can find [•37] and from the density and temperature dep— 
P r 

endence of the liquid's thermal conductivity, which we have measured, 

we obtain and 

Pr 
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4.62 Experimental Procedure 

The procedure by which the experiments are performed and the required 

data are obtained is briefly presented. 

The measurement cell is mounted in the bellows assembly (see § 4.3) 

and the latter is filled with the test liquid whose thermal conductiv-

ity is to be determined. The cell and bellows, which are attached to 

the pressure vessel plug, are placed inside the autoclave which is then 

pumped up to the required pressure. The autoclave, containing the cell 

and test liquid, is situated within a temperature controlled oil bath 

and is left to attain thermal equilibrium. The time taken to reach 

equilibrium is of the order of 72 hours when the liquid in the cell 

has been changed; 24 hours when the set point on the temperature cont-

roller has been changed; and 2-3 hours when only the pressure within 

the autoclave has been altered. 

Once the system has reached a steady temperature the equilibrium 

temperature of the bath, T i s measured using the platinum resistance 

thermometer which is strapped to the side of the pressure vessel. The 

variable resistors used in the automatic bridge are adjusted to give 

an approximately linear distribution in Ln t, (t; is the time taken to 

balance point i ) while ensuring that the final balance point during 

a run will not greatly exceed 1 second. The relevant bridge resist-

ances as well as the mode and selector switch positions are recorded 

together with the voltage to be supplied across the bridge during a 

run. 

A run is then performed by firing the automatic bridge and the six 

resulting balance times are recorded. The bridge configuration is 

altered by changing the mode or selection switch positions or by 

changing the values of the variable resistors in the upper right hand 

arm of the bridge (see § 4.41). The new bridge configuration is noted, 

a second run is initiated and the six new balance times are recorded. 

Subsequent runs (normally six runs being performed in total) are per-

formed using the same routine and allowing a time lapse of 60 seconds 

between runs (the optimum time lapse being obtained from previous 

experience). 
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Finally, after the run3 have been performed, the individual wire 

resistances of the long and short wires as well as their resistance 

difference are measured at the equilibrium bath temperature, T Q . 

These measurements being performed by operating the bridge in a 

steady state manner using several small bridge voltages and obtain-

ing the steady state resistance at each of these voltages. The 

equilibrium resistance, at T q , is then obtained by extrapolating the 

plot of the steady state resistance versus the square of the bridge 

voltage bach to zero voltage. 

These experimental data are all that is required from an experiment 

on the test liquid at a particular thermodynamic state. These data 

used in conjunction with the physical properties of the liquid, cell 

and platinum wires (these physical properties are given in appendix 3) 

enable the calculation by the computer program of the liquid's thermal 

conductivity. 

4.7 Precision, Accuracy and Performance 

From the theory of the transient hot wire apparatus given in chapter 2, 

together with the additional information given previously in this 

chapter, it is seen that, if the apparatus behaves in the manner assumed 

by mathematical model, then the experimentally determined values of 

AT j d versus Ln t will lie on a perfectly straight line. However, the 

original mathematical model does not include the existance of radiative 

heat transfer which, from the work described in chapter 3, will tend 

to introduce a systematic curvature. But it has been found, using 

the method described in chapter 3 for calculating 5 T d that this 
n 

curvature is small and should be barely perceptible during measurements 

as, over most of the temperature and pressure range encountered, the 

curvature introduced will be within the precision of the bridge 

(+ 0.1* AT.d ). 

It therefore follows that under conditions which are unfavourable to 

radiative heat transfer (low values of T q and A T and when measuring 

relatively high values of X ) the deviations of the experimentally 
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Fig. (4.14) Temperature rise of the platinum wire as a function of 
time. (N-Heptane at 308.15K and 230 MPa) 
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Fig. (4.15) Deviation from the fitted straight line. 

(Cv-Heptane at 306,15!< and 230 MP a.) 
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obtained values of A l ^ from a straight line in Ln t should be id 
randomly distributed and should not greatly exceed + 0.1%. F i g . (4.14) 

shows a plot of the corrected temperature rise Al\ versus L n t for an id 
experimental run on n-Heptane at 308.15K and 230 MPa in which the 

above conditions are m e t . In order to emphasise the straightness of 

the line, the deviations of the points from the fitted straight line 

has been magnified by a factor of 20. Fig. (4.15) shows the deviation 

plot for the 3ame results and shows that the deviations appear to be 

randomly distributed uith a maximum deviation of only + 0.06%. It ha9 

been calculated that the curvature introduced by the existance of 

radiative heat transfer during this measurement causes a deviation from 

the straight line of between -0.04% at t=0.1 s, peaking to + 0.02% at 

t=0.5 s and decreasing to - 0.02% at t=1 s . Thus the observed behaviour 

is taken as conclusive evidence of the correct operation of the apparatus. 

It has been estimated that the precision of the apparatus is one of 

+ 0.2% which has been supported by repeating measurements under ident-

ical thermodynamic conditions but using different sets of platinum 

wires and different samples of the test liquid. These repeat measure-

ments were found to repeat the original results to within 0.2%. 

The absolute accuracy of the measurements,E, has been estimated 

using:-

E - E P r + E m m + E n s + (4.160) 

Uhere in equation (4.160) E _ is the precision of the apparatus; E 
f-T IDS? 

is the error introduced due to the applicability of the mathematical model; 

E.,_ is the error incurred due to the numerical solution used to obtain 
NS 

the radiation defect; and E ^ is the error introduced by the radiation 

defect approximation. We therefore find the accuracy to be:— 

E = 0.3 + 20 £ [%] (4.151) 

and is found to be between 0.5% and 0.8% for the measurements reported 

in chapter 5. 



162 

CHAPTER 5 

Results 

Introduction 

The previous chapters have presented the theory behind the transient 

hot wire technique and described an apparatus which was used to perform 

precise, accurate measurements of liquid thermal conductivities. Using 

an apparatus and method based on this work, the thermal conductivity of 

n-Heptane, n-Nonane, and n-Undecane was measured in the pressure range 

50 - 500 MPa, In this chapter, the thermal conductivity versus pressure 

and density is presented at 308,15K, 323,15K and 348,15K for n-Heptane 

[95] , n-Nonane, and n-Undecane and also at 363,15K in the case of 

n-Nonane, This chapter has been devoted primarily to the presentation 

of the results and the discussion and usage of these results is delayed 

until chapter 6, 

The purities of each n-Alkane studied, as well as the refractive index 

quoted by the manufacturer, are given in Table (5,1), By means of in-

dependent measurements of the refractive index of samples of the 

n-Alkanes, as well as through tests on a gas chromatograph, the stated 

purities of the n-Alkanes were supported. In fact, and especially in 

the case of n-Nonane, it is thought that the purity of the samples 

tested were appreciably in excess of those quoted by the manufacturer, 

Hydrocarbon Purity 

[%] 
Refractive Index 

@ 25°C 

Extinction 
Coefficient 

[m-1] 
@ 300K 

Supplier 

n-Heptane 99,5 1,3880 - 1,3885 1070 BDH 

n-Nonane 98,0 1,4050 - 1,4070 1120 BDH 

n-Undecane 99,0 1,4170 - 1,4180 1150 BDH 

Table (5,1) Purity and optical properties of the studied hydrocarbons 
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The characteristics of the measurement cell and a typical set of wires 

are given in Table (5,2). A number of sets of wires were used during 

the measurements because during the changing of the test liquid, the 

wires often break. Repetition of the experiments with a new set of 

wires, give results which differed by less than + 0.2%, thus support-

ing the estimate of the apparatus design (+ 0.2%). 

Relevant Characteristics of the Measurement Cell and a typical set 
of wires. 

Internal diameter of the cell 9.90 mm + 0.01 mm 

Length of the long wire @ 321K 151.63 mm + 0.05 mm 

Length of the short wire @ 321K 49.08 mm + 0.05 mm 

Long wire resistance @ 321K & 315 MPa 431.09 ft + 0.05 ft 

Short wire resistance @ 321K & 315 MPa 140.12 ft + 0.05 ft 

Platinum wire radius 3.89 /xm + 0.01 jum 

Emissivity of the platinum wire 0.037 

Table (5.2) 

In the case of n-Heptane and n-Wonane, the upper limit on the pressure 

during measurements was dictated by the available density versus 

pressure data as given in appendix 3. In the case of n-Undecane, the 

upper limit on the pressure was set to 380 MPa at T n = 308.15K and 

400 MPa at T = 323.15K and T = 348.15K. This was because n-Undecane 
n n 

was found to solidify at these temperatures above these pressures. Et 

was found, to the detriment of a measurement cell, that at 304K 

n-Undecane freezes between 390 and 400 MPa. This finding has been 

supported [96] . The lower limit on the pressure range was set at 

approximately 50 MPa in order that on raising the temperature of the 

system the bellows would not expand beyond its extent when filled at 

room temperature as it would hit the bottom of the pressure vessel 

and burst. By Ensuring there was at all times a minimum hydrostatic 

pressure of 50 MPa on the heated fluid,within the bellows,guaranteed 

that within the temperature range for which measurements were performed 

bursting would not occur. 
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For the purposes of correlating the experimental results, these 

results ^(T^^p^) and X ( T n , P ) were fitted to polynomials. It is 

thought that the measured pressure and calculated density of the 

hydrocarbons may be in error by as much as, if not more than, the 

measured thermal conductivity. This has been partially substantiated 

by the failure of the density versus pressure data to predict the 

freezing of n-Undecane at =s;400 |»)Pa and 304K. Because of possible 

errors in pressures and densities, the commonly used least squares 

fit to the thermal conductivity, along an isotherm in ascending 

powers of pressure or density was thought to be unsuitable. Instead 

fits were used of the form:-

T ( X , P ) = a Q \ + a ^ P - P * ) + a 2 ( P - P * )
2
 + a 3 ( P - P * )

3
 (5.1) 

for the density dependence and:-

T ( X , P ) = a* X + a ' ^ P - P * ) + a « 2 ( P - P * )
2 + a 3(P-P*)

3 (5.2) 

for the pressure dependence. By setting T ( X , P ) and T ( X , P ) constant 

and equal to unity and minimising the square of the deviations in the 

direction of the two independent variables X and P or X a n d P , we 

obtain a fit which allows errors in both variables. In equations (5.1) 

and (5.2) P* and p * are scaling parameters and were approximately equal 

to the mean pressure or density over the isotherm along which measure-

ments were performed. The coefficients a ^ a ^ i a ^ a ^ * a n c* a ' 0 '
a * 1* 3'2' a'' 

in equations (5.1) and (5.2) are determined by the regression analysis 

used. 

The polynomials thus obtained have no physical significance as they 

have no theoretical basis and are merely a means of interpolating 

the data within the range of measurements. Because of this, care 

must be taken when extrapolating using these derived polynomials. 
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5.2 Thermal Conductivity as a function of Density 

In this section the thermal conductivity data for n-Heptane, n-Nonane, 

and n-Undecane as a function of density are presented for each liquid 

and along each isotherm for which measurements were performed. Each 

set of results is presented in tabular form and in a graph which 

also contains the polynomial which was obtained by regression as 

indicated above. Table (5.13) at the end of this section gives the 

values of a^ , the coefficients pertaining to equation (5.1) for 

each liquid at each of the temperatures to which the data given in 

this section is referred, and P i g . (5.24) shows the deviation plot 

of the measured thermal conductivities from their correlated values 

(those obtained using equation (5.1)). 



Table I 5.3 Thermal Conductivity l/ersus Density 
N-Heptane at T n = 308.15K 

p To H> Tr Pr 

H 

X a p p ( T r , ' r ) X a p p ( T n , * ) X ( T n , P r) 

MPa K kg/m 3 K kg/m 3 w/m/K 2 

x10-4 

U/m/K u/m/K lii/m/K 

52.4 
61.6 

71.5 
71.5 
80.9 
91.6 
95.3 

108.8 
109.1 
121.5 
122.1 
142.9 
162.0 
167.6 
187.2 
205.5 
229.6 
253.5 
284.1 
310.9 
350.5 
405.8 
472.0 
499.6 

306.344 
307.274 
306.356 

306.351 
307.271 
306.353 
307.307 
306.360 
306.377 
306.352 
307.281 
306.346 
307.267 
307.276 
307.278 
307.274 
307.315 
307.289 
307.273 
307.280 
307.278 
307.283 
307.273 

307.282 

713.7 
718.6 

724.7 
724.7 

729.2 
735.0 
736.3 
742.9 
743.0 
748.4 
748.2 
757.0 
763.7 
765.7 
772.4 
778.3 
785.6 
792.4 
800.6 
807.2 
816.5 
828.6 
841.5 
846.5 

309.500 
310.360 
309.319 
309.318 
310.220 
309.242 
310.225 
309.193 
309.190 
309.127 
310.003 
308.993 
309.863 
309.829 
309.855 
309.794 
309.780 
310.066 
309.601 
309.535 
309.492 
309.421 
309.345 
309.307 

711.8 
716.8 
723.0 
723.0 

727.6 
733.5 
734.7 
741.4 
741.6 
747.0 
746.8 
755.8 
762.5 
764.6 
771.3 
777.2 
784.6 
791.3 
799.7 
806.4 

815.7 
827.8 
840.8 
845.8 

1.26 

1.23 
1.20 
1.20 
1.20 
1.20 
1.20 
1.22 
1.22 

1.24 
1.24 
1.30 
1.36 
1.38 
1.45 
1.51 
1.60 
1.68 
1.79 
1.87 
1.98 
2.12 
2.24 
2.28 

0.1406 
0.1440 
0.1479 
0.1480 
0.1507 
0.1548 
0.1554 
0.1597 
0.1600 
0.1631 
0.1627 
0.1687 
0.1733 
0.1746 
0.1793 
0.1834 
0.1885 
0.1928 
0.1990 
0.2041 
0.2110 
0.2198 
0.2297 
0.2335 

0.1404 
0.1437 
0.1478 
0.1478 
0.1504 
0.1546 
0.1552 
0.1595 
0.1598 
0.1630 
0.1625 
0.1686 
0.1731 
0.1744 
0.1791 
0.1832 
0.1882 
0.1925 
0.1988 
0.2038 
0.2108 
0.2195 
0.2294 
0.2332 

0.1385 
0.1417 
0.1457 
0.1458 
0.1484 
0.1525 
0.1531 
0.1574 
0.1577 
0.1608 
0.1603 
0.1664 
0.1708 
0.1721 
0.1767 
0.1808 
0.1858 
0.1901 
0.1963 
0.2013 
0.2082 
0.2169 
0.2267 
0.2305 
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Table £ 5.5 Thermal Conductivity Versus Density 
N-Heptane at T = 323.15K 

n 

p 

MP a 

To 

K 

P 0 

kg/m 3 

T r 

K 

Pr 

kg/m 3 

( A 

H 

U/m/K 2 

X1Q- 4 

X (Tr, pr) app 

u/ra/K 

X a p p ( T n , * ) 

U/m/K 

X ( T n , P r) 

U/m/K 

53.2 

73.5 

108.4 

157.6 

210.2 

262.3 

310.7 

360.8 

386.5 

435.7 

499.9 

320.897 

320.895 

320.917 

320.950 

320.956 

320.948 

320.953 

320.955 

320.931 

320.946 

320.951 

705.4 

717.6 

735.3 

755.9 

774.1 

789.4 

801.7 

813.7 

819.4 

829.7 

842.0 

324.028 

323.889 

323.749 

323.609 

323.392 

323.283 

323.204 

323.112 

323.068 

323.046 

322.951 

703.5 

715.9 

733.9 

754.7 

773.1 

788.5 

801.0 

812.9 

818.7 

829.0 

841.3 

1.34 

1.23 

1.20 

1.29 

1.47 

1.65 

1.81 

1.95 

2.02 

2.14 

2.25 

0.1383 

0.1454 

0.1565 

0.1703 

0.1827 

0.1937 

0.2031 

0.2120 

0.2161 

0.2239 

0.2333 

0.1382 

0.1452 

0.1564 

0.1702 

0.1826 

0.1937 

0.2031 

0.2120 

0.2161 

0.2239 

0.2333 

0.1360 

0.1429 

0.1539 

0.1676 

0.1799 

0.1908 

0.2001 

0.2090 

0.2130 

0.2208 

0.2301 
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Table 5.7 Thermal Conductivity Versus Density 

N—Heptane at T n = 348.15K 

p T 0 Po T r Pr 

W/p 
X a p p(Tr,»r) X(T n*

 pr) 

MPa K kg/m 3 
K kg/tn

3 U/m/K 2 

x10-4 

U/m/K U/m/K U/m/K 

65.1 343.479 699.8 346.512 698.1 1.42 0.1371 0.1373 0.1346 

79.1 343.503 708.5 346.464 706.9 1.30 0.1424 0.1426 0.1398 

111.2 343.481 725.4 346.246 724.0 1.20 0.1528 0.1530 0.1501 

125.3 343.420 732.1 346.113 730.8 1.20 0.1572 0.1574 0.1544 

146.7 343.438 741.4 346.071 740.3 1.21 0.1635 0.1637 0.1606 

176.9 343.201 753.4 345.766 752.3 1.28 0.1713 0.1716 0.1684 

203.6 343.459 762.7 345.894 761.7 1.35 0.1780 0.1783 0.1750 

254.8 343.441 778.7 345.775 777.8 1.52 0.1888 0.1891 0.1857 

303.4 343.447 792.0 345.696 791.2 1.68 0.1990 0.1994 0.1959 

322.2 343.212 796.8 345.370 796.1 1.74 0.2029 0.2034 0.1999 

360.3 343.219 806.0 345.453 805.3 1.86 0.2095 0.2100 0.2063 

380.4 343.220 810.6 345.324 809.9 1.92 0.2134 0.2140 0.2103 

411.9 343.204 817.5 345.364 816.9 2.00 0.2186 0.2191 0.2154 

443.9 343.235 824.2 345.185 823.6 2.08 0.2238 0.2245 0.2206 

499.2 343.228 834.7 345.138 834.2 2.19 0.2325 0.2331 0.2293 
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Table 5.9 Thermal Conductivity Versus Density 
N-Nonane at T = 308.15K 

n 

p T 0 P 0 T r £ 
H 

X a p p ( T r , P r ) X a p p ( T n , V \ ( T n , <>r) 

MPa K kg/m 3 K kg/m 3 Uj/m/K2 

xicr 4 

u/m/K lii/m/K U/m/K 

51.6 

51.8 

52.0 
63.5 
87.1 
92.9 

112.5 
130.9 
156.3 

167.5 
190.6 
211.9 
241.0 
271.6 
309.2 

337.0 
369.2 
403.9 
435.5 
468.5 

500.1 

304.145 
304.129 
304.110 
304.086 
304.116 
304.093 
304.081 
304.123 
304.122 
304.122 
304.136 
304.135 
304.132 
304.145 

304.130 
304.112 
304.118 
304.118 
304.107 
304.127 
304.147 

745.3 
745.4 

745.5 
751.7 

763.3 
766.0 
774.2 
781.4 
790.6 
794.3 
801.7 
808.1 
816.2 
824.2 
833.3 
839.6 
846.6 
853.7 
859.7 
865.7 
871.2 

307.137 
307.164 
307.196 
307.081 
306.977 
306.911 
306.875 
306.781 
306.714 
306.702 
306.735 
306.665 
306.596 
306.610 
306.475 
306.368 
306.348 
306.337 
306.153 
306.176 
306.120 

743.5 
743.6 
743.7 

750.0 
761.8 
764.5 
772.8 
780.1 
789.3 
793.1 
800.6 
807.0 
815.2 
823.2 
832.4 
838.7 
845.7 
852.8 
859.0 
865.0 
870.5 

1.29 
1.29 

1.30 
1.34 
1.41 
1.42 
1.47 
1.52 
1.58 
1.60 
1.66 
1.70 
1.77 
1.85 
1.94 
2.02 
2.11 
2.21 

2.31 
2.41 
2.51 

0.1460 
0.1461 
0.1463 
0.1499 
0.1571 
0.1583 
0.1633 
0.1682 
0.1738 
0.1764 
0.1809 
0.1856 
0.1909 
0.1967 
0.2029 
0.2075 
0.2123 
0.2175 
0.2219 
0.2266 
0.2308 

0.1461 
0.1462 
0.1464 
0.1500 
0,1572 
0.1584 
0.1635 
0.1684 
0.1740 
0.1766 
0.1812 
0.1858 
0.1912 
0.1970 
0.2032 
0.2079 
0.2127 
0.2179 
0.2224 
0.2270 
0.2313 

0.1435 
0.1436 
0.1438 
0.1474 
0.1545 
0.1557 
0.1607 
0.1655 
0.1711 
0.1737 
0.1782 
0.1827 
0.1881 
0.1938 
0.2000 
0.2046 
0.2094 
0.2145 
0.2190 
0.2236 
0.2278 



173 

00 
CM • o" THERMAL CONDUCTIVITY VERSUS DENSITY 

CD 
CM 

CsJ 

N-NQNRNE RT 308.15K 

© VALUES OBTAINED EXPERIMENTALLY 
— VALUES OBTAINED BY RE0RE88I0N 

\ < M 

C J 
ZD ao Q — 

O 
C J 

cr CO 

L U ° 

» - « 
• o" 

CM » 
• 

o " 

Q 7 2 0 T 0 0 7 6 0 - 0 0 8 0 0 . 0 0 8 4 0 . 0 0 

DENSITY [ KG/M3] 
8 8 0 - 0 0 9 2 0 . 0 0 

r i D . (5*10) 



Table 5.11 Thermal Conductivity Versus Oensity 
N-Nonane at T = 323.15K 

n 

p To Po T r * 
U 

X a p p ( T r , ' r ) X a p p ( T n , V X ( T n , P r) 

PIP a K kg/m 3 K kg/m 3 U/m/K 2 

x10~4 

U/m/K U/m/K U/m/K 

35.3 

62.3 

85.4 

89.6 

109.7 

123.0 

139.3 

174.8 

181.0 

213.8 

249.1 

292.4 

331.2 

360.1 

412.5 

452.4 

500.5 

319.685 

319.677 

319.698 

319.682 

319.711 

319.685 

319.713 

319.725 

319.690 

319.714 

319.714 

319.714 

319.702 

319.665 

319.710 

319.696 

319.696 

725.8 

742.2 

754.2 

756.2 

765.1 

770.8 

777.2 

789.8 

791.9 

802.0 

811.9 

823.1 

832.2 

838.7 

849.8 

857.6 

Q6G.4 

322.858 

322.685 

322.447 

322.591 

322.523 

322.420 

322.423 

322.281 

322.216 

322.229 

322.105 

321.958 

321.949 

321.862 

321.792 

321.750 

321.712 

723.8 

740.5 

752.8 

754.7 

763.7 

769.5 

775.9 

788.7 

790.8 

801.0 

811.0 

822.3 

831.4 

837.9 

849.1 

856.9 

865.7 

1.11 

1.25 

1.33 

1.34 

1.40 

1.43 

1.47 

1.55 

1.56 

1.63 

1.71 

1.81 

1.90 

1.97 

2.11 

2.23 

2.42 

0.1367 

0.1466 

0.1534 

0.1546 

0.1598 

0.1636 

0.1679 

0.1762 

0.1780 

0.1846 

0.1917 

0.1994 

0.2059 

0.2105 

0.2186 

0.2245 

0.2311 

0.1367 

0.1466 

0.1535 

0.1547 

0.1599 

0.1637 

0.1680 

0.1763 

0.1781 

0.1848 

0.1919 

0.1996 

0.2062 

0.2108 

0.2189 

0.2248 

0.2314 

0.1339 

0.1437 

0.1504 

0.1516 

0.1568 

0.1605 

0.1648 

0.1730 

0.1748 

0.1813 

0.1883 

0.1960 

0.2025 

0.2071 

0.2151 

0.2209 

0.2275 



175 

00 
CM • 

o " 
THERMAL CONDUCTIVITY VERSUS DENSITY 

CO 
CM 

CM • 

o " 

N-NONflNE AT 323.15K 

© VALUES OBTAINED EXPERIMENTALLY 
— VALUES OBTAINED BY REORE88ION 

\ o ' 

> - o 
'— 

»-»o" > 

CJ 
Z D CD 

a — 

o CJ 

a: co 
2 1 — 
cn"-
LU 

» 
o" 

CM 
»—i • 

o " 

^ 8 0 . 0 0 7 2 0 . 0 0 760 -00 8 0 0 . 0 0 
D E N S I T Y C K G / M

3
] 

8 4 0 . 0 0 8 8 0 . 0 0 

rig, (5.12) 



* Table 5.13 Thermal Conductivity Versus Density 
N-Nonano at T = 348.15K 

n 

p 

PlPa 
T ° 

K 

Po 

kg/m 3 

Tr 

K 

Pr 

kg/m 3 

H 

U/m/K 2 

x10~ 4 

X (Tr, PT) app  w  1  

U/m/K 

X A P P ( T N , * ) 

U/m/K 

X ( T n , P r) 

U/m/K 

63.2 

83.8 

107.3 

134.5 

169.1 

202.1 

232.3 

264.2 

303.7 

367.7 

400.2 

475.6 

502.7 

344.129 

344.159 

344.175 

344.172 

344.192 

344.169 

344.179 

344.184 

344.188 

344.181 

344.184 

344.165 

344.136 

729.1 

740.7 

752.3 

764.1 

777.4 

788.6 

797.8 

806.9 

817.2 

832.2 

839.3 

854.4 

859.4 

347.744 

347.649 

347.520 

347.396 

347.267 

347.156 

347.060 

346.951 

346.882 

346.946 

346.669 

346.491 

346.491 

727.1 

739.0 

750.7 

762.1 

776.1 

787.5 

796.7 

805.9 

816.3 

831.4 

838.6 

853.7 

858.7 

1.18 

1.26 

1.34 

1.41 

1.49 

1.57 

1.63 

1.70 

1.78 

1.93 

2.02 

2.22 

2.30 

0.1413 

0.1485 

0.1556 

0.1632 

0.1719 

0.1797 

0.1861 

0.1924 

0.1999 

0.2104 

0.2160 

0.2277 

0.2315 

0.1413 

0.1486 

0.1557 

0.1633 

0.1721 

0.1799 

0.1863 

0.1926 

0.2000 

0.2106 

0.2163 

0.2281 

0.2319 

0.1379 

0.1450 

0.1519 

0.1595 

0.1681 

0.1758 

0.1821 

0.1883 

0.1957 

0.2061 

0,2117 

0.2233 

0.2271 
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Table 5.15 Thermal Conductivity Versus Density 
N-Nonane at T n = 363.15K 

p T o £ Tr Pr 

H 

X a p p ( T r , » r ) X a p p <
T n ' V X ( T n , P r) 

PlPa K kg/m 3 
K kg/m 3 

u/m/K 2 

x1CT 4 

u/m/K U/m/K U/m/K 

53.7 

75.8 

103.8 

127.6 

159.A 

187.7 

211.8 

213.3 

249.6 

304.4 

403.7 

425.4 

503.3 

360.507 

360.510 

360.583 

360.535 

360.537 

360.550 

360.560 

360.533 

360.539 

360.557 

360.557 

360.523 

360.578 

713.9 

727.8 

742.7 

753.9 

766.9 

777.3 

785.3 

785.8 

796.9 

811.9 

835.1 

839.7 

854.7 

364.241 

364.075 

363.977 

363.815 

363.676 

363.558 

363.2485 

363.426 

363.362 

363.192 

362.974 

362.891 

362.895 

711.8 

726.0 

741.1 

752.4 

765.6 

776.1 

784.3 

784.7 

795.9 

811.0 

834.4 

839.0 

854.0 

1.04 

1.17 

1.28 

1.35 

1.43 

1.49 

1.55 

1.55 

1.62 

1.74 

1.97 

2.02 

2.23 

0.1347 

0.1429 

0.1526 

0.1588 

0.1669 

0.1742 

0.1789 

0.1801 

0.1872 

0.1980 

0.2156 

0.2191 

0.2308 

0.1346 

0.1428 

0.1525 

0.1587 

0.1668 

0.1741 

0.1789 

0.1800 

0.1872 

0.1980 

0.2157 

0.2192 

0.2309 

0.1308 

0.1389 

0.1484 

0.1545 

0.1624 

0.1696 

0.1742 

0.1754 

0.1824 

0.1931 

0.2105 

0.2139 

0.2255 
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Table 5.17 Thermal Conductivity Versus Density 
N-Undecane at T 

n 
= 308.15K 

p To 
p0 T r Pr 

H 

X (Tr, Pt) app hpp(T"' 
X ( T n , P r) 

PlPa K kg/m 3 K kg/m 3 U/m/K 2 

xicr 4 

U/m/K U/m/K U/m/K 

47,4 305.270 762.8 309.343 760.3 1.35 0.1478 0.1476 0.1450 

64.3 305.284 771.4 309.192 769.2 1.40 0.1529 0.1527 0.1501 

75.7 305.288 776.9 309.154 774.8 1.44 0.1559 0.1558 0.1531 

97.9 305.305 786.6 309.113 784.6 1.50 0.1621 0.1620 0.1592 

120.5 305.312 795.5 309.006 793.6 1.55 0.1675 0.1674 0.1645 

137.0 305.308 801.6 308.898 799.8 1.59 0.1712 0.1711 0.1682 

149.2 305.304 805.8 308.827 804.1 1.61 0.1742 0.1741 0.1712 

169.4 305.303 812.4 308.729 810.8 1.64 0.1785 0.1784 0.1754 

183.7 305.283 816.9 308.642 815.3 1.66 0.1820 0.1819 0.1789 

211.8 305.306 825.0 308.612 823.5 1.69 0.1870 0.1869 0.1838 

242.0 305.304 833.4 308.506 832.0 1.71 0.1927 0.1926 0.1895 

274.1 305.311 841.2 308.417 839.9 1.71 0.1982 0.1981 0.1949 

304.6 305.322 848.4 308.386 847.1 1.69 0.2034 0.2033 0.2001 

343.5 305.249 856.9 308.261 855.7 1.65 0.2091 0.2090 0.2058 

344.0 305.328 857.0 308.281 855.8 1.65 0.2094 0.2094 0.2061 

382.7 305.321 865.0 308.211 863.9 1.60 0.2153 0.2153 0.2120 
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Table 5.19 Thermal Conductivity Versus Density 
N-Undecane at T = 323.15K 

n 

p To P0 Tr 

WL 
X a p p ( T r >

p r ) X a p p ( T n , X ( T n , P r) 

PlPa K kg/m 3 K kg/m 3 U/m/K 2 

x1CT 4 

U/m/K U/m/K U/m/K 

50.2 

50.3 
50.4 

72.3 
73.0 
93.4 

113.5 
133.4 
164.6 
185.2 
200.5 
239.1 
260.2 
285.5 
314.9 
325.3 
334.2 
364.4 
403.2 

320.802 

320.797 
320.798 
320.804 
320.896 
320.860 
320.859 
320.865 
320.854 
320.894 
320.869 
320.899 

320.871 
320.853 
320.872 
320.874 
320.850 
320.857 
320.915 

755.2 

755.3 
755.4 
766.9 
767.2 

776.7 
785.1 
792.8 
803.8 
810.2 
815.0 
825.8 
831.4 
837.7 
844.5 
846.9 
848.9 
855.5 
863.5 

324.789 
324.819 
324.796 
324.661 

324.741 
324.554 
324.496 
324.375 
324.204 
324.174 
324.134 
324.055 
323.962 
323.873 
323.879 
323.860 
323.806 
323.682 
323.742 

752.9 
753.0 
753.1 
764.8 
765.1 
774.8 
783.3 
791.2 
802.3 
809.4 
813.7 
824.6 
830.2 
836.6 
843.4 
845.8 
847.9 
854.5 
862.6 

1.32 
1.32 

1.32 
1.33 
1.38 
1.44 
1.49 
1.54 
1.60 
1.64 
1.66 

1.69 
1.70 
1.71 
1.70 
1.69 
1.69 
1.66 
1.61 

0.1465 
0.1460 
0.1458 
0.1528 
0.1527 
0.1582 
0.1634 
0.1684 
0.1762 
0.1802 
0.1835 
0.1907 
0.1946 
0.1989 
0.2039 
0.2058 
0.2070 
0.2119 
0.2175 

0.1462 
0.1458 
0.1456 
0.1526 
0.1525 
0.1580 
0.1632 
0.1682 
0.1760 
0.1800 
0.1834 
0.1905 
0.1945 
0.1987 
0.2038 
0.2057 
0.2069 
0.2118 
0.2174 

0.1433 
0.1429 
0.1427 
0.1496 
0.1495 
0.1549 
0.1600 
0.1649 
0.1726 
0.1766 
0.1799 
0.1870 
0.1909 
0.1951 
0.2001 
0.2020 
0.2031 
0.2081 
0.2136 
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Table 5.21 Thermal Conductivity Versus Density 
N-Undecane at T = 348.15K 

n 

p To Po Tr 

\ H 
X a p p ( T r , M X a p p ( T n , * > X ( T n , 

MPa K kg/m 3 K kg/m 3 U/m/K 2 

x10- 4 

U/m/K U/m/K U/m/K 

49.2 343.969 741.5 347.772 739.3 1.28 0.1408 0.1408 0.1374 

49.6 343.804 741.8 347.785 739.6 1.28 0.1413 0.1414 0.1379 

74.8 344.066 756.0 347.791 754.1 1.32 0.1497 0.1497 0.1461 

96.5 344.097 766.7 347.734 764.9 1.38 0.558 0.1558 0.1521 

116.8 344.050 775.6 347.562 774.1 1.43 0.1613 0.1614 0.1576 

135.7 344.045 783.3 347.537 781.7 1.48 0.1654 0.1655 0.1616 

137.2 344.001 783.9 347.475 782.4 1.48 0.1665 0.1666 0.1627 

170.7 344.046 796.1 347.367 794.8 1.56 0.1742 0.1743 0.1703 

195.3 344.042 804.2 347.330 802.9 1.61 0.1793 0.1794 0.1753 

222.0 344.044 812.2 347.187 811.0 1.65 0.1848 0.1849 0.1807 

252.1 344.067 820.7 347.121 819.6 1.68 0.1907 0.1909 0.1866 

281.4 344.068 828.4 347.085 827.3 1.70 0.1956 0.1958 0.1915 

301.2 344.095 833.2 347.078 832.2 1.71 0.1995 0.1997 0.1953 

342.2 344.072 842.8 346.875 841.9 1.70 0.2065 0.2068 0.2023 

371.6 344.068 849.4 346.721 848.6 1.69 0.2110 0.2113 0.2067 

373.1 344.048 849.7 346.833 848.9 1.69 0.2113 0.2116 0.2070 
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Results of the regression analysis to uhich the data were subjected 

Table 5.23 

Equation to uhich the data were fitted:— 

1 = a \ + a ^ P - P * ) + a 2 ( p - p * )
2 + a 3 ( P - P * )

3 

N-Alkane Temperature 

M 

P* 

[kg/m3] 

a 
0 

[mK/u] 

al 

[m3/kg] 
x10~3 

a 2 

[ m M 
x10~ 6 

a 3 

[m9/kg3] 
x10-9 

Standard Deviation 
about regression 

line 

N-Heptane 308.15 
323.15 
348.15 

766.0 
779.0 
771.0 

5.7723 
5.4300 
5.5145 

-3.8380 
-3.8413 
-3.8840 

-3.441 
-3.663 
-4.781 

- 6.36 
16.74 
0.56 

0.0012 
o.nnn7 
0.0011 

N—Nonane 308.15 
323.15 
348.15 
363.15 

802.0 
796.0 
796.0 
783.0 

5.5751 
5.6194 
5.5106 
5.7504 

-3.6568 
-3.7662 
-3.7321 
-3.7783 

-4.207 
-3.979 
-3.993 
-5.100 

2.39 
11.95 

- 7.11 
-10.60 

0.0008 
0.0011 
0.0010 
0.0019 

N-Undecane 308.15 
323.15 
348.15 

814.0 
806.0 
806.0 

5.6319 
5.7282 
5.6368 

-3.6851 
-3.7677 
-3.6757 

-4.318 
-5.025 
-5.034 

12.53 
30.11 

- 5.57 

0.0011 
0.0014 
0.0013 
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5.3 Thermal Conductivity Versus Pressure 

Tor most practical applications it is advantageous to have available 

the pressure dependence of the thermal conductivity of a liquid rather 

than its density dependence. For this reason, the thermal conduct-

ivity of n-Heptane, n-Nonane, and n-Undecane as a function of pressura 

is presented along the isotherms at which the measurements were 

performed. As for the density dependence, each set o^ results are 

presented both in tabular and graphical form. The results were fitted 

to polynomials of the form of equation (5.2) as explained in § 5.1 

and the values of the coefficients a^. pertaining to equation (5.2) 

are given in table (5.45) while the deviation plot of the measured 

thermal conductivity from their correlated values obtained using 

equation (5.2) is present in Fig. (5.46) at the end of the section. 

To reitterate the warning given in § 5.1, care must be used when 

extrapolating outside the pressure range using equation (5.2) as the 

equation has no physical significance and, strictly, is only valid 

within the pressure range over which measurements are performed. 



Table 5.25 Thermal Conductivity Versus Pressure 
N-Heptane at T = 308.15K 

n 

p T0 Po Pr /ax\ 

W p 
X a p p * 1 * ^ X a p p (

T n . e ) X(T n,P) 

MPa K kg/m 3 K kg/m 3 U/m/K 2 

x10"5 

U/m/K U/m/K U/m/K 

52.4 
61.6 
71.5 
71.5 
80.9 
91.6 
95.3 

108.8 
109.1 
121.5 
122.1 
142.9 
162.0 
167.6 
187.2 
205.5 
229.6 
253.5 
284.1 
310.9 
350.5 
405.8 
472.0 
499.6 

306.344 
307.274 
306.356 
306.351 
306.271 
306.353 
307.307 
306.360 
306.377 
306.352 
307.281 
306.346 
307.267 
307.276 
307.278 
307.274 
307.315 
307.289 
307.273 
307.280 
307.278 
307.283 
307.273 
307.282 

713.7 
718.6 
724.7 
724.7 
729.2 
735.0 
736.3 
742.9 
743.0 
748.4 
748.2 
757.0 
763.7 
765.7 
772.4 
778.3 
785.6 
792.4 
800.6 
807.2 
816.5 
828.6 
841.5 
846.5 

309.500 
310.360 
309.319 
309.318 
310.220 
309.242 
310.225 
309.193 
309.190 
309.127 
310.003 
309.993 
309.863 
309.829 
309.855 
309.794 
309.780 
310.066 
309.601 
309.535 
309.492 
309.421 
309.345 
309.307 

711.8 
716.8 
723.0 
723.0 
727.6 
733.5 
734.7 
741.4 
741.6 
747.0 
746.8 
755.8 
762.5 
764.6 
771.3 
777.2 
784.6 
791.3 
799.7 
806.4 
815.7 
827.8 
840.8 
845.8 

-25.2 
-24.3 
-23.6 
-23.6 
-22.7 
-22.0 
-21.7 
-20.7 
-20.7 
-19.7 
-19.6 
-17.9 
-16.2 
-15.8 
-14.2 
-13.1 
-12.0 
-11.2 
-10.4 
-10.0 

- 9.0 
- 7.1 
- 4.7 
- 3.9 

0.1406 
0.1440 
0.1479 
0.1480 
0.1507 
0.1548 
0.1554 
0.1597 
0.1600 
0.1631 
0.1627 
0.1687 
0.1733 
0.1746 
0.1793 
0.1834 
0.1885 
0.1928 
0.1990 
0.2041 
0.2110 
0.2198 
0.2297 
0.2335 

0.1410 
0.1445 
0.1482 
0.1483 
0.1511 
0.1550 
0.1559 
0.1599 
0.1602 
0.1633 
0.1631 
0,1689 
0.1736 
0.1749 
0.1795 
0.1836 
"0.1887 
0.1930 
0.1992 
0.2043 
0.2112 
0.2199 
0.2297 
0,2336 

0.1390 
0.1425 
0.1461 
0.1462 
0.1491 
0.1529 
0.1538 
0.1577 
0.1580 
0.1611 
0.1609 
0.1666 
0.1713 
0.1726 
0.1772 
0.1813 
0.1863 
0.1906 
0.1967 
0.2017 
0.2086 
0.2173 
0.2270 
0,2308 
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Table 5. 27 Thermal Conductivity Versus Pressure 
N-Heptane at T n = 323.15K 

p 

PlPa 

T o 

K 

Po 

kg/m 3 

Tr 

K 

Pr 

kg/m 3 

fd\) 

H 
U/m/K 2 

xicr 5 

W T r * P > 

U/ra/K 

X a p p ( T n , P ) 

U/m/K 

X ( T n * P ) 

U/m/K 

53.2 

73.5 

108.4 

157.6 

210.2 

262.3 

310.7 

360.8 

386.5 

435.7 

499.9 

320.897 

320.895 

320.917 

320.950 

320.956 

320.948 

320.953 

320.955 

320.931 

320.946 

320.951 

705.4 

717.6 

735.3 

755.9 

774.1 

789.4 

801.7 

813.7 

819.4 

829.7 

842.0 

324.028 

323.889 

323.749 

323.609 

323.392 

323.283 

323.204 

323.112 

323.068 

323.046 

322.951 

703.5 

715.9 

733.9 

754.7 

773.1 

788.5 

801.0 

812.9 

818.7 

829.0 

841.3 

-19.8 

-20.2 

-19.6 

-17.3 

-14.2 

-11.4 

- 8.7 

- 6.2 

- 5.2 

- 3.7 

- 2.2 

0.1383 

0.1454 

0.1565 

0.1703 

0.1827 

0.1937 

0.2031 

0.2120 

0.2161 

0.2239 

0.2333 

0.1385 

0.1455 

0.1566 

0.1703 

0.1827 

0.1937 

0.2031 

0.2120 

0.2160 

0.2239 

0.2333 

0.1362 

0.1431 

0.1541 

0.1677 

0.1799 

0.1908 

0.2001 

0.2089 

0.2130 

0.2208 

0.2301 
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Table 5.29 Thermal Conductivity Versus Pressure 

N-Heptane at T n = 348.15K 

p Po Pr 

K 
X a p p ( T n . P ) X ( T n f P ) 

FlPa K kg/m 3 K kg/m 3 
U/m/K 2 

x10~ 5 

U/ra/K U/m/K u/m/K 

65.1 343.479 699.8 346.512 698.1 -18.5 0.1371 0.1368 0.1341 

79.1 343.503 708.5 346.464 706.9 -18.7 0.1424 0.1421 0.1393 

111.2 343.481 725.4 346.246 724.0 -18.3 0.1528 0.1525 0.1495 

125.3 343.420 732.1 346.113 730.8 -17.9 0.1572 0.1568 0.1538 

146.7 343.438 741.4 346.071 740.3 -17.1 0.1635 0.1631 0.1601 

176.9 343.201 753.4 345.766 752.3 -15.9 0.1713 0.1710 0.1678 

203.6 343.459 762.7 345.894 761.7 -14.6 0.1780 0.1777 0.1744 

254.8 343.441 778.7 345.775 777.8 -11.7 0.1888 0.1885 0.1851 

303.4 343.447 792.0 345.696 791.2 - 9.0 0.1990 0.1988 0.1953 

322.2 343.212 796.8 345.370 796.1 - 8.1 0.2029 0.2028 0.1992 

360.3 343.219 806.0 345.453 805.3 - 6.5 0.2095 0.2093 0.2057 

380.4 343.220 810.6 345.324 809.9 - 5.7 0.2134 0.2133 0.2096 

411.9 343.204 817.5 345.364 816.9 - 4.7 0.2186 0.2185 0.2147 

443.9 343.235 824.2 345.185 823.6 - 3.8 0.2238 0.2237 0.2200 

499.2 343.228 834.7 345.138 
4 

834.2 - 3.0 0.2325 0.2324 0.2286 
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Table 5. 31 Thermal Conductivity Versus Pressure 
N-Nonane at T n = 308.15K 

p To Po Pr /ax\ 

H 
Xapp<Tr*P> X a p p < T n . P ) X ( T n f P ) 

flPa K kg/m 3 
K kg/m 3 

U/m/K 2 

x10~ 5 

U/m/K U/m/K U/m/K 

51,6 
51. B 

52.0 
63.5 
87.1 
92.9 

112.5 
130.9 
156.3 
167.5 
190.6 
211.9 
241.0 
271.6 
309.2 
337.0 
369.2 
403.9 
435.5 
468.5 

500.1 

304.145 
304.129 
304.110 
304.086 
304.116 
304.093 
304.081 
304.123 
304.122 
304.122 
304.136 
304.135 
304.132 
304.145 

304.130 
304.112 
304.118 
304.118 
304.107 
304.127 
304.147 

745.3 
745.4 
745.5 
751.7 
763.3 
766.0 
774.2 
781.4 
790.6 
794.3 
801.7 
808.1 
816.2 
824.2 
833.3 
839.6 
846.6 
853.7 
859.7 
865.7 
871.2 

307.137 
307.164 
307.196 
307.081 
306.977 
306.911 
306.875 
306.781 
306.714 
306.702 
306.735 
306.665 
306.596 
306.6T0 
306.475 
306.368 
306.348 
306.337 
306.153 
306.176 
306.120 

743.5 
743.6 
743.7 
750.0 
761.8 
764.5 
772.8 
780.1 
789.3 
793.1 
800.6 
807.0 
815.2 
823.2 
832.4 
838.7 
845.7 
852.8 
859.0 
865.0 
870.5 

—20.7 
-20.6 
-20.6 
-19.6 
-17.8 
-17.4 
-16.3 
-15.3 
-14.1 
-13.5 
-12.5 
-11.9 
-11.2 
-10.5 

- 9.6 
- 8.7 
- 7.3 
- 5.4 
- 3.4 
- 1.0 
- 0.2 

0.1460 
0.1461 
0.1463 
0.1499 
0.1571 
0.1583 
0.1633 
0.1682 
0.1738 
0.1764 
0.1809 
0.1856 
0.1909 
0.1967 
0.2029 
0.2075 
0.2123 
0.2175 
0.2219 
0.2266 
0.2308 

0.1458 
0.1459 
0.1461 
0,1497 
0.1569 
0.1581 
0.1631 
0.1680 
0.1736 
0.1762 
0.1807 
0.1854 
0.1907 
0.1966 
0.2027 
0.2074 
0.2122 
0.2174 
0.2219 
0.2266 
0.2308 

0.1432 
0.1433 
0.1435 
0.1471 
0.1541 
0.1553 
0.1603 
0.1651 
0.1706 
0.1733 
0.1777 
0.1823 
0.1876 
0.1934 
0.1995 
0.2041 
0.2089 
0.2140 
0.2185 
0.2231 
0.2273 
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Table 5 . 33 Thermal Conductivity Versus Pressure 
N-Nonane at T n = 323.15K 

p To Po Pr (d>\ 
W P 

X a p p ( T r . P ) X a p p ( T n , P ) \ ( T n , P ) 

NPa K kg/m 3 K kg/m 3 w/m/K 2 

x1CT 5 

U/m/K lil/m/K U/m/K 

35.3 319.685 725.8 322.858 723.8 -22.5 0.1367 0.1366 0.1338 

62.3 319.677 742.2 322.685 740.5 -19.7 0.1466 0.1465 0.1436 

85.4 319.698 754.2 322.447 752.8 -17.9 0.1534 0.1533 0.1502 

89.6 319.682 756.2 322.591 754.7 -17.6 0.1546 0.1545 0.1515 

109.7 319.711 765.1 322.523 763.7 -16.5 0.1598 0.1597 0.1566 

123.0 319.685 770.8 322.420 769.5 -15.6 0.1636 0.1635 0.1603 

139.3 319.713 777.2 322.423 775.9 -14.7 0.1679 0.1678 0.1645 

174.8 319.725 789.8 322.281 788.7 -13.0 0.1762 0.1761 0.1728 

181.0 319.690 791.9 322.216 790.8 -12.7 0.1780 0.1779 0.1745 

213.8 319.714 802.0 322.229 801.0 -11.3 0.1846 0.1845 0.1811 

249.1 319.714 811.9 322.105 811.0 - 9.9 0.1917 0.1916 0.1880 

292.4 319.714 823.1 321.958 822.3 - 8.2 0.1994 0.1993 0.1957 

331.2 319.702 832.2 321.949 831.4 - 6.6 0.2059 0.2058 0.2022 

360.1 319.665 838.7 321.862 837.9 - 5.4 0.2105 0.2105 0.2067 

412.5 319.710 849.8 321.792 849.1 - 3.1 0.2186 0.2185 0.2147 

452.4 319.696 857.6 321.750 856.9 - 1.3 0.2245 0.2244 0.2206 

500.5 319.698 866.4 321.712 865.7 - 0.2 0.2311 0.2311 0.2272 
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Table 5 .35 Thermal Conductivity Versus Pressure 
N-Nonane at T n = 348.15K 

p 

NPa 

T o 

K 

Po 

kg/m 3 

T r 

K 

Pr 

kg/m 3 

/ax\ 

W p 

U/m/K 2 

x10~ 5 

A a p p x ** 

U/m/K 

X a p p ( T n , P ) 

U/m/K 

X ( T n f P ) 

U/m/K 

63.2 

83.8 

107.3 

134.5 

169.1 

202.1 

232.3 

264.2 

303.7 

367.7 

400.2 

475.6 

502.7 

344.129 

344.159 

344.175 

344.172 

344.192 

344.169 

344.179 

344.184 

344.188 

344.181 

344.184 

344.165 

344.136 

729.1 

740.7 

752.3 

764.1 

777.4 

788.6 

797.8 

806.9 

817.2 

832.2 

839.3 

854.4 

859.4 

347.744 

347.649 

347.520 

347.396 

347.267 

347.156 

347.060 

346.951 

346.882 

346.946 

346.669 

346.491 

346.491 

727.1 

739.0 

750.7 

762.1 

776.1 

787.5 

796*. 7 

805.9 

816.3 

831.4 

838.6 

853.7 

858.7 

-30.0 

-24.1 

-19.5 

-15.8 

-12.6 

-10.6 

- 9.1 

- 7.8 

- 6.6 

- 5.2 

- 4.7 

- 4.1 

- 4.0 

0.1413 

0.1485 

0.1556 

0.1632 

0.1719 

0.1797 

0.1861 

0.1924 

0.1999 

0.2104 

0.2160 

0.2277 

0.2315 

0.1411 

0.1484 

0.1555 

0.1631 

0.1718 

0.1796 

0.1860 

0.1924 

0.1998 

0.2103 

0.2159 

0.2277 

0.2315 

0.1377 

0.1448 

0.1517 

0.1592 

0.1678 

0.1755 

0.1818 

0.1880 

0.1954 

0.2058 

0.2113 

0.2229 

0.2267 
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Table 5. 37 Thermal Conductivity Versus Pressure 
N-Nonane at T n = 363.15K 

p 

MPa 

T o 

K 

Po 

kg/m 3 
K 

Pr 

kg/m 3 

(d\\ 

H 
U/m/K 2 

x1(T 5 

X (T r,P) 

^app x r» / 

U/m/K 

X a p p ( T n , P ) 

U/m/K 

X ( T n f P ) 

U/m/K 

53.7 

75.8 

103.8 

127.6 

159.4 

187.7 

211.8 

213.3 

249.6 

304.4 

403.7 

425.4 

503.3 

360.507 

360.510 

360.583 

360.535 

360.537 

360.550 

360.560 

360.533 

360.539 

360.557 

360.557 

360.523 

367.578 

713.9 

727.8 

742.7 

753.9 

766.9 

777.3 

785.3 

785.8 

796.9 

811.9 

835.1 

839.7 

854.7 

364.241 

364.075 

363.977 

363.815 

363.676 

363.558 

363.248 

363.426 

363.362 

363.192 

362.974 

362.891 

362.895 

711.8 

726.0 

741.1 

752.4 

765.6 

776.1 

784.3 

784.7 

795.9 

811.0 

834.4 

839.0 

854.0 

-21.4 

-18.3 

-15.6 

-13.9 

-12.1 

-10.8 

- 9.8 

- 9.8 

- 8.3 

- 6.3 

- 3.3 

- 2.8 

- 1.4 

0.1347 

0.1429 

0.1526 

0.1588 

0.1669 

0.1742 

0.1789 

0.1801 

0.1872 

0.1980 

0.2156 

0.2191 

0.2308 

0.1349 

0.1431 

0.1527 

0.1589 

0.1670 

0.1742 

0.1789 

0.1801 

0.1872 

0.1980 

0.2156 

0.2191 

0.2308 

0.1312 

0.1391 

0.1486 

0.1547 

0.1625 

0.1697 

0.1743 

0.1755 

0.1824 

0.1931 

0.2104 

0.2138 

0.2254 
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Table 5 .39 Thermal Conductivity Versus Pressure 
N-Undecane at T n = 308.15 

p To p0 T r /d\\ 

W p 
X a p p ^ e ) X a p p ^ P ) X(T n,P) 

MPa K kg/m 3 
K kg/m 3 Id/m/K2 

x1CT 5 

U/m/K U/m/K U/m/K 

47.4 305.270 762.8 309.343 760.3 -19.1 0.1478 0.1480 0.1454 

64.3 305.284 771.4 309.192 769.2 -18.2 0.1529 0.1531 0.1504 

75.7 305.288 776.9 309.154 774.8 -17.4 0.1559 0.1559 0.1532 

97.9 305.305 786.6 309.113 784.6 -16.3 0.1627 0.1623 0.1595 

120.5 305.312 795.5 309.006 793.6 -15.4 0.1675 0.1676 0.1648 

137.0 305.308 801.6 308.898 799.8 -14.7 0.1712 0.1713 0.1684 

149.2 305.304 805.8 308.827 804.1 -14.3 0.1742 0.1743 0.1714 

169.4 305.303 812.4 308.729 810.8 -13.7 0.1785 0.1785 0.1756 

183.7 305.283 816.9 308.642 815.3 -13.2 0.1820 0.1820 0.1790 

211.8 305.306 825.0 308.612 823.5 -12.7 0.1870 0.1870 0.1839 

242.0 305.304 833.4 308.506 832.0 -12.3 0.1927 0.1927 0.1896 

274.1 305.311 841.2 308.417 839.9 -12.0 0.1982 0.1982 0.1950 

304.6 305.322 848.4 308.386 847.1 -11.9 0.2034 0.2034 0.2002 

343.5 305.249 856.9 308.261 855.7 -11.5 0.2091 0.2091 0.2058 

344.0 305.328 857.0 308.281 855.8 -11.5 0.2094 0.2094 0.2061 

382.7 305.321 865.0 308.211 863.9 -10.7 0.2153 0.2153 0.2120 
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Table 5. 41 Thermal Conductivity Versus Pressure 
N-Undecane at T n = 323.15K 

p T
o Po Pr /ax\ 

W p 

X a p p ( T n , P ) X ( T n , P ) 

MPa K kg/m
3 

K k g / m
3 U/m/K

2 

x10~
5 

U/m/K U/m/K U/m/K 

50.2 

50.3 
50.4 
72.3 
73.0 
93.4 

113.5 

133.4 
164.5 
186.2 
200.5 
239.1 
260.2 
285.5 
314.9 
325.3 
334.2 
364.4 
403.2 

320.802 

320.797 
320.798 
320.804 
320.896 
320.860 
320.859 
320.865 
320.854 
320.894 
320.869 
320.899 

320.871 
320.853 
320.872 
320.874 
320.850 
320.857 
320.915 

755.2 
755.3 
755.4 
766.9 
767.2 

776.7 
785.1 
792.8 
803.8 

810.7 
815.0 
825.8 
831.4 
837.7 
844.5 
846.9 
848.9 
855.5 
863.5 

324.789 
324.819 
324.796 
324.661 

324.741 
324.554 
324.496 
324.375 
324.204 
324.174 
324.134 
324.055 
323.962 
323.873 
323.879 
323.860 
323.806 
323.682 

323.742 

752.9 

753.0 
753.1 
764.8 

765.1 
774.8 
783.3 
791.2 
802.3 
809.4 
813.7 
824.6 
830.2 
836.6 
843.4 
845.8 
847.9 
854.5 
862.6 

-16.6 
-16.6 
-16.6 
-15.9 
-15.9 
-15.0 
-14.2 
-13.4 
-12.2 
-11.2 
-10.7 

- 9.7 

- 9.2 
- 8.8 
- 8.4 
- 8.3 
- 8.1 
- 7.8 
- 7.4 

0.1465 
0.1460 
0.1458 
0.1528 
0.1527 
0.1582 
0.1634 
0.1684 
0.1762 
0.1802 
0.1835 
0.1907 
0.1946 
0.1989 
0.2039 
0.2058 
0.2070 
0.2119 
0.2175 

0.1467 
0.1463 
0.1461 
0.1531 
0.1530 
0.1584 
0.1636 
0.1685 
0.1763 
0.1803 
0.1836 
0.1907 
0.1947 
0.1989 
0.2040 
0.2058 
0.2070 
0.2120 
0.2176 

0.1438 
0.1434 
0.1432 
0.1500 
0.1500 
0.1553 
0.1604 
0.1653 
0.1729 
0.1769 
0.1802 
0.1872 
0.1911 
0.1953 
0.2003 
0.2021 
0.2033 
0.2082 
0.2138 



THERMflL CONDUCTIVITY VERSUS PRESSURE 

N-HEPTflNE AT 323.15K 

© VALUES OBTAINED EXPERIMENTALLY 
— VALUES OBTAINED BY RE0RE88I0N 

1 0 . 0 0 2 0 . 0 0 30-00 4 0 . 0 0 5 0 . 0 0 
PRESSURE [MPa ] *10' 



Table 5. 43 Thermal Conductivity Versus Pressure 

N-Undecane at T n = 348.15K 

p T o P„ T r Pr /dx\ 

W P 

X a p p ( T r , P ) X a p p ( T n * P ) X(TnfP) 

PIP a K kg/m 3 
K kg/m 3 u/m/K 2 

x10" 5 

W/m/K U/m/K UZ/m/K 

49.2 343.969 741.5 347.772 739.3 -16.5 0.1408 0.1407 0.1372 

49.6 343.804 741.8 347.785 739.6 -16.5 0.1413 0.1413 0.1378 

74.8 344.066 756.0 347.791 754.1 -15.5 0.1497 0.1496 0.1460 

96.5 344.097 766.7 347.734 764.9 -14.2 0.1558 0.1557 0.1519 

116.8 344.050 775.6 347.562 774.1 -13.1 0.1613 0.1612 0.1574 

135.7 344.045 783.3 347.537 781.7 -12.0 0.1654 0.1654 0.1615 

137.2 344.001 783.9 347.475 782.4 -12.0 0.1665 0.1665 0.1625 

170.7 344.046 796.1 347.367 794.8 -10.3 0.1742 0.1741 0.1701 

195.3 344.042 804.2 347.330 802.9 - 9.1 0.1793 0.1792 0.1751 

222.0 344.044 812.2 347.187 811.0 - 8.0 0.1848 0.1847 0.1805 

252.1 344.067 820.7 347.121 819.6 - 6.9 0.1907 0.1907 0.1864 

281.4 344.068 828.4 348.085 827.3 - 5.9 0.1956 0.1956 0.1912 

301.2 344.095 833.2 347.078 832.2 - 5.3 0.1995 0.1994 0.1950 

342.2 344.072 842.8 346.875 841.9 - 4.6 0.2065 0.2065 0.2020 

371.6 344.068 849.4 346.721 848.6 - 4.1 0.2110 0.2110 0.2064 

373.1 344.048 849.7 346.833 848.9 - 4.1 0.2113 0.2113 0.2067 
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Results of the regression analysis to uhich the data were subjected 

Table 5.45 

Equation to uhich the data were fitted:— 

1 = a Q X + a'^P-P*) + a ^ P - P * ) 2 + a'3(P-P*)
3 

N-Alkane Temperature 

D O 

P* 

[MPa] 

/ 
a 
0 

[mK/U] 

/ 
a1 

MPa 
LX10~3 J 

/ 
a 2 

MPa ~ 2 

V l 0 - 6 J 

/ 
a 3 

MPa "*3 

L X 1 0 ~ 9 J 

Standard Qeviation 
about regression 

line 

0.0022 
0.0011 
0.0017 

N-Heptane 308.15 
323.15 
348.15 

194.0 
247.0 
259.0 

5.5893 
5.3186 
5.3569 

-1.2530 
-1.0949 
-1.1183 

1.697 
1.294 
1.256 

-2.37 
-1.87 
-2.13 

Standard Qeviation 
about regression 

line 

0.0022 
0.0011 
0.0017 

N-Nonane 308.15 
323.15 
348.15 
363.15 

224.0 
224.0 
254.0 
232.0 

5.4126 
5.4547 
5.3697 
5.5771 

-1.0335 
-1.0824 
-1.0413 
-1.1696 

1.203 
1.357 
1.219 
1.370 

-1.81 
-2.14 
-2.26 
-2.13 

0.0013 
0.0016 
0.0012 
0.0033 

N—Undecane 308.15 
323.15 
348.15 

197.0 
196.0 
198.0 

5.5167 
5.5845 
5.6862 

-1.0739 
-1.1280 
-1.1622 

1.308 
1.336 
1.498 

-2.31 
-2.01 
-3.45 

0.0011 
0.0013 
0.0016 

rc 
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© N-HEPTRNE RT 908.16K 
A N-KEPTRNE RT 323.15K 
+ H-HEPTflNE fiT 348.16K 
X N-K0NRNE RT 308-16K 
• N-N0NRKE RT 323.15K 
• N-N0NRNE RT 34®. 1BK 
X N-NOKRtiE RT 383-15K 
Z K-UHDECRNE RT 308.16K 
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X N-UNDECRHE RT 348.16K 

F i g . (5,£6) Deviation of the mrasurpd thermal conductivity from 
i t~ ccrre 1 3 tpd VBI UP » 
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5.4 Comparison of Results 

A literature survey on the thermal conductivity of the n-Alkanes 

studied in this work reveals two major difficulties. Firstly, there 

are very little data available on the thermal conductivity of these 

n-Alkanes at elevated pressures and those data that are available 

are subject to large errors, + 5% at best. 

During preliminary work on n-Heptane, when testing the apparatus, 

measurements were performed to determine the thermal conductivity of 

n-Heptane under its saturation vapour pressure. The results of the 

measurements performed at the saturation vapour pressure were not 

included in the tables in § 5.2 and § 5.3 because they were preliminary 

and their accuracy was considered inferior to that of the remainder 

of results. It is estimated that these results have a probable error 

of about + 0.8%. Furthermore, these early measurements were also 

carried out at a temperature of approximately 6K from any nominal 

temperature for the main body of the results. However, for the 

purposes of a comparison uith earlier results, uhich have most often 

been performed under these conditions, the accuracy is more than 

sufficient because it is still superior to that of the other avail-

able data. 

In table 5.47 the thermal conductivity of n-Heptane obtained from 

these measurements performed by other investigators is compared uith 

the saturated vapour measurements obtained on n-Heptane. The thermal 

conductivity is corrected in each case to its value at 308.15K using 

the temperature coefficient reported by the particular investigator 
—4 

or uhere this is unavailable a temperature coefficient of -3.00 x 10 
2 

Ul/mK is assumed. Only measurements reported since 1960 are considered 

(in chronological order) as earlier uork is considered to be too 

inaccurate. 

The values of the thermal conductivity of n-Heptane reported in Table 

5.47 show a scatter of more than 20% uhich is surprising since a 

substantial number of .investigators estimate their absolute accuracy 

to be uithin a feu percent. All the measurements uith the notable 
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exception of those performed by Kastorgrev et al [104] and by 

Ganiev [103] predict values for the thermal conductivity of n-Heptan€ 

uhich are significantly in excess of those reported in the present 

work. The reasons for the inconsistency are many but there are a 

number uhich stand out above the rest. The first, and the major 

cause of unaccounted inaccuracy in measurements, is convection. In 

the present apparatus it can be shown that, by increasing the duration 

of a run from less than one second to only four seconds, convection 

can be induced in the test fluid. The thermal conductivity thus 

measured in thB presence of convection can be greater, by 3%, than 

that measured in its absence thus indicating the importance of conv-

ection. A great number of methods used by the investigators in 

Table 5.47 employed steady state techniques uhich for the reasons 

enumerated previously in § 1.24 and & 2.31 are thought to be plagued by 

effects due to convection and thus produce inferior results. Relative 

measurements are not preferred as they immediately incurr the errors 

related to the reference fluid used and the method used to measure 

the physical properties of this reference fluid. Of the remaining 

observations uhich uere performed using transient non—relative tech-

niques, the majority of methods involved the duration of an experiment 

being insufficiently short to render negligible the effects of con-

vection. 

Of all the observations presented in Table 5.47 the only measurement 

knoun not to have suffered the drawbacks mentioned above is that by 

Castro [85] . Because the accuracy originally claimed by Castro is .. 

comparable uith that ascribed to the present results, the discrepancy 

betueen the tuo results of about 3.5$ requires some comment. Firstly, 

the measurements of Castro uere carried out before the effects of the 

different resistances per unit length of the tuo wires were appreciat-

ed. If account is taken of these effects Castro's results are decreas-

ed by 0.7% [113] . Secondly, inadequate compensation uas made for the 

effect of radiative heat transfer in Castro's and other investigators' 

measurements on radiation absorbing, reemitting liquids because an 

analysis of the type given in chapter 3 was, until nou, unavailable. 

In the case of the measurement performed by Castro, because of the 
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Thermal Conductivity of N-Heptane 
under its saturated vapour pressure at 308.15K 

Table 5.47 

Investigator(s) 
Year, reference 

Temperature at 
which measure-
ments were per-
formed 

[K] 

Temperature 
Coefficient 

[w/m/K2] 

Thermal 
Conductivity 
@ 308.15K 

[u/m/K] 

+ Present Work 314.45 -3.00 0.1165 

+ Present Work 316.30 -3.00 0.1162 

+ Castro (1976) [85] 308.18 -2.82 0.1206 

+ Powell et al (1972) [97] 303.15 -3.00 0.1280 

+ Naziev et al (1.971) [98] 293.15 -2.65 0.1269 

* Mukhamedzyanov et al 
(1971) [99] 298.15 -3.15 0.1205 

* Brykov et al (1970) [100] 293.15 -3.51 0.1206 

Kerimov et al 
(1970) [101] 299.15 -0.96 0.1222 

Pittman (1968) [102] 333.15 -2.97 0.1352 

* Ganiev (1968) [103] 293.15 -2.40 0.1044 

* Rastorquev et al 
(1968) [104] 293.15 -3.10 0.1164 

R+ Mallan (1968) [105] 298.15 -2.27 0.1199 

+ Abas Zade (1967) [106] 290.15 -2.75 0.1281 

R+ 3obst (1964) [107] 298.15 -3.45 0.1281 

* Akhmedov (1963) [108] 293.15 -4.10 0.1208 

* Mukhamedzyanov et al 
(1963) [109] 309.15 -2.86 0.1239 

+ Golubev et al (1961)[110J 293.15 -2.57 0.1303 

* l/ilim (1960) [111] 293.15 -3.00 0.1315 

+ * R 
Transient Method 
Steady State Method 
Relative Measurement 
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high temperature rise of the wire used ( ^ 1 0 K ) , the apparent thermal 

conductivity is estimated to be approximately 2.5 - 3.0$ higher than 

the true thermal conductivity. On application of these tuo corrections 

the thermal conductivities as measured by the author and by Castro 

agree to uithin the experimental uncertainties uithin the tuo 

measurements. 

There are unfortunately no reliable measurements available for the 

thermal conductivity of n-Undecane and very feu measurements for the 

thermal conductivities of n-Heptane and n-Nonane, uithin the temp-

erature range of this uork and at elevated pressures. Most of uhat 

is available on n-Heptane and n-Nonane only extends from atmospheric 

pressure up to about 50 MPa, uhen the present measurements began. 

Figures (5.48) and (5.49) compare the correlated pressure dependence 

of the thermal conductivities of n-Heptane and n-Nonane uith the feu 

independent measurements uhich are available. The thermal conduct-

ivity versus pressure relationships quoted for the present uork are 

equation (5.2) uith the relevant coefficients as given in Table 5.45 

and the values quoted from the uork of other investigators have, 

uhere necessary, been obtained by interpolating their data. 

As uas expected, for the reasons given earlier, it has been found 

that the thermal conductivity measurements performed by other invest-

igators produce values uhich are, in general, a feu percent higher 

than those found in the present uork. 
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o COMPARISON WITH OTHER INVEST IGATORS ' MEASUREMENTS 

N-HEPTANE 

40.00 80.00 120.00 160.00 
PRESSURE [MPfi] 

200.00 240.00 

© PRESENT MEASUREMENTS CORRELATED AT 908.16K 
A PRESENT MEASUREMENTS CORRELATED AT 823.15K 
+ PRESENT MEASUREMENTS CORRELATED AT 348.15K 
X MUXKRKEOZYRNOV C993 AT 308-16K 
• MUKHAHEOZYANOV C99] AT 323.16K 
+ HUKKAHEQZYANOY £993 AT 348.16K 
X NAZIEV £983 AT 908.16K 
Z NAZIEV £983 AT 923.16K 
Y NAZZEV £983 AT 348.16K 
X OOLUBEV CI 103 AT 308.15K 
IK OOLUBEV CI 103 AT 323.16K 
X OOLUBEV CI 103 AT 348.15K 
I RRSTORQUEV CI04J AT 30B.15K 
* JtftSTOROUEV CI043 AT 323.I6K 
- RA8T0R9UEV C1043 AT 348.ISX 

F i g . (5,40) 
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O 

PRESSURE CMPfl] 
O PRESENT MEASUREMENTS CORRELATED RT 908.15X 
A PRESENT HEBSUREHENTS CORRELATED RT 323.15K 
+ PRESENT HERSURENENTS CORRELATED AT 34S.16K 
X PRESENT NEaSfcREWENTS CORRELATED AT 989.15K 
• HUKH8NEDIYAN8V C993 AT SO0.15K 
• HUKHANEOZYANOV C993 AT 923.1SK 
X KUKKAHEOZYANOY C99] AT 948.16X 
Z KUKNAfcEDZYANOV E993 AT 989.15K 
Y KUSTAFAEV CI123 AT 323.1SK 
X NU8TAFREV £1123 AT 948.15K 
m NU8TAFAEY CH23 AT 983.1BK 

h 9 > 
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CHAPTER 6 

Conclusions 

6.1 Introduction 

This chapter summarises the results and conclusions that can be drawn 

from the work undertaken and described in the previous chapters. It 

can broadly be separated into two sections. The first section is 

concerned with the work described in chapter 3 on radiative heat 

transfer and its effects on the transient hot wire method of measur-

ing liquid conductivities. The second section is concerned with the 

use that can be made of the data presented in chapter 5 in relation 

to the pressure and density dependence of the thermal conductivity 

of liquid n-Alkanes as well as the practical application of these 

data, 

6.2 Conclusions drawn from the work on radiative heat transfer 

There has for a long time been controversy over the implication of 

the radiative heat transfer which is inherent in the transient hot 

wire technique of measuring thermal conductivities. There have been 

claims that the effects on the measured thermal conductivity were 

larger for participating media than transparent media [71,72,73] 

and there have also been claims to the contrary [114] . In chapter 3 

of this work the problem of simultaneous conductive and radiative 

heat transfer, as is applicable to the transient hot wire apparatus, 

is formally presented and using certain consistent approximations 

was solved numerically. This problem was solved in order to deter-

mine the effect this additional mechanism of heat transfer had on 

the thermal conductivity of ri-Heptane, n-Nonane, and n-Undecane as 

measured on the transient hot wire apparatus described in chapter 4 . 

As a result of this work it has been shown that were the effect ignored, 

errors of as much as 2.8% would have been incurred in the measured 
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thermal conductivity of these fairly weakly absorbing media 

(K ~ 1000) even at moderate temperatures (T 360K). It has 
3 

also been found that the error incurred is proportional to T q , 

AT, and K uhich is consistent uith previously held but until nou 

not fully substantiated vieus [77,115] . It has also been shoun, 

(see fig. (3.15) that increasing the duration of a measurement on 

a transient hot uire apparatus increases the error due to radiative 

heat transfer in the measurement. Furthermore, as fig. (3.15) is 

smooth and also almost linear in the region near zero time, this 

adds weight to the previously held view [53] that uere it somehow 

possible to extrapolate the measured thermal conductivity as obtain-

ed from transient hot wire apparati back to zero time, then the 

absolute thermal conductivity would be recovered. This conclusion, 

although believed to be valid, required justification because the 

same assumption uas unjustifiably used for the effect of convection 

on the measured thermal conductivity and has since been found to be 

invalid. In this context, it is nou known that the dependence of tha 

ratio of the true and apparent thermal conductivity, X/ \ 

Fig. (6.1) 

( X is the thermal conductivity measured without accounting 
capp 

for the effects of convection) on the duration of an experiment has 

the form shown .in fig. (6.1) 
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When using experimental durations significantly longer than t . . it 
c ri c 

is immediately apparent that the measured thermal conductivity will 

be in excess of its absolute value. If, for example, the measurement 

apparatus were operated between durations t^ and t Q then a linear 

extrapolation back to zero time would not yield the true thermal 

conductivity. This is not the case with the effects of radiative 

heat transfer (c.f. fig. (3.15)) and for the present measurements 

a linear extrapolation of the apparent thermal conductivity back 

to zero time would indeed recover the absolute thermal conductivity. 

In the absence of a satisfactory method for performing this extra-

polation, § 3.44 describes an approximate method based on a radiation 

defect, for calculating the required correction to the apparent 

thermal conductivity. The radiation defect is calculated at the 

extreme ends of the thermal conductivity range over which measure-

ments are performed and linearly interpolated within the range. 

Far from the work carried out on simultaneous conductive and radiat-

ive heat transfer being an end in itself, it in fact indicates 

a number of areas which require further investigation. Firstly, 

although the precision of the thermal conductivity measurements 

performed in this work is estimated as + 0.2$, the accuracy is only 

estimated as between + 0.1$ and + 0.8$. The difference between 

the precision and accuracy is primarily due to the uncertainty in 

the test fluids 1 optical properties and specific heat capacities 

as used to calculate the radiation defects. This, therefore, exposes 

the need for an investigation into the temperature and pressure 

dependence of these quantities. Secondly, although a numerical 

solution to obtain the excess temperature rise due to radiation. 8 tJ7 n 

has been found and reported in this work, the computational effort 

required for sufficient accuracy is very large and necessitates a 

treatment different in anproach and less desirable to that adopted 

for the other temperature corrections discussed in § 2.33. It would 

therefore be of great benefit if an approximate analytical treatment 

***(This quantity is always negative but hap been defined so as to be 
consistent with the other temperature corrections.) 



of the problem were developed or if a reliable method of extra-

polating the apparent thermal conductivity back to zero time woro 

found. There is therefore room for improvement in this direction. 

Finally, before leaving the topic of radiative heat transfer, it 

should be mentioned that there has been a recommendation put forward 

[114] that Dimethyl phthalate be used as a thermal conductivity 

calibration and test material because it has a high mean extinction 
—1 

coefficient, K, ( ~ 1 0 , 0 0 0 m ). The present work together with 

other work recently published [77,115] although not in complete 

agreement on all topics, unanimously conclude that a material which 

has a relatively large thermal conductivity and is as nearly trans-

parent to infra-red radiation as is possible be used as a standard. 

This conclusion has been arrived at because the effect of radiative 

heat transfer on the measured thermal conductivity of strong radiation 

absorbing liquids is greater than that on weakly absorbing liquids, 

all other factors being the same. Thus the error incurred in 

measuring the thermal conductivity of a liquid possessing a high 

mean extinction coefficient will be greater than that incurred when 

performing measurements on a liquid possessing a lower mean extinc-

tion coefficient. It is therefore proposed to measure the thermal 

conductivity of carbon disulphide [116] which possesses a relatively 

small mean extinction coefficient ( « 6 5 0 m ) with a view to estab-

lishing this as a calibration and test material. 

6.3 The Pressure and Density Dependence of the Thermal Conductivities 

of n-Alkanes 

At present rigorous theories for the thermal conductivity of a 

liquid, of the type adopted by Zwanzig, Kirkuood and Oppenheim [117], 

are insufficiently advanced to enable reliable prediction of the 

absolute thermal conductivity of the liquid hydrocarbons that have 

been investigated in this work. We must, therefore, turn to less 

rigorous theories. Unfortunately, comparison with the most advanced 

approximate theories [85] results in poor agreement (errors of + 50$) 
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between theoretically predicted and measured values for the thermal 

conductivities of n—Heptane, n—Octane, and n-Decane at atmospheric 

pressure and at temperatures between 290 and 330K. 

As the development of the theory, required to enable the prediction 

of the absolute thermal conductivities of the liquids investigated, is 

beyond the scope of this work, we must look towards the approximate 

theories in order to at least be able to predict the pressure and 

density dependence of other n-Alkanes similar to those investigated. 

The problem of pressure and density dependence of the thermal cond-

uctivity of a liquid has been investigated by Kamal & McLaughlin [118], 

Using the harmonic oscillator model, they found that the pressure and 

density dependence of the thermal conductivity could be expressed as:-

= ft 
" ( 4 

(s.1) 

andj-

(S.2) 

where in equations (6.1) and (6.2) V is the frequency of oscillation 

of a molecule within its cell, v is the molar volume and fi^ is the 

isothermal compressibility. McLaughlin [113] has shown that for a 

number of liquids l/\ ( d A / d p ) ^ is linear in the isothermal compress-

ibility and - l / \ ( d X / d v ) j is linear in the reciprocal of the molar 

volume. It therefore seems sensible to examine these quantities for 

the liquids investigated in this work. Using the equations to which 

the data were fitted in chapter 5 viz:-

1 = a^X + a ^ - p * ) + a 2 ( p - p * )
2 + a 3(p-p*)

3 

and:-

(6,3) 

1 = a^X + a (P-P*) + (P-P*) 2 + a^(P-P*)' l3 (6.4) 



we, find from equations (6.3) and (6.A) that:-

H 

a i + 2a 2(p-p*) + 3 a 3 ( p - ^ )
2 ] 

1 - a^ (P-P*) - a 2(p-p*)
2-a 3(p-p*)

: 

(6.5) 

and that:-

- K . aj + a 2 ( P - P * ) + a 3 ( P - P * )
2 ] 

1 - a!J(P-P*) - a ^ P - P * ) 2 - a 3 ( P - P * ) ^ 
(6.6) 

where in equation (6.6) K ^ is the bulk modulus and is defined as:-

KT = i; = (6.7) 

It is further evident that the right hand side of both equations (6.5) 

and (6.6) should be identical to each other since by definition:-

£(&\ . H i ( s l . 
A Wlj x W ) T 

versus P for the liquids investigated. 

(6.3) 

Figures (6.2) and (6.3) show plots of ^ ^jj^j versus p and "j^Jpj 

Uith regard to the curves obtained in fig. (6.2) it must be pointed 

out that too much emphasis should not be placed on the shape of 

individual curves. It would be wrong because to a large extent the 

shape of a curve depends upon the magnitude and sign of the specific 

coefficient, a^, used in equation (6.3). From the results of the 

regression analyses described in § 5.1 it has been found that for 

all the liquids and at all the temperatures investigated the value 

of the standard deviation in the coefficient, a^, as obtained for a 

specific liquid at a single temperature, is comparable with the 

absolute value of the coefficient. What is significant, however, is 
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that the valuo of ^ 3 m R a n approximately 2.96 and 

the maximum deviation from this value is approximately 1% for all 

the fluids investigated over a fairly large temperature and density 

range. 

The results plotted in f i g . (6.3) are believed to be subject to 

larger errors than those plotted in fig. (6.2) so explaining the 

+ 14% deviation in K^/X ( d A / d P ) y about 2.96. There are tuo 

reasons for this, firstly, equation (6.4) describing the pressure 

dependence of the thermal conductivity, is not able to represent 

the thermal conductivity versus pressure data given in chapter 3 

as well as equation (6.3) is able to represent the thermal conduct-

ivity versus density data (c.f. figs. (5.24) and (5.46)). Secondly, 

the value of the bulk modulus, K^, is obtained by differentiating 

the density versus pressure data given in appendix 3 thus incurring 

further error. 

Prom figures (6.2) and (6.3) ue see that the value of ^ 

almost constant and independent of temperature. We may therefore 

write:-

£ m ) « 2.96 (6.9] 

and on integrating we find that:-

Ln X = 2.97 L n p + C (6.10) 

where the value of C in equation (6.10) is dependent upon both the 

temperature and the n-Alkane under consideration. If equation (6.10) 

were obeyed exactly for the n—Alkanes, a plot of L n A versus L n p 

for each of the test liquids at each temperature at which observations 

were performed, would result in a set of parallel straight lin«=s of 

slopr; 2.96. It would also be possible to superimpose all the lines 

by shifting them in the In \ and l.np ax«?s without changing their 
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In order to ovaminp the applicability of equation (6.10) with a 

vic?w to perhaps using this equation to extrapolate thermal conduct-

ivity versus density data, the value of C in equation (6.10) has 

been defined as being equal to zero for n-Heptane at 308.15K. We 

are therefore using the experimentally obtained Ln A versus Lnp 

line for n-Heptane at 308.15K as a reference. This line was chosen 

as the reference because in the present work more experiments were 

performed on n-Heptane at 308.15K than on any other of the test 

liquids at any other temperature. Also the accuracy of the experi-

ments performed along this isotherm is thought to be greater than 

along the other isotherms because the correction due to radiation 

is smallest for these measurements (see fig. (3.16))thus incurring 

the smallest error from this source. 

The lines L n X versus L n p for the other n-Alkanes and temperatures 

were reduced to that of n-Heptane at 308.15K using a computer program. 

The program sought to minimise the squares of the deviations of the 

measurements forming each of these lines, LnX versus L n p , from 

the corresponding line for n-Heptane at 308.15K by merely applying 

shifts in the L n X and L n p directions without altering the shape 

of the individual lines. The result of this is that we obtain a 

line of a reduced thermal conductivity, A / versus a reduced 

density, p / p 1 , for each n-Alkane at each temperature. It should 

be noted that if the reference line and the line requiring reduction 

are parallel or indeed almost parallel the values of p* and A 1 

thus obtained will in general not be unique. 

The values of A 1 and p* thus obtained from the above analysis are 

given in Table 6.4 and the plot of L n ( A / X ' ) versus L n ( p / p * ) for 

the n-Alkanes studied at each temperature is given in fig. (6.5). it 

can be seen that the lines plotted in fig. (6.5) do indeed superimpose 

one another and the single line Ln(X/X ' ) versus Ln(p/ p 1 ) thus ob-

tained appears to be linear. Fig. (6.6) is a deviation plot for the 

reduced thermal conductivities, as obtained from each of the measure-

ments, and for convenience they have bf?p.n plotted against the 

reduced thermal conductivity which is merely the thermal 
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conductivity of n-Hcptane at 308,15K. It can be seen from Fig. (6.6) 

that within the thermal conductivity range in which measurements on 

n-Heptane were performed the deviations are largely within the exp-

ected accuracy of the individual measurements and that the deviations 

n-Alkane Temperature X ' P ' 

[K] [td/m/K] [kg/m 3] 

n-Heptane 308.15 1.0000 1.0000 
n-Heptane 323.15 0.8610 0.9459 

n-Heptane 348.15 0.8545 0.9383 

n-Nonane 308.15 1.1589 1.0861 

n-Nonane 323.15 1.1509 1.0787 

n-Nonane 348.15 1.1727 1.0783 

n-Nonane 363.15 1.1593 1.0711 

n-Undecane 308.15 1.1175 1.0933 

n-Undecane 323.15 1.0551 1.0675 

n—Undecane 348.15 1.0413 1.0572 

Table (6.4) 

are significantly larger outside this range. The reason for this is 

that in the absence of any other information, equation (6.3) has 

been used to extrapolate for the thermal conductivity of n-Heptane 

outside the range in which measurements were performed and, as 

expected, equation (6.3) seems to be unsuited to this application. 

Because of the shape of the plot shown in fig. (6.5) the experimental 

data , Ln(X/ ) versus L n ( p / p ' ) , were fitted to a straight line:-

L n ( V X f ) = ALn(p/p») + B (6.11) 

and the results of such a fit, including the values of the coefficients 

A and B, are presented in Table (6.7) below. 

Coefficient Value Standard Deviation 

of Coefficient 
T-Ratio 

A 

B 

2.95986 

-21.4137 

0.00289 

0.0191 

1025 

-1118 

Th?< standard deviation of about the regression line = 0,on2"3 

Table (6.7) Results of the Regression Analysis 



Tn addition to the results presented in Table (6.7) it is significant 

that the maximum deviation in any of the data about the regression 

line was + Q.68% in the reduced thermal conductivity. In view of 

this information and because the accuracy of the data is estimated 

as being between + 0.5% and + 0. 8 % it would be difficult to justify 

the inclusion of higher order terms in equation (6.11). 

It now appears as if we have in our possession a powerful tool for 

extrapolating odd numbered n-Alkane thermal conductivity data. In 

order to test the method we have made use of the results obtained 

for the thermal conductivity of n-Heptane at 308.15K and at atmosph-

eric pressure as were measured during preliminary work on the appar-

atus described earlier. For the reasons given in § 5.4 these results 

were not used in the present work and therefore could not have 

influenced the values obtained for the coefficients A and B in 

equation (6.11). 

During the preliminary work just referred to, the thermal conduct-

ivity of n-Heptane at atmospheric pressure and 308.15K was found to 

be 0.1164 bJ/m/K + 9 x 10~ 4 U/m/K. Using equation (6.3), with the 

relevant values of a^ and p * for n-Heptane at 308.15K, we find that 

the value obtained for the thermal conductivity of n-Heptane at 

atmospheric pressure ( p = 671.26 kg/m ) is 0.1147 Ul/m/K. This 

value is 1.5% from the measured value and furthermore as expected 

was outside the error bounds estimated for the measurement. On the 

other hand, using equation (6,11) to predict the value of the thermal 

conductivity of n-Heptane at 308.15K and at atmospheric pressure we 

obtain the predicted value as being 0.1168 Uf/m/K. This value is 

remarkably close to the measured value, well within the accuracy of 

the measurement and adds weight to the belief that equation (6.11) 

is suitable for extrapolating thermal conductivity data. 

Why the odd numbered n-Alkanes investigated obey the relationship 

given by equation (6.11) so closely is as yet unknown as is the 

reason for the coefficient A being independent of both the chain 



length of these n-Alkanes and the temperature. It would be wrong to 

expect the thermal conductivity of even numbered n-Alkanes to behave 

in an identical manner to that of the odd numbered members of the 

series but it is thought that a relationship similar to equation (6,11) 

may be found upon their examination. 

At present it seems that it is possible to predict to within a few 

percent the thermal conductivity of any liquid, odd numbered member 

of the n-Alkane family merely by having available one reference value 

for its liquid thermal conductivity at the same temperature at which 

the prediction is required. Furthermore it has been shown [85] that 

the thermal conductivity of a liquid n-Alkane under its saturation 

vapour pressure obeys the relationship:-

X(T) = X(273.15) - D[T—273.15] (6.12) 

where D in equation (6.12) is constant over a substantial temperature 

range. It therefore follows that if the reference thermal conduct-

ivity is known under saturation vapour pressure conditions, which is 

in practice the most likely pressure condition at which a value is 

known, then the above condition of the temperatures being the same is 

not necessary, provided the value of D Is known. 

In conclusion, two additional facts emerge as a result of the data 

presented in chapter 5 . Firstly, within the thermodynamic range 

investigated, the isothermal pressure derivative of the thermal 

conductivity, , is negative for the n-Alkanes investigated. 

Secondly, and what has received far less publicity, is that it can 

also be seen that the isothermal density derivative of the thermal 

conductivity, ^^pj , is positive. 
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APPENDIX 1 

A11 Derivation of dQ ... ... dv.—*dlJ . 
. I 

Consider the heat transferred from volume element dV/̂  to a parallele-

piped d\J with area dA, normal to the direction of r. (see fig, (A1) 

dv : 

Fig, (A1) Heat transfer between fluid volume elements 

We therefore find dQ ... as:-
dVk 

d A k 
d Q d l / . ^ d l " x ~ 2 T ( r ) X K k d r k 

1 k 47Tr 

emission by fraction fraction 
d\J in 4 crossing absorbed 
steradians dA, 

k 

Therefore:-

K. KkE • T(r)d\Jk 
= < f l 2 ) 
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Since any arbitrary volume d\i^ can be made up of a numbor of 

parallepipes dV^, the equation is general for any volume element 

dVj and therefore:-

d Q d y . ~ d V , = K.KjE.rCrJdVj/TTr 2 ( A 3 ) 
^ J 

A12 Integration coordinates transformation (Spherical to Cylindrical) 

Consider tuo points P- (r- , and Pj(r., ^ z .) situated within 

the annulus formed by two infinite cylinders of radius r^ and r 2 

(see fig. (A2)). Defining a spherical polar coordinate system about 

point P^ as shown in the figure, it is now possible to describe 

point P^ in terms of this coordinate system, i.e.:-

Pj = .(A4) 

where in terms of the cylindrical polar coordinate system we find 

that:-

r - V r j 2 + \ - 2 l T j C 0 S < V * L > + < T z i ) 2 - ( f l 5 ) 

also that:-

r cos( - yp. ) - rf. 
c o s ^ = -j J fe i- (A6) 

and:-

z . - z • 
sin = (A7) 

2 
V r . 2 s i n 2 ( - f ) + (z. - z •)' 
1 J J L J £-

Applying a shift in the cylindrical, vertical and azimuthal coordinates 

such that:— 

Z = z « - 2
t- (A8) 

and:- J 

$ = V. -V- (A9) 
.3 t 
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z 

Fig, (A2) Definition of the spherical polar coordinate system about P , 



uiG obtain Prom (A5), (A6) and (A7) 

V2 2 x ' 
r . + r. - r .r. cos<P + Z 
J L- J l 

o r .cos4!* - r . 
cos V = j 

(A10) 

(A11) 

and:-

sin <P = v (A12) 

r . sin <l> + Z' 
J 

Suppose now we wish to evaluate an integral, I, where:-

I = J f ( r , #,<P)d\/ (A13) 

which in spherical polar coordinates is:-

I = J J J f ( r, $ 9 <P ) s i n $ d # d < £ d r (A14) 

and if desired this may now be integrated in the cylindrical polar 

coordinate system as:— 

I = j j f f ( r y \ J DR DZ (A15) 
v J 

The jacobian in equation (A15) is evaluated using equations(A5) to 

(A7) and we find that:-

I I Dr 

hL i r . 
J 

dr. 
J 

k 
to 

W 
J ? 

is? 

t) r 
Tz 

W 
Jz 

(A16) 



i>r ,cin<f> 
co?. ^ — 

J r r 

• (cds<J> c a s 6 c $ - c o t & o s ^ . ) r (rcosect? cot$) 
-nL.. - J . 

Zsin<£ 

2 2 
r r 

Zr.cos^? r .sin<i> 

r . 

V (r * + r.* - 2r. r.cos<l> + Z 2)(r . 2sin$ + Z z) 
j t> L J J 

and therefore:— 

J. 

(r^ 2sin 2^>+ Z 2 ) rj2sin2<i>+ Z 2 r ^ s i n ^ + Z 2 

(A17) 

j (A18) 

« , , f (r ff4>,Z) r .dr.d$dZ 
I = I I I g 2 J — J 2* •••••••••(A19) 

(rj +r. -2r .r-cos^+Z ) 

N,B* Cos in equation (A17) is defined as:* 

r. - r. cos<l> 
cos 17. = j 6 

J 
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APPENDIX 2 

A21 Gauge Calibration 

The gauges used for measuring the pressure within the autoclave were 

calibrated against a dead weight tester. The dead weight tester which 

is described elsewhere [93] is accurate to better than 1 PlPa at 700 NPa 

and has been calibrated by the National Engineering Laboratory, 

The effective area of the piston Ap is given byj— 

A p T = A p(a + b A T ) (A20) 

where:-

A p = A o ( a + aP) (A21 ) 

A T = T - 293.15 . (A22) 

and:-

A = 3.227477 x 1 0 ~ 6 m ? 

° —m 2 
+ 1.29 x 10 l u m (A23) 

a = 2.973 x 1 0 ~ 6 MPa 

+ 1.45 x 10" 7 MPa (A24) 

b « 23 x 1 0 ~ 6 K (A25) 

The Pressure, P is then found ass-

Pig 

P = T — (A26) 
PT 

where Fi is the mass of the piston, carrier and weights. 
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Temperature 

[ °c] 
Gauge No. 2 
[Bars] 

Gauge No. 5 
[PSig] 

Gauge No/10 
[ATM] 

f'l 
[kg] 

Absolute 
Pressure 
[PlPa] 

19.5 666 800 1020 22.31585 67.9 

19.5 955 1030 14450 31.97360 97.3 

19.4 1244 1390 18750 41.61470 126.6 

19.4 1534 1680 22900 51.28095 156.0 

19.5 1827 1980 27300 61.00005 185.5 

19.6 2117 2240 31650 70.61095 214.7 

19.5 2407 2490 80.23315 243.9 

19.7 2700 2800 89.89325 273.2 

19.6 2992 3080 99.54040 302.5 

18.8 3286 3330 109.16680 331.7 

19.8 3578 3620 118.78980 360.9 

19.7 3874 3900 128.45180 390.2 

19.7 4168 4160 138.06325 419.4 

19.7 4466 4420 147.70490 448.6 

19.7 4762 4720 157.35160 477.9 

19.8 5064 5000 167.08395 507.5 

18.8 5351 5320 176.70065 536.6 

20.1 5627 5550 186.36505 565.8 

20.2 5800 194.17085 589.5 

19.9 6100 203.79785 618.7 

19.9 6300 210.46480 638.9 

19.9 6460 217.13165 659.1 

20.0 6600 223.79845 679.2 

19.3 6780 230.46545 699.4 

Fig# ( A3) Gauge Calibration 
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The calibration of the gauges used in the pressure- system are given 

in fig. (A3) and the pressure inside the autoclave is determined 

from the gauge readings by interpolating the calibration data, 

A22 Pressurisation Procedure (see fig, 4,3) 

The procedure for pressurising the autoclave follows. It is assumed 

that the system is initially at atmospheric pressure with all the 

valves open and that all the air has been bled from the tubing. 

1. Close valves (?) and ^ 3 ^ 

2. Pump up the system to 10 MPa using pump ^2^ This ensures the 

piston in the intensifier is fully pumped back. 

3 . Close valve (?) • 

4 . Continue pumping using (12) until the system reaches 200 M P a . 

5 . Isolate the low pressure side by closing valve (?) • 

6. Continue the pressurisation by pumping (5 ) on the low pressure 

side of the intensifier ( 5 ) until the piston reaches the end of 

its stroke. 

7 . Isolate the autoclave by closing valve (4) • 

8. Open valve ( 7 ) slowly reducing the pressure on the low pressure 

side of the intensifier. This drops the pressure between valves 

( 4 ) and (9) to below 10 M P a . 

9 . Open valve (5) and pump back the intensifier piston using (1?)L 

10. Continue the procedure from step 2. until the desired pressure 

is achieved. The pressure in the autoclave can usually be raised 

to 700 MPa during the second stroke of the intensifier, 

11. During experiments valve ( 4 ) is shut to isolate the autoclave 

from the rest of the system. 

A23 Calibration of the Platinum Resistance Thermometer 

The thermometer used to measure the absolute equilibrium temperature, 

T q , of the test fluid and oil bath, prior to measurement, consists of 

a class 1 platinum wire element whose resistance is measured to 

+ 0.0005 Ohms by a Smith Difference Bridge (Cambridge Instruments Co.). 

The element, model no. 8130 0031 has a 100 Ohms nominal resistance and 

its resistance, temperature characteristics are guaranteed by the 
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manufacturer to conform to the equation:-

W(T—273.15 ) = W(273.15)(1+A 1(T-273.15HB 1(T-273.15)
2) 1 (A27) 

where:-

A 1 3.90784 x 10~ 3 K~ 1 
(A28) 

(A29) B 1 -5.78408 x 1 0 " 7 K ~ 7 

sufficiently to enable temperature measurement (within the temperature 

range of interest) to within + 0.001K. 

In order to use the thermometer to measure temperature, the resistance 

of the element at 273.15K, W(273.15), is required. In order to perform 

the calibration, the resistance of the element, used in the four 

terminal mode, was measured at 273.160K. The calibration was performed 

using a water triple point cell which was itself calibrated by the 

National Physical Laboratory, England [94] and found to be accurate 

to within + 0.0003K. The resistance of the element at 273.16K, was 

found to be 99.9737 Ohms results in the value of W(273.15) being 

99.9698 Ohms. 

The equilibrium temperature, T f can, with the above information be 

determined by measuring the resistance of the platinum wire element, 

immersed in the oil bath. The measured temperature, T q , thus obtained 

is estimated to be accurate to + 0.01K. 

A24 The Temperature Coefficient of Resistance of the Platinum Wire. 

A241 Applicability of the calculated Temperature Coefficient of Resistance. 

In order to be able to use the values A and B, as given by equations 

(4.2) and (4.3), to calculate the pseudo linear temperature coefficient 

of resistance of the 7 fxrn platinum wire at atmospheric pressure and 

under no tensile stress, a* (l"o, 0,0), (as defined by equation (4.12)) 

we must ascertain whether the coefficient thus predicted for pure 
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platinum is sufficiently close to the true coefficient of resistance 

of the 7 (im wire. This uas achieved by measuring the resistances 

of two samples of the 7 (im platinum wire at several temperatures 

under atmospheric pressure conditions and under no axial tension. 

The ratio of the resistance of a wire at each temperature divided by 

its resistance at the lowest temperature is calculated for the two 

samples at each of the temperatures. These ratios are compared with 

the corresponding ratios obtained from measurement of the resistances 

of an NPL calibrated platinum resistance thermometer under the same 

conditions. 

The resistances of the wires were measured using a 30 Hz a.c. bridge 

(Automatic Systems Laboratories) which is accurate to + 2 x 10""^ Ohms 

and the resistance of the resistance thermometer was measured using 

a Smith Bridge no. 3, type 41623 (H. Tinsely & Co.). The results of 

the investigation are given in table (A4) and reveal that the resist-

ance ratios for the two wire samples and the platinum resistance 

thermometer differ by less than 0.01$, so justifying the use of the 

values of A and B for pure platinum in the calculation of a ' ( T ,0,0). 

Resistances Resistance Ratios 

Temp-
erature 

[K] 

Pt 
Resistance 
Thermometer 

[Ohm] 

Long Wire 

[Ohm] 

Short Wire 

[Ohm] 

Pt 
Resist-
ance 
Thermom-
eter 

Long 
Wire 

Short 
Wire 

308.45 

318.60 

323.69 

29.3472 

30.3651 

30.8880 

352.9677 

468.6722 

476.8148 

190.0153 

196.3722 

200.0012 

1.0000 

1.0347 

1.0525 

1.0000 

1.0347 

1.0526 

1.0000 

1.0345 

1.0525 

Table A4 The Platinum Wire Calibration 
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A242 The Effect of Hydrostatic Pressure 

Because the measurement cell is to be used under conditions of elev-

ated pressure, it is necessary to account for the pressure dependence 

on the temperature coefficient of resistance. Unfortunately, inform-

ation on the direct pressure dependence of the temperature coefficient 

of resistance is unavailable so we must make use of the available 

information to estimate the effect. This has been achieved by making 

use of the available hydrostatic pressure dependence of the electrical 

resistance of platinum over the temperature range within which measure-

ments were performed [93] • 

Fig. (A5) shows the pressure dependence of the electrical resistance 

of a segment of platinum wire at temperatures, T^ and T^ 

Pressure, P q , corresponds to atmospheric pressure and pressure, P^, 

to some elevated pressure. Knowing the resistance, of the segment 

of wire at position (1) on the diagram, we are able to calculate, 

using a 1 ( 1 ^ , 0 , 0 ) as defined by equation (4,12), Using the available 

information on the pressure dependence of the electrical resistance 

of platinum [93] we can also calculate and ti^ at the elevated 

pressure and thus Gf'fT^O,?). 

o W 

ELECTRICAL 
RESISTANCE 

PRESSURE 

Fig. (A5) Pressure dependence of the resistance of the platinum wire, 
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Using the above procedure, it has been found that uithin the temp-

erature range in which measurements were performed, the pressure 

dependence of the temperature coefficient of resistance can adequately 

(+ 0.025&) can be represented as:-

<X»(T,0,P) = CX'(T,0,0)(1 + €pP) (A30) 

where:-

€p = 1.6 x 1 0 " 5 MPa ~ 1 (A31) 

The applicability of equation (A30) has been supported through observ-

ation of the pressure dependence of the equilibrium resistance, 

as measured during experiments to determine the thermal conductivity 

of N-Nonane at 308.15K and 323.15K. The resistance values of UJ, 
lso 

were corrected to the nominal temperatures 304.1K and 319.7K respect-

ively assuming the temperature coefficient to be independent of both 

temperature and pressure. This caused an insignificant error in the 

resistances because the correction to the nominal temperature occurred 

over a maximum of 0.1K. The resistance, lil^sQ(304.1) versus pressure 

is presented in Table (A6) and U ^ s q ( 3 1 9 . 7 ) versus pressure in Table 

(A7). Column, 3, in Table (A6) gives the values of the resistance 

W » l s o ( 3 1 9 . 7 ) as calculated from U i s o ( 3 0 4 . 1 ) using equation (A30) and 

column 4 gives the value of U " ^ s o ( 3 1 9 . 7 ) as obtained by interpolating 

the values of W 1 q o ( 3 1 9 . 7 ) given in Table (A7). 

The values of as given in Tables (A6) and (A7) are thought to be 

correct to only + 0.1K as the bridge (see § 4.41) which was used in 

its manual mode to obtain was not designed to measure absolute 

resistances but resistance differences. However, it is seen that the 

values of W ^ ^ C S ^ . ? ) as given in colum 3 and W " l s o ( 3 1 9 . 7 ) in column 

4 of Table (A6) agree to within the accuracy of their measurement. 
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Pressure W, (304.1) 
lso* ' 

Ui. l s o(319.7) U". (319.7) 
lso* ' 

[flPa] [Ohms] [Ohms] [Ohms] 

51.6 271.80 286.68 286.81 
51.8 271.77 286.65 286.80 
52.0 271.75 281.63 286.80 
63.5 271.64 286.51 286.66 
87.1 271.61 286.47 286.56 
92.9 271.55 286.41 286.52 

112.5 271.40 286.26 286.39 
130.9 271.37 286.23 286.31 
156.3 271.25 286.10 286.19 
167.5 271.15 285.99 286.16 
190.6 271.00 285.84 285.99 
211.9 270.90 285.73 285.82 
241.0 270.78 285.61 285.68 
271.6 270.58 285.39 285.54 
309.2 270.39 285.20 285.33 
337.0 270.32 285.12 285.16 
369.2 269.15 284.95 284.99 
403.9 269.92 284.71 284.74 
435.3 269.84 284.62 284.64 

468.5 269.61 284.38 284.48 

500.1 269.49 284.25 284.32 

Table (A6) Pressure variation of W. @304.1K and the calculated 
value at 319.7K. 

Pressure 

[MPa] 

U l s o ( 3 1 9 . 7 ) 

[Ohms] 

35.3 286.86 
62.3 286.77 
85.4 286.58 
89.6 286.55 

109.7 286.39 
123.0 286.36 
139.3 286.25 
174.8 286.14 
181.0 286.06 
213.8 285.81 
249.1 285.65 
292.4 285.44 
331.2 285.19 
360.1 285.05 
412.5 284.74 
452.4 284.56 
500.5 284.31 

Table (A7) Pressure variation of Wj © 319.7K 
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APPENDIX 3 

This appendix contains the relevant physical and optical properties 

of the hydrocarbons whose thermal conductivities were measured, as 

well as the required physical properties of the materials used in 

the construction of the measurement cells. 

The Physical Properties of the Liquids Investigated 

The density versus pressure data for the n-Alkanes investigated in 

this work were taken from a paper by Doolittle [120]. Tables A8, A9 

and A10 contain those data taken from this source that were found 

relevant to this work and these data were estimated to be accurate 

in the reported densities to within + 0.2$. 

N —Heptane 

Pressure Density 

©303.15K ©323.15K ©373.15K (D423.15K 

[PlPa] [kg/m 3] [kg/m 3] [kg/m 3] [kg/m 3] 

0 675.31 658.29 612.56 558.75 

5 680.32 664.23 621.47 573.82 

10 684.93 669.48 629.68 585.75 

20 693.34 678.98 642.63 605.66 

30 700.97 687.38 653.60 619.81 

50 714.24 701.95 671.73 642.10 

100 740.63 730.19 705.02 680.87 

150 761.21 751.93 729.55 708.67 

200 778.33 769.94 749.34 730.89 

300 806.26 798.40 780.70 764.29 

500 847.96 841.26 825.76 812.68 

Table A8 Density versus Pressure data for n-Heptane 



Pressure Density 

@303.15K (3)323.15K ©373.15K (0)423.15K 
[MPa] [Kg/m 3] [kg/m 3] [kg/m 3] [kg/m 3] 

0 709,93 694.40 653.60 609.35 

5 714,18 699.11 660.63 620.19 

10 718.34 703.73 666.53 629.37 

20 725.90 712.20 677.87 643.29 

30 732.82 719.84 687.66 655.91 

50 744.99 733.08 704.08 676.13 

100 769.53 759.24 734.81 712.05 

150 788.83 779.55 757.86 738.03 

200 805.02 796.43 776.58 758.63 

300 831.60 823.66 806.52 791.39 

500 871.46 865.20 850.41 837.82 

Table A9 Density versus Pressure data for n-Nonane 

Pressure Density 

©303.15K ©323.15K (3)373.15K ©423.15K 

[MPa] [kg/m 3] [kg/m 3] [kg/m 3] [kg/m 3] 

0 732.82 717.98 680.00 639.63 

5 736.81 722.39 686.06 648.59 

10 740.58 726.64 691.23 656.34 

20 747.61 734.38 701.51 668.67 

30 753.98 741.40 710.43 680.18 

50 765.40 753.75 725.58 698.91 

100 788.58 778.39 754.60 732.76 

150 807.10 797.77 776.58 757.75 

200 822.64 813.94 794.53 777.06 

300 848.25 840.27 823.45 809.85 

500 886.84 880.98 866.55 855.51 

Table A10 Density versus Pressure data for n-Undecane 



The- specific heat capacities of the investigated n-Alkanes are 

not known to great accuracy and have been taken as being independent 

of pressure and temperature. The values of the specific heat cap-

acities of n-Heptane, n-Nonane, and n-Undecane used in this work are 

those obtained at 30°C and at atmospheric pressure [129] which are 

approximately 2,23, 2.20 and 2.21 k3/kg/K respectively. 

The Physical^ Electrical, and Mechanical Properties of Platinum 

Table A11 contains the physical, electrical and mechanical properties 

of the 7 ^im platinum wire which was used as a heat source in the 

transient hot wire measurement cell. 

X = 67.05 U/m/K 

p = 2137 kg/m 3 

C P -
131.3 j/kg/K 

v = Poissons ratio « 0.35 

6 -
2s ff % - 2 - 7 7 > 

-7 -1 
c 10 MPa 

S = h » = 10~ 6 MPa""1 

S = 
y 

yield stress « 150 MPa" 1 

Table A11 Physical Electrical and Mechanical Properties of Platinum. 

Optical Properties 

The mean extinction coefficient as used in the analysis presented in 

chapter 3 is defined as:-

L 

| c ° ) 
f co 

E 

K = - f Ln 735 (A32) 

* * 
The symbol, 01 , has been used to define wave length so as to avoid 
confusion with the thermal conductivity, X . 
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where in equation (A32) 1° is the intensity of the radiant energy 

of wave length (j) at position 1=0 and l w is the intensity at 1=L. 

This is distind 

as defined by:-

This is distinct from the Planck mean extinction coefficient, Kp, 

I 
L' 

do) 

K p = ^to " " (A33) 
1 E d w U> '0 

where:-

Xu, = - f Ln(V) <fl34> 
although it is expected that when performing measurements on liquids, 

these two extinction coefficients will have similar values. The 

reason for using equation (A32) as the definition of the mean 

extinction coefficient is to maintain consistency with the way in 

which the coefficient is used in chapter 3. 

The values of the mean extinction coefficients and refractive indices 

for n-Heptane, n-Nonane and n-Undecane are given in Table A12. 

n-Alkane Extinction Coefficient 
@ 300K 

O " 1 ] 

Refractive Index 
@ 393.15K 

n-Heptane 1070 1.385 

n-Nonane 1120 1.405 

n-Undecane 1150 1.418 

Table A12 Optical properties of n-Heptane, n-Nonane, and n-Undecane, 

Finally for the present work the emissivity of platinum e ^ is taken 

to be equal to its absorbtivity, oi and is assumed to be constant 
pt 

such that:-

= V = « P t = °-037 ( f l 3 5 ) 
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S Y 01 B 0 L S 

a Uire radius 

Mechanical quadrature abscissa 

A Surface area of the uire 
a 

A. Surface area of the cell 
D 

b Cell radius 

C Exponent of Euler*s Constant 

C p Specific heat capacity at constant pressure 

E Emissive power 

E. Exponential integral 

Eu Eucken Factor 

E Accuracy of a measurement 

F „_ View Factor 
AB 

g Gravitational Constant 

g^ An impirical factor proportional to the mean free path 
of a molecule 

g u ^ zero of the zeroth order Bessel function of the v 
first kind 

H . Mechanical Quadrature weighting coefficient J 
I Radiant Intensity 

3 Zeroth order Bessel function of the first kind 
o 

First order Bessel function of the first kind 

k Thermal diffusivity 

K Extinction Coefficient 

L A characteristic length 

L^ Lagrange Polynomial 

M Molecular weight 

n Refractive index 

P Pressure 

P^ m ^ degree polynomial 

(P rj Prandtl Number 

q Heat flux per unit length of emitter 

Q Heat flux 

S/—•*dV Linearised radiative heat flux gradient 
i 

Q w .. Linearised radiative heat flux \J—* dA. l 
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r Radius 

R Reduced radius 

ff Fraction of incident radiation that is reflected 

s Spatial coordinate 

S Tensile stress 

t Time 

T Absolute temperature 

\l Velocity in the radial direction 

V z Velocity in the vertical direction 

V Voltage 

V Volume 

U Resistance 

Y Young's modulus of elasticity 

Y Zeroth order Bessel function of the second kind o 
Y^ First order Bessel function of the second kind 

2 Vertical direction 

Z Shifted vertical coordinate 

G R E E K S Y M B O L S 

a Absorbtivity i 
OL Pseudo linear temperature coefficient of resistance 

j8 I (*£ 
P V d T / P 

y Euler's Constant 

5T Temperature correction 

A T Temperature rise 

6 Emissivity 

Kinematic viscosity 

© Normalised, reduced temperature 

^ Thermal Conductivity 

X Radiation contribution to the apparent thermal conductivity 

A Mean free path of a molecule 

fl Viscosity 

V Poissons ratio 

0 Reduced temperature 
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£ Radiation defect 

7r 3.141592654.... 

p Density 

CT Stefan Boltzman Constant 

G Mean resistance per unit length 

T Fraction of electromagnetic radiation that is transmitted 

CO Wave length 

S U B S C R I P T S 

app Apparent thermal conductivity 

cc Composite cylinders correction 

FP Correction due to variable fluid proportions 

i Conditions at point P^ in volume element dV^ 

id Ideal conditions 

j Conditions at point Pj in volume element dV/^ 

1 Long wire 

Is Difference between the long and short wires 

mm Mathematical model 

n Nominal value 

NS Numerical solution 

0 Equilibrium conditions 

OB Outer boundary correction 

P Pressure 

Pr Precision 

r In the radial direction 

r Reference conditions 

R Due to radiation heat transfer 

s Short wire 

Vise Correction due to viscous dissipation 

w Wire conditions 

z In the vertical direction 

1 Condition at the surface of the emitter 

2 Condition at the surface of the cell walls 



s IJ P F H i: R i P r s 

o Zero density 

(o) Zeroth ittsraticn 

(1 ) First itteration 

(2) Second itteration 
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