
UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF MANAGEMENT SCIENCE

ALGORITHMS FOR THE SET COVERING PROBLEM

by

ANGELA MARGARET HEY MA, fflATH, FRGS

A thesis' submitted for the

Degree of Doctor of Philosophy

and

Diploma of Imperial College

JULY 1980

ABSTRACT

Solution methods .for the set covering problem, SCP, are the subject

of this thesis. This problem is widely encountered, notably in

operational research, computer science and electrical engineering.

A survey of applications and algorithms is given in the 'first

chapter. Heuristic algorithms that obtain upper and lower bounds on

the optimal solution value' are given in Chapter 2. The SCP can be

formulated as an integer program and one of the more successful

approaches to this type of problem is Lagrangean relaxation embedded
\

in a branch and bound (tree search) strategy. Chapter 3 illustrates

techniques for efficiently increasing lower bounds obtained from

Lagrangean relaxations. Lower tjounds to the SCP are derived using

network flow and graph theory in Chapters 4 and 5. Chapter 6 discusses

decomposition and state space relaxations for obtaining lower bounds

to the SCP. Branching strategies are considered in Chapter 7. The

implementation of. an algorithm for the SCP using the graph covering

relaxations is given in Chapter 8. Conclusions, together with ideas

for future research, are given in the final chapter.

f

(iii)

ACKNOWLEDGEMENTS

Firstly I should like to, thank my supervisor Dr N. Christofides for

many stimulating discussions, encouragement and support throughout

the project. I am grateful to Dr T. Coleman of Argonne National

Laboratory, Illinois for helpful comments on Chapter 3. Dr U. Derigs

and Mr G. Kazakidis of the University of Cologne not only supplied me

with their matching code but allowed me full use of their facilities

for one week. I am indebted to them for their.a_ tance and for

explaining their programs to me. I should like to thank

Prof. E. Balas of Carnegie-Mellon University, Mr C. Krabek of Control

Data and Dr S. Korman [formerly of Imperial College) for supplying

test problems.

Above all many thanks must go to Miss K. Shrimanker for the excellent

typing of this thesis. I am also grateful to Miss Suzy Brown for

typing the contents, index and some tables.

The financial support of the Science Research Council and the Department

of Management Science is gratefully acknowledged. Appendix 5 is included

by kind permission of Bell Laboratories, New Jersey. Finally I should

like to thank the many others with whom I have had discussions.

CONTENTS PkqV

Title page (i)

Abstract (ii)

Acknowledgements (iii)

Contents (iv)

Figures, Diagrams and Tables (xiii)

Index to Procedures (xvi)

Notation (xviii)

CHAPTER 1 ' INTRODUCTION AND LITERATURE SURVEY

1.1 Definitions 1

1.2 Relaxations 2

1.3 Literature Survey 6

1.3.1. Applications 7

1.3.2. Problems related to the SCP and problems 8
used in its solution

1.3.2.1. Well-solved cases of the SCP 8

1.3.2.2. Problems of which the SCP is a special case 13

1.3.2.3. Relationship between the SPP and the SCP 16

1.3.2.4. Network Flow Problems 17

1.3.3. Algorithms for the SCP 18

19

1.3.3.1. Preliminary reductions

1.3.3.2. Sorting the constraint matrix 21

1.3.3.3. Algorithms for lower bounds, to the SCP 22

1.3.3.4. Algorithms for upper bounds to the SCP 23

1.3.3.5. Branching strategies for the SCP 23

1.3.3.6. Cutting plane strategies for the SCP 25

1.3.4. Theoretical Results for the SCP

1.3.4.1. Complexity results

1.3.4.2. The set covering polyhedron

1.3.4.3. The structure of the constraint matrix

1.3.4.4. Duality

1.3.5. Data structures

CHAPTER 2 HEURISTICS

2.1. Introduction 31

2.2. Outline of the Heuristic Methods 32

2.3. Additional Methods for Computing Upper Bounds 40

2.4. Reasons for Failure of the Heuristics to Solve the SCP 41

2.5. Computational Results 42

CHAPTER 3 LAGRANGEAN RELAXATION

3.1. Introduction 50

3.2. Implementation of Lagrangean Relaxation 52

3.3. Calculating the Search Direction,X 55

3.4. Calculating the Stepsize, a 51

3.4.1-. Introduction 61

3.4.2. Computing a K Using a Target Value ,62'

3.4.3. Computing o K Using "Near Alternative" Solutions 63

3.4.4. Other Methods of Computing a K 64"

66
3.5. Computational Results

3.5.1. Case Study 66

3.5.2. Comparison of the methods on different problems .751

(v)
Page

26

26

27

28

29

30

(vi)
CHAPTER , 4 NETWORK FLOW RELAXATIONS OF THE SCP_^ Page

4.1. Introduction '78

4.2. Network Flow Relaxation, NF1 78

4.1.1. Formulation 7 8

4.2.2. Changing the costs d.. on the Network G1 81
• J

4.2.3. Further improvements gg

4.2.4. Summary of the Algorithm

4.3. Network Flow Relaxation, NF2 89

4.3.1. Construction of the Network, G2, from SCP 8 9

on
4.3.2. Formulation of the problem and calculation of - .

costs

4.4 f Computational Results ' 93

4.4.1. Explanation of Table of Results 93

4.4.2. Implementation of the Algorithm 94

CHAPTER 5 GRAPH COVERING RELAXATIONS OF THE SCP

5.1. Introduction 96

5.2. The Graph Covering Problem, GCP 96

5.3. Graph Covering Relaxation 1, GCR1 , a row relaxation of 98
the SCP

5.3.1. Description of the relaxation 98

5.3.2. Quality of the bound 99

5.3.3. Calculation of A* 99

5.3.4., Partitioning the constraints 100

5.3.5. Changing the partition of 102-

5.4. Graph Covering Relaxation 2, GCR2, a column relaxation 10,4

5.4.1. Description of the relaxation 10,4..

(Vii)

Page

5.4.2. Quality of the Bound 107

5.4.3. Calculating the Costs 107

5.5. Further Improvements to the Graph Covering Relaxations 108

5.5.1. Ensuring the costs of the relaxed problem are
non-negative in GCR1. 108

5.5.2. Ensuring the costs of the relaxed problem are
non-negative in GCR2. 110

5.5.3. Changing costs of arcs in a GCP to retain the ,,,
same optimal solutions

5.5.4. Using the graph covering solution in consecutive
iterations of the subgradient optimization
procedure 113

5.6. Combining the two relaxations GCR1 and GCR2 114

5.7. Computational Results 122

5.7.1. Case study 122

5.7.2. Comparison between GCR1, GCR2 and a 123
Combination of the Two Relaxations

5.7.3. Comparison between the Graph Covering 124
Relaxation 9 Heuristics and Linear
Programming

5.7.3.1. Korman's Problems 124

5.7.3.2. Four Problems of Salkin and Koncal 128

5.7.3.3. Results for Graph Covering Problems 131

5.7.4. Using the Heuristic, Graph Covering and
LP Bounds in a Tree Search T33

5.7.5. Conclusions }33

(viii)
CHAPTER 6 LOWER BOUNDS TO THE SCP USING DECOMPOSITION

AND STATE SPACE RELAXATION

Page

6.1. Introduction 134

6.2. The Decomposition Method for obtaining a Lower "134
Bound to the SCP

6.2.1. Definition 134

6.2.2. Calculating the costs initially 136

6.2.3. Updating the costs 136

6.2.4. Using integer costs d t 137

6.2.5. Reduced costs for the SCP 138

6.2.6. Recursive tree search 139

6.2.7. Sorting the constraint matr'ix initially 140

6.2.8. Description of the decomposition algorithm 741

6.3. A lower bound to the SCP from State Space Relaxation 143

6.3.1. Definition 143

6.3.2. State Space Relaxation 1, SSR1 143

6.3.2.1. Definition 143

6.3.2.2. Reduced Costs 144

6.3.2.3. Improving the bound using subadditivity 144

6.3.2.4. Comparison with other relaxations 146

6.3.3. State Space Relaxation 2, SSR2 1 4 6

6.3.4. Other State Space Relaxations and Extensions

6.4. Solving a class of SCP's 147

6.4.1. Introduction 147

6.4.2. Defining the Relaxation 148

6.4.3. Changing the costs * 149

<ix)
Page

6.5. Computational Results 150

6.5.1. Case Study 150

6.5.2. Comparison between the Heuristic Bound and the 151
Decomposition Relaxation

6.5.3. The State Space Relaxation, SSR1, Bound compared 158
with the Decomposition and Heuristic Bounds

6.5.4. Conclusions 158

CHAPTER 7 BRANCHING STRATEGIES FOR THE SCP

7.1. Introduction 161

7.2. Tactical Problems - choosing the branching variable 162

7.3. Branching on rows for the set covering problem 165

7.3.1. Description of Branching strategy 165

7.3.2. Branching on Rows when the Constraint 166
Matrix is Sorted into Blocks

7.3.2.1. Sorting the Matrix 166

7.3.2.2. The Branching Strategy 166

7.3.2.3. Removal of Rows 167

7.2.3.4. Removal of Columns or Blocks 167

7.2.3.5. Removing Coefficients in Constraints 167

7.3.2.6. Solving the problem after assigning blocks 168
to all rows

7.3.2.7. Example 168
/

7.3.3. Branching on Rows when the Constraint Matrix is 170
stored as a list of Non - Zero rows by Column

7.3.3.1. Description of the forward step of the 170
branching strategy

7.3.3.2. A depth first implementation 171

7.3.3.3. A best bound implementation 174

7.3.4. Improving the Branching on Rows Method 177

7.4. Computational Results for the Depth First and Best
Bound Tree Search on Rows

7.4.1. Case study 180

7.4.2. Test problems 1 8 3

(X)

CHAPTER 8 IMPLEMENTATION OF AN ALGORITHM FOR SOLVING

THE SCP USING GRAPH COVERING RELAXATIONS p a a e

8.1. Introduction 137

8.2. Design of a FORTRAN program ' 137

8.3. Data Structures for the Graph Covering Algorithms igg

8.3.1. The Set Covering Problem 139

8.3.2. Lagrangean Relaxation igo

8.3.2.1. Graph Covering Relaxation, GCR1, the 1 9 0
Row Relaxation

8.3.2.2. Graph Covering Relaxation, GCR2, the ig-j
Column Relaxation

8.3.3. Branching Strategies 192

8.3.3.1. Depth First Search on rows 192

8.3.3.2. Best Bound Search on rows 193

8.3.4. Total Storage Required 194

8.4. Solving the Graph Covering Problem 195

8.4.1. The Graph Covering Algorithm I 9 5

8.4.2. Converting an Algorithm for Solving
the Minimum Perfect Matching Problem
to a Graph Covering Problem

8.4.2.1. Introduction 196
>

8.4.2.2. Outline of the Matching Algorithm 197
(Edmond's Algorithm)

8.4.2.3. Modifying Edmond's Algorithm 1 9 8

8.4.3. Use of Reduced-Costs to Reduce Problem Size 2 0 3

8.4.4. Start Procedures for the Graph Covering Algorithms

8.5. Parameters of the Program 206

(xi)

Page

CHAPTER 9 CONCLUSIONS

9.1 Summary 207

9.2 Extensions and Ideas for Future Research 208

9.2.1 Extensions of the Graph Covering Algorithm 208

9.2.2 Aggregating Constraints 209

9.2.3 Extensions to 0-1 Integer Programs 209

9.2.4 Improvement of the State Space Relaxations 210

9.2.5 Duality 210

9.2.6 Methods for Improving the Code 210

References

Journal Abbreviations

Appendices

212

230

232

(xii)

Appendix 1 Page

Analysis of Preliminary Reduction Strategies 233

Appendix 2

>

Index of terms used 2 3 5

Appendix 3

An Example • 2 3 9

A3.1 Introduction 2 3 9

A3.2 The Heuristic Lower Bounds, Chapter 2 239

A3.3 The Network Flow Lower Bound 241

A3.4 The Second Network Flow Lower Bound, v (NF2) 246

A3.5 The First Graph Covering Relaxation, GCR1, Chapter 5 248

A3.6 The Second Graph Covering Relaxation, GCR2, Chapter 5 249
A3.7 A Second Example to Illustrate a Combination of 249

the Two Graph Covering Relaxations, Chapter 5

A3.8 Lower Bounds from Decomposiiton, Chapter 6 254

A3.9 Lower Bounds from State Space Relaxations, SSR1 2$5

A3.10 Branching Strategies for the SCP, Chapter 7 2$6

A3.ll Implementation, Chapter 8
 2

'58

Appendix 4

Explanation of the Test Problems Used 260

Appendix 5

.Language used in the PROCEDURES 262

(xiii)

FIGURES, DIAGRAMS and TABLES

Page

Fig. 1.1 An Example of a Search Tree for a Branch and Bound 5
Procedure

Fig. 1.2 Graph G'1 in which a Shortest Path Solves SCP1 11

Table 2.1 Quality of Bounds obtained using Heuristics 44

Table 2.2 Performance of Heuristics when Incorporated in a 46
Tree Search

Table 2.3 Lower Bound as a Percentage of Upper Bound 48

Table 2.4 Comparison of Heuristic Bounds with LP Bound 48
at Root Node

Fig. 3.1 A Flowchart of PROCEDURE 8 SUBPROBLEM to solve 51
the Lagrangean Relaxation of a problem £

Fig. 3.2 Level Sets of L(A) for example 3 showing Zigzagging 57
path

Fig. 3.3 Non-Zero Indices of x for example. To show 65
Behaviour Near Subgradient Optimum

67
Table 3.4 To show the Effect of Varying 3 when Implementing

the Subgradient Ascent Procedure of Camerini et al

Table 3.5 Bound Values for 3 Subgradient Optimization Methods 68

Table 3.6 Best Bound Values and Tree Search Information 71

Table 3.7 Best Bound Values at Root Node for 4 Methods 72

Fig. 3.8 Comparison of Bound Values Against Iteration 73-
Number for 3 Different Subgradient Optimization
Methods

Fig. 3.9 Comparison of Bound Values Against Computing 74
Time for 3 Different Subgradient Optimization
Methods

Table 3..10 Comparison of 4 Methods for Subgradient

Optimization embedded in a Tree Search 76

Table 4.1 Network Flow Graph, G1, for example NF1 80

Table 4.2 Lower Bounds from the .Network Flow Relaxations 92

(x:iv)

Page

Fig. 5.1 A Flowchart of PROCEDURE 13 GRAPHBOUND to 115
Compute Lower Bounds to the SCP from Graph
Covering Relaxations

Table 5.2 Graph Covering Lower Bounds for a 30x60 problem, 121
density 0.15, to show variation with stepsize
parameter 5, and number of l's per column, KCOL

Table 5.3 Number of Graph Covering Subproblems, Tree 125
Search Nodes and Computing Time to show Variation
with Stepsize Parameter, 6, and number of l's
per column, KCOL, for 30x60 SCP-

Table 5.4 A Comparison between the RelaxationSj GCR1, GCR2 126
and a Combination of these two Relaxations

Table 5.5 A Comparison between the Heuristic,Graph 127
Covering and Linear Programming uower Bounds
for Korman's Test Problems

Table 5.6 A Comparison between the Heuristic,Graph Covering 129
and Linear Programming Lower Bounds for Test
Problems of Salkin and Koncal

Table 5.7 Computational Results for Graph Covering Problems 130

Table 5.8 Using the Graph Covering, Heuristic and LP 132
Bounds in a Tree Search

Table 6.1 Bound Values for the 30x60 example Using the 152
Decomposition Relaxation

Table 6.2 Comparison of the Decomposition Bound and the 154
Heuristic Bound

Table 6.3 Computing times for Decomposition Bound and the 155
heuristic Bound

Table 6.4 Decomposition Bound as Percentage of Optimal T55
Solutions

Table 6,5 Decomposition Bounds for Different Partitions of a 157

Table 6.6 Comparison between Bounds from Decomposition, SSR1
and Heuristics

Y

(cmxxix)

Page

Fig. 7.1 Amount of Tree Searched by Strategy 1 164

Fig. 7.2 Amount of Tree Searched by Strategy 2 164

Fig. 7.3 Amount of Tree Searched by Strategy 3 165

Fig. 7.4 Constraint Matrix A sorted into blocks 166

Fig. 7.5 Tree Search for Example

Fig. 7.6 The Branch and Bound Tree for the Best Bound 181
Strategy for a 30x60 SCP of Density 0.15

Fig. 7.7 The Branch and Bound Tree for the Depth First 182
Strategy for a 30x60 SCP of Density 0.15

Table 7.8 The Number of Nodes generated by the Depth 184
First and Best Bound Tree Searches using
Branching on Rows

Table 7.9 The Time taken to find the Optimal solution 185
by the Depth First and Best Bound Searches

Fi

Fig. 8.2 An Augmenting Path 197

Fi

Fi

g. 8.1 Design of a FORTRAN computer program for the SCP 188

g. 8.3 Formation of a Pseudo - Vertex 197

Fig. 8.4 Case 1. Vertex v* is Matched"in the Tree 200

g. 8.5 Case 2 Vertex v* is not Matched "200

Fig. 8.6 A Graph G" in which ah Optimal'Matching Corresponds 202
to an optimal Cover in G'.

Fig. A3.1 Graph for Network Flow Relaxation NF1 242

Fig. A3.2 Graph for Example, NF2 245

Fig. A3.3 Graph G, The Complement of the Row Intersection Graph 247

Fig. A3.4 Graph Covering Problem for GCR1 247

Fig. A3. 5 A Depth First Tree Search Branching on Rows for 257
the SCP

INDEX TO PROCEDURES

(xv±)

The algorithms tested in this thesis are outlined in the following

procedures. A description of the language used in the procedures

is given in Appendix 5.

Procedure number Title

-INITIAL BOUNDS

Description Page

Computes upper and lower 33
bounds to the SCP using
heuristics

LP BOUND Computes a lower bound
from a feasible solution
to DLP using an extension
of Erlenkotter's method
for the facility location
problem

36

HEURISTICS Combines Procedures 1 and 2 38

RELAX Forms a Laqrangean
Relaxation of an Integer
Program

not explicitly
described

SOLVELR Solves a Lagrangean
Relaxation

FEASTEST Tests whether or not a
solution to a relaxed
problem is feasible for
the original IP

COSTCHANGE
Changes the costs in
a Lagrangean relaxation

8 SUBPROBLEM Describes the basic steps
in solving a Lagrangean
Relaxation of an Integer
Program using subgradient
optimization

53

(XVii)

Procedure Number Title Description Page

PROJECT Computes a search direction
for optimizing L(X) using
projection methods

59

10 NETFLO 1 Solves the network flow
relaxation NF1 of the SCP

86

11 PARTITION Partitions the constraints
of the SCP to give a
Lagrangean relaxation

101

12 COSTPLUS Ensures all costs are non-
negative in a Lagrangean
relaxation in which rows
of the SCP are relaxed

109

13 GRAPHBOUND Computes lower bounds to
the SCP from graph covering
relaxations

117

14 DECOMPOSITION
BOUND

Computes lower bounds to the
SCP by partitioning the
problem and solving smaller
problems

140

15 DEPTHFIRST A D-epth First free Search
i'SEARCH on rows for the SCP

172

16 BESTBOUND A Best Bound Tree Search on
SEARCH Rows for the SCP

176

NOTATION AND ABBREVIATIONS
(xviii)

In a table of results denotes a randomly generated

constraint matrix

SCP constraint matrix

Submatrix of A consisting of some rows of A

A cyclic matrix with P non-zero entries per column

and q zero entries

ith row of A

3th column of A

Matrix used for relaxed constraints (Ch.3)

Matrix used for blossom constraints' CCh.5)

{3 |a^j = 1 and 0 "for all K k } kth block of

constraint matrix

Set of variables in block B^ with a 1 in row -i that

have not been fixed equal to 0 or 1

Logical variable in Procedure 3

Bank location problem:

max E Z d..x..-Z o .y . 11 x .. = 1 for all i, • • • 1.1 11 • iri I • 11
,yvi 3 ^ 3 % v 3 ^

3 0

Cost vector for the SCP

Costs for a relaxation of the SCP in which columns

are split

(xix)

DLP
T T

Dual linear program to LP: max[l u\A u < o, u > 0]

DLPB Dual linear program to LPB:

m ... T T
max[.£„ w. + r \A w + B < a. w, > O]
W i H = 1 i peP p p' ~ 3

DSCP Integer programming dual of the SCP:

maxfi^n) \ F[Ax) <o,F subadditive, FCO) = 0]

DYSCP Dynamic Set Covering Problem:

^ k j aick Xok * 1 f o r 3 1 1

d..
13

Cost of arc in network flow relaxation NF1Id)

(Ch.4)

Cost of £th variable of GCR2 (Ch.5), Cost of £th

variable in DEC(<i) (Ch.6)

E Arc set of a graph GtV,E)

E.
1

Set of vertices in a graph incident with vertex V^

J13
Cost of flow in arc for network flow problem

G Graph GiV.E)

G1 Graph for network flow relaxation NF1

G2 Graph for network flow relaxation, NF2

G[V,E) Graph with vertex set y, arc set E

(x:cmxxxiv)

GCP Graph Covering Problem: min[cr|i4a; > 1, A
x

has at most 2 non-zero entries per column].

G C R 1 U) Graph Covering Relaxation 1 obtained by relaxing

rows of the SCP.

GCR2 id) Graph Covering Relaxation 2 obtained by relaxing

columns of the SCP.

GLR(F) Generalised Lagrangean Relaxation:
T

min[e x - FiAx-b) \Bx > d, x integer]
x

T yx
GSCP Generalised Set Covering Problem: min[e x\Ax> 1, xe{0,1}]

x
where a . . = 0, 1 or -1.

1-3

h . Number of non-zero entries in column j of the SCP:
3

m

I Index set of rows under consideration.

% Subscript corresponding to rows (constraints) of the SCP.

J The m x m identity matrix.
m

IP Integer program: min[e:r|i4a; > b, Bx > d, x integer]
x

IP1 Integer program to partition constraints:

rn m
max[j_ y\A y < 2, ye{0,1}]

J Index set of columns under consideration.

Index SCP of columns of the SCP that have been split to

give variables of unequal value.

(xxi)

Subscript corresponding to columns (subsets) of the SCP.

Current variable under consideration.

K A feasible solution the the SCP or GCP.

K< An optimal collection of subsets for the SCP or arcs in

an optimal solution for the GCP (Ch.5).

Iteration counter, or subscript.

KCOL Number of non-zero entries in any column in a row

relaxation of the SCP.

KMAX Maximum number of iterations allowed.

KP KnapsacK problem: m±n[cx\ax >b, x > o]
x

^ik
Lower bound on flow in arc ii,k).

List of non-zero elements of x.

L CA)
T— —

Optimal objective function of LR(A): o x - Ax-b)

LP Linear programming relaxation of the SCP
T

min[e x\Ax > 1, x > 0]
x

LPB Linear program equivalent to SCP:

min[e^|Ax > 1, Bx, r, 1 > x > o]
x ~ ~ —

L(A) Optimal objective function of LR(A).

LR Problem of finding the best multipliers A for LRCA);

max LCA). A

(xxii)

Lagrangean relaxation: min[c x - XiAx-b)\Bx>d, x integer]
x

Lagrangean relaxation equivalent to the LP relaxation

that gives the network flow relaxation NF1id).

Index set of rows (constraints, elements) for the SCP,

Number of rows (constraints, elements) for the SCP.

{i\a.. = 1} , M. < M. ' ^J J -

Index set of columns (variables, subsets) for the SCP

also used for a matfix-in Procedure 10.

Number of columns (variables, subsets) for the SCP.

U \ a ^ = 1} , tf. < N.

Network flow problem equivalent to the LP relaxation

Network flow problem:

mf [I I cik kk^l hk- z
khk = u H) - * >

Network flow relaxation 1:

min[.Z„ d.. £.. I .Z„7 £ .. > 1, £ . . > 0]

Set of odd subsets of vertices of a graph.

Set of odd subsets of vertices that contain vertex £
«

Reformulation of the problem, LR:
m m

max[tf < <? aKe) + X iBxit))]
u

number of variables derived from column j equal to 1

(xxiii)

R Set of relaxed constraints.

R Set of subgradients in the projection (Ch.3).

Set of constraints not relaxed (Ch.5).

v Vector of slack variables (Ch.2).

Right hand side for blossom constraints (Ch.5)

S Subset of constraints or vertices.

S Set of subgradients to be considered for the projection.

8 Vector of reduced costs.

Also source vertex for network flow relaxations (Ch.4).

SCP Set covering problem: min[ca:|Aa; 1., sce{0,1}W]
x

SCPD id) A definition of the SCP that defines the decomposition

relaxation (Ch.6).

SCPG id) A definition of the SCP that defines relaxation GCR2 (Ch.5).

SPP Set partitioning problem: mU\[ox\Ax - ±, #£{0,1}^]

T Superscript T denotes transpose of a matrix.

T . Index set of arcs derived from column th relaxation GCR2.
3

TiS) Set of arcs with at least one and in set of vertices S.

u Problem variable for DLP.

uik
Upper bound on flow in arc

(xxiv)

UIP Unconstrained Integer Program:

T "C
min[c x + E k.ta x- b 0 2|xe{0,1}]

UPLP Uncapacitated Plant Location Problem:

min E E d—x. . + E c.y. Ie. x.. > 1 for all
J, g I'd I'd J d d j 'Z'J

< */e{0,l}

7
Vertex set of graph

Vertex of graph GiV,E).

vCP) The optimal solution value of problem P.

w Problem variable in §3.3 used for projection method Ch.3)

Dual variable corresponding to constraint a x > 1 in GCP.

x.
0

Problem variable J=1,2

Optimal solution to the SCP,

a; Prime cover for the SCP.

T
Objective function value for the SCP: s = a x

Optimal objective function value.

Lower bound to the SCP.

u
Upper bound to the SCP.

(x:xv)

a Constant used in subgradient optimization

g Parameter for Camerini et al's method (Ch.3)

o
p t Column derived from column a . of the SCP for te T .

J J

Subgradient of the Lagrangean Function

A

5
Amount by which a variable is changed

Parameter used to calculate steplength

Small positive number used as a tolerance

Cj Arc in a graph

£ Dual Variable for blossom constraint (Ch. 5)

0 Parameter for Camerini et al's method (Ch. 3)

K . Number of arcs in the GCP derived from column a .in the SCP
J J

A Lagrange multiplier

v Search direction for subgradient optimization (Ch. 3)

IT Penalty for changing costs in the relaxed problem

5 Flow in an arc for a network flow problem

p Density of the SCP

a Steplength for subgradient optimization (Ch. 3)

to Dual variable for vertex in the GCP

1_ Vector with all components equal to 1

+ Superscript + gives the value of a variable at the next

iteration

v Logical inclusive 'or'

A Logical 1 and'

> Greater than or equal to

^ Less than or equal to

(xxvi)

Is| Cardinality of a set S

Set inclusion. A s B means A is contained in B.

n Set intersection. A H B means the elements in both A and B .

U Set Union. A u B means the elements in either A or B.

e

CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Definitions

The set covering problem, SCP, is the integer program:

T I
SCP min{<2 x\Ax>± j x .e{0,1} , <7 = 1,2,... ,n}

x - 3

where A is an m x n matrix with a . . equal to 0 or 1 and 1_ is an m-

dimensional vector of 1's . It is so called because each column

of the constraint matrix A represents a subset of a set, M say, of

m elements with a . . = 1 if and only if the ith element of M belongs

to the 3th subset, Af.. The cost of subset Af. is Q-, The optimal
3 3 0-

solution, x*, to the SCP gives a minimum cost collection of subsets,

K % in which each element of M occurs at "least once. A subset, Af.,
3

is in K* if and only if cc.* = 1. Let N •= {1,2,...,n} be the index
3

set of subsets of M and let N. = The jth column of A

will be denoted by a - and the -Cth rcu> by a ,
. 3

Closely related to the SCP is the set partitioning problem, SPP, in

which the inequality constraints are replaced by equality constraints.

The graph covering problem, GCP, is a special case of the SCP in which

each column has at most two non-zero entries.

A graph, G s GiV,E'J, consists of a vertex set V and an edge (arc) set

E, If there are m vertices denoted by v., t-1,2,...,m, and n arcs •

denoted by e ., «7 = 1,2,... let A be the vertex-arc incidence matrix.
J

Thus if arc e . connects v . and vv then a.. = av. = 1 and a6 * ~ 0 for

Z 1 Associated with each arc e . let there be a cost <?.. The

resulting SCP is the problem, GCP, of finding a minimum cost set of

arcs such that each.vertex is incident with at least one arc in the set

A path Of length p is a sequence of vertices V .q ,V ... ̂ v ,p and a

k i
circuit is a path i £ i for k t I. A tree is a
~ ' — — — — u u 7s — — —

connected graph with no circuits.

1.2 Relaxations

A relaxation of an SCP is an easier problem such as a graph

covering, network flow or linear program whose feasible region

contains the feasible region of the SCP. Thus solving the relaxation

gives a lower bound to the SCP.

The linear programming relaxation of the SCP, LP, is obtained by

replacing a?.e{0,1} by 1 > x. > 0 in the SCP. The dual linear program,
3 3

DLP, is then:

T T
DLP max{1 u\A u < o , u > 0}

u ~~ ~~

Another relaxation of the SCP gives a knapsack problem, KP:

T.m n rn
KP min{e ' — : » ... ,n}

where the weights X . > 0 are given and the weighted constraints of

the SCP are added together to give a single constraint.

Given an integer program, IP,

T i
IP min{<? x\Ax > b , Bx > d, x integer}

x

& Lagrangean relaxation [GQ], L R U) , is the problem:

rp rp
LR(X) min{c x - X .(Bx ̂ -d) \Ax > b, x integer}

The constraints Ax > b are chosen so as to give an easily solved

problem LR(X) such as a network flow, minimum spanning tree or

shortest path problem. If LCX) is the optimal objective function

value of LRCX) this gives a lower bound to the optimal solution value

• y ' — .

of IP. If. a solution, x, to the relaxation LRCX) satisfies X (Bx~d) - 0

and is feasible for IP than x is an optimal solution to IP.

The best lower bound obtainable from such a Lagrangean relaxation is

given by LCX*) where X* is an optimal solution to the problem LR

below:

LR [~LCX*) = max LCX)
L X>0

One method of solving LR is to use subgradient

optimization, in which, for a given value of X, LR(X) is solved. If

the optimal solution to LRCX), x , is not optimal for IP then a sub-

gradient y is given by y = d - B x T h e Lagrange multiplier X is then

updated by X X + oy for a positive.constant a. More generally a

subgradient, y, of a function f : I? R at a point XsR? is a"vector

for which /CX + ad) - /EX) < cy^d for all dzlP and sufficiently small

a , a > 0. ' ' •

A
 network flow problem [F2] is used to describe the problem of finding

a minimum cost feasible flow in a network in which each arc has an

upper and lower bound on the flow and a cost. This is formulated as

the integer program, NF,

1 " M ° i k K * k

NF
subject to

- Z ^ = vU) for all vertices i
k k

Ufo > Zjfr > for all arcs H,k)

where vtt) = V if % is the source vertex, vti) =

vertex and v H) = 0 otherwise;

-v if i is the sink

u^k is an upper bound on the amount of flow in arc (i,k)

is a- lower bound on the flow in arc H , k) .

A feasible solution to the SCP is one that satisfies the constraints

and is known as a cover. A prime (minimal) cover, x, is a cover for

which no element x . that is set equal to 1 can be set equal to 0
»1

without violating a constraint. An optimal solution to the SCP is a

prime cover if all the costs are positive. The optimal solution of a

problem P will be marked by * and the optimal objective function

value by V('P). An optimal solution of the SCP will be donoted by a?*

T
and z* * c x* = tf(SCP). An upper bound to the SCP will be denoted by

z and a lower bound by z , • u * ^

A successful technique in solving integer programs is branch and

bound [B3J Itree search). The given SCP corresponds to the root node

of the tree. Subsequent SCP's are generated by fixing variables in

the original problem and these give rise to successor nodes. The

bounds can be generated by solving a relaxation of the SCP at each

node. 0 noct«- is -fcM^rr^s-cL)f- cyo* t&JL- ftfUoioin^ C&ndiHbns l^okh:-

(i) The lower bound exceeds an upper bound, to

the SCP

(ii) The relaxed problem is infeasible

(iii) The solution to the relaxed problem corresponds

to a feasible solution to the SCP and satisfies

the complementary slackness conditions.

No successor nodes are generated from a fathomed node, otherwise

variables are fixed and further subprobiems are generated until all

the nodes have been fathomed. An active node in a tree search is

Figure 1.1

An Example of a Search'Tree for a Branch and Bound .Procedure

An upper bound, z^, is 11

Nodes are labelled O

A depth-first tree search would search the nodes in the order

A, B, D, C, E, F, G, H

A breadth-first tree search would search the nodes in the order

A, B, C, D, E, F, G, H

A best bound search would search the nodes in the order

A, C, F, E, G, H, B, D

Node C is the father of E

Node F is the brother of E

Node D is fathomed since z = z
Z u

Nodes E, G and H are active

Node F is branched

one which is not fathomed and from which no branching has taken

place. A branched node is one from which branching has taken place

and which has not been fathomed. A father node of a node, P , in a

search tree is the node immediately above P^ in the tree and a

brother node of P^ is one which has been generated from the same

father node as that of P . A depth-first tree search explores

recursively a successor node until a node is fathomed,The algorithm

then backtracks until a node from which a successor node can be

generated is found. A breadth-first tree search explores all the

successor nodes of a single node and then takes the first successor

node and explores all its successors, the second successor node and

all its successors and thus continues until all nodes are fathomed.

The best bound search chooses the next node from which to branch as

the one with the lowest bound. Other heuristics can be used for the

strategic problem of choosing the next node from which to branch.

Tree searches are shown in Fig.1.1.

1.3 Literature Survey

Applications of the SCP are listed in the first of four parts to this

section. A discussion of problems that are related to the SCP follows

Solution techniques for these problems are often applicable to the SCP

Algorithms for the SCP are reviewed briefly in the third part and the

final part outlines some of the many theoretical results that have

been obtained for the SCP. Surveys of the SCP are given in Garfinkel

and Nemhauser [G3], Gondran [G16] and Christofides and Korman [C8].

Many of the practical problems given in the survey paper for the SPP

by Balas and Padberg [B8] can also be solved using the SCP.

1.3.1 Applications

•ne of the first applications of the SCP was to . airline crew

scheduling problems [A2, B1, M5, R3, B26]. The columns of the SCP

represent sequences of flight legs and the rows represent crews. - The optimal

solution"to the SCP then gives an optimal allocation of crews to flight

legs. More general personnel scheduling problems that have been

solved by SCP's are given in [T3], The SCP has also been used to

allocate buses to schedules [G5, S8],

Location of emergency facilities can be analysed using SCP's [B22, B25,

R1, 17, T8, W1].. In these problems each row of. the SCP represents a

district in a town and each column a possible location for an emergency

facility such as an ambulance or fire station. A,location problem

using the cardinality constrained set covering problem in which the

number variables that can be set equal to 1 is constrained is given

in [CB],

The SCP is also used in routing problems. For a delivery problem

each route can be represented by a column of the SCP and each

destination by a row. Associated with each route is a cost (distance)

and the SCP solution gives a set of routes of minimum cost (distance)

that visits each destination. This is described in Pierce [P4].

The SCP has been used for circuit and switching theory in electrical

engineering and for minimising boolean expressions [B32, G12, Q1, R4,

S9]. Other network and graph theoretic problems, such as the vertex

colouring and minimum dominating set in a graph problems can be solved

using the SCP [B18, B19, B24].

Other problems to which the SCP can be applied are those of data

storage and information retrieval [C13, D1], For an information

retrieval problem each variable x. can represent a library and a .. = 1

if and only if the information indexed by i can be found in the jth

library. The cost of visiting the jth library is given by c . and an
J

optimal solution x* to the SCP has x .* = 1 if and only if the j'th
€

library is used in a minimum cost set of libraries needed to access

all the information.

In production planning the SCP can be used for scheduling problems

such as a simple assembly line balancing analysis [S4]. Decision

theory can also be modelled using SCP's [K3].

1.3.2 Problems related to the SCP and problems used in its solution

1.3.2.1 Well-solvad,-,cases of the SCP

The SCP belongs to a class of problems that is Known as NP- complete

[G2]. This means that it can be solved.by a nondeterministic algorithm

in polynomial time or that the depth of a binary search tree is poly-

nomial [A1, H9]. No polynomial algorithm is Known that can solve the

SCP. However, in the case when there are at most two 1's per column

of the constraint matrix,the SCP is a graph covering problem. Algorithms

for this problem are based on the matching algorithm of Edmonds [E1, E2].

This algorithm maintains a primal feasible and dual feasible solution

to the equivalent LP problem and aims to satisfy complementary slackness.

Edmonds* algorithm is OCn 4) and by using improved data structures

0 (n 2 , 8) [G1, L2] and 0 (n 2 , 5) [L2] implementation can be obtained. For

an efficient algorithm to solve successive matching problems on the

same graphvwith slightly different costs for each problem-sensitivity

analysis can be useful; for example if the costs are^'changed only on .arcs

incident to one particular vertex. This procedure is described in a primal

algorithm for the matching problem in fc'T6j. "'Further details on sensitivity

analysis for the case when only two costs on arcs are-changed are given

in [W2], where the matching problem is used to solve a Lagrangean

relaxation of the SPP. An algorithm for the graph covering problem

is given in White and Gillenson [W5] which starts with a set of arcs

that cover all the vertices in a graph and removes arcs until an

optimal solution is obtained.

Unlike the GCP the node covering problem, NCP, of finding a set of

vertices in a graph of minimum weight such that each arc is incident

with at least one vertex in the set is not well solved except for

special classes of graph. These are firstly chordal graphs [G6] i.e. «y-txf>K^

in . -'-which there are no circuits-of length greater than three without

chords (a chord is an arc whose ends are both vertices in the circuit).

Secondly, node covering problems on circle graphs can be solved by a

polynomial algorithm [G7]. A circle graph is defined by letting each

vertex represent a chord in a given circle. If two chords intersect

then the corresponding vertices are linked by an arc. Claw-free graphs

and interval graphs are other classes of graphs for which the node

covering problem can be solved optimally [G2]. A claw-free graph is one

4-

without a subgraph that is a claw. A claw is the bipartite graph,

î î s- An interval graph is formed by letting each interval between

two numbers on the real line be represented by a vertex and connecting

two vertices if their corresponding intervals have a non-empty inter-

section. Lastly if the graph is a line graph the node covering problem

can be well solved [H2], A line graph L of a graph G is derived by

letting each arc of G represent a vertex of L and--two vertices are
joined in L if and only if the corresponding arcs meet each other in

G.

^ 0 bipcu-tik, Qpfcpk h«.s ̂ Unices p«u-f iWoAexl -huro 2dtsy I/, o^a

t&il arcs joiVtf CL oerWv Ut V, to s uej-fe* «* Vz . H ^ ^ ^ y e w e ^

The SCP Is an easily solved problem whenever the non-zero entries

of A occur in consecutive rows as the example SCP1. below shows. CSlSj

Example 1

+ 5X 2 + 3X 3 + 6 x^ + 2a; 5

X1 + x3 > 1 .

xl. + x2 * x3 + #5 > 1

xl + x2 + xb + x5 > ^

x2 + a:^ > 1

x.e{0,1} j=1,2, ,4
3

SCPi

min
x

Subject to

Dynamic programming can be used to solve the problem by first defining

k
an m-dimensional vector 3 that has 1's in the first k components and

k
O's elsewhere. Define for a column a. of the SCP constraint

1> 3 3
k k

matrix by = maxCO, 3 . - a . J . Let function F 7 be defined on
% ^3 i %3 k

vectors 3 1,3 2*...,3 by:

FJ 0)
o

F kC3*) min [f ^ C B
deN*.

"for k = 1,2,...

' ' • 171
The SCP ofj+ivHal 3o»uK«vi yrotoAts ^ (3 3. Unlike dynamic programming

when applied -co ttia general 'SCP this problem does not need excessive

k

storage because only vectors of type 3 are used in the above

recursion equation. This problem can also be thought of as a shortest

path problem on a graph. An initial vertex V q is defined plus m

vertices Ui.Vo,...,V , one for each row of the SCP. Each column a . of m 3

the SCP is represented by h^ arcs, where fc. is the number of 1's in the

column. If the first non-zero entry occurs in row and the last in

row then arcs Cv^ _ 1 , V^) are constructed for % -

Each arc has cost o .. The SCP solution is given by the shortest

path from Vq to v . The graph G1 for the example is.shown in

Figure 1.2. The shortest path from VQ to Vi+ is given by the path

(Vq ,Vi and has cost 8.

Figure 1.2

Graph in Which a Shortest Path Solves SCP1

Each arc is labelled with the distance between endpoints. (v ,vt ,vh)

is the shortest path from v 0 to

The case of cyclic matrices can be solved by a rounding argument. A

cyclic matrix, Aip,q), has p 1's per column and q O's. The jth column

has 1's in rows j ,j +1,.... ,3 +p-1 (mod(p+<7)) and O's elsewhere. As an

example AC3,2.3 is shown below.

Example 2

A cyclic matrix A(3,2)

1

1 1

1 1 1

1 1

1

In general the LP solution to the unicost SCP with constraint matrix

Aip,q) is given by setting each x. equal to Vp and since there are
3

p+q columns the optimal solution value is equal to (1 + q/p). Suppose

p+q = ft p+r where p > v > 0 and k and r are integers. Then the lower

bound to an optimal solution of the SCP is k if r=0 and k+1 if r > 0

since it must be integer. A feasible solution to the SCP can be -

obtained by setting x.~ 1 for j'=1 , p + 1 . . ,tp+1 where t is the largest 3

integer for which tp + 1 < p+q. Hence if r=0, t=k-1 giving k non-zero

components of x with total cost k and the SCP solution equals the

LP solution. If r > 0 then t=k and the cost of the SCP solution is

1 and again equal to the lower bound. The cost of the unicost SCP

with constraint matrix A{p,q) is thus 1 + fq/p] where \~y~~\ denotes

1 1

1

1

1 1

the least integer greater than or equal to y. This type of constraint

matrix occurs frequently in scheduling problems and the determinant of

the matrix can be very large which means that traditional cutting

planes derived from LP, such as Gomory cuts, are unlikely to solve the

problem quickly.

Details of how the rows can be manipulated using graph theory to give

a related network flow problem are given in [B14, B15].

1.3.2.2 Problems of which the S C P i s a special case

The SCP is a special case of the following uncapacitated plant

location problem, UPLPt

UPLP

n n m
min .1. .E. d . . x .. + .Z . o .y .
*c t y

Subject to
n

x. . > 1 J=1 iQ -

x .. < y .
%3 ~ ~ i

for -£=1,2,.

for all i,3

x.,,y.z{0,1} for all i,3
13 3

,m

This can be transformed into an SCP by setting d . . = « if a . . = 0
1'3 13

and d.. = 0 if a.. = 1. The coefficients of y. in the objective
13 13 3

function are the costs of the SCP. The dual heuristic procedures

for this problem given by Erlenkotter [E4] can be applied to the

SCP as shown in Chapter 2 to give lower bounds. This problem is

similar to the bank float location problem, BLP, given by Cornuejois,

Fisher and Nemhauser [C14] as:

QLP

m n n
max .Z. .Z. d..x. - .Z. c .y.
a , 2/ ̂ =1 J = 1 V 3 J = 1 3 3

n
Subject to Z x . . = 1 for fc = 1,2,...,OT

rf-i «
rc

1 < Z y . < K
<7 = 1 J

0 < a;. . < w . < 1 izl,3'eJ
- 13- 3

Xi>3 , y3 i n t e S r a l

The worst case analysis for this problem is applicable to the SCP

[C15].

The generalised set covering problem, GSCP, is an integer program:

T (
GSCP min{c x\Ax > 1 , x .e{0,1} , j = 1,2,...,n}

x ~~ 3

in which the constraint matrix A can have eLfifccfes equal to 0, 1 and

-1. It can be shown that any integer program is equivalent to a

GSCP [G17]. lb is asstunadl fct^jb bun, integer aides Uewe u^ar Iŝ xs Urû Jls.

A stronger result, given by Zorychta [Z3], is that any 0-1 integer

programming problem can be converted to an SCP. Since an integer

program can easily be transformed to a 0-1 integer program this

means that any integer program is equivalent to an SCP. Zorychta

shows that an m x n 0-1 IP can be converted to an SCP with at most

^ constraints and ^ variables in 0(mn2-) steps,

b ou-ttJed

Firstly any^IP can be transformed to one in which all the costs,

constraint coefficients and right-hand sides are non-negative.

Additional variables may have to be added at this stage. Let m and n

be the number of rows and columns, respectively in the resulting IP.

The IP

T 1
IP min{c x\Ax-b , tf.e{0,1}}

x 1 3

is then equivalent to the following unconstrained integer program,

UIP:

T m n o ,
UIP min{o x + ,iA k . (a x - b J 2 a: .e{0,1}}

x T=1 "Z- i 0

for sufficiently large Replacing by a single variable

adding the constraints:

X0 • > X4 + X ' ~ 1
- I 0

and transforming the objective function of UIP to remove redundant

information gives an SCP with constraint matrix of the form CS,I)

where S has at most 2 non-zero entries in each row and I is an

identity matrix of appropriate dimension.

Other variations on the SCP include the dynamic SCP, DYSCP and a
»

stochastic SCP [Hi].

The former is the following SCP with special structure:

r -

lh dh Xc'k°3k\jh W 1 '
DYSCP min

The subscript k refers to time periods and for a location problem

x
j k

=
 1 if a facility is located at site j in time k. The term:

n r

<7=1 kh ujk{ xjk + xj,k-1 " 2 xck xj,k-1 3

can be added to the objective function where is a phase-in/

phase-out cost for facility j in time period k.

The stochastic SCP differs from the SCP in that a variable x . is
0

chosen to be in the cover with probability p.. The objective is to
«7

find a sequential procedure for selecting the variables x . which
0

minimises the expected cost among all selection programs. In general

this is a hard problem to solve and therefore is only useful for

constraint matrices with special structure.

The SCP is a particular case of a general IP problem for which

heuristics are often useful as shown in the survey by Zanakis

[Z1], In the next chapter heuristics are given which compute upper

and lower bounds to the SCP and can be used to reduce problem size.

Other techniques that are useful for 0—1 programming problems are

branch and bound, Lagrangean relaxation and logical tests. - These

are discussed fully in subsequent chapters.

1.3.2.3 Relationship between the SPP and the SCP

The only difference between the SPP and the SCP is that the former

has equality constraints and the latter inequality constraints. The

question of which is easier to solve has been.considered by several

authors, e.g. [B8]. The answer depends on the solution technique

used because to find a feasible solution to SCP is trivial, but not

so for the SPP. In a branching strategy for the SPP fixing a

variable equal to 1 excludes many more variables than in the SCP and

therefore an algorithm based purely on branching would generate

fewer nodes for an SPP than for an SCP. On the other hand a lower

bound to the SCP based on a dual feasible solution to LP would also

be a lower bound to SPP. To improve the lower bound for SPP may

require extra work by considering negative values of the dual variables

that are not feasible for DLP. Hence an algorithm based on lower

bounds from the dual linear program may be easier for the SCP than

for the SPP. Any SPP can be transformed to an SCP without changing

the constraint matrix [B8]. This can be done by adding vjê fest of %S<uk,

variables!/ to the SPP with suitable large cost 6, then SPP is

equivalent to:

T
min[-ca;+01 y\Ax-y=1 , y > 0 , x 1} , j = 1,2,...,rc]

— - 2

T
Substituting for y and letting c l = 01_ 4-c gives the SCP:

min (V Urc > 1 , a:.e{Of 1} , <7 = 1,2 a; — J

To transform an SCP into an SPP the constraint matrix /I must be

modified [K4]. Each column a . is represented by |a.| columns each
Q t7

of cost e.. The rth column derived from column a . is equal to

column a . with the first (r-1) non-zero elements set equal to 0.
0

n i i
The modified constraint matrix then has Z a . columns which is

j=r r

equal to the number of non-zero entries in the original constraint

matrix. The problem size can be reduced by the dominance tests of

§1.3.3.1. The SPP resulting from these additional columns is nofc

equivalent to the SCP from which it was derived^ buir OA vvoaJL

U S5U*. f^s spp c-e**\ t*. a^Ltx^M -6a SfUxL^ko. ScP.

1.3.2.4 Network flow problems

In this thesis two network flow relaxations of the SCP are given.

Both graphs have been described before but have not been used in

Lagrangean relaxations of the SCP as in Chapter 4. The first graph,

in which vertices represent both rows and columns of the SCP and arcs

represent non-zero elements of A , was first used by Swissair for

airline crew scheduling and the costs were assigned to arcs by a

somewhat arbitrary procedure [A2]. A variation of this graph in

which columns of the SCP with less than 3 non-zero elements were

treated differently from other columns is given by Glover and

Mulvey [G15]. They solved an integer programming problem with 300

rows and 460 columns with a simple depth first search in 10 seconds

(CDC 6600) which had proved to be intractable by using linear

programming for a lower bound. The network formulation had 2860 arcs

and 780 nodes. The success of this method, which can only give a

bound as good as that obtained from linear programming, can be

attributed to the efficient data structures in the network flow

routines of Glover et al [G14] that were used. The simplex pivots

on these networks then have a simple graph theoretic interpretation

because the basis is represented as a tree. Efficient labelling

schemes enable simplex pivots to be made by traversing a tree fG14,

G15].

The second network in which the vertices represent rows of the SCP

and paths represent the columns was used in a relaxation for the

unicost SPP by Nemhauser et al [N1]. Again the bound is only as

good as that obtained from LP. A more theoretical interpretation of

the second network was given by Fulkerson [F3, F5] in conjunction with

blocking and antiblocking theory. The main purpose of this was to

give a round-off result similar to that for cyclic matrices that

could be used in a bound for the SPP. The network was also used by

Tind [T4] again in conjunction with antiblocking theory to get a

lower bound for the SPP. It has also been used in electrical

engineering for finding a set of paths in a circuit that start at a

source and end at a sink and pass through all vertices, [H0].

1.3.3 Algorithms for the SCP

All practical algorithms for the SCP have three components. The first

is preprocessing in which elementary tests are used to remove some of

the variables and constraints. The second is to find upper and lower

bounds to the problem. The third is to close the gap between the

bounds by either generating more problems as in branch and bound

methods or reducing the size of the feasible region as in cutting

plane methods. The preprocessing strategies for the SCP are well

Known and comments concerning their practicability are given here.

There then follows a survey of methods for lower and upper bounds to

the SCP.

1.3.3.1 Preliminary reductions

Before using an algorithm for the SCP a number of elementary reductions

can be made.

(a) Negative Costs

If a cost a. is negative then x. equals 1 in any optimal solution of
0 V

the SCP and all rows covered by a . can be removed. In a practical

SCP it is unliKely that any of the costs are negative, however if the

SCP is being used as a sub-problem of some other problem as in

Lagrangean relaxation it is likely that negative costs will occur

and thus this reduction test is useful.

Cb) Single 1 in a Row

If any r o w o f the constraint matrix has just one non-zero element,

a..,.. say, then .. must equal 1 in any feasible solution to the
%Q I u J (J J

SCP. Although this is unliKely to be useful initially in a branch

and bound procedure, further down the search tree subproblems do

occur with single 1's in a row and it is here that this reduction

is most useful.

Cc3 Row Dominance

If a4 a > a v any two rows and all j then row can be
12.3

removed as any x satisfying the constraint cf^x > 1 will also satisfy

a Lx > 1. In a randomly generated problem in which the coefficients

a.. are independent random variables with p a fixed probability that

a . . = 1 the probability(given any two rows)that one dominates another
i'0

is:

PCp,n) 5 2(1 - p +p2)n (1 - 2p + 2p2)n

For small p, equal to 0.05 say, this is very small. This reduction

is therefore only likely -to be useful when n is very small or p is

larger. The probability can be increased and' 71 reduced by considering

the test only on a block of columns as in s branching strategy given

in Chapter 7. . " ' - -

(d) Column Dominance

For a subset S of columns and a sifljle column 30 if ^ Z ^ . < c

and .Zn a . . > a . , for all i then column 30 can be removed from the
3zS — 130

problem. This test means that rows covered by column jo can be

covered for no greater cost by columns in S. For a unicost problem
•

that is randomly generated as in (c) the probability that one column

dominates another is P(pj,w) . . which is small for sparse matrices,

Thus these tests are only useful ,if m is small or the constraint

matrix is dense for random problems.

(e) Reduced Costs

If a dual feasible solution to LP, u, is available then the reduced

cost of column j is given by:

- _ T
s. = q - - u a.
3 3 0

T
If z is a known upper bound on the solution of the SCP then z =_1_ u ti As —

is a lower bound and if

S' > 2 - 1 U 3 u —

then x . = 0 in any solution with value less than z .
3 u

If z is the cost of a known feasible solution to an SCP with integer

costs then z = s-.vj^'e for any e > 0 is a suitable upper bound. In

* See Appendix 1.

practical problems reduced costs are extremely useful. They are not

useful in problems for which the cost of a column c . .is equal to a

scalar, say^ times the number of 1's in the column (i.e.

m
a . = 0 .E. a ..). Then a dual feasible solution is u.= 0 for all i
3 ^=1 ^J i

and all reduced costs equal 0. In this case if the corresponding SPP

has a feasible solution this will be optimal for the SCP. If the

constraint matrix has some structure then the column dominance tests

may work well as all that is required, given a column jo, is to find

a subset of columns, S, for which a..-a., for all i and then 3 sS 13 13 o

column jo can be removed.

1.3.3.2 Sorting the constraint matrix

Both the rows and columns of the constraint matrix can be presorted.

The algorithms given in [G4, K4, Ml, P5] for set partitioning and

set covering sort the columns of the constraint matrix A into blocks

B ., £=1,2,...,m. A block fl. is a set of columns whose first non-zero
i i

entry occurs in row i, that is a.,. = 0 for i r < i and a.. = 1 for all

jzB.. The advantage of this approach for the set partitioning

problem is that if x^ is fixed equal to 1 in a branch and bound

scheme then all blocks B. for which a.. -A can be removed from the i 13

problem. Experiments on row permutations have been carried out for

the SPP in [M4] and [B7] and it generally seems better to try and

cover rows with the least number of elements at the top of a branch

and bound tree.

In practice the procedure that generates the SCP constraint matrix

from a scheduling problem say, can usually be designed to produce a

matrix in block form as shown in §7.3.2.1.

22

1.3.3.3 Algorithms for lower bounds to the SCP

The LP solution was one of the first lower bounds to be used in a tree

search method for the SCP [L5]. A problem with the LP is that it

cannot handle large sparse problems because of degeneracy and this

means that many simplex iterations are required to reach optimality.

An improvement is to solve DLP, the dual of LP, for which a sub-

optimal solution gives a bound to the SCP [S2]. Although faster

than LP, DLP' is slow to solve large problems.

Another relaxation is the Knapsack relaxation in which the constraints

of the SCP are added together to form a single constraint [B7, P5].

This gives a very weaK relaxation and it is usually possible to get

an improvement by premultiplying the constraints by positive scalers

before adding them together.

Heuristics for finding feasible solutions to DLP are given by Balas

[B5] which are discussed together with other heuristics in Chapter 2.

A group theoretic relaxation which depends on the size of determinants

of square submatrices of A is given in [G1B], but group theory has

not been very successful in the solution of large scale 0-1 programs.

Lagrangean relaxation [G8] has been used for a wide variety of

combinatorial programs such as the travelling salesman [H4],

facility location [G9] and cluster analysis [M6] problems.

Etcheberry [E5] used this approach for the SCP in which some of the

constraints were relaxed and the remainder had no variables in

common. This relaxation was also used in the disjunctive cut

approach of [B7]. Subproblems of the SCP that are networK flow and

graph covering problems are solved by Lagrangean relaxation in this

thesis.

1.3.3.4 Algorithms for upper bounds to the SCP

Upper bounds to the SCP can be found from any feasible solution and

heuristics have been studied and analysed by Johnson [J1], Chvatal

[C11] and Ho [H7]. One of th'e easiest ways to find a prime cover is

to use the Mleast-cost-per-constraint-satisfied"to choose columns of

the SCP that are in the solution. Hence if o., = min o . where
0 _0_

W h0
m

h . = a . , then a... is set equal to 1 and all rows covered by a;.,
0 io o t ^ J

are removed. The procedure is repeated for the remaining rows and

columns until all the rows are covered. resulting cover is then

reduced to a prime cover. If instead of a . the minimum of any

function fio.,h.) is chosen as the criterion for fixing x . = 1 then
3 0 , 0

a . .
the upper bound z satisfies z < z* .1. 1 where d = max M . and this

u u J = 1 j o
L — •• " bound ' . can be curtained.

An r-optimal method for an upper bound is given by Roth [R2]. This

method means that if any subset of r columns is deleted from the pro-

blem no better solution can be obtained by covering the remaining

rows with another subset of up to 3? columns. For r = 1 this would

mean that if x . = 1 in a feasible solution to the SCP then setting
0

x. = 0 and setting another variable, x., say, equal to 1 would not
0 0

yield an improvement in the bound. This type of method is also used

by Baker et al [B1] for solving large airline crew scheduling problems

1.3.3.5 Branching strategies for the SCP

Any branching strategy can be divided into two parts, the tactical

problem of deciding how to fix variables at a node to generate sub-

nodes and the strategic problem of finding which node to expand next.

The easiest approach to the tactical problem is to alternately fix

x • = 0 and 1 [B3]. This does not work very well for.most problems.
0

The algorithm of Pierce and' Lasky [P5] uses a depth first binary

search but the block structure of the constraint matrix means that

additional variables can be removed. In an algorithm for the SPP

Marsten [Nl] branches on blocks of variables instead of a single

variable. Only one variable in each block can be fixed equal to 1.

Blocks of variables can be removed at each node of the search tree

instead of fixing a single variable x> equal to 0 as in a conventional
V

tree search.

Etcheberry [B5] uses logical combinations of rows to branch. Suppose

% V

a x > 1 and a x > 1 are two constraints of the SCP with some variables

occurring in both constraints. These can be used to divide the SCP into

two problems. In the first problem the sum of variables that occur in

both constraints must be greater than or equal to 1. In the second

problem their sum must equal to 0. As an example consider the constraints

a?l a?2 * .̂ 3 > 1

and- x\ +• #3 +.xi+ > 1

Then either + X3 > 1

or x\ = X3 = 0 implying that > 1 and Xi+ > 1

Marsten's algorithm for the SPP generates a subset of the tree search

nodes generated by the above method when the latter is implemented as

a depth first strategy.

A theoretical survey of branching strategies for IP is given by

Ibaraki [ii]. As expected the depth first search is less likely to

work well than say a heuristic search where the next node to branch

form is chosen by a rule such as the node having the best bound.

Breu and Burdet [B31] give a computational survey of branching

strategies and a computational comparison between depth-first and

breadth-first methods for the SCP is given in [T6]. . Dominance tests

to eliminate nodes are given in [K4].

1.3.3.6 Cutting plane strategies for the SCP

Traditional cutting plane strategies for integer programming have been

employed by Salkin and Koncal [S2] who used Gomory cuts [G3] derived

from the tableau for DLP. However the large number of cuts generated

makes this method unsuitable for large problems.

An algorithm that was able to solve some very large problems Cup to

150 rows and 7000 columns) and yet failed on other smaller ones and

was therefore not robust was developed by Martin *[M2]. This was a

cutting plane algorithm based on Gomory cuts with additional steps to

try and enforce integrality of the simplex tableau. Other cutting

plane approaches based on disjunctive cuts have been proposed by

Balas [B5] and Lev and Soyster gave a similar method which uses an LP

relaxation [L6].

Disjunctive cuts are generated by considering a set S of reduced costs

for which .Z0 s . > z - z where z is the lower bound corresponding
3 Eo j U Xj)L

to the dual variables used to give s'.. It can be shown that at least
3

one x . , 3'eS , must be 0 in any solution to the SCP of value less than
3 fce^uts u[esl

z . Cuts can then be generated that are SCP type constraints.^These

cuts are superior to the cuts generated by Bellmore and Ratliff [B19]

in an earlier cutting plane method and preliminary computational tests

indicate that they are capable of solving sparse problems of up to

200 rows and 1000 columns more efficiently than previous methods.

Strengthening inequalities in 0-1 integer programs has been studied

by Zemel [Z2] but this method seems unlikely to be useful in a practical

algorithm for the SCP.

1.3'.4 Theoretical Results for the SCP

1.3.4.1 Complexity results

The SCP is an NP-complete problem which means that it is unknown if

it can be solved by a deterministic algorithm in polynomial time.

It can be solved by a non-deterministic algorithm in polynomial time.

A non-deterministic algorithm can be solved by a tree search in which

the depth of the tree is a polynomial in the dimension of the problem.

Further details are given in Aho, Hopcroft and Ullman [A1] (Chapter

10), Horowitz and Sahni [H9] (Chapter 11) and Garey and Johnson [G2].

Q1 A question can be-posed: Is there a polynomial time algorithm

that gives a solution z to the SCP such that (z - z*)/z* < e.
u u —

for a given e > 0?

No fixed value of e is known for the SCP. For the unicost SCP

Johnson [J1] shows that the heuristic of the previous section gives

z < (1 +logik))z* where k is the maximum number of 1's in a column

of the SCP constraint matrix.

Q2 A second question arises: Is there a polynomial time algorithm

that gives a solution z to the SCP such that (s - z*)/z* < z
u u —

'most of the time?

Karp [K2] proposes a tree search algorithm for the unicost randomly

generated SCP in which unpromising nodes are discarded and the number

27

of nodes expanded is 0in) and which gives z < (1 + almost"Always.

Probabilistic search methods have also been studied by Gimpel [G12] who

shows that for sufficiently large random unicost set covering problems

randomly picking columns to cover each uncovered row until all the rows

are covered solves the SCP almost always within 1 + e. These results

say little about algorithms for SCP's with specific costs or problems

less than a given size, but Karp's result helps to explain why a tree

search method which has exponential worst case behaviour can very often

produce an optimal solution quickly even if it cannot be proved so.

Further, complexity results are given in Karp [K2] and Sahni and

Gonzales [S1].

1.3.4.2 The set covering polyhedron

The convex hull of all feasible solutions to the set covering constraints

{Ax > x.e(0,D) defines a polyhedron, P. Facets of P are linear
0

inequalities that are satisfied by exactly d * affinely independent points

xzP where d is the dimension of P. Facets uniquely define the convex hull

of the feasible region of SCP unlike cutting planes which do not necessarily

intersect the convex hull. For an example o f ^ ^ & c i ^ ^ - s the SPP

see [P3j. The reason that the study of facets is useful is that they can be

used to generate cuts and thus reduce the gap between an upper and lower

bound to the SCP.

Fulkerson [F3] shows that if the row dominance tests of §1.3.3.1 are

used to remove all redundant rows then for the set covering polytope

the remaining inequalities Ax > 1 define all facets of the form

TTCC > 1 where TT is a 0-1 vector. A complete characterisation of all

* r vectors are affinely independent if/ the vectors
x2~ xl J''' * xx>~ xi a r e

 linearly independent or alternatively if every

vector y can be written in at most one way in the form:

y * J1 V * where kh h =

the facets of an integer program is only Known for a few special cases

One of these is the GCP.

The constraints that must be added to a linear programming relaxation

of the GCP are the following:

oins)
 f l s l * 15/2

where s is a set of vertices with odd cardinality and TCs) is the

index set of arcs that have at least one end in s, for all-such s.

These are the facets that are used in the graph covering relaxations.

In principle it would be possible to solve an SCP by considering a

feasible solution as a vertex of the set covering polyhedron and then

finding all adjacent vertices that is other prime covers, and

showing that none of them have lower objective value than the given

feasible solution. In practice only polyhedra with a few vertices

can be analysed this way and therefore this is not a practical

approach. Codes for adjacency in polyhedra are given by Von HohenbalKen

[V1] and a mathematical analysis of adjacency is given by Hausmann

and Korte [H3].

1.3.4.3 The structure of the constraint matrix

The question of when the solution to the LP relaxation of the SCP has

an integer solution has been studied extensively, but no necessary

and sufficient conditions exist. The most well Known sufficient

condition is unimodularity. The constraint matrix A is unimodular

if all square submatrices have determinant equal to 0, 1 or -1. In

this case the LP has an integer solution [G3]. A balanced 0-1 matrix

is one for which no submatrix of odd size has row and column sum

equal to 2. If the matrix A is. balanced then the LP solves the SCP

TP2]. An earlier result which is less strong was given in the form

of a tree structure associated with the constraint matrix by Meir and

Noon [M3]. Cyclic matrices can be transformed by using trees to give

a network flow constraint matrix [B14].

1.3.4.4 Duality

Analogous to linear programming duality^ a duality for integer

programming can be developed using subadditive functions [W6].

A function f is subadditive if fia) + fib) > fta + b). Thus,one can

define the dual of the SCP as:

max FC1) (1: is an -dimensional vector
F of 1's)

DSCP
subject to FiAx) < c

F subadditive

tjx

Thus, for LP duality Ft.) is the function u C.) for u > 0. For the

problem IP given a subadditive function F with FCO) = O^a generalised

Lagrangean relaxation, GLRCF), is given:

GLCF) = min o Tx - FlAx-b)
x

GLRCF)
subject to Bx > d

x integer

Then analogous to linear programming duality, where tfCLP) = -yCDLP),

tfClP) = tfCGLR) where GLR is the problem".

30

GLR

max GL(i?)

F subadditive

F(0) = 0

The optimal solution to GLR cannot be found easily without using

branch and bound, cutting planes, dynamic programming or any other

technique of integer programming. However state space relaxation

could be used to get lower bounds as used in Chapter 6. Wolsey fW6]

uses dynamic programming on a large network to generate subadditive

functions for the SCP.

1.3.5 Data Structures

As can be seen by the results for network flow problems, efficient

data structuring is essential for fast algorithms. This is even more

important for combinatorial problems where subproblems have to be

solved many times. It is also useful to have a data structure which

allows transition from one subnode of the tree search to another.

Data structures are explained in [A1, H8], Algorithms for the SCP

which store the non-zero entries of the constraint matrix in bits

are those of Garfinkel and Nemhauser [G4], Pierce and Lasky [P5]

and Korman [K4], Storage in lists is used by Marsten [Ml], Mevfirt

[M4] and gives faster computation times. Chapter 8 describes the

data structures used in the algorithms here. A survey of sparse

matrix techniques is given by Duff and Reid [D4].

Data structuring for the graph covering relaxations follows those

given in Gabov [G1], Derigs [D3] and Even and Kariv [E6] for the

matching problem.

CHAPTER 2

HEURISTICS FOR UPPER AND LOWER BOUNDS TO THE SCP

2.1 Introduction

Heuristic algorithms are not guaranteed to solve the SCP optimally

but they can be used to get both upper and lower bounds on the

solution cheaply and quicKly. A survey of three heuristic methods

for a class of IP's proposed by Senju and Toyoda [S6], Kochenberger,

McCarl and Wyman [K3], and Hillier [H5] is given by Zanakis [Z1],

The IP's have inequality constraints and non-negative coefficients

and thus there is no problem finding a feasible solution. This

study concludes that for large problems there is little to choose

between the three methods in terms of -bownĉ certifcj. For small problems

Hillier's method was more accurate, but it was unsuitable for large

problems because it required an excessive amount of storage. In

terms of speed the Senju-Toyoda method was the fastest. Other

heuristics for both upper and lower bounds are given by Balas [B5] and

Balas and Ho [B7]. The SCP is a special case of the uncapacitated

facility location problem. A successful heuristic for this problem

devised by Erlenkotter [E4] can also be applied to the SCP to improve

the lower bound.

The heuristics used in this chapter obtain a lower bound, z^, to the

SCP from a feasible solution, u, to DLP which means that s- can
Xs

never be greater than tfCLP). An initial value of u is obtained from

an adaptation of Senju-Toyoda's heuristic which calculates the least

cost per constraint satisfied and is summarised in Procedure 1 in

§2.2. The lower bound is improved by testing the linear programming

complementary slackness conditions for u and a feasible solution, x,

to the SCP. If they are satisfied then x is an optimal solution to

the SCP. This is an application of Erlenkotter's method and is

described in Procedure 2 in 2.2. Reduced costs are associated with

any dual feasible solution, u, to the LP relaxation and these can be

used to remove variables. The heuristics are also used to obtain

initial costs for 'the graph covering and network flow relaxations.

Besides giving lower bounds to the SCP Procedures 1 and 2 also give

an upper bound. The computational results of §2.5 show that this

bound was often above the optimal solution to the SCP and thus

further methods of obtaining upper bounds are discussed in §2.3..

2.2 Outline of the Heuristic Methods

The first heuristic, described in Procedure 1 below, initially sets

u = 0 as a dual .feasible solution to the LP which implies that the

associated reduced costs, s, are equal to the costs c. A column jo

for which the reduced cost per constraint satisfied is least is

chosen and dual variables are fixed for all rows covered by this

column. These rows are then removed and the procedure is repeated

until no rows are left. By setting x . =1 for each such column
0 o

chosen a feasible solution to the SCP is obtained which satisfies

8 - x'^ = 0. This solution may be improved by reducing x to a prime (JO (JO

cover. (A description of the language used in the Procedures is

given in Appendix 5). f\n e * * * * ^ is ftftWi*

PROCEDURE 1 INITIAL BOUNDS (SCP, z , z , x, u)

COMPUTE UPPER AND LOWER BOUNDS TO THE SCP

Input: SCP The set co

Output: z , Upper and

x A feasible

u Dual varia!

1. Initialise Variables

u : = 0 Set dual variables equal to 0

m
h-:= E a... for all g Set h . equal to column sums
3 1 1*3 3

s : = Q Set reduced costs equal to costs SCP

J : = {1,2,...,n} J is the index set of columns

J : = {1,2,...,m} I is the index set of rows

L : = (j> L is the index set of non-zero elements
of x

.k : = 0 ' U is the iteration counter.

2. Iteration k -

k: - /c + 1

3. Calculate Least Reduced Cost Per Row Covered

A: = Q ' / h . = min s./h. Calculate minimum reduced cost per
3° 3° 3zJ 3 3 P

constraint satisfied

Li = L U {30} Add column 30 to the cover.

4. Calculate Dual Variables in Rows Covered by Column jo

34

For i z M. fi .yl
jo

u .: = u . + A % ^ Increase dual variable

J : = Remove, row i from further consideration

J Z N . /) J
1

Decrease reduced costs

Decrease <2.0It^ sums

If ft. = 0
— 0

then J: = < M J }

if J t *
then goto 2.

5. Reduce re to a Prime Cover

For j e L

If .2 a.. >.2 for all
— qzL ^J J

Remove column j from the cover if
all rows it covers are overcovered

Set Li = L^{j}

6. Calculate Upper and Lower Bounds

£

z : = . c . Calculate upper bound U Q Q

m
z • = .Z u. Calculate lower bound J6 -£=1 "Z-

7. Calculate or

= 1
= 0

for jzL

for j£L

8. Test for Feasibility to the SCP

a ..x • = 0 for any i Set u. = » and z ^ 2 +00
I

then the problem is infeasible.

PROCEDURE 2 describes the second heuristic which checks that the

primal and dual feasible solutions, x and u, obtained by PROCEDURE 1

satisfy the optimality- conditions for linear programming, i.e.:

a. Primal Feasibility

Ax > J_ (2.1)

> x > 0

b. Dual Feasibility

T

A u < o (2.2)

u > 0

c. Complementary Slackness

Tr „ ,, 0

Constraints (2.1) and (2.2) are satisfied by a: and u. Also x was

chosen to satisfy (2.4). PROCEDURE 2 adjusts u if constraints (2.3)

are not satisfied. This is done by choosing a constraint •£ for which

u. iAx-1) . 0 and reducing u . to 0. This alters the reduced costs
Is U Is

and an attempt is made to increase dual variables u . for which

(Ax-Y)^ = 0. If it is possible to increase the lower bound by these

adjustments then constraints (2.4) may be violated and another vector

x may have to be chosen. The adjustments to u are made so that it is

always possible to find a vector x satisfying 2.4. If (2.1),(2.2),(2.3)

and (2.4) are all satisfied then the SCP is solved. The method is given

in PROCEDURE 2, below:

u iAx-Y) = 0 (2.3)

(2.4)

36

PROCEDURE 2 LPBOUND (SCP, Z , z X , U,)

ADJUST PRIMAL AND DUAL FEASIBLE SOLUTIONS IN AN ATTEMPT
TO IMPROVE BOUNDS

Input: SCP

u

x

Set covering problem

Dual feasible solution

Primal feasible solution satisfying s.#. = 0
3 3

Output: u

x

u3 I

Dual feasible solution

Prime cover satisfying s«£C.= 0
3 3

Upper and lower bounds to the SCP

1. Initialise Variables

L: = {3

r: = ia.x.-1)
3eL 3 3-

L is a list of non-zero indices of x

r . is the slack variable for the tth constraint

2. Check Complementary Slackness on Rows, u.ia x-1) = 0
1

For i = 1 to 777

If u.r. 7^0 — ^ ^

then A: = u . ^

u.i = 0
J': = L. ij N^

I': = U M ;
3£J' J

Check complementary slackness conditions

If they are not satisfied reduce u^ to 0

For s .: = s ' + A
3 3

Increase the corresponding reduced costs

For i ' = ,... ,m, 1,2,... ti Try to increase some other u ..

If i'el' and -
rI a./.x.± 1

3zL V 3

then A: = min s•
- 1 — ' J e V

If A > 0

then u ..: = u .aA %

8 .: = s .-A

(for je^.p

Increase u
v

Decrease corresponding reduced costs

3. Check min s . = 0 for Each Row i
jzNt J

If A = min s . 0
jzN. 3

then u .: = u . + A
i i

s.: = s . ~ A
3 3

for all jeW. ^

4. Check Complementary Slackness for Columns 3 for which s.a:.= 0
: : : 3 3

For jzL

If ejXj + O

then L: = L >
r: = r-a

5. Cover Exposed Rows

Remove column 3 from cover if s .x. ^
3 3

For i - 1 .m

If r . = 0 — 2.
then .Li = L U {30} Find a column to cover exposed row %

r: = r + a. Adjust slack variables

where 3. = min s .
Jen. 3

%

6. Reduce or to a Prime Cover

For jzL

If, for all r.> 2
— 3 'z-

then L: = L ^{3}

r i = r-a

Remove x . from cover if all the rows
3

it covers are overcovered

7. Calculate Upper and Lower Bounds

3u'' = jeL °3 Calculate upper bound

m
\ ' = ^ u i Calculate lower bound

The heuristic of PROCEDURE 2 is repeated until no change in either

the upper or lower bound is obtained. The results are summarised

in PROCEDURE 3, at the end of which reduced costs are used to remove

variables.

PROCEDURE 3 HEURISTICS (SCP, 2 , z., x, u) U x

COMPUTE UPPER AND LOWER BOUNDS TP THE SCP AND REDUCE THE
PROBLEM SIZE USING REDUCED COSTS

Input: SCP

Output: SCP

z j,
u

x

u

The set covering problem

The set covering problem, possibly
reduced in size

Upper and lower bounds to the SCP

Feasible solution corresponding to
best upper bound

Feasible solution to DLP

1. Initialise Variables

BDCH: = .FALSE.

KMAX

k \ -o

z u \ ^OO

BDCH is a logical variable which is
.TRUE, when the lower bound has
changed

Maximum number of iterations allowed

Set iteration counter to 0

Initialise bounds

2. Calculate Upper and Lower Bounds

INITIAL BOUNDS (SCP, z^ z , x, u)

Use Procedure 1 to get initial bounds

then if z^ = «> then the problem is t^^osiMx.

e l s e s is the optimal solution to the SCP

else goto 3.

3. Calculate Improved Bounds, Iteration k

fc:.- ; 1 Use PROCEDURE 2 to improve bounds

and replace old bounds by new
If k > KMAX then STOP bounds if they have improved

else LPBD(SCP, k ', z .x', u')
u

If- V < zu

then zu-. = «M'

x: = x r

If z ' > z
— Z SL

then z^: > z^ r

If BDCH = .TRUE.

then repeat 3

else goto 4.

4. Use Reduced Costs to Reduce Problem Size

For J = 1,

If *3 * Zu " 3 A

then remove x . from the SCP
3

z and z are upper and lower bounds
li)L

STOP.

The computational results for these methods are given in §2.5.

2.3 Additional Methods for Computing Upper Bounds

The method used in Procedure 1 of calculating an initial solution x

was to choose columns for which s ./h . was the least and then reduce
3 3

this to a prime cover. Instead of using s./h. three other functions
3 3

were used, i.e.:

•Ci) c d /h.

(ii) o ./log(7z.)
3 3

(iii) c./h.logih.)
3 3 3

where h . is updated as rows are covered and log equals the logarithm
3

to base 2 if h.> 1 and 1 otherwise. If h. is not updated at each
3 3

iteration and remains constant then the bounds obtained are not very

good thus the reason for updating h at each iteration. For large

problems using (i), (ii) or (iii) often gave a better bound than the

one obtained at the end of Procedure 3. In [B7] Balas and Ho found

that (i) and (ii) were the most useful functions on large randomly

generated problems in that they gave the best upper bounds most

often.

Another approach was to take a feasible solution to the SCP and delete

a variable x . and replace it by another variable. This approach
3

produced many solutions of the same value as the original feasible

•solution but only on small problems did it produce a solution that

was better than one obtained by one of the preceding methods. This

method of calculating an upper bound generalises to the r-optimal

method which was first used by Lin [L7] for the travelling salesman

problem and later by Roth for the SCP [R2], Table 2.1 presents the

upper bound calculations for several SCP's using the above methods.

2.4 Reasons for Failure of the Heuristics to Solve the SCP

The value of the lower bound obtained from the heuristics is never

greater than that obtained from the LP relaxation as the former

bound is obtained from a dual feasible solution to the LP. The

heuristic method, like a complementary pivot algorithm [L4a] for the

LP, maintains both primal and dual feasible solutions but fails to

reach the LP optimum because the primal variables are restricted to

take integer values and also unlike a complementary pivot algorithm

the heuristics always maintain s .x. = 0 for all j. Thus even in
3 3

cases where the LP solves the SCP the heuristics may not do so.

One reason that the heuristics can fail to solve the SCP is because

of an odd circuit in a graph covering relaxation of the SCP. The

graph covering relaxations are defined in Chapter 5. The 0-graph

of a graph is a subgraph which consists of all the arcs with reduced

cost equal to 0. Suppose that the following SCP, SCP2, which is also

a graph covering problem, has dual feasible solution and- corresponding

reduced costs equal to 0 in Columns 1 and 2, i.e. Sj = s2 = 0. Then

if SCP2 is given by:

min + °2 x2 + °3 X 3

Subject to :+ x2 ""> 1

SCP2 x2
 + Xs > 1

+ > 1

re .e{0,1} j = 1,2,3
3

a prime cover generated by Procedure 1 would be = x2 = 1, #3 = 0.

If U\ > 0 then complementary slackness is not satisfied. If s3 = A

and Acttj then Procedure 2 sets w2-<-U2
 + A and Wj-^-Wj- A. Hence the

lower bound is unchanged. However s ^ i is no longer equal to 0

hence the prime cover is changed to x = (0,1,1) which has a cost less

than that of x = (1,1,03 if A > 0 . If A > u , then u becomes equal to

(0, u2
 + U\, W3 + min (A - u\,U\)). This means that the lower bound is

equal to U\ + u 2
 + W 3 + min(A-u1,U\). Since the last term is positive

the lower bound has increased. If neither the upper nor the lower

bound change for this problem then A = 0 and if for simplicity it is

assumed that = a2 = £3= 2 and = u2 - W3= 1 the bound can be improved

by using a cut + x2 + x3>2. This corresponds to an odd circuit in

the graph with Vertex-arc incidence matrix equal to the constraint

matrix above. The"above analysis can be extended to larger constraint

matrices but as it is lengthy will not be considered here. Example

SCP2 suggests that the vertex weights obtained by the heuristics will

give columns of the SCP with reduced costs equal to 0 which in graph

covering relaxations of the SCP will give odd circuits.

2.5 Computational Results

Most sparse SCP's with less than 20 rows and less than 100 columns

can be solved optimally using heuristics without entering a tree search

and thus all the test problems have at least 30 rows. The results,

showing percentage differences between upper >and lower bounds at the

root node of a branch-.-and bound tree, are given in Table 2.1. Table 2.2

shows how the heuristic procedure performs in a best bound tree search.

Columns (1) to (3) of Table 2.1 give the -number of rows, m , number

of columns, n, and density, p, of the SCP. The density is the

ratio of non-zero entries to mxn the total number of entries in

the constraint matrix.

Column (4) gives the structure of the constraint matrix. Type A

means that there is a fixed probability p that any element a..= 1

43

Type B has a density that varies uniformly from p/2 in row 1 to

3p/2 in row m.

The cost structure is given in Column (5) and indicates that a . = 1
3

. m
for all j. An X indicates that a . = 2 E a . . + 5, but if a . exceeds 15

^=1 m
it is reduced by 10. The costs a . were not set equal to l a . .

3 1 W
because then a dual feasible solution is u.= 1 for all i and all

z

reduced costs equal 0. For this type of problem: if the corresponding

SPP is feasible then it gives an optimal solution to the SCP. If it

is not feasible then any method which gives a lower bound derived

from dual feasible solutions to the DLP will fail. Hence this cost

structure was not used.

Column (6) gives the best upper bound known for the problem, z . If
u

z i s optimal then it is marked by *. The bound was found by one of

the methods mentioned earlier in this chapter or by tree search.

Column (7) gives the percentage by which the upper bound obtained at

the end of Procedure 1 exceeds z . As can be seen it can sometimes
u

be 50% above the best known solution.

Column (8) gives the percentage by which best upper bound at the root

node of the search tree exceeds z . The next column gives the method
u

by which it was calculated. PR0C3 means that the best upper bound

was calculated using heuristics and for small problems this was often

optimal. The upper bound was calculated by Procedure 3 and then by

using:

CD o./h.
0 3

Ci i) o . / logCftJ
3 3

(iii) o./h.logih.)
3 3 3

TABLE 2.1 QUALITY CJF BOUNDS OBTAINED USING HEURISTIC

Problem
No Size

a

(1)

n

(2)

Density

. P
(3)

Typo

(4)

Cost 5

(5)

Bast known
Solution

z

Cb)

Upper Bound
After P r o d
\ abovo {6)
17)

Upper Bound
At Root Node*
\ above (6)
(8)

Method of
Calculating
(8)

(9)

Lower Oound
After P r o d
% of (6)
(10

Lower Oound
After Proc3
i of (6)
(11)

Number of
Iterations
to get z.
(12 j 1

Final Gnp
Between
z and z_
u t
(13)

lima
CPU
sec

1 30 60 0.15 A X 56* 5 0 PR0C3 . 68 88 4 11 0.03

2 30 100 0.15 A X 50* 24 4 PR0C3 73 85 10 14 0.06

3 30 200 0.15 A X . 46* 37 11 C/H 76 76 . 1 14 0.03

4 30 300 0.15 A X 44* 59 11 C/H 60 80 1 20 o.ni

5 30 400 0.15 A X 44 43 11 C/H 60 80 1 20 0.05

6 30 500 0.15 A X 44 43 11 C/H 80 80 1 20 0.06

7 30 600 0.15 A X 44 43 11 C/H 80 80 1 20 0.07

8 30 700 0.15 A X 44 43 11 C/H 80 00 1 20 0.08

9 30 600 0.15 A X 42 50 0 C/H 83 83 1 17 0.09

10 30 900 0.15 A X 42 50 0 C/H 83 83 1 17 0.01

11 50 500 0.04 A U 14* 21 7 PRDC3 73 84 16 14 0.30

12 50 500 0.15 A X 76 29 0 C/L(HI 77 77 1 22 0.98

13 GO 400 0.11 A u 4* 0 0 PR0C3 82 62 1 0 0.01

14 60 400 0.05 A u 14 21 0 C/H 72 80 15 14 0.44

'15 60 400 0.05 D u 14 14 7 C/H 72 83 13 14 0.30

-16 60 500 0.08 A X 93 35 0 C/H 75 75 1 25 0.29

17 60 500 0.08 B X 97 23 5 C/L(H) 72 72 1 23 0.09

10 60 GOO 0.04 A u 14 14 0 CA\ 73 82 12 14 0.49

10 100 1U00 0.02 A u 29 0 0 PR0C3 67 7G 17 24 1.22

20 150 600 0.02 A X 314 8 0.1 C/H G5 05 6 14 0.66

21 150 000 0.02 B X 355 8 0 C/H 66 88 15 12 1.0S

22 150 600 0.02 A u 35 22 3 C/H 69 80 17 20 2.00

23 160 1000 0.02 A u 36 6 0 C/H 67 74 16 25 2.G5

24 200 1000 0.02 A u 40 5 0 C/H H4 76 16 22 4.11

25 200 1000 0.02 B u 42 19- 0 C/H 63 78 17 21 4.0G

Average 73.6 00.3 7-5 17

i * Optimal solution

in that order as explained in §2.3. "C/H" in Column (9) means that

method (i) above gave the best upper bound and "C/L(H)" means that
»

(ii) gave the best upper bound.

Column (10) gives the lower bound at the end of Procedure 1 as a

percentage of The lower bound at the end of Procedure 3 as a

percentage of is given in Column (11).

The number of iterations of Procedure 3 is given in Column (12).

Lastly Column 13 gives the CPU time required to calculate the bounds

excluding data input time. The FTN FORTRAN optimizing compiler was

used under the SCOPE 2.1 operating system on the CDC 7600 at the

University of London.

From Table 2.1 for the 25 problems tested only 5, which tended to be

the smaller ones, had the best upper' bound for the root node of the

search tree generated by Procedure 3. Thus it is important to use

other methods. The number of variables removed by reduced costs was

17 out of 60 for Problem 1, which had 30 rows. However for larger

problems no variables were removed. Thus reduced costs are most

useful at the nodes in the search tree of a branch and bound

procedure that are not near the root. The average ratio of the lower

bound at the end of Procedure 1 to the best solution Known was 74%

and this percentage varied between 63% and 83% for the problems

studied. Using Procedure 3 increased this ratio on average to 80%.

Problems 2 to 10 were generated by increasing the number of columns

by 100 each time. As can be seen the upper bound was the same for

Problems 4 to 8 and Problem 4 has less than half the columns of

Problem 8. Also the lower bound was the same for Problems 4 to 10.

Thus it would be advantageous in a randomly generated problem to

calculate the lower bound from a subset of the columns only and then

TABLE 2.2 PERFORMANCE OF HEURISTICS WHEN INCORPORATED IN TREE SEARCH

- t — • - I
PROBLEM

Optimal
Solution
Value

(6)

Number of
Tree Search
Nodes

(7)

Number of Variables
Removed by reduced
Costs at the root of
the tree

(8)

Time
CPU Sec

(9)

Problem
Number

Size

M
(1)

N
(2)

Density

P
(3)

Type

(4)

Costs

(5)

Optimal
Solution
Value

(6)

Number of
Tree Search
Nodes

(7)

Number of Variables
Removed by reduced
Costs at the root of
the tree

(8)

Time
CPU Sec

(9)

1 30 60 0.15 A X 56 20 23 0.11

2 30 100 0.15 A . X 52 48 19. 0.37

3 30 200 0.15 A X 46 502 2 4.99

13 60 400 0.11 A U 4 1 Not tested* 0.38

26 50 100 0.06 A X 132 8 57 0.09

27 50 100 0.09 A X 76 5 74 0.06

28 50 100 0.08 A U 10 6 0.17

29 50 100 0.06 A U 14 3 " 67 0.08

30 50 100 0.12 A U 8 124 1.60

31 40 100 0.08 A X 97 33 2 0.27

32 35 100 0.13 A X 58 50 - 0.47

33 40 100 0.15 A X 69 .50 - 1.05

34 65 100 0.15 A X 84 50 - 0.86

35 50 100 0.08 A X 111 50 - 0.59

36 50 100 0.10 A X 90 50 - 1.45

37 50 100 0.10 A u 10 50 - 1.87

38 . 50 100 0.12 A X 83 50 - 1.40

39 50 100 0.12 A u 8 50 - 1.31

40 50 100 0.14 A u 8 50 - 2.20

41 50 100 0.15 A X 90 50 - 2.30

*Not tested because lower bound < (upper bound - 1 + e) and all costs were equal to 1 cn

test the remaining columns to see if the reduced costs were negative.

Any columns with negative reduced costs could be added to the problem

from which the lower bound is calculated. This would be similar

to bringing elements into the basis in the simplest method.

Analogous to removing elements from the basis, columns with large

positive reduced costs could be disregarded for the purpose of

calculating bounds. An initial set of columns could be chosen by

picking the first 100, say, and then all other columns for which

c ./h. was less than a certain value. It is not necessarily true that
<7 v

denser problems are to solve than sparse ones as Problems 13

and 14 show. In this case Problem 13 - with more than twice as many

elements as Problem 14 and the same dimensions and cost structure is

solved optimally whereas there is a gap of 14% between the best upper

and best lower bounds for Problem 14.

Table 2.2 shows how the heuristics performed in a best bound tree

search procedure. The branching rules are given in Chapter 7 and

are using branching or> rows. The first 10 problems in this table

could all be solved optimally. The second set of 10 problems could

not be.

Columns C1) to (6) give the same information as in Table 2.1. For

the problems that could not be solved the best bound after 50 tree

search nodes is given. Column (7) gives the number of tree search

nodes examined and Column (8) gives the number of variables removed

either by reduced costs or by the 'single 1 in a row test'.

The maximum size of problem solved was a unicost problem of size

60 x 400 and'density 0.11. Problems with less than 4 1's per column

and less than 100 columns were easily solved, often with less than

TABLE 2.3

LOWER BOUND AS PERCENTAGE OF UPPER BOUND

Problem
Size

Lower Bound
at Root Node
as Percentage
of Best Upper

Bound

Lower Bound
after 50 Tree
Search Nodes

Best Upper
Bound V3lue

Number m n t

Lower Bound
at Root Node
as Percentage
of Best Upper

Bound

as Percentage
of Best Upper

Bound
3 . u

(1) (2) (3) (4) (5) (6)

32 35 100 0.13 84 98 58

33 40 100 0.15 79 97 69

34 45 100 0.15 77 65 84

35 50 100 o.oa 89 95 111

3G 50 100 0.10 78 91 90

37 50 100 0.10 78 < e7 10

36 50 100 0.12 ' 82 94 83

39 50 100 9.12 78 . 85 8

40 50 100 0.14 71 88 8

41 50 100 0.15 78 85 90

Average 79.4 QO. 5

TABLE 2.4

COMPARISON OF LP BOUNDS WITH HEURISTIC BOUNDS AT ROOT tiOGE

PROBLEM HEURISTIC LOWER BOUND LP Hutl.'lD

Problem
Number

Size Density Type Costs Bound as % Tims Ti!T,e
Problem
Number m n 0 CPU Sec CPU Sec

(i) (ii) (iii) (iv) (v) (vi) (vii) (vill)

42 50 100 0.10 A X 97 0.14 0.29

43 50 300 0.10 A X 98 0.08 0.89

44 100 400 0.05 A X 98 0.21 3.40

45 110 300 0.20 A X 98 10.3 17.70

46 120 400 0.04 A X 96 1.3 5.02

50 tree search nodes being examined. In Problems 26 and 27 half the

variables were removed by reduced costs and subsequently fixing

variables by the 'single 1 in a row' test reduced the problem size

further by removing rows.

Table 2.3 shows for the problems that were not solved the lower

bound as a percentage of the best solution Known at the root of the

search tree and the least lower bound at an active node as a per-

centage of the best solution Known after 50 nodes had been searched.

The results show that there is least improvement in the bound for the

larger denser problems as expected. The average value of the lower

bound as a percentage of best Known solution at the root of the tree

was 79.4% and after 50 iterations 90.5%. A comparison of LP solution

values and heuristic values at the root node of the search tree is

given in Table 2.4. As can be'seen from these results the heuristic

gives a good approximation to the LP bound, within 5% in most cases

in reasonable time. The LP solution was found by solving DLP

using the Land and Powell FORTRAN code [L1]. Further results comparing

the APEX III linear programming package with the heuristics on standard

test problems are given in Chapter 5.

CHAPTER 3

LAGRANGEAN RELAXATION

3.1 Introduction

The Lagrangean relaxation, LRCX), of IP [G8] is defined in §1.2 as:

LRCX)

LCX) = min LCX,a;) = min
x x

subject to Ax > b

x integer

T T
o x - X C Bx -

A lower bound to tf(IP), the optimal solution value of an integer

program, is given by the optimal solution value, LCX), for any

X > 0. The best such lower bound is given by LCX*) where X* is the

optimal solution to the problem LR:

LR
max LCX)

X > G

C3.1)

Computing X* exactly is not easy and in practice a suboptimal value

of X is often used. An initial value of X is chosen and this is

updated recursively, as described in §3.2, by the formula:

X = maxCX + cri>, 0) (3.2)

where a is a positive scalar steplength and a search direction.

The computation of these two variables is discussed in §3.3 and §3.4

and results of different methods are considered in §3.5 for a

relexation of the SCP given by Etcheberry [E5].

51

FIGURE 3.1

A FLOWCHART OF PROCEDURE S SUBPROBLEM

TO SOLVE THE LAGRANGEAN RELAXATION OF A PROBLEM P

Is
Ji > fcmax?

3.2 Implementation of Lagrangean Relaxation

Initially X takes the value X° which can be obtained by setting X°

equal to u, a dual feasible solution of the LP relaxation of IP

obtained from the heuristics of Chapter 2. Subgradient optimization

k
is used to obtain X for k > 1. Iteration k, k > 0, starts by

k k k
solving LRCX) and obtaining a solution, x say. If Bx > d and

k k k
X CBx - d) = 0 then x is optimal for IP. Otherwise the search

k k+1

direction v and steplength a are computed from x and X is updated

by equation (3.2) above. SCP's of up to 30 rows and 100 variables

can usually be solved optimally by Lagrangean relaxation without

the need for a branch and bound procedure, because the lower bound

is in fact the optimal solution.

For most larger problems it is necessary to use Lagrangean relaxation

to obtain lower bounds in a branch and bound procedure. To solve a

subproblem, P, of the SCP at a node of a branch and bound tree there

are four distinct stages. Firstly the constraints of P must be

partitioned so that the relaxed problem can be solved easily using

PROCEDURE 4 RELAXATION. Then PROCEDURE 5 SOLVER is used to solve the

problem LR(X) and it solution is tested for optimality to the IP

using PROCEDURE 6 FEASTEST. Either the solution solves IP in which

case the node of the search tree is fathomed or it does not. If

LRCX) exceeds the best known optimal solution to the IP or LRCX) is

infeasible the node is fathomed otherwise the fourth stage,

PROCEDURE 7 COSTCHANGE, is executed in which the multipliers X

and hence the costs of the relaxed problem are changed. PROCEDURES 5,

6 and 7 together make one iteration of the subgradient optimization

phase in an'algorithm for the SCP. A flowchart of the subgradient

optimization algorithm, described as PROCEDURE 8 SUBPROBLEM below, is

given in Figure 3.1.

PROCEDURE Q SUBPROBLEM CP, z , z , fcmax, X)

SOLVE A SUBPROBLEM OF THE SCP AT A NODE OF THE BRANCH AND BOUND
TREE USING LAGRANGEAN RELAXATION

Input: P a subproblem of the SCP

X (optionally) feasible dual variables for an LP

relaxation of P from which multipliers X can

be defined

z
u

an upper bound to the SCP

m
a lower bound to the SCP equal to .2. X.

i-1 i

kmax maximum number of iterations allowed

Output: A solution to P or an indication that P has not been solved.

z a lower bound to the SCP from Lagrangean relaxation.

1. Initialise Variables

Set the iteration counter k: - 0

2. Define the Lagrangean Relaxation

PROCEDURE 4 RELAX Relax the constraints

3. Iteration k

k: = fc+1 Update the iteration counter

4. Subgradient Optimization

PROCEDURE 5 SOLVELR Solve the Lagrangean relaxation

Set lower bound z^: = vCLRCX))

2 o > K g°t0 6-u

PROCEDURE 6 FEASTEST

If the solution to LRCX),a;, Test the solution to LRCX) for

feasibility to P and complementary

slackness conditions.

is feasible for P and

X {.Bx - d) = 0 goto 5.

If k > kmax goto 7 Test if the iteration limit has

been exceeded.

Call PROCEDURE 7 COSTCHANGE

to change the multipliers X

and the costs of the relaxed

problem. Goto 3.

5. Replace the Upper Bound to the SCP

Set z : = zn u Z

6. P Has Been Solved

Exit with the solution z to P
u

7. P Has Not Been Solved

The iteration limit has been exceeded. Exit.

PROCEDURE 4 RELAX considers whether or not to represent P by the data

structures used for the original SCP. It is not always necessary to

store the constraints Bx > d explicitly as shown in Chapter 4 for the

two network flow relaxations, NF1, NF2, and in Chapter 5 for the second

graph covering relaxation, GCR2. Data structures are discussed in

more detail in Chapter 8. For each relaxation the PROCEDURES

SOLVELR, FEASTEST and COSTCHANGE are described in Chapters 4 and 5.

3.3 Calculating the Search Directions

Three ways of choosing the search direction v which is used to update

X in maximizing LCX) are described here. If LRCX) had the same

solution x for all values of X then methods one and three would be

equivalent to the steepest ascent method [B15a].

£

The first choice of v , the search direction at iteration k of '

PROCEDURE 8, is to set:

k+1 j „ k ro
v = d - Bx C3.3)

k k

This method uses only one solution, x , to LRCX) and is widely used

because it is quick to compute.

k k
The second method [C15aj also uses only single solutions x to LRCX)

£

but includes information from previous iterations to compute X . Let

the initial search direction be)3t°, with = 0. Then to- update v

the following recursion is used:

= C d-Bx k) + Q kv k (3.4)

- k k
where is a positive scalar. Two methods of choosing 9 were

k

compared. The first was to set 0 equal to a constant between 0 and

1. The second choice of 0 used by Camerini et al [Cl] is to set:

. a - B X h i f v k t d . B x k) < 0

\\A\
= 0 otherwise

k +1

where 3 is a constant, 0 < 3 < 2 . If 3 = 1 then v is orthogonal

k

to v and the method resembles the conjugate direction method for

optimizing quadratic functions. In [C1] 3 = 1.5 was found to be a

suitable value for the travelling salesman problem, but here no such

conclusions for the SCP could be drawn.

Thirdly v can be chosen by considering more than one solution to

LRCX) and then combining the resulting subgradients. Ideally a

direction X that follows the lines of discontinuity of LCX), formed

by alternative solutions to LRCX), should be chosen as it is likely

that at X* LCX) is non-differentiable. This can be explained by

considering the optimality conditions for LCX) [B17].

Alternative solutions to LRCX) are denoted by x(t) where

Q =Q (X) = U | L C X) = LCX,*(£))}. Then X* is an optimal solution to

LR if there exist scalars TT̂ such that:

£ ^ n
teQ

and it > 0

X* S ^ i r V = 0

t t
£ IT Y > 0

tzQ ~

where y = d - Bx[t)

C3.5)

C3.B)

C3.7)

(3.8)

Thus for each non-zero component of X* there is a convex combination

of subgradients with corresponding components equal to 0. At X* very

often there is more than one solution to LRCX*).

Example 3, LRCX), below is a Lagrangean relaxation of an SCP Cdenoted

SCP3) and contours of the function LCX) are plotted-in Figure 3.2.

SCP3

min
x

subject to

3xi + 2x2 + 4^3 + xk + ' , x5

x1

xi

+ x3

x2 + x3

x2

> 1

> 1
+ > 1

+ > 1

+ x3 + Xii > 1

x. = 0,1 3 = 1,2,...,n
<7

57

FIGURE 3.2

Level Sets of LCX) for Example 3 Showing Zigzagging Path

— p c v + l - 1

Relaxing the first two constraints the Lagrangean relaxation, LRCX),

is:

LCX) = min (3-Xj)a?]_ + C2-X 2)x 2
 + C4-X 1-X 2)x 3

 + + + + X 2

x

LRCX)

subject to

xi +

x1

Xi+ + X5 > 1

X2 + X5 > 1

+ X3 + Xi+ > 1

x. = 0,1 j = 1,2.
v

,n

The optimal solution is given by 2 < Xj < 3 and 1 < X 2 < 2 giving

LCX*) = 5 with x* = (0,0,1,0,1). A line of non-differentiability of

LCX) is given by the line Xi + X 2 = 4.

Suppose that an initial vector of multipliers is given by X° = (0,4);

then using a single subgradient leads to the zigzagging search path

shown. An alternative strategy from this starting position that

eliminates zigzagging is to search directly along the line X^ + X 2 = 4.

The discontinuities arise at X = (0,4) because LRCX) has three solutions

a? C D = (0,1,0,1,0)

a?(2) = (0 , 1 , 1 , 1 , 0)

Xt3) = (0,1,1,0,1)

k

The given zigzagging path gives relaxations LR(X) that oscillate

between having x{'\) and a?(2) or a:(3) as solutions.

When alternative solutions to LR(X) are present the computation of v

is better understood by reformulating LR using an additional variable,

w, to give P(w):

Piw)

max w

w < o Txit) + \ Ttd-Bxit)) for all teQCX)

X . > 0 ieJ? where R is the set of relaxed 1 —

constraints

C 3.9)

Let the set of relaxed constraints R equal {1,2,...,r} then in the absence

of constraints (3.9) an ascent direction for maximizing w in Piw) is

o *
the vector v = (0,0,...,0,1) where the first r components correspond

to the vector X and the last component to W. Projection methods can

be used to incorporate constraints (3.9) as was successfully used for

the minmax problem in [C3]. The aim is to project v° so that X is

changed in such a way that W increases. Rosen [R1a] suggests how a
£

matrix P can be computed iteratively which enables a search direction

SL Ho
v = P v to be computed. This is described in PROCEDURE 9 below.

PROCEDURE 9 PROJECT

CALCULATE SEARCH DIRECTION,y

1. Initialisation

Calculate the alternative solutions xit) to LR(X)

y t: = d-Bx it)
£

To each vector y add a component corresponding to w equal to -1 to

give the vector y^

R: = <{> be the set of subgradients in the projection

S: = QCX)

v° : = (0,0,...,0,1) be an (r+1) dimensional vector

P 0 : = J 2 > + 1 be the (r+1) identity matrix

A: = 0 be the iteration counter

2. Find A Subgradient

If S = <f> then goto 4.

else Z: = Z+1 update iteration counter

Let t r be the t that minimizes

iT
k ' 1 _t y
i-1 t

y

£ - 1 '
If v y > 0 then goto 4.

_t'
3. Add y To The Projection

R: = RU{t'} and S\

q: = yt> •

=

P : = P - qq
I 1 o v : = P v

4. ChecK The Signs Of The Lagrange Multipliers Corresponding

To y^ For tzR

* ~ h n7 y-
Since v = E TT y for some TT > 0, TT is approximately v y

t, 2
Y I

^
If (v) y > 0 -for all tzR goto 6.

5. Drop Subgradients From The Projection

Z T t t r t"
If (v) y < 0 for some t" remove y from the projection

R: = R^it"} and S: = SU{t"}

^

Let N be the matrix with y for tzR /

P Z: = I-NUlpN)''* I?

Goto 4.

6. Search Direction v Is Obtained

If ||Y*|| < E then exit X* has been found.
£

else v: = v exit with search direction v.

In practice if, for some relaxed constraint,- , y ? is equal to a
is

constant, a say, for all £&<?(X) then this component can be dropped

from T^ as the corresponding component of v will also equal a.

Only components of y which take different values need be considered

thus reducing the size of P.

The first method of computing v is quick and effective in the absence

of alternative solutions to LRCX). The second method requires the

storage of an additional vector of dimension at most m and very few

additional computations. The third method requires more computation

and storage but enables an ascent direction to be found that gives

an increase in LCX) in the presence of multiple solutions. Section

§3.5 gives a computational analysis of these methods.

3.4 Calculating the Stepsize,a

3.4.1 Introduction

After computing a direction v by one of the above three methods a

steplength o must be chosen. In theory [H4a] any stepsize ak satisfying

w k
lim 7 E . o = 00

lim c^ = 0
k-**>

has the property that if v is a subgradient of LCX*) then setting

k+1 k k k k
X : = X + a v ensures that X converges to an optimal value X*

as k -»• The difficulty is that k may be very large before an

optimal value of X is found.

One method of computing a , which was used by Held and Karp [H4]

for the travelling salesman problem is to set

o*! £CX*))/1|/|| 2 (3.9)

LR

where a is an a priori constant, 0 < a < 2, z' is an upper bound on

LCX*) and | |v| | = V .2 for any 77?-dimensional vector V.

It
3.4.2 Computing a Using a Target Value

LR

In practice using a fixed value of z^ did not lead to a rapid increase

in the lower bound LCX). Instead using a variable z^ which can be

adjusted depending on the value of LCX) is preferable. Initially z

is set to a value slightly greater than LCX).

If z i s much less than z^ then it is unliKely that the lower bound

will increase much and thus z^ must be reduced. As z i s not a true

upper bound on z it may be exceeded by z in which case z must be
X» Ai J.

increased. In practice if z e x c e e d s z^-e for a positive constant c

then Zy is increased. It is necessary to use z for otherwise the

algorithm may stop with a suboptimal value of X satisfying LCX) = z^ m

The adjustments to z w e r e made using an a priori chosen constant 6.

The following rules were found by experiment to give suitable values

of zT\

If z T > z^ + 26 set zf'. = + 1.56 (3.10)

If z T < z % + 6/40 set zT>. = z + 6/10 (3.11)

I f ZT > Zu s e t 3T : = Su + 6 (3.12)

where a is an upper bound on tfCSCP). In the third rule C3.12) using

an overestimate of the upper bound usually gives a better increase in

the lower bound than if the exact upper bound is used. The initial

value of can also be used to scale 8 .
I

k
3.4.3 Computing a Using "Near-Alternative" Solutions

The projection method is most effective when LRCX) has more than one

solution. Using X° equal to a dual feasible solution of the LP

relaxation of IP usually gives a relaxed problem that has several

solutions. At subsequent iterations an attempt is made to make

LRlX+ov) have several solutions. This is done by calculating values

of x, x' say, for which LCX,x f) - LCX) is small, where LCX,as') =

T T

o x' - X tBx'rd). Suppose x is an optimal solution to Li?(X) then

the aim is to find by how much one can change X in the direction of v

without the optimal solution, x, changing. Suppose that it changes

to x' when a equals "a. Then LRiX+av) has optimal solutions x' and x.

Therefore:

LtX+oVjX) = ECX+av,;c')

T

or o x-(X+av) CBx-d) = cx'-(X+av) CBx'-d)

a v TCBx'-Bx) = Co T-\ TB) ix'-x)

thus if v^CBx'-Bx) t 0

a = Co T -X T B) ix'-x) C3.13)

v
T
C B x r - B x) ,

otherwise a" =
 00

Thus one way of computing a would be to calculate a set $'CX) of

'near-alternative' solutions to Li?(X), that is solutions for which

Li\,x') - LCX) is small. Each 'near-alternative' solution would give

a value of a by C3.13). These could then be ranked, assuming a > 0,

as:

aCri) < a(r 2) < .,.

where rv denotes the K^ 'near-alternative' solution.

In general since L(X) is concave one expects L(X+av) to increase as a .

increases from 0 and then decrease. Thus a should be set equal to

the first cr(r^) for which LCX+aCr^v) > LCX+aCr^ + 1)v). A heuristic

for deciding when r has been found would be to find the first 'near-

alternative' solution for which:

v Tid-BxirR)) <0

T
If v td-Bx[rv)) > 0 for all 'near-alternative' solutions then a could

K.

be chosen using the first method suggested. In practice it was found

that L(X+av) varied considerably with very small changes in a and the

above method tended to give values of a that were too large. Another

reason why this method did not often give any increase in the bound

value is that in solving LR{\) the solution x may have been an

optimal solution to Li?CX*) even though X was not an optimal multiplier.

k
3.4.4 Other Methods of Computing a

The third method of computing a was to set a equal to the minimum of

1 2 1 2
a and a where a is calculated from C3.9) and o is calculated by

(3.13). If L (X + G V) is very much less than L (X) , say less than

£(X) - 0.16 (where 6 is as before), then a is halved until

L(X+crv) > L(X) - 0.16. Very often this gave a good increase in the

lower bound.

AS-

PICS U B # 3.3

Non-Zero Indices Of x For Example. To Show Behaviour Near Subgradient Optimum

ITERATION
NUMBER

k

BOUND
VALUE

Index of x , j ITERATION
NUMBER

k

BOUND
VALUE

1 2 3 4 5 6 8 9 11 12 13 14 15 16 17 19 20 21 22 23 26 27 28 29 30 31 35 36 37 41

2 35.93 O 0 0 0 0 0 0 0 0 0 0 0 0

3 42.93 0 0 0 0 0 0 0 0 0 0 0

4 46.54 0 0 o 0 0 0 0 0 0 0 0 o 0 o o 0 0 o 0 o

5 48.50 0 0 0 0

6 48.98 0 0 0 0 0

7 49.05 0 0 0 0 0 0 0

31 48.82 0 0 0 0 0 0 0 o o o

32 49.57 0 0 0 0

33 50.04 0 0 0 0 0 0

34 50.06 0 0 0 0 0

35 50.12 0 0 0

36 50.14 0 o 0 0 0 0 0

37 50.27 0 0 0 0

30 50.32 o o o 0

o means Xj » 1 in solution to L R U) at iteration k. L f > soUU;lon = 5/*'

A fourth alternative which was not tested would have been to use

either exactly or approximately a cubic linesearch as in [C1].

3.5 Computational Results

3.5.1 Case Study

Firstly Etcheberry's relaxation will be used to examine in detail how

the different ascent methods performed on one particular problem.

This relaxation relaxes constraints of the SCP until there is at most

1 non-zero entry per column for the constraints of LRi\). This

problem had 30 rows, 60 columns and density 0.15. It was randomly

generated with a fixed probability of 0.15 that a., was equal to 1.

m
The costs c . were set equal to 2 a . . + 5, b'ut if o . exceeded 15

3
 M t=1 tj 3

it was reduced by 10.

It

The zigzagging between solutions to LR[\) for successive iterations

ft

as X approaches X* is illustrated in Figure 3.3. It shows indices 3

for which x . = 1 for iterations 2 to 7 and 31 to 38 of the subgradient

optimization. Iterations 2 to 7 were chosen as the bound value was

least for these. It is noted that there are 30 different values of 3
for which x . = 1 and also that if x. = 1 for more than one iteration

3 3

these iterations are likely to be consecutive. For example x u = 1

in iterations 2, 3 and 4 and J;^ s 1 in iterations 4, 5 and 6. For

iteration 38 the bound value was greatest and in the 7 preceding

iterations it is seen that there are 15 different values of 3 for
which x . = 1. Further if x . = 1 at one iteration it may be alternately

3 3

equal to 0 and 1 at subsequent iterations. For example X12 = 1 only

at iterations 31, 33, 35 and 37 and x 2 s = 1 at iterations 31, 34, 36

and 38. This illustrates the zigzagging between solutions that is

TABLE 3.4

TO SHOW THE EFFECT OF VARYING 3 WHEN IMPLEMENTING THE SUBGRADIENT ASCENT PROCEDURE OF CAMERINI et al

3

6 = 1.5 6 = 2.0 <5 = 2.5 6 = 3.0

3
ITERATION
NUMBER

BOUND
VALUE

ITERATION
NUMBER

BOUND
VALUE

ITERATION
NUMBER

BOUND
VALUE

ITERATION
NUMBER

BOUND
VALUE

1.5
25 49.66 25 49.71 25. . 49.43 25 48.76

1.5
47 50.20 36 50.01 38 50.05 50 49.99

2.0
25 49.44 25 49.14 25 47.85 25 47.09

2.0
38 50.00 50 40 49.75 50

2.0
38 50.00 50 50.26 40 49.75 50 50.02

2.0
38 50.00 50 40 49.75 50

2.5
25 49.48 25 49.09 25 48.19 25 47.01

2.5
50 50.06 48 50.20 50 50.20 50 49.98

gives best bound value for given 6.

TABLE 3.5

BOUND VALUES FOR 3 SUBGRADIENT OPTIMIZATION METHODS

68

BOUND VALUE

ITERATION Ml IMDCTO SINGLE CAMERINI ^PROJECTION
NUMStR

SUBGRADIENT et al METHOD
(i) (ii) (iii)

1 49.27 49.27 49.27
2 35.93 35.93 42.96*
3 44.91 33.74 48.55
4 47.38 34.68 47.27
5 47.44 39.27 47.55
6 47.15 40.14 42.79
7 47.62 41.00 47.96
6 47.72 41.70 47.61
9 46.65 42.43 47.40

10 49.04 43.20 48.52
11 48.44 43.96 48.27
12 49.33 44.72 47.66
13 49.07 45.45 48.22
14 49.39 45.83 47.37
15 49.65 45.93 4B.54
16 49.81 46.36 48.64
17 49.97 46.42 48.45
18 38.09 46.84 . 48.92
19 45.30 46.91 48.30

' 20 48.07 47.33 49.08
21 46.72 47.39 43.43*
22 48.32 47.72 48.03
23 48.50 47.83 48.55
24 48.05 47.87 47.83
25 . 48.12 48.19 48.30
26 43.65 48.26 47.74
27 48.53 48.33 47.31
28 48.74 48.64 48.35
29 47.47 48.76 48.40
30 48.40 48.81 49.00
31 48.52 49.00 49.30
32 47.94 49.19 49.58*
33 48.86 49.26 49.71*
34 48.25 49.40 50.20*
35 49.39 49.52 50.20*
36 48.76 49.60 50.20*
37 48.99 49.67 50.20*
38 48.55 49.71 50.20*
39 48.78 49.73 50.22*
40 49.24 • 49.76 50.22*
41 48.80 49.78 50.22*
42 49.31 49.88 50.22*
43 49.16 49.95 50.24*
44 49.63 49.98 50.25*
45 49.20 50.01 50.25*
46 48.92 50.11 50.20*
47 48.99 50.13 49.72*
48 48.62 50.13 49.34
49 49.19 50.15 49.45
50 49.30 50.20 49.30

Steplength Paramster

6" = 2.5

Problem

30 x 60 density 0.15

The starting value o-f
% was obtained using
the heuristics of
Chapter 2.

^ F o r method (iii) it
was too expensive to
use the projection
method at each
iteration of sub-
gradient optimization.
Therefore it was only
used at iterations
marked *. The other
iterations used
method (ii).

* means that bound
has been obtained
using projection
method

characteristic of subgradient optimization near an optimal solution

to LR. In other problems it is often found that the values of j for

which x . = 1 for values of z near the best bound obtainable from
J X/

this Lagrangean relaxation are precisely the values of j for which

Xj is non-zero in an optimal solution to the LP relaxation. This is

because the value of an optimal LP solution is equal to the best bound

obtainable 'from this relaxation and any optimal LP solution can be

written as a convex combination of all the possible 0-1 solutions to

the best Lagrangean relaxation, Li?(/*). The frequency with which

variables occur as solutions to a Lagrangean relaxation can be used

to determine branching variables in a tree search.

Of the different methods of calculating v first Camerini et al's

method [C1] is examined. Although the choice of $ uspd in • (3.6)

affected the value of the lower bound no firm conclusions as to the
i
\

best value of 3 could be obtained. Table 3.4 shows the best value

of the lower bound in the first 50 iterations and the iteration at

which it occurred for different values of 3 and 6. It also gives the

bound value after 25 iterations. The best bound value of 50.26 with

this method was given by 6 = 2.0 an " = 2.0 at iteration 50. The LP

solution gives a bound value of 51.0 and thus is the best theoretically

obtainable lower bound value for this relaxation. The bound values

were also calculated using a fixed value of 9 in (3.5) and were

slightly worse than those derived by varying 9 as in (3.6). This was

therefore not analysed further.

The bound values, L(A), for the three methods of computing the ascent

direction v for maximising LRi'X) are given in Table 3.5 for 6 = 2.5.

They are plotted against iteration number for the first 50 iterations

in Table 3.6. The ascent pattern was found to be similar for other

values of 6. The simple subgradient procedure produced a very erratic

variation in the bound. The method of Camerini et al ascended slowly

at first, but then was very steady and reached a higher bound value

than that obtained by using a single subgradient. The computational

effort of Camerini et al's method was slightly greater than that

required by the simple method. The extra storage required was one

vector of minimum dimension equal to the number of relaxed constraints,

MREL, and in any case less than m t The projection method required more

storage, 0((MREL) 2), and as it was more expensive to use than the other

two methods was only used when the bound exceeded its previously best

Known value. Iterations for which it was used are marked by * in

Table 3.5. At the other iterations Camerini et al's method was used.

The main problem was that the search direction generated was extremely

sensitive to small changes in the stepsize cr and for the results

recorded here the stepsize was calculated for all iterations by the

method used by Held and Karp given in (3.10) as this was then the same

for all three ascent methods. The projection method had the feature

that it reached a relatively high value of the bound at an earlier

iteration than by the other two methods. Since the simple subgradient

method was used in (iii) for the ascent direction when the projection

method was not used, i.e., when the bound had not reached a better

value than in previous iterations, the bound value was erratic for

these iterations.

Thus the projection method and Camerini et al's method were combined

to produce further improvements. The computation times for the three

methods plotted here are:

(i) 0.75

(ii) 0.88

(iii) '1.34

where the times are CDC 6500 sec. under the NDS BE operating system

and the NNF5 Fortran compiler at Imperial College.

TABLE 3.4

BEST BOUND VALUES AND TREE SEARCH INFORMATION

METHOD

'ROOT NODE TREE SEARCH

METHOD
BEST BOUND

VALUE
ITERATION
NUMBER

TIME
CPU sec

NUMBER OF
NODES

NUMBER OF
SUBGRADIENT
ITERATIONS

TOTAL TIME
CPU sec

(i) Single subgradient 50.38 150 1.63 8 364 3.2

(iia) Camerini et al $ = 1 . 5 50.82 144 1.66 9 647 5.3

(iib) 3 = 2.0 50.80 123 1.56 10 472 -4.3

(iii) Projection method 50.70 130 3.17 6 415 12.7

(iva) 0 fixed at 0.25 50.53 112 1.31 7 516 4.2

(ivb) 0 fixed at 0.5 50.82 116 1.33 10 697 5.4

(ivc) 0 fixed at 0.75 50.81 148 1.61 13 1088 8.3

Time CDC 6500
MNF5 compiler

TABLE 3.4

BEST BOUND VALUES AT ROOT NODE FOR 4 METHODS

ITERATION
NUMBER

Ci)
Single Subgradient

Ciia)
Camerini et al 3 = 1 . 5

(iii)
Projection Method

(ivb)
Fixed 0 = 0.5 ITERATION

NUMBER
Bound Time Bound Time Bound Time Bound Time

10 49.03 0.5 49.64 0.5 49.81 0.6 49.33 0.5

20 49.90 0.6 50.24 0.6 50.12 0.9 50.08 0.6

30' 50.24 0.7 50.27 0.7 50.27 0.9 50.25 0.7

40 50.38 0.8 50.32 1.1

50 50.38 1.3 50.40 0.8

60 50.26 0.9 50.53 1.0 50.40 1.4

70 50.29 1.0

80 50.30 1.1 50.55 1.1 50.48 1.7 50.62 1.1

90 50.33 1.1 50.68 1.2 50.55 1.9 50.67 1.1

100 50.34 1.2

110 50 . 35 1.3 50.75 1.3

120 50.37 1.4 50.68 2.4 50.82 1.3

130 50.70 3.1

140 • 50.38 1.6

150 50.38 1.6 50.82 1.7

Tims CDC 6500

MNF5 compiler

FIGURE 3.8

i-oioe/ /K
Bound _. _
Value

Comparison of Bound Values Against Iteration Number for 3 Different Subgradient Optimization Methods

50-0

LPsolut ion va lue

Camerini e t a l . f i x e d 9=0.5
Camerini e t a l . p = 1 . 5

_ P r o j e c t i o n Method

S i n g l e Subgradient

/ / i

/
$

/

A-o t>o eo too !2X> /̂ o /Co
Iteration
Number

o Lo

FIGURE 3.9

Comparison Of Bound Values Against Computing Time For 3 Different Subgradient Optimization Methods

LP s o l u t i o n v a l u e
Camerini e t a l* 0 = 1 . 5

Camerini e t a l . J3 =1 .5

Single Subgradient

— P r o j e c t i o n Method

49-ofc-

T/Vne
(ZbC CfSjOO sec.

As the bound value was still increasing at 50 iterations the iteration

limit was increased to 150 iterations, beyond which no improvement was

obtained. With this new limit and 5= 1.5 the three methods were

compared in a tree search procedure.

For method (ii) two tests (iia) with 3 = 1 . 5 and (iib) 3 = 2.0 were

made. The projection method used method (ii) at iterations where

the bound had not increased and a linesearch based on all the methods

described in (3.3). In addition using 9 fixed at 0.25, 0.50 and 0.75

gave tests (iva), (ivb) and (ivc). The best bound values at the root

node of the search tree, the iteration number at which it was reached

and the time is shown in Table 3.7 together with total computation

times and number of tree search nodes used.

Table 3.7 gives the best bound values at.the root node for methods

(i), (iia), (iii) and (ivb) and the results are plotted against

iteration number in Figure 3.8 and against computing time in Figure

3.9. The subgradient optimization gave at best a 3% improvement in

the bound at the end of the heuristic procedures.

There was little difference at the root node between methods (ii) and

(ivb) in terms of bound value or time. The single subgradient

method gave a worse bound than the other methods at the node, but for

this size problem had the fastest overall computing time.

3.5.2 Comparison of the Methods on Different Problems

Table 3.10 gives 5 problems which were solved by the above methods

using the same best bound tree search as in Chapter 2. The first

4 columns -describe the problems as in Chapter 2. The first column

for each method gives the increase in the bound obtained from

Lagrangean relaxation over that obtained by the heuristics as a

TABLE 3.10

COMPARISON OF 4 METHODS FOR SUBGRADIENT OPTIMIZATION EMBEDDED IN A TREE'SEARCH

PROBLEM METHOD

6 = 1.5 For All Problems
SINGLE SUBGRADIENT CAMERINI et al fl - 1.5 PROJECTION METHOD FIXED 0 = 0.5

liJ (iia) (iii) (ivb)

No m n p Cost Increase No of Total % Increase No of Total \ Increase No of Total \ Increasa No of Total n
Type in Bound Nod89 Time In Bound Nodes Time ln Bound Nodes Time ln Bound Nodes Time

4.7 20 80 0.2 X 5 3 1.13 7 3 1.15 7 1 2.13 1 8 1.35

48 30 80 0.15 X 3 11 6.74 4 16 8.8 3 10 16.6 1 111 33.6

a 30 100 0.15 X 3 37 15.83 0 22 14.05 3 38 23.0 1 750 21.

4<i 36 80 0.17 X 2 . 13 4.03 3 16 4.66 1 13 8.3 0 72 21.53

so 40 300 0.15 X 0 4 16.5 5 2 22.0 7 4 60.6 3 10 26.0.

cn

77

percentage of the heuristic bound. As can be seen method (ii) was

the most robust and on further larger problems not listed here tended

to generate fewer nodes than by (i). However for the size of problem

tested here there is little to choose between methods (i) and (ii).

Although there was little difference between (ii) and (iv) for the

example problem, the latter generated many more tree search nodes and

is therefore not recommended. The projection method whilst not

generating too many nodes was costly to implement at each node and

there were storage problems on larger examples. The advantage of

using method (ii) to overcome the zigzagging is demonstrated here as is

the importance of using a good target value by adjusting 6. Thus

using method (ii) with either a robust way of choosing 6 or a line-

search procedure leads to an effective implementation of Lagrangean

relaxation.

CHAPTER 4

NETWORK FLOW RELAXATIONS DF THE SCP

4.1 Introduction

Network flow problems can be solved using conventional linear

programming methods, but by exploiting their structure more efficient

algorithms result which easily solve problems of up to 500,000 arcs

and 1000's of vertices [B12, G15]. Two different networK flow

relaxations of the SCP are described in §§4.2 and 4.3 and in both

cases the lower bound obtained from the networK flow solution is

bounded above by tf(LP). The conclusions of Section §4.4, where

computational results are presented, are that the first relaxation

produces a bound very close to the LP bound in a reasonable time but

that the second relaxation requires too much storage to be useful.

Unli.ke the integer programming problems of [G15] the SCP has its own

structure which can be more efficiently exploited than the structure

of the derived networK flow problems.

4.2 NetworK Flow Relaxation, NF1

4.2.1 Formulation

NetworK flow relaxation NF1, is derived from the LP relaxation of the

SCP by replacing a single variable x . with a set of variable when-
3 "^3

ever a.. = 1. For each j there are constraints that the variables
13

must taKe equal values for all i-eM.. This gives the problem NC/3

which is clearly equivalent to the problem LP:

N if)

m
m! n i--1 jeir£

 fio Kio

subject to

and

K - • > 1 j e ^ "Z-J -

^13 3 leM. I3
3

1 > £ . . > 0

.Z., f. . = c.

i = 1,2,...,m (4.1)

= 1,2,... ,m C4.2)

for all i,3

The original SCP constraints give inequalities (4.1). All variables

£ . • derived from the 3th column of the SCP must take equal values (as
13

in constraints (4.2)) and their costs must sum to c. m Associating a
3

multiplier A., with each constraint (4.2) a Lagrangean relaxation,
13

L R K X) , of SCP is:

L R K X)

m
min (/.. + X .. - (1//z.) „£.. X .) £ ..
r ^=1 j 13 13 3 IsM* 13 13 h. 3

subject to
1

1 > £ . . > 0 — H j —

= 1,2,.

for all

m (4.3)

This can be simplified by letting:

X' . . = X. (1 /h.) n ,, X 0 .
13 13 3 teMj %

3

and d.. = / . . + X'.. = 0. This gives the problem NF1 id):
13 13 13

(4.4)

(4.5)

NF1id)

m
min .Z„ d . . £ . .
^ ^=1 3eN^ 13 *13

subject to £ . . > 1 j e ^ -

1 > £ .. > 0

= 1 ,2, ... ,777

for all

(4.6)

This is a network flow problem in the graph G1 shown in Figure 4.1.

Each row of the SCP is represented by a vertex V^ which is connected

to a source vertex s and each column by a vertex v'. which is
3

80

FIGURE 4.1

Network Flow Graph, G1, For Example NF1

Vertices
refreso/ut
fOuiS "

Vertices
rep r&sesit
CoUusnis

Arcs Cs.tr.) C u . V .) tv.

Upper Bounds K l 1 y l ^ . i

Lower Bounds 1 0 0

Costs 0 d..
10

0

«

connected to a sink vertex t. Arcs (s,y.) have a lower bound of 1
i

on the flow. There is an arc) if a. . = 1 with cost d.. in
i 3 13 13

which the flow must be between 0 and 1. All other arcs have zero

cost.

A minimum cost flow in this network can be found by setting £ .. = 1
13

for all arcs satisfying d.. = d.., and then setting = 1 for
1Q 3 • 13 13

t>

any remaining arcs for which d.. is negative.
13

Problem NF1id) always has an integer solution. This is feasible

(and thus optimal) for the SCP providing constraints (4.2) are

satisfied.

4.2.2 t Changing the Costs d ^ on the Network G1

If the solution is not feasible for the SCP then the costs d.. must
13

be changed. In the last chapter the multipliers X.. were changed
13

using subgradient optimization. Here it is more efficient to change

d.. directly. From (4.4) it follows that changing X.. by such 13 13 13

that . £ Y • • = 0 is equivalent to changing x'.. by another variable,
ISM^j 13 13

TT^. say, such that ^ ^ TT^. = 0. By (4.5) this is equivalent to

<7 fr -jt
changing d . . directly. At iteration k > 0 let d = d and TT = TT ,

13

then

d = d + TT (4.5)

Initially d° .. can be set to u, + s ./h . where the variables u. are
13 1 3 3 1 dual variables computed as in Chapter 2 and s . are associated reduced

3

costs. It is clear that . £ <5° . . = c . and IT0 can be set to 0.
^eiv. 13 q

The algorithm aims to find d* where:

y(NF1 id*)) =? max[y (NF1 id)) | .Z, d.. = oA (4.6)
d ^ 3

Then i>(NF1 (£?*)) = i>(LP) and d*. . can be obtained from an optimal t/j
solution u to DLP by setting

d\ . - u*. + 8*./h.
13 t> 3 3

where s*. are the corresponding reduced costs.

To increase the bound tf (NF1 {<£*")) using subgradient optimization at

each iteration the set of penalties IT is computed as follows.

Let J ' be the index set of columns 3 for which equation (4.2) is not

satisfied. If J r is empty (i.e. equation (4.2) is satisfied for all

values 3) then the solution to NF1id) is feasible and therefore

optimal for SCP. Assuming J' is not empty then for every 3 e J r- let

p . be the number of which are equal to 1 and p . be the number of
3 13 3

which are equal to 0. The penalties IT., are then calculated as:
13 13

For j e / ^ = q p . j l z F
u - z^) i f = 1 C4.7)

hj I W I 2

' *ij"21i±iii
 l f 5 * r °

hj I M I2

For 3 ft J* TT . . = Q
•• 13

where ||w||2 = - P ^ A -) 2 = Zjipjpyhp, by definition of p..

F F

0 < a < 2 is an a priori- chosen constraint and z a n d z^ are upper

and lower bounds on v(NF1(d*)).

ft
The penalties TT .. calculated at iteration k from the solution to

13
k. &+1

NF1id) are used to derive d using equation (4.5). The iterations
«

continue until either a solution £ is found which satisfies constraints

(4.2) giving an optimal solution to LP (which incidentally happens to

be integer) or the maximum number of permitted iterations is reached. 4

r
This describes the procedures RELAX, SOLVELR, FEASTEST and COSC^ANGE

for relaxation NF1.

4.2.3 Further Improvements

Further improvements can be made. Firstly resetting any negative

cost d to a non-negative value cannot decrease the bound. In manv pq y

cases the bound may actually improve after all the negative costs

have been removed.' This is given in Lemma 4.2.3.1 below:

4.2.3.1 Lemma

If <i < 0 for some p,q then d can be reset to a non-negative pq pq *

value without decreasing the bound.

It is sufficient to consider a single cost d < 0 and set this to
P<7

a non-negative value. The procedure can then be repeated for all

negative costs until d > 0 for all p,q.

Proof

m
Suppose d < 0 for some p,q then since .E„ d. o and c is assumed

pq iq q q

positive there exists d . say for which d r >0.
p'q pq

Setting d\. = d.. , for H,j) ^ (p*>q) or Cp,q)
I'd 1Q

and d' = min[<2 + d t , o]
pq 1 pq p'q' J

d' t = max[d * d - , o] p q p'q pq

means t;CNF1 id-)) > VCNF1 id)).

It follows:'that if £ is an optimal solution to NF1id) then there is

an optimal solution to NF1(<f'] such that in only one component

differs from 5 f • The change in bound value is then v[HFMd')) -

tt(NFKd)) which equals:

d' - d + d' E f - d K
PQ PQ P'Q P'Q P'Q P'Q

If £ , = 1 then since d't < d , B,' = 1 and since the sum of the
P'Q P Q P Q P Q.

changed costs remains unchanged the change in bound is equal to 0.

If 5 > = 0 then since d < 0 the change in bound is positive and p'q pq

therefore the bound increases. Hence d can be increased without
PQ

decreasing the bound. This process which is finite is repeated until

all the costs in a column are non-negative.

A second improvement that can be made is to reduce a priori the

number of variables in the SCP using reduced costs, c... These are-
10

given by:

a.. = d.. - max[0, min <2.]
10 10 IzN^ 11

Then, if a.. > z - t;(NF1C<2)) this implies that £ .. = 0 and hence
10 V 10

x . = 0 in any optimal solution to the SCP of value less than z ,
0 u

where z i s an upper bound on tf(SCP).

Thirdly, a problem arises in solving NF1id) when there is more than

one variable for a given value of i that can be set equal to 1.
10

This can arise when there is more than one value of jii) satisfying

d..r.. = min d.. , or it can happen when d.. = 0. In both of these
10 M 10 10

cases the following strategy which first fixes those variables that

can be chosen uniquely and then fixes the remainder, can be used.

First set 5 .. = 1 if d . . < 0,
10 10

then set = 1 if there is a unique j such that d.. = min \d.A
10 10 zeMi H-

then set = 1 where column 0 has the highest proportion of
10

variables already set equal to 1 from <7 e JC^) where

JU) = {j\d.. = min d. }. The problem of multiple solutions in
10 £eM« ^x,

i
NF(d) corresponds to degeneracy in LP.

Fourthly, attempting to satisfy the LP optimality conditions can

improve the bound. This is done by assuming-all costs d.. are non-
10

negative and setting u . = nnin d . .. Clearly this gives a feasible
^ 0 e ^ ^

solution to DLP from which reduced costs s . can be calculated.
0

To derive an optimal solution to LP from DLP it is first necessary

to consider the set of columns, S, for which the reduced costs are

zero. Thus S = {j|s. = 0}. If u. represents an optimal solution to
0 1

DLP then there is a vector y with 1 > y . > 0 and m .(-.!„ y .a.. - 1) = 0

The vector y can be found by iterations similar to phase 1

of the Simplex Method [H6]. If there is no y satisfying these

constraints then u is not optimal for DLP. If y is found, then setting

x . = y . , jeS and x . = 0 otherwise, gives a solution to the LP. From
0 0 0

the formulation of NF1 it follows that tf(NF1(<£)) < tf(LP).

Lastly, a feasible solution, x , to the SCP can be obtained from a

solution, to NF1 by letting x . = 1 whenever there is an i for

which £ .. = 1 and then reducing this to a prime cover.
10

4.2.4 Summary of the Algorithm

An example is given in Appendix 3

in PROCEDURE 10 NETFL01 below:

and the algorithm is summarised

PROCEDURE 10 NETFL01 (SCP, z t z , x, u,

SOLVE RELAXATION NF1 OF THE SCP

Input: SCP

u

z
u

Set covering problem

Dual feasible solution

Upper bound to the SCP

Output: u

K

x

Dual feasible solution to the SCP

NetworK flow solution

Upper and lower bounds to the SCP

Feasible solution to the SCP

1. Initialise Variables

kmax

BIG

Set iteration limit

Set iteration -counter

BIG is a large number

2. RELAX . Define the Relaxation.

For j a 1 to 72

m
h. : = X . a..
3 ^=1 13

m
s . : = o . - .1. a . .u .
3 3 1=1 13 1

Calculate column sums and

reduced costs

For 3 =• 1 to n

For i e M.
3

d.. : = u . + s ./h .
13 1 3 3

Calculate cost of arc (1,3) for NF1id)

3. SOLVERE Solve the Relaxation at Iteration k

k : = k + 1

If k > kmax then goto 8.

For i = 1 to m

d'l = BIG

j's = 0

For J e N .

If d.. < d r

— tj
then = d.. Calculate minimum cost of an arc

.
j ': = j incident to vertex

If d . . < 0 Set flow equal to 1 in arcs with — V
then = 1 V

negative cost

p .: = p . + 1

2„: = zn + d. .
Z £ tj

If d r > 0

then E . .#: = 1 Set flow equal to*1 in arc of

p.': = p.f + 1 minimum cost if this cost is
0 0

4. FEASTEST . Test the NetworK Flow Solution for Feasibility

to the SCP

then goto 7.

else ix) : = 0

J': = 0

For j = 1 to n

If pj t 0 or p. 4 hj

then w : = w+p .(1 -p .)/h . Arcs derived from column n rJ 0 0 . -
J': = J ' V { j } are not feasible for the SCP

If w = 0 then goto 6.

If k > kmax goto 8.

5. COSTCHANGE . Change Costs in the Network

Fo r 0 e J '

y .: = . (z - zA/h .w
3 3 u % 3

For i z N .
3

If = 1 then" d..\ = d..= y.(1-p.)/p.
— 13 13 13 3 *3 3

else d . .: = d . . - Y .
13 13 3

Goto 3.

6. Network Flow Solution is Feasible for the SCP

z : = zn
u I

For 3 = 1 to n

If p . = h . ; then x . : = 1
— 3 3 3

else x . i = 0
3

7. Stop With an Optimal Solution

The upper bound z i s optimal for the SCP,

8. Try to Improve the Bound

Readjust costs to non-negative values.

For i = 1 to m

u . : = min d..

k * jzN '

For 3 = 1 to n
m

e.s = - .ZA u.a.. Calculate reduced costs
3 3 i 13

Use heuristics to improve dual

feasible solution and try to

improve the upper bound.

Stop with lower bound z

upper bound z

In the implementation of PROCEDURE 10 it is not necessary to store

the variables £ .. as separate variables. If the non-zero columns of •z-J
the SCP are listed by row in the vector ITJ then if £.. = 1 the

corresponding element of ITJ can be set equal to -J. An additional

array for d.. is required which makes the storage for this method

greater than that required by Etcheberry's relaxation.

4.3 Network Flow Relaxation, NF2

A second Lagrangean relaxation of the SCP involves a minimum cost

flow problem, NF2, in the graph G2 - described below - and can be

used to give a lower bound to the SCP. As in the previous relaxation

and ascent procedure is used to maximise the Lagrangean function and

thus increase the bound further.

4.3.1 Construction of the Network, G2, from SCP

Each row i of SCP is represented by two vertices V^ and v\ and an arc

iv in which the flow must be at least 1. Each column 3 is
% 1

represented by a path in the graph G2. For each column 3 , whenever

a., and a* . are two consecutive non-zero entries Ci.e. when a . = 0, 13

% < I < k) with i < k an arc ^^y} 3 w i"t h c o s t i s constructed.

3
A source vertex S is added and an arc (s,y.) for ^ the first non-zero

i>

entry in each column 3 Ci.e. i = min[£|a . = 1] with flow Z? . and
1L3 si>

cost dP ..
s%

i 7*
Likewise there is a sink vertex t with flow %., in arc CV .,tr when-

7*V %

ever i> is the last non-zero entry in column 3 and the cost of this

arc is The set of pairs ii,k) derived from column 3 together

90

with i3,z'), iz 1 1 ,t) (where i r is the first one in column j and z f r

. -j n
the last 1 in column j) form the set T j. The flows £ . , £ and

SZ ZK

£ ., are constrained to lie between 0 and 1. The costs a 1 . . A , and
zt sz zk

dP., are chosen so that, £ cP0 = a .. ' Appendix 3 gives an example.
zt (a, 3 J e 21 a3 Q

j

The Graph G2 has been used by Nemhauser et al [N1] to find a lower

bound to the set partitioning problem (SCP with equality constraints)

in the case of equal costs. The problem was then to decompose G2

into a minimum number of chains. (A chain is a directed path or

isolated vertex).

The networK flow problem NF2 can alternatively be thought of as that

of finding a set of paths of minimum total cost so that each path

starts at a source vertex s. It ends at a sink vertex t and every

other vertex in the graph lies on at least one path.

4.3.2 Formulation, of the Problem and Calculation of Costs

The problem of finding the minimum cost flow in G2 can be stated as

follows:

m l n jh U Z,Me.T . 4k Xik j

sub jec t to I 4 • k Z j ^ - 4 • 2 4 C4.8)

z zp . + z d . > 1
j s^ kz -

0 < < 1 U,k)z T , j = 1 ,n

If constraints (4.9) below are added to NF2id) and is restricted

NF2(d)

to taKe integer values the resulting problem is equivalent to'SCP.

J = Ca a S

Hk ih. + 1) L 4 , 9 J

Constraints (4.9) can be incorporated in the objective function of

NF2id) to give a Lagrangean Relaxation:

min . , . $,
j = 1 (z,k)z t. zk zk zk

J

+ xi

r .
I Bp
Hk - ZtPo

a 3
ih. + 1)

j
0

+ 1)

j

Ca,3)e Tj

subject to Z Z K k z = 7 E - + A t

Z Bp . + Z Bp'. > 1
j s % kt j ^

0 * ± 1 iz,k)£T
j

<7 = 1,2, ,n

As in the previous relaxation, one can substitute penalties TT^ for

Z A^ / (7z. + 1)j and the costs can be computed recursively.

(a,3)sV 1
In this case let p . be the number of variables £ t i l l e r , , •

Q ZK j

which are set equal to 1 and pn-~h. + 1 - p.. Denoting by J ' the <7 J 0
• J

set of columns j for which does not satisfy (4.9); the penalties

4k =

w

- . 0 p . k . (z.H-.zfr

w

i f % • 1

i f • 0

(4.10)

N N
Where z , z^ are upper and lower "bounds on tf(NF2id*)) and | |w| | 2 _

n d *J
For all j e V , TT^ = 0

The costs are then updated to dP.^ + TT^ as in Section 4.2.

TABLE 4.2

LOWER BOUNDS FROM THE NETWORK FLOW RELAXATIONS

PROBLEM HEUMSTIC BOUND NF1 ECU:JD NF2 BOUND LP EOUND

1

No

2 1

" 1

3

n

4

density

5

:ost

6 | 7 •
% dwi.iU.onl., _

. _ ! times irow 1

3 1 % deviiticnl
lrr-'i LP

9

,'o.Itns

10

tine

11
% deviation ,

fron LP
Jo.Itns

13 .

time

i<;

V(LP)

15

tio. Itris

16

tine

j SI AO 350 .20 U ' 4.4 0.7 3.2 200 2.4 - - - 3.44 128 2.6 !

| s a 40 500 .20 F 2.4 1.4 2.3 22 1.8 2.2 10 25.0 47.79 124 3.9 .

; 93 40 500 .25 F 4.6 2.0 4.4 11 2.8 - - - 49.74 146 5.4 i

** 20 300 .30 F 1.5 3.4 1.3 28 4.9 - - - 75.38

r«
CO 5.4

55 50 1000 .13 H 0.0 2.8 0.0 - - - - - 50.00 7-18 12.9

S6 50 1000 .15 U 4.3 2.5 3.6 30 •3.1 - - - 3.96 154 9.3

GO ICO .05 U 3.6 0.6 2.7 150 0.8 0.7 52 " 48.0 15.27 127 0.8

se 50 200 .15 H 0.0 1.3 O.O • - - - - - 60.00 841 13.5 '

S«| 60 300 .13 F 2.7 3.0 2.2 41 10.4 - - - 79.37 20G 5.5

i s SO 400 .05 U 2.0 0.7 1.2 100 2.0 1.0 27 115.5 10.37 151 2.6
« 0 40 400 .10 U 3.8 0.8 2.0 200 3.2 3.7 10 90 6.13 184 4.4 "

61 60 400 .20 U 5.4 0.9 4.2 100 5.1 5.1 4 90.5 3.55 222 7.2

60 7C0 .05 U 5.3 . 0.8 3.9 100 1.5 4.2 10 94.2 9.76 184 5.3

63 60 1200 .05 . U 3.2 1.8 3.0 100 4.5 - - - 9.02 217 9.5

bk 70 400 .05 U 4.7 0.9 3.7 100 1.4 - - - 11.53 227 4.9

is 75 300 .16 F 2.2 4.2 1.9 33 5.9 - - - 107.35 173 5.4

if> 80 300 .20 U 3.9 0.9 2.5 100 7.1 3.9 1 75.0 3.95 228 7.7

b7 CO 400 .20 U 2.1 7.2 2.1 11 7.3 - - - • 120.08 290 12.7

69 eo 1000 .18 If 0.0 5.9 0.0 - - - - - 80.0 >2000 54.0

&1 110 300 .20 P 1.6 10.3 1.4 21 13.0 - - 190.71 345 17.7

Average for probler.s
with cost:

(i) F 2.5 4.1 2.3 27 6.5 2.2 10 25.0 - 197 7.2

(ii) U 3.7 1.6 2.9 92 3.5 2.3 17 85.5 - 178 6.1

(iii) H 0.0 3.3 0.0 - - - - - - >1196 26.8

Averages for
pre;jl£.*n's

all
3.0 2.6 2.3 67 4-4 • 2.9 • 16 60oi - > 333 9:5

4.4 Computational Results

4.4.1 Explanation of Results, Table 4.2

All the problems were randomly generated. The algorithms were

written in FORTRAN and tested on the CDC 7600. Columns 2 and 3 give

m and n the number of rows and columns, respectively, of the SCP.

The density of the SCP (Column 4) is the ratio of non-zero entries

to the total number of entries in the constraint matrix A.

The problems tested belonged to one of the following three classes,

denoted by U, H and F in Column 5:

(i) JJ • these are unicost problems with o. = 1 for all j.
0

(ii) H the cost of each column is equal to the number

of 1's in each column, <2. h . for all j.
0 0

(iii) F this is a combined fixed cost and variable cost,

o.~ah. + bt where a and b are positive constants.

(a=2, b=5).

The bounds given in Table 4.2 are expressed as a percentage deviation

from the LP bound. The heuristics given in Chapter 2 almost always'

o b t a i n e d a solution within 4% of the LP solution value. This

was improved by NF1 by an average of 1%. The networK flow algorithm

used for NF2 was a straightforward implementation of the Out-of-
i

Kilter algorithm [F2] and proved to be very slow for a bound

calculation. The LP code used was that of Land and Powell [Li], and

problem DLP (rather than the primal problem) was solved because there

were fewer rows than columns, and this was much faster in most cases.

The initial costs for algorithms NF1 and NF2 were derived from the

dual variables u and associated reduced costs s found by the algorithms

of Chapter 2. For NF1 and NF2 an iteration consits of solving a

particular relaxation and then changing the costs using the sub-

gradients derived from the solutions.

4.4.2 Implementation of the Algorithms

The heuristic bound was calculated by first using PROCEDURE 3

Heuristics until there was no further increase in the lower bound up

to a maximum of 5 iterations. Very often the upper bound on SCP

decreased during these calculations.

F
For NF1 it was found that using a fixed upper bound z i n [103 did

not always give a good lower bound at the end of the subgradient

F F
optimization phase. Therefore Can estimate of z) was used which u u

was not necessarily a true upper bound on uCNF1). This was computed

as:

F
z u - 1.08 x heuristic lower bound -

In all the examples tested this would have overestimated z?CLP) slightly

and - as others, [H4a];have noted - an overestimate of the upper bound

is often more successful than using the upper bound itself.

Initial costs d ^ for NF1 were derived from the solution u to DLP

after usirig algorithm 2. Had this not been the case it would have

taken NF1 considerably longer to reach the same value of the lower

bound as shown in Table 4.2. However..tests showed that when the

maximum number of allowable iterations was very large, say 700, then

very often the solution of NF1 after using the worse starting position

was better than that obtained after using the heuristic solutions.

As the number of computations required to achieve this better bound

was so large It was not practical to use NF1 without using the

heuristics first. The bound obtained from NF1 is on.average within

2.5% of V(LP). The subgradient iterations were stopped if the bound

did not increase for 10 iterations. On the size of problems tested

the bound never found a feasible solution to SCP which is hardly

surprising considering that none of the LP solutions was integer.

As can be seen from Table 4.2 an excessive amount of computing time

was required to solve NF2 and in each case the algorithm terminated

because the time limit had been reached. This was despite the fact

that the networK flow solution was saved as the starting flow at

the next iteration. The main reason for the slow execution time of

the algorithm was because auxiliary storage had to be used to

accommodate all the networK flow information.

CHAPTER 5

96

GRAPH COVERING RELAXATIONS DF THE SCP

5.1 Introduction

Graph covering problems are used in two different Lagrangean

relaxations of the SCP to obtain lower bounds. In each case the

optimal lower bound value for the graph covering relaxation is

greater than that obtained from the LP. The two relaxations can

be combined to give further improvements in the bound. Computational

tests which compare the two relaxations and then combine the two are

presented.

5.2 The Graph Covering Problem, GCP

The graph covering problem, GCP, of finding a minimum cost set of

arcs that cover all the vertices of a graph was defined in §1.2.

It can be represented as an SCP with at most two l's in each column.

(Any problem with a single 1 in a column can be transformed into one-

with two 1's in a column by the addition of an extra row which is

considered to be covered). In this case the constraint matrix A

of the SCP is the vertex-arc incidence matrix of a graph G =G(V,E)

where V is the set of vertices ana E is the set of arcs of G. Thus,

the rows of A represent vertices of G and the columns represent arcs.

Suppose the -ith row of A is represented by a vertex v.. If the jth

column of A has non-zero elements in rows i and k then it is

represented by an arc e . = {.v.,v.) of cost o .. A cover. K, is a set <7 z K (j
of arcs which Meets every vertex of G. The graph covering

97

problem is solved by finding a cover K* of minimum cost. The

corresponding solution, x*, to the SCP has x •* = 1 if the jth arc is
3

in K* and x .* = 0 otherwise.
3

The GCP can be formulated as a linear program, LPB:

min ox
x

LPB

subject to Ax > J_

Bx > r

1 > x . > 0 - J ~

(5.1)

(5.2)

<7 = 1,2 ,n

where o . is the cost of arc e . and A is the vertex-arc incidence
3 3

matrix. It is assumed a. > 0 otherwise x.*•«. 1.. and vertices covered
3 3

by arc e. can be removed. Constraints (5.2) are added to the LP
3

relaxation of the GCP and are exponential in number. They restrict

every set of vertices of odd cardinality, 2r - 1 say, to be covered

by at least r arcs. These constraints, Known as blossom constraints,

need not be stored explicitly as the graph covering algorithm detects

them when certain odd circuits arise in the graph G. The implementation

of the graph covering algorithm is described in §8.3.

The linear programming dual of LPB is DLPB:

DLPB

m
max .£„ w . + r_ £

i=1 pep p 'p

subject to
T T

A w + B S < o

> 0

(5.3)

where ;P is the set of odd cardinality subsets of V.

An approximate solution to the GCP can be obtained from any feasible ̂

solution (w, S) to DLPB. Using the heuristics of Chapter 2 to get w

and setting C = 0 gives a lower bound. The reduced cost of arc e .
3

98

is given by:

m
a . =* o . - ^ a .. w . - E_ . 5
0 0 fcj i pep pc p

Q Q Q
and if z is an upper bound to the GCP then if s . > z.. - 2 then

u Q U I

x . = 0 in any feasible solution the the GCP of lower cost than z
<7 u

Q
where z i s the lower bound to the GCP corresponding to (w£). For

convenience u . will be used to denote w . + E_£ where P, is the
1 1 & £ P

set of odd cardinality subsets containing vertex V T h e n

„ m
s. = o. - a., u. is a lower bound on the reduced cost s. and
0 3 ^=1 ^ g,

— G G
hence if s . > z - zn then column a. can be removed. J u % 0

5.3 Graph Covering Relaxation 1, GCR1, A Row Relaxation
of the SCP

5.3.1 Description of the Relaxation

The constraint matrix A of the SCP is partitioned into two sets of

rows R, the relaxed constraints, and R s M ^ - R , the graph covering

constraints. The rows in R have at most 2 non-zero entries in each

column. Thus if:

A Al
U 2 J

(5.4)

where A\ is made up of rows of A indexed by R and A2 of rows indexed

by R the Lagrangean relaxation, GCR1CA) is a graph covering problem:

GCR1(A)

T T
min ox - AUja: - 1J
x

subject to A2X > J_

x. e { 0 , 1 } w

(5.5)

<7 = 1,2,... ,n

For A > 0, U(GCRKA)) is a lower bound to the SCP and the optimal value

of this bound for all A > 0, V (GCR1 (A*)) say, gives abound no

l e s s than tf(LP) as proved below in Lemma 5.3.2. Let the graph be Gl.

99

5.3.2 Quality of the Bound

LEMMA

To prove

The best lower bound to the SCP obtained from GCR1 is at least as

good as that obtained from the LP relaxation, i.e.

tf(GCR1(X*)) > u(LP)

Proof

Let w*be an optimal solution to DLP and for relaxed rows in R let

X . = u*. Since X* is optimal and X . > 0 ^ %
 K

 % —

tf(GCR1(X*)) > tf(GCR1(I)) (5.6)

Let LP1 be the LP relaxation of GCR1 then

tf(GCR1(Xj) > u{LP1(I)) (5.7)

From LP duality theory it follows that

tfCLPKX)) = y(LP) C5.8)

Hence from (5.6), (5.7), (5.8) the result follows.
•

5.3.3 Calculation of X*

The calculation of the Lagrange multipliers is the same as in Chapter 3

for Etcheberry's relaxation of the SCP. Initially the multipliers,

X°, for GCR1 are obtained by setting X° = ^;for i e R where u. is a
i' z ^

dual feasible solution to DLP obtained using heuristics. Subgradient

optimization is used to obtain subsequent values of the multipliers.

At iteration k, k > 0,

. k f G G, k
X * a { B u ' B f) y

max 0,

I h \ 2
Iy I I

(5.9)

where a is a constant, 0 < a < 2

k k
re is a solution to GCR1(X)

y k = Uix k-V}

100

Q
z is an upper bound on i>(GCR1(A*))
u
Q ft Q

and z = i>(GCR1 (A)). As described in §3.3,2 can be replaced
X/ VI

Q

by a 'target value' z a n d the method of Camerini et al can be used

to make the bound increase more rapidly.

5.3.4 Partitioning the Constraints

If a graph is bipartite then the GCP can be solved optimally using

the LP relaxation. Hence the solution to the GCP Can only be greater

than that obtained from LP in non-bipartite graphs. To ensure

that the matrix A is partitioned so that A2 gives a non-bipartite

graph is not easy and in any case this does not guarantee that the

bound obtained from graph covering is better than that obtained from

the LP. A practical way of partitioning A is to choose A2 with the

maximum possible number of rows. This can be done by solving the

integer program, IP1:

m
max y .
y ^=1

IP1 T
subject to A y < 2 C5.10)

y . e{0,1} i- = 1,2,... ,m .
i

If y . - 1 in an optimal solution to IP1 then row % is a graph covering

constraint, otherwise constraint i is relaxed. In practice IP1 is a

large problem to solve and therefore it is solved heuristically by

choosing the row with as few 1's as possible in it. Row i2 with

with the next fewest number of 1's in it is then chosen. Other rows

covered by columns j that have a. . = a. . = 1 are removed. Row

has the least number of 1's in it in the remaining problem. Rows

covered by columns g that have a . . - a. . = 1 or a . . = a. . = 1 are
MJ ^3t7 3 1-3 3

removed. The procedure is repeated until all the rows have either

l o i

been chosen or removed. The removed rows define the relaxed

constraints R and the chosen rows the graph covering.constraints R.

This heuristic can be generalised to give a relaxed problem with at

most KCOL non-zero entries in any column in the relaxed problem and

is summarised in PROCEDURE 11 PARTITION, below.

PROCEDURE 11 PARTITION CSCP, KCOL, R)

PARTITIONS CONSTRAINTS FOR LAGRANGEAN RELAXATION

Input: SCP Set covering problem

KCOL Maximum number of 1's in any column

of the constraint matrix of the

relaxed problem CKC0L=2 for GCR1)

Output: R Set of relaxed constraints

0. Initialisation

R: = <t>, R: = (p R = set of relaxed constraints

R = constraints not relaxed

S\ = M S set of constraints to be considered

J: = N J set of columns to be considered

k: = o

1. Iteration k

Set k: = k + 1 Update iteration counter

102

2. Select "^th t o be in Constraints

Let row satisfy

X r a. . = min
OzJ Zyp £es

X a. .
JJZJ

Find row with the least number of

1's in it

Set S: = S-Hfc}

R :=RU r,ik}

Remove row -î from further consideration

3. Find Relaxed Rows

For j e J

if .Z— a .. = KCOL
— fce/F

then set J

set i?

set S

= «Mj} =)
J _

=)
0

else next j.

If S 1 <}) goto 2.

4. Exit

R is set of relaxed constraints

R = constraints for relaxed problem

(if KCOL = 2 , R gives the graph covering constraints)

5.3.5 Changing the Partition of A

If the constraints of A are partitioned into a set of relaxed

constraints R and a set of graph covering constraints R and the

bound v (GCR1CA*)) has been obtained as described earlier, it may

still be possible to improve this bound by using a different

partition of rows A. The aim is to find a partition in which the

penalty - AC/litf-jO incurred in the Lagrangean relaxation GCR1CA) is

A

as small as possible. Let x be the solution to GCR1CA*)). If

AiX > and A*(j4i£ - _1_) = 0 , then x is optimal for the SCP and the
A A

procedure can terminate. If - J_) 0 and AiX > 1 then a new

feasible Cpossibly better) solution to SCP can be found by reducing

A.* to 0 for a constraint izR for which - 1) . > 0. Suppose % Is %

now that this is not the case and x is not feasible for the SCP.

Let R\<zR be the set of constraints that are not satisfied by x.

The penalty for not satisfying a constraint i is A«*. Let A. be the t
constraint for which this penalty is greatest, that is, A. = max CA.

Constraint -i* is then removed from Ai and added to A2. This means

that some columns in A2 will now have more than 2 non-zero entries.
+

Let J denote the index set of these columns.

Some constraints of A2 must now be relaxed so that the resulting

problem is a graph covering problem. A heuristic estimate of the

penalty incurred for relaxing a constraint of A 2 can be made by

considering its associated dual variable A • which is available after
1

solving GCR1CA*)). Constraints for which A . is smallest are relaxed-

until A2 has at most 2 1's in each column. It may then be possible

to add further constraints from Ai to A2 so'that A2 still gives a

graph covering problem.

Rather than just considering the dual variables w^ one can also take

into account the blossom constraints. A penalty term u . = W . + ^ X,

can be defined where P . is the set of odd subsets of vertices
%

containing vertex v L e t R be the set of constraints that are rows

of A2 and let i* be chosen as before. Then a subset of

constraints that must be relaxed can be chosen so that the penalty

term .^ u'. is small.
izR

104

The process of changing the partition Ai
[Azl

is termed a "rotation".

After the rotation, let i? denote the index set of-relaxed constraints,

+ . +
Then multipliers X for tc /? can be chosen by setting:

X. = X. t t f o r i E / f n / ?

xt = u . for i z
v %

The dual variables, lv., for the graph covering problem can be found
z»

by setting:

w\ = X . for i E TtnR

w> = w- for i z ifnE

where 77 is the set of constraints in A2 after the rotation. Then w

be checked for dual feasibility. can

5.4 Graph Covering Relaxation, GCR2, A Column Relaxation •

5.4.1 Description of the Relaxation

Whereas the last relaxation, GCR1, was derived from the SCP as

originally defined in Chapter 1 this relaxation GCR2 relies on an

alternative formulation. Each column of the original SCP, a ., is
3

split into a set of 0-1 vectors 0, , tzT., such that a . = E 0 ,
3 3 £ E-i • "c

1045

Each column 8 has at most 2 non-zero entries. For example the

vector a. defined below equals 3i + $2 + a n d = (1.2,3}. J 0

Row No. a. =

0
3i + B2

+ 33

1 ~ 1 ~ ~1 ~ ~ 0 ~ " 0 "

2 1 0 1 0
3 0 0 0 0

4 1 = 1 + 0 + 0

5 1 0 1 0

6 0 0 0 0
7 _ 1 _ _0_ _0 _ _1 _

The matrix with columns ^ is the vertex-arc incidence matrix of a

graph G2.

The SCP is then defined as SCPG(rf):

SCPG(<i)

min

tt

subject to

n
£ Z dj.iL

n
I Z o
1 t sTj

(z
ifc er - * tt

d
/K,

y z {0,1} t

where l
m d = c.

tzT. t 0
d

*j - r t<i i

(5.11)

(5.12)

(5.13)

[smi

and is the least integer greater than or equal to * This

relaxation is similar to the networK flow problem NF1(d) except that

the constraints (5.11) have at most 2 non-zero coefficients for each

variable yf instead of at most 1 non-zero coefficient.

106

Associating a Lagrange multiplier, A , with each constraint (5.12)

gives the relaxation LR2(A):

m„ l n J i t l T M # t + \ ^t- W ']

J <J J LR2(A)

^subject to constraints (5.11) and (5.13).

Let G C R 2 i d) be the problem S C P G (D) with constraints (5.12) omitted.

Defining u t = Afc - (^J^ ^ / K j) for eT. the Lagrangean relaxation

LR2(A) is simply G C R 2 (^ + T T) .

This suggests compuw-.-g d recursively instead of changing the

multipliers A directly as in the first graph covering-relaxation.

At iteration^, let d and IT be given by and ift with k = O

initially. Then..

k+A k k

d = d + TT K = 0 , 1 , 2 , . . . (5 . 1 5)

If n is chosen so that n - 0 at each iteration, then constraint
t-zT; t Jr +1

(5.14) is always satisfied by the costs d K . Calculation of -rr is

described in §5.4.3. This means that the total cost of variables y

derived from the jth column of the SCP is the cost of the column, a .. .

Section 5.4.3 gives an algorithm for computing d* for which
V(GCR2(d*)) = max u(GCR2(cH) (5.16)

d

Z d. = a .
teT- t j

107

5.4.2 Quality of the Sound

Since the optimal solution u* to DLP is feasible for GCR2 then

U(GCR2] > tf(LP). Hence this bound is better than that obtained from

the LP relaxation of the SCP.

5.4.3 Calculating the Costs

Initially one would like to split a column a. into columns $: t cT.,
0 t 3

so that the resulting GCP gives as high a lower bound as possible,*

but in general it is not easy to see how this should be done.

o
Therefore assume a., is split arbitrarily. The initial costs a £ can

0

be found by first calculating a feasible solution u to DLP. If the

m
reduced costs are s . = o. - X u.a.., then:

0 0 -z-=1 i 1Q

d° = u., + u.„ + 2s ./h. , if column 6 has 2 non-zero
t i i 0 0 t

entries in rows i ' and i"

.and d° = u. + s ./h. , if column B has a single non-
t i .0 0 t

zero entry in row i.

The method used to improve the lower bound and compute d* is an ascent

method based on subgradient optimization. Initially ir° is zero and .

the solution y° to GCR2(<3°) is found by solving the graph covering

problem. The costs d , & T a r e only altered if they do not satisfy
t o

(5.12). Let the values of g for which this is true comprise a set J',

i"0" ̂ U\vt< l l f . W -
If J' = 0, the algorithm can terminate with the optimal solution to

the SCP. This can be obtained by letting x. = y. for sometef., If
0 t 0

j'lt 0 the penalties IT , f ̂ T. for all g'zJ', must be calculated. First,
t 0

for o'eJ', let p . be the number of variables y ,tzT., which are set
0 t 0

equal to 1 and let p . = K . - p..
0 0 0

1048

The penalties TTfc. are then defined by:

G G
irt =

 a P j zu ~ Zl , if yt = 1 (5.17)

I M l * "

G _ G
tr. =~ a Pj a

M , if i/,. = o (5.18)

I |w|
2

G G
Where s , s are upper and lower bounds on Vi&C2{d*)), a is*n?priori

U Xf

determined constant with 0 < a < 2 and ||v/[|2 = E (p.p./K2.). The
3 zd 3 3 3

costs are then updated as in (5.15).

5.5 Further Improvements to the Graph Covering Relaxations

5.5.1 Ensuring the Costs of the Relaxed Problem Are Non-
Negative in GCR1

If an arc, e«, in G1 has a cost a ' . < 0 then .(assuming the original
3 3

SCP had positive costs) it is always possible to increase the cost

to be non-negative without decreasing the value of the graph covering

solution.

Suppose o.' = q. - K'
a
<,'-; "then since a . > 0 there must be a

d 3 IfZti 1 d

positive multiplier, A. say. Let & = min[-e'. 9 A.] and set A to
.*» 3 y> x,

A - a thus increasing c r . to o 1 .+ Let x be an optimal solution
* 3 3

to the GCP corresponding to GCRI'with costs c' and x be an optimal

solution to the GCP after the costs are changed. By the optimality
A ,

of x, the feasibility of x for the GCP and the observation that since

_ n _
a'- < 0 it can be assumed that x . = 1 (implying that X a .x. > 1)

3 3 <7 = 1 x<3 3

it follows that:

> ox
iA

\a x +
%zR i

n

Thus the solution to the GCP is not decreased after changing the

costs. For each negative cost o . \ A can be calculated repeatedly
3

and the above changes made until o. f > 0 for all arcs e.. It may
3 3

then be possible to increase some of the multipliers as in

PROCEDURE 2 LPBOUND bv settine A'= min o f. where constraint i is

correspondingly changed. This cost changing method applies to all

Lagrangean relaxations in which inequality constraints are relaxed

and PROCEDURE 12 COSTPLUS summarises it below.

PROCEDURE 12 COSTPLUS (SCP, R, X)

SETS ALL THE COSTS IN A LAGRANGEAN RELAXATION TO NON-IMEGATIVE
VALUES

Input: SCP The set covering problem

R Set of relaxed constraints

X Lagrange multipliers

o Costs of relaxed problem

EPS Tolerance

Output: X and o Multipliers and costs for Lagrangean

relaxation with X > 0, o 1 > 0

1. Find A Negative Cost

For j = 1,2,.. . ,n

(1a) _If Cj' > 0 then next j

else goto 2.

2. Find a Positive Multiplier

Find izM.f)R for which > 0
0 T>

Set A : = min C-c .', A .)
0 1>

Set X.: = A .-A ^ %

e ': = c ' + A for kzN.
k k ^

Goto 1a.

3. Try To Increase The Multipliers

For izR

Set A: = min c .' J

If A < EPS then next i

else set A .: = A . + A
1 %

q = q - A for jetf.
J <7 ^

next i

4. The Required Costs Are g
f
 And The Required Multipliers Are A

5.5.2 Ensuring the Costs of the Relaxed Problem Are Non-
Negative in GCR2

As in the previous section the costs on arcs in G2 can be adjusted

Ill

to take non-negative values without decreasing the value of the bound.

This can be done by finding an arc, e^, of negative cost, a f
r ,

derived from column 3 of the SCP. Then there, must be an arc e , ZeT. Z 3

with a > 0 (since it is assumed that the costs of the original SCP

are positive). If A = min[c^ f, -c^'] then c^' and are changed to

and + A respectively. This can be repeated until all costs

are non• Deceittue.

5.5.3 Changing Costs of Arcs in a GCP to Retain the Same
Optimal Solution

This section considers the general problem of how to change the costs

of arcs in a graph, G, so that the optimal solution to a GCP is

unchanged.

Let E. be the set of arcs incident with vertex V .. Let o r . be the
i ^ 3

cost and s .' be the reduced cost of arc e .. As the vertex-arc
3 3

incidence matrix from which G is derived may have columns with only

one non-zero entry it is assumed that an extra vertex has been added

to the graph so that all columns have exactly 2 non-zero entries.

Further details on the use of an extra vertex are given in §8.3. A

vertex V^ is said to be overcovered if it is covered by more than one

arc in an optimal solution to the GCP. The 0-graph is the subgraph

of G for which the reduced costs equal 0 at the end of the graph

covering algorithm.

Changes that can be made to costs of arcs are firstly if an arc

is in an optimal cover the cost o^ ' can be reduced and if it is not

in a cover the cost o.' can be increased.
3

The amount A . by which a cost c. r can be increased, for an arc e. in
• 3 3 J

112

the optimal solution will now be computed. Suppose e. is the arc
3

(ir.,1^,). Two cases must be considered,

Case 1 - One Vertex, Ufc say, is either the Extra Vertex or
Overcovered

In this case the cost of arc z^ can be increased until it equals the

cost of some other arc incident to v .« Hence A * = min
* 0 ItEi

c.' can be increased.by A . if A . > 0
3 — 3 3

Md

- c .
3

Case 2 - Vertices V^ and V^ are Not Overcovered

Assuming that reduced costs s. r are available at the end of the graph
3

covering algorithm for each arc then

A . = min
0 IzEj,

ted

+ min
tzEy

Notice that A . will equal 0 if the degree of both v . and V v is greater
3 If K,

than one. in the 0-graph. If the degree of a vertex, v., say, is one
%

in the 0-graph then the dual variable u. and the cost o c a n be
i 3

increased by A..
3

The amount A - by which the cost of an arc z . that is not in the
3 ' 3

optimal solution can be reduced will now be considered. This is equal

to s.', the reduced cost of arc e ..
3 3

Having determined for each arc the amount A . by which the cost of an
3

arc can be decreased or increased without altering the optimal solution

gives the amount by which the costs d t in the relaxation GCR2

can be changed to leave the solution unchanged.
-
 - For GCR2 suppose the

amounts A by which the costs d t ^ T . , for arcs in G2 derived from

113

columns a . of the SCP have been calculated. Then if A = min [a J this
3 t eT •

3

means that arcs that are not in the solution must have their costs

decreased by A a n d arcs in the solution must have their costs

increased by A. This is done for each column a^.. After

each change the variables A must be updated for arcs incident to

vertices that correspond to rows covered by column o^..

For relaxation GCRlthe bound can be increased by reducing X., if a
n

relaxed constraint i> is not satisfied, i.e., X . a.'X. = 0* and
<7 = 1 V <7 *

n

increasing X^ if a i g x j ^ ^ * ^ relaxed constraint is

satisfied with equality then if X . is changed without altering the If

solution x no change in the bound results. For the case in which the

relaxed constraint i is not satisfied, consider the effect of reducing
A A

X . by A. Now A must be less than or equal to X. to prevent X . from
If If 1s

becoming negative. Suppose that the arc derived from column a . of
3

the original SCP is denoted by e .. Then, if z.zk* and'a.. = must be
3 3 13

no greater than A ., so that the solution to the GCP does not change.
3

n
Hence if, for a relaxed constraint, X . a..x. = 0 X. can be reduced 3 3 3-1 13 3 1

by:

& = minCX . , min A .)
1 air" 0

y * *

5.5.4 Using the Graph Covering Solution in Consecutive
Iterations of the Subgradient Optimization Procedure

Retaining the graph covering solution from the solution to a

Lagrangean relaxation of the SCP and using it as an input for the

next iteration in the subgradient optimization phase was not possible

because of the type of graph covering algorithm used. However it is

possible to save the optimal dual variables for the vertices in the

114

GCP, I.e., the variables corresponding to constraints (5.1), from

one iteration to the next. These are then checked for dual feasibility

and increased as in PROCEDURE 2 LP8D. This gives a 0-graph of the

graph G2 in which an initial matching can be found to start the graph

covering algorithm.

5.6 Combining The Two Relaxations GCR1 And GCR2

The two graph covering relaxations can be combined. Firstly a subset

R of the constraints of the SCP is relaxed until there is a maximum

number of non-zero entries, KCOL say, in each column of the resulting

SCP. For a given vector of Lagrange multipliers X let this relaxation

define the problem SCPRfKCOL,X). Then if KCOL = 2 the problem

SCPR(2,X) is equivalent to GCR1CX) and heuristics used to determine

the relaxed constraints in the latter relaxation can be extended to

obtain SCPRCKCOL,X). If KCOL exceeds 2 then the columns of

SCPR(KCOL,X) must be split as in GCR2 to give a graph covering problem,

GCP(X,<f), this is the second stage. To increase the bound in the

graph covering problem the costs of arcs are, changed until either the

solution to GCP is feasible for the column splitting relaxation and '

hence an optimal solution to SCPRCKCOL,X) or an iteration limit is

reached. In the latter case a feasible solution to SCPR can be

found by taKing the solution y to the GCP when the iteration limit is

reached and setting x> = 1 whenever y. = 1 for-fre^.. The solution x
3

is a cover for SCPR which is then reduced to a prime cover. This

prime cover is then used to change the penalties of the relaxed SCP

constraints as in GCR1. This defines a problem SCPR with different

costs to which the relaxation GCR2 is once more applied. The procedure

is repeated until the bound increases no further then the relaxation

can be changed using a rotation of constraints as in §5.3.5. The

method is illustrated in the flowchart of Fig.5.1 and outlined in

FIGURE 5.1 115

A FLOWCHART OF PROCEDURE 13 GRAPHBDUND TO COMPUTE

LOWER BOUNDS TO THE SCP FROM GRAPH COVERING

116

FIGURE 5.1 (cont.)

A Flowchart of Procedure 13

PROCEDURE 13 GRAPHBOUND below.
117

PROCEDURE 13 GRAPHBOUND(SCP, z , z , x, U, KCOL, L^)

COMPUTE LOWER BOUNDS TO THE SCP FROM GRAPH COVERING

The set covering problem

Upper bound to the SCP •

Dual feasible solution to the LP

relaxation

m
Lower bound = u.

Maximum number of 1's per column of

constraint matrix in SCPR.

Graph covering lower bound

Set of branching rows

Set of branching variables

Lagrange multipliers for relaxed

constraints

1. Initialise Variables

e: = positive tolerance

KR: = 0 iteration counter for row relaxation is set equal to 0

Zi?MAX: = maximum number of row relaxation iterations allowed

KC: = 0, iteration counter for column relaxation is set equal to 0

ZCMAX: = maximum number of column relaxation iterations allowed

KCH: = 0, iteration counter for number of times relaxation can be changed

£C#MAX: = maximum number of times relaxation can be changed

FLAG: = .FALSE. 'FLAG' is set to the value .TRUE, if the graph

covering problem solves SCPR.

Input: SCP

z

u

u

2l

KCOL

Output: z

RB

LB
U

2. Partition Constraints 118

PARTITION (SCP, KCOL,i?) Relax rows

R is the set of relaxed rows

X.: = u. for all izR Form relaxation SCPR and initialise

Lagrange multipliers

o. T: = a . - X .a. . Calculate costs of relaxed problem
3 3 izR ^

3.1 Constraints Partition Number, KCH

KCH: = KCH + 1 Update iteration counter

Iffi : = 0

4.1 Row Relaxation Number, KR

KR: = + 1 Update iteration counter

XCl = 0

4.2 Split Columns

If KCOL > 2 Form relaxation GCR2 of SCPR

then split columns

of the SCP

constraint

Matrix A

5.1 Column Relaxation Number, KC

KC: = KC + 1 Update iteration counter

5.2 Solve Graph Covering Problem

t>(GCP): = value of graph covering solution

: = tf(GCP) + ^Z X^ Calculate lower bound to the SCP

119

Update z as the best lower bound
X

to the SCP

u.: = it). + t Store information concerning graph
% ^ pzPr p

. — covering dual variables
for izMnR &

Test if lower bound

exceeds upper bound

' 5.3 Test Feasibility of Graph Covering Solution For SCPR

If graph covering solution

is feasible for SCPR

then FLAG: = .TRUE.

x: = optimal solution to SCPR

goto 4.3

else if KC > Km AX

then goto 5.5

5.4 Change Costs Of The Graph Covering Problem

Reset costs of graph covering problem as in §5.4.3 of the text

Goto 5.1

5.5 Calculate A Prime Cover For SCPR

a;: = prime cover for SCPR

4.3 Test The Solution x For Feasibility To The SCP

I f A .{CL'X - 1) = 0 f o r a l l % z R — %

then goto 4.4

else _if KR > KRmX

then goto 3.2

else change the

multipliers X^^CzR Update the Lagrange multipliers

and costs c.
r
 for SCPR using subgradient

u
goto 4.1 optimization

i f *t > z i

then 3,: = s^

if B f t > « M - 1 * e

then goto 4.3

4.4 Test Feasibility Of Graph Covering Solution For The SCP

If FLAG = .TRUE.

then goto 7

3.2 Change The Relaxation By A Rotation

If KCH > KCHV\AX

then goto 6

else change relaxation as in

§5.3.5 of text

goto 3.1

6. Exit With A Lower Bound

z i s a lower bound to the SCP

i?̂ = {i\a^x ^ 1 for izR) Calculate set of branching rows

L r = J as defined in §5.4.3 Calculate set of branching

optimal solution to the SCP: = x

Exit

The numbering convention in the above procedure is to label_5_ steps

corresponding to relaxation GCR2, the column relaxation, steps

corresponding to GCR1 and JL steps connected with changing the

relaxation.

variables

7. Exit With Optimal Solution

There are no branching rows or

branching variables

TABLE 5.2

Graph Covering Lower Bounda for A 30 x 60 Problem, Penalty 0.15, To Show
Variation with Stepsize Parameter, And Number Of 1's Per Colurw. KCOL

6 0. 5 1. a 2.0 » 2. 5 3. 5

Column Number 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4

KCOL-2
Beat Bound, KCH.KR.KC
Best Bound in 100 Iterations
Best Bound ln 200 Iterations

50.75
50.48
50.67

4 250
100
199

50.84
50.63
50.80

4 130
100
170

50.71
50.65
50.71

2 •3<.
99

134

50.77
50.12
50.63

4 11O
36

198

50.42
50.12
50.42

3 I 86,
36

186

KCOL-3
Best Bound. KCH.KR.KC
Best Bound ln 100 Iterations
Best Bound in 200 Iterations

50.27
50.06
50.06

1 65
1
1

5293 50.09
50.06
50.06

0 8
1
1

627 50.06
50.06
50.06

0 1
1
1

1 50.06
50.06
50.06

0 1
1
1

1 50.06
50.06
50.06

n 1
1
1

1

KC0L-4
Best Bound, KCH.KR.KC
Best Bound ln 100 Iterations
Best Bound ln 200 Iterations

50.26
50.06
50.07

_1 6
1

178

686 50.38
50.06
50.06

0 5
1
1

476 50.25
50.06
50.06

0 3
1
1

332 50.06
50.06
50.06

0 1
1
1

1 50.23
50.06
50.06

0 3
1
1

298

KC0L-5
Best Bound. KCH.KR.KC
Best Bound in 100 Iterations
Best Bound ln 200 Iterations

50.54
50.24
50.24

1 13
83
83

1193 50.26
50.24
50.26

0 2
43
185

186 50.61
50.19
50.21

0 5
24
135

550 50.46
50.17
50.17

1 4
46
46

451 50.14
50.14
50.14

0 1
45
45

45

KC0L-10
Best Bound. KCH.KR.KC
Beat Bound ln 100 Iterations
Best Bound in 200 Iterations

50.37
50.33
50.37

0 2
82

186

186 50.50
50.39
50.51

2 2
74

200

200 50.57
50.41
50.41

3 3
49
49

299 50.52
50.52
50.52

1 1
100
100

100 50.53
50.45
50.53

1 1
51

161

161

KCOL-30
Best Bound, KCH,KR,KC
Best Bound ln 100 Iterations

50.29
50.29

0 1
98

98 50.30
50.30

0 1.
71

71 50.40
50.40

0 1
87

87 50.36
50.30

0 1
81

81 50.43
50.43

0 1
72

72

CDC 6500 MNF 5 Compiler

For the best bound in k iterations column n.1 gives the bound value and n.3 the number of graph covering .
problems solved to get this lower bound

KCOL is the maximum number of I's per column of the SCP after rows have been relaxed.
KCH is the number of tiroes that the relaxation has been changed by a rotation.
KR is the number of times the multipliers have been changed on the relaxed rows.
KC is the number-of times the costs of the GCP are changed for relaxed columns.
An iteration takes place each time a graph covering problem is solved when the best
bound in k iterations is calculated.

122

5.7 Computational Results

5.7.1 Case Study

The same 30 x 60 example as used in Chapter 3 was used for the case

study. The optimal solution is 56.0 and i>(LP) = 51.0. Table 5.2

attempts to show variation in the bound value with variation in the

stepsize parameter, a, and KCOL, the maximum number of 1's per column

in the constraints of SCPR. Columns n.1 (for n=1,...,5) give the

lower bound value. Columns n.2 give the number of times the

relaxation has been changed to get the bound. Columns n.3 give

the number of row relaxation iterations and columns n.4 give the

number of column relaxation iterations needed to get the lower

bound. For each value of KCOL the best bound obtained after an

unlimited number of iterations is obtained, the best bound after

100 row relaxation iterations and the best bound after 200 row

relaxation iterations obtained was given (except for KCOL = 30).

KCOL = 2 corresponds to the relaxation GCR1 and KCOL = 30 corresponds

to GCR2. No definitive conclusions can be drawn from the results

but when KCOL = 2 the best results were obtained. This could partly

be due to the use of an anti-zigzagging strategy used in the

subgradient ascent and also because changing the type of relaxation

tends to maKe the bound decrease initially. Using small values of

KCOL, equal to 3 or 4 say, was not particularly successful because

it was difficult to find an optimal solution x to SCPR from the

graph covering solution. This meant that in changing the multipliers

X. in 4.3 of Procedure GRAPHBOUND an ascent direction for the

Lagrangean relaxation was not always available.

Table 5.3 shows how the lower bound was used in a tree search. There

was no possibility of solving the problem in a reasonable time using

KCOL = 3 or 4 and the best times were given for the relaxation GCR1.

123

5.7.2 Comparison between GCR1 , GCR2 and a Combination
of the Two Relaxations

Six test problems are shown in Table 5.4 where the relaxations GCR1

and GCR2 are compared. Also shown are results for the two relaxations

combined. Five of the problems were standard test problems. T h e

first problem was randomly generated. Appendix 4 gives the source

of the problems. Many more problems were tested, but they did not

give a graph covering bound that was significantly better than that

obtained using heuristics. On average these bounds were 0.2% better

than the solution obtained from heuristics. The maximum increase

over the heuristic bound was obtained by the problem SALK 13 where

the GCR1 relaxation was 0.6% above the heuristic bound and the GCR2

relaxation was 0.7% above the heuristic bound. Table 5.4 shows results

for the row relaxation, GCR1, in columns (v) to (ix). The bound value

at the root node of a depth first tree search is given in column Cv3.

The time taken to calculate this bound is given in column (vi). The

number of graph covering problems solved in the tree search is given

in column Cviii}. The number of tree search nodes is given in column

Cviii) and the total time taken for the tree search is given in

column fix). The same information for the column splitting relaxation,

GCR2, is given in columns Cx) to Cxiv) and for the two relaxations

combined in.columns (xv) to (xix). Column (xx) gives the optimal

solution.

The relaxation GCR2 gave graph covering problems with more vertices

than GCR1 and thus it took longer to solve each graph covering problem.

The number of tree search nodes generated by this relaxation was less

than for the two relaxations combined or for the relaxation GCR1. One

explanation for this is that the reduced cost tests removed more

variables when they used the graph covering dual variables from the

larger graph given by GCR2 than when they were obtained from a smaller

graph, GCR1.

For the graph covering relaxations combined the maximum number of 1's

in a column of the problem SCPR obtained after relaxing the rows of

GCR1 was determined according to the number of rows in the problem.

It varied between 10 and 30.

5.7.3 Comparison Between the Graph Covering Relaxation,
Heuristics and Linear Programming

5.7.3.1 Korman's problems

Five problems of Korman [K4] were tested and Table 5.5 shows the lower

bound values at the root node of a branch and bound tree for the

heuristic, graph covering and LP relaxations. The times are in CDC

6500 seconds. The problems were all unicost SCP's with the rows of

the SCP representing vertices of a graph and the columns representing *

cliques. The graph covering and heuristic bounds were almost identical

in value and within 2% of the LP bound in 3 of the 4 problems solved.

In each case all the bounds would have fathomed the root node had the

optimal solution been available at the root of the tree. The solution

times of the heuristic and LP methods were similar and the additional

time spent to try and get an improved bound from graph covering was

not computationally worthwhile.

Korman's program, a dynamic programming algorithm, was then compared

with the best bound tree search, described in §7.3, using the graph

* A clique is a subgraph"that -is a maximal complete graph; A clique
has the property that every vertex in the clique is joined to

'every other vertex and no vertex can be added to the clique without
destroying this property.

\

TABLE 5.3

Number Of Graph Covering Subproblems. Tree Search Nodes And Computing Time To Show

Variation With Stepaize Parameter, 3 , And Number Of 1*3 Per Column^KCOL-,for 30 x 60 SCP

0.5 1.0 2.0 2.5 3.5

Column Number KGRAPH KNODE TIME KGRAPH KNODE TIME KGRAPH KNODE TIME KGRAPH KNODE TIME KGRAPH KNODE TIME

KCDL 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 4.1 4.2 4.3 5.1 5.2 5.3

2 420 12 15.6 356 16 14.4 307 13 12.7 354 14 13.9 300 13 12.52

3 5293 * * 5000 * * 2521 * * 1670 * • 2215 • *

4 2017 * * 1641 * * 1922 * * 1959 * * 1377 * a

5 1193 * * 972 * * 1112 * * 1036 * * 808 * *

10 361 12 40.1 301 16 35.6 444 * * 301 16 35.6 343 * •

30 300 . 9 33.2 300 16 33.6 400 17 37.7 400 17 38.4 300 12 32.8

KGRAPH is the number of graph covering subproblems solved

KNODE is the number of tree search nodes required to solve the SCP

TIME is the computation time on the CDC 6500 at Imperial College using the MNF5 FORTRAN compiler

* means that the time limit was exceeded.

TABLE 5.4

A Comparison between the relaxations GCRl, GGR2 and a combination of these two Relaxations

PROBLEM GCRl GCR2 GCRl combined with GCR2 Optimal
Solution

No. Size « Bound at
Root Node

Tree Search Bound at
Root Node

Tree Search Bound 'at
Root Node

rree Search z*

m n P Value Time No. of
GCP's

No. of
Nodes

Total
Time

Value Time No. of
GCP's

No. of
Nodes

Total
Time

Value Time M o . O f
GCP's

No. of
Nodes

Total
Time

(i) !ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (xiii) (xiv) (xv) (xvi) (xvii) (xviii) (xix) (XX)

SALK8 30 80 .07 12.7 0.1 26 5 0.3 12.7 0.4 30 3 0.6 . 12.7 0.3 250 29 3.5 13

SALK9 30 90 .07 12.8 0.1 206 39 1.1 .12.8 0.2 305 38 1.6 12.8 0.2 305 38 1.6 13

94 100 800 .02 455.7 1.3 130 27 3.2 455.3 2.9 161 7 8.9 455.2 11.7 788 17 20.4 461

SALK13 104 133 .04 1674.5 0.6 294 46 2.4 1675.2 0.9 140 13 3.5 1674.5 3.6 461 31 10.4 1678

LSSC16 200 1000 .02 428.7 1.5 198 44 5.1 428.0 5.7 - - * 428.0 16.3 - -
* 429

LSSC17 200 1000 .02 510.3 4.3 - -
* 510.2 9.2 - - '

* 510.1 3.7 - . - * 512

* means that, the iteration limit of 30 CDC 7600 sec was exceeded

CDC 7600 seconds FTN compiler, OPT=2

TABLE 5.3

Comparison between the Heuristic, Graph Covering and Linear Programming Lower Bounds for Korman's Test Problems

PROBLEM Optimal
Solution

HEURISTICS GRAPH
COVERING

LINEAR
PROGRAMMING

TREE SEARCH
with graph bound

KORMAN'S
ALGORITHM

No. m n z*

Upper
Bound
z
u

Lower
Bound

Time Bound
Value

Time Bound
Value

Time N o . of
Nodes

Time No. o f
Nodes

Time

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (xiii) (xiv) (xv)

K8 25 136 6 7 5.70 .2 5.70 0.8 5.80 0.3 3 6.4 3889 39.6

K9 25 136 5 6 4.90 .8 4.90 1.5 5.00 0.2 6 7.4 816 11.8

K10 30 139 7 7 6.50 .5 - 6.63 0.5 - 0.5 4318 51.6

Kll 30 252 6 6 5.40 .3 - - 6.00 0.5 - 0.3 6*00

K15 35 564 <7 7 5.49 .1 5.53 2.3 6.00 1.3 * > 6 0 + >6000 71800.0

CDC 6500 sec.

MNF5 Compiler

** fcf^e It nib

covering lower bounds. As two of the problems were solved by

heuristics and as the other two terminated when the search found the

optimal solution the tree search ended quickly.For all the problems the

graph covering algorithm using heuristics before the graph covering

phase was substantially faster than Korman's algorithm, in the case

of the problem K11 180 times faster. The fifth problem of 35 rows

and 564 columns required over 2 an hour of computer time for Korman's

method and was still unsolved after 1 minute of the graph covering

algorithm.

5.7.3.2 Four test problems of Salkin and Koncal

The four test problems here each have density 2% and were used by

SalKin and Koncal [S2]. Here the graph covering algorithm is compared

with the CDC linear programming package APEX and Balas and Ho's method

of. disjunctive cuts. The results are shown in Table-5.6. Computing

time is in CDC 7600 seconds with the FTN compiler except for column

(xxi). Columns (i) to (iii) give problem number and size. In

brackets in columns (ii) and (iii) is the number of rows and columns

remaining after preliminary reduction tests. Column (iv) gives the

optimal solution.

Lower bound values together with computation times are given in

columns (vi)-(xi) for the heuristic, graph covering and APEX lower

bounds. The time gives in column (ix) for the APEX lower'bound is

the time taken to solve the LP relaxation on the problem remaining

after using reduced costs to eliminate some variables in the pre-

processing stage. As can be seen the LP lower bound was greater than

the other bounds in all problems except the first which was solved

TABLE 5.3

A Comparison between the Heuristic, Graph Covering and Linear Programming Lower Bounds for Four Test Problems

of Salkin and Koncal

PROBLEM ' Optimal
Solution

LOWER BOUND VALUES AT THE ROOT NODE COMPLETE TREE SEARCH

No. Size z* UPPER
BOUND

LOWER BOUNDS

Heuristic Graph Covering LP(APEX) Heuristic Graph Covering LP (APEX) Balas & Ho

(i)
m
(ii)

n
(iii? (iv) (v)

Bound

(vi)

Time

(vii)

Bound

(viii)

Time

(ix)

Bound

(x)

Time

(xi)

No.

?xif)

of

f

Time

(xiii)

No. of Time

(XV)

No.of

S K f

No.of Time

SvffXxviii:

No. of Time
Cuts
(xix) (xx)

AHSC14 100 500 656 556 656.0 0.1 - - - - - - - - - - - 4 4.0

aHSC15

RHSC16

100
(73)

188)

600
(128)

M)

670

600

579

511

664.9

595.7

0.1

0.2

666.3

595.7

1.3

2.5

668.0

596.0

1.2

1.3

9

12

0.5

0.6

8

26

19.8

23.3

800

392

7 .

3

1.5

1.6

146 42.6

59 24.0

AHSC17 100
(100)

800
(227)

460 473 454.2 0.2 455.3 2.9 456.0 1.1 12 1.0 7 8.9 73 4 1.8 682 >300.0

All the times are CDC 7600 sec with the FTN compiler except for column (xx) where the times are for a DEC 20/50.

The DEC 20/50 is approximately 10 times slower than the CDC 7600.

For the Balas and Ho method the times are for solution of the problem at the root node using only cuts

to raise the lower bound. When this method was used in a tree searcl^ problem AHSC17 was solved in 92.24sec

with 30 nodes and 362 cuts.

{Fable 5.7 Computational Results for Graph Covering Problems

PROBLEM HEURISTIC BOUNDS LINEAR P R O G R A M I N G GRAPH COVERING

N o . of N o . of
vertices arcs

Upper
Bound

Lower
Bound

Time LP
Bound

to. of
>Jodes

Time Solution Time

No.

(i)

m

(ii)

n

(iii) (iv) (v) (vi) (viij (viii) (ix) (x) (xi)

95 35 350 99 92.J> 0.4 92.S 290 38.2 94 0.6

96' 45 450 127 118.5 0.3 119. £ 350 58.0 121 0.4

97 55 250 172 165.0 0.3 166.5 3 ' 1.1 167 1.7

98 150 1000 466 428.0 0.5 430.0 7 5.3 431 2.6

99 200 1000 652 612.5 0.5 617.£ 2 4.2 618 3.6

CDC 7600 sec.

FTN compiler (OPT-2)

131

by heuristics and for which the LP solution was optimal. In problems

(ii) and (iv) the graph covering bound was about 0.3% above the

heuristic bound and was not as great as the LP bound.

Results for tree searches are given in columns (xii)r(xxi). Columns

(xiii) and (xiv) give the number of tree search nodes generated and

the time when heuristics are used to calculate the lower bound.

Columns (xv) and (xvi) give the same information for the graph

covering lower bounds.•

5.7.3.3 Results for graph covering problems

Five randomly generated graph covering problems were solved as SCP's

using APEX linear programming package and the results are shown in

Table 5.7. Bounds on the solution value were obtained using the

heuristics of PROCEDURE 3, but upper bounds were also obtained using

the methods of §2.3. The best upper bound is given in column (iv)

and the lower bound in column (v). Column (vi) gives the time to

calculate these bounds. The APEX linear programming code was used

to solve the GCP's and the number of tree search nodes is given in

column (viii). As can be seen the number of tree search nodes for

the first two problems was approximately 300. The reason for such

a large tree was that the APEX code took several branches before an

upper bound was found. The graph covering solution is shown in

column (x) and the time taken to compute it in (xi). For all the

problems except problem 98 it was quicker to use the graph covering

code than the APEX code. There was less difference in the computation

times for the larger problems. Also the LP bound was very close to

the optimal solution, differing by only 0.5 in the larger problems,

whereas in the small problems it differed by 1.5. The heuristic

upper bounds were on average 5% higher than the optimal solutions.

TABLE 5.8

Using the Graph Covering/ Heuristic and LP Bounds in a Tree Search

PROBLEM HEURISTICS GRAPH COVERING LINEAR PROGRAMMING Optimal
Solution

No. m n
*

P Bound at No. of Total Bound at to. of Total Bound at No. Of Total z*
Root Node Nodes Time Root Node todes Time Root Node Nodes Time

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (xiii) (xiv)
LSSC1 200 2000 .02 250.2 42 4.2 250.5 - * 251.2 - insolved 253

ifter 10
LSSC9 200 2000 .02 277.3 25 2.3 277.5 19 41.7 279.0 1 1.7 279

LSSC16 200 1000 .02 427.1 10 2.1 428.0 44 15.3 429.0 1 4.9 429 '

LSSC20 200 1000 .02 512.0 ' 1 0.8 - - - 512.0 1 4.8 512

LSSC21 200 1000 .02 555.75 • 15 3.2 555.81 >50 * 557.3 10 23.3 560

LSSC22 200 1000 .02 428.53 3 1.3 429.6 >50 * 430.0 1 19.1 430

SALK12 30 90 .04 12.5 1 0.1 - - - 12.7 11 1.2 13

SALK13 104 133 .04 1668.3 15 0.3 1674.5 46 2.4 1674.0 4 0.9 1678

CDC 7600 sec
FTN compiler (OPT=2)

Thus using better methods to obtain the upper bounds would have been

advantageous.

5.'7.4 Using the Heuristic, Graph Covering and LP Bounds
in a Tree Search

As the previous tables of this chapter have shown the graph covering

bounds were not very quick to compute. Hence when they were embedded

in a tree search most of the test problems failed to be solved

because of the time taken to find the bound. The results are shown

in Tqble 5.8 and it is seen that the heuristics give the best

algorithm for most of the test problems. The LP however gave a better

bound than both the graph covering and heuristic solutions. It was

also quicker at solving the problem, LSSC9, 200 x 2000 SCP of density

0.02.

5.7.5 Conclusions

The bound calculated by the graph covering relaxations is expensive

to compute and it is usually better to use the less good heuristic

bound in a tree search. Only one problem, SALK 13 of Table 5.8 did

the graph covering bound exceed the LP bound.

134

CHAPTER 6

LOWER BOUNDS TP THE SCP USING:

DECOMPOSITION AND STATE SPACE RELAXATION

6.1 Introduction

Two methods of finding lower bounds to the SCP are described in this

chapter. A decomposition method, in which the SCP is divided into

smaller SCP's whose solution values are summed to give a lower bound,

is described first. Secondly a relaxation of a dynamic programming

algorithm in which not all the state spaces are stored is used to

give a lower bound to the SCP. More details on state space relaxations

for the vehicle routing problem are given in Christofides et al [C7].

Both methods are illustrated on examples. The first method produces

an excellent lower bound but is slow to compute. The second

bound is more quickly computed but does not give a particularly high

value. Extensions to the second method which improve the bound are

also discussed.

6.2 - Tftg, Decomposition Method For Obtaining A-Lower-Bound
- To The SCP '

6.2.1 Definition

The constraints M of the SCP are partitioned into r disjoint subsets,

i? pi?;^ ... Thus the constraint matrix (after suitable rearrange-

ment of the rows if necessary) is given by:

A =

A

(6.1)

135

Let the non-zero columns of A b e denoted by A . Whenever the jth

column of A0 is non-zero a variable Y is defined. Let T . be the
x» 3

index set of variables derived from the jth column of the SCP.

Let d^ be the cost of variable y^ such that:

I
tzTj d,=o.

t 3
(6.2)

For notational convenience let j and d ^ ^ be vectors of problem

variables and costs corresponding to columns of A T h e SCP can then

be reformulated as the problem SCPD(<i):

SCPD(cZ)

subject to A^ y^i)

A2

> 1_

> 1 (6.3)

A y , , > 1
r * tr) — —

y+ = £ m y/\ T . i (6.4)
re T . r 1 j .

' J

y e {0,1} for all t

This formulation of the SCP has the same structure as those used to

derive the problems NF1 (<5) and GCR2 id). Dropping constraints (6.4)
/

.from SCPDCd) gives the problem DEC(d) which is again a set covering

problem. Define the problem SCP^Cd) as:

min y

SCP id)
Subject to A^ 2/^j > J_

y t e {0,1}

for all i -(6.5)

for all t

136

Problem DEC(d) is solved by solving each of the problems SCF̂ Cc?)

T

for I = 1,2,...,r. Then i>(DEC) = E yfSCP^) is a lower bound to

the SCP. Even if it is not possible to solve the problems SCP^ exactly

lower bounds can be calculated which, added together, give a lower

bound to T;(DEC) and hence to the SCP.

As in the relaxations IMFKd) and GCR2(d) the aim is to divide the costs

o so that optimal costs d* for the relaxation are found where:

tf(DEC(<Z*)) = mgx ?;CDEC(cZ))

subject ,1 d,-o. (6.6)
• -ce r. t 0

One way of calculating the costs d^ is to use subgradient optimization

as described in the next two sections.

6.2.2 Calculating the Costs d° Initially

If u is a feasible solution to DLP and s is the vector of associated

reduced costs then a cost d^ •derived- from column-j'and*rows R' of .the

original SCP can initially ke defined as:

d l - V l + i b t \ f 6 - 7) '

This value guarantees that the bound obtained from the relaxation

m
DEC(a) is at least as great as the heuristic lower bound, .Z u..

1= 1 %

Further if u* is an optimal solution to DLP then y(DEC(<£)) > v (DLP)

= v(LP) thus giving a bound at least as good as that obtained from

the LP relaxation.

6.2.3 Updating the Costs

The costs, d , are updated as for NF1 and GCR2 at- an iteration k of

137

the subgradient optimization for k > 0 by first solving SCPD(d). The
£

solution y is then tested for feasibility to the SCP, by checking

that
K,

constraints (6.4) are satisfied. If y^ = 0 for all tz Tj then

k
x. = 0 in the SCP and similarly if y. = 1 for all tz T^ then x. = 1.
3 t 3 j

Otherwise let J' = {j|(-6.4) is not satisfied} and let p^. be the

number of variables in set equal to 1. At iteration k the

penalties TT̂ are given by:

For jzj' and tz. T .
° 3

Wj

i f y t - 1

= -"pj (3u-zz]

11 "i

if y t = 0

For atJ' and te T . J
w = 0

where a is an a priori chosen constant

z^ is an upper bound to the SCP

k
z i s the lower bound, tf(DECid)).

2 ^
I |w| I is equal to p p / |t.|

The costs d, are updated at iteration k by:

dt = dt + (6.9)

The iterations terminate when either (i) the optimality conditions

(6.4) are satisfied, (ii) the bound v(DEC) > z - 1 + z where z is an
— u u

upper bound to the SCP, z is a tolerance and the costs o. are integer
3

or (iii) the bound has not increased for several iterations.

6.2.4 Using Integer Costs d£

If the costs d, are restricted to be integral then the solution to

1078

each subproblem SCP^ and hence to DEC must be integral. Therefore in

any tree search to solve the subproblem SCP^(d) rounding up non-

integral lower bounds may accelerate the computation time. Instead

of using heuristic solutions to DLP to calculate the initial costs,

d°, they are given integer values satisfying d^ = c ..

J

Changes to the costs must subsequently be made in integral amounts.

6.2.5 Reduced Costs for the SCP

Both the networK flow and graph covering relaxations can be described

as linear programs from which reduced costs for the SCP are then

derived. The decomposition relaxation yields combinatorial problems

CSCP^], albeit smaller problems than the original SCP, and hence

integer programming duality defined in §1.3.4.4 must be used to define

reduced costs.

First let b e j'th column of Then let be an optimal

subadditive function analogous to optimal dual variables in linear

programming. One choice for is as the optimal solution to

the SCP^ with right hand side replaced by i-
e
-

fd i aj/i) - d m

subject to Z £ z / m > a . / % .

f I0!'}
r

Then letting = ^ t h e reduced cost of the Jth column

of the original SCP is given by :

8 . - o . - FSa J (6.10)
J J d J

As with linear programming duality the jth column of the SCP can be

1079

removed if:

s. > z - 1 + e - vCDECCd)) (6.11)
j — w

Unless SCP^(<i) is solved by an LP relaxation, in which case

f,(a. / 0) can be chosen as .Z u*. a..(where u*. is the optimal LP dual
CL J / a< . "Z»EiT0 % "V3 u

X. 't

variable for row i), it is difficult to calculate exactly.

Instead an upper bound to i s calculated giving F^, an upper

bound to F^, by:

W = J l ~ fd { ao/!? C6"12)

then

s . = ^ c . - Fjta.) (6.13)
J 3 a J

is a lower bound on the reduced cost s.. Thus if (6.11) is true when
3

s . is replaced by s\ the jth column of the original SCP can be removed,
3 3

Unfortunately no easy way of calculating f was found. To remove

variables using reduced costs it is sufficient to find a function f

that is an upper bound on an integer dual feasible subadditive

function where f'tY) = v(DEC(<2)). Again no such function f' that,

could be calculated easily was found.

6.2.6 Recursive Tree Search

The decomposition method involves splitting the SCP into smaller

SCP's, SCP^(<i), that are solved using a tree search. The lower bound

v(DECid)) is in turn used in a tree search. Thus the tree search

procedure is used at two levels in the algorithm presented in

PROCEDURE 14 DECOMPOSITION BOUND below. There may be an advantage i n

decomposing SCP^((i) as if it were the original SCP. Thus a whole

14.0

sequence of SCP's could be generated and tree searches used at a depth

of up to a fixed number, say q, levels.

6.2.7 Sorting the Constraint Natrix A Initially

If the constraint matrix A is almost in block diagonal form initially

then fewer variables will be generated and it is less likely that

constraints (6.2) will be violated. Therefore a heuristic procedure

should be used to sort the matrix into block diagonal form. Such a

procedure has been developed by King and Nakornchai [K2a] which sorts

the matrix into blocKs by sorting columns as in §1.3.3.2. The

procedure is then repeated by sorting the rows into blocKs. The

columns and rows are sorted alternately until no further improvement

is made. The procedure tends to cluster the non-zero elements

near the diagonal of the matrix.

6.2.8 Description of the Decomposition Algorithm

The procedure below describes how the decomposition algorithm is used

to obtain a lower bound to the SCP.

PROCEDURE 14 DECOMPOSITION BOUND (SCP, z , z , u, NPART)
U XF

. COMPUTE A LOWER BOUND TO THE SCP USING A DECOMPOSITION METHOD

Input: SCP The set covering problem

z
u

An upper bound to the SCP

NPART The number of subproblems into

which the SCP is to be divided

Lower bound from heuristics and

dual feasible solution

141

Output: z

z
u

1. Initialise Variables

KMAX

kz = 0

A lower bound to the SCP

Upper bound to the SEP

Maximum number of iterations allowed

Set iteration counter to 0

Tolerance within which the solution

must lie

2. Define The Relaxation

Partition the constraint matrix A into NPART submatrices. Calculate

costs d, for each problem SCP.(d).

3. Iteration k

k: = fe+1 Update iteration counter

If k > KMAX goto 8,

Z: = 0v

£: = <{>

Z is index of the current subproblem SCP^

L gives solutions of relaxed problems

Initialise bound value

4. Solve SCPg,id)

4.1 li = A+1

If Z > NPART

then goto 5.

else solve SCP^C^f)

z^: = z'z + t>(SCP Cd]] Calculate bound

L: = L\){t\y = 1 in solution to SCP„Cc?)}
^ z

5. Test Solution Value

1082

If 2 >2 - 1 + e
%— u

then goto 7.

else let «7={j |equation 6.4 of text

is not satisfied}

Test if lower bound exceeds

upper bound

Test feasibility of solution

for the SCP

if «7=4> then goto 6.

else change costs

cL for all tz T ."
t j

and all o'zJ

goto 3.

6. Solution Is Feasible For The SCP

Set x . = 1 Whenever there is y, = 1
<7 u

and teFj

Set z : = zn
u I

7. Exit With Optimal Solution z

Exit with z g i v e s optimal solution to the SCP

8. Iteration Limit Exceeded

Exit-with z a lower bound to the SCP

The computational results for the decomposition method are given

alongside those for the state space relaxation in §6.5.

6.3 A Lower Bound To The SCP From State Space Relaxation

143

6.3.1 Definition

In principle the SCP can be solved by dynamic programming, but this

requires too much storage to be useful in practice. This section

shows how the dynamic programming states can be mapped on to a smaller

set of states. Instead of obtaining an optimal solution to the SCP

solving dynamic programming recursions on the smaller set of states

gives a 1 ower bound to the SCP. This is Known as state space

relaxation and can be thought of as a generalisation of Lagrangean

relaxation. In Lagrangean relaxation-Bach constraint has a single

M StoJ* r4b*oajhar+
multiplier A^. and^ a subset of constraints, S , is given a value

W - ilg V

State space relaxations enable functions fiS) which are non linear to

be computed for a given state^S . For example fiS) could be the number
>

of elements in S. To calculate the state space relaxation (SSR) ^

bound a f u n c t i o n gisY i s u s e d t o map the sets S onto-a smaller1 set of s e t s .

Suppose S represents a right-hand side vector b of the integer program,

IP. At iteration k+1 the lower bound is given by:

F.Agib)) = min [F,ig[b<a 0•) + c.] . C6.14)

r

where N, = {j\a, 0} , F [gib)] = 0 for all b and a . . > 0
K kg o

6.3.2 State Space Relaxation 1, SSR1

6.3.2.1 Definition

In the first state space relaxation, SSR1, the function gib) for a

0-1 vector b is given by two values (a,g) where a is the number of

144

components equal to 1 in b and $ is the index of the row containing

the last 1. The lower bound to the SCP, obtained using dynamic

programming recursion (6.14), is given by F^igiJ_)).

6.3.2.2 Reduced costs

F ib), which will be used as an abbreviation for Fmigib)), is a

subadditive integer dual feasible solution and thus the reduced cost

of column a . can be defined as:
3

s . = c . - F ia .)
3 3 m 3

The reduced cost test is if

s- > s - F C1) (6.15)
3 u m —

then x. equate 0 in any solution better than z .
0 zt

6.3.2.3 Improving the bound value using subadditivity

Since any subadditive non-decreasing function that satisfies the

dual feasibility conditions can be used one has:

FCfcvz.) + Fia.) > Fib)
3 3 ~ ' •

or Fib^a.) > Fib) - Fia.) C6.16)
3 — 3

Now because a relaxation is used condition (6.16) may be violated and

hence it may be possible to improve Fib^a.).
3

An example for the 30 x 60 SCP used in previous chapters

gave values for F as shown below:

145

Tha value of F ta.B) - F„Iglb)) m m

is the number of constraints in ths SCP

ia an m-dimsnsional binary vector

is the number of 1's in the binary vector b

is the index of the last non-zero component of b

m • 30

b
a

a 1 2 3 4 5 6 7 5 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 .26 27 28 29 30

9
14 16
13'- 20 25
9 18 22 29

7 9 16 22 29
7 13 13 16 22 29

11 11 13 18 20 27 33
7 7 16 18 18 25 25 27
7 7 14 14 16 25 24 27 32

11 7 7 7 7 13 14 18 20 25 27 29
12 7 7 9 9 14 14 16 16 22 23 27 29
13 9 11 11 11 11 18 18 18 18 24 25 27 31
14 7 7 7 7 9 11 18 18 18 18 24 25 25 27
15 7 7 7 7 7 14 14 14 14 16 18 25 25 25 25

16 7 7 7 7 9 14 14 14 14 16 21 21 21 23 25 27
17 9 9 9 9 9 16 16 16 16 16 23 23 23 23 25 27 30
18 9 9 9 9 11 16 16 16 18 20 23 23 23 25 27 30 30 32
19 7 7 7 7 7 11 16 16 16 18 20 23 23 25 27 27 30 30 32
20 7 7 7 7 7 14 14 14 14 14 18 23 23 23 25 27 30 30 32 34

21 7 7 7 7 7 9 13 14 14 14 16 20 21 21 21 23 27 30 30 32 34
22 7 7 7' 7 7 9 14 14 14 14 16 18 21 21 21 23 25 28 28 28 30 32
23 7 7 7 7 7 7 9 14 14 14 14 16 18 21 21 21 23 25 27 28 28 30 32
24 9 9 9 9 9 9 9 11 16 16 16 16 16 18 23 23 23 23 25 27 30 30 30 32
25 7 7 7 7 9 9 13 13 16 16 16 18 18 20 22 23 23 25 25 27 29 30 32 32 34

26 7 7 7 7 7 7 9 14 14 14 16 16 18 18 20 23 23 23 25 25 27 30 30 32 32 34
27 7 7 7 7 7 7 13 13 13 14 14 14 16 20 20 21 23 23 25 25 27 30 30 30 32 32
28 7 7 7 7 7 7 9 14 14 14 14 14 16 20 20 21 21 21 23 25 27 28 30 30 32 32
29 11 11 11 11 11 11 11 18 18 18 18 18 18 20 25 25 25 25 25 27 31 31 32 32 32 34
30 7 7 7 7 7 7 11 13 14 14 16 16 15 18 20 20 21 25 25 25 27 31 31 32 32 32

Notice that F(9,9) - 27 and F(8,8) « 33 and ^(9,9) <F(8,8). This means

that^least cost of covering the first 9 rows of the SCP is less than

that of cohering the first 8 rows. Hence ^(9,9) can be increased to

33. This Kind of checK can improve the bound further and can be

generalised using (6.153.

1086

6.3.2.4 Comparison with other relaxations

If the parameter 3 is dropped then the state space relaxation gives

the same result as solving the knapsack problem when all the

•constraints are added together. Hence the bound is at least as good

as solving the knapsack relaxation.

6.3.3 State Space Relaxation 2, SSR2

In this relaxation a third parameter, y, is used to define giS) = (ct,3,y)

This parameter is defined.by assigning-to the ith row of the SCP a small

m
integer value u. say and then for a 0-1 vector b, y = .E . u.b.. Then

^ i-1 i i

a and 3 are defined as before. This bound is then at least as good as

that obtained from solving the weighted knapsack problem where the

constraints of the SCP are added together after being multiplied by

the weights u.. Is

If the weights do not take integer values but instead take the LP

optimal dual variables then y can take real values instead of integer

values and hence the number of values of giS) may be very large.

If all these values can be stored and optimal values of the

dual variables (weights) ,. u^, can be found then the bound is

at least as good as that obtained from the LP relaxation. If

there are too many values then g(S) must be redefined as

(ot/3/ LyJ) where [*J
 t h e

 largest integer less than ,

or equal to *. This means that the bound may be less than that from LP.

6.3.4 Other State Space Relaxations and Extensions

Other possibilities for gib) are to put g[b] =• (a,3*y) where a and 3 are as

before and y is the index of the row containing first non-zero entry

of b. Thus £(01 0 11 100]* = (4,6,2).

For problems in which consecutive I's occur for example b =

147

T
(0111 000 11111 0000) a function gib) = (a,3,y) can be used where 3

§

is the index of the row containing the first non-zero entry, y is the

index of the last row of the first string of 1's and a is the number

of components of b equal to 1. This can be extended to gib) =

(a,3i*Yi*32*Y2> •' • '^"k'^y} w h e r e i s t h e i n d e x the first row and

Y^ is the index of the last row in the Jlth string of 1's. Thus for

the vector 8 above and k=2, gib) = (8,2,4,8,12).

Another possibility is to divide the matrix A of the SCP into r sub-

matrices A^, Z= 1,2,...,r,as in §6.2.1 and set:

gib) = (ai,a2,...,ar,3)

where a^ is the number of components of b equal to 1 that are rows of

Ap and 3 is the index of the row containing last non-zero entry of b.

6.4 Solving A: Class Of. S.CP's

6.4.1 Introduction

The SCP's that are considered in this section have columns made up

of strings .of 1's. A string of 1's in a column 3 is a set of rows

..,^2 with a. . = a(. = a • • = 1. If is not the first
'Z'lJ IJ Q t2v

then a, . ,n- = 0 and if io is not the last row then a. . = 0 . row

For the column:

a . =
3

1088

there are two strings of 1's from rows 1 to 3 and 5 to 6.

When only one string of 1's occurs in each column the SCP can easily

be solved as a shortest path problem as shown in §1.3.2.1. Strings

of 1's occur frequently in vehicle scheduling and routing problems.

Shephardson and Marsten [S8] solved problems with two strings of 1's

in each column. Their method is generalised here. For a problem

that can have any number of strings of 1's first a decomposition of

each column is defined. This is in contrast to a decomposition of

the entire matrix as given in §6.2. A lower bound is obtained from

this relaxation which is solved as a shortest path problem. Costs

of the relaxed problem are changed by subgradient optimization to

improve the lower bound.

6.4.2 Defining the Relaxation

Let each string of 1's in the constraint matrix be indexed by t. Let

ĵf be the index set of strings of 1's that occur in the jth column

of tne SCP. Let the variable, y b e associated with the tth string

of 1's. The column a. of the SCP is then split | Tj.' \ into columns,
<7 vj

B^C^s Tj). If the tth string of 1's goes from rows to then

column has 1's in rows to ^2 and O's elsewhere. Thus for the

column a . defined in the previous paragraph there are two strings of J

1's so 81 and 3 2 are defined as follows:

a - = 3 i + 3 2

~1 ~ ~ 1 " ~0 ~

1 •1 0

1 1 0

0 _ 0
+

0

1' 0 1

1 0 1

0 0 0

_ 0 _ 0 _0

As in relaxation GCR2 and the decomposition relaxation the cost of

column Bj. is d, and ,Z _ d = a. :
u V VZ ij . o J

n

SCPPCd)

m, i n ah th. • dt yt y
n

subject to t Z T ^ S t y t > 1

^ = ^relltzTj (6.17)

2/̂ e {0,1}, for all t for «/=1

Constraints (6.17) can be relaxed to give the Lagrangean relaxation,

LRP(X):

LRPCX)
n

j = 1 . t a t —

e {0,1} for all t

where , Z d,=o.
tzT. £ J

3

As in the graph covering relaxation GCR2 the problem can be reformulated

by letting:

** = K- V I T J | t jSz r.
for te'T.

3
(6.18)

6.4.3 Changing the Costs

Subgradient optimization gives exactly the same formula for updating

the costs d^ at iteration k as in §6.2.3. At the kth iteration the

problem that is solved is the shortest path problem, SPP(<f).

SPP(d)

n it
min .Z„ ,Z - d, y,

y •3 = 1 te<2> t "t
tf j

S/+E {0,1}

ISO

SPP(<i) naturally has an integer solution.

The aim, as before, is to find optimal costs d* that satisfy:

v{SPPid*)) = max viSPPid))
d

subject to ,Z d.-c. for all j.
° tz t 1 t j v

J

This gives a lower bound to the SCP that is at the best bound equal

to the LP bound. The proof follows the proof that yfNFKd*]] = v(LP)

given in Chapter 4. Firstly it can be shown that if the costs d, are

negative they can be set to non-negative values, d^ say, with no

decrease in bound, so that:

i>(SPP(<i')) > viSPPid))

Then associated with the solution to SPPCd') is a dual feasible .

solution which is dual feasible for DLP and hence

uCSPPCcZ')) < tf(DLP) = viLP)

• - T
The LP bound can be attained by-setting d, equal to s . + $,u* for u*

v J t

an optimal solution to DLP and s . the corresponding reduced cost where
3

tz Tj, .Hence the best bound obtainable-from this relaxation is the

same as that obtained from the LP. The advantage of this method is

that shortest path problems can be solved more qoiekly than linear

programs. Also each string of 1's can be stored as two figures, the

first and last row of the string. This reduces the storage require-

ments for the SCP when the strings of 1's are long.

/

6.5 Computational Results

6.5.1 Case Study

For the same 3 0 x 6 0 example of density 0.15 as used in the other

151

chapters the state space relaxation bound was 39 as shown in 6.3.2.3.

The CDC 6500 time under the MNF compiler was 6 sec. The value of the

bound obtained from the decomposition relaxation when the SCP was

partitioned into 4 subproblems was 55.11 and the corresponding time

was 22 sec. on the CDC 6500. This bound value obtained after 29

iterations of Procedure DECOMPOSITION BOUND. Bound values are shown

in Table 6.1. The computing times were slow partly because of the

time taken by the depth first on rows'tree search strategy. Using an

anti-zigzagging strategy in the subgradient ascent and a better choice

of steplength would improve computing time. The SCP solution was 56.0,

LP bound was 51.0 and the knapsack bound (formed by adding the

constraints) of the SCP together) was 29.0. Hence the relaxation SSR1

is an improvement over the knapsack bound. The decomposition bound

quickly exceeded the LP bound, at the 3rd iteration of Procedure .

DECOMPOSITION BOUND.

6.5.2 Comparison Between the Heuristic Bounds and the
Decomposition Relaxation

Bounds from the decomposition relaxation are compared with heuristic

bounds for five problems in Table 6.2. The first five columns give

details of the problem as in previous chapters. For the subgradient

optimization phase of the decomposition relaxation the parameter 6

was equal to 1.0. The optimal solution value to the SCP, z*, is given

in column (vi). The number of tree search nodes and computation time

for a depth first tree search on rows using heuristic bounds used to

find 2.* is given in columns (vii) and (viii).

Lower bound information is given in columns (ix) to (xiv). The

heuristic bound value at the root node of the search tree is given in

column (ix) together with the computation time in column (x).

TABLE 5.3

Bound Values For The 30 x 60 Example

Using The Decomposition Relaxation

Iteration
Number

Bound Value

1 49.44

2 48.42

3 51.58

4 50.53

5 49.66

6 52,39

7 51.34

8 50.65

9 50.64

10 50.47

11 51.67

12 50.39

13 53.05

14 52.14

15 52.11

16 52.39

17 51.33

18 '53.'35

19 51.59

20 52.57

21 ' 54.63

22 51.53

23 55.11

The LP bound is 51.0.

The SCP solution, z*, is 56.0.

The best bound available is underlined.

153

Columns (xi) to (xiv) give the same results for the decomposition

bound. The SCP constraint matrix A was divided into submatrices A^

which had at most 15 rows. The number of subgradient iterations at

which the decomposition bound exceeded the heuristic bound by at least

of the heuristic bound is given in column (xi). Column (xiii)

gives the first subgradient iteration at which the decomposition bound

exceeds the heuristic bound by at least 2%. The times taken to

calculate the bounds from decomposition are given in columns (xii)

and (xiv). Average results for columns (xi) to (xiv) are also given.

Table 6.3 gives the computing times for the heuristic and decomposition

bounds of Table 6.2 as a percentage of the total computation time (as

given in column (viii) of Table 6.2).

For the two most sparse problems, numbered 71 to 72, the time taken to

calculate a decomposition bound that was 1% higher than the heuristic

bound was longer than the time taken to solve the SCP. However as

Table 6.4 shows both of these problems were solved very quickly and

the initial bound calculation using heuristics was approximately one

third of the total computing time. For the most dense problem, number

74, calculating this first decomposition bound was less than 4% of the

total time. For all the problems it was possible to get a bound 2%

greater than the heuristic bound from the decomposition relaxation

after an average of 17 subgradient iterations. However the computing

time was long and even for the most dense problem was nearly a quarter

of the total time.

Table 6.4 gives the best decomposition bound found in 30 subgradient

iterations. Compared with the heuristic bound the balue was high,

but for 3 of the five problems the computation time was longer than

that taken to solve the entire SCP.

TABLE 6.2

Comparison Of The Decomposition Bound And The Heuristic Bound

PROBLEM OPTIMAL SOLUTION
HEURISTIC

BOUND DECOMPOSITION BOUND

NO SIZE COST 2 * NODES TIME TIME
BOUND EXCEEDS

by 1% of 2c.

BOUND EXCEEDS
Z^ by 2% of ^

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x)

Iteration
No
(xi)

Time

(xii)

Iteration
No

Cxiii)

Time

(xiv)

70 40 150 0.00 X 92 616 36.1 86.0 0.8 10 9.3 28 22.7

71 50 100 0.06 X 146 3 1.12 141.9 0.4 4 1.5 15 5.2

72 50 100 0.08 U 11 13 3.29 9.9 1.1 23 16.3 23 16.3

73 50 100 0.10 U 10 176 21.21 7.9 1.9 1 4.2 10 19.5

74 50 100 0.15 X 81 1370 198.4 65.8 2.2 1 7.12 9 47.4

Average 8 7.7 17 22.2

TABLE 6.2

Computing Times for the Decomposition and Heuristic Bounds

PROBLEM HEURISTIC BOUND DECOMPOSITION BOUND

No. Size Costs Time to compute bound as %
of total computing time.
(Bound = z.)

(v£)

Time to compute bound as %
of total computing time.

Time to compute bound as %
of total computing time.

(i)

m
(ii)

n
(iii)

P
(iv) (V)

Time to compute bound as %
of total computing time.
(Bound = z.)

(v£)

(Bound = 1.01 x z.)
(vii)

(Bound = 1.02 x z^)
(viii)

70 40 150 .08 X 2 26 63

71 50 100 .06 X 36 134 464

72 50 100 .08 U 33 495 494

73 50 100 .10 U 9 19 92

•74 50 100 .15 X 1 4 24

Average 16 135 227

CDC 6500 sec.

MNF5 Compiler

TABLE 6.4

Decomposition Bound as a Percentage of the Optimal Solution

PROBLEM HEURISTIC BOUND DECOMPOSITION BOUND Optimal
Solution

No. Size Costs Bound as %
of z*

Time as %
of total

Best Bound in
30 iterations

Time to calculate

bound as % of
Time

(i)

m
(ii)

n
(iii)

P
(iv) (v) (vi)

time
(vii)

as % of z*
(viii)

total time

(ix) (x)

71 40 150 .08 X 93 2 97 63 36.1

72 50 100 .06 X 97 36 100 799 1.1

73 50 100 .08 U 90 33 92 494 3.2

74 50 100 .10 U 79 9 96 277 21.2

75 50 100 .15 X 81 1 . 98 61 198.4

Average 88 16 97 338

CDC 6500 sec
MNF5 Compiler

TABLE 6.5

Decomposition Bounds for Different Partitions of A

'ROBLEM HEURISTIC BOUND DECOMPOSITION BOUND after 30 subgradient iterations

No, Size

m n

Bound Time

Max No. of Rows
in A ^ = 1 5

Bound rime

Ylax. No. of Rows
• 1 0

Bound rime

Max No. of Rows
A * m 8

Bound Time

f.j.j >
\ t (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii)

75

76

77

78

71

30

40

40

40

50

100

100

100

100

100

.12

.06

.08

.10

.06

45.0

122.6

' 96.8

68.8

146.4

0.6

0.2

0.5

0.7

0.6

51.9

125.2

98.3

71.5

147.2

17.9

6.0

8.0

16.3

2.1

46.0

124.8

97.8

70.9

147.0

7.9

4.0

5.0

7.0

2.8

45.3

1124.1

97.7

70.0

147.0

5.1

2.5

4.5

3.5

1 . 6

All the problems have randomly generated costs of type X as defined in Chapter 2.

CDC 6500 sec.

MNF5 Compiler.

1 5£

Tests were carried out on a further set of five problems to ascertain

the difference between bound values when the constraint matrix was

partitioned into submatrices of different sizes.

The bound value when the maximum size of a submatrix took different

values was calculated. If a problem had 50 rows and the maximum

submatrix size was 15 then 3 matrices with 15 rows would be generated

and one matrix of 5 rows. Generally if MMAX was the maximum number

of rows allowed in a submatrix then an SCP with m rows was divided

into |tf?/f1MAX] submatrices each of MMAX rows except possibly the last

which would have all the remaining rows in the original SCP. The

bound value and times for MNAX = 15, 10 and 8 are shown in columns

(viii) to (xii) of Table 6.5. When the matrix was partitioned into

the smallest number of submatrices the bound was higher as expected,

but also the computation time was higher. For problem 75 the optimal

solution was 56. This problem was only split into 2 parts when ITIAX

was 15. Although the corresponding decomposition bound of 51.9 was

considerably higher than the heuristic bound of 45.0 it was far from

the optimum and took considerable time to compute.

6.5.3 The State Space Relaxation, SSR1, Bound Compared
With the Decomposition and Heuristic Bounds

i

This bound is shown with the heuristic bound and the best decomposition

bound in 30 iterations (when the maximum size of a submatrix was 15)

in Table 6.6. In all cases the SSR1 bound was lower than the heuristic

bound and in most cases slower to compute. The SSR1 bound was

approximately 2/3 of the optimal solution.

6.5.4 Conclusions

The decomposition bound is too costly to be useful as implemented.

TABLE 6.2

Comparison between Bounds from Decomposition, State Space Relaxation 1 and - Heuristics

PROBLEM HEURISTIC BOUND STATE SPACE
RELAXATION BOUND

DECOMPOSITION BOUND
(after 30 subgradient;

Optimal
, Solution

No. Size iteratior is)

(i) (ii) :iii) iv) (v)
Bound

(vi)
Time
!vii)

Bound
(viii)

Time
(ix)

Bound
(x)

Time
(xi)

z*
Cxii)

Time
(xiii)

75 30 150 .05 U 5.7 1.6 5 0.3 5.7 1.9 7 5.4

76 40 100 .15 X 51.0 1.5 50 0.7 54.8 102.2 64 -

70 40 150 .08 X 86.0 0.8 63 1.6 89.0 22.7 92 36.1

77 40 150 .10 U 6.4 2.1 6 0.9 6.6 42.0 8 10.5

78 50 100 .05 X 173.3 0.5 130 1.2 177.1 3.3 178 1.1

79 50 100 .06 X 141.9 0.4 100 1.1 145.5 9.0 146 1.1

71 50 100 .06 X 146.4 0.6 129 ' 0.9 147.2 2.1 150 1.5

80 50 100 .09 u 92.9 0.9 69 1.4 94.6 4.8 98 .1-7

73 50 100 .10 u 7.9 1.9 6 . 0.7 8.2 22.8 10 21.2

74 50 100 .15 X 65.8 2.2 62 3.2 68.5 121.0 81 198.4

CDC 6500 sec.

MNF5 Compiler

160

Improvements could be made to the tree search, but as both the SCP

and the subproblems SCP^Cd) were solved using the same tree search

it was felt that this had little effect. However decomposition could

be useful for specially structured problems that had an almost block

diagonal constraint matrix. Also experiments could be made on choosing

the partitions more carefully. As the bound value was quite high it

is probably sufficient to get lower bounds to the subproblems SCP^(d)

rather than solve them exactly. Also further tests using integrality

of the original costs could be made as described in §6.2.4.

The state space relaxation, SSR1, bound was too low to be useful.

However it may be improved by combining it with other parameters as

described earlier in this chapter.

161

CHAPTER 7

BRANCHING STRATEGIES FOR THE SCP

7.1 Introduction

Branch and bound is one of the most successful approaches in solving

combinatorial programming problems. As mentioned in Chapter 1

extensive studies have been made of branching strategies. Thus this

chapter only briefly discusses methods applicable to the SCP.

First a simple binary tree search is used to illustrate the

importance of choosing a branching variable. Three different methods

of selecting the branching variable are presented and an example is

shown.

The number of rows in an SCP is usually much less than the number of

variableSj hence three implementations that use branching on rows are

described. Branching on rows is of interest for several reasons.

Firstly if the constraint coefficient 'matrix of the SCP is stored by

row as a list of non-zero columns then it is very easy to implement.

Secondly the successful branching strategy of Marsten [Ml] for the

SPP used branching on rows. In the SPP, unlike the SCP, the fixing

of a variable to 1 in constraint i means all other variables in the

constraint must be fixed equal to 0. Thus at each node of the search

tree several variables can be fixed. Thirdly the dynamic programming

algorithm of Korman [K4] was based on branching on rows. In Korman's

algorithm to transform an algorithm for the SPP to one for the SCP

many extra columns had to be generated. The SCP can however be solved

directly by branching on rows without generating extra columns*as

described in §7.3. Thus although branching on rows has been used

1102

previously for the SPP this is the first time that it has been used

for the SCP. Fourthly fewer nodes are generated than in the simple

binary search. This is of little importance as a good tree search

need not attempt to find a lower bound at every node of the tree and

could branch forward without calculating bounds at selected nodes to

save computational time.

Topalian [T6] gives an extensive analysis of branching strategies for

small SCP's.

7.2 Tactical Problems - Choosing The Branching Variable

The relaxation NF1id) is used to find, a bound when nodes are

generated by choosing a variable x . and fixing it first equal to 1
3

and then to 0. Of the many ways in which x. can be chosen, three
3

methods are - -- given. In each case the variable x . was picked from
3

amongst the set, S, "of variables that were not fixed equal to 0 or 1

by the solution to the relaxation NF1id). That is some variables

derived from the jth column of the SCP were fixed equal to 0 and some

fixed equal to 1 in the optimal solution to NF1(<2). There are

usually several such variables x a n d it was to decide between these

variables that the following three methods were used.

The first method is to calculate a lower bound on the amount of

increase of the lower bound /y(NF1(<i)] if a variable x^ is set equal

to 0. The variable for which this penalty is maximised is then

selected as the branching variable. For each variable x., a
3

penalty TI . is computed as:
3

n . = E ((min d . . T) - d..)
3 tile^-1} i'eN{ ** V 3

a'* 3

163

this m e a n s , that if £ • • = 1 then fixing £ . . equal to 0 (i.e. branching

by setting a:. = 0) will increase the bound by at least the difference

between the second minimum cost, d..„ = min d... and the minimum

3'* 3

cost, d. ., in row Thus rj. is a lower bound on the amount the lower
id 0

bound to SCP will increase if x . is set equal to 0. The choice of
0

branching variable is that for which n . is maximised.

Selecting the variable in S for which the reduced cost is least gives

the second method. The aim is to incur a heavy penalty when this

variable is set equal to 0. This may mean that another variable with

higher - reduced cost will then be set equal to 1. The reduced cost

is already available at the end of the networK flow problem and

therefore it requires less computational effort to find the branching

variable than the first method.

The third method is to select the variable in S with the largest

reduced cost as the branching variable. The expectation-.is that the

bound will increase as much as possible when the variable is set equal

to 1. As this gives no indication of how the bound changes when the •

variably is set equal to 0 this is not a very good strategy.

For each of the above strategies Figures 1 to 3 show how much of the

tree has been searched after 50 nodes have been generated for a

60 x 400 randomly generated SCP of density 5% (problem number 15 of

Tables 2.1 and 4.2). It is seen that strategy 1 is the most successful

and strategy 3 the least. The number encircled is the index of each

node.

164

Fig .7.1 AMOUNT OF TREE SEARCHED BY STRATEGY 1

I

SBMwtfb' rvuvw

ncneUs l*6*je. iaJ&u*

pOJt Cjf br^Jt.

jS U ^ r t T U ^ V ^ L

Fig.72 AMOUNT OF TREE SEARCHED BY STRATEGY 2

- • / .

165

Fig .7.3 AMOUNT OF TREE SEARCHED BY STRATEGY 3

LARGEST REDUCED COST

7.3 Strategic Problems - Branching Qn Rows For The SCP'

7.3.1 Description of Branching Strategy

Instead of branching on a single variable as in the computational

example of section 7.2 it is possible to branch on rows or blocKs.

The extension of this method to the SCP will.now be discussed.

This strategy was successfully used for the SPP by Marsten [M1].

Marsten sorted the constraint matrix into blocKs and the extensions

to the SCP are described in §7.3.2. For the SCP it is only advantageous

to sort the constraint matrix into blocKs when either it is stored

only once as a list of non-zero rows by column or if decomposition

techniques are to be used. Branching strategies for both implementations

will be described.

16 6

7.3.2 Branching on Rows When the Constraint Matrix
is Sorted into BlocKs

7.3.2.1 Sorting the matrix

The columns of the constraint matrix A are sorted into blocKs, B^

(1 <k<m) say, some of which may be empty. BlocK B^ is the set of

columns of A that have the first non-zero entry in row k. The sorted

matrix is shown below.

FIGURE 7.4

Constraint Matrix A Sorted Into BlocKs

B\ B2 Bs BH B
r

11111

1111
All entries are 0

11111

111,1 111,1
1111

All E ntries are 0 or 1

7.3.2.2 The branching strategy

If the matrix A is partitioned into blocKs then, unliKe the case of

the SPP where at most one variable from each blocK can equal 1, it

is possible in the SCP for more than one variable in a block to be

set equal to 1. Thus the branching strategy will record only the

blocK of highest index which covers each row. The m-dimensional

vector g is used to record the block covering a row. Row £ is

covered by block k means that gtt) = k and gtt) = 00 if row i has not

not been assigned to a block. In the procedure given by Marsten for

the set-partitioning problem the blocks are assigned to rows in

167

increasing order of row index, which gives a depth-first strategy.

The method presented here can be used for any strategy.

Let B^ii) be the set of variables not fixed equal to 0 or 1 in block

B^ which have a 1 in row i. Consider assigning row (r+1) to a block

By, for 1 < k < r > giving gtr+1) equal to k. First notice that if

g[k) t k or 00 then it is impossible to assign row r+1 to By. If

gik) = °° then g[k) must immediately be set to k. If = 0 then

it is also impossible to set gir+1) = k. Suppose that row r+1 can be

assigned to block By then it may be possible to reduce the size of

problem to be solved by removing rows, columns or elements of the

constraint matrix. This is described in the next three sections.

7.3.2.3 Removal of rows

To remove rows, only columns of Block By need be considered. Recall

B?(r+1) = {jlx.zB,, a . 1}. Any row t, k < t <m and t 1 r+1
k ' o k r+1, j — —

for which ay^ = 1 for all can be removed. This is the row

dominance test of §1.3.3.1 applied to a block instead of a row.

7.3.2.4 Removal of columns or blocks

Columns can be removed in two ways. First consider the case when

B?(r+1) consists of a single element, j say. Then x . can be set
K ° °o

equal to 1 and rows removed as in §7.3.2.3. Secondly if gtr+13 = k

then Xj = 0 for all j satisfying a ^ . = 1 and j eB^,' k < k r
 < r+1. In

particular all the variables in block B A are removed. K r+1

7.3.2.5 Removing coefficients of constraints

Not only can variables and rows be removed as in the preceding two

sections, but if row r+1 is assigned to block B1t then a A . can be
K 2?+1

1108

set equal to 0 for all j in blocKs B , 1 < t < k-1. This means that

the problems tend to become sparse as one proceeds down the search

tree. For lower values of k not many coefficients will be set equal

to 0, but on the other hand several blocKs of variables can be

removed. On the other hand for larger values of k, whereas few blocks

will actually be eliminated, the subproblem is liKely to be easily

solved, because it is sparse.

7.3.2.6 Solving the problem after assigning blocKs to all rows

After blocKs have been assigned to all the rows there may not be a

unique solution to the SCP. At each stage of the branching a

relaxation of SCP is used to find a lower bound. If the relaxation

solves SCP or provides a lower bound which exceeds an upper bound

then backtracking can take place. In the case of no solution to SCP

after the branching strategy has been completed then smaller SCP's

will have to be solved. For each block By which has not been

completely determined and has been assigned to some row let =

tt\g(i) - k} be the set of rows to which it has been assigned. Then

solving the SCP:

min Z „ Q.x.

i&l 3 3

subject'to I a . JC . > 1 -iz $(/c)
3 ^ 3 ~

x . = 0 or 1
0

o 171

will give the required solution. By is equal to z ^yir)
v-k

7.3.2.7 Example

For the example all costs, o equal 1 and it is assumed that the
J

1109

matrix has been sorted. The rows are chosen in ascending order of

index. The constraint matrix is shown below.

BlocK 1 2 3 4

Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Row

1 1 1

2
3 1
4 1
5 1
6
7 1
a

Row

1 1 1

2
3 1
4 1
5 1
6
7 1
a

1 1 1

1

1 1

1

1

Row

1 1 1

2
3 1
4 1
5 1
6
7 1
a

1 1 1

1

1 1

1

1

1 1 1 1
1

1
1 1

1
1

Row

1 1 1

2
3 1
4 1
5 1
6
7 1
a

1 1 1

1

1 1

1

1

1 1 1 1
1

1
1 1

1
1

1 1 1 1 1
1

1 1
1

1 1

A =

An upper bound is given by x 1 = x^ = x? = x11 = 1 and has value z = 4,

The search tree is given in Figure 7.5.

The simple lower bound z i s calculated as:

A . z - E min o .
Z kzK jsB k

 J

where K is the index set of blocKs

that have been assigned to a row.

The cost of the fixed solution is denoted by z„.
F

The following calculations are carried out for each node:

Root Node: Node 1

gC1)=1

Branch from Node 1 Node 2

gi2)=2. Note, since S 1[2]=0, g{2) cannot

equal 1.

Branch from Node 2 Node 3

£7(3)=1. Set #1 = 1 and remove #3 and B3, 3 = 1

Rows 1, 3 and 5 are covered by Xi.

170

Node 4

gi 3)=2. Set 0:3=1, remove B3, z =1. Rows 2,

3 and 5 are covered by 0:3.

Node 5

#(3)=3, V 3

Branch from Node 3: Node 6

remove B4, infeasible

Node 7

gi4)=2, remove S^, infeasible

Node 8

gi 4)=4, 3 r 3

Branch from Node 4: Node 9

gi 4) = 1, remove Binfeasible

Node 10

g (4)=2, remove infeasible

Node 11

gi 43=1, z =3
I

Branch from Node 5: Node 12

gi 4) = 1, set a?i = 1. Remove Xif, £5, XQ, BIF.

In addition single 1 in row test.

Sets #7=1 and 0:3=1. Upper bound = 3

The tree search is completed as a new upper bound has been found.

7.3.3 Branching on Rows When the Constraint Matrix is Stored as
a List of Non-Zero rows by Column

7.3.3.1 Description of the forward step of the branching strategy

The basic forward step to generate successor nodes is made by choosing

a row t at a node of the search tree. Suppose N t h e set of non-zero

columns of the SCP contained in row i, is the set { j • • • >Jp}«

This set is readily available if the constraint matrix is stored as a

Fig. 7-5 TREE SEARCH FOR EXAMPLE

list. Then p subnodes are generated by setting x . = 1 and x . = 0

for k<Z for I = 1 Two implementations, a depth-first and a

best bound search, are described below.

7.3.3.2 A depth first implementation

As a depth first tree search requires little storage this is the most

practical approach for solving large problems. If a node is not

fathomed then a new branching row is chosen and the first variable in

this row is fixed equal to 1. When a node is fathomed for which row

'i is the branching row then if N . = {«? i > • • • *3) and x . is fixed

equal to 1 then backtracking occurs by setting x. = 0 and x • = 1 to

generate a new node until A+1 > p. When this arises the level of the

tree search is decreased by 1 and the variables fixed at the father

node are changed

as for the previous level of the tree search until

the entire tree has been searched. An example is given in Appendix 3.

The method is described formally in PROCEDURE 15 DEPTH. FIRST SEARCH

below.

PROCEDURE 15 DEPTH FIRST-SEARCH. CSCP)

A DEPTH FIRST TREE SEARCH ON ROWS FOR THE SET COVERING PROBLEM

Input: SCP The set covering problem

1. Initialise Variables

LEV is depth of the search tree

NREP is the number of variables fixed

in the current search tree

LEV: = 0

NREP: = 0

173

LREP: = <{> LREP is the set of variables fixed

in the current search tree

IZ: = <p 12 is the cost of the variables fixed

in the search tree

MR: = <}> MR is the set of rows removed at the

current node of the search tree

BIG: = big number

e: = small number, tolerance

NODE: = 0 ' NODE is the number of tree search nodes

NODEMAX: = maximum number of tree search nodes that can be examined

MRN: = vector of rows covered at each level by fixed solution

2. Calculate Lower Bound To The SCP

zni = lower bound to the SCP %

u: = corresponding dual variables

= upper bound to the SCP

If node is fathomed

then goto 4.

else goto 3.

3. Forward Step, Create A New Tree Search Node

NODE: = NODE+ 1 Increase the number of nodes examined

If (NODE>NODEMAX) goto 7. Test for limit on number of nodes

generated

LEV: = LEV + 1 . Increase the depth of the search tree

3.1 Calculate Reduced Costs

For j: = 1 to n

if s . > z - z. - 1+e Test the reduced costs
— 3 — u I

then Q. \ = Q . + BIG
3 3

174

NREP: = NREP + 1

LREP: = LREPV {j}

else next 3.

3.2 Store Rows and Columns at this Node

MRNCLEV): = MR Store rows covered by variables fixed

equal to 1

NRNCLEV): = NREP Store number of columns removed

3.3 Calculate Branching Row

Find a row i on which to branch

IBRCLEV): = % Store branching rpw

KBRCLEV): = M . Store set of possible branching
it

variable

3.4 Calculate Branching Variable

If KBRCLEV) = <f>

then goto 5.

else find branching variable

3 e KBRCLEV)

JBR: = 3

KBRCLEV): = KBRCLEV) - {j}

3.5 Reset Parameters after Choosing Branching Variable, JBR=j*

IZ: = I Z + Q . Update cost of fixed variables
3

q .: = o. + BIG Remove x - from the problem
3 3 3

NREP: = NREP + 1

LREP: = LREP I){3} Set x . equal to 1

MR: = MRUiy_. Update rows removed from the problem

Goto 2.

175

4. Backward Step, Remove Branching Variable, JBR

Branching variable is j where j

IZ: = IZ - c .
0

MR: = MRNCLEV)

goto 3.4.

5. Decrease Level In Search Tree

LEV: = LEV - 1

If LEV = 0

then goto 6.

else NREP: = NRNCLEV) Recalculate fixed rows and columns

MR: = MRNCLEV) at this level of the tree search

LREP: = set of variables removed at level LEV

goto 4.

B. Tree Search Completed Successfully

Stop with optimal solution. Tree search has been completed.

7. Tree Search Terminated Because Too Many Nodes have Been
Generated

Stop.

7.3.3.3 A best bound implementation

The main reason for studying this approach to a branch and bound

algorithm was so that dominance tests could be used to eliminate nodes.

The dominance tests consider two nodes in the search tree, N0DE1 and

N0DE2 say. MRNCNODE) is the set of rows covered by the variables fixed

: = JBR

Set x . equal to 0

176

equal to 1 and IZCNODE) is their cost. Then if IZCN0DE1) > IZ(N0DE2)

and MRN(N0DE1) ̂ MRN(N0DE2) N0DE1 is dominated by N0DE2 and can be

removed from the problem because N0DE2 covers more rows for less cost

than N0DE1. Hence when a node, NODE, is generated the corresponding

values of NRN and IZ were stored. Also an estimate of the lower bound

A

value at the node, z is stored. This can be obtained by taking z

the lower bound at the father node and the branching variable x . that

generated NODE. Then if u, corresponding-to z^, is the vector of dual vari-

ables, in the case of the heuristic lower bounds^and is the vector of

vertex weights (including blossom weights), in the case of the graph m

covering relaxations then zn = s +max(0, c.- u .a.. The node at

which the next lower bound is calculated in a tree search strategy is

the one for which z i s least. A second reason for this approach is

that if the algorithm terminates prematurely the least bound of

unfathomed nodes remaining in the problem gives a lower bound on the

solution to the SCP.

When a node is not fathomed all the successor nodes are generated by

choosing a branching row i and storing information for all possible

nodes that can be generated as in step 3 of PROCEDURE 15 DEPTH FIRST

SEARCH.

The tree search strategy is described in PROCEDURE 16 BEST BOUND

SEARCH below. .

PROCEDURE 16 BEST BOUND SEARCH (SCP)

A BEST BOUND SEARCH ON ROWS FOR THE SCP

Input: SCP The set covering problem

117

1. Initialise Variables

3 n : = 0 cost of fixed variables at root node
F

MR

MRN

BIG

NODE

NODEMAX

LD

= 0 set of rows covered at root node

= MRN is vector of rows removed at current node of search tree

= large number, e: = small number, tolerance

= 0 index of current node being examined

= maximum number of nodes that can be stored

= list of nodes stored

2. Calculate Lower Bound To The SCP

2 : = lower bound to the SCP

u : = corresponding dual variables

- upper bound to the SCP

If node is fathomed

then goto 5.

else goto 3.

3. Forward Step

3.1 .Calculating Branching Row

Find a row £ on which to branch

3.2 Generate. Subnodes

NODEX: = NDDE

For all <7 e N . z

let NODE: = first free position in list LD

178

if NODE > NDDEMAX

then goto 6.

else father node(NODE): =NODEX

bound estimate(NODE): =3„

MRN(NODE): = MRU M .
0

IZ(NODE): = 3 + o .
F C

LD: = LDU{j}

Branching row(Nnr,,~) : = i

Branching variable(NODE): = j

If NODE is dominated

do not store node

If NODE dominates other

nodes in list LD remove

them from LD

4. Choose A New Node At Which To Calculate Bound

Record father node

Calculate estimate of

lower bound

Calculate rows covered

by fixed variables

Calculate cost of fixed

variables

Perform dominance tests

Let NODE be the node for which

the lower bound estimate is least

3 : = IZ(NODE)
F

MR: = MRN(NODE)

Generate subproblem of SCP using

branching row, branching variable

and father node to set:

Q .: = Q . + BIG for variables fixed
3 Q

equal to 0 or 1

Goto 2.

Retrieve cost of fixed variables

Retrieve rows covered by fixed

variables

179

5. Backward Step

Remove NODE from list LD. Also if the father node of NODE has no

successors left remove father node from LD. Repeat on the father

node of the father node until no more nodes can be removed from LD.

Goto 4.

6. Storage Allocation Exceeded

Stop with tree search not completed. A lower bound on u(SCP) is

available from the least lower bound estimate of the active nodes.

7. Stop With The CDptimal Solution

z^ is an optimal solution to the SCP.

/

In practice dominance tests were only rarely useful. They were .used to

remove two o-r three nodes in problems of about 40 rows and 150 columns and

density 0.15. Larger problems could not be solved by the tree search.

7.3.4 Improving the Branching on Rows Method

Unless calculating a lower bound has a good chance of either fathoming

a tree search node or removing variables, using reduced costs to prevent

a large number of successor nodes being generated, it is probably

quicker to branch forward and generate successor nodes than calculate

the bound. Thus improvements to computing times could be made by not

calculating a lower bound at each node.

A problem with the branching on rows method is that once a branching

row has been chosen every single variable in the row is fixed to 1.

180

It may be that when some of the variables in a row, say those that

are most likely to be in an optimal solution to the SCP, have been

fixed equal to 0, that it is unnecessary to fix any of the remaining

variables equal to 1. To Implement this suppose, for row i, N .

consists of variables { j j , J 2 , . . . T h e n setting:

a;. =1 <71

x. = 0, x. =1
31 <72

x> = 0 , ... x. = 1 say
3l

and x . = 0, ... ,x. = 0
<71 3 l

would partition the SCP into £+1 nodes instead of p as before where I

is chosen so that l<p. So that the variables x . , x . ,... ,x. are
<71 32 3%

those likely to be in the optimal solution when a branching row i is

chosen the set N. can be sorted in ascending order of c./h. where h.
3 3 3

is the sum of non-zero entries in column a. that are in rows not-
3

covered by fixed variables.

7.4 Computational Results For The Depth First and Best
Bound Tree Searches On Rows

7.4.1 - Case Study

The same 30 x 60 problem used previously was studied in detail.

The branch and bound trees for the depth first and best bound

strategies are shown in Figs. 7.6 and 7.7. The branching variables

and lower bound values are shown for each node. In both cases an

estimate of the heuristic lower bound z^ was available, thus it was

not always necessary to use the heuristics to calculate the bound at

a node. For this example the optimal solution is x^ = x^ 2 = x 2 7 - =

= = 1 and the remaining x . = 0. The node at which this solution

•FIGURE 8.2

The Branch and Bound Tree for the Best Bound Strategy For a 3 0 x 6 0 SCP of Density 0.15

•FIGURE 8.2

The Branch and Bound Tree for the Depth First Strategy for a 3 0 x 60 SCP of Density 0.15

" li ia Uo

55-1 6 0 0 53-2

©

AT SIKH NOPF *fll T3
gOUW6 VALUE

CTTIMAU SOK/POM • O

00
NJ

is found in the depth first tree search is given by branching on

1 at the root node and £15= 1 at the first level. No successor

node is generated from the node at the second level because the bound

estimate was greater than 55. Dominance tests were not used in the

best bound strategy to reduce the number of nodes searched.

7.4.2 Test Problems

Fifteen randomly generated problems were tested. The results in

Table 7.8 show that the average time to perform the best bound search

was 6.0 sec. whereas for the depth first search it was 14.1. The

number of nodes in the tree for the best bound search was 81 which

was less than that for the depth first search that had on average 164

nodes. For dense problems the differences were greater and this may

have been because dominance tests were used in the best bound search.

The best bound search also tended to find the optimal solution earlier

in the search than the depth first method. The average time to find

the optimal solution, shown in Table 7.9, was 4.5 CCDC 6500) sec. for

the best bound search and 10.3 sec. for the depth' first search. The

time taken to find the optimal solution as a percentage of total

computing time is also shown in Table 7.9. The best bound search found

the optimal solution half way through the search on average. The

depth first search found 2* in about three quarters of the total time

on average. There were wide deviations between the average results

and the results for individual problems however the best bound search

was nearly always faster and generated fewer nodes.

The maximum number of nodes stored by the best bound search was close

to the total number of nodes examined as columns (vii) and Cviii) of

Table 7.8 shown. It would therefore be worthwhile to use pointers to

The Nuinber of Nodes generated by

TABLE 7.8

the Depth First and Best Bound Tree Searches using Branching on Rows

PROBLEM Optimal Heuristic Bound Best Bound Search Depth First Search
Solution as % of z* Max. No. of Total No. Total Max. Depth o r Total No. > Total

Mo • m n P z* 100 x z^f z*
Nodes Stored of Nodes Time Search Tree of Nodes Time

(i) [ii) (Ui) (IT) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii)

31 30 100 .12 53 85 46 61 3.9 4 109 5.2

82 40 100 .10 75 89 64 78 5.6 5 102 6.0

83 40 100 .12 68 87 135 146 9.2 6 240. 10.7

70 40 150 .08 92 93 53 64 6.6 6 616 36.1

34 40 150 .08 90 97 67 74 4.6 2 22 2.5

35 40 150 .10 67 93 104 110 10.7 . 5 175 14.0

36 40 150 .10 69 94 72 72 4.6 5 213 19.0

71 50 100 .06 146 90 3 3 1.1 2 3 1.1

37 50 100 .08 126 88 111 175 24.8 5 186 19.8

38 50 100 .08 112 90 21 26 2.8 5 39 3.5

39 50 100 .08 111 90 66 81 8.0 5 72 7.2

90 50 100 .08 103 88 65 92. 10.7 8 328 18.9

31 50 100 .10 89 91 49 69 11.3 4 65 13.5

92 50 100 .10 86 91 • 32 47 7.7 5 103 13.5

93 50 100 .10 91 90 116 120 11.2 8 194 18.2

Average 90.4 81 8.0 164 14.1

Table 7.9 To Show the Time Taken to find the Optimal Solution by the Depth First and Best Bound Tree Searches

PROBLEM OPTIMAL HEURISTIC DEPTH FIRST BEST BOUND

SOLUTION
LOWER

SOLUTION
BOUND (as %
of optimal
solution)

Time taken
to find z*

Time taken
to find £*
as % of total

Time taken
to find z*

Time taken
to find z*
as % of total

No.
(1)

m
(ii)

n
(iii) (?v)

z*
(V)

100 X zjz k

(vi) Cvii)
search time

(viii) (ix)
. search time

(X)

81 30 100 0.12 53 85 1.2 31 1.7 33

82 40 100 0.10 75 89 4.7
84 5.8 97

83 40 100 0.12 68 87 6.7 73 9.8 92

70 40 150 0:08 92 93 1.9 29 35.3 98

84 40 150 cr.08 90 97 3.4 74 1.5 60

85 40 150 0.10 67 93 6.6 62 11.4 81

86 40 150 0.10 69 94 2.6 57 18.8 99

71 50 100 0.06 146 90 0.9 86 0.9 84

87 ' 50 100 0.08 126 88 1.4 6 19.1 • 96

88 50 100 0.08 112 90 1.7
61 2.0 57

89 50 100 0.08 111 90 0.7 9 0.7 10

90 50 100 0.08 103 88 2.7 25 18.2 96

91 50 100 0.10 89 91 2.2 19 2.2 24

92 50 100 0.10 86 91; 2.5 32 11.8 87

93 50 100 0.10 91 90 7.8 70 15.7 86

Averat je -90.4 4.5 47.8 10.3 73.3

186

successor nodes so that nodes are no longer stored once all their

successors have been fathomed. It should also be realised that the

computational work in redefining a subproblem was greater for the

best bound search than the depth first. If the methods of defining

the subproblem were improved the computation times would be even

quicker for the best bound search. Details of how this can be done

for the travelling salesman problem are given in Carpaneto and Toth

[C2].

*

187
CHAPTER 8

IMPLEMENTATION OF AN ALGORITHM FDR SOLVING
THE SCP USING GRAPH COVERING RELAXATIONS

8.1 Introduction

A FORTRAN program for solving the SCP using the graph covering

relaxations of Chapter 5 embedded in a tree search is described

in this chapter. The design of the program and the data structures

used for storing the SCP are discussed in §8.2 and §8.3. The

solution of the graph covering problem and reduced cost tests are

described in §8.4. Parameters of the problem are discussed in §8.5.

8.2 Design Of A FORTRAN Program

The aim of this research was to produce a program that could easily

be modified so as to allow a wide variety of branching and bounding

strategies to be tested. The program is run entirely in-core. The

amount of available storage proved to be a limitation and hence the

ability to pack arrays or read data from the disc would have to be

added to enable large problems (of greater than 10000 non-zero entries

in the constraint matrix A, siiy). to be solved. There are three main

sections to the code as shown in Fig.8.1.

The first is the preprocessing stage in which the heuristics of

Chapter 2 are used to reduce the size of the problem. Only two

reduction tests were found to be particularly useful for random

problems. These were the reduced cost tests and the single 1 in a

row test of §1.3.3.1.

FIGURE 8.1

Design Of A FORTRAN Computer Program For The SCP

oo 00

189

If the size of the problem decreases after the pre-processing stage

then the columns that have been removed from the problem are discarded

completely and the storage reallocated. This has to be done because

the Lagrangean relaxation and branching strategy use much more storage

than the heuristic algorithms.

Thirdly there is the branch and bound phase which is divided into

three parts:

(a) calculating a lower bound

(b) branching forward •

(c) backtracking-

8.3 Data Structures For The Graph Covering Algorithms

8.3.1 The Set Covering Problem

To store the costs of the set covering problem a single vector of

dimension n is required. The constraint matrix is stored twice,

both by row and by column to speed up the computation. The matrix

is stored as a list of non-zero columns in a vector ITJ together

with a pointer vector of dimension m, IP, which gives for each row i,

the total number of elements stored in ITJ up to the end of row i.

This is illustrated in Appendix 3. Likewise a vector JTI which lists

the non-zero rows is stored and JP is a vector of dimension n that

points to the end of each column. Hence the total storage for the

costs o and the constraint matrix A is approximately 2mnp + 2n +m where

p is the density of the constraint matrix.

To mark columns that have been removed the cost e . is set equal to

190

a . + BIG where BIG is a suitably large number. So that columns that
0

have been removed can be added back to the problem at a later date a

vector LREP of maximum dimension n gives the index of each column

removed. This can s.tore... a "negative number, • - j, if x . is set equal
• - - 0

to 0 and j, a positive number, if x. is set equal to 1.
<7

To indicate which rows have been removed a vector ILK of dimension m

is required. This is a linked list of rows currently in the SCP and

ILK(i) is set equal to a negative number if the row has been removed.

This vector allows rows that are in the SCP to be accessed quicKly

and also enables one to determine whether or not a row % has been

removed by testing the sign of ILK(I). In addition the first row of

the SCP must be stored.

The storage required to marK whether rows or columns have been removed

is 1 + m + n. The total storage required for an SCP in which some rows

and some columns may be removed -is_ about 2mrtQ. + 3n + 2m + 1.

8.3.2 Lagrangean Relaxation

8.3.2.1 Graph covering relaxation GCR1, the row relaxation

Indices of rows removed in a Lagrangean relaxation of the SCP can be

stored in a list LREL, of dimension at most m. They are also marKed

as removed in the vector ILK. The Lagrange multipliers require m

words of storage and in addition it is convenient to store their sum.

There is no need to store both costs of the relaxed problem and Oj as

one can be calculated from the other.

In testing the feasibility of the graph covering solution for the SCP

firstly a list LCD, of length at most m (in the absence of negative

costs in the GCP), of indices of columns of the SCP corresponding to

191

arcs in the graph covering solution and the lower bound value is

needed.

A list of relaxed rows for which u . (a x - 1) / 0 is stored, together
is

with a search direction, v, and steplength, o. Thus the additional

storage required for this Lagrangean relaxation excluding the

amount required to solve the graph covering problem is at most 3m + 2 .

8.3.2.2 Graph covering relaxation, GCR2, the column relaxation

A Key to the arcs that are in the graph covering problem of length

n — —
at most X\h./2\, which is less than irnnp +n/2), is stored in the

d ~ ' J

vector JLK.

If arc k is the first arc to be derived from column J then JLK(Z) = J.

Otherwise each time an arc that is not the first arc to be derived

from a column j is created a counter NNOW, that starts at n, is

increased by 1. Then JLKiK) = NNOW. Thus if arcs are generated from

each column j In turn the list JLK is a list of integers and each time

an integer less than or equal to n appears in the list the corresponding

arc is derived from a new column of the SCP. Hence for an SCP with

two columns a\ and <22 below:

1 1
0 l "
1 0
1 0
1 0
1 1

1 0

Column a\ would give 3 arcs and column a2 would give 2 arcs hence JLK

would equal (1, 3, 4, 2, 5).

192

As in GCR1 a list of arcs LCD, equal to (1, 2, 3, 4) say, and lower

bound value is given by the graph covering algorithm. To indicate

that an arc is in the graph covering solution the corresponding

component of JLK is then multiplied by -1. In this case JLK would

equal (-1, -3, -4, -2, 53. It is then easy to count the number of

arcs derived from a particular column that are in or not in the graph

covering solution. For the example arcs 1, 2 and 3 derived from

column a-i are all in the graph covering solution thus a^ in the SCP

can be set equal to 1. The cost vector of arcs in the GCP is of the

same length as JLK. The costs are changed in the subgradient

optimization phase by using a list of columns of the SCP JCH from

which at least one arc in the graph covering solution has been derived.

For each such column both the total number of arcs In the GCP derived

from the column, NCH, and the number of arcs that are in the graph

covering solution, NWON, are stored. If NWON and NCH are equal'then the

feasibility conditions for the SCP are satisfied. Otherwise it is

easy to calculate the penalties with which to change the costs in

subgradient optimization from these parameters. The maximum storage

required for this relaxation is then approximately rrnip + n for JLK and

the costs of the relaxed problem^??? + 1 for the graph covering solution

plus 3m for the information needed to change the costs. The total

storage is then rnnp + 4m + 1.

8.3.3 Branching Strategies

8.3.3.1 Depth first search on rows

The depth first search branching on rows of §7 requires firstly that

variables fixed equal to 1 and 0 are marKed. This can be done using

the list LREP of §8.3.1. In addition LEV is a variable that gives

the depth of the search tree. IBR(LEV) gives the branching row at

193

level LEV. The position KST(LEV) at which the branching variable is

stored in the list ITJ is registered. This means that J = ITJ(KST(LEV))

gives the index of the variable x . that is fixed equal to 1 and
3

ITJ(K1),... ,ITJ(KL) where K1 = IP(IBRCLEV) - 1) + 1 and KL = KST(LEV) - 1

gives variables fixed equal to 0. (The convention IP(0) = 0 is used).

In addition it is necessary to record KREP(LEV) the number of variables

stored in LREP at level LEV in the tree search. If LEVMAX is the

maximum depth of the search tree the additional storage is thus

3 LEVMAX. Additionally the cost of the fixed variables at each level

can be stored to speed up computation. Also the rows that are covered

at each level can be stored in bits.

8.3.3.2 Best bound search on rows

The best bound search requires more .storage than the depth first method.

For each node, NODE, in the search tree the position of the branching

variable in the list ITJ and the branching row^ KST(NODE) and IBR(NODE),

are stored. In addition the estimated bound valueA VLDtNODE)^ is stored.

To record the tree structure the father node,JPR(NODE), is stored, with

JPR(NODE) = 0 signifying the NODE is the root node. This gives

sufficient information for variables to be fixed at a node. Firstly

NODE is chosen as the node for which VLD(NDDE) is least. Then I=

IBR(NODE), the branching row is calculated. Variables xj in row J

are "fixed equal to 0 until variable x. for which JO = ITJ(KST(NODE)) H 30

is reached. This is then fixed equal to 1. This method of fixing

variables is then repeated for the father node of NODE until the root

of the tree is reached. To facilitate the computation it is

advantageous to store the cost of the fixed variables.

The speed with which the node that has the best bound can be retrieved

can be greatly improved by using a linKed list to linK the nodes in

order of increasing estimated bound value. When a node is generated

and inserted into the linked list time is taken in finding a location

for it. This can be reduced by using a heap instead of a linked list

to store the nodes, at the expense of additional storage. Further

details are given for the travelling salesman problem by Carpaneto

and Toth [C2].

The search is also quicker if the rows covered by variables fixed

equal to 1 are stored in bits at each node of the search tree. In a

best bound search this information can be useful for dominance tests.

Nodes are discarded in a best bound search either because they are

fathomed or because all their successors have been fathomed. To

free the storage space left when the latter case has occurred at each

node the first successor node should also be stored.

The minimum total storage for a best bound search is then 4 MXND

where MXND is the maximum number of tree search nodes allowed at any

one time. Additional storage of MXND+ MXNDx MWORD, where MWORD is

the number of words needed to store the bit pattern of m bits which

indicates which rows have been removed, is required to implement the

dominance tests. To store a linked list and successors nodes requires

2 MXND words. Hence the total amount of storage required is

7MXND * .MXND"' x ' MWORD.

8.3.4 Total Storage Required

To solve the SCP with both graph covering lower bounds in a depth

first tree search requires at least 3mnp + 3n + 9m + 3 LEVMAX words of

storage plus the amount of storage required to s'olve the GCP which

is at most I m p + 13m including storing the graph in adjacency lists

which use imp + 2m. Hence the total storage is 4mrcp + 3n + 22m + 3 LEVMAX.

In addition some work arrays in which to perform calculations are

required, but some of the graph covering algorithm and Lagrangean

relaxation can share the same storage, so in practice this formula gives

an estimate of the required amount. For a best bound implementation

this increases to 4imp + 3n + 22m + 7MXND + MXND + MWORD which unless

using packed arrays and disc storage means that the best bound search

requires too much storage to be practical.

8.4 'Solving The Graph Covering Problem

8.4.1 The Graph Covering Algorithm

The algorithm used for the GCP was based on the matching algorithm of

Edmonds' [E1, E2] which is described in Minieka [M4a] and Lawler [L2].

As no graph covering code was available, an algorithm of Derigs and

Kazakidis [D3a] for solving the'minimum-perfect matching problem on a

graph was modified. This is described in §8.4.2. Before the graph

covering code could be used all arcs of negative cost were removed

from the problem. Their values and indices were stored and then they

were replaced with arcs of cost equal to 0. The graph was stored in

adjacency lists as described in Aho et al [A1] and Derigs and Heske

[D3]. The advantage of this representation is that it not only takes
\

advantage of sparsity but it also, allows graphs with multiple arcs to

be handled. Instead of using reduced costs to reduce problem size

after solving the GCP, lower bounds on the reduced costs were available

and were -used instead as described in §8.4.3. Sensitivity analysis of

the GCP was considered but was not very useful because it was difficult

to implement except in very simple cases. The graph covering algorithm

starts by finding a matching in the 0-graph. Using start procedures

that make the 0-graph as large as possible was found to be an effective

196

way of reducing computing time as described in §8.4.4.

8.4.2 Converting an Algorithm for Solving the Minimum Perfect
Matching Problem to a Graph Covering Algorithm

8.4.2.1 Introduction

In a graph G(V,E) a perfect matching is a set of arcs for which each

vertex is incident with exactly one arc in the set. A matching is a

set of arcs that meets each vertex at most once. In a graph that has

a cost associated with each arc and possesses a perfect matching, the

problem of finding a minimum cost perfect matching is the-inu^ger .:

program, MPMP:

MPMP

min ex

Ax = 1

x .e{0,1} Q = 1,2,...,« u

where A is the vertex-arc incidence matrix of the graph and q. the

cost of the jth arc. It is assumed c . > 0 for all j.
0

To get a graph covering program that can be used repeatedly to solve

Lagrangean subproblems in a reasonable time a FORTRAN code for the MPMP

was modified. The graph covering problem is MPMP with Ax = 1 replaced by

/&:>'[. A' is the vertex-arc incidence matrix of a graph G T o modify

the code note that the GCP can be reformulated as MPMP, [K4], by the

addition of an extra variable for each constraint. For the'ith constraint

a column <2.>., is added with a single 1 in row and the cost of the

corresponding column is o .f ... = min o..

The resulting problem has the form of MPMP except that some columns

including the extra columns that have been added may then have only one

non-zero entry. Thus an extra constraint is added with 1's in columns

that ensure that the constraint matrix has exactly two 1's in each

column. Let the resulting constraint matrix be A'. This is the

•FIGURE 8.2

An Augmenting Path

(i) • $ 0 * 3 g

The path is changed to match as shown below

(ii) i <

So
1 •

FIGURE 8.3

Formation Of A Pseudo Vertex

-©44 circaifc

\
The graph is shrunk to give

^V-pSendo- wcrfeerjc

Edges in the Hatching are shown in heavy lines,

198
vertex-arc incidence matrix of a graph G. The MPMP code was

modified so that the vertex corresponding to the extra constraint did

not necessarily have to be covered at the end of the.algorithm and it

had a corresponding, dual, variable that was fixed equal to 0.

8.4.2.2 Outline of the matching algorithm (Edmonds' Algorithm!

The MPMP code followed the algorithm of Edmonds for which data

structures are described in detail in Lawler [L2]. The algorithm

starts by first giving each vertex v . a weight (dual variable), w.,r

that satisfies q . - W . - w y > 0 where o. is the cost of j that joins
<7 k J

vertices v^ and Vy. This gives subgraph of GtV,E) for which the

reduced costs of each arc are equal to 0, the 0-graph. Edmonds'

algorithm starts with a matching of the 0-graph. This is also a

matching of G{V,E). If all the vertices are covered then the algorithm

terminates with an optimal cover. Otherwise a vertex is found that is

not covered, sQ, say. This vertex forms the root of a tree made up of

arcs of G that are alternately not in the matching and in the matching

The tree is grown in the 0-graph from the root sq by adding a non-

matching and matching edge until one of the following three conditions

occurs, illustrated in Fig. 8.2 and Fig. 8.3:

(a) An augmenting; path is detected.

(b) A pseudo-vertex is formed.

(c) The tree can be grown no further

Case (a) means that a path of arcs in the 0-graph has been found of

odd length with non-matching edges at each end. The matching edges

in this path are changed to non-matching edges and vice versa thus

covering the two vertices at each end of the path. Case (b) means

that an odd circuit of vertices in the 0-graph has been found. This

is shrunk to form one pseudo-vertex. If case (c) arises the dual

199

variables must be changed. They are only changed for vertices in a

tree, that is for vertices that are connected by a path made up of

matching and non-matching arcs alternately until a root vertex s i s

reached.

8.4.2.3 Modifying Edmonds' algorithm

The following modifications to Edmonds' algorithm must be made to give

a graph covering algorithm. The extra vertex that is added to ensure

that each column of the vertex-arc incidence matrix has exactly 2 1's

will be labelled v F i r s t l y can never be the root of a tree.

Secondly V # is never allowed to be shrunk into a pseudo-vertex. The

first property is straightforward to implement and the second is

handled by considering two cases when V+ is joined to a tree. These

are:

Case 1 - Vertex V* is Matched by a Vertex in the Tree

This case is illustrated in Figure 8.4. There is an augmenting path

from the root, s . of the tree containing V to The roles of
o s

edges in this path can be changed as in (a) so that vertex s is

matched. Then vertex V is matched by an arc in the path and not by
s

arc (V which is removed from the matching. The tree with root
s

s o is no longer a tree in the next graph covering iteration.

Case 2 - An Augmenting Path from sq to v# Has Been Found

In this case, illustrated in Fig. 8.5, matching and non-matching

edges are changed as in (a). There is a vertex v in the path from
s

8 to V# such that (V becomes a matching edge. The tree rooted
U S

at s is destroyed as in Case 1. This means that v can never become

200

FIGURE 9.4

Case 1 Vertex v m Is Matched In The Tree

(a) Detecting a Path (s o,t>J

5® Q • iQgrn • wiMLat kutQ-

(b) Changing the Path to Match 5

S. ©ESZ3ESES3E^ gEESSOSHHE® O **

FIGURE 8.5

Case 2 Vertex v,. Is Not Matched

(a) Detecting an Augmenting Path

-Q ui

Cb3 Changing the Path to Match s

— — — —

£rfje not in the. n&tehinj

Sdje. in the

201

part of a tree as long as it is matched by U*. Hence the reduced

cost of arc iv ,Vh) remains equal to 0 as long as iv • ,Vt) is a
S K S

matching edge.

Just as Edmonds' algorithm terminates with a matching in a shrunken

graph so the graph covering algorithm terminates with a set of arcs

in a shrunken 0-graph that meets each vertex of the original graph

exactly once except possibly the extra vertex u^which may or may

not be covered any number of times. The matching then induces a

covering in the original graph in exactly the same way as Edmonds'

algorithm induces a matching from the matching in the shrunken graph.

To transform the graph to one on the original graph the arcs that are

in the cover and joined to the extra vertex must be mapped back to

the arcs from which they were originally derived. For example if arc

) is in the solution and has been added to the graph because the

cost o . - min o . (where S is the set of arcs of the original GCP
3 0 jzS 3

which have one end equal to s) then the original arc jo in the GCP is

marked as being in the optimal cover. The optimal graph covering

solution has the property that if c . > 0 then all arcs in the solution «7

are incident with at least one vertex that is only covered by one arc

in the solution. This corresponds to a prime cover of the SCP.

The example in Fig.8.6 shows an optimal matching in a Graph G'which

corresponds to an optimal cover in a graph G . The cost of each arc

is shown alongside it and the extra vertex. The arcs in the

optimal matching and optimal cover are shown in heavy lines. The

original GCP was the problem.

202

FIGURE 8.6

A Graph G in Which an Optimal Matching
Corresponds to an Optimal Cover in G'

«» Optimal
maJcch'tA^

UL. Cxfcra

\f %

203

min xi + X2 + + + 3o?5 + 3x$ + 3a?7 +

subject to

1 1
x >

which was modified to give the matching problem:

min [1 1 1 1 3 3 3 3 1 1 1 1 1 1]a:

subject
to

1

1

x =

In theory it is not necessary to store the minimum cost arc incident

to every vertex. If the vertices are labelled = 1,,,.,/n to

calculate the minimum cost arc incident with vertices that are

connected to vertices of lower index is all that is necessary. However

there is nothing to be gained in the overall algorithm from this

observation as to find such vertices outweighs the, disadvantages of

storing a few extra arcs.

8.4.3 Use of Reduced Costs to Reduce Problem Size

Associated with each vertex V . in the graph covering problem is a
i>

weight u . equal to the dual variable w . plus»the sum of blossom dual
Is Is

variables for blossoms containing v.. For each arc e . joining vertices

V . and V v a lower bound on the reduced cost of arc e- in the GCP is: is K. J

204

Oj - u. - uk (b.D

Thus a column a. of the SCP has a lower bound on the reduced cost of:
3

m
s . = c . - u .a . . (8.2)
3 3 1 = 1 i> 13

where the weights u. correspond to vertex weights in a column splitting

relaxation of the SCP. If z i s the lower bound from GCR2 then a

column can be removed if:

s. > z - z. (8.3)
3 — u I

where z i s an upper bound to the SCP.

For the combined relaxations (where rows R are relaxed) if z is the

lower bound and all the Lagrange multipliers satisfy:

X. > 0 #or all izR
% — - -

o . - .2 X.a.. > 0 for all 3 (8.4)

then if

o. - X.a.. - u.a.. > z - z '
3 izR % zgR t-3 — w £

the corresponding column can be removed from the SCP. To ensure the

reduced cost test, (8.3), is valid;, firstly the constraints (8.4) must

be satisfied and secondly when the best value of the lower bound is

calculated for a given node in the search treesthe multipliers X^ and

u^ are stored in a single vector. This test is particularly effective

in a branch and bound algorithm as it can substantially curtail, the

number of branches generated at a node.

8.4.4 Start Procedures for the Graph Covering Algorithm

205

The graph covering problem, when used in subgradient optimization,

is likely to have arcs of negative cost. Either the procedures of

Chapter 5 for making the costs non-negative by adjusting the Lagrange

multipliers can be invoked or they can be removed from the problem

and stored in a list and added at the end of the GCP solution to the

remaining problem. Also costs equal to 0 can be stored in a list.

Thus a graph with positive costs remains. The initial dual variables

are obtained by considering their optimal value at the previous sub-

gradient iteration and then testing that the reduced cost,

a . - u . - u,, is not negative for all arcs e . joining vertices V. and
0 % K j

V,. If o . - u . - u 7 < 0 then u . is reduced until either o . - u . - u,
k o V k i j % k

> 0 or u^ is equal to 0. This procedure is repeated until all arcs

have non-negative reduced cost. Then the minimum cost, 6, of arcs

incident to each vertex is found. If this is not equal to 0 then the

vertex weight, u., can be increased by 6. This gives a 0-graph in

which a matching is found from which to start the graph covering

algorithm.

8.5 Parameters Of The Program

Two tolerances are used in the graph covering algorithm. The first is

EPS and is approximately 10~ 3 and is the tclera-nce. i r) which the optimal

solution must lie. The second is ETA and any variable with absolute

value less than ETA is regarded as being equal to 0.

Iteration counters were used to limit the number of tree search nodes,

graph covering iterations, Subgradient iterations and number of times

the relaxation could be changed. In addition two parameters were

used to limit the number of subgradient optimization iterations

206

allowed without an increase in bound. These had a critical effect on

the execution time and it is essential that if a subgradient ascent

Is not producing an increase in the bound that the ascent is terminated.

The stepsize parameters and parameters 0 have been discussed in

Chapter 3 and choice of a was found to have a significant effect on

the search.

The number of rows relaxed in GCR1 prior to splitting columns to give

GCR2 did not seem to be a crucial factor. The most important factor

seemed to be the actual number of graph covering problems solved.

However relaxing a large number of rows initially means that small

GCP's are solved and this can reduce the computation time.

The option of whether or not to perform the preliminary reduction

phase was tested. It was found best,in almost.all cases,.to.use the

heuristic procedures firstly to reduce problem size and secondly to

get good bounds before the graph covering relaxation was used.

It would be advantageous to control the parameters dynamically in the

algorithms because^for example^the best stepsize parameters at tree

search nodes near the root were not always the best parameters further

down the tree. Also if there is a large gap between an estimated

lower bound value and upper bound at a node in a tree search it is

probably quicker to continue branching forward for one or two stages

without even calculating a bound.

CHAPTER 9

207

CONCLUSIONS

9.1 Summary

The most successful algorithm for small problems uses the heuristic

methods of Chapter 2 in a simple tree search. However they are

unsuitable for larger problems for two reasons. Firstly the upper

bounds they give are often much higher than the optimal solution.

Secondly the lower bound produced by the heuristics is bounded above

by the LP bound which often does not solve the SCP.

Although the attempts in Chapter 3 to accelerate the subgradient

ascent were not very successful some improvement was possible with

careful choice of parameters. The slow rate of increase in the bound

for the subgradient optimization ascent was a problem in Chapter 5

where theoretically the graph covering bound is greater than the LP

bound but in practice it is difficult to get the former bound to

exceed the latter.

The networK flow relaxations were not particularly useful as they

are superceded by Etcheberry's method [E4].

In Chapter 5 the graph covering relaxations are rarely able to compete

with the bounds obtained using the commercial LP code, APEX.

There are several reasons for this. The first, already mentioned,

is that the search direction and steplength used in subgradient

optimization were not particularly effective in increasing the lower

bound. Secondly the LP code uses a basis, that is a subset of the

columns for the bulK of the calculations. Thirdly the branching

208

strategy used by the APEX code is superior to that used in Chapter 5.

The decomposition algorithm of Chapter 6 is too costly for randomly

generated problems. However it is likely to perform much better on

problems for which the constraint matrix is almost in block diagonal

form. This is often the case in practical vehicle scheduling and

routing problems. The state space relaxation method was only briefly

studied and it gave lower bounds that were too low for practical

application. However combining it with the heuristics of Chapter 2

could produce good bounds.

The best bound strategy performed better than the depth first. However

it had storage limitations which made it impossible to use it on

large problems. Both of the branching on rows strategies used could

be improved by instead of solving for the bound at nodes that are

unlikely to be fathomed taking forward steps to generate new nodes

instead.

9.2 Extensions And Ideas For Future Research

g.2. l Extensions of the Graph Covering Algorithms

The blossom contraints in the graph covering relaxations are of the

form:

V„ E a., x. >

where V is the logical 'or' sign

R is a subset of the rows of the SCP

209

where tKSC/?)) is the optimal solution to the unicost problem SiR):

min ^ x.

-H n

S(K) a . . x . > 1 for all J - ' 'Z'J J

a?.e{0,1}

It may be possible to find SCP's with special structure for which

this type of constraints can be used to raise the bound. For the

graph covering relaxations R is a set of row of the SCP of odd

cardinality with at most 2 non-zero entries per column.

9.2.2 Aggregating Constraints

Although constraint aggregation may not in practice produce a bound

much better than that obtainable by Lagrangean relaxation it may be

computationally beneficial. Thus constraints can be multiplied by

variables and added together to give an integer knapsack problem.

The bound is at least as good as the LP bound and may be better.

9.2.3 Extensions to 0-1 Integer Programs

Several of the methods illustrated here are applicable to a more

general class of integer programs. For example the heuristics could

be used to. ^get dual feasible solutions to the LP relaxation of the

problem:

min ox

Ax > b

Xjz{0,1} j = 1,2,.... ,n

especially when the coefficients a., and right hand sides b. take small
I'd

non-negative integer values.

210

9.2.4 Improvement of the State Space Relaxations

The state space relaxations can be improved using the heuristics to

either give integer weights to each row or a dual feasible solution

to the LP. These can then be used to extend the state space as

mentioned in Chapter 6.

9.2.-5 Duality

The application of integer programming duality was only briefly

discussed in Chapter 6. It is useful because it enables reduced

costs to be calculated. Variables with large reduced costs are

rejected. Alternatively if a subset of columns is used for the

calculations variables with negative reduced cost' can be added to the

problem. Alternatives to LP duality should be investigated. These

could use cutting planes from which integer programming dual variables

can be defined.

9. 2.6 Methods For Improving The Code

This section deals with topics that have already been used by previous

researchers. It gives ideas for improving the SCP code.

1) . The subgradient ascent could be improved by using a linesearch

to calculate cr, the steplength. For example a cubic linesearch

could be used.

2) Using a subset of columns for the major calculations of the SCP

algorithm would speed up the program. This is analogous to

using a basis in LP. Reduced cost tests at nodes in a branch

and bound tree would then enable columns with negative reduced

211

costs to be brought into the problem.

3) Storage is a major problem in solving large sparse SCP's.

The CDC computer has a large word length which means that the

arrays can be packed. It would be possible to pack the arrays

that store the constraint matrix to roughly 1/6th their current

size. A slower way of handling larger problems would be to

store the constraint matrix out of core.

4) Often the upper bound produced by the heuristics was not optimal

and this meant that the tree searches were unnecessarily long.

Thus it would be useful to Calculate, initially an upper bound

from an r-optimal method.

5) Disjunctive cuts as used in Balas and Ho can be generated from

the graph covering dual variables. These would raise the bound

further at little extra cost, but possibly extra storage.

212

REFERENCES

Al A.V. AHO, J.E. HOPCROFT and J.D. ULLMAN "The Design Ind Analysis of

Computer Algorithms" . Addison-Wesley, 1974.

A2 J.P. ARABEYRE, J. FEARNLEY, F.C. STEIGER and W. TEATHER "The

Airline Crew Scheduling Problem: A Survey" Trans ; Sci. 3,

1969, 140-163.

A3 J.A. ARAOZ-DURAND "Polyhedral Neopolarities" PhD Thesis,

Dept. of Applied Analysis arid Computer Science, University of

Waterloo, Ontario, 1974.

A4 D. AVIS "A Note on Some Computationally difficult Set covering

problems" Math. Prog. 18, 1980, 138-145.

B1 E.K. BAKER, L.D. BODIN, W.F. FINNEGAN, R.J. PONDER "Efficient

Heuristic Solutions to an Airline Crew Scheduling Problem" AIIE

Transactions 11, 1979, 79-85.

B2 K.R. BAKER "Scheduling a Full Time Workforce to meet Cyclic

Staffing Requirements" Man. Sci. 20, 1974.

B3 E. BALAS "An Additive Algorithm for Solving LP with 0-1 Variables"

Opms.Res. 13, 1965, 517-546.

B4. E. BALAS "Set Covering with Cutting Planes from Conditional Bounds"

MSRR 399, Carniegie-Mellon University, 1977.

B5 E. BALAS "Cutting Planes from Conditional Bounds: A new approach

to set covering" Math. Prog. Study 12, Combinatorial Optimization,

1980, 19-36.

B6 E. BALAS and N. CHRISTOFIDES "A Restricted Lagrangean Approach

to the Travelling Salesman Problem" Working Paper,Imperial College,

Feb. 1979.

B7 E. BALAS and A. HO "Set Covering Algorithms using Cutting Planes,

Heuristics, and Subgradient Optimization: A Computational study"

Math. Prog. Study 12, Combinatorial Optimization, 1980, 37-60.

B8 E. BALAS and M. PADBERG "Set Partitioning: A Survey"SIAM Review

18, 1976, 710-760

also

"Set Partitioning: A Survey" in "Combinatorial Optimization"

N. CHRISTOFIDES et. al. (Ed.), Wiley, 1979.

B9 E. BALAS and H. SAMUELSSON "A Node covering Algorithm'1 • NRLQ

'21 , 1974, 213-233.

BIO M.L. BALINSKI "On Maximum Matching, Minimum Covering and their

Connections" Proc. Int. Symp. on Math. Prog. H.W. KUHN (ed.)

Princeton UP, 1970, 303-311.

Bll M.L. BALINSKI and R.E. QUANDT "On an Integer Program for a Delivery

Problem" Opns. Res. 12, 1964, 300-304.

B12 R.S. BARR, F. GLOVER, D. KLINGMAN "A Generalised Alternating

Path Algorithm for Transportation Problems" " I 'EJOR 2, 1978,

137-144.

B13 R. BARR, F. GLOVER and D. KLINGMAN "Enhancements of Spanning Tree

Labelling procedures for Network Optimization" INFOR 7, 1979,

16-34.

B14 J.J. BARTHOLDI, J.B. ORLIN, H.D, RATLIFF "Circular l's and Cyclic

Staffing" Research Report 77-11, University of Florida, Gainsville.

214

B15 J.O. BARTHOLDI'.and H.D. RATL1FF "A Field Guide to Identifying

Matching and'Ne'twork Flow Problems" Research Report, 77-12,

University of Florida, Gainsville, 1977.

B15a J.J. BARTHOLDI and H.D. RATLIFF "Unnetworks, with Applications to

Idle Time Scheduling" Man. Sci. 8, 1978, 850-858.

B15b M.S. BAZARAA, C.M. SHETTY "Nonlinear Programming, Theory and

Applications" Wiley, 1979.

B16 M. BEALE (Ed.) "Applications of Mathematical Programming Techniques"

EUP, 1970.

B17 D.E. BELL and J.F. SHAPIRO "A Convergent Duality Theory for

Integer Programming" Opns. Res. 25, 1977.

B18 M. BELLMORE, H.J. GREENBERG and J.J. JARVIS "Multi-Commodity

Disconnecting Sets" Man. Sci. 16, 1970, B427-B433.

B19 M. BELLMORE and HvD. RATLIFF "Optimal Defense of Multi-Commodity

Networks" Man. Sci. 18, 1971, 174-185.

B20 M. BELLMORE and H.D. RATLIFF "Set Covering and Involutory Bases"

Man. Sci. 18, 1971, 194-206.

B21 C. BERGE "Graphs and Hypergraphs" Dunod, Paris, 1970 (English

Translation: North-Holland Amsterdam, 1973).

B22 G.N. BERLIN and J.C. LIEBMAN "Mathematical Analysis of Emergency

Ambulance Location" Socio-Economic Planning Sciences 8, 1974,

323-328.

B23 A.T. BERZTISS "Data Structures: Theory and Practice" Academic

Press, 1971.

B24 F. BESSIERE "Sur la recherche du nombre chromatique d'un graph

par un pro^rammme lineaire un nombres entiers RAIRO 9;'1965,

143-148. 1

215

B25 0. BILDE and J. KRARUP "Plant location, Set covering and

Economic lot size. An 0(mn) algorithm for Structured Problems"

Res. Report IMSOR, The Technical University of Denmark, 1975,

and Report No. 75/6, Institute of Datalogy, University of

Copenhagen, 1975

also

"Sharp lower bounds and efficient Algorithms for the Simple Plant

Location Problem" Annals of Discrete Mathematics, 1, 1977, 79-97.

B26 J.M. BODER "A method for Solving Crew Scheduling"Problems"

ORQ 12, 1975, 55-62.

B27 L.D. BODIN and R.B. DIAL "Hierarchical Procedures for Determining

Vehicle and Crew Requirements for Mass Transit Systems* Report

College of Business and Management, University of Maryland, Jan 1979.

B28 N. BONDE and J . TIND "Bounds in Set Partitioning" Research Report

Institute of Operations Research, Univeristy of Aarhus, Denmark,

April 1976.

B29 V.J. BOWMAN and J. STARR "Set Covering by Ordinal Cuts I:

Linear Objective Functions" MSRR, No. 321, Carnegie Mellon University,

Pittsburgh,PA, June 1973.

B30 G.H. BRADLEY, G.G. BROWN and G.W. GRAVES "Design and Implementation

of large Scale Primal Transhipment Algorithms" Man. Sci. 24, 1977,

1-34.

B31 R. BREU and C.A. BURDET "Branch and Bound Experiments in 0-1

Programming" Math. Prog. Study 2, 1974, 1-50.

B32 M.A. BREUtR "Simplification of the Covering Problem with Application

to Boolean Expressions" JACM 17, 1970, 160-181.

216

CI P.M. CAMERINI, L. FRATTA and F. MAFFIOLI "On Improving Relaxation

Methods by Modified Gradient Techniques" Math. Prog. Study 3, 1975,

26-34.

C2 G. CARPANETO and P. TOTH "An efficient Algorithm for the Asymmetric

Travelling Salesman Problem* Presented at ORSA/TIMS Atlanta,

November 1977.

C3 C. CHARALAMBOUS and A.R. CONN "An efficient Method to solve the

minimax problem directly "SIAM J1. Num. Anal. 15, 1978, 162-187.

C4 J.W. CHRISSIS and R.P. DAVIS "Some Computational Experience with

Dynamic Set Covering Problems" Technical Report No. 7908, Dept.

of Industrial Engineering and Operations Research, Virginia

Polytechnic Institute, 1979.

C5 N. CHRISTOFIDES "Graph Theory: an Algorithmic Approach" Wiley,

1975 :

C6 N. CHRISTOFIDES "A minimax facilty location problem and the

Cardinality- constrained Set covering Problem" MSRR 375, Carriegie-

Mellon University, Pittsburgh, Oct. 1975.

C7 N. CHRISTOFIDES "The Vehicle Routing Problem" &AIR0

10, 1976, 55-70.

C8 N. CHRISTOFIDES and S. KORMAN "A Computational Survey of Methods

for the Set Covering Problem" Man. Sci. 21, 1975, 591-599.

C9 N. CHRISTOFIDES, A. MINGOZZI AND P. TOTH "State space relaxation

Methods for the Vehicle Routing Problem" Imperial College, Dept.

of Management Science Report IC-0R-79-09, 1979.

217

CIO N. CHRISTOFIDES and S.K. MITRA "A new algorithm for 0-1 Programming"

Imperial College, DMSS, Jan. 1974.

Cll V. CHVATAL "A Greedy Heuristic for the Set Covering Problem"

Math of OR 4, 1979, 233-235.

CI2 A. COBHAM, F. FRIDSHALL, J.H. NORTH "An application of Linear

Programming to the Minimization of Boolean functions" Proc. 2nd

Annual Symposium on Switching and Circuit Theory and Logical Design

AIEE, pub. 5134, 1961, 3-9 (see also IBM Res. RC-47 (1961).

C13 R.A. CODY and E.G. COFFMAN "Record Allocation for Minimising

Expected Retrieval Costs on Drumlike Storage Devices" J1. ACM 23,

1976, 103-115.

C14 G. CORNUEJOLS, M.L. FISHER and G. NEMHAUSER. "The Location of Bank

Accounts to Optimise Float" Man. Sci 23, 1977, 789-810.

CI5 G. CORNUEJOLS, G.L. NEMHAUSER and L.A. WOLSEY "Worst-case and

Probablistic Analysis of Algorithms for a Location Problem" MSRR

443, Carnegie-Mellon University, Pittburgh, 1979

CI5a H. CROWDER "Computational Improvements of Subgradient Optimization"

IBM Technical Report RC4907, Yorktown Heights, New York, 1974.

CI6 W.H. CUNNINGHAM and A.B. MARSH "A Primal Algorithm for Optimum

Matching" Math. Prog. Study 8, 1978, 50-72.

D1 R.H. DAY "On optimal extracting from a multiple file data storage

system: an application of integer programming" Opns. Res. 13, 1965,

482-494.

D2 U. DERIGS "AlgebraischeMatching Problems" Doctoral Thesis,

Mathematisches .Institut, Universtiatat Zu Koln, 1978.

D3 U. DERIGS and A. HESKE "A Computational Study on some Methods

for Solving the Cardinality Matching Problem" Report 79/2

Mathematiches Institut, Universitat Zu Koln, January 1979.

D3c U. DERIGS and G. KAZAKIDIS "On two Methods for Solving minimal

(

perfect matching problems", Report, Industrieseminar, Universitat

Zu Kb In, May 1979.

D4 I.S. DUFF and J.K. REID "Some design features of a Sparse Matrix

Code", ACM Trans. Math. Soft. 5, 1979, 18-35.

El J. EDMONDS "Covering and Packing in a Family of Sets" Bulletin

AMS 68, 1962, 494-499.

E2 J. EDMONDS "Paths, Trees and Flowers", Canadian J1. of Math. 17,

1965, 449-467.

E3 J. EDMONDS and E.L. JOHNSON "Matching, Euler Tours and the Chinese

Postman" Math. Prog. 5, 1973, 88-124.

E4 D:R. ERLENKOTTER "A Dual Based Procedure for Uncapacitated Facility

Location" Opns. Res., 26, 1979, 992-1009.

/

E5 J. ETCHEBERRY, "The Set Covering Problem. A new implicit

enumeration algoritm" Opns. Res. 25, 1977, 760-772.

E6 S. EVEN and 0. KARIV "An (n 2 , 5) - algorithm for Maximum Matching in

General Graphs" in "Proceedings fo the 16th Annual Symposium on

Foundations of Computer Science " IEEE , New York, 1975, 100-112.

Fl R. FLETCHER'^Ed.)"Optimization" Academic Press, 1969.

F2 L.R. FORD and D.R. FULKERSON "Flows in Networks", Princeton,

New Jersey and OUP, 1962.

219

F3 D.R. FULKERSON "Blocking and Anti-blocking Pairs of Polyhedra"

Math. Prog. 1, 1971, 168-194.

F4 D.R. FULKERSON, G.L. NEMHAUSER, L.E. TROTTER "Two Computationally

Difficult Set Covering Problems that arise in Computing the 1-width

of incidence Matrices of Steiner triple systems" Math. Prog. Study

2, 1974, 72-81.

F5 D.R. FULKERSON and D.B. WEINBERGER "Blocking pairs of Polyhedra

Arising from Network Flows" J1. Comb Th. (b)18,1975,265-283.

GI H. GABOW "An Efficient Implementation of Edmonds1 Algorithm

for Maximum Matching on Graphs" JACM 23, 1975, 221-234.

G2 M. GAREY and D.S. JOHNSON "Computers and Intractability: A Guide

to the theory of NP completeness" Freeman &.Co., San Fransisco, 1978.

G3 R.S. GARFINKEL and G.L. NEMHAUSER "Optimal Set Covering: A Survey11

in "Perspectives on Optimization" .A.M. GEOFFRION(Ed.) Addison-Wesley,

1972, 164-183.

G4 R.S. GARFINKEL and G.L. NEMHAUSER "Integer Programming" Wiley,

1972.

G5 B. GAVISH, P. SCHWEITZER and E. SHLIFER "Assigning buses to Schedules

in a Metropolitan area" Comp. and Opns Res 5, pp!29-138, 1978.

G6 E. GAVRIL "Algorithms for Minimum coloring, . Maximum clique,

Minimum covering by cliques and Maximum independent set of a

Chorda1 Graph" SIAM Jl. of Computation 1, 1972, 180-187.

G7 F. GAVRIL "Algorithms for a Maximum Clique and a Maximum Independent

Set of the Circle Graph" Networks, 3, 1973, 261-273.

220

G8 A.M. GEOFFRION "Lagrangean Relaxation for Integer Programming"

Math. Prog. Study 2. (M. BALINSKI, Ed) North-Holland, Amsterdam,

1974, 97-107.

G9 A.M. GEOFFRION and R. McBRIDE "Lagrangean Relaxation Applied to

Capacitated Facility Location Problems" AIIE Transactions 10, 1978,

40-47.

G10 A.M. GEOFFRION and R. NAUSS "Parametric and Postoptimality Analysis

in ILP" Man. Sci 123, 1977, 453-466.

Gil J.F. GIMPEL "A Reduction Technique for Prime Implicant Tables"

IEEE Transactions Elec. Comp.. EC,14, 1965, S35-541.

G12 J.F. GIMPEL "A Stochastic Approach to the Solution of Large

Covering Problems" IEEE Switching and Automata Theory, 1967, 78-83.

G13 F. GLOVER "Parametric Branch and Bound" OMEGA 6, 1975, 145-152

GI4 F. GLOVER, D. KARNEY, D. KLINGMAN and A. NAPIER "A Computational

Study on Start Procedures, Basis Change Criteria and Solution

Algorithms for Transportation Problems" Man. Sci. 20, 1974, 793-813. i

GI5 F. GLOVER and J. MULVEY "Equivalence of the 0-1 Integer Programming

problem to Discrete Generalised and Pure Networks" MSRS No. 75-19,

Princeton University, 1977.

G16 M. GONDRAN "Set Partitioning and Covering Algorithms Applications

and Algorithms" Bull. Dir. Etud. et Rech 2, 1976 (French), 59-68.

GI7 F. GRANOT and P. HAMMER "On the role of Generalised CoveringJVoblems"

CCERO 16, 1976, 207-216 and 277-289.

HI J. HALPERN "The Sequential Covering Problem under Uncertainty"

INFOR 15, 1977, 76-93.

221

H2 F. HARARY "Graph Theory" Addison-We.lsey, 1971.

H3 D. HAUSMANN and B. KORTE "Adjacency on 0-1 Polyhedra" Math. Prog.

Study 8, 1978, 106-127.

H4 M. HELD and R.KARP "The Travelling Salesman Problem and Minimum

Spanning Trees II" Math. Prog. 1, 1971, 6-25.

H4a M. HELD, P. WOLFE, H. CROWDER. "Validation of Subgradient Optimization"

Math. Prog. 6, 1974, 62-88.

H5 F.S.HILL1ER "Efficent Heuristic Procedures for Integer Linear Programming

with an interior" Opns. Res 17, 1969, 600-637

also

Tech, Rep. 2, Dept. of OR, Stanford University contains a FORTRAN

listing of the algorithm,

H6 F.S.HILIER andG.LIEBERMAN "Introduction to Operations Research"

Hoi den Day, 1974.

H7 A. HO "Worst Case Analysis of a Class of Set Covering Heuristics"

"Working paper, June 1979, Carnegie-Mellon University, Pittsburgh.
i

H8 E. HOROWITZ and S. SAHNI "Fundamentals of Data Structures" Computer

Science Press, Maryland, 1975.

H9 E.J..HOROWITZ and S. SAHNI "Fundamentals of Computer Algorithms"

Pitmans Publishing, 1979, London (English Edition) (First Published

1978 Computer Science Press, Maryland).

H10 R.W. HOUSE, L.D. NELSON, J.RADO "Computer Studies of a Certain Class

of Linear Integer Problems" in "Recent Advances in Optimization

Techniques" A. LAVI and T VOGL (Ed.) Wiley NY, 1966, 241-280.

222

11 T. IBARAKI "Theoretical Comparisons of Search Strategies in Branch and

Bound Algorithms" Intl. J1. Comp. and Inf. Sci. 5.

12 T. IBARAKI "Approximate Branch and Bound Algorithms" Math, of OR,

1, 1976.

13 0. H. IBARRA and C.E. KIM "Fast Approximate Algorithms for the Knapsack

and Sum of Subsets Problem" JACM 22, 1975, 463-468.

14 J.P. IGNIZIO "A Heuristic Solution to Generalised Covering Problems"

Ph.D Thesis, Virginia Polytechnic Institute and State University, Blacksburg,

Virginia, 1977.

J1 D.S. JOHNSON "Approximation Algorithms for Combinatorial Problems"

Jl. Comp. and Syst. Sci.. 9, 1974, 256-278.

J2 E.L. JOHNSON "On the Group Problem and a Subadditive Approach to Integer

Programming" Annals of Discrete Mathematics 5, 1979, 97-112.

J3 E.L. JOHNSTON "Support Functions, Blocking Pairs and Anti-blocking

Pairs". Math. Prog. Study 8, 1978, 167-196.

K1 R.M. KARP< "On the Computational Complexity of Combinatorial Problems"

Networks 5, 1975, 45-68.

K2 R.M. KARP "The Probabilistic Analysis of some Combinatorial Search

Algorithms" in "Algorithms and Complexity" J.F. TRAUB (Ed.), Academic

Press, 1976, 1-19.

K2a J. KING and V. NAKORNCHAI "An extension of ROC in Production Flow

Analysis" Dept. of Management Science, Imperial College, Report, n s o

K3 G.A. KOCHENBERGER, B.A. McCARL and F.P. WYMAN "A Heuristic for General

Integer Programming" Decision Sciences..5 9 1974, 36-44.

K4 S.M. KORMAN "Graph Colouring and Related Problems in OR" Ph.D Thesis

Dept. of Man. Sci., Imperial College, London, 1975.

K5 S.M. KORMAN "The Graph Colouring Problem" in "Combinatorial Optimization"

fL Christofides'et. al. (Ed.), Wiley, 1979.

K6 D. KNUTH "Fundamental Algorithms" The Art of Computer Programming, 1,

Addison-Wesley, 1968.

LI A. LAND and S. POWELL "Fortran Codes for Mathematical Programming"
i

Wiley, 1973.

L2 E.L. LAWLER "Combinatorial Optimization: Networks and Matroids" Holt,

Rinehart and Winston Inc., New York, 1976.

L3 E.L. LAWLER "Covering Probl ems. Duality relations and a new Method of

Solution" SIAM01. 14,1966,115-1132.

L4 E.L. LAWLER and D.E. WOOD "Branch and Bound Methods: a survey" Opns. Res.

14, 1966, 699-719.

L4a C.E. LEMKE "Bi Matrix Equilbrium Points and Mathematical Programming"

Man. Sci., 11, 1965, 681-689.

L5 C.E. L E M K E , H.M. SALKIN and K. SPIELBERG "Set Covering by Single Branch

Enumeration with LP Subproblems" Opns. Res. 19, 1971, 978-1022.

L6 B. LEV and A.L. SOYSTER "Integer Programming with Bounded Variables by

Canonical Separation" JORS 29, 1978, 477-485.

L7 S. LIN "Computer solutions of the Travelling Salesman Problem" Bell. Syst.

Tech. 01. 44, 1965, 2245-2269.

Ml R.E. MARSTEN "An Algorithm for Large Set Partitioning problems" Man.

Sci. 20, 1974, 774-787.

224

M2 G.T. MARTIN "An Accelerated Euclidean Algorithm for Integer

Linear Programming" in "Recent Advances in Mathematical Programming"

G. GRAVES and P. WOLFE(Ed.) McGraw-Hill, New York, 1963, 311-317.

M3 A. MEIR and J.W. MOON "Relations between Packing and Covering

Numbers of a Tree" Pacific J1. of Math. 61, 1975, 225-233.

M4 P. MEVERT and M ROHDE "Set Partitioning and Side Constraints"

Working paper 24/78, Freie Universitat, Berlin, 1978.
*

M4a E. MINIEKA "Optimization Algorithms for Networks and Graphs"

M. Dekker, New York, 1978.

M5 J.A. MORELAND "Scheduling Air Flight Crews" Masters Thesis,

MIT, Dept. of Aeronautics and Astronautics, 1966.

M6 J.M. MULVEY and H.P. CROWDER "Cluster-analysis: An Application

of Lagrangean Relaxation" Man. Sci. 25, 1979, 329-340.

M7 K. MURTY "On the Set Representation Problem and the Set Covering

Problem" in"Symposium of the Theory of Scheduling and its Application"

S.E. Elmagharaby (Ed. ̂ Springer-Verlag,Heidleberg, 1973, 143-161.

N1 G.L. NEMHAUSER, L.E. TROTTER and R.M. NAUSS "Set Partitioning and

Chain Decomposition" Man. Sci. 20, 1974, 1413-1423.

N2 G.L. NEMHAUSER and G.M. WEBER "Optimal Set Partitionings, Matchings

and Lagrangian duality" NRLQ 26, 1979, 553-563..

N3 R.G. NIGMATULLIN "The Fastest Descent Method for Covering Problems"

in Proc. Symposium on Questions of Precision and Efficiency of

Computer Algorithms, Book 5, Kiev, 1969, 116-126 (in Russian)

225

N4 S.C. NTAFOS and S.L. HAKIMI "On Path Cover Problems in Digraphs

and Applications to Program Testing" IEEE on Software Engineering,

1979.

PI M.W. PADBERG "On the Facial Structure of the Set Packing Polyhedra"

Math. Prog. 5, 1973, 199-215.

P2 M.W. PADBERG "Characterizations of Totally Unimodular, Balanced

and Perfect Matrices" in "Combinatorial Programming" B. ROY (Ed.)

D. Reidel Publishing Co, 1976, 275-284.

P3 M.W. PADBERG "Covering, Packing and Knapsack Problems" Annals of

Discrete Mathematics 4, 1979, North-Holland.

P4 M.W. PADBERG and S. HONG "On the Travelling Saleman Problem:

A Computational Study" T.J. Watson Research Center Report, IBM

Research, 1977.

P4a J.F. PIERCE "A Two Stage Approach to the Solution of the Vehicle

Dispatching Problem" Presented at the 17th TIMS Intl. Conf., LONDON,

1970.

P5 J.F. PIERCE and J.S. LASKY "Improved Combinatorial Programming

Algorithms for a class of all 0-1 IP problems" Man. Sci. 19, 1973,

528-543.

P6 C.J. PIPER and A.A. ZOLTNERS "Some easy postoptimal ity Analysis

for 0-1 programming" Man. Sci. 22, 1976, 759-65.

P7 W.R. PULLEYBLANK "Minimum node covers and 2-Bicritical Graphs"

Math. Prog. 17, 1979, 91-103.

P8 W.R. PULLEYBLANK and J. EDMONDS "Facets of 1-Matching Polyhedra" in

Hypergraph Seminar, Springer Verlag lecture notes on Mathematics, 411,

1974.

226

Q1 W.V. QUINE "The Problem of Simplifying Truth Functions" Am. Math.

Monthly 59, 1952, 521-531.

R1 C. REVELLE and R. SWAIN "Central Facilities Location" Geographical

Analysis 2, 1970, 30-42.

Rla J.B. ROSEN "The Gradient Projection Method" SIAM Jl. 8, 19.60, 181-217

R2 R. ROTH "Computer Solutions to Minimum-Cover Problems" Opns. Res. 17,

1969, 455-465.

R3 J. RUBIN "A Technique for the Solution of Massive Set Covering

Problems with Applications to Airline Crew Scheduling" Trans. .

Sci. 7, 1973, 34-48.

R4 R.A. RUTMAN "An Algorithm for Placement of Interconnected Elements

based on Minimum Wire Length" Proc. of AFIPS Cong. 20, 1964, 477.

51 S. SAHNI and T. GONZALES "P-complete Approximation Problems"

JACM, 23, 1976, 555-565.

52 H.M. SALKIN and R.D. KONCAL "Set Covering by an all Integer Algorithm

- Computational experience" JACM 20, 1973, 189-193.

53 H.M. SALKIN and J. SAHA "Set Covering: Uses Algorithms, Results"

Dept. of Tech. Memorandum No. 272, Case Western Reserve, University, 1972.

54 M.E. SALVESON "The Assembly Line Balancing Problem" Transactions

ASME, 77, 1955, 939-947.

55 H.M. SAMUELSSON "Solving Large Set Covering Problems" Working Paper

196, SUNY at Buffalo, 1974.

56 S. SENJU and B. TOYODA "Heuristic Method for 0-1 Programming: An

approach to LP with 0-1 variables" Man. Sci. 15, 1968, B196-B207.

227

57 J.F. SHAPIRO , rASurvey of Lagrangean Techniques for Discrete

Optimization" Tech. Report 133, OR Center, Massachussetts

Institute of Technology, 1976.

58 F. SHEPARDSON and R.E. MARSTEN "A Lagrangean Relaxation Algorithm

for the 2 duty Period Scheduling Problem" Technical Report 532,

Management Information Systems Dept., University of Arizona, Tucson,

A2, 85721, 1978.

59 L. STEINBERG "The Backboard Wiring Problem: a placement algorithm"

SIAM Review 3, 1961, 37.

T1 H.A. TAHA "Integer Programming: Theory, applications and computations"

Academic Press, NY, 1975.

T2 H.M. THIRIEZ "The SCP: A Group Theoretic Approach". RAIRO 3, 1971,

83-104.

T3 R. TIBREWALA, D. PHILIPPE and J. BROWNE "Manpower Scheduling"

Man. Sci.. 19, 1972, 71-75

T4 J. TIND "Blocking and Antiblocking Sets" Math. Prog. 6, 1974,

157-166.

T5 G.C. TITTERINGTON "An Algorithm to Select a near Minimal Spanning set

of vectors" in Bulletin of the Institute of Mathematics and its

Application, 13, Feb 1977.

T6 K.R. TOPALIAN "Tree Search Methods and the Set Covering Problem"

MSc Thesis, Department of Management Science, Imperial College, 1971.

T7 C. TORREGAS and C. REVELLE "Optimal Location under time or distance

Constraints" Papers of the Regional Science Association 28, 1972,

133-143.

228

T8 C. TORREGAS, R. SWAIN, C. REVELLE and L. BERGMAN "The Location

of Emergency Service Facilities" Opns. Res. 19, 1971, 1363-1373.

T9 Y. TOYODA "A Simplified Algorithm for Obtaining Approximate

Solutions to 0-1 Programming Problems" Man. Sci. 12, 1975,

1417-1427.

T10 M. TRYPIA and N. CHRISTOFIDES "Sequential Method for 0-1 Programming"

SIAM Jl. Appl. Math. 31, 1976, 271-285.

Til N.P. TUAN "A Flexible Tree Search Method" Opns. Res. 11, 1977,

972-989.

VI B. VON HOHENBALKEN "Least Distance Networks for the Scheme of

Polytopes" Math. Prog. 15, 1978, 1-11.

W1 W. WALKER "Application of the Set Covering Problem to the Assignment

of Ladder Trucks to Fire Houses" Opns. Res. 22, 1974, 275-277.

W2 G.M. WEBER "Sensitivity Analysis of Optimal Matchings" Tech.

Report 427, School of OR and Ind. Eng., Cornell University, May 1979.

W3 D. WEINBERGER "Network Flows, Minimum Coverings and the 4-colour

conjecture" Opns. Res., 24, 1976, 272-290.

W4 L.J. WHITE "Minimum Cover of Fixed Cardinality in Weighted Graphs"

21, SIAM Jl. 1973, 104-113.

W5 L.J. WHITE and M. GILLENSON "An Efficient Algorithm for Minimum

k- covers in Weighted Graphs" Math. Prog., 8, 1975, 20-42.

W6 L. WOLSEY "Valid Inequalities and Superaddivity for 0-1 IP's"

Math, of OR.2, 1977, 66-77.

229

W7 F.P. WYMAN "Binary Programming: a decision rule for selecting

Optimal Versus Heuristic Techniques" Comp. Jl . 16, 1973,

135-140.

Z1 S. ZANAKIS "Heuristic 0-1 Linear Programming, an Experimental

Comparison of 3 methods" Man. Sci 24, 1977, 91-104.

Z2 E. ZEMEL "Lifting the Facets of 0-1 polytopes" Math. Prog. 15,

1978, 268-277.

Z3 K. ZORYCHTA "On Converting the 0-1 Linear Programming Problem

to an SCP" Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys.

25,1977, 919-923.

230

JOURNAL ABBREVIATIONS

ACM Trans. Math. Soft

AIIE Trans.

Am. Math. Month.

Bell Syst. Tech. Jl.

Bulletin AMS

Canadian Jl. of Math.

CCERO

Comp. and Opns. Res.

Comp. Jl.

EJOR

Association for Computing Machinery

Transactions on Mathematical Software

American Institute of Industrial

Engineers • Transactions

American Mathematical Monthly

Bell System Technical Journal

Bulletin of the American Mathematical Society

Canadian Journal of Mathematics

Cahiers du Centre d'Etudes de Recherche

Operationnelle

Computers and Operations Research

Computer Journal

European Journal of Operational Research

INFOR

Int. Jl. Comp. and Inf. Sci

JACM

Jl. Comb. Th.(B)
Jl. Comp. and Syst. Sci.

JORS

Man. Sci.

Math, of OR

Canadian Journal of Operational Research

International Journal Computer and Information

Science

Journal for the Association of Computing

Machinery

Journal of Combinatorial Theory, Series B

Journal of Computer and System Science

Journal of the Operational Research Society

(formerly ORQ)

Management Science

Mathematics of Operational Research

231

Math. Prog.

NRLQ

Opns. Res.

ORQ

RAIRO

SIAM Jl.

SIAM Jl. Appl. Math.

^ T n M Jl. of Computation

SIAM Jl. Num. Anal.

SIAM Review

Trans. Sci

Mathematical Programming

Naval Research Logistics Quarterly

Operations Research

Operational Research Quarterly

Revue d'Automatique d'Informatique

et de Recherche Operationnelle - Operational

Research

Journal of the Society for Industrial and

Applied Mathematics (SIAM)

SIAM Journal of Applied Mathematics

SIAM Journal of Computation

SIAM Journal of Numerical Analysis

Si am Review

Transportation Science.

APPENDIX 1

Analysis Df Preliminary Reduction Strategies

To Prove

For an m x n SCP in which the fixed probability that a.. = 1 is p

the probability given any two rows and "that either row

dominates row or vice versa is:

2(1 - p + p 2) n - (1 - 2p + 2p 2) n

Proof

Suppose row i-i has r non-zero entries then the probability that row

r non-zero entries in the same position and hence row i-i dominates

row is:

p r (A1.1)

This case is shown below:

row i\ 1 1 1 1 . . . 1 0 0 0 . . . 0

row 1 1 1 1...1 1 0 0 ... 1

r non-zero.entries

row dominates row £2

The second case is when row i,2 dominates row and the rows are not

equal. Given that row has r non-zero entries the probability that

row has 0 whenever row i\ has 0 in a column and row has 0 in at

least one of the r non-zero columns of is:

(1 - p r H l - p) n " r (A1.2)

The case is shown below:

234

row i\ 1 1 1 1...1 0 0 0

row 1 0 1 0...1 0 0 0

. 0

. 0

r non-zero entries in row

row i>2 dominates row

Hence the probability that row i-i dominates row o r vice versa for

a given set of r 1's in row •ij is Cadding equations A1.1 and A1.2):

f. n-r r
C 1 - p) (1 - p) + p

and

for r > 1

for r = 0 (A1.3)

The probability that a row has exactly r 1's is:

Cr p (1 - p)

Yl,
n:

where C' is the binomial coefficient r,' in-r)J . Thus the probability

that row dominates row %2. o r vice versa is:

(1-p2*)(1 n-r r\
-p) + p \

-1 X\?«~p>
n „ = Z nC

r= 1 r (1-p)
2n

p/C1-p) - C1-p)
2n

P 2/(I-P) 2

r
(1-p)

rc
P 7 d - P)

r
C1-p)

n

t1 -p) 2 n 1 + p
n

- d - P) 2 n 1 + p 2
n
•+ C1-p)n 1 + p 2

(1-p) 2

IK ^
(1-p) 2 (1-p) * >

n

[since (1+cc)
n
 - 1 = 2?= 1 2?

(1 - 2p +p 2 + p) n - C1 ~ 2p +p 2 + p 2) n + (1 - p + p 2) n

2(1 - p + p 2) n - (1 - 2p + 2p2

O

APPENDIX 2

INDEX OF TERMINOLOGY

This list gives the section of the thesis in which a term is

described. The page number is the page on which the term is

first used.

TERM SECTION PAGE

Active node 1.2 4

Affine independence 1.3.3.4 27

Applications of the SCP 1.3.1 7

Balanced matrix 1.3.4.3 29

Bank float location problem

(BLP) 1.3.2.2 14

Best bound tree search 1.2 6

Branch and bound 1.2, 1.3.3.5 4

Branched node 1.2 6

Branching strategies 1.3.3.5, 7 23

Breadth-first tree search 1.2 6

Brother node 1.2 6

Chord 1.3.2.1 9

Chorda! graph 1.3.2.1 9

Circle graph 1.3.2.1 9

Circuit 1.1 2

Claw free graphs 1.3.2.1 9

Complexity results 1.3.4.1 26

236

Term

Cover

Crew scheduling

Cutting planes

Cyclic matrix, A(p,q)

Data structures

Decomposition

Depth-first tree search

Dual feasibility

Dual integer program

Dual linear program (DLP)

Dual set covering problem
(DSCP)

Dynamic programming
relaxations

Dynamic set covering
problem (DYSCP)

Facets

Father node

Fathomed

Feasible solution

Generalised Lagrangean
Relaxation (GLR(F))

Generalised set covering
problem (GSCP)

Graph

Graph Covering Problem(GCP)

Graph Covering relaxations i
Graph Covering

Section Page

1.2, 5.2 4

1.3.1 7

1.3.3.6 25

1.3.2.1 12

1.3.5 30

6 134
1.2 6

2.2 35

1.3.4.4 29

1.2 2

1.3.4.4, 29

6 134

1.3.2.2 15

1.3.4.2 28

1.2 4

1.2 4

1.2 4

1.3.4.4, 29

1.3.2.2 15

1.1 1
1.1, 1.3.2.1, 5.2 1

5 96

1.1, 5.2 1

237

SECTION PAGE

Heuristics 2 31

Heuristics for Lov/er Bounds

to the SCP 2.2 32

Heuristics for Upper Bounds

to the SCP 2.2,2.3 32

Information Retrieval 1.3.1 7

Integer Program (IP) 1.2 2

Interval graph 1.3.2.1 8

Knapsack Problem (KP) 1.2 2

Lagrange Multiplier,"X 1.2, 3 3

Lagrangean Relaxation, LR(X) 1.2, 3.1 2

Line Graph 1.3.2.1 9

Linear Programming Relaxation(LP) 1.2 2
Lower Bound, z 1.2, 1.3.3.3 4

»

Minimal Cover 1.1 1

Near-alternative solutions 3.4.3. 63

Network Flow Relaxations 4.1 78

Network Flow Relaxation, NF1 4.2 33

Node Covering Problem (NCP) 1.3.2.1 8

Non-deterministic Algorithm 1.3.4.1 26

NP Complete 1.3.2.1 8

Partitioning the constraints 5.3.4 100

Path 1.1 ' 1

Polyhedra 1.3.4.2 27

Preliminary reductions 1.3.3.1 18

Prime cover 1.2 4

Production Planning 1.3.1 8

238

TERM SECTION PAGE

Projection Method 3.2 52

Related Problems (to the SCP) 1.3.2 8

Relaxation 1.2 2

Root Node 1.2 4

Rotation of constraints 5.3.4 4

Routing Problems 1.3.1 7

Row Relaxation 3, 5.3 7

Scheduling Problems 1.3.1 7

Search Directions 3.3 55

Sensitivity Analysis 1.3.5 30

Set Covering Problem (SCP) 1.1 1

Set Partitioning Problem (SPP) 1.1 1

Shortest Path Problem 1.3.2.1 10

Sorting the Constraint Matrix 1.3.3.2 21

State Space Relaxation 6 134

Stepsize 3.4 51

Subgradient 1.2, 3 3

Subgradient Optimization 1.2, 3.2 3

Successor Node 1.2 2

Target Value 3.4.2 6 2

Theoretical Results 1.3.4, 26

Tree . 1 . 1 2

Tree Search 1.2 "2

Uncapacitated Plant Location 1.3.2.2 3
Problems (UPLP) -

Unimodularity 1.3.4.3 28

Upper Bound, z^ 1.2, 1.3.34 4

Vertex arc incidence matrix 5.2 96

Well-solved cases of the SCP 1.3.2.1 8

APPENDIX 3

AN EXAMPLE

A3.1 Introduction

This appendix illustrates the algorithms developed in each chapter

on the following example, SCP:

EXAMPLE A l -

minimise L \ 5 3 2 4 3]

subject to ~1 1 0 0 0 0" ~1 ~
0 1 1 1 0 0 1
1 0 1 0 1 1 1

SCP
0 1 0 1 1 1

X
SCP

0 1 0 1 1 1 1
0 1 1 0 1 0 1

_1 0 0 1 0 1 _ _1 _

x . 0 or 1 a = 1,2,. n
—

0

optimal solution to the SCP is given by X* = CO, 1, 0, 0, 0, 1)

and has a value y(SCP), equal to The optimal solution of the

corresponding LP, = (5, 5. 0, 0) and has value 7_. The

solution to DLP is u* = (2 , 0 , 1, 1, 2, 1) and the bound obtained is

obviously also 7.

A3.2 The Heuristic Lower Bounds, Chapter 2

The heuristic algorithms for upper and lower bounds are described.

Procedure 1 INITIAL BOUNDS starts with the column sums:

h = (3, 4, 3, 3, 3, 3)

240

and the dual variables are all zero giving reduced costs:

3 = (4, 5, 3, 2, 4, 3).

Iteration 1

»
The least cost per row satisfied is given by A = 0.6 from column 4

r
which covers rows 2, 4 and 6. Thus Ui = = ug = 0.6.

Rows 2, 4 and 6 are removed from the problem and updating the reduced

costs and column sums gives:

s = (3.3, 3.6, 2.3, 0, 3.3, 1.6)

h = (2, 2, 2, 0, 2, 1)

Iteration 2

The least reduced cost per row covered is given by A - 1.16 from

column 3. Thus W3 = U5 = 1.16. Rows 3 and 5 are removed and reduced

costs and column sums are updated to give:

s = (2.16, 2.5, 0, 0, 1, 0.5)

h = (1, 1, 0, 0, 0, 0)

Iteration 3

The least reduced cost per row covered is given by A = 2.1*6 from

»

column 1. Thus U\ = 2.16. All rows are covered and a prime cover

is given by:

x = (1, 0, 1, 1, 0, 0) with cost 3 = 9
u

and a dual feasible solution to DLP is:

u = (2.16, 0.6, 1.16, 0.6, 1.16, 0.6) with lower bound s =6.5.

241

Procedure 2 LPBOUND then finds rows for which u.fa Zx- 1) ^ O.In this

case rows 2, 3 and 6 do not satisfy the complementary slackness

conditions.

For row 2 u 2 is set equal to 0. and the reduced costs are then:

s = C O , 1 . 0 , 0 . 6 , 0 . 6 , 1 , 0 . 5) .

Considering row 4, u4 is increased to 1.16 and the reduced costs

become:

s = (0, 0.5, 0.6, 0.16, 0.5, 0)

Then u 5 is set equal to 1.6. Hence the lower bound is increased to

6.83. Reduced costs are now:

s = (0, 0, 0.16, 0.16, 0, 0)

and u = (2.16, 0 , 1.16', l.'l6, 1.6, 0.6)

A new prime cover is found because s .x . ? 0 for 3 = 3, 4. Thus the
3 3

new cover must be chosen from the columns 1, 2, 5 and 6, for example

= #2 = 1 with cost 9. Subsequent iterations do not yield an

improvement in the lower bound value.

A3.3 The NetworK Flow Lower Bounds tjCNFU, Chapter 4

This section illustrates the first of two networK flow relaxations,

NF1Id) together with subgradient optimization.

An initial matrix of costs d®.. — c ./h. for all 3, %zM. is given below:
3 3 3 J

Fig A3.1 Graph for Network Flow Relaxation NF1«

source
vertex

t Sin k
W-rtex.

Vertices
Representing
Rows

Vertices
Rc/v-esê fcioj
Colnr>vis

to
fO

243

d*.

\3
i\ 1 2 3 4 5 6

1 1.33 1.25

2 1.25 1.00 0.66

3 1.33 1.00 1.33 1.00

4 1.25 0.67 1.33 1.00

5 1.25 1.00 1.34

6 1.34 0.67 1.00

Zeros are omitted and is underlined whenever £.. = 1. The value

of the lower bound is 5.25. The networK flow solution is shown in

Fig.A3.1. The costs are changed in columns 2 and 3, for which tj

feasibility for the SCP is not satisfied. Suppose that for the

subgradient ascent a is chosen so that a - z^)/\ |i<?| | 2 = 0.5 then U AJ

Pz = 1> = 4, p3 = 2, hz r 3 giving:

tt12
 = 0.475 and tt22 = -= ^52 = "0.125

and TT32 = -0.333 and TT33 = TT35 = 0.166

The costs are then changed to d*. given below:
13

X
1 1.33 1.63

2 1.12 0.66 0.66

3 1.33 1.17 1.33 1.00

4 1.12 0.67 1.33 1.00

5 1.13 1.17 1.34

6 1.34 0.67 1.00

13

The bound then increases to 5.46.

At the final iteration the costs d.. were given by
1*3

244

v 1 2 3 4 5 6

1 2.06 2.02
*

2 -0.02 0.04 0.00
3 0.92 0.96 0.97 1.00
4 0.95 0.94 0.94 0.95
5 2.05 2.00 2.09
6 1.02 1.06 1.05

The lower bound from this solution is 6.88. The costs can be changed

to non-negative values so that ̂ 52 becomes 2.05 - 0.02 = 2.03 and d22

becomes 0. The dual feasible solution u obtained from these costs

is then (2.02, 0.00, 0.92, 0.94, 2.00, 102) giving a slightly improved

bound of 6.90. The corresponding reduced costs s., are given by
0

s = (0.04, 0.04, 0.08, 0.04, 0.14, 0.12) and since min s. > 0 for all
jeN^ 3

i, it is possible to increase W5 and Wg each by 0.04, giving u =

(2.02, 0.00, 0.92, 0.94, 2.04, 1.06). The corresponding reduced costs

are then (0.00, 0.00, 0.04, 0.00, 0.10, 0.08) and the lower bound is
6.98. The costs d.. are now as shown below:

id

X 1 2 3 4 5 6 u

1 2.02 2.02 2

2 0.00 0.02 0.00 0
3 0.92 0.93 0.95 0.95 1
4 0.94 0.94 0.97 0.97 1
5 2.04 2.05 2.08 2
6 1.06 1.06 1.08 1

It is not easy to find an LP feasible solution from this result. The

feasible solution suggested for the SCP here is = x2 = 1. This

solution has a cost of 9.

FIGURE A3.2

Graph For Example, NF2

I

-0-7S

The optimal flow is shown in heavy lines and has a cost of 5.5,

© Column offrM. SCP cju^t, ttiq. /, c/eWi/ec/

ro
cn

246

A3.4 The Second Network Flow Lower Bound, iKNF2)

The graph for the second network flow relaxation is shown in Fig.A3.2.

Initial costs are given by £./(/z. + 1). Each arc is labelled with

a cost and the index, j, of the column from which it is derived is

circled. The initial bound has value 5.5.

In this example set covering feasibility constraints are violated for

and 3. This means that costs in arcs (s ^) 1 , Ctf^Vs) 3,

IvJ , t) 3 are increased and costs in arcs B^*^) 1» (s,v 2)
3 and

3 are decreased. The number of arcs derived from column 1 in

which the flows are non-zero, pi, = 2 and for column 3, p 3 , = 2.

V
Suppose a is chosen so that r— = 0 . 5

I M I 2

then ir^ = 7r}3 = 7r
3
5 = rr^ = 0.25

and ir*6 = = irf3 = - 0 . 2 5

The corresponding costs are changed to give values as follows:

d l
aS 1 = = 1. 25

d 3

35 **u -

1. 00

d l

"36 • dlt = 0. 75

4 a •

 d h -

0. 5

A minimum cost flow in the resulting graph is non-zero in the same

arcs as before and has cost 6.5 which is greater than the initial flow

of 5.5.

FIGURE A3.2

Graph G, The Complement Df The Row Intersection Graph

t>! V2

• t

vs » » Vn

« 1

FIGURE A3.4

Graph Covering Problem For GCR1

vfc v/v

248

A3.5 The First Graph Covering Relaxation, GCR1, Chapter 5

A row intersection graph for the example is the complement of the

graph G shown in Fig.A3.3. The £th row is represented by a vertex,

i>., of G and is an arc whenever rows i and k do not intersect. t I K

A maximal clique in G is {v,V } corresponding to rows 5 and 6 which a r e
D D

disjoint in the SCP. Adding row^to rows 5 and 6 gives 3 rows which

make a graph covering problem. Assume the multipliers for the relaxed

constraints are equal to the LP optimal dual variables. Hence Xj = 2,

X 2 = 0 and X3= 1. Then the graph covering problem GCR1 is:

min [1 3 2 2 3 2] a: + 3

subject to 0 1 0 1 1 1 ~ ~1 ~

0 1 1 0 1 0 x > 1

1 0 0 1 0 1 _ 1

x .€{0,1} 0 = 1,2,...,6
<7

The graph covering problem is shown in Fig.A3.4 and an extra vertex V+

has been added to ensure that each column has at least two non-zero

entries in it. Each arc is labelled with its cost and the column from

which it is derived is encircled. The graph covering solution has cost

4, given for example by #3 = JC4. = 1, and added to the Lagrange

multipliers this gives a lower bound of 7 to the SCP.

Other solutions are = x2 = 1, #3 = x$ = 1 and = X5 = 1. The

subgradients (1 -Ax) for relaxed constraints corresponding to these

4 solutions are (1, - 1 , 0) , (-1, 0, 0), C1, 0, -1) and (0, 1, -1).

The optimal value of the Lagrangean function is 7,

249

A3.B The Second Graph Covering Relaxation, GCR2, Chapter 5

The initial costs are derived from the optimal dual variables to the

LP relaxation to give the following graph covering problem:

Column'No. * 1 2 ' 3 4 5 6 7 8 9 10 11 12

min d y = [3 1 2 3 1 2 1 1 2 2 2 1] y

subject to 1 i. 1

• LL' 1 1 1
1 ' - 1 1 1_ y - 1

1 1 1 ± 1
1 1 1 1

1 1 JL 1

yte{0,1} t = 1,2,...,12

(O's have been omitted from the constraint matrix)

An optimal solution is given by 1/3 =2/5 = y\\ = y 12 = 1, giving a

lower bound equal to 7. The solution is not feasible for the SCP

because y^ = 0 and 2/5 = 0 therefore the costs d4 and d$ decreased to

give costs:

d = [3 1 2.5 2.4: 1.5 1.5 1 1 2 2 2 1]

The lower bound given by the graph covering relaxation is then

A3.7 A Second Example To Illustrate A Combination Of The Two
Graph Covering Relaxations, Chapter 5

To illustrate the use of both graph covering relaxations together a

second example will be used.

250

Example A2

Consider the SCP with costs c• and constraint mgtrix A given below.

Column No.

Cost:

Row No. 1

2
3

4

5

6

7

8

9

10

A heuristic solution to the dual of the LP relaxation of SCP is given

by: u = (1, 0, 0, 1, 1, 1, 1, 1, 0, 0), giving a lower bound of 6.

The procedure for partitioning gives a row intersection graph G

from which a maximal independent set J° = .{1,5} can be removed. In

the resulting graph J 1 = {2,4} is a second maximal independent set.

Thus rows 1, 2, 4 and 5, corresponding to J°UJ1, from A 2* To these

rows can be added row 3. Then M\; the set of relaxed constraints,

is {6, 7, 8, 9, 10} and M , the set of graph covering constraints is

{1, 2, 3, 4, 5}.

Using the values of the given vector u to get initial multipliers X,

the resulting problem GCR1 is:

Column No. 1 2 3 4 5 6 7 8 9 10 11 12

min [1 , 1 , 1 , 2 , 2 , 1 , 3 ,' 2 , 4 , 5 , 1: , 4] x + 3

I 2 3 4 5 6 7 8 9 10 11 12

I I 1 2 2 2 6 3 6 6 3 6

1 0 1 1 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 1 1 1 0 0 0

0 0 0 0 1 0 0 1 1 1 0 0

0 0 0 0 0 1 1 1 0 0 1 0

0 0 0 0 0 0 1 0 1 1 0 1

0 0 0 0 0 0 1 0 1 0 1 1

0 0 0 0 0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 1 1 0 1 1

Subject to

251

Row No. 1 ~1 0 1 1 0 0 0 0 0 0 0 0~ ~1 ~

2 1 1 0 0 1 0 0 0 0 0 0 0 1

3 0 1 1 0 0 1 0 0 0 0 0 0 X > 1

4 0 0 0 1 0 0 1 1 1 0 0 0 1

5 _0 0 0 0 1 0 0 1 1 1 0 0 _ _1 _

A solution is = = xq = 1 which gives a bound of 7 to the SCP.

Constraints 7 and 8 are not satisfied and constraint 6 is oversatisfied

since x§ + Xq > 1. This means that X 6 must be decreased and X7 and X 8

increased. Suppose the values of X are changed to X 6 = 0, X 7 = 2,

Xq = 2. The objective function in GC1 then becomes:

(1 , 1 , 1 , 2 , 2 , 2 , 2 , 3 , 2 , 4 , 1 , 2) ac + 4

which has a solution â i = x2 = x$ = 1 and the lower bound is 8.

Subgradient optimization is continued until no further increase in the

bound is possible. The relaxation can now be rotated. Since = x2

- rcg = .1 constraints 6 and 9 are not satisfied. In this example, the

constraints that are not satisfied have equal multipliers, £5 = = 0;

therefore suppose constraint 6 is chosen arbitrarily to be added to the

graph covering constraints. Column 8 then has 3 1's in it so the

program is no longer a GCP. Either constraint 4 or constraint 5 can

be removed from the GCP, suppose constraint 4 is relaxed. Then

constraint 7 can also be added to the graph covering constraints.

Therefore Mi = {4, 8, 9, 10} and Af2 = {1, 2, 3, 5, 6, 7}. We compute

initial values of X: XT+ = 1, XQ = 2 , Xg = X 1 0 = 0.

Then the GCP after the rotation is:

Column No. 1 2 3 4 5 6 7 8 9 10 11 12

min [1 , 1 , 1 , 1 , 2 , 2 , 3 , 2 , 3 , 6 , 1 , 4] a : + 3

Row No. 1 1 0 1 1 0 0 0 0 0 0 0 0

2 1 1 0 0 1 0 0 0 0 0 0 0

3 0 1 1 0 0 1 0 0 0 0 0 0

5 0 0 0 0 1 0 0 1 1 1 0 0

6 0 0 0 0 0 1 1 1 0 0 1 0

7 0 0 0 0 0 0 1 0 1 1 0 1

~1 ~

x >
1

1

1

1

_1 _

An optimal solution is given by = 0:5 = Xj = 1 which leads to an

improved lower bound of 9. Constraints 9 and 10 of the original GCP

are not satisfied.

To combine the two relaxations first GCRKA) is solved and then

constraints that are not satisfied are added to the constraint matrix,

At the third iteration, the lower bound = 9, constraints 4, 8, 9, 10

are relaxed, and an optimal solution to GCR1CX) is cc3 = #5 = x7 = 1.

Constraints 9 and 10 are not satisfied. Adding these constraints to

the GCP the problem is:

Column No. 1 2 3 4 5 6 7 8 9 10 11 12

min [1 1 1 1 2 2 3 2 3 6 1 4]

Row No. 1 1 1 1

2 1 1 1

3 1 1 1

5 1 1 1 1

6 1 1 1 1

7 1 1 1 1

9 1 1 1

10 1 1 1 1

x>

Columns 8, 9, 10 and 12 contain more than two 1's and so they must be

split into the sum of columns as in GCR2(<i). A heuristic feasible

solution to-DLP is given by U\ = 1, u2 = 0, U3 = 0, U5 = 2 Wg = 0,

u-j - 3. Then calculating costs the problem becomes:

253

Col.No.
of SCP j

Col.No.
of GCP *

m m

2 3 4 5 6 7 8 8 9 9 10 10 11 12 12

2 3 4 5 S 7 8 9 10 11 12 13 14 15 16

Cost 1 1 1 1 2 2 3 2 0 3 0 5.7 0.3 1 3.7 0.3

Row No

1 1 1 1

2 1 1 1

3 1 1 1

5 1 1 1 1

6 1 1 1 1

7 1 1 1 1

9 1 1 1

10 1 1 1 1

The solution 2/3 = 2/5 = 2/7 = 2/9 = 1 gives a lower bound of 9 and 2/8 ^ 2/9?

therefore the set covering problem is not solved and d& must be decreased

and <5g increased. Taking ttq = -0.5 and irg = 0.5 the costs are changed

to dQ = 1.5 and d$ = 0.5. The optimal solution is 2/1 3 3 2/10 = 2/11'= 2/13 = 1

The bound is 9*3. Since 2/12 = 0 and 2/13 = <̂ 12 c a n be decreased to

5.2 and d\z increased to 0.8. The costs are then:

Col.No.
of GCP,£ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 1 2 2 3 1.5 0.5 3 0 5.2 0.8 1 3.7 0.3
+ 3

The solution is 2/3 = 2/5 = 2/7 = 2/9 = ^ giving a bound of 9.5. Again the

set covering feasibility are not satisfied for 3 = 8. Thus, increasing

<ig to 1.0 and reducing ds to 1.0 gives:

Col.No.
of GCP,* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 1 2 2 3 1 1 3 0 5.2 0.8 1 3.7 0.3
+ 3

A-solution is t/l = 2/2 = 2/8 = 2/11 = 2/15 = The cost of this solution

is 9.7; etc.

It is worthwhile to note here that the value of the LP solution to

the example used in this section is 9.5.

A3.8 Lower Bounds From Decomposition, Chapter 6

Using example A1 again and splitting the constraints as in the first

graph covering relaxation GCR1 one obtains the 2 SCP's, S1 from rows

1 to 3 of the SCP and S2 from the remaining rows:

min c-'y' = [3 2 1 0 1 1] y'
y

S1
subject to

~1 1 0 0 0 0 " ~ 1 " S1
subject to

~1 1 0 0 0 0 " ~ 1 "

0 1 1 1 0 0 y' > 1

—

_1 0 1 0 1 1 _ _ 1 _

y- £ {0 ,1} 0 =

and

min o"y" = [1 3 2 2 3 2]
y"

S2 S2
Subject to " 0 1 0 1 1 1 ~ ~i ~

0 1 1 0 1 0 y" > 1
_1 0 0 1 0 1 _ _i _

y'U {0,1} Q = 1,2,...,6
V

An optimal solution to S1 with value _3 is y ' = CO, 1, 0, 0, 0, 1) and

to S2 with value _4 is y" ~ (0, 0, 1, 0, 0, 1). The lower bound to

the SCP is then 7_.

Decreasing the costs and e£ and increasing costs a£ and o^ because

y'l ~ y3
 = 0

 and y'2 = 2/3 = 1 gives costs:

o' = [3 2.5

c" = [1 2.5

then tf(SC1) = 1>(SC2)

0.5 0 1 1]

2.5 2 3 2]

= 3 . 5 giving again a lower bound equal to 7.

A3.9 Lower Bounds From State Space Relaxation, SSR1

A state S is given a mapping glS) = where -i is the last non-

zero index of S. F^igtS)) is the value of state S at iteration k

of the state space relaxation. F^igiS)) = 0 for all S and

F.igiS)) = min [F. AgiS-a.))+e.].
K jeN k

 d 3

The SCP is:

min [4 5 3 2 4 3] x

subject to

x > 1

F (0,0) = 0
o

x.e{0,1} j = 1,2,...
0

Iteration 1

2^(1,1) = min [0+4, 0+5]

= 4

from row 1

Iteration 2

F2(1,2) = min Fg(0,0)+3] = 2 from row 2

F2{2,2) = min [F 0(0,0) + 5, ^ (1 , 1) + 3, ^ (1 , 1) + 2] = 5 from row 2

256

Iteration 3

F 3(1,3) = min [F 0(0,0) + 4, F 0(0,0) + 3] = 3

F 3(2 ,3) = min [F 0C0,0) + 4, F 0(0,0) + 3, F ^ ^ D + 4, 2^(1,1) + 3

F 2(1,2) + 4, F 2(1,2) + 3] = 3

F 3(3,3) = min [F 2(1,2) + 4, Fx(1,1) + 3, F 2(2,2) + 4, F 2(2,2) + 3] = 6

The remaining states have values:

(1 , 4) = 2 , 2 ^ (2 , 4) = 2 , F 4 (3 , 4) ' = 5 , F I T (4 , 4) = 5

F 5 (1 , 5) = 3 , F 5 (2 , 5) = 3 , F 5 (3 , 5) = 3 , F 5 (4 , 5) = 5 , FC-5,5) = 5

F G (1 , 6) = 2 , F 6 (2 , 6) = 2 , F 6 (3 , B) = 2 , F 6 (4 , 6) = 5 F(5,B)" = 6 , . F 6 (6 , 6) = 7

Again the lower bouhd equals the LP bound having a value of 7.

A3.10 Branching Strategies For The SCP, Chapter 7

A depth first tree search strategy branching on rows is shown in Fig.

A3.5. The first branching row is row 1 and xi is fixed equal to 1.

The next branching row is row 2 and x2 is fixed equal to 1. This

covers all rows hence in the absence of lower bounds. The tree search

backtracks x2 is set equal to 0 and £C3 is set equal to 1. Row 4 is

the next branching row and Xi+ is set equal to 1. The search backtracks

and rctf is set equal to 0 and #5 = 1. Then is set equal to 0 and

Xq = 1. ThuSj row 4 has bBen. completely,-considered and backtracking" to

row 2 takes place w h e r e i s set equal to 0 and-x^ becomes 1. The

rest of the search is shown in Fig.A3.5T.

A breadth first tree search would trace the same nodes in the order:

1, 9, 2, 3, 7, 10, 13, 15, 4, 5, 6,8,11, 12, 14.

FIGURE A3.2

A Depth First Tree Search Branching On Rows For The SCP

gives the total cost of the variables fixed equal to 1.

0/>Mr»<tl so/H Hon xz- xb s / cost - 8

© node number h

258

A3.11 Implementation, Chapter 8

Storage of the constraint matrix in the list of non-zero rows JTI

with pointer JP to the end of each column gives for example A1:

JTI = (1, 3, 6, 1, 2, 4, 5, 2, 3, 5, 2, 4, 6, 3, 4, 5, 3, 4, 6)

JP = C 3, 7, 10, 13, 16, 19)

and the list of non-zero columns ITJ with pointer IP to the end of

each row is:

ITJ = (1, 2, 2, 3, 4, 1, 3, 5 / 6 , 2, 4, 5, 6, 2, 3, 5, 1, 4, 6)

IP = (2, 5, 9, 13, 16, 19)

In the first graph covering relaxation GCR1 the first three constraints

are relaxed giving MREL, the number of relaxed constraints equal to 3

and the list of relaxed constraints equals:

LREL = (1, 2,' 3)

The linked list ILK that links rows not in the problem starts at row 4

and equals:

ILK = (-1, -1, -1, 5, 6, 0)

For the second graph covering relaxation, GCR2, the linKed list that

defines how the columns are split, JLK, is given as:

JLK = (1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6, 12, 0)

In a branching strategy consider node 5 for the depth first tree

search of Fig.A3.6. This is at depth 3 in the tree, hence LEV, the

depth of the search tree is equal to 3.

The list of branching rows, IBR, is equal to (1, 2, 4). For each row

KST is a vector that gives the position in ITJ of the branching

259

variable. Therefore:

KST = (1, 4, 12)

being the positions where the branching variables that are fixed equal

to 1, x\, and #5 are storeA in try. The list of variables fixed is:

LREP = (1, -2, 3, -4, 5)

indicating that x2 = Xi+ = 0 and Xi = = #5 = 1.

The number of variables fixed at each level of the tree search is:

KREP = (1 , 3 , 5)

The cost of the fixed variables is 11 and this is stored.

For a best bound tree search for each node the position of the father

node is stored in a list. Here node 5 has father node 3 which has

father node 0 which is the root. The branching row is stored for each

node, as is the position of the branching variable in the list ITJ.

In addition the bound value must be stored at each nods.

APPENDIX 4
260

The Test Problems Used

4.1 Randomly Generated Problems

The problems used in Chapters 2, 3, 4, 6 and 7 were all

randomly generated. The constraint matrix was of two types, type A

and type B. The first type had a fixed probability, p, that

was equal to 0 or 1. The second type had a constraint matrix that

increasedan density as the index of the constraint increased.
h

This density ranged from 0.5p in the first constraint to 1.5p in

the last constraint. The costs were of three types. The first

was U in which all the costs equalled 1. The second was H in which
'm

Cj was equal to E a^.. The third type of cost was obtained by

m
setting c . to 2 z a.. + 5 and if this value was greater than 15

J i = 1 i J

it was reduced by 10. This was denoted by x in the tables «

A4.2 Korman's Test Problems; Table 5.5

These problems were generated from random graphs. The columns

of the SCP represented cliques in a graph. All these problems had

costs equal to 1.

A4.3 Problems AHSC14 - AHSC17; Table 5.6

These problems were used by Sal kin and Koncal (S2) and are

numbered 3.5 to 3.8 in Balas and Ho (B7). They had coefficient

matrices of 2% density. In addition every column had at least one, and

every row at least two, non-zero entries. The costs ranged between 1

and 100.

261

A4.4 Problems LSSC1, LSSC9; Table 5.8

These two 200x2000 problems had density of 2% and are problems

5.1 and 5.9 of Balas and Ho (B7). They were randomly generated.

A4.5 Problems LSSC16, LSSC20, LSSC21, LSSC22; Table 5.8

These problems were also randomly generated and had 2% density.

They correspond to problems 4.1 9 4.5, 4.6 and 4.7 of (B7)

A4.6 Problems SALK12, SALK13; Table 5.8

Problem SALK12 is attributed to A.M. Geoffrion. It was randomly

generated with a coefficent matrix density of 7%. However the reduction

tests gave a problem with aidensity of 4%. it is problem 1.12 of

(B7). Problem SALK13 is described by Salkin and Koncal (S2) as coming

from American Airlines.

APPENDIX 5

The Language used in the Procedures

The description of Pidgin ALGOL given below explains the language used

in the Procedures.

Pidgin A L G O L is unlike any conventional programming language in
that it allows the use of any type of mathematical statement as long as its mean-
ing is clear and the translation into R A M or RASP code is evident. Similarly, f
the language docs not have a fixed set of data types. Variables can represent
integers, strings, and arrays. Additional data types such as sets, graphs, lists,

and queues can he introduced as needed. Formal declarations of data types
are avoided as much as possible. T h e data type of a variable and its scopet
should he evident either from its name or from its context.

Pidgin A L G O L uses traditional mathematical and programming language
constructs such as expressions, conditions, statements, and procedures. In-
formal descriptions of some of these constructs arc given below.
A Pidgin A L G O L program is a statement of one of the following types.

1. variable expression
2. if condition then statement else s ta tement!
3a. whilecondition do statement

b. repeat statement until condition
4. for variable «— initial-value step step-sizc§ until final-value do statement
5. label: statement
6. goto label
7. begin

. statement;
statement;

statement;
statement

end
8a. procedure name (list of parameters): statement

b. return expression
c. procedure-name (arguments)

9a. read variable
b. write expression

10. comment comment
11, any other miscellaneous statement

t The scope of a variable is the environment in which it has a meaning. I-or example,
the scope of an index of a summation is defined only w ithin the summation and has no
meaning outside the summation.
$ "else s t a tement" is optional. This option leads to the usual "dangling e l se" ambi-
guity. We take the traditional way out and a s sume else to be matched with the closest
unmatched then.
§ "step s tep-size" is optional if step-size is 1.

263

We shall give a brief synopsis of each of these statemc..» types.
1. The assignment statement

variable expression

causes the expression to the right of*— to be evaluated and the resulting value
to be assigned to the variable on the left. The time complexity of the assign-
ment statement is the lime taken to evaluate the expression and to assign the
value to the variable. If the value of the expression is not a basic data type,
such as an integer, one may in some cases reduce the cost by means of pointers.
For example, the assignment A — li where A and li are n x n matrices would
normally require (Hir) time. However, if li is no longer used, then the time
can be made finite and independent of n by simply renaming the array.

2. In the if statement

if condition then statement else statement

the condition following the if can be any expression that has a value true or
false. If the condition has the value true, the statement following then is to
be executed. Otherwise, the statement following else (if present) is to be exe-
cuted. The cost of the if statement is the sum of the costs required to evaluate
and test the expression plus the cost of the statement following then or the
cost of the statement following else, whichever is actually executed.

3. The purpose of the while statement

while condition do statement

and the repeat statement

repeat statement until condition

is to create a loop. In the while statement the condition following while is
evaluated. If the condition is true, the statement after the do is executed.
This process is repeated until the condition becomes false. If the condition
is originally true, then eventually an execution of the statement must cause
the condition to become false if the execution of the while statement is to ter-
minate. The cost of the while statement is the sum of the costs of evaluating
the condition as many times as it is evaluated plus the sum of the costs of exe-
cuting the statement as many times as it is executed.

The repeat statement is similar except that the statement following repeat
is executed before the condition is evaluated.
4. In the for statement

for variable <— initial-value step step-size until final-value do statement

initial-value, step-size, and final-value are all expressions. In the case where
step-size is positive the variable (called the index) is set equal to the value of
the initial-value expression. If this value exceeds the final-value, then execu-
tion terminates. Otherwise the statement following do is executed, the value
of the variable is incremented by step-size and compared with the final-value.
The process is repeated until the value of the variable exceeds the linal-valuc.
The case where the step-size is negative is similar, but termination occurs
when the value of the variable is less than the final-value. The cost of the
for statement should be obvious in light of the preceding analysis of the while
statement.

The above description completely ignores such details as when the ex-
pressions for initial-value, step-size, and final-value are evaluated. It is pos-
sible that the execution of the statement following do modifies the value of
the expression step-size, in which case evaluating the expression for step-size
every time the variable is incremented has an effect different from evaluating
step-size once and for all. Similarly, evaluating step-size can affect the \ . t lue
of final-value, and a change in sign of step-size changes the test for termination.
We resolve these problems by not writing programs where such phenomena
would make the meaning unclear.

5. Any statement can be made into a labeled statement by prefixing it with
a label followed by a colon. The primary purpose of the label is to establish
a target for a goto statement. There is no cost associated with the label.

6 . ' The goto statement

goto label (

causes the statement with the given label to be executed next. The statement
so labeled is not allowed to be inside a block-statement (7) unless the goto
statement is inside the same block-statement. The cost of the goto statement
is one. goto statements should be used sparingly, since they generally make
programs difficult to understand. The primary use of goto statements is to
break out of while statements.

7. A sequence of s tatements separated by semicolons and nested between
the keywords begin and end is a statement which is called a block. Since a
block is a statement, it can be used wherever a statement can be used. Nor-
mally. a program will be a block. The cost of a block is the sum of the costs
of the statements appearing within the block.

8. Procedures. In Pidgin A L G O L procedures can be defined and subse-
quently invoked. Procedures are defined by the procedure-definition state-
ment which is of the form:

procedure name (list of parameters): statement

The list of parameters is a sequence of dummy variables called formal param-
eters. For example, the following statement defines a function-nruccdjiiv*

procedure MIN(.i\ y):
if .v > v then return v else return x

The arguments x and v arc formal parameters.
Procedures are used in one of two ways. One way is as a function. Af te r

a function procedure has been defined, it can be invoked in an expression by
using its name with the desired arguments. In this case the last statement
executed in the procedure must be a return statement 8(b). The return state-
ment causes the expression following the keyword return to be evaluated and
execution of the procedure to terminate. The value of the function is the value
of this expression. For example.

A MIN(2 + 3. 7)

causes A to receive the value 5. The expressions 2 + 3 and 7 are called the
actual parameters of this procedure invocation.

The second method of using a procedure is to call it by means of the
procedure-calling statement 8(c). This statement is merely the name of the
procedure followed by a list of actual parameters. The procedure-calling
statement can (and usually does) modify the data of the calling program. A
procedure called -this way does not need a return statement in its definition.
Completion of execution of the last statement in the procedure completes the
execution of the procedure-calling statement. For example, the following
statement defines a procedure named I N T E R C H A N G E .

procedure I N T E R C H A N G E D , v):
hen in

/ — .v:
.v — v;
y — t

end

To invoke this procedure we could write a procedure-calling statement such as

I N T E R C H ANCi E(/l [/], A [j J)

There arc two methods by which a procedure can communicate with other
procedures. One way is by global variables. We assume that global variables
are implicitly declared in some universal environment. Within this environ-
ment is a subcnvironincnt in which procedures arc defined.

The other method of communicating with procedures is by means of the
parameters. A L G O L 60 uses call-by-value and call-by-name. In calj-by-
value the formal parameters of a procedure are treated as local variables which
are initialized to the values of the actual parameters. In citll-by-numc formal
parameters serve as place holders in the program, actual parameters being
substituted for every occurrence of the corresponding formal parameters. l*'or
simplicity we depart from A L G O L 60 and use call-hy-reference. In call-by-
reference parameters are passed by means of pointers to the actual parameters.
If an actual parameter is an expression (possibly a constant), then the corre-
sponding formal parameter is treated as a local variable initialized to the value
of the expression.
9. The read statement and write statement have the obvious meaning. The

read statement has a cost of one. The write statement has a cost of one plus
the cost of evaluating the expression following the keyword write.
10. The comment statement «d!ows insertion of remarks to aid in the under-
standing of the program and has zero cost.

11. In addition to the conventional programming language statements we in-
clude under "miscellaneous" any statement which makes an algorithm more
understandable than an equivalent sequence of programming language state-
ments. Such statements arc used when the details of implementation are cither
irrelevant or obvious, or when a higher level of description is desirable. Some
examples of commonly used miscellaneous statements are:

a) let a be the smallest clement of set 5
b) mark element a as being "a ld" t
c) without loss of generality (wig) assume that . . . otherwise . . . in statement

1-or example,

wig assume a b otherwise interchange c and </ in statement

means that if a ^ b the following statement is to be executed as written.
If a > />, a duplicate of the statement with the roles of c and d inter-
changed is to be executed.

Copyright <•;) 1974 hy Hell Telephone Laboratories. Incorporated, J. F. Hoperoft. anil J. I).
Ullni an. Philippines copyright 1974 by Hell Telephone Laboratories, Incorporated. J. F. Mop-
croft, and J. I). Ullman.

All lights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America. Published .simultaneously in Canada. Library of Congress Catalog Card No. 74-3995.

ISDN 0 301 00079 0
ABCOEFGHIJ MA-79 8 765

