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ABSTRACT 

Solution methods .for the set covering problem, SCP, are the subject 

of this thesis. This problem is widely encountered, notably in 

operational research, computer science and electrical engineering. 

A survey of applications and algorithms is given in the 'first 

chapter. Heuristic algorithms that obtain upper and lower bounds on 

the optimal solution value' are given in Chapter 2. The SCP can be 

formulated as an integer program and one of the more successful 

approaches to this type of problem is Lagrangean relaxation embedded 
\ 

in a branch and bound (tree search) strategy. Chapter 3 illustrates 

techniques for efficiently increasing lower bounds obtained from 

Lagrangean relaxations. Lower tjounds to the SCP are derived using 

network flow and graph theory in Chapters 4 and 5. Chapter 6 discusses 

decomposition and state space relaxations for obtaining lower bounds 

to the SCP. Branching strategies are considered in Chapter 7. The 

implementation of. an algorithm for the SCP using the graph covering 

relaxations is given in Chapter 8. Conclusions, together with ideas 

for future research, are given in the final chapter. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE SURVEY 

1.1 Definitions 

The set covering problem, SCP, is the integer program: 

T I 
SCP min{<2 x\Ax>± j x .e{0,1} , <7 = 1,2,... ,n} 

x - 3 

where A is an m x n matrix with a . . equal to 0 or 1 and 1_ is an m-

dimensional vector of 1's . It is so called because each column 

of the constraint matrix A represents a subset of a set, M say, of 

m elements with a . . = 1 if and only if the ith element of M belongs 

to the 3th subset, Af.. The cost of subset Af. is Q-, The optimal 
3 3 0-

solution, x*, to the SCP gives a minimum cost collection of subsets, 

K % in which each element of M occurs at "least once. A subset, Af., 
3 

is in K* if and only if cc.* = 1. Let N •= {1,2,...,n} be the index 
3 

set of subsets of M and let N. = The jth column of A 

will be denoted by a - and the -Cth rcu> by a , 
. 3 

Closely related to the SCP is the set partitioning problem, SPP, in 

which the inequality constraints are replaced by equality constraints. 

The graph covering problem, GCP, is a special case of the SCP in which 

each column has at most two non-zero entries. 

A graph, G  s GiV,E'J, consists of a vertex set V and an edge (arc) set 

E, If there are m vertices denoted by v., t-1,2,...,m, and n arcs • 

denoted by e ., «7 = 1,2,... let A be the vertex-arc incidence matrix. 
J 

Thus if arc e . connects v . and vv then a.. = av. = 1 and a6 * ~ 0 for 

Z 1 Associated with each arc e . let there be a cost <?.. The 



resulting SCP is the problem, GCP, of finding a minimum cost set of 

arcs such that each.vertex is incident with at least one arc in the set 

A path Of length p is a sequence of vertices V .q ,V ... ̂ v ,p and a 

k i 
circuit is a path i £ i for k t I. A tree is a 
~ ' — — — — u u 7s — — — 

connected graph with no circuits. 

1.2 Relaxations 

A relaxation of an SCP is an easier problem such as a graph 

covering, network flow or linear program whose feasible region 

contains the feasible region of the SCP. Thus solving the relaxation 

gives a lower bound to the SCP. 

The linear programming relaxation of the SCP, LP, is obtained by 

replacing a?.e{0,1} by 1 > x. > 0 in the SCP. The dual linear program, 
3 3 

DLP, is then: 

T T 
DLP max{1 u\A u < o , u > 0} 

u ~~ ~~ 

Another relaxation of the SCP gives a knapsack problem, KP: 

T.m n rn 
KP min{e ' — : » ... ,n} 

where the weights X . > 0 are given and the weighted constraints of 

the SCP are added together to give a single constraint. 

Given an integer program, IP, 

T i 
IP min{<? x\Ax > b , Bx > d, x integer} 

x 

& Lagrangean relaxation [GQ], L R U ) , is the problem: 

rp rp 
LR(X) min{c x - X .(Bx ̂ -d) \Ax > b, x integer} 



The constraints Ax > b are chosen so as to give an easily solved 

problem LR(X) such as a network flow, minimum spanning tree or 

shortest path problem. If LCX) is the optimal objective function 

value of LRCX) this gives a lower bound to the optimal solution value 

• y ' — . 

of IP. If. a solution, x, to the relaxation LRCX) satisfies X (Bx~d) - 0 

and is feasible for IP than x is an optimal solution to IP. 

The best lower bound obtainable from such a Lagrangean relaxation is 

given by LCX*) where X* is an optimal solution to the problem LR 

below: 

LR [~LCX*) = max LCX) 
L X>0 

One method of solving LR is to use subgradient 

optimization, in which, for a given value of X, LR(X) is solved. If 

the optimal solution to LRCX), x , is not optimal for IP then a sub-

gradient y is given by y = d - B x T h e Lagrange multiplier X is then 

updated by X X + oy for a positive.constant a. More generally a 

subgradient, y, of a function f : I? R at a point XsR? is a"vector 

for which /CX + ad) - /EX) < cy^d for all dzlP and sufficiently small 

a , a > 0. ' ' • 

A
 network flow problem [F2] is used to describe the problem of finding 

a minimum cost feasible flow in a network in which each arc has an 

upper and lower bound on the flow and a cost. This is formulated as 

the integer program, NF, 

1 " M ° i k K * k 

NF 
subject to 

- Z ^ = vU) for all vertices i 
k k 

Ufo > Zjfr > for all arcs H,k) 



where vtt) = V if % is the source vertex, vti) = 

vertex and v H ) = 0 otherwise; 

-v if i is the sink 

u^k is an upper bound on the amount of flow in arc (i,k) 

is a- lower bound on the flow in arc H , k ) . 

A feasible solution to the SCP is one that satisfies the constraints 

and is known as a cover. A prime (minimal) cover, x, is a cover for 

which no element x . that is set equal to 1 can be set equal to 0 
»1 

without violating a constraint. An optimal solution to the SCP is a 

prime cover if all the costs are positive. The optimal solution of a 

problem P will be marked by * and the optimal objective function 

value by V('P). An optimal solution of the SCP will be donoted by a?* 

T 
and z* * c x* = tf(SCP). An upper bound to the SCP will be denoted by 

z and a lower bound by z , • u * ^ 

A successful technique in solving integer programs is branch and 

bound [B3J Itree search). The given SCP corresponds to the root node 

of the tree. Subsequent SCP's are generated by fixing variables in 

the original problem and these give rise to successor nodes. The 

bounds can be generated by solving a relaxation of the SCP at each 

node. 0 noct«- is -fcM^rr^s-cL )f- cyo* t&JL- ftfUoioin^ C&ndiHbns l^okh:-

(i) The lower bound exceeds an upper bound, to 

the SCP 

(ii) The relaxed problem is infeasible 

(iii) The solution to the relaxed problem corresponds 

to a feasible solution to the SCP and satisfies 

the complementary slackness conditions. 

No successor nodes are generated from a fathomed node, otherwise 

variables are fixed and further subprobiems are generated until all 

the nodes have been fathomed. An active node in a tree search is 



Figure 1.1 

An Example of a Search'Tree for a Branch and Bound .Procedure 

An upper bound, z^, is 11 

Nodes are labelled O 

A depth-first tree search would search the nodes in the order 

A, B, D, C, E, F, G, H 

A breadth-first tree search would search the nodes in the order 

A, B, C, D, E, F, G, H 

A best bound search would search the nodes in the order 

A, C, F, E, G, H, B, D 

Node C is the father of E 

Node F is the brother of E 

Node D is fathomed since z = z 
Z u 

Nodes E, G and H are active 

Node F is branched 



one which is not fathomed and from which no branching has taken 

place. A branched node is one from which branching has taken place 

and which has not been fathomed. A father node of a node, P , in a 

search tree is the node immediately above P^ in the tree and a 

brother node of P^ is one which has been generated from the same 

father node as that of P . A depth-first tree search explores 

recursively a successor node until a node is fathomed,The algorithm 

then backtracks until a node from which a successor node can be 

generated is found. A breadth-first tree search explores all the 

successor nodes of a single node and then takes the first successor 

node and explores all its successors, the second successor node and 

all its successors and thus continues until all nodes are fathomed. 

The best bound search chooses the next node from which to branch as 

the one with the lowest bound. Other heuristics can be used for the 

strategic problem of choosing the next node from which to branch. 

Tree searches are shown in Fig.1.1. 

1.3 Literature Survey 

Applications of the SCP are listed in the first of four parts to this 

section. A discussion of problems that are related to the SCP follows 

Solution techniques for these problems are often applicable to the SCP 

Algorithms for the SCP are reviewed briefly in the third part and the 

final part outlines some of the many theoretical results that have 

been obtained for the SCP. Surveys of the SCP are given in Garfinkel 

and Nemhauser [G3], Gondran [G16] and Christofides and Korman [C8]. 

Many of the practical problems given in the survey paper for the SPP 

by Balas and Padberg [B8] can also be solved using the SCP. 



1.3.1 Applications 

•ne of the first applications of the SCP was to . airline crew 

scheduling problems [A2, B1, M5, R3, B26]. The columns of the SCP 

represent sequences of flight legs and the rows represent crews. - The optimal 

solution"to the SCP then gives an optimal allocation of crews to flight 

legs. More general personnel scheduling problems that have been 

solved by SCP's are given in [T3], The SCP has also been used to 

allocate buses to schedules [G5, S8], 

Location of emergency facilities can be analysed using SCP's [B22, B25, 

R1, 17, T8, W1].. In these problems each row of. the SCP represents a 

district in a town and each column a possible location for an emergency 

facility such as an ambulance or fire station. A,location problem 

using the cardinality constrained set covering problem in which the 

number variables that can be set equal to 1 is constrained is given 

in [CB], 

The SCP is also used in routing problems. For a delivery problem 

each route can be represented by a column of the SCP and each 

destination by a row. Associated with each route is a cost (distance) 

and the SCP solution gives a set of routes of minimum cost (distance) 

that visits each destination. This is described in Pierce [P4]. 

The SCP has been used for circuit and switching theory in electrical 

engineering and for minimising boolean expressions [B32, G12, Q1, R4, 

S9]. Other network and graph theoretic problems, such as the vertex 

colouring and minimum dominating set in a graph problems can be solved 

using the SCP [B18, B19, B24]. 

Other problems to which the SCP can be applied are those of data 

storage and information retrieval [C13, D1], For an information 



retrieval problem each variable x. can represent a library and a .. = 1 

if and only if the information indexed by i can be found in the jth 

library. The cost of visiting the jth library is given by c . and an 
J 

optimal solution x* to the SCP has x .* = 1 if and only if the j'th 
€ 

library is used in a minimum cost set of libraries needed to access 

all the information. 

In production planning the SCP can be used for scheduling problems 

such as a simple assembly line balancing analysis [S4]. Decision 

theory can also be modelled using SCP's [K3]. 

1.3.2 Problems related to the SCP and problems used in its solution 

1.3.2.1 Well-solvad,-,cases of the SCP 

The SCP belongs to a class of problems that is Known as NP- complete 

[G2]. This means that it can be solved.by a nondeterministic algorithm 

in polynomial time or that the depth of a binary search tree is poly-

nomial [A1, H9]. No polynomial algorithm is Known that can solve the 

SCP. However, in the case when there are at most two 1's per column 

of the constraint matrix,the SCP is a graph covering problem. Algorithms 

for this problem are based on the matching algorithm of Edmonds [E1, E2]. 

This algorithm maintains a primal feasible and dual feasible solution 

to the equivalent LP problem and aims to satisfy complementary slackness. 

Edmonds* algorithm is OCn 4) and by using improved data structures 

0 ( n 2 , 8 ) [G1, L2] and 0 ( n 2 , 5 ) [L2] implementation can be obtained. For 

an efficient algorithm to solve successive matching problems on the 

same graphvwith slightly different costs for each problem-sensitivity 

analysis can be useful; for example if the costs are^'changed only on .arcs 

incident to one particular vertex. This procedure is described in a primal 



algorithm for the matching problem in fc'T6j. "'Further details on sensitivity 

analysis for the case when only two costs on arcs are-changed are given 

in [W2], where the matching problem is used to solve a Lagrangean 

relaxation of the SPP. An algorithm for the graph covering problem 

is given in White and Gillenson [W5] which starts with a set of arcs 

that cover all the vertices in a graph and removes arcs until an 

optimal solution is obtained. 

Unlike the GCP the node covering problem, NCP, of finding a set of 

vertices in a graph of minimum weight such that each arc is incident 

with at least one vertex in the set is not well solved except for 

special classes of graph. These are firstly chordal graphs [G6] i.e. «y-txf>K^ 

in . -'-which there are no circuits-of length greater than three without 

chords (a chord is an arc whose ends are both vertices in the circuit). 

Secondly, node covering problems on circle graphs can be solved by a 

polynomial algorithm [G7]. A circle graph is defined by letting each 

vertex represent a chord in a given circle. If two chords intersect 

then the corresponding vertices are linked by an arc. Claw-free graphs 

and interval graphs are other classes of graphs for which the node 

covering problem can be solved optimally [G2]. A claw-free graph is one 

4-

without a subgraph that is a claw. A claw is the bipartite graph, 

î î  s- An interval graph is formed by letting each interval between 

two numbers on the real line be represented by a vertex and connecting 

two vertices if their corresponding intervals have a non-empty inter-

section. Lastly if the graph is a line graph the node covering problem 

can be well solved [H2], A line graph L of a graph G is derived by 

letting each arc of G represent a vertex of L and--two vertices are 
joined in L if and only if the corresponding arcs meet each other in 

G. 

^ 0 bipcu-tik, Qpfcpk h«.s ̂  Unices p«u-f iWoAexl -huro 2dtsy I/, o^a 

t&il arcs joiVtf CL oerWv Ut V, to s uej-fe* «* Vz . H ^ ^ ^ y e w e ^ 



The SCP Is an easily solved problem whenever the non-zero entries 

of A occur in consecutive rows as the example SCP1. below shows. CSlSj 

Example 1 

+ 5X 2 + 3X 3 + 6 x^ + 2a; 5 

X1  +  x3 > 1 . 

xl. +  x2 *  x3  + #5 > 1 

xl  +  x2 +  xb  +  x5 > ^ 

x2 + a:^ > 1 

x.e{0,1} j=1,2, ,4 
3 

SCPi 

min 
x 

Subject to 

Dynamic programming can be used to solve the problem by first defining 

k 
an m-dimensional vector 3 that has 1's in the first k components and 

k 
O's elsewhere. Define for a column a. of the SCP constraint 

1> 3 3 
k k 

matrix by = maxCO, 3 . - a . J . Let function F 7 be defined on 
% ^3 i %3 k 

vectors 3 1,3 2*...,3 by: 

FJ 0) 
o 

F kC3*) min [ f ^ C B 
deN*. 

"for k = 1,2,... 

' ' • 171 
The SCP ofj+ivHal 3o»uK«vi yrotoAts ^ ( 3 3. Unlike dynamic programming 

when applied -co ttia general 'SCP this problem does not need excessive 

k 

storage because only vectors of type 3 are used in the above 

recursion equation. This problem can also be thought of as a shortest 

path problem on a graph. An initial vertex V q is defined plus m 

vertices Ui.Vo,...,V , one for each row of the SCP. Each column a . of m 3 

the SCP is represented by h^ arcs, where fc. is the number of 1's in the 

column. If the first non-zero entry occurs in row and the last in 

row then arcs Cv^ _ 1 , V^) are constructed for % -



Each arc has cost o .. The SCP solution is given by the shortest 

path from Vq to v . The graph G1 for the example is.shown in 

Figure 1.2. The shortest path from VQ to Vi+ is given by the path 

(Vq ,Vi and has cost 8. 

Figure 1.2 

Graph in Which a Shortest Path Solves SCP1 

Each arc is labelled with the distance between endpoints. (v ,vt ,vh) 

is the shortest path from v 0 to 



The case of cyclic matrices can be solved by a rounding argument. A 

cyclic matrix, Aip,q), has p 1's per column and q O's. The jth column 

has 1's in rows j ,j +1,.... ,3 +p-1 (mod(p+<7)) and O's elsewhere. As an 

example AC3,2.3 is shown below. 

Example 2 

A cyclic matrix A(3,2) 

1 

1 1 

1 1 1 

1 1 

1 

In general the LP solution to the unicost SCP with constraint matrix 

Aip,q) is given by setting each x. equal to Vp and since there are 
3 

p+q columns the optimal solution value is equal to (1 + q/p). Suppose 

p+q = ft p+r where p > v > 0 and k and r are integers. Then the lower 

bound to an optimal solution of the SCP is k if r=0 and k+1 if r > 0 

since it must be integer. A feasible solution to the SCP can be -

obtained by setting x.~ 1 for j'=1 , p + 1 . . ,tp+1 where t is the largest 3 

integer for which tp + 1 < p+q. Hence if r=0, t=k-1 giving k non-zero 

components of x with total cost k and the SCP solution equals the 

LP solution. If r > 0 then t=k and the cost of the SCP solution is 

1 and again equal to the lower bound. The cost of the unicost SCP 

with constraint matrix A{p,q) is thus 1 + fq/p] where \~y~~\ denotes 

1 1 

1 

1 

1 1 



the least integer greater than or equal to y. This type of constraint 

matrix occurs frequently in scheduling problems and the determinant of 

the matrix can be very large which means that traditional cutting 

planes derived from LP, such as Gomory cuts, are unlikely to solve the 

problem quickly. 

Details of how the rows can be manipulated using graph theory to give 

a related network flow problem are given in [B14, B15]. 

1.3.2.2 Problems of which the S C P i s a special case 

The SCP is a special case of the following uncapacitated plant 

location problem, UPLPt 

UPLP 

n n m 
min .1. .E. d . . x .. + .Z . o .y . 
*c t y 

Subject to 
n 

x. . > 1 J=1 iQ -

x .. < y . 
%3 ~ ~ i 

for -£=1,2,. 

for all i,3 

x.,,y.z{0,1} for all i,3 
13 3 

,m 

This can be transformed into an SCP by setting d . . = « if a . . = 0 
1'3 13 

and d.. = 0 if a.. = 1. The coefficients of y. in the objective 
13 13 3 

function are the costs of the SCP. The dual heuristic procedures 

for this problem given by Erlenkotter [E4] can be applied to the 

SCP as shown in Chapter 2 to give lower bounds. This problem is 

similar to the bank float location problem, BLP, given by Cornuejois, 

Fisher and Nemhauser [C14] as: 



QLP 

m n n 
max .Z. .Z. d..x. - .Z. c .y. 
a , 2/ ̂ =1 J = 1 V 3 J = 1 3 3 

n 
Subject to Z x . . = 1 for fc = 1,2,...,OT 

rf-i « 
rc 

1 < Z y . < K 
<7 = 1 J 

0 < a;. . < w . < 1 izl,3'eJ 
- 13- 3 

Xi>3 , y3  i n t e S r a l  

The worst case analysis for this problem is applicable to the SCP 

[C15]. 

The generalised set covering problem, GSCP, is an integer program: 

T ( 
GSCP min{c x\Ax > 1 , x .e{0,1} , j = 1,2,...,n} 

x ~~ 3 

in which the constraint matrix A can have eLfifccfes equal to 0, 1 and 

-1. It can be shown that any integer program is equivalent to a 

GSCP [G17]. lb is asstunadl fct^jb bun, integer aides Uewe u^ar Iŝ xs Urû Jls. 

A stronger result, given by Zorychta [Z3], is that any 0-1 integer 

programming problem can be converted to an SCP. Since an integer 

program can easily be transformed to a 0-1 integer program this 

means that any integer program is equivalent to an SCP. Zorychta 

shows that an m x n 0-1 IP can be converted to an SCP with at most 

^ constraints and ^ variables in 0(mn2-) steps, 

b ou-ttJed 

Firstly any^IP can be transformed to one in which all the costs, 

constraint coefficients and right-hand sides are non-negative. 

Additional variables may have to be added at this stage. Let m and n 

be the number of rows and columns, respectively in the resulting IP. 

The IP 

T 1 
IP min{c x\Ax-b , tf.e{0,1}} 

x  1 3 



is then equivalent to the following unconstrained integer program, 

UIP: 

T m n o , 
UIP min{o x + ,iA k . (a x - b J 2 a: .e{0,1}} 

x T=1 "Z- i 0 

for sufficiently large Replacing by a single variable 

adding the constraints: 

X0 • >  X4 + X ' ~ 1 
- I 0 

and transforming the objective function of UIP to remove redundant 

information gives an SCP with constraint matrix of the form CS,I) 

where S has at most 2 non-zero entries in each row and I is an 

identity matrix of appropriate dimension. 

Other variations on the SCP include the dynamic SCP, DYSCP and a 
» 

stochastic SCP [Hi]. 

The former is the following SCP with special structure: 

r -

lh dh  Xc'k°3k\jh W 1 ' 
DYSCP min 

The subscript k refers to time periods and for a location problem 

x
j k

=
 1 if a facility is located at site j in time k. The term: 

n r 

<7=1 kh  ujk{ xjk  +  xj,k-1 "  2 xck xj,k-1 3  

can be added to the objective function where is a phase-in/ 

phase-out cost for facility j in time period k. 

The stochastic SCP differs from the SCP in that a variable x . is 
0 

chosen to be in the cover with probability p.. The objective is to 
«7 

find a sequential procedure for selecting the variables x . which 
0 

minimises the expected cost among all selection programs. In general 

this is a hard problem to solve and therefore is only useful for 



constraint matrices with special structure. 

The SCP is a particular case of a general IP problem for which 

heuristics are often useful as shown in the survey by Zanakis 

[Z1], In the next chapter heuristics are given which compute upper 

and lower bounds to the SCP and can be used to reduce problem size. 

Other techniques that are useful for 0—1 programming problems are 

branch and bound, Lagrangean relaxation and logical tests. - These 

are discussed fully in subsequent chapters. 

1.3.2.3 Relationship between the SPP and the SCP 

The only difference between the SPP and the SCP is that the former 

has equality constraints and the latter inequality constraints. The 

question of which is easier to solve has been.considered by several 

authors, e.g. [B8]. The answer depends on the solution technique 

used because to find a feasible solution to SCP is trivial, but not 

so for the SPP. In a branching strategy for the SPP fixing a 

variable equal to 1 excludes many more variables than in the SCP and 

therefore an algorithm based purely on branching would generate 

fewer nodes for an SPP than for an SCP. On the other hand a lower 

bound to the SCP based on a dual feasible solution to LP would also 

be a lower bound to SPP. To improve the lower bound for SPP may 

require extra work by considering negative values of the dual variables 

that are not feasible for DLP. Hence an algorithm based on lower 

bounds from the dual linear program may be easier for the SCP than 

for the SPP. Any SPP can be transformed to an SCP without changing 

the constraint matrix [B8]. This can be done by adding vjê fest of %S<uk, 

variables!/ to the SPP with suitable large cost 6, then SPP is 

equivalent to: 



T 
min[-ca;+01 y\Ax-y=1 , y > 0 , x 1} , j = 1,2,...,rc] 

— - 2 

T 
Substituting for y and letting c l = 01_ 4-c gives the SCP: 

min ( V Urc > 1 , a:.e{Of 1} , <7 = 1,2 a; — J 

To transform an SCP into an SPP the constraint matrix /I must be 

modified [K4]. Each column a . is represented by |a.| columns each 
Q t7 

of cost e.. The rth column derived from column a . is equal to 

column a . with the first (r-1) non-zero elements set equal to 0. 
0 

n i i 
The modified constraint matrix then has Z a . columns which is 

j=r r 

equal to the number of non-zero entries in the original constraint 

matrix. The problem size can be reduced by the dominance tests of 

§1.3.3.1. The SPP resulting from these additional columns is nofc 

equivalent to the SCP from which it was derived^ buir OA vvoaJL 

U S5U*. f^s spp c-e**\ t*. a^Ltx^M -6a SfUxL^ko. ScP. 

1.3.2.4 Network flow problems 

In this thesis two network flow relaxations of the SCP are given. 

Both graphs have been described before but have not been used in 

Lagrangean relaxations of the SCP as in Chapter 4. The first graph, 

in which vertices represent both rows and columns of the SCP and arcs 

represent non-zero elements of A , was first used by Swissair for 

airline crew scheduling and the costs were assigned to arcs by a 

somewhat arbitrary procedure [A2]. A variation of this graph in 

which columns of the SCP with less than 3 non-zero elements were 

treated differently from other columns is given by Glover and 

Mulvey [G15]. They solved an integer programming problem with 300 

rows and 460 columns with a simple depth first search in 10 seconds 

(CDC 6600) which had proved to be intractable by using linear 

programming for a lower bound. The network formulation had 2860 arcs 



and 780 nodes. The success of this method, which can only give a 

bound as good as that obtained from linear programming, can be 

attributed to the efficient data structures in the network flow 

routines of Glover et al [G14] that were used. The simplex pivots 

on these networks then have a simple graph theoretic interpretation 

because the basis is represented as a tree. Efficient labelling 

schemes enable simplex pivots to be made by traversing a tree fG14, 

G15]. 

The second network in which the vertices represent rows of the SCP 

and paths represent the columns was used in a relaxation for the 

unicost SPP by Nemhauser et al [N1]. Again the bound is only as 

good as that obtained from LP. A more theoretical interpretation of 

the second network was given by Fulkerson [F3, F5] in conjunction with 

blocking and antiblocking theory. The main purpose of this was to 

give a round-off result similar to that for cyclic matrices that 

could be used in a bound for the SPP. The network was also used by 

Tind [T4] again in conjunction with antiblocking theory to get a 

lower bound for the SPP. It has also been used in electrical 

engineering for finding a set of paths in a circuit that start at a 

source and end at a sink and pass through all vertices, [H0]. 

1.3.3 Algorithms for the SCP 

All practical algorithms for the SCP have three components. The first 

is preprocessing in which elementary tests are used to remove some of 

the variables and constraints. The second is to find upper and lower 

bounds to the problem. The third is to close the gap between the 

bounds by either generating more problems as in branch and bound 

methods or reducing the size of the feasible region as in cutting 



plane methods. The preprocessing strategies for the SCP are well 

Known and comments concerning their practicability are given here. 

There then follows a survey of methods for lower and upper bounds to 

the SCP. 

1.3.3.1 Preliminary reductions 

Before using an algorithm for the SCP a number of elementary reductions 

can be made. 

(a) Negative Costs 

If a cost a. is negative then x. equals 1 in any optimal solution of 
0 V 

the SCP and all rows covered by a . can be removed. In a practical 

SCP it is unliKely that any of the costs are negative, however if the 

SCP is being used as a sub-problem of some other problem as in 

Lagrangean relaxation it is likely that negative costs will occur 

and thus this reduction test is useful. 

Cb) Single 1 in a Row 

If any r o w o f the constraint matrix has just one non-zero element, 

a..,.. say, then .. must equal 1 in any feasible solution to the 
%Q I u J (J J 

SCP. Although this is unliKely to be useful initially in a branch 

and bound procedure, further down the search tree subproblems do 

occur with single 1's in a row and it is here that this reduction 

is most useful. 

Cc3 Row Dominance 

If  a4 a > a v any two rows and all j then row can be 
12.3 

removed as any x satisfying the constraint cf^x > 1 will also satisfy 

a  Lx > 1. In a randomly generated problem in which the coefficients 

a.. are independent random variables with p a fixed probability that 



a . . = 1 the probability(given any two rows)that one dominates another 
i'0 

is: 

PCp,n) 5 2(1 - p +p2)n (1 - 2p + 2p2)n 

For small p, equal to 0.05 say, this is very small. This reduction 

is therefore only likely -to be useful when n is very small or p is 

larger. The probability can be increased and' 71 reduced by considering 

the test only on a block of columns as in s branching strategy given 

in Chapter 7. . " ' - -

(d) Column Dominance 

For a subset S of columns and a sifljle column 30 if ^ Z ^ . < c 

and .Zn a . . > a . , for all i then column 30 can be removed from the 
3zS — 130 

problem. This test means that rows covered by column jo can be 

covered for no greater cost by columns in S. For a unicost problem 
• 

that is randomly generated as in (c) the probability that one column 

dominates another is P(pj,w) . . which is small for sparse matrices, 

Thus these tests are only useful ,if m is small or the constraint 

matrix is dense for random problems. 

(e) Reduced Costs 

If a dual feasible solution to LP, u, is available then the reduced 

cost of column j is given by: 

- _ T 
s. = q - - u a. 
3 3 0 

T 
If z is a known upper bound on the solution of the SCP then z =_1_ u ti As — 

is a lower bound and if 

S' > 2 - 1 U 3 u — 

then x . = 0 in any solution with value less than z . 
3 u 

If z is the cost of a known feasible solution to an SCP with integer 

costs then z = s-.vj^'e for any e > 0 is a suitable upper bound. In 

* See Appendix 1. 



practical problems reduced costs are extremely useful. They are not 

useful in problems for which the cost of a column c . .is equal to a 

scalar, say^ times the number of 1's in the column (i.e. 

m 
a . = 0 .E. a ..). Then a dual feasible solution is u.= 0 for all i 
3 ^=1 ^J i 

and all reduced costs equal 0. In this case if the corresponding SPP 

has a feasible solution this will be optimal for the SCP. If the 

constraint matrix has some structure then the column dominance tests 

may work well as all that is required, given a column jo, is to find 

a subset of columns, S, for which a..-a., for all i and then 3 sS 13 13 o 

column jo can be removed. 

1.3.3.2 Sorting the constraint matrix 

Both the rows and columns of the constraint matrix can be presorted. 

The algorithms given in [G4, K4, Ml, P5] for set partitioning and 

set covering sort the columns of the constraint matrix A into blocks 

B ., £=1,2,...,m. A block fl. is a set of columns whose first non-zero 
i i 

entry occurs in row i, that is a.,. = 0 for i r < i and a.. = 1 for all 

jzB.. The advantage of this approach for the set partitioning 

problem is that if x^ is fixed equal to 1 in a branch and bound 

scheme then all blocks B. for which a.. -A can be removed from the i 13 

problem. Experiments on row permutations have been carried out for 

the SPP in [M4] and [B7] and it generally seems better to try and 

cover rows with the least number of elements at the top of a branch 

and bound tree. 

In practice the procedure that generates the SCP constraint matrix 

from a scheduling problem say, can usually be designed to produce a 

matrix in block form as shown in §7.3.2.1. 
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1.3.3.3 Algorithms for lower bounds to the SCP 

The LP solution was one of the first lower bounds to be used in a tree 

search method for the SCP [L5]. A problem with the LP is that it 

cannot handle large sparse problems because of degeneracy and this 

means that many simplex iterations are required to reach optimality. 

An improvement is to solve DLP, the dual of LP, for which a sub-

optimal solution gives a bound to the SCP [S2]. Although faster 

than LP, DLP' is slow to solve large problems. 

Another relaxation is the Knapsack relaxation in which the constraints 

of the SCP are added together to form a single constraint [B7, P5]. 

This gives a very weaK relaxation and it is usually possible to get 

an improvement by premultiplying the constraints by positive scalers 

before adding them together. 

Heuristics for finding feasible solutions to DLP are given by Balas 

[B5] which are discussed together with other heuristics in Chapter 2. 

A group theoretic relaxation which depends on the size of determinants 

of square submatrices of A is given in [G1B], but group theory has 

not been very successful in the solution of large scale 0-1 programs. 

Lagrangean relaxation [G8] has been used for a wide variety of 

combinatorial programs such as the travelling salesman [H4], 

facility location [G9] and cluster analysis [M6] problems. 

Etcheberry [E5] used this approach for the SCP in which some of the 

constraints were relaxed and the remainder had no variables in 

common. This relaxation was also used in the disjunctive cut 

approach of [B7]. Subproblems of the SCP that are networK flow and 

graph covering problems are solved by Lagrangean relaxation in this 

thesis. 



1.3.3.4 Algorithms for upper bounds to the SCP 

Upper bounds to the SCP can be found from any feasible solution and 

heuristics have been studied and analysed by Johnson [J1], Chvatal 

[C11] and Ho [H7]. One of th'e easiest ways to find a prime cover is 

to use the Mleast-cost-per-constraint-satisfied"to choose columns of 

the SCP that are in the solution. Hence if o., = min o . where 
0 _0_ 

W  h0 
m 

h . = a . , then a... is set equal to 1 and all rows covered by a;., 
0 io o t ^ J 

are removed. The procedure is repeated for the remaining rows and 

columns until all the rows are covered. resulting cover is then 

reduced to a prime cover. If instead of a . the minimum of any 

function fio.,h.) is chosen as the criterion for fixing x . = 1 then 
3 0 , 0 

a . . 
the upper bound z satisfies z < z* .1. 1 where d = max M . and this 

u u J = 1 j o 
L — •• " bound ' . can be curtained. 

An r-optimal method for an upper bound is given by Roth [R2]. This 

method means that if any subset of r columns is deleted from the pro-

blem no better solution can be obtained by covering the remaining 

rows with another subset of up to 3? columns. For r = 1 this would 

mean that if x . = 1 in a feasible solution to the SCP then setting 
0 

x. = 0 and setting another variable, x., say, equal to 1 would not 
0 0 

yield an improvement in the bound. This type of method is also used 

by Baker et al [B1] for solving large airline crew scheduling problems 

1.3.3.5 Branching strategies for the SCP 

Any branching strategy can be divided into two parts, the tactical 

problem of deciding how to fix variables at a node to generate sub-

nodes and the strategic problem of finding which node to expand next. 



The easiest approach to the tactical problem is to alternately fix 

x • = 0 and 1 [B3]. This does not work very well for.most problems. 
0 

The algorithm of Pierce and' Lasky [P5] uses a depth first binary 

search but the block structure of the constraint matrix means that 

additional variables can be removed. In an algorithm for the SPP 

Marsten [Nl] branches on blocks of variables instead of a single 

variable. Only one variable in each block can be fixed equal to 1. 

Blocks of variables can be removed at each node of the search tree 

instead of fixing a single variable x> equal to 0 as in a conventional 
V 

tree search. 

Etcheberry [B5] uses logical combinations of rows to branch. Suppose 

% V 

a x > 1 and a x > 1 are two constraints of the SCP with some variables 

occurring in both constraints. These can be used to divide the SCP into 

two problems. In the first problem the sum of variables that occur in 

both constraints must be greater than or equal to 1. In the second 

problem their sum must equal to 0. As an example consider the constraints 

a?l a?2 * .̂ 3 > 1 

and- x\ +• #3 +.xi+ > 1 

Then either + X3 > 1 

or x\ = X3 = 0 implying that > 1 and Xi+ > 1 

Marsten's algorithm for the SPP generates a subset of the tree search 

nodes generated by the above method when the latter is implemented as 

a depth first strategy. 

A theoretical survey of branching strategies for IP is given by 

Ibaraki [ii]. As expected the depth first search is less likely to 

work well than say a heuristic search where the next node to branch 

form is chosen by a rule such as the node having the best bound. 

Breu and Burdet [B31] give a computational survey of branching 



strategies and a computational comparison between depth-first and 

breadth-first methods for the SCP is given in [T6]. . Dominance tests 

to eliminate nodes are given in [K4]. 

1.3.3.6 Cutting plane strategies for the SCP 

Traditional cutting plane strategies for integer programming have been 

employed by Salkin and Koncal [S2] who used Gomory cuts [G3] derived 

from the tableau for DLP. However the large number of cuts generated 

makes this method unsuitable for large problems. 

An algorithm that was able to solve some very large problems Cup to 

150 rows and 7000 columns) and yet failed on other smaller ones and 

was therefore not robust was developed by Martin *[M2]. This was a 

cutting plane algorithm based on Gomory cuts with additional steps to 

try and enforce integrality of the simplex tableau. Other cutting 

plane approaches based on disjunctive cuts have been proposed by 

Balas [B5] and Lev and Soyster gave a similar method which uses an LP 

relaxation [L6]. 

Disjunctive cuts are generated by considering a set S of reduced costs 

for which .Z0 s . > z - z where z is the lower bound corresponding 
3 Eo j U Xj )L 

to the dual variables used to give s'.. It can be shown that at least 
3 

one x . , 3'eS , must be 0 in any solution to the SCP of value less than 
3 fce^uts u[esl 

z . Cuts can then be generated that are SCP type constraints.^These 

cuts are superior to the cuts generated by Bellmore and Ratliff [B19] 

in an earlier cutting plane method and preliminary computational tests 

indicate that they are capable of solving sparse problems of up to 

200 rows and 1000 columns more efficiently than previous methods. 

Strengthening inequalities in 0-1 integer programs has been studied 

by Zemel [Z2] but this method seems unlikely to be useful in a practical 

algorithm for the SCP. 



1.3'.4 Theoretical Results for the SCP 

1.3.4.1 Complexity results 

The SCP is an NP-complete problem which means that it is unknown if 

it can be solved by a deterministic algorithm in polynomial time. 

It can be solved by a non-deterministic algorithm in polynomial time. 

A non-deterministic algorithm can be solved by a tree search in which 

the depth of the tree is a polynomial in the dimension of the problem. 

Further details are given in Aho, Hopcroft and Ullman [A1] (Chapter 

10), Horowitz and Sahni [H9] (Chapter 11) and Garey and Johnson [G2]. 

Q1 A question can be-posed: Is there a polynomial time algorithm 

that gives a solution z to the SCP such that (z - z*)/z* < e. 
u u — 

for a given e > 0? 

No fixed value of e is known for the SCP. For the unicost SCP 

Johnson [J1] shows that the heuristic of the previous section gives 

z < (1 +logik))z* where k is the maximum number of 1's in a column 

of the SCP constraint matrix. 

Q2 A second question arises: Is there a polynomial time algorithm 

that gives a solution z to the SCP such that (s - z*)/z* < z 
u u — 

'most of the time? 

Karp [K2] proposes a tree search algorithm for the unicost randomly 

generated SCP in which unpromising nodes are discarded and the number 
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of nodes expanded is 0in) and which gives z < (1 + almost"Always. 

Probabilistic search methods have also been studied by Gimpel [G12] who 

shows that for sufficiently large random unicost set covering problems 

randomly picking columns to cover each uncovered row until all the rows 

are covered solves the SCP almost always within 1 + e. These results 

say little about algorithms for SCP's with specific costs or problems 

less than a given size, but Karp's result helps to explain why a tree 

search method which has exponential worst case behaviour can very often 

produce an optimal solution quickly even if it cannot be proved so. 

Further, complexity results are given in Karp [K2] and Sahni and 

Gonzales [S1]. 

1.3.4.2 The set covering polyhedron 

The convex hull of all feasible solutions to the set covering constraints 

{Ax > x.e(0,D) defines a polyhedron, P. Facets of P are linear 
0 

inequalities that are satisfied by exactly d * affinely independent points 

xzP where d is the dimension of P. Facets uniquely define the convex hull 

of the feasible region of SCP unlike cutting planes which do not necessarily 

intersect the convex hull. For an example o f ^ ^ & c i ^ ^ - s the SPP 

see [P3j. The reason that the study of facets is useful is that they can be 

used to generate cuts and thus reduce the gap between an upper and lower 

bound to the SCP. 

Fulkerson [F3] shows that if the row dominance tests of §1.3.3.1 are 

used to remove all redundant rows then for the set covering polytope 

the remaining inequalities Ax > 1 define all facets of the form 

TTCC > 1 where TT is a 0-1 vector. A complete characterisation of all 

* r vectors are affinely independent if/ the vectors 
x2~ xl J''' * xx>~ xi a r e

 linearly independent or alternatively if every 

vector y can be written in at most one way in the form: 

y * J1 V * where kh h = 



the facets of an integer program is only Known for a few special cases 

One of these is the GCP. 

The constraints that must be added to a linear programming relaxation 

of the GCP are the following: 

oins)
 f l s l * 15/2 

where s is a set of vertices with odd cardinality and TCs) is the 

index set of arcs that have at least one end in s, for all-such s. 

These are the facets that are used in the graph covering relaxations. 

In principle it would be possible to solve an SCP by considering a 

feasible solution as a vertex of the set covering polyhedron and then 

finding all adjacent vertices that is other prime covers, and 

showing that none of them have lower objective value than the given 

feasible solution. In practice only polyhedra with a few vertices 

can be analysed this way and therefore this is not a practical 

approach. Codes for adjacency in polyhedra are given by Von HohenbalKen 

[V1] and a mathematical analysis of adjacency is given by Hausmann 

and Korte [H3]. 

1.3.4.3 The structure of the constraint matrix 

The question of when the solution to the LP relaxation of the SCP has 

an integer solution has been studied extensively, but no necessary 

and sufficient conditions exist. The most well Known sufficient 

condition is unimodularity. The constraint matrix A is unimodular 



if all square submatrices have determinant equal to 0, 1 or -1. In 

this case the LP has an integer solution [G3]. A balanced 0-1 matrix 

is one for which no submatrix of odd size has row and column sum 

equal to 2. If the matrix A is. balanced then the LP solves the SCP 

TP2]. An earlier result which is less strong was given in the form 

of a tree structure associated with the constraint matrix by Meir and 

Noon [M3]. Cyclic matrices can be transformed by using trees to give 

a network flow constraint matrix [B14]. 

1.3.4.4 Duality 

Analogous to linear programming duality^ a duality for integer 

programming can be developed using subadditive functions [W6]. 

A function f is subadditive if fia) + fib) > fta + b). Thus,one can 

define the dual of the SCP as: 

max FC1) (1: is an -dimensional vector 
F of 1's) 

DSCP 
subject to FiAx) < c 

F subadditive 

tjx 

Thus, for LP duality Ft.) is the function u C.) for u > 0. For the 

problem IP given a subadditive function F with FCO) = O^a generalised 

Lagrangean relaxation, GLRCF), is given: 

GLCF) = min o Tx - FlAx-b) 
x 

GLRCF) 
subject to Bx > d 

x integer 

Then analogous to linear programming duality, where tfCLP) = -yCDLP), 

tfClP) = tfCGLR) where GLR is the problem". 
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GLR 

max GL(i?) 

F subadditive 

F(0) = 0 

The optimal solution to GLR cannot be found easily without using 

branch and bound, cutting planes, dynamic programming or any other 

technique of integer programming. However state space relaxation 

could be used to get lower bounds as used in Chapter 6. Wolsey fW6] 

uses dynamic programming on a large network to generate subadditive 

functions for the SCP. 

1.3.5 Data Structures 

As can be seen by the results for network flow problems, efficient 

data structuring is essential for fast algorithms. This is even more 

important for combinatorial problems where subproblems have to be 

solved many times. It is also useful to have a data structure which 

allows transition from one subnode of the tree search to another. 

Data structures are explained in [A1, H8], Algorithms for the SCP 

which store the non-zero entries of the constraint matrix in bits 

are those of Garfinkel and Nemhauser [G4], Pierce and Lasky [P5] 

and Korman [K4], Storage in lists is used by Marsten [Ml], Mevfirt 

[M4] and gives faster computation times. Chapter 8 describes the 

data structures used in the algorithms here. A survey of sparse 

matrix techniques is given by Duff and Reid [D4]. 

Data structuring for the graph covering relaxations follows those 

given in Gabov [G1], Derigs [D3] and Even and Kariv [E6] for the 

matching problem. 



CHAPTER 2 

HEURISTICS FOR UPPER AND LOWER BOUNDS TO THE SCP 

2.1 Introduction 

Heuristic algorithms are not guaranteed to solve the SCP optimally 

but they can be used to get both upper and lower bounds on the 

solution cheaply and quicKly. A survey of three heuristic methods 

for a class of IP's proposed by Senju and Toyoda [S6], Kochenberger, 

McCarl and Wyman [K3], and Hillier [H5] is given by Zanakis [Z1], 

The IP's have inequality constraints and non-negative coefficients 

and thus there is no problem finding a feasible solution. This 

study concludes that for large problems there is little to choose 

between the three methods in terms of -bownĉ certifcj. For small problems 

Hillier's method was more accurate, but it was unsuitable for large 

problems because it required an excessive amount of storage. In 

terms of speed the Senju-Toyoda method was the fastest. Other 

heuristics for both upper and lower bounds are given by Balas [B5] and 

Balas and Ho [B7]. The SCP is a special case of the uncapacitated 

facility location problem. A successful heuristic for this problem 

devised by Erlenkotter [E4] can also be applied to the SCP to improve 

the lower bound. 

The heuristics used in this chapter obtain a lower bound, z^, to the 

SCP from a feasible solution, u, to DLP which means that s- can 
Xs 

never be greater than tfCLP). An initial value of u is obtained from 

an adaptation of Senju-Toyoda's heuristic which calculates the least 

cost per constraint satisfied and is summarised in Procedure 1 in 

§2.2. The lower bound is improved by testing the linear programming 



complementary slackness conditions for u and a feasible solution, x, 

to the SCP. If they are satisfied then x is an optimal solution to 

the SCP. This is an application of Erlenkotter's method and is 

described in Procedure 2 in 2.2. Reduced costs are associated with 

any dual feasible solution, u, to the LP relaxation and these can be 

used to remove variables. The heuristics are also used to obtain 

initial costs for 'the graph covering and network flow relaxations. 

Besides giving lower bounds to the SCP Procedures 1 and 2 also give 

an upper bound. The computational results of §2.5 show that this 

bound was often above the optimal solution to the SCP and thus 

further methods of obtaining upper bounds are discussed in §2.3.. 

2.2 Outline of the Heuristic Methods 

The first heuristic, described in Procedure 1 below, initially sets 

u = 0 as a dual .feasible solution to the LP which implies that the 

associated reduced costs, s, are equal to the costs c. A column jo 

for which the reduced cost per constraint satisfied is least is 

chosen and dual variables are fixed for all rows covered by this 

column. These rows are then removed and the procedure is repeated 

until no rows are left. By setting x . =1 for each such column 
0 o 

chosen a feasible solution to the SCP is obtained which satisfies 

8 - x'^ = 0. This solution may be improved by reducing x to a prime (JO (JO 

cover. (A description of the language used in the Procedures is 

given in Appendix 5). f\n e * * * * ^ is ftftWi* 



PROCEDURE 1 INITIAL BOUNDS (SCP, z , z , x, u) 

COMPUTE UPPER AND LOWER BOUNDS TO THE SCP 

Input: SCP The set co 

Output: z , Upper and 

x A feasible 

u Dual varia! 

1. Initialise Variables 

u : = 0 Set dual variables equal to 0 

m 
h-:= E a... for all g Set h . equal to column sums 
3 1 1*3 3 

s : = Q Set reduced costs equal to costs SCP 

J : = {1,2,...,n} J is the index set of columns 

J : = {1,2,...,m} I is the index set of rows 

L : = (j> L is the index set of non-zero elements 
of x 

.k : = 0 ' U is the iteration counter. 

2. Iteration k -

k: - /c + 1 

3. Calculate Least Reduced Cost Per Row Covered 

A: = Q ' / h . = min s./h. Calculate minimum reduced cost per 
3° 3° 3zJ 3 3  P  

constraint satisfied 

Li = L U {30} Add column 30 to the cover. 



4. Calculate Dual Variables in Rows Covered by Column jo 

34 

For i z M. fi .yl 
jo 

u .: = u . + A % ^ Increase dual variable 

J : = Remove, row i from further consideration 

J Z N . /) J 
1 

Decrease reduced costs 

Decrease <2.0It^ sums 

If ft. = 0 
— 0 

then J: = < M J } 

if J t * 
then goto 2. 

5. Reduce re to a Prime Cover 

For j e L 

If .2 a.. >.2 for all 
— qzL ^J J 

Remove column j from the cover if 
all rows it covers are overcovered 

Set Li = L^{j} 

6. Calculate Upper and Lower Bounds 

£ 

z : = . c . Calculate upper bound U Q Q 

m 
z • = .Z u. Calculate lower bound J6 -£=1 "Z-

7. Calculate or 

= 1 
= 0 

for jzL 

for j£L 



8. Test for Feasibility to the SCP 

a ..x • = 0 for any i Set u. = » and z ^ 2 +00 
I 

then the problem is infeasible. 

PROCEDURE 2 describes the second heuristic which checks that the 

primal and dual feasible solutions, x and u, obtained by PROCEDURE 1 

satisfy the optimality- conditions for linear programming, i.e.: 

a. Primal Feasibility 

Ax > J_ (2.1) 

> x > 0 

b. Dual Feasibility 

T 

A u < o (2.2) 

u > 0 

c. Complementary Slackness 

Tr „ ,, 0 

Constraints (2.1) and (2.2) are satisfied by a: and u. Also x was 

chosen to satisfy (2.4). PROCEDURE 2 adjusts u if constraints (2.3) 

are not satisfied. This is done by choosing a constraint •£ for which 

u. iAx-1) . 0 and reducing u . to 0. This alters the reduced costs 
Is U Is 

and an attempt is made to increase dual variables u . for which 

(Ax-Y)^ = 0. If it is possible to increase the lower bound by these 

adjustments then constraints (2.4) may be violated and another vector 

x may have to be chosen. The adjustments to u are made so that it is 

always possible to find a vector x satisfying 2.4. If (2.1),(2.2),(2.3) 

and (2.4) are all satisfied then the SCP is solved. The method is given 

in PROCEDURE 2, below: 

u iAx-Y) = 0 (2.3) 

(2.4) 
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PROCEDURE 2 LPBOUND (SCP, Z , z X , U,) 

ADJUST PRIMAL AND DUAL FEASIBLE SOLUTIONS IN AN ATTEMPT 
TO IMPROVE BOUNDS 

Input: SCP 

u 

x 

Set covering problem 

Dual feasible solution 

Primal feasible solution satisfying s.#. = 0 
3 3 

Output: u 

x 

u3 I 

Dual feasible solution 

Prime cover satisfying s«£C.= 0 
3 3 

Upper and lower bounds to the SCP 

1. Initialise Variables 

L: = {3 

r: = ia.x.-1) 
3eL 3 3-

L is a list of non-zero indices of x 

r . is the slack variable for the tth constraint 

2. Check Complementary Slackness on Rows, u.ia x-1) = 0 
1 

For i = 1 to 777 

If u.r. 7^0 — ^ ^ 

then A: = u . ^ 

u.i = 0 
J': = L. ij N^ 

I': = U M ; 
3£J' J 

Check complementary slackness conditions 

If they are not satisfied reduce u^ to 0 

For s .: = s ' + A 
3 3 

Increase the corresponding reduced costs 

For i ' = ,... ,m, 1,2,... ti Try to increase some other u .. 

If i'el' and -
rI a./.x.± 1 

3zL V 3 

then A: = min s• 
- 1 — ' J e V 

If A > 0 

then u ..: = u .aA % 

8 .: = s .-A 

(for je^.p 

Increase u 
v 

Decrease corresponding reduced costs 



3. Check min s . = 0 for Each Row i 
jzNt J 

If A = min s . 0 
jzN. 3 

then u .: = u . + A 
i i 

s.: = s . ~ A 
3 3 

for all jeW. ^ 

4. Check Complementary Slackness for Columns 3 for which s.a:.= 0 
: : : 3 3 

For jzL 

If ejXj + O 

then L: = L > 
r: = r-a 

5. Cover Exposed Rows 

Remove column 3 from cover if s .x. ^ 
3 3 

For i - 1 .m 

If r . = 0 — 2. 
then .Li = L U {30} Find a column to cover exposed row % 

r: = r + a. Adjust slack variables 

where 3. = min s . 
Jen. 3 

% 

6. Reduce or to a Prime Cover 

For jzL 

If, for all r.> 2 
— 3 'z-

then L: = L ^{3} 

r i = r-a 

Remove x . from cover if all the rows 
3 

it covers are overcovered 

7. Calculate Upper and Lower Bounds 

3u''  = jeL °3 Calculate upper bound 

m 
\ ' = ^ u i Calculate lower bound 



The heuristic of PROCEDURE 2 is repeated until no change in either 

the upper or lower bound is obtained. The results are summarised 

in PROCEDURE 3, at the end of which reduced costs are used to remove 

variables. 

PROCEDURE 3 HEURISTICS (SCP, 2 , z., x, u) U x 

COMPUTE UPPER AND LOWER BOUNDS TP THE SCP AND REDUCE THE 
PROBLEM SIZE USING REDUCED COSTS 

Input: SCP 

Output: SCP 

z j, 
u 

x 

u 

The set covering problem 

The set covering problem, possibly 
reduced in size 

Upper and lower bounds to the SCP 

Feasible solution corresponding to 
best upper bound 

Feasible solution to DLP 

1. Initialise Variables 

BDCH: = .FALSE. 

KMAX 

k \ -o 

z u \ ^OO 

BDCH is a logical variable which is 
.TRUE, when the lower bound has 
changed 

Maximum number of iterations allowed 

Set iteration counter to 0 

Initialise bounds 



2. Calculate Upper and Lower Bounds 

INITIAL BOUNDS (SCP, z^ z , x, u) 

Use Procedure 1 to get initial bounds 

then if z^ = «> then the problem is t^^osiMx. 

e l s e s is the optimal solution to the SCP 

else goto 3. 

3. Calculate Improved Bounds, Iteration k 

fc:.- ; 1 Use PROCEDURE 2 to improve bounds 

and replace old bounds by new 
If k > KMAX then STOP bounds if they have improved 

else LPBD(SCP, k ', z .x', u') 
u 

If- V <  zu 

then zu-. = «M' 

x: = x r  

If z ' > z 
— Z SL 

then z^: > z^ r 

If BDCH = .TRUE. 

then repeat 3 

else goto 4. 

4. Use Reduced Costs to Reduce Problem Size 

For J = 1, 

If *3 *  Zu "  3 A 

then remove x . from the SCP 
3 

z and z are upper and lower bounds 
li )L 

STOP. 

The computational results for these methods are given in §2.5. 



2.3 Additional Methods for Computing Upper Bounds 

The method used in Procedure 1 of calculating an initial solution x 

was to choose columns for which s ./h . was the least and then reduce 
3 3 

this to a prime cover. Instead of using s./h. three other functions 
3 3 

were used, i.e.: 

•Ci) c d /h. 

(ii) o ./log(7z.) 
3 3 

(iii) c./h.logih.) 
3 3 3 

where h . is updated as rows are covered and log equals the logarithm 
3 

to base 2 if h.> 1 and 1 otherwise. If h. is not updated at each 
3 3 

iteration and remains constant then the bounds obtained are not very 

good thus the reason for updating h at each iteration. For large 

problems using (i), (ii) or (iii) often gave a better bound than the 

one obtained at the end of Procedure 3. In [B7] Balas and Ho found 

that (i) and (ii) were the most useful functions on large randomly 

generated problems in that they gave the best upper bounds most 

often. 

Another approach was to take a feasible solution to the SCP and delete 

a variable x . and replace it by another variable. This approach 
3 

produced many solutions of the same value as the original feasible 

•solution but only on small problems did it produce a solution that 

was better than one obtained by one of the preceding methods. This 

method of calculating an upper bound generalises to the r-optimal 

method which was first used by Lin [L7] for the travelling salesman 

problem and later by Roth for the SCP [R2], Table 2.1 presents the 

upper bound calculations for several SCP's using the above methods. 



2.4 Reasons for Failure of the Heuristics to Solve the SCP 

The value of the lower bound obtained from the heuristics is never 

greater than that obtained from the LP relaxation as the former 

bound is obtained from a dual feasible solution to the LP. The 

heuristic method, like a complementary pivot algorithm [L4a] for the 

LP, maintains both primal and dual feasible solutions but fails to 

reach the LP optimum because the primal variables are restricted to 

take integer values and also unlike a complementary pivot algorithm 

the heuristics always maintain s .x. = 0 for all j. Thus even in 
3 3 

cases where the LP solves the SCP the heuristics may not do so. 

One reason that the heuristics can fail to solve the SCP is because 

of an odd circuit in a graph covering relaxation of the SCP. The 

graph covering relaxations are defined in Chapter 5. The 0-graph 

of a graph is a subgraph which consists of all the arcs with reduced 

cost equal to 0. Suppose that the following SCP, SCP2, which is also 

a graph covering problem, has dual feasible solution and- corresponding 

reduced costs equal to 0 in Columns 1 and 2, i.e. Sj = s2 = 0. Then 

if SCP2 is given by: 

min + °2 x2 + °3 X 3 

Subject to :+ x2 ""> 1 

SCP2 x2
 + Xs > 1 

+ > 1 

re .e{0,1} j = 1,2,3 
3 

a prime cover generated by Procedure 1 would be = x2 = 1, #3 = 0. 

If U\ > 0 then complementary slackness is not satisfied. If s3 = A 

and Acttj then Procedure 2 sets w2-<-U2
 + A and Wj-^-Wj- A. Hence the 

lower bound is unchanged. However s ^ i is no longer equal to 0 

hence the prime cover is changed to x = (0,1,1) which has a cost less 



than that of x = (1,1,03 if A > 0 . If A > u , then u becomes equal to 

(0, u2
 + U\, W3 + min (A - u\,U\)). This means that the lower bound is 

equal to U\ + u 2
 + W 3 + min(A-u1,U\). Since the last term is positive 

the lower bound has increased. If neither the upper nor the lower 

bound change for this problem then A = 0 and if for simplicity it is 

assumed that = a2 = £3= 2 and = u2 - W3= 1 the bound can be improved 

by using a cut + x2 + x3>2. This corresponds to an odd circuit in 

the graph with Vertex-arc incidence matrix equal to the constraint 

matrix above. The"above analysis can be extended to larger constraint 

matrices but as it is lengthy will not be considered here. Example 

SCP2 suggests that the vertex weights obtained by the heuristics will 

give columns of the SCP with reduced costs equal to 0 which in graph 

covering relaxations of the SCP will give odd circuits. 

2.5 Computational Results 

Most sparse SCP's with less than 20 rows and less than 100 columns 

can be solved optimally using heuristics without entering a tree search 

and thus all the test problems have at least 30 rows. The results, 

showing percentage differences between upper >and lower bounds at the 

root node of a branch-.-and bound tree, are given in Table 2.1. Table 2.2 

shows how the heuristic procedure performs in a best bound tree search. 

Columns (1) to (3) of Table 2.1 give the -number of rows, m , number 

of columns, n, and density, p, of the SCP. The density is the 

ratio of non-zero entries to mxn the total number of entries in 

the constraint matrix. 

Column (4) gives the structure of the constraint matrix. Type A 

means that there is a fixed probability p that any element a..= 1 
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Type B has a density that varies uniformly from p/2 in row 1 to 

3p/2 in row m. 

The cost structure is given in Column (5) and indicates that a . = 1 
3 

. m 
for all j. An X indicates that a . = 2 E a . . + 5, but if a . exceeds 15 

^=1 m 
it is reduced by 10. The costs a . were not set equal to l a . . 

3 1 W 
because then a dual feasible solution is u.= 1 for all i and all 

z 

reduced costs equal 0. For this type of problem: if the corresponding 

SPP is feasible then it gives an optimal solution to the SCP. If it 

is not feasible then any method which gives a lower bound derived 

from dual feasible solutions to the DLP will fail. Hence this cost 

structure was not used. 

Column (6) gives the best upper bound known for the problem, z . If 
u 

z i s optimal then it is marked by *. The bound was found by one of 

the methods mentioned earlier in this chapter or by tree search. 

Column (7) gives the percentage by which the upper bound obtained at 

the end of Procedure 1 exceeds z . As can be seen it can sometimes 
u 

be 50% above the best known solution. 

Column (8) gives the percentage by which best upper bound at the root 

node of the search tree exceeds z . The next column gives the method 
u 

by which it was calculated. PR0C3 means that the best upper bound 

was calculated using heuristics and for small problems this was often 

optimal. The upper bound was calculated by Procedure 3 and then by 

using: 

CD o./h. 
0 3 

Ci i ) o . / logCftJ 
3 3 

(iii) o./h.logih.) 
3 3 3 



TABLE 2.1 QUALITY CJF BOUNDS OBTAINED USING HEURISTIC 

Problem 
No Size 

a 

(1) 

n 

(2) 

Density 

. P 
(3) 

Typo 

(4) 

Cost 5 

(5) 

Bast known 
Solution 

z 

Cb) 

Upper Bound 
After P r o d 
\ abovo {6) 
17) 

Upper Bound 
At Root Node* 
\ above (6) 
(8) 

Method of 
Calculating 
(8) 

(9) 

Lower Oound 
After P r o d 
% of (6) 
(10 

Lower Oound 
After Proc3 
i of (6) 
(11) 

Number of 
Iterations 
to get z. 
(12 j 1 

Final Gnp 
Between 
z and z_ 
u t 
(13) 

lima 
CPU 
sec 

1 30 60 0.15 A X 56* 5 0 PR0C3 . 68 88 4 11 0.03 

2 30 100 0.15 A X 50* 24 4 PR0C3 73 85 10 14 0.06 

3 30 200 0.15 A X . 46* 37 11 C/H 76 76 . 1 14 0.03 

4 30 300 0.15 A X 44* 59 11 C/H 60 80 1 20 o.ni 

5 30 400 0.15 A X 44 43 11 C/H 60 80 1 20 0.05 

6 30 500 0.15 A X 44 43 11 C/H 80 80 1 20 0.06 

7 30 600 0.15 A X 44 43 11 C/H 80 80 1 20 0.07 

8 30 700 0.15 A X 44 43 11 C/H 80 00 1 20 0.08 

9 30 600 0.15 A X 42 50 0 C/H 83 83 1 17 0.09 

10 30 900 0.15 A X 42 50 0 C/H 83 83 1 17 0.01 

11 50 500 0.04 A U 14* 21 7 PRDC3 73 84 16 14 0.30 

12 50 500 0.15 A X 76 29 0 C/L(HI 77 77 1 22 0.98 

13 GO 400 0.11 A u 4* 0 0 PR0C3 82 62 1 0 0.01 

14 60 400 0.05 A u 14 21 0 C/H 72 80 15 14 0.44 

'15 60 400 0.05 D u 14 14 7 C/H 72 83 13 14 0.30 

-16 60 500 0.08 A X 93 35 0 C/H 75 75 1 25 0.29 

17 60 500 0.08 B X 97 23 5 C/L(H) 72 72 1 23 0.09 

10 60 GOO 0.04 A u 14 14 0 CA\ 73 82 12 14 0.49 

10 100 1U00 0.02 A u 29 0 0 PR0C3 67 7G 17 24 1.22 

20 150 600 0.02 A X 314 8 0.1 C/H G5 05 6 14 0.66 

21 150 000 0.02 B X 355 8 0 C/H 66 88 15 12 1.0S 

22 150 600 0.02 A u 35 22 3 C/H 69 80 17 20 2.00 

23 160 1000 0.02 A u 36 6 0 C/H 67 74 16 25 2.G5 

24 200 1000 0.02 A u 40 5 0 C/H H4 76 16 22 4.11 

25 200 1000 0.02 B u 42 19- 0 C/H 63 78 17 21 4.0G 

Average 73.6 00.3 7-5 17 

i * Optimal solution 



in that order as explained in §2.3. "C/H" in Column (9) means that 

method (i) above gave the best upper bound and "C/L(H)" means that 
» 

(ii) gave the best upper bound. 

Column (10) gives the lower bound at the end of Procedure 1 as a 

percentage of The lower bound at the end of Procedure 3 as a 

percentage of is given in Column (11). 

The number of iterations of Procedure 3 is given in Column (12). 

Lastly Column 13 gives the CPU time required to calculate the bounds 

excluding data input time. The FTN FORTRAN optimizing compiler was 

used under the SCOPE 2.1 operating system on the CDC 7600 at the 

University of London. 

From Table 2.1 for the 25 problems tested only 5, which tended to be 

the smaller ones, had the best upper' bound for the root node of the 

search tree generated by Procedure 3. Thus it is important to use 

other methods. The number of variables removed by reduced costs was 

17 out of 60 for Problem 1, which had 30 rows. However for larger 

problems no variables were removed. Thus reduced costs are most 

useful at the nodes in the search tree of a branch and bound 

procedure that are not near the root. The average ratio of the lower 

bound at the end of Procedure 1 to the best solution Known was 74% 

and this percentage varied between 63% and 83% for the problems 

studied. Using Procedure 3 increased this ratio on average to 80%. 

Problems 2 to 10 were generated by increasing the number of columns 

by 100 each time. As can be seen the upper bound was the same for 

Problems 4 to 8 and Problem 4 has less than half the columns of 

Problem 8. Also the lower bound was the same for Problems 4 to 10. 

Thus it would be advantageous in a randomly generated problem to 

calculate the lower bound from a subset of the columns only and then 



TABLE 2.2 PERFORMANCE OF HEURISTICS WHEN INCORPORATED IN TREE SEARCH 

- t — • - I 
PROBLEM 

Optimal 
Solution 
Value 

(6) 

Number of 
Tree Search 
Nodes 

( 7 ) 

Number of Variables 
Removed by reduced 
Costs at the root of 
the tree 

(8) 

Time 
CPU Sec 

(9) 

Problem 
Number 

Size 

M 
(1) 

N 
(2) 

Density 

P 
(3) 

Type 

(4) 

Costs 

(5) 

Optimal 
Solution 
Value 

(6) 

Number of 
Tree Search 
Nodes 

( 7 ) 

Number of Variables 
Removed by reduced 
Costs at the root of 
the tree 

(8) 

Time 
CPU Sec 

(9) 

1 30 60 0.15 A X 56 20 23 0.11 

2 30 100 0.15 A . X 52 48 19. 0.37 

3 30 200 0.15 A X 46 502 2 4.99 

13 60 400 0.11 A U 4 1 Not tested* 0.38 

26 50 100 0.06 A X 132 8 57 0.09 

27 50 100 0.09 A X 76 5 74 0.06 

28 50 100 0.08 A U 10 6 0.17 

29 50 100 0.06 A U 14 3 " 67 0.08 

30 50 100 0.12 A U 8 124 1.60 

31 40 100 0.08 A X 97 33 2 0.27 

32 35 100 0.13 A X 58 50 - 0.47 

33 40 100 0.15 A X 69 .50 - 1.05 

34 65 100 0.15 A X 84 50 - 0.86 

35 50 100 0.08 A X 111 50 - 0.59 

36 50 100 0.10 A X 90 50 - 1.45 

37 50 100 0.10 A u 10 50 - 1.87 

38 . 50 100 0.12 A X 83 50 - 1.40 

39 50 100 0.12 A u 8 50 - 1.31 

40 50 100 0.14 A u 8 50 - 2.20 

41 50 100 0.15 A X 90 50 - 2.30 

*Not tested because lower bound < (upper bound - 1 + e ) and all costs were equal to 1 cn 



test the remaining columns to see if the reduced costs were negative. 

Any columns with negative reduced costs could be added to the problem 

from which the lower bound is calculated. This would be similar 

to bringing elements into the basis in the simplest method. 

Analogous to removing elements from the basis, columns with large 

positive reduced costs could be disregarded for the purpose of 

calculating bounds. An initial set of columns could be chosen by 

picking the first 100, say, and then all other columns for which 

c ./h. was less than a certain value. It is not necessarily true that 
<7 v 

denser problems are to solve than sparse ones as Problems 13 

and 14 show. In this case Problem 13 - with more than twice as many 

elements as Problem 14 and the same dimensions and cost structure is 

solved optimally whereas there is a gap of 14% between the best upper 

and best lower bounds for Problem 14. 

Table 2.2 shows how the heuristics performed in a best bound tree 

search procedure. The branching rules are given in Chapter 7 and 

are using branching or> rows. The first 10 problems in this table 

could all be solved optimally. The second set of 10 problems could 

not be. 

Columns C1) to (6) give the same information as in Table 2.1. For 

the problems that could not be solved the best bound after 50 tree 

search nodes is given. Column (7) gives the number of tree search 

nodes examined and Column (8) gives the number of variables removed 

either by reduced costs or by the 'single 1 in a row test'. 

The maximum size of problem solved was a unicost problem of size 

60 x 400 and'density 0.11. Problems with less than 4 1's per column 

and less than 100 columns were easily solved, often with less than 



TABLE 2.3 

LOWER BOUND AS PERCENTAGE OF UPPER BOUND 

Problem 
Size 

Lower Bound 
at Root Node 
as Percentage 
of Best Upper 

Bound 

Lower Bound 
after 50 Tree 
Search Nodes 

Best Upper 
Bound V3lue 

Number m n t 

Lower Bound 
at Root Node 
as Percentage 
of Best Upper 

Bound 

as Percentage 
of Best Upper 

Bound 
3 . u 

(1) (2) (3) (4) (5) (6) 

32 35 100 0.13 84 98 58 

33 40 100 0.15 79 97 69 

34 45 100 0.15 77 65 84 

35 50 100 o.oa 89 95 111 

3G 50 100 0.10 78 91 90 

37 50 100 0.10 78 < e7 10 

36 50 100 0.12 ' 82 94 83 

39 50 100 9.12 78 . 85 8 

40 50 100 0.14 71 88 8 

41 50 100 0.15 78 85 90 

Average 79.4 QO. 5 

TABLE 2.4 

COMPARISON OF LP BOUNDS WITH HEURISTIC BOUNDS AT ROOT tiOGE 

PROBLEM HEURISTIC LOWER BOUND LP Hutl.'lD 

Problem 
Number 

Size Density Type Costs Bound as % Tims Ti!T,e 
Problem 
Number m n 0 CPU Sec CPU Sec 

(i) (ii) (iii) (iv) (v) (vi) (vii) (vill) 

42 50 100 0.10 A X 97 0.14 0.29 

43 50 300 0.10 A X 98 0.08 0.89 

44 100 400 0.05 A X 98 0.21 3.40 

45 110 300 0.20 A X 98 10.3 17.70 

46 120 400 0.04 A X 96 1.3 5.02 



50 tree search nodes being examined. In Problems 26 and 27 half the 

variables were removed by reduced costs and subsequently fixing 

variables by the 'single 1 in a row' test reduced the problem size 

further by removing rows. 

Table 2.3 shows for the problems that were not solved the lower 

bound as a percentage of the best solution Known at the root of the 

search tree and the least lower bound at an active node as a per-

centage of the best solution Known after 50 nodes had been searched. 

The results show that there is least improvement in the bound for the 

larger denser problems as expected. The average value of the lower 

bound as a percentage of best Known solution at the root of the tree 

was 79.4% and after 50 iterations 90.5%. A comparison of LP solution 

values and heuristic values at the root node of the search tree is 

given in Table 2.4. As can be'seen from these results the heuristic 

gives a good approximation to the LP bound, within 5% in most cases 

in reasonable time. The LP solution was found by solving DLP 

using the Land and Powell FORTRAN code [L1]. Further results comparing 

the APEX III linear programming package with the heuristics on standard 

test problems are given in Chapter 5. 



CHAPTER 3 

LAGRANGEAN RELAXATION 

3.1 Introduction 

The Lagrangean relaxation, LRCX), of IP [G8] is defined in §1.2 as: 

LRCX) 

LCX) = min LCX,a;) = min 
x x 

subject to Ax > b 

x integer 

T T 
o x - X C Bx -

A lower bound to tf(IP), the optimal solution value of an integer 

program, is given by the optimal solution value, LCX), for any 

X > 0. The best such lower bound is given by LCX*) where X* is the 

optimal solution to the problem LR: 

LR 
max LCX) 

X > G 

C3.1) 

Computing X* exactly is not easy and in practice a suboptimal value 

of X is often used. An initial value of X is chosen and this is 

updated recursively, as described in §3.2, by the formula: 

X = maxCX + cri>, 0) (3.2) 

where a is a positive scalar steplength and a search direction. 

The computation of these two variables is discussed in §3.3 and §3.4 

and results of different methods are considered in §3.5 for a 

relexation of the SCP given by Etcheberry [E5]. 
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FIGURE 3.1 

A FLOWCHART OF PROCEDURE S SUBPROBLEM 

TO SOLVE THE LAGRANGEAN RELAXATION OF A PROBLEM P 

Is 
Ji > fcmax? 



3.2 Implementation of Lagrangean Relaxation 

Initially X takes the value X° which can be obtained by setting X° 

equal to u, a dual feasible solution of the LP relaxation of IP 

obtained from the heuristics of Chapter 2. Subgradient optimization 

k 
is used to obtain X for k > 1. Iteration k, k > 0, starts by 

k k k 
solving LRCX ) and obtaining a solution, x say. If Bx > d and 

k k k 
X CBx - d) = 0 then x is optimal for IP. Otherwise the search 

k k+1 

direction v and steplength a are computed from x and X is updated 

by equation (3.2) above. SCP's of up to 30 rows and 100 variables 

can usually be solved optimally by Lagrangean relaxation without 

the need for a branch and bound procedure, because the lower bound 

is in fact the optimal solution. 

For most larger problems it is necessary to use Lagrangean relaxation 

to obtain lower bounds in a branch and bound procedure. To solve a 

subproblem, P, of the SCP at a node of a branch and bound tree there 

are four distinct stages. Firstly the constraints of P must be 

partitioned so that the relaxed problem can be solved easily using 

PROCEDURE 4 RELAXATION. Then PROCEDURE 5 SOLVER is used to solve the 

problem LR(X) and it solution is tested for optimality to the IP 

using PROCEDURE 6 FEASTEST. Either the solution solves IP in which 

case the node of the search tree is fathomed or it does not. If 

LRCX) exceeds the best known optimal solution to the IP or LRCX) is 

infeasible the node is fathomed otherwise the fourth stage, 

PROCEDURE 7 COSTCHANGE, is executed in which the multipliers X 

and hence the costs of the relaxed problem are changed. PROCEDURES 5, 

6 and 7 together make one iteration of the subgradient optimization 

phase in an'algorithm for the SCP. A flowchart of the subgradient 

optimization algorithm, described as PROCEDURE 8 SUBPROBLEM below, is 

given in Figure 3.1. 



PROCEDURE Q SUBPROBLEM CP, z , z , fcmax, X) 

SOLVE A SUBPROBLEM OF THE SCP AT A NODE OF THE BRANCH AND BOUND 
TREE USING LAGRANGEAN RELAXATION 

Input: P a subproblem of the SCP 

X (optionally) feasible dual variables for an LP 

relaxation of P from which multipliers X can 

be defined 

z 
u 

an upper bound to the SCP 

m 
a lower bound to the SCP equal to .2. X. 

i-1 i 

kmax maximum number of iterations allowed 

Output: A solution to P or an indication that P has not been solved. 

z a lower bound to the SCP from Lagrangean relaxation. 

1. Initialise Variables 

Set the iteration counter k: - 0 

2. Define the Lagrangean Relaxation 

PROCEDURE 4 RELAX Relax the constraints 

3. Iteration k 

k: = fc+1 Update the iteration counter 

4. Subgradient Optimization 

PROCEDURE 5 SOLVELR Solve the Lagrangean relaxation 

Set lower bound z^: = vCLRCX)) 

2 o > K g°t0 6-u 



PROCEDURE 6 FEASTEST 

If the solution to LRCX),a;, Test the solution to LRCX) for 

feasibility to P and complementary 

slackness conditions. 

is feasible for P and 

X {.Bx - d) = 0 goto 5. 

If k > kmax goto 7 Test if the iteration limit has 

been exceeded. 

Call PROCEDURE 7 COSTCHANGE 

to change the multipliers X 

and the costs of the relaxed 

problem. Goto 3. 

5. Replace the Upper Bound to the SCP 

Set z : = zn u Z 

6. P Has Been Solved 

Exit with the solution z to P 
u 

7. P Has Not Been Solved 

The iteration limit has been exceeded. Exit. 

PROCEDURE 4 RELAX considers whether or not to represent P by the data 

structures used for the original SCP. It is not always necessary to 

store the constraints Bx > d explicitly as shown in Chapter 4 for the 

two network flow relaxations, NF1, NF2, and in Chapter 5 for the second 

graph covering relaxation, GCR2. Data structures are discussed in 

more detail in Chapter 8. For each relaxation the PROCEDURES 

SOLVELR, FEASTEST and COSTCHANGE are described in Chapters 4 and 5. 



3.3 Calculating the Search Directions 

Three ways of choosing the search direction v which is used to update 

X in maximizing LCX) are described here. If LRCX) had the same 

solution x for all values of X then methods one and three would be 

equivalent to the steepest ascent method [B15a]. 

£ 

The first choice of v , the search direction at iteration k of ' 

PROCEDURE 8, is to set: 

k+1 j „ k ro 
v = d - Bx C3.3) 

k k 

This method uses only one solution, x , to LRCX ) and is widely used 

because it is quick to compute. 

k k 
The second method [C15aj also uses only single solutions x to LRCX ) 

£ 

but includes information from previous iterations to compute X . Let 

the initial search direction be )3t°, with = 0. Then to- update v 

the following recursion is used: 

= C d-Bx k) + Q kv k (3.4) 

- k k 
where is a positive scalar. Two methods of choosing 9 were 

k 

compared. The first was to set 0 equal to a constant between 0 and 

1. The second choice of 0 used by Camerini et al [Cl] is to set: 

. a - B X h i f v k t d . B x k ) < 0 

\\A\ 
= 0 otherwise 

k +1 

where 3 is a constant, 0 < 3 < 2 . If 3 = 1 then v is orthogonal 

k 

to v and the method resembles the conjugate direction method for 

optimizing quadratic functions. In [C1] 3 = 1.5 was found to be a 

suitable value for the travelling salesman problem, but here no such 

conclusions for the SCP could be drawn. 



Thirdly v can be chosen by considering more than one solution to 

LRCX ) and then combining the resulting subgradients. Ideally a 

direction X that follows the lines of discontinuity of LCX), formed 

by alternative solutions to LRCX), should be chosen as it is likely 

that at X* LCX) is non-differentiable. This can be explained by 

considering the optimality conditions for LCX) [B17]. 

Alternative solutions to LRCX) are denoted by x(t) where 

Q =Q (X) = U | L C X ) = LCX,*(£))}. Then X* is an optimal solution to 

LR if there exist scalars TT̂  such that: 

£ ^ n 
teQ 

and it > 0 

X* S ^ i r V = 0 

t t 
£ IT Y > 0 

tzQ ~ 

where y = d - Bx[t) 

C3.5) 

C3.B) 

C3.7) 

(3.8) 

Thus for each non-zero component of X* there is a convex combination 

of subgradients with corresponding components equal to 0. At X* very 

often there is more than one solution to LRCX*). 

Example 3, LRCX), below is a Lagrangean relaxation of an SCP Cdenoted 

SCP3) and contours of the function LCX) are plotted-in Figure 3.2. 

SCP3 

min 
x 

subject to 

3xi + 2x2 + 4^3  +  xk  + ' , x5 

x1 

xi 

+ x3 

x2 + x3 

x2 

> 1 

> 1 
+ > 1 

+ > 1 

+ x3 + Xii > 1 

x. = 0,1 3 = 1,2,...,n 
<7 
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FIGURE 3.2 

Level Sets of LCX) for Example 3 Showing Zigzagging Path 

— p c v + l - 1 



Relaxing the first two constraints the Lagrangean relaxation, LRCX), 

is: 

LCX) = min (3-Xj)a?]_ + C2-X 2)x 2
 + C4-X 1-X 2)x 3

 + + + + X 2 

x 

LRCX) 

subject to 

xi + 

x1 

Xi+  + X5 > 1 

X2 + X5 > 1 

+ X3 + Xi+ > 1 

x. = 0,1 j = 1,2. 
v 

,n 

The optimal solution is given by 2 < Xj < 3 and 1 < X 2 < 2 giving 

LCX*) = 5 with x* = (0,0,1,0,1). A line of non-differentiability of 

LCX) is given by the line Xi + X 2 = 4. 

Suppose that an initial vector of multipliers is given by X° = (0,4); 

then using a single subgradient leads to the zigzagging search path 

shown. An alternative strategy from this starting position that 

eliminates zigzagging is to search directly along the line X^ + X 2 = 4. 

The discontinuities arise at X = (0,4) because LRCX) has three solutions 

a? C D = (0,1,0,1,0) 

a?(2) = ( 0 , 1 , 1 , 1 , 0 ) 

Xt3) = (0,1,1,0,1) 

k 

The given zigzagging path gives relaxations LR(X ) that oscillate 

between having x{'\) and a?(2) or a:(3) as solutions. 

When alternative solutions to LR(X) are present the computation of v 

is better understood by reformulating LR using an additional variable, 

w, to give P(w): 

Piw) 

max w 

w < o Txit) + \ Ttd-Bxit)) for all teQCX) 

X . > 0 ieJ? where R is the set of relaxed 1 — 

constraints 

C 3.9) 



Let the set of relaxed constraints R equal {1,2,...,r} then in the absence 

of constraints (3.9) an ascent direction for maximizing w in Piw) is 

o * 
the vector v = (0,0,...,0,1) where the first r components correspond 

to the vector X and the last component to W. Projection methods can 

be used to incorporate constraints (3.9) as was successfully used for 

the minmax problem in [C3]. The aim is to project v° so that X is 

changed in such a way that W increases. Rosen [R1a] suggests how a 
£ 

matrix P can be computed iteratively which enables a search direction 

SL Ho 
v = P v to be computed. This is described in PROCEDURE 9 below. 

PROCEDURE 9 PROJECT 

CALCULATE SEARCH DIRECTION,y 

1. Initialisation 

Calculate the alternative solutions xit) to LR(X) 

y t: = d-Bx it) 
£ 

To each vector y add a component corresponding to w equal to -1 to 

give the vector y^ 

R: = <{> be the set of subgradients in the projection 

S: = QCX) 

v° : = (0,0,...,0,1) be an (r+1) dimensional vector 

P 0 : = J 2 > + 1 be the (r+1) identity matrix 

A: = 0 be the iteration counter 

2. Find A Subgradient 

If S = <f> then goto 4. 



else Z: = Z+1 update iteration counter 

Let t r be the t that minimizes 

iT 
k ' 1 _t y 
i-1 t 

y 

£ - 1 ' 
If v y > 0 then goto 4. 

_t' 
3. Add y To The Projection 

R: = RU{t'} and S\ 

q: = yt> • 

= 

P : = P - qq 
I 1 o v : = P v 

4. ChecK The Signs Of The Lagrange Multipliers Corresponding 

To y^ For tzR 

* ~ h n7 y-
Since v = E TT y for some TT > 0, TT is approximately v y 

t, 2 
Y I 

^ 
If (v ) y > 0 -for all tzR goto 6. 

5. Drop Subgradients From The Projection 

Z T t t r t" 
If (v ) y < 0 for some t" remove y from the projection 

R: = R^it"} and S: = SU{t"} 

^ 

Let N be the matrix with y for tzR / 

P Z: = I-NUlpN)''* I? 

Goto 4. 



6. Search Direction v Is Obtained 

If ||Y*|| < E then exit X* has been found. 
£ 

else v: = v exit with search direction v. 

In practice if, for some relaxed constraint,- , y ? is equal to a 
is 

constant, a say, for all £&<?(X) then this component can be dropped 

from T^ as the corresponding component of v will also equal a. 

Only components of y which take different values need be considered 

thus reducing the size of P. 

The first method of computing v is quick and effective in the absence 

of alternative solutions to LRCX). The second method requires the 

storage of an additional vector of dimension at most m and very few 

additional computations. The third method requires more computation 

and storage but enables an ascent direction to be found that gives 

an increase in LCX) in the presence of multiple solutions. Section 

§3.5 gives a computational analysis of these methods. 

3.4 Calculating the Stepsize,a 

3.4.1 Introduction 

After computing a direction v by one of the above three methods a 

steplength o must be chosen. In theory [H4a] any stepsize ak satisfying 

w k 
lim 7 E . o = 00 

lim c^ = 0 
k-**> 

has the property that if v is a subgradient of LCX*) then setting 

k+1 k k k k 
X : = X + a v ensures that X converges to an optimal value X* 



as k -»• The difficulty is that k may be very large before an 

optimal value of X is found. 

One method of computing a , which was used by Held and Karp [H4] 

for the travelling salesman problem is to set 

o*! £CX*))/1|/|| 2 (3.9) 

LR 

where a is an a priori constant, 0 < a < 2, z' is an upper bound on 

LCX*) and | |v| | = V .2 for any 77?-dimensional vector V. 

It 
3.4.2 Computing a Using a Target Value 

LR 

In practice using a fixed value of z^ did not lead to a rapid increase 

in the lower bound LCX). Instead using a variable z^ which can be 

adjusted depending on the value of LCX) is preferable. Initially z 

is set to a value slightly greater than LCX ). 

If z i s much less than z^ then it is unliKely that the lower bound 

will increase much and thus z^ must be reduced. As z i s not a true 

upper bound on z it may be exceeded by z in which case z must be 
X» Ai J. 

increased. In practice if z e x c e e d s z^-e for a positive constant c 

then Zy is increased. It is necessary to use z for otherwise the 

algorithm may stop with a suboptimal value of X satisfying LCX) = z^ m 

The adjustments to z w e r e made using an a priori chosen constant 6. 

The following rules were found by experiment to give suitable values 

of zT\ 

If z T > z^ + 26 set zf'. = + 1.56 (3.10) 

If z T < z % + 6/40 set zT>. = z + 6/10 (3.11) 

I f  ZT  >  Zu  s e t  3T : =  Su + 6 (3.12) 



where a is an upper bound on tfCSCP). In the third rule C3.12) using 

an overestimate of the upper bound usually gives a better increase in 

the lower bound than if the exact upper bound is used. The initial 

value of can also be used to scale 8 . 
I 

k 
3.4.3 Computing a Using "Near-Alternative" Solutions 

The projection method is most effective when LRCX) has more than one 

solution. Using X° equal to a dual feasible solution of the LP 

relaxation of IP usually gives a relaxed problem that has several 

solutions. At subsequent iterations an attempt is made to make 

LRlX+ov) have several solutions. This is done by calculating values 

of x, x' say, for which LCX,x f) - LCX) is small, where LCX,as') = 

T T 

o x' - X tBx'rd). Suppose x is an optimal solution to Li?(X) then 

the aim is to find by how much one can change X in the direction of v 

without the optimal solution, x, changing. Suppose that it changes 

to x' when a equals "a. Then LRiX+av) has optimal solutions x' and x. 

Therefore: 

LtX+oVjX) = ECX+av,;c') 

T 

or o x-(X+av) CBx-d) = cx'-(X+av) CBx'-d) 

a v TCBx'-Bx) = Co T-\ TB) ix'-x) 

thus if v^CBx'-Bx) t 0 

a = Co T -X T B) ix'-x) C3.13) 

v
T
C B x r - B x ) , 

otherwise a" =
 00 

Thus one way of computing a would be to calculate a set $'CX) of 

'near-alternative' solutions to Li?(X), that is solutions for which 



Li\,x') - LCX) is small. Each 'near-alternative' solution would give 

a value of a by C3.13). These could then be ranked, assuming a > 0, 

as: 

aCri) < a(r 2) < .,. 

where rv denotes the K^ 'near-alternative' solution. 

In general since L(X) is concave one expects L(X+av) to increase as a . 

increases from 0 and then decrease. Thus a should be set equal to 

the first cr(r^) for which LCX+aCr^v) > LCX+aCr^ + 1)v). A heuristic 

for deciding when r has been found would be to find the first 'near-

alternative' solution for which: 

v Tid-BxirR)) <0 

T 
If v td-Bx[rv)) > 0 for all 'near-alternative' solutions then a could 

K. 

be chosen using the first method suggested. In practice it was found 

that L(X+av) varied considerably with very small changes in a and the 

above method tended to give values of a that were too large. Another 

reason why this method did not often give any increase in the bound 

value is that in solving LR{\) the solution x may have been an 

optimal solution to Li?CX*) even though X was not an optimal multiplier. 

k 
3.4.4 Other Methods of Computing a 

The third method of computing a was to set a equal to the minimum of 

1 2 1 2 
a and a where a is calculated from C3.9) and o is calculated by 

(3.13). If L ( X + G V ) is very much less than L ( X ) , say less than 

£(X) - 0.16 (where 6 is as before), then a is halved until 

L(X+crv) > L(X) - 0.16. Very often this gave a good increase in the 

lower bound. 



AS-

PICS U B # 3.3 

Non-Zero Indices Of x For Example. To Show Behaviour Near Subgradient Optimum 

ITERATION 
NUMBER 

k 

BOUND 
VALUE 

Index of x , j ITERATION 
NUMBER 

k 

BOUND 
VALUE 

1 2 3 4 5 6 8 9 11 12 13 14 15 16 17 19 20 21 22 23 26 27 28 29 30 31 35 36 37 41 

2 35.93 O 0 0 0 0 0 0 0 0 0 0 0 0 

3 42.93 0 0 0 0 0 0 0 0 0 0 0 

4 46.54 0 0 o 0 0 0 0 0 0 0 0 o 0 o o 0 0 o 0 o 

5 48.50 0 0 0 0 

6 48.98 0 0 0 0 0 

7 49.05 0 0 0 0 0 0 0 

31 48.82 0 0 0 0 0 0 0 o o o 

32 49.57 0 0 0 0 

33 50.04 0 0 0 0 0 0 

34 50.06 0 0 0 0 0 

35 50.12 0 0 0 

36 50.14 0 o 0 0 0 0 0 

37 50.27 0 0 0 0 

30 50.32 o o o 0 

o means Xj » 1 in solution to L R U ) at iteration k.  L f > soUU;lon = 5/*' 



A fourth alternative which was not tested would have been to use 

either exactly or approximately a cubic linesearch as in [C1]. 

3.5 Computational Results 

3.5.1 Case Study 

Firstly Etcheberry's relaxation will be used to examine in detail how 

the different ascent methods performed on one particular problem. 

This relaxation relaxes constraints of the SCP until there is at most 

1 non-zero entry per column for the constraints of LRi\). This 

problem had 30 rows, 60 columns and density 0.15. It was randomly 

generated with a fixed probability of 0.15 that a., was equal to 1. 

m 
The costs c . were set equal to 2 a . . + 5, b'ut if o . exceeded 15 

3
 M t=1 tj 3 

it was reduced by 10. 

It 

The zigzagging between solutions to LR[\ ) for successive iterations 

ft 

as X approaches X* is illustrated in Figure 3.3. It shows indices 3 

for which x . = 1 for iterations 2 to 7 and 31 to 38 of the subgradient 

optimization. Iterations 2 to 7 were chosen as the bound value was 

least for these. It is noted that there are 30 different values of 3 
for which x . = 1 and also that if x. = 1 for more than one iteration 

3 3 

these iterations are likely to be consecutive. For example x u = 1 

in iterations 2, 3 and 4 and J;^ s 1 in iterations 4, 5 and 6. For 

iteration 38 the bound value was greatest and in the 7 preceding 

iterations it is seen that there are 15 different values of 3 for 
which x . = 1. Further if x . = 1 at one iteration it may be alternately 

3 3 

equal to 0 and 1 at subsequent iterations. For example X12 = 1 only 

at iterations 31, 33, 35 and 37 and x 2 s = 1 at iterations 31, 34, 36 

and 38. This illustrates the zigzagging between solutions that is 



TABLE 3.4 

TO SHOW THE EFFECT OF VARYING 3 WHEN IMPLEMENTING THE SUBGRADIENT ASCENT PROCEDURE OF CAMERINI et al 

3 

6 = 1.5 6 = 2.0 <5 = 2.5 6 = 3.0 

3 
ITERATION 
NUMBER 

BOUND 
VALUE 

ITERATION 
NUMBER 

BOUND 
VALUE 

ITERATION 
NUMBER 

BOUND 
VALUE 

ITERATION 
NUMBER 

BOUND 
VALUE 

1.5 
25 49.66 25 49.71 25. . 49.43 25 48.76 

1.5 
47 50.20 36 50.01 38 50.05 50 49.99 

2.0 
25 49.44 25 49.14 25 47.85 25 47.09 

2.0 
38 50.00 50 40 49.75 50 

2.0 
38 50.00 50 50.26 40 49.75 50 50.02 

2.0 
38 50.00 50 40 49.75 50 

2.5 
25 49.48 25 49.09 25 48.19 25 47.01 

2.5 
50 50.06 48 50.20 50 50.20 50 49.98 

gives best bound value for given 6. 



TABLE 3.5 

BOUND VALUES FOR 3 SUBGRADIENT OPTIMIZATION METHODS 

68 

BOUND VALUE 

ITERATION Ml IMDCTO SINGLE CAMERINI ^PROJECTION 
NUMStR 

SUBGRADIENT et al METHOD 
(i) (ii) (iii) 

1 49.27 49.27 49.27 
2 35.93 35.93 42.96* 
3 44.91 33.74 48.55 
4 47.38 34.68 47.27 
5 47.44 39.27 47.55 
6 47.15 40.14 42.79 
7 47.62 41.00 47.96 
6 47.72 41.70 47.61 
9 46.65 42.43 47.40 

10 49.04 43.20 48.52 
11 48.44 43.96 48.27 
12 49.33 44.72 47.66 
13 49.07 45.45 48.22 
14 49.39 45.83 47.37 
15 49.65 45.93 4B.54 
16 49.81 46.36 48.64 
17 49.97 46.42 48.45 
18 38.09 46.84 . 48.92 
19 45.30 46.91 48.30 

' 20 48.07 47.33 49.08 
21 46.72 47.39 43.43* 
22 48.32 47.72 48.03 
23 48.50 47.83 48.55 
24 48.05 47.87 47.83 
25 . 48.12 48.19 48.30 
26 43.65 48.26 47.74 
27 48.53 48.33 47.31 
28 48.74 48.64 48.35 
29 47.47 48.76 48.40 
30 48.40 48.81 49.00 
31 48.52 49.00 49.30 
32 47.94 49.19 49.58* 
33 48.86 49.26 49.71* 
34 48.25 49.40 50.20* 
35 49.39 49.52 50.20* 
36 48.76 49.60 50.20* 
37 48.99 49.67 50.20* 
38 48.55 49.71 50.20* 
39 48.78 49.73 50.22* 
40 49.24 • 49.76 50.22* 
41 48.80 49.78 50.22* 
42 49.31 49.88 50.22* 
43 49.16 49.95 50.24* 
44 49.63 49.98 50.25* 
45 49.20 50.01 50.25* 
46 48.92 50.11 50.20* 
47 48.99 50.13 49.72* 
48 48.62 50.13 49.34 
49 49.19 50.15 49.45 
50 49.30 50.20 49.30 

Steplength Paramster 

6" = 2.5 

Problem 

30 x 60 density 0.15 

The starting value o-f 
% was obtained using 
the heuristics of 
Chapter 2. 

^ F o r method (iii) it 
was too expensive to 
use the projection 
method at each 
iteration of sub-
gradient optimization. 
Therefore it was only 
used at iterations 
marked *. The other 
iterations used 
method (ii). 

* means that bound 
has been obtained 
using projection 
method 



characteristic of subgradient optimization near an optimal solution 

to LR. In other problems it is often found that the values of j for 

which x . = 1 for values of z near the best bound obtainable from 
J X/ 

this Lagrangean relaxation are precisely the values of j for which 

Xj is non-zero in an optimal solution to the LP relaxation. This is 

because the value of an optimal LP solution is equal to the best bound 

obtainable 'from this relaxation and any optimal LP solution can be 

written as a convex combination of all the possible 0-1 solutions to 

the best Lagrangean relaxation, Li?(/\*). The frequency with which 

variables occur as solutions to a Lagrangean relaxation can be used 

to determine branching variables in a tree search. 

Of the different methods of calculating v first Camerini et al's 

method [C1] is examined. Although the choice of $ uspd in • (3.6) 

affected the value of the lower bound no firm conclusions as to the 
i 
\ 

best value of 3 could be obtained. Table 3.4 shows the best value 

of the lower bound in the first 50 iterations and the iteration at 

which it occurred for different values of 3 and 6. It also gives the 

bound value after 25 iterations. The best bound value of 50.26 with 

this method was given by 6 = 2.0 an " = 2.0 at iteration 50. The LP 

solution gives a bound value of 51.0 and thus is the best theoretically 

obtainable lower bound value for this relaxation. The bound values 

were also calculated using a fixed value of 9 in (3.5) and were 

slightly worse than those derived by varying 9 as in (3.6). This was 

therefore not analysed further. 

The bound values, L(A), for the three methods of computing the ascent 

direction v for maximising LRi'X) are given in Table 3.5 for 6 = 2.5. 

They are plotted against iteration number for the first 50 iterations 

in Table 3.6. The ascent pattern was found to be similar for other 

values of 6. The simple subgradient procedure produced a very erratic 



variation in the bound. The method of Camerini et al ascended slowly 

at first, but then was very steady and reached a higher bound value 

than that obtained by using a single subgradient. The computational 

effort of Camerini et al's method was slightly greater than that 

required by the simple method. The extra storage required was one 

vector of minimum dimension equal to the number of relaxed constraints, 

MREL, and in any case less than m t The projection method required more 

storage, 0((MREL) 2), and as it was more expensive to use than the other 

two methods was only used when the bound exceeded its previously best 

Known value. Iterations for which it was used are marked by * in 

Table 3.5. At the other iterations Camerini et al's method was used. 

The main problem was that the search direction generated was extremely 

sensitive to small changes in the stepsize cr and for the results 

recorded here the stepsize was calculated for all iterations by the 

method used by Held and Karp given in (3.10) as this was then the same 

for all three ascent methods. The projection method had the feature 

that it reached a relatively high value of the bound at an earlier 

iteration than by the other two methods. Since the simple subgradient 

method was used in (iii) for the ascent direction when the projection 

method was not used, i.e., when the bound had not reached a better 

value than in previous iterations, the bound value was erratic for 

these iterations. 

Thus the projection method and Camerini et al's method were combined 

to produce further improvements. The computation times for the three 

methods plotted here are: 

(i) 0.75 

(ii) 0.88 

(iii) '1.34 

where the times are CDC 6500 sec. under the NDS BE operating system 

and the NNF5 Fortran compiler at Imperial College. 



TABLE 3.4 

BEST BOUND VALUES AND TREE SEARCH INFORMATION 

METHOD 

'ROOT NODE TREE SEARCH 

METHOD 
BEST BOUND 

VALUE 
ITERATION 
NUMBER 

TIME 
CPU sec 

NUMBER OF 
NODES 

NUMBER OF 
SUBGRADIENT 
ITERATIONS 

TOTAL TIME 
CPU sec 

(i) Single subgradient 50.38 150 1.63 8 364 3.2 

(iia) Camerini et al $ = 1 . 5 50.82 144 1.66 9 647 5.3 

(iib) 3 = 2.0 50.80 123 1.56 10 472 -4.3 

(iii) Projection method 50.70 130 3.17 6 415 12.7 

(iva) 0 fixed at 0.25 50.53 112 1.31 7 516 4.2 

(ivb) 0 fixed at 0.5 50.82 116 1.33 10 697 5.4 

(ivc) 0 fixed at 0.75 50.81 148 1.61 13 1088 8.3 

Time CDC 6500 
MNF5 compiler 



TABLE 3.4 

BEST BOUND VALUES AT ROOT NODE FOR 4 METHODS 

ITERATION 
NUMBER 

Ci) 
Single Subgradient 

Ciia) 
Camerini et al 3 = 1 . 5 

(iii) 
Projection Method 

(ivb) 
Fixed 0 = 0.5 ITERATION 

NUMBER 
Bound Time Bound Time Bound Time Bound Time 

10 49.03 0.5 49.64 0.5 49.81 0.6 49.33 0.5 

20 49.90 0.6 50.24 0.6 50.12 0.9 50.08 0.6 

30' 50.24 0.7 50.27 0.7 50.27 0.9 50.25 0.7 

40 50.38 0.8 50.32 1.1 

50 50.38 1.3 50.40 0.8 

60 50.26 0.9 50.53 1.0 50.40 1.4 

70 50.29 1.0 

80 50.30 1.1 50.55 1.1 50.48 1.7 50.62 1.1 

90 50.33 1.1 50.68 1.2 50.55 1.9 50.67 1.1 

100 50.34 1.2 

110 50 . 35 1.3 50.75 1.3 

120 50.37 1.4 50.68 2.4 50.82 1.3 

130 50.70 3.1 

140 • 50.38 1.6 

150 50.38 1.6 50.82 1.7 

Tims CDC 6500 

MNF5 compiler 
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FIGURE 3.9 

Comparison Of Bound Values Against Computing Time For 3 Different Subgradient Optimization Methods 
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As the bound value was still increasing at 50 iterations the iteration 

limit was increased to 150 iterations, beyond which no improvement was 

obtained. With this new limit and 5= 1.5 the three methods were 

compared in a tree search procedure. 

For method (ii) two tests (iia) with 3 = 1 . 5 and (iib) 3 = 2.0 were 

made. The projection method used method (ii) at iterations where 

the bound had not increased and a linesearch based on all the methods 

described in (3.3). In addition using 9 fixed at 0.25, 0.50 and 0.75 

gave tests (iva), (ivb) and (ivc). The best bound values at the root 

node of the search tree, the iteration number at which it was reached 

and the time is shown in Table 3.7 together with total computation 

times and number of tree search nodes used. 

Table 3.7 gives the best bound values at.the root node for methods 

(i), (iia), (iii) and (ivb) and the results are plotted against 

iteration number in Figure 3.8 and against computing time in Figure 

3.9. The subgradient optimization gave at best a 3% improvement in 

the bound at the end of the heuristic procedures. 

There was little difference at the root node between methods (ii) and 

(ivb) in terms of bound value or time. The single subgradient 

method gave a worse bound than the other methods at the node, but for 

this size problem had the fastest overall computing time. 

3.5.2 Comparison of the Methods on Different Problems 

Table 3.10 gives 5 problems which were solved by the above methods 

using the same best bound tree search as in Chapter 2. The first 

4 columns -describe the problems as in Chapter 2. The first column 

for each method gives the increase in the bound obtained from 

Lagrangean relaxation over that obtained by the heuristics as a 



TABLE 3.10 

COMPARISON OF 4 METHODS FOR SUBGRADIENT OPTIMIZATION EMBEDDED IN A TREE'SEARCH 

PROBLEM METHOD 

6 = 1.5 For All Problems 
SINGLE SUBGRADIENT CAMERINI et al fl - 1.5 PROJECTION METHOD FIXED 0 = 0.5 

liJ (iia) (iii) (ivb) 

No m n p Cost Increase No of Total % Increase No of Total \ Increase No of Total \ Increasa No of Total n 
Type in Bound Nod89 Time In Bound Nodes Time ln Bound Nodes Time ln Bound Nodes Time 

4.7 20 80 0.2 X 5 3 1.13 7 3 1.15 7 1 2.13 1 8 1.35 

48 30 80 0.15 X 3 11 6.74 4 16 8.8 3 10 16.6 1 111 33.6 

a 30 100 0.15 X 3 37 15.83 0 22 14.05 3 38 23.0 1 750 21. 

4<i 36 80 0.17 X 2 . 13 4.03 3 16 4.66 1 13 8.3 0 72 21.53 

so 40 300 0.15 X 0 4 16.5 5 2 22.0 7 4 60.6 3 10 26.0. 

cn 
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percentage of the heuristic bound. As can be seen method (ii) was 

the most robust and on further larger problems not listed here tended 

to generate fewer nodes than by (i). However for the size of problem 

tested here there is little to choose between methods (i) and (ii). 

Although there was little difference between (ii) and (iv) for the 

example problem, the latter generated many more tree search nodes and 

is therefore not recommended. The projection method whilst not 

generating too many nodes was costly to implement at each node and 

there were storage problems on larger examples. The advantage of 

using method (ii) to overcome the zigzagging is demonstrated here as is 

the importance of using a good target value by adjusting 6. Thus 

using method (ii) with either a robust way of choosing 6 or a line-

search procedure leads to an effective implementation of Lagrangean 

relaxation. 



CHAPTER 4 

NETWORK FLOW RELAXATIONS DF THE SCP 

4.1 Introduction 

Network flow problems can be solved using conventional linear 

programming methods, but by exploiting their structure more efficient 

algorithms result which easily solve problems of up to 500,000 arcs 

and 1000's of vertices [B12, G15]. Two different networK flow 

relaxations of the SCP are described in §§4.2 and 4.3 and in both 

cases the lower bound obtained from the networK flow solution is 

bounded above by tf(LP). The conclusions of Section §4.4, where 

computational results are presented, are that the first relaxation 

produces a bound very close to the LP bound in a reasonable time but 

that the second relaxation requires too much storage to be useful. 

Unli.ke the integer programming problems of [G15] the SCP has its own 

structure which can be more efficiently exploited than the structure 

of the derived networK flow problems. 

4.2 NetworK Flow Relaxation, NF1 

4.2.1 Formulation 

NetworK flow relaxation NF1, is derived from the LP relaxation of the 

SCP by replacing a single variable x . with a set of variable when-
3 "^3 

ever a.. = 1. For each j there are constraints that the variables 
13 

must taKe equal values for all i-eM.. This gives the problem NC/3 

which is clearly equivalent to the problem LP: 



N if) 

m 
m! n i--1 jeir£

 fio Kio 

subject to 

and 

K - • > 1 j e ^ "Z-J -

^13 3 leM. I3 
3 

1 > £ . . > 0 

.Z., f. . = c. 

i = 1,2,...,m (4.1) 

= 1,2,... ,m C4.2) 

for all i,3 

The original SCP constraints give inequalities (4.1). All variables 

£ . • derived from the 3th column of the SCP must take equal values (as 
13 

in constraints (4.2)) and their costs must sum to c. m Associating a 
3 

multiplier A., with each constraint (4.2) a Lagrangean relaxation, 
13 

L R K X ) , of SCP is: 

L R K X ) 

m 
min (/.. + X .. - (1//z.) „£.. X .) £ .. 
r ^=1  j 13 13 3 IsM* 13 13 h. 3 

subject to 
1 

1 > £ . . > 0 — H j — 

= 1,2,. 

for all 

m (4.3) 

This can be simplified by letting: 

X' . . = X. (1 /h.) n ,, X 0 . 
13 13 3 teMj % 

3 

and d.. = / . . + X'.. = 0. This gives the problem NF1 id): 
13 13 13 

(4.4) 

(4.5) 

NF1id) 

m 
min .Z„ d . . £ . . 
^ ^=1 3eN^ 13 *13 

subject to £ . . > 1 j e ^ -

1 > £ .. > 0 

= 1 ,2, ... ,777 

for all 

(4.6) 

This is a network flow problem in the graph G1 shown in Figure 4.1. 

Each row of the SCP is represented by a vertex V^ which is connected 

to a source vertex s and each column by a vertex v'. which is 
3 
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FIGURE 4.1 

Network Flow Graph, G1, For Example NF1 

Vertices 
refreso/ut 
fOuiS " 

Vertices 
rep r&sesit 
CoUusnis 

Arcs Cs.tr.) C u . V . ) tv. 

Upper Bounds K l 1 y l ^ . i 

Lower Bounds 1 0 0 

Costs 0 d.. 
10 

0 

« 



connected to a sink vertex t. Arcs (s,y.) have a lower bound of 1 
i 

on the flow. There is an arc ) if a. . = 1 with cost d.. in 
i 3 13 13 

which the flow must be between 0 and 1. All other arcs have zero 

cost. 

A minimum cost flow in this network can be found by setting £ .. = 1 
13 

for all arcs satisfying d.. = d.., and then setting = 1 for 
1Q 3 • 13 13 

t> 

any remaining arcs for which d.. is negative. 
13 

Problem NF1id) always has an integer solution. This is feasible 

(and thus optimal) for the SCP providing constraints (4.2) are 

satisfied. 

4.2.2 t Changing the Costs d ^ on the Network G1 

If the solution is not feasible for the SCP then the costs d.. must 
13 

be changed. In the last chapter the multipliers X.. were changed 
13 

using subgradient optimization. Here it is more efficient to change 

d.. directly. From (4.4) it follows that changing X.. by such 13 13 13 

that . £ Y • • = 0 is equivalent to changing x'.. by another variable, 
ISM^j 13 13 

TT^. say, such that ^ ^ TT^. = 0. By (4.5) this is equivalent to 

<7 fr -jt 
changing d . . directly. At iteration k > 0 let d = d and TT = TT , 

13 

then 

d = d + TT (4.5) 

Initially d° .. can be set to u, + s ./h . where the variables u. are 
13 1 3 3 1 dual variables computed as in Chapter 2 and s . are associated reduced 

3 

costs. It is clear that . £ <5° . . = c . and IT0 can be set to 0. 
^eiv. 13 q 

The algorithm aims to find d* where: 

y(NF1 id*)) =? max[y (NF1 id)) | .Z, d.. = oA (4.6) 
d ^ 3 



Then i>(NF1 (£?*)) = i>(LP) and d*. . can be obtained from an optimal t/j 
solution u to DLP by setting 

d\ . - u*. + 8*./h. 
13 t> 3 3 

where s*. are the corresponding reduced costs. 

To increase the bound tf (NF1 {<£*") ) using subgradient optimization at 

each iteration the set of penalties IT is computed as follows. 

Let J ' be the index set of columns 3 for which equation (4.2) is not 

satisfied. If J r is empty (i.e. equation (4.2) is satisfied for all 

values 3) then the solution to NF1id) is feasible and therefore 

optimal for SCP. Assuming J' is not empty then for every 3 e J r- let 

p . be the number of which are equal to 1 and p . be the number of 
3 13 3 

which are equal to 0. The penalties IT., are then calculated as: 
13 13 

For j e / ^ = q p . j l z F
u - z^) i f = 1 C4.7) 

hj I W I 2 

' *ij"21i±iii
 l f 5 * r ° 

hj I M I2 

For 3 ft J* TT . . = Q 
•• 13 

where ||w||2 = - P ^ A - ) 2 = Zjipjpyhp, by definition of p.. 

F F 

0 < a < 2 is an a priori- chosen constraint and z a n d z^ are upper 

and lower bounds on v(NF1(d*)). 

ft 
The penalties TT .. calculated at iteration k from the solution to 

13 
k. &+1 

NF1id ) are used to derive d using equation (4.5). The iterations 
« 

continue until either a solution £ is found which satisfies constraints 

(4.2) giving an optimal solution to LP (which incidentally happens to 

be integer) or the maximum number of permitted iterations is reached. 4 



r 
This describes the procedures RELAX, SOLVELR, FEASTEST and COSC^ANGE 

for relaxation NF1. 

4.2.3 Further Improvements 

Further improvements can be made. Firstly resetting any negative 

cost d to a non-negative value cannot decrease the bound. In manv pq  y  

cases the bound may actually improve after all the negative costs 

have been removed.' This is given in Lemma 4.2.3.1 below: 

4.2.3.1 Lemma 

If <i < 0 for some p,q then d can be reset to a non-negative pq pq * 

value without decreasing the bound. 

It is sufficient to consider a single cost d < 0 and set this to 
P<7 

a non-negative value. The procedure can then be repeated for all 

negative costs until d > 0 for all p,q. 

Proof 

m 
Suppose d < 0 for some p,q then since .E„ d. o and c is assumed 

pq iq q q 

positive there exists d . say for which d r >0. 
p'q pq 

Setting d\. = d.. , for H,j) ^ (p*>q) or Cp,q) 
I'd 1Q 

and d' = min[<2 + d t , o] 
pq  1 pq p'q'  J  

d' t = max[d * d - , o] p q p'q pq 

means t;CNF1 id- )) > VCNF1 id)). 

It follows:'that if £ is an optimal solution to NF1id) then there is 

an optimal solution to NF1(<f'] such that in only one component 



differs from 5 f • The change in bound value is then v[HFMd')) -

tt(NFKd)) which equals: 

d' - d + d' E f - d K 
PQ PQ P'Q P'Q P'Q P'Q 

If £ , = 1 then since d't < d , B,' = 1 and since the sum of the 
P'Q P Q P Q P Q. 

changed costs remains unchanged the change in bound is equal to 0. 

If 5 > = 0 then since d < 0 the change in bound is positive and p'q pq 

therefore the bound increases. Hence d can be increased without 
PQ 

decreasing the bound. This process which is finite is repeated until 

all the costs in a column are non-negative. 

A second improvement that can be made is to reduce a priori the 

number of variables in the SCP using reduced costs, c... These are-
10 

given by: 

a.. = d.. - max[0, min <2. ] 
10 10 IzN^ 11 

Then, if a.. > z - t;(NF1C<2)) this implies that £ .. = 0 and hence 
10 V 10 

x . = 0 in any optimal solution to the SCP of value less than z , 
0 u 

where z i s an upper bound on tf(SCP). 

Thirdly, a problem arises in solving NF1id) when there is more than 

one variable for a given value of i that can be set equal to 1. 
10 

This can arise when there is more than one value of jii) satisfying 

d..r.. = min d.. , or it can happen when d.. = 0. In both of these 
10 M 10 10 

cases the following strategy which first fixes those variables that 

can be chosen uniquely and then fixes the remainder, can be used. 

First set 5 .. = 1 if d . . < 0, 
10 10 

then set = 1 if there is a unique j such that d.. = min \d.A 
10 10 zeMi H-

then set = 1 where column 0 has the highest proportion of 
10 



variables already set equal to 1 from <7 e JC^) where 

JU) = {j\d.. = min d. }. The problem of multiple solutions in 
10 £eM« ^x, 

i 
NF(d) corresponds to degeneracy in LP. 

Fourthly, attempting to satisfy the LP optimality conditions can 

improve the bound. This is done by assuming-all costs d.. are non-
10 

negative and setting u . = nnin d . .. Clearly this gives a feasible 
^ 0 e ^ ^ 

solution to DLP from which reduced costs s . can be calculated. 
0 

To derive an optimal solution to LP from DLP it is first necessary 

to consider the set of columns, S, for which the reduced costs are 

zero. Thus S = {j|s. = 0}. If u. represents an optimal solution to 
0 1 

DLP then there is a vector y with 1 > y . > 0 and m .(-.!„ y .a.. - 1) = 0 

The vector y can be found by iterations similar to phase 1 

of the Simplex Method [H6]. If there is no y satisfying these 

constraints then u is not optimal for DLP. If y is found, then setting 

x . = y . , jeS and x . = 0 otherwise, gives a solution to the LP. From 
0 0 0 

the formulation of NF1 it follows that tf(NF1(<£)) < tf(LP). 

Lastly, a feasible solution, x , to the SCP can be obtained from a 

solution, to NF1 by letting x . = 1 whenever there is an i for 

which £ .. = 1 and then reducing this to a prime cover. 
10 

4.2.4 Summary of the Algorithm 

An example is given in Appendix 3 

in PROCEDURE 10 NETFL01 below: 

and the algorithm is summarised 



PROCEDURE 10 NETFL01 (SCP, z t z , x, u, 

SOLVE RELAXATION NF1 OF THE SCP 

Input: SCP 

u 

z 
u 

Set covering problem 

Dual feasible solution 

Upper bound to the SCP 

Output: u 

K 

x 

Dual feasible solution to the SCP 

NetworK flow solution 

Upper and lower bounds to the SCP 

Feasible solution to the SCP 

1. Initialise Variables 

kmax 

BIG 

Set iteration limit 

Set iteration -counter 

BIG is a large number 

2. RELAX . Define the Relaxation. 

For j a 1 to 72 

m 
h. : = X . a.. 
3 ^=1 13 

m 
s . : = o . - .1. a . .u . 
3 3 1=1 13 1 

Calculate column sums and 

reduced costs 

For 3 =• 1 to n 

For i e M. 
3 

d.. : = u . + s ./h . 
13 1 3 3 

Calculate cost of arc (1,3) for NF1id) 

3. SOLVERE Solve the Relaxation at Iteration k 

k : = k + 1 

If k > kmax then goto 8. 



For i = 1 to m 

d'l = BIG 

j's = 0 

For J e N . 

If d.. < d r  

— tj 
then = d.. Calculate minimum cost of an arc 

. 
j ': = j incident to vertex 

If d . . < 0 Set flow equal to 1 in arcs with — V 
then = 1 V 

negative cost 

p .: = p . + 1 

2„: = zn + d. . 
Z £ tj 

If d r > 0 

then E . .#: = 1 Set flow equal to*1 in arc of 

p.': = p.f + 1 minimum cost if this cost is 
0 0 

4. FEASTEST . Test the NetworK Flow Solution for Feasibility 

to the SCP 

then goto 7. 

else ix) : = 0 

J': = 0 

For j = 1 to n 

If pj t 0 or p. 4 hj 

then w : = w+p .(1 -p .)/h . Arcs derived from column n rJ 0 0 . -
J': = J ' V { j } are not feasible for the SCP 

If w = 0 then goto 6. 

If k > kmax goto 8. 



5. COSTCHANGE . Change Costs in the Network 

Fo r 0 e J ' 

y .: = . (z - zA/h .w 
3 3 u % 3 

For i z N . 
3 

If = 1 then" d..\ = d..= y.(1-p.)/p. 
— 13 13 13 3 *3 3 

else d . .: = d . . - Y . 
13 13 3 

Goto 3. 

6. Network Flow Solution is Feasible for the SCP 

z : = zn 
u I 

For 3 = 1 to n 

If p . = h . ; then x . : = 1 
— 3 3 3 

else x . i = 0 
3 

7. Stop With an Optimal Solution 

The upper bound z i s optimal for the SCP, 

8. Try to Improve the Bound 

Readjust costs to non-negative values. 

For i = 1 to m 

u . : = min d.. 

k * jzN ' 

For 3 = 1 to n 
m 

e.s = - .ZA u.a.. Calculate reduced costs 
3 3 i 13 

Use heuristics to improve dual 

feasible solution and try to 

improve the upper bound. 

Stop with lower bound z 

upper bound z 



In the implementation of PROCEDURE 10 it is not necessary to store 

the variables £ .. as separate variables. If the non-zero columns of •z-J 
the SCP are listed by row in the vector ITJ then if £.. = 1 the 

corresponding element of ITJ can be set equal to -J. An additional 

array for d.. is required which makes the storage for this method 

greater than that required by Etcheberry's relaxation. 

4.3 Network Flow Relaxation, NF2 

A second Lagrangean relaxation of the SCP involves a minimum cost 

flow problem, NF2, in the graph G2 - described below - and can be 

used to give a lower bound to the SCP. As in the previous relaxation 

and ascent procedure is used to maximise the Lagrangean function and 

thus increase the bound further. 

4.3.1 Construction of the Network, G2, from SCP 

Each row i of SCP is represented by two vertices V^ and v\ and an arc 

iv in which the flow must be at least 1. Each column 3 is 
% 1 

represented by a path in the graph G2. For each column 3 , whenever 

a., and a* . are two consecutive non-zero entries Ci.e. when a . = 0, 13 

% < I < k) with i < k an arc ^^y} 3 w i"t h c o s t i s constructed. 

3 
A source vertex S is added and an arc (s,y.) for ^ the first non-zero 

i> 

entry in each column 3 Ci.e. i = min[£|a . = 1] with flow Z? . and 
1L3 si> 

cost dP .. 
s% 

i 7* 
Likewise there is a sink vertex t with flow %., in arc CV .,tr when-

7*V % 

ever i> is the last non-zero entry in column 3 and the cost of this 

arc is The set of pairs ii,k) derived from column 3 together 
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with i3,z'), iz 1 1 ,t) (where i r is the first one in column j and z f r  

. -j n 
the last 1 in column j) form the set T j. The flows £ . , £ and 

SZ ZK 

£ ., are constrained to lie between 0 and 1. The costs a 1 . . A , and 
zt sz zk 

dP., are chosen so that, £ cP0 = a .. ' Appendix 3 gives an example. 
zt (a, 3 J e 21 a3 Q 

j 

The Graph G2 has been used by Nemhauser et al [N1] to find a lower 

bound to the set partitioning problem (SCP with equality constraints) 

in the case of equal costs. The problem was then to decompose G2 

into a minimum number of chains. (A chain is a directed path or 

isolated vertex). 

The networK flow problem NF2 can alternatively be thought of as that 

of finding a set of paths of minimum total cost so that each path 

starts at a source vertex s. It ends at a sink vertex t and every 

other vertex in the graph lies on at least one path. 

4.3.2 Formulation, of the Problem and Calculation of Costs 

The problem of finding the minimum cost flow in G2 can be stated as 

follows: 

m l n jh U Z,Me.T . 4k  Xik j 

sub jec t to I 4 • k Z j ^ - 4 • 2 4 C4.8) 

z zp . + z d . > 1 
j s^ kz -

0 < < 1 U,k)z T , j = 1 ,n 

If constraints (4.9) below are added to NF2id) and is restricted 

NF2(d) 

to taKe integer values the resulting problem is equivalent to'SCP. 

J = Ca a S 

Hk ih. + 1) L 4 , 9 J 



Constraints (4.9) can be incorporated in the objective function of 

NF2id) to give a Lagrangean Relaxation: 

min . , . $ , 
j = 1 (z,k)z t. zk zk zk 

J 

+ xi 

r . 
I Bp 
Hk - ZtPo 

a 3 
ih. + 1) 

j 
0 

+ 1) 

j 

Ca,3)e  Tj 

subject to Z Z K k z = 7 E - + A t 

Z Bp . + Z Bp'. > 1 
j  s % kt j ^ 

0 * ± 1 iz,k)£T 
j 

<7 = 1,2, ,n 

As in the previous relaxation, one can substitute penalties TT^ for 

Z A^ / (7z. + 1)j and the costs can be computed recursively. 

(a,3)sV 1 
In this case let p . be the number of variables £ t i l l e r , , • 

Q ZK j 

which are set equal to 1 and pn-~h. + 1 - p.. Denoting by J ' the <7 J 0 
• J 

set of columns j for which does not satisfy (4.9); the penalties 

4k = 

w 

- . 0 p . k . (z.H-.zfr 

w 

i f % • 1 

i f • 0 

(4.10) 

N N 
Where z , z^ are upper and lower "bounds on tf(NF2id*)) and | |w| | 2 _ 

n d *J 
For all j e V , TT^ = 0 

The costs are then updated to dP.^ + TT^ as in Section 4.2. 



TABLE 4.2 

LOWER BOUNDS FROM THE NETWORK FLOW RELAXATIONS 

PROBLEM HEUMSTIC BOUND NF1 ECU:JD NF2 BOUND LP EOUND 

1 

No 

2 1 

" 1 

3 

n 

4 

density 

5 

:ost 

6 | 7 • 
% dwi.iU.onl., _ 

. _ ! times irow 1 

3 1 % deviiticnl 
lrr-'i LP 

9 

,'o.Itns 

10 

tine 

11 
% deviation , 

fron LP 
Jo.Itns 

13 . 

time 

i<; 

V(LP) 

15 

tio. Itris 

16 

tine 

j SI AO 350 .20 U ' 4.4 0.7 3.2 200 2.4 - - - 3.44 128 2.6 ! 

| s a 40 500 .20 F 2.4 1.4 2.3 22 1.8 2.2 10 25.0 47.79 124 3.9 . 

; 93 40 500 .25 F 4.6 2.0 4.4 11 2.8 - - - 49.74 146 5.4 i 

** 20 300 .30 F 1.5 3.4 1.3 28 4.9 - - - 75.38 

r« 
CO 5.4 

55 50 1000 .13 H 0.0 2.8 0.0 - - - - - 50.00 7-18 12.9 

S6 50 1000 .15 U 4.3 2.5 3.6 30 •3.1 - - - 3.96 154 9.3 

GO ICO .05 U 3.6 0.6 2.7 150 0.8 0.7 52 " 48.0 15.27 127 0.8 

se 50 200 .15 H 0.0 1.3 O.O • - - - - - 60.00 841 13.5 ' 

S«| 60 300 .13 F 2.7 3.0 2.2 41 10.4 - - - 79.37 20G 5.5 

i s SO 400 .05 U 2.0 0.7 1.2 100 2.0 1.0 27 115.5 10.37 151 2.6 
« 0 40 400 .10 U 3.8 0.8 2.0 200 3.2 3.7 10 90 6.13 184 4.4 " 

61 60 400 .20 U 5.4 0.9 4.2 100 5.1 5.1 4 90.5 3.55 222 7.2 

60 7C0 .05 U 5.3 . 0.8 3.9 100 1.5 4.2 10 94.2 9.76 184 5.3 

63 60 1200 .05 . U 3.2 1.8 3.0 100 4.5 - - - 9.02 217 9.5 

bk 70 400 .05 U 4.7 0.9 3.7 100 1.4 - - - 11.53 227 4.9 

is 75 300 .16 F 2.2 4.2 1.9 33 5.9 - - - 107.35 173 5.4 

if> 80 300 .20 U 3.9 0.9 2.5 100 7.1 3.9 1 75.0 3.95 228 7.7 

b7 CO 400 .20 U 2.1 7.2 2.1 11 7.3 - - - • 120.08 290 12.7 

69 eo 1000 .18 If 0.0 5.9 0.0 - - - - - 80.0 >2000 54.0 

&1 110 300 .20 P 1.6 10.3 1.4 21 13.0 - - 190.71 345 17.7 

Average for probler.s 
with cost: 

(i) F 2.5 4.1 2.3 27 6.5 2.2 10 25.0 - 197 7.2 

(ii) U 3.7 1.6 2.9 92 3.5 2.3 17 85.5 - 178 6.1 

(iii) H 0.0 3.3 0.0 - - - - - - >1196 26.8 

Averages for 
pre;jl£.*n's 

all 
3.0 2.6 2.3 67 4-4 • 2.9 • 16 60oi - > 333 9:5 



4.4 Computational Results 

4.4.1 Explanation of Results, Table 4.2 

All the problems were randomly generated. The algorithms were 

written in FORTRAN and tested on the CDC 7600. Columns 2 and 3 give 

m and n the number of rows and columns, respectively, of the SCP. 

The density of the SCP (Column 4) is the ratio of non-zero entries 

to the total number of entries in the constraint matrix A. 

The problems tested belonged to one of the following three classes, 

denoted by U, H and F in Column 5: 

(i) JJ • these are unicost problems with o. = 1 for all j. 
0 

(ii) H the cost of each column is equal to the number 

of 1's in each column, <2. h . for all j. 
0 0 

(iii) F this is a combined fixed cost and variable cost, 

o.~ah. + bt where a and b are positive constants. 

(a=2, b=5). 

The bounds given in Table 4.2 are expressed as a percentage deviation 

from the LP bound. The heuristics given in Chapter 2 almost always' 

o b t a i n e d a solution within 4% of the LP solution value. This 

was improved by NF1 by an average of 1%. The networK flow algorithm 

used for NF2 was a straightforward implementation of the Out-of-
i 

Kilter algorithm [F2] and proved to be very slow for a bound 

calculation. The LP code used was that of Land and Powell [Li], and 

problem DLP (rather than the primal problem) was solved because there 

were fewer rows than columns, and this was much faster in most cases. 

The initial costs for algorithms NF1 and NF2 were derived from the 

dual variables u and associated reduced costs s found by the algorithms 



of Chapter 2. For NF1 and NF2 an iteration consits of solving a 

particular relaxation and then changing the costs using the sub-

gradients derived from the solutions. 

4.4.2 Implementation of the Algorithms 

The heuristic bound was calculated by first using PROCEDURE 3 

Heuristics until there was no further increase in the lower bound up 

to a maximum of 5 iterations. Very often the upper bound on SCP 

decreased during these calculations. 

F 
For NF1 it was found that using a fixed upper bound z i n [103 did 

not always give a good lower bound at the end of the subgradient 

F F 
optimization phase. Therefore Can estimate of z ) was used which u u 

was not necessarily a true upper bound on uCNF1). This was computed 

as: 

F 
z u - 1.08 x heuristic lower bound -

In all the examples tested this would have overestimated z?CLP) slightly 

and - as others, [H4a];have noted - an overestimate of the upper bound 

is often more successful than using the upper bound itself. 

Initial costs d ^ for NF1 were derived from the solution u to DLP 

after usirig algorithm 2. Had this not been the case it would have 

taken NF1 considerably longer to reach the same value of the lower 

bound as shown in Table 4.2. However..tests showed that when the 

maximum number of allowable iterations was very large, say 700, then 

very often the solution of NF1 after using the worse starting position 

was better than that obtained after using the heuristic solutions. 

As the number of computations required to achieve this better bound 



was so large It was not practical to use NF1 without using the 

heuristics first. The bound obtained from NF1 is on.average within 

2.5% of V(LP). The subgradient iterations were stopped if the bound 

did not increase for 10 iterations. On the size of problems tested 

the bound never found a feasible solution to SCP which is hardly 

surprising considering that none of the LP solutions was integer. 

As can be seen from Table 4.2 an excessive amount of computing time 

was required to solve NF2 and in each case the algorithm terminated 

because the time limit had been reached. This was despite the fact 

that the networK flow solution was saved as the starting flow at 

the next iteration. The main reason for the slow execution time of 

the algorithm was because auxiliary storage had to be used to 

accommodate all the networK flow information. 



CHAPTER 5 

96 

GRAPH COVERING RELAXATIONS DF THE SCP 

5.1 Introduction 

Graph covering problems are used in two different Lagrangean 

relaxations of the SCP to obtain lower bounds. In each case the 

optimal lower bound value for the graph covering relaxation is 

greater than that obtained from the LP. The two relaxations can 

be combined to give further improvements in the bound. Computational 

tests which compare the two relaxations and then combine the two are 

presented. 

5.2 The Graph Covering Problem, GCP 

The graph covering problem, GCP, of finding a minimum cost set of 

arcs that cover all the vertices of a graph was defined in §1.2. 

It can be represented as an SCP with at most two l's in each column. 

(Any problem with a single 1 in a column can be transformed into one-

with two 1's in a column by the addition of an extra row which is 

considered to be covered). In this case the constraint matrix A 

of the SCP is the vertex-arc incidence matrix of a graph G =G(V,E) 

where V is the set of vertices ana E is the set of arcs of G. Thus, 

the rows of A represent vertices of G and the columns represent arcs. 

Suppose the -ith row of A is represented by a vertex v.. If the jth 

column of A has non-zero elements in rows i and k then it is 

represented by an arc e . = {.v.,v.) of cost o .. A cover. K, is a set <7 z K (j 
of arcs which Meets every vertex of G. The graph covering 
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problem is solved by finding a cover K* of minimum cost. The 

corresponding solution, x*, to the SCP has x •* = 1 if the jth arc is 
3 

in K* and x .* = 0 otherwise. 
3 

The GCP can be formulated as a linear program, LPB: 

min ox 
x 

LPB 

subject to Ax > J_ 

Bx > r 

1 > x . > 0 - J ~ 

(5.1) 

(5.2) 

<7 = 1,2 ,n 

where o . is the cost of arc e . and A is the vertex-arc incidence 
3 3 

matrix. It is assumed a. > 0 otherwise x.*•«. 1.. and vertices covered 
3 3 

by arc e. can be removed. Constraints (5.2) are added to the LP 
3 

relaxation of the GCP and are exponential in number. They restrict 

every set of vertices of odd cardinality, 2r - 1 say, to be covered 

by at least r arcs. These constraints, Known as blossom constraints, 

need not be stored explicitly as the graph covering algorithm detects 

them when certain odd circuits arise in the graph G. The implementation 

of the graph covering algorithm is described in §8.3. 

The linear programming dual of LPB is DLPB: 

DLPB 

m 
max .£„ w . + r_ £ 

i=1 pep p 'p 

subject to 
T T 

A w + B S < o 

> 0 

(5.3) 

where ;P is the set of odd cardinality subsets of V. 

An approximate solution to the GCP can be obtained from any feasible ̂  

solution (w, S) to DLPB. Using the heuristics of Chapter 2 to get w 

and setting C = 0 gives a lower bound. The reduced cost of arc e . 
3 
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is given by: 

m 
a . =* o . - ^ a .. w . - E_ . 5 
0 0 fcj i pep pc p 

Q Q Q 
and if z is an upper bound to the GCP then if s . > z.. - 2 then 

u Q U I 

x . = 0 in any feasible solution the the GCP of lower cost than z 
<7 u 

Q 
where z i s the lower bound to the GCP corresponding to (w£ ). For 

convenience u . will be used to denote w . + E_£ where P, is the 
1 1 & £ P 

set of odd cardinality subsets containing vertex V T h e n 

„ m 
s. = o. - a., u. is a lower bound on the reduced cost s. and 
0 3 ^=1 ^ g, 

— G G 
hence if s . > z - zn then column a. can be removed. J u % 0 

5.3 Graph Covering Relaxation 1, GCR1, A Row Relaxation 
of the SCP 

5.3.1 Description of the Relaxation 

The constraint matrix A of the SCP is partitioned into two sets of 

rows R, the relaxed constraints, and R s M ^ - R , the graph covering 

constraints. The rows in R have at most 2 non-zero entries in each 

column. Thus if: 

A Al 
U 2 J 

(5.4) 

where A\ is made up of rows of A indexed by R and A2 of rows indexed 

by R the Lagrangean relaxation, GCR1CA) is a graph covering problem: 

GCR1(A) 

T T 
min ox - AUja: - 1J 
x 

subject to A2X > J_ 

x. e { 0 , 1 } w 

(5.5) 

<7 = 1,2,... ,n 

For A > 0, U(GCRKA)) is a lower bound to the SCP and the optimal value 

of this bound for all A > 0, V (GCR1 (A*)) say, gives abound no 

l e s s than tf(LP) as proved below in Lemma 5.3.2. Let the graph be Gl. 
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5.3.2 Quality of the Bound 

LEMMA 

To prove 

The best lower bound to the SCP obtained from GCR1 is at least as 

good as that obtained from the LP relaxation, i.e. 

tf(GCR1(X*)) > u(LP) 

Proof 

Let w*be an optimal solution to DLP and for relaxed rows in R let 

X . = u*. Since X* is optimal and X . > 0 ^ %
 K

 % — 

tf(GCR1(X*)) > tf(GCR1(I)) (5.6) 

Let LP1 be the LP relaxation of GCR1 then 

tf(GCR1(Xj) > u{LP1(I)) (5.7) 

From LP duality theory it follows that 

tfCLPKX)) = y(LP) C5.8) 

Hence from (5.6), (5.7), (5.8) the result follows. 
• 

5.3.3 Calculation of X* 

The calculation of the Lagrange multipliers is the same as in Chapter 3 

for Etcheberry's relaxation of the SCP. Initially the multipliers, 

X°, for GCR1 are obtained by setting X° = ^;for i e R where u. is a 
i' z ^ 

dual feasible solution to DLP obtained using heuristics. Subgradient 

optimization is used to obtain subsequent values of the multipliers. 

At iteration k, k > 0, 

. k f G G, k 
X * a { B u ' B f ) y 

max 0, 

I h \ 2 
Iy I I 

(5.9) 

where a is a constant, 0 < a < 2 

k k 
re is a solution to GCR1(X ) 

y k = Uix k-V} 
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Q 
z is an upper bound on i>(GCR1(A*)) 
u 
Q ft Q 

and z = i>(GCR1 (A )). As described in §3.3,2 can be replaced 
X/ VI 

Q 

by a 'target value' z a n d the method of Camerini et al can be used 

to make the bound increase more rapidly. 

5.3.4 Partitioning the Constraints 

If a graph is bipartite then the GCP can be solved optimally using 

the LP relaxation. Hence the solution to the GCP Can only be greater 

than that obtained from LP in non-bipartite graphs. To ensure 

that the matrix A is partitioned so that A2 gives a non-bipartite 

graph is not easy and in any case this does not guarantee that the 

bound obtained from graph covering is better than that obtained from 

the LP. A practical way of partitioning A is to choose A2 with the 

maximum possible number of rows. This can be done by solving the 

integer program, IP1: 

m 
max y . 
y ^=1 

IP1 T 
subject to A y < 2 C5.10) 

y . e{0,1} i- = 1,2,... ,m . 
i 

If y . - 1 in an optimal solution to IP1 then row % is a graph covering 

constraint, otherwise constraint i is relaxed. In practice IP1 is a 

large problem to solve and therefore it is solved heuristically by 

choosing the row with as few 1's as possible in it. Row i2 with 

with the next fewest number of 1's in it is then chosen. Other rows 

covered by columns j that have a. . = a. . = 1 are removed. Row 

has the least number of 1's in it in the remaining problem. Rows 

covered by columns g that have a . . - a. . = 1 or a . . = a. . = 1 are 
MJ ^3t7 3 1-3 3 

removed. The procedure is repeated until all the rows have either 
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been chosen or removed. The removed rows define the relaxed 

constraints R and the chosen rows the graph covering.constraints R. 

This heuristic can be generalised to give a relaxed problem with at 

most KCOL non-zero entries in any column in the relaxed problem and 

is summarised in PROCEDURE 11 PARTITION, below. 

PROCEDURE 11 PARTITION CSCP, KCOL, R) 

PARTITIONS CONSTRAINTS FOR LAGRANGEAN RELAXATION 

Input: SCP Set covering problem 

KCOL Maximum number of 1's in any column 

of the constraint matrix of the 

relaxed problem CKC0L=2 for GCR1) 

Output: R Set of relaxed constraints 

0. Initialisation 

R: = <t>, R: = (p R = set of relaxed constraints 

R = constraints not relaxed 

S\ = M S set of constraints to be considered 

J: = N J set of columns to be considered 

k: = o 

1. Iteration k 

Set k: = k + 1 Update iteration counter 
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2. Select "^th t o be in Constraints 

Let row satisfy 

X r a. . = min 
OzJ Zyp £es 

X a. . 
JJZJ 

Find row with the least number of 

1's in it 

Set S: = S-Hfc} 

R :=RU r,ik} 

Remove row -î  from further consideration 

3. Find Relaxed Rows 

For j e J 

if .Z— a .. = KCOL 
— fce/F 

then set J 

set i? 

set S 

= «Mj} = ) 
J _ 

= ) 
0 

else next j. 

If S 1 <}) goto 2. 

4. Exit 

R is set of relaxed constraints 

R = constraints for relaxed problem 

(if KCOL = 2 , R gives the graph covering constraints) 

5.3.5 Changing the Partition of A 

If the constraints of A are partitioned into a set of relaxed 

constraints R and a set of graph covering constraints R and the 

bound v (GCR1CA*)) has been obtained as described earlier, it may 

still be possible to improve this bound by using a different 



partition of rows A. The aim is to find a partition in which the 

penalty - AC/litf-jO incurred in the Lagrangean relaxation GCR1CA) is 

A 

as small as possible. Let x be the solution to GCR1CA*)). If 

AiX > and A*(j4i£ - _1_) = 0 , then x is optimal for the SCP and the 
A A 

procedure can terminate. If - J_) 0 and AiX > 1 then a new 

feasible Cpossibly better) solution to SCP can be found by reducing 

A.* to 0 for a constraint izR for which - 1) . > 0. Suppose % Is % 

now that this is not the case and x is not feasible for the SCP. 

Let R\<zR be the set of constraints that are not satisfied by x. 

The penalty for not satisfying a constraint i is A«*. Let A. be the t 
constraint for which this penalty is greatest, that is, A. = max CA. 

Constraint -i* is then removed from Ai and added to A2. This means 

that some columns in A2 will now have more than 2 non-zero entries. 
+ 

Let J denote the index set of these columns. 

Some constraints of A2 must now be relaxed so that the resulting 

problem is a graph covering problem. A heuristic estimate of the 

penalty incurred for relaxing a constraint of A 2 can be made by 

considering its associated dual variable A • which is available after 
1 

solving GCR1CA*)). Constraints for which A . is smallest are relaxed-

until A2 has at most 2 1's in each column. It may then be possible 

to add further constraints from Ai to A2 so'that A2 still gives a 

graph covering problem. 

Rather than just considering the dual variables w^ one can also take 

into account the blossom constraints. A penalty term u . = W . + ^ X, 

can be defined where P . is the set of odd subsets of vertices 
% 

containing vertex v L e t R be the set of constraints that are rows 

of A2 and let i* be chosen as before. Then a subset of 

constraints that must be relaxed can be chosen so that the penalty 

term .^ u'. is small. 
izR 
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The process of changing the partition Ai 
[Azl 

is termed a "rotation". 

After the rotation, let i? denote the index set of-relaxed constraints, 

+ . + 
Then multipliers X for tc /? can be chosen by setting: 

X. = X. t t f o r i E / f n / ? 

xt = u . for i z 
v % 

The dual variables, lv., for the graph covering problem can be found 
z» 

by setting: 

w\ = X . for i E TtnR 

w> = w- for i z ifnE 

where 77 is the set of constraints in A2 after the rotation. Then w 

be checked for dual feasibility. can 

5.4 Graph Covering Relaxation, GCR2, A Column Relaxation • 

5.4.1 Description of the Relaxation 

Whereas the last relaxation, GCR1, was derived from the SCP as 

originally defined in Chapter 1 this relaxation GCR2 relies on an 

alternative formulation. Each column of the original SCP, a ., is 
3 

split into a set of 0-1 vectors 0, , tzT., such that a . = E 0 , 
3 3 £ E-i • "c 
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Each column 8 has at most 2 non-zero entries. For example the 

vector a. defined below equals 3i + $2 + a n d = (1.2,3}. J 0 

Row No. a. = 

0 
3i + B2 

+ 33 

1 ~ 1 ~ ~1 ~ ~ 0 ~ " 0 " 

2 1 0 1 0 
3 0 0 0 0 

4 1 = 1 + 0 + 0 

5 1 0 1 0 

6 0 0 0 0 
7 _ 1 _ _0_ _0 _ _1 _ 

The matrix with columns ^ is the vertex-arc incidence matrix of a 

graph G2. 

The SCP is then defined as SCPG(rf): 

SCPG(<i) 

min 

tt 

subject to 

n 
£ Z dj.iL 

n 
I Z o 
1 t sTj 

(z 
ifc er - * tt 

d 
/K, 

y z {0,1} t 

where l
m d = c. 

tzT. t 0 
d 

*j - r t<i i 

(5.11) 

(5.12) 

(5.13) 

[smi 

and is the least integer greater than or equal to * This 

relaxation is similar to the networK flow problem NF1(d) except that 

the constraints (5.11) have at most 2 non-zero coefficients for each 

variable yf instead of at most 1 non-zero coefficient. 
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Associating a Lagrange multiplier, A , with each constraint (5.12) 

gives the relaxation LR2(A): 

m„ l n J i t l T M # t + \ ^t- W ' ] 

J <J J LR2(A) 

^subject to constraints (5.11) and (5.13). 

Let G C R 2 i d ) be the problem S C P G ( D ) with constraints (5.12) omitted. 

Defining u t = Afc - (^J^ ^ / K j ) for eT. the Lagrangean relaxation 

LR2(A) is simply G C R 2 ( ^ + T T ) . 

This suggests compuw-.-g d recursively instead of changing the 

multipliers A directly as in the first graph covering-relaxation. 

At iteration^, let d and IT be given by and ift with k = O 

initially. Then.. 

k+A k k 

d = d + TT K = 0 , 1 , 2 , . . . ( 5 . 1 5 ) 

If n is chosen so that n - 0 at each iteration, then constraint 
t-zT; t Jr +1 

(5.14) is always satisfied by the costs d K . Calculation of -rr is 

described in §5.4.3. This means that the total cost of variables y 

derived from the jth column of the SCP is the cost of the column, a .. . 

Section 5.4.3 gives an algorithm for computing d* for which 
V(GCR2(d*)) = max u(GCR2(cH) (5.16) 

d 

Z d. = a . 
teT- t j 
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5.4.2 Quality of the Sound 

Since the optimal solution u* to DLP is feasible for GCR2 then 

U(GCR2] > tf(LP). Hence this bound is better than that obtained from 

the LP relaxation of the SCP. 

5.4.3 Calculating the Costs 

Initially one would like to split a column a. into columns $ : t cT., 
0 t 3 

so that the resulting GCP gives as high a lower bound as possible,* 

but in general it is not easy to see how this should be done. 

o 
Therefore assume a., is split arbitrarily. The initial costs a £ can 

0 

be found by first calculating a feasible solution u to DLP. If the 

m 
reduced costs are s . = o. - X u.a.., then: 

0 0 -z-=1 i 1Q 

d° = u., + u.„ + 2s ./h. , if column 6 has 2 non-zero 
t i i 0 0 t 

entries in rows i ' and i" 

.and d° = u. + s ./h. , if column B has a single non-
t i .0 0 t 

zero entry in row i. 

The method used to improve the lower bound and compute d* is an ascent 

method based on subgradient optimization. Initially ir° is zero and . 

the solution y° to GCR2(<3°) is found by solving the graph covering 

problem. The costs d , & T a r e only altered if they do not satisfy 
t o 

(5.12). Let the values of g for which this is true comprise a set J', 

i"0" ̂  U\vt< l l f . W -
If J' = 0, the algorithm can terminate with the optimal solution to 

the SCP. This can be obtained by letting x. = y. for sometef., If 
0 t 0 

j'lt 0 the penalties IT , f ̂ T. for all g'zJ', must be calculated. First, 
t 0 

for o'eJ', let p . be the number of variables y ,tzT., which are set 
0 t 0 

equal to 1 and let p . = K . - p.. 
0 0 0 
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The penalties TTfc. are then defined by: 

G G 
irt =

 a P j  zu ~  Zl , if yt = 1 (5.17) 

I M l * " 

G _ G 
tr. =~ a Pj a

M , if i/,. = o (5.18) 

I |w| 
2 

G G 
Where s , s are upper and lower bounds on Vi&C2{d*)), a is*n?priori 

U Xf 

determined constant with 0 < a < 2 and ||v/[|2 = E (p.p./K2.). The 
3 zd 3 3 3 

costs are then updated as in (5.15). 

5.5 Further Improvements to the Graph Covering Relaxations 

5.5.1 Ensuring the Costs of the Relaxed Problem Are Non-
Negative in GCR1 

If an arc, e«, in G1 has a cost a ' . < 0 then .(assuming the original 
3 3 

SCP had positive costs) it is always possible to increase the cost 

to be non-negative without decreasing the value of the graph covering 

solution. 

Suppose o.' = q. - K'
a
<,'-; "then since a . > 0 there must be a 

d 3 IfZti 1 d 

positive multiplier, A. say. Let & = min[-e'. 9 A.] and set A to 
.*» 3 y> x, 

A - a thus increasing c r . to o 1 .+ Let x be an optimal solution 
* 3 3 

to the GCP corresponding to GCRI'with costs c' and x be an optimal 

solution to the GCP after the costs are changed. By the optimality 
A , 

of x, the feasibility of x for the GCP and the observation that since 

_ n _ 
a'- < 0 it can be assumed that x . = 1 (implying that X a .x. > 1) 

3 3 <7 = 1 x<3 3 

it follows that: 



> ox 
iA 

\a x + 
%zR i 

n 

Thus the solution to the GCP is not decreased after changing the 

costs. For each negative cost o . \ A can be calculated repeatedly 
3 

and the above changes made until o. f > 0 for all arcs e.. It may 
3 3 

then be possible to increase some of the multipliers as in 

PROCEDURE 2 LPBOUND bv settine A'= min o f. where constraint i is 

correspondingly changed. This cost changing method applies to all 

Lagrangean relaxations in which inequality constraints are relaxed 

and PROCEDURE 12 COSTPLUS summarises it below. 

PROCEDURE 12 COSTPLUS (SCP, R, X) 

SETS ALL THE COSTS IN A LAGRANGEAN RELAXATION TO NON-IMEGATIVE 
VALUES 

Input: SCP The set covering problem 

R Set of relaxed constraints 

X Lagrange multipliers 

o Costs of relaxed problem 

EPS Tolerance 

Output: X and o Multipliers and costs for Lagrangean 

relaxation with X > 0, o 1 > 0 



1. Find A Negative Cost 

For j = 1,2,.. . ,n 

(1a) _If Cj' > 0 then next j 

else goto 2. 

2. Find a Positive Multiplier 

Find izM.f)R for which > 0 
0 T> 

Set A : = min C-c .', A .) 
0 1> 

Set X.: = A .-A ^ % 

e ': = c ' + A for kzN. 
k k ^ 

Goto 1a. 

3. Try To Increase The Multipliers 

For izR 

Set A: = min c .' J 

If A < EPS then next i 

else set A .: = A . + A 
1 % 

q = q - A for jetf. 
J <7 ^ 

next i 

4. The Required Costs Are g
f
 And The Required Multipliers Are A 

5.5.2 Ensuring the Costs of the Relaxed Problem Are Non-
Negative in GCR2 

As in the previous section the costs on arcs in G2 can be adjusted 
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to take non-negative values without decreasing the value of the bound. 

This can be done by finding an arc, e^, of negative cost, a f
r , 

derived from column 3 of the SCP. Then there, must be an arc e , ZeT. Z 3 

with a > 0 (since it is assumed that the costs of the original SCP 

are positive). If A = min[c^ f, -c^'] then c^' and are changed to 

and + A respectively. This can be repeated until all costs 

are non• Deceittue. 

5.5.3 Changing Costs of Arcs in a GCP to Retain the Same 
Optimal Solution 

This section considers the general problem of how to change the costs 

of arcs in a graph, G, so that the optimal solution to a GCP is 

unchanged. 

Let E. be the set of arcs incident with vertex V .. Let o r . be the 
i ^ 3 

cost and s .' be the reduced cost of arc e .. As the vertex-arc 
3 3 

incidence matrix from which G is derived may have columns with only 

one non-zero entry it is assumed that an extra vertex has been added 

to the graph so that all columns have exactly 2 non-zero entries. 

Further details on the use of an extra vertex are given in §8.3. A 

vertex V^ is said to be overcovered if it is covered by more than one 

arc in an optimal solution to the GCP. The 0-graph is the subgraph 

of G for which the reduced costs equal 0 at the end of the graph 

covering algorithm. 

Changes that can be made to costs of arcs are firstly if an arc 

is in an optimal cover the cost o^ ' can be reduced and if it is not 

in a cover the cost o.' can be increased. 
3 

The amount A . by which a cost c. r can be increased, for an arc e. in 
• 3 3 J 
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the optimal solution will now be computed. Suppose e. is the arc 
3 

(ir.,1^,). Two cases must be considered, 

Case 1 - One Vertex, Ufc say, is either the Extra Vertex or 
Overcovered 

In this case the cost of arc z^ can be increased until it equals the 

cost of some other arc incident to v .« Hence A * = min 
* 0 ItEi 

c.' can be increased.by A . if A . > 0 
3 — 3 3 

Md 

- c . 
3 

Case 2 - Vertices V^ and V^ are Not Overcovered 

Assuming that reduced costs s. r are available at the end of the graph 
3 

covering algorithm for each arc then 

A . = min 
0 IzEj, 

ted 

+ min 
tzEy 

Notice that A . will equal 0 if the degree of both v . and V v is greater 
3 If K, 

than one. in the 0-graph. If the degree of a vertex, v., say, is one 
% 

in the 0-graph then the dual variable u. and the cost o c a n be 
i 3 

increased by A.. 
3 

The amount A - by which the cost of an arc z . that is not in the 
3 ' 3 

optimal solution can be reduced will now be considered. This is equal 

to s.', the reduced cost of arc e .. 
3 3 

Having determined for each arc the amount A . by which the cost of an 
3 

arc can be decreased or increased without altering the optimal solution 

gives the amount by which the costs d t in the relaxation GCR2 

can be changed to leave the solution unchanged.
-
 - For GCR2 suppose the 

amounts A by which the costs d t ^ T . , for arcs in G2 derived from 
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columns a . of the SCP have been calculated. Then if A = min [a J this 
3 t eT • 

3 

means that arcs that are not in the solution must have their costs 

decreased by A a n d arcs in the solution must have their costs 

increased by A. This is done for each column a^.. After 

each change the variables A must be updated for arcs incident to 

vertices that correspond to rows covered by column o^.. 

For relaxation GCRlthe bound can be increased by reducing X., if a 
n 

relaxed constraint i> is not satisfied, i.e., X . a.'X. = 0* and 
<7 = 1 V <7 * 

n 

increasing X^ if a i g x j ^ ^ * ^ relaxed constraint is 

satisfied with equality then if X . is changed without altering the If 

solution x no change in the bound results. For the case in which the 

relaxed constraint i is not satisfied, consider the effect of reducing 
A A 

X . by A. Now A must be less than or equal to X. to prevent X . from 
If If 1s 

becoming negative. Suppose that the arc derived from column a . of 
3 

the original SCP is denoted by e .. Then, if z.zk* and'a.. = must be 
3 3 13 

no greater than A ., so that the solution to the GCP does not change. 
3 

n 
Hence if, for a relaxed constraint, X . a..x. = 0 X. can be reduced 3  3 3-1 13 3 1 

by: 

& = minCX . , min A .) 
1  air" 0 

y * * 

5.5.4 Using the Graph Covering Solution in Consecutive 
Iterations of the Subgradient Optimization Procedure 

Retaining the graph covering solution from the solution to a 

Lagrangean relaxation of the SCP and using it as an input for the 

next iteration in the subgradient optimization phase was not possible 

because of the type of graph covering algorithm used. However it is 

possible to save the optimal dual variables for the vertices in the 
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GCP, I.e., the variables corresponding to constraints (5.1), from 

one iteration to the next. These are then checked for dual feasibility 

and increased as in PROCEDURE 2 LP8D. This gives a 0-graph of the 

graph G2 in which an initial matching can be found to start the graph 

covering algorithm. 

5.6 Combining The Two Relaxations GCR1 And GCR2 

The two graph covering relaxations can be combined. Firstly a subset 

R of the constraints of the SCP is relaxed until there is a maximum 

number of non-zero entries, KCOL say, in each column of the resulting 

SCP. For a given vector of Lagrange multipliers X let this relaxation 

define the problem SCPRfKCOL,X). Then if KCOL = 2 the problem 

SCPR(2,X) is equivalent to GCR1CX) and heuristics used to determine 

the relaxed constraints in the latter relaxation can be extended to 

obtain SCPRCKCOL,X). If KCOL exceeds 2 then the columns of 

SCPR(KCOL,X) must be split as in GCR2 to give a graph covering problem, 

GCP(X,<f), this is the second stage. To increase the bound in the 

graph covering problem the costs of arcs are, changed until either the 

solution to GCP is feasible for the column splitting relaxation and ' 

hence an optimal solution to SCPRCKCOL,X) or an iteration limit is 

reached. In the latter case a feasible solution to SCPR can be 

found by taKing the solution y to the GCP when the iteration limit is 

reached and setting x> = 1 whenever y. = 1 for-fre^.. The solution x 
3 

is a cover for SCPR which is then reduced to a prime cover. This 

prime cover is then used to change the penalties of the relaxed SCP 

constraints as in GCR1. This defines a problem SCPR with different 

costs to which the relaxation GCR2 is once more applied. The procedure 

is repeated until the bound increases no further then the relaxation 

can be changed using a rotation of constraints as in §5.3.5. The 

method is illustrated in the flowchart of Fig.5.1 and outlined in 



FIGURE 5.1 115 

A FLOWCHART OF PROCEDURE 13 GRAPHBDUND TO COMPUTE 

LOWER BOUNDS TO THE SCP FROM GRAPH COVERING 
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FIGURE 5.1 (cont.) 

A Flowchart of Procedure 13 



PROCEDURE 13 GRAPHBOUND below. 
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PROCEDURE 13 GRAPHBOUND(SCP, z , z , x, U, KCOL, L^) 

COMPUTE LOWER BOUNDS TO THE SCP FROM GRAPH COVERING 

The set covering problem 

Upper bound to the SCP • 

Dual feasible solution to the LP 

relaxation 

m 
Lower bound = u. 

Maximum number of 1's per column of 

constraint matrix in SCPR. 

Graph covering lower bound 

Set of branching rows 

Set of branching variables 

Lagrange multipliers for relaxed 

constraints 

1. Initialise Variables 

e: = positive tolerance 

KR: = 0 iteration counter for row relaxation is set equal to 0 

Zi?MAX: = maximum number of row relaxation iterations allowed 

KC: = 0, iteration counter for column relaxation is set equal to 0 

ZCMAX: = maximum number of column relaxation iterations allowed 

KCH: = 0, iteration counter for number of times relaxation can be changed 

£C#MAX: = maximum number of times relaxation can be changed 

FLAG: = .FALSE. 'FLAG' is set to the value .TRUE, if the graph 

covering problem solves SCPR. 

Input: SCP 

z 

u 

u 

2l 

KCOL 

Output: z 

RB 

LB 
U 
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PARTITION (SCP, KCOL,i?) Relax rows 

R is the set of relaxed rows 

X.: = u. for all izR Form relaxation SCPR and initialise 

Lagrange multipliers 

o. T: = a . - X .a. . Calculate costs of relaxed problem 
3 3 izR ^ 

3.1 Constraints Partition Number, KCH 

KCH: = KCH + 1 Update iteration counter 

Iffi : = 0 

4.1 Row Relaxation Number, KR 

KR: = + 1 Update iteration counter 

XCl = 0 

4.2 Split Columns 

If KCOL > 2 Form relaxation GCR2 of SCPR 

then split columns 

of the SCP 

constraint 

Matrix A 

5.1 Column Relaxation Number, KC 

KC: = KC + 1 Update iteration counter 

5.2 Solve Graph Covering Problem 

t>(GCP): = value of graph covering solution 

: = tf(GCP) + ^Z X^ Calculate lower bound to the SCP 
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Update z as the best lower bound 
X 

to the SCP 

u.: = it). + t Store information concerning graph 
% ^ pzPr p 

. — covering dual variables 
for izMnR  &  

Test if lower bound 

exceeds upper bound 

' 5.3 Test Feasibility of Graph Covering Solution For SCPR 

If graph covering solution 

is feasible for SCPR 

then FLAG: = .TRUE. 

x: = optimal solution to SCPR 

goto 4.3 

else if KC > Km AX 

then goto 5.5 

5.4 Change Costs Of The Graph Covering Problem 

Reset costs of graph covering problem as in §5.4.3 of the text 

Goto 5.1 

5.5 Calculate A Prime Cover For SCPR 

a;: = prime cover for SCPR 

4.3 Test The Solution x For Feasibility To The SCP 

I f A .{CL'X - 1) = 0 f o r a l l % z R — % 

then goto 4.4 

else _if KR > KRmX 

then goto 3.2 

else change the 

multipliers X^^CzR Update the Lagrange multipliers 

and costs c.
r
 for SCPR using subgradient 

u 
goto 4.1 optimization 

i f *t  > z i 

then 3,: = s^ 

if B f t > « M - 1 * e 

then goto 4.3 



4.4 Test Feasibility Of Graph Covering Solution For The SCP 

If FLAG = .TRUE. 

then goto 7 

3.2 Change The Relaxation By A Rotation 

If KCH > KCHV\AX 

then goto 6 

else change relaxation as in 

§5.3.5 of text 

goto 3.1 

6. Exit With A Lower Bound 

z i s a lower bound to the SCP 

i?̂  = {i\a^x ^ 1 for izR) Calculate set of branching rows 

L r = J as defined in §5.4.3 Calculate set of branching 

optimal solution to the SCP: = x 

Exit 

The numbering convention in the above procedure is to label_5_ steps 

corresponding to relaxation GCR2, the column relaxation, steps 

corresponding to GCR1 and JL steps connected with changing the 

relaxation. 

variables 

7. Exit With Optimal Solution 

There are no branching rows or 

branching variables 



TABLE 5.2 

Graph Covering Lower Bounda for A 30 x 60 Problem, Penalty 0.15, To Show 
Variation with Stepsize Parameter, And Number Of 1's Per Colurw. KCOL 

6 0. 5 1. a 2.0 » 2. 5 3. 5 

Column Number 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 

KCOL-2 
Beat Bound, KCH.KR.KC 
Best Bound in 100 Iterations 
Best Bound ln 200 Iterations 

50.75 
50.48 
50.67 

4 250 
100 
199 

50.84 
50.63 
50.80 

4 130 
100 
170 

50.71 
50.65 
50.71 

2 •3<. 
99 

134 

50.77 
50.12 
50.63 

4 11O 
36 

198 

50.42 
50.12 
50.42 

3 I 86, 
36 

186 

KCOL-3 
Best Bound. KCH.KR.KC 
Best Bound ln 100 Iterations 
Best Bound in 200 Iterations 

50.27 
50.06 
50.06 

1 65 
1 
1 

5293 50.09 
50.06 
50.06 

0 8 
1 
1 

627 50.06 
50.06 
50.06 

0 1 
1 
1 

1 50.06 
50.06 
50.06 

0 1 
1 
1 

1 50.06 
50.06 
50.06 

n 1 
1 
1 

1 

KC0L-4 
Best Bound, KCH.KR.KC 
Best Bound ln 100 Iterations 
Best Bound ln 200 Iterations 

50.26 
50.06 
50.07 

_1 6 
1 

178 

686 50.38 
50.06 
50.06 

0 5 
1 
1 

476 50.25 
50.06 
50.06 

0 3 
1 
1 

332 50.06 
50.06 
50.06 

0 1 
1 
1 

1 50.23 
50.06 
50.06 

0 3 
1 
1 

298 

KC0L-5 
Best Bound. KCH.KR.KC 
Best Bound in 100 Iterations 
Best Bound ln 200 Iterations 

50.54 
50.24 
50.24 

1 13 
83 
83 

1193 50.26 
50.24 
50.26 

0 2 
43 
185 

186 50.61 
50.19 
50.21 

0 5 
24 
135 

550 50.46 
50.17 
50.17 

1 4 
46 
46 

451 50.14 
50.14 
50.14 

0 1 
45 
45 

45 

KC0L-10 
Best Bound. KCH.KR.KC 
Beat Bound ln 100 Iterations 
Best Bound in 200 Iterations 

50.37 
50.33 
50.37 

0 2 
82 

186 

186 50.50 
50.39 
50.51 

2 2 
74 

200 

200 50.57 
50.41 
50.41 

3 3 
49 
49 

299 50.52 
50.52 
50.52 

1 1 
100 
100 

100 50.53 
50.45 
50.53 

1 1 
51 

161 

161 

KCOL-30 
Best Bound, KCH,KR,KC 
Best Bound ln 100 Iterations 

50.29 
50.29 

0 1 
98 

98 50.30 
50.30 

0 1. 
71 

71 50.40 
50.40 

0 1 
87 

87 50.36 
50.30 

0 1 
81 

81 50.43 
50.43 

0 1 
72 

72 

CDC 6500 MNF 5 Compiler 

For the best bound in k iterations column n.1 gives the bound value and n.3 the number of graph covering . 
problems solved to get this lower bound 

KCOL is the maximum number of I's per column of the SCP after rows have been relaxed. 
KCH is the number of tiroes that the relaxation has been changed by a rotation. 
KR is the number of times the multipliers have been changed on the relaxed rows. 
KC is the number-of times the costs of the GCP are changed for relaxed columns. 
An iteration takes place each time a graph covering problem is solved when the best 
bound in k iterations is calculated. 
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5.7 Computational Results 

5.7.1 Case Study 

The same 30 x 60 example as used in Chapter 3 was used for the case 

study. The optimal solution is 56.0 and i>(LP) = 51.0. Table 5.2 

attempts to show variation in the bound value with variation in the 

stepsize parameter, a, and KCOL, the maximum number of 1's per column 

in the constraints of SCPR. Columns n.1 (for n=1,...,5) give the 

lower bound value. Columns n.2 give the number of times the 

relaxation has been changed to get the bound. Columns n.3 give 

the number of row relaxation iterations and columns n.4 give the 

number of column relaxation iterations needed to get the lower 

bound. For each value of KCOL the best bound obtained after an 

unlimited number of iterations is obtained, the best bound after 

100 row relaxation iterations and the best bound after 200 row 

relaxation iterations obtained was given (except for KCOL = 30). 

KCOL = 2 corresponds to the relaxation GCR1 and KCOL = 30 corresponds 

to GCR2. No definitive conclusions can be drawn from the results 

but when KCOL = 2 the best results were obtained. This could partly 

be due to the use of an anti-zigzagging strategy used in the 

subgradient ascent and also because changing the type of relaxation 

tends to maKe the bound decrease initially. Using small values of 

KCOL, equal to 3 or 4 say, was not particularly successful because 

it was difficult to find an optimal solution x to SCPR from the 

graph covering solution. This meant that in changing the multipliers 

X. in 4.3 of Procedure GRAPHBOUND an ascent direction for the 

Lagrangean relaxation was not always available. 

Table 5.3 shows how the lower bound was used in a tree search. There 

was no possibility of solving the problem in a reasonable time using 

KCOL = 3 or 4 and the best times were given for the relaxation GCR1. 
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5.7.2 Comparison between GCR1 , GCR2 and a Combination 
of the Two Relaxations 

Six test problems are shown in Table 5.4 where the relaxations GCR1 

and GCR2 are compared. Also shown are results for the two relaxations 

combined. Five of the problems were standard test problems. T h e 

first problem was randomly generated. Appendix 4 gives the source 

of the problems. Many more problems were tested, but they did not 

give a graph covering bound that was significantly better than that 

obtained using heuristics. On average these bounds were 0.2% better 

than the solution obtained from heuristics. The maximum increase 

over the heuristic bound was obtained by the problem SALK 13 where 

the GCR1 relaxation was 0.6% above the heuristic bound and the GCR2 

relaxation was 0.7% above the heuristic bound. Table 5.4 shows results 

for the row relaxation, GCR1, in columns (v) to (ix). The bound value 

at the root node of a depth first tree search is given in column Cv3. 

The time taken to calculate this bound is given in column (vi). The 

number of graph covering problems solved in the tree search is given 

in column Cviii}. The number of tree search nodes is given in column 

Cviii) and the total time taken for the tree search is given in 

column fix). The same information for the column splitting relaxation, 

GCR2, is given in columns Cx) to Cxiv) and for the two relaxations 

combined in.columns (xv) to (xix). Column (xx) gives the optimal 

solution. 

The relaxation GCR2 gave graph covering problems with more vertices 

than GCR1 and thus it took longer to solve each graph covering problem. 

The number of tree search nodes generated by this relaxation was less 

than for the two relaxations combined or for the relaxation GCR1. One 

explanation for this is that the reduced cost tests removed more 

variables when they used the graph covering dual variables from the 



larger graph given by GCR2 than when they were obtained from a smaller 

graph, GCR1. 

For the graph covering relaxations combined the maximum number of 1's 

in a column of the problem SCPR obtained after relaxing the rows of 

GCR1 was determined according to the number of rows in the problem. 

It varied between 10 and 30. 

5.7.3 Comparison Between the Graph Covering Relaxation, 
Heuristics and Linear Programming 

5.7.3.1 Korman's problems 

Five problems of Korman [K4] were tested and Table 5.5 shows the lower 

bound values at the root node of a branch and bound tree for the 

heuristic, graph covering and LP relaxations. The times are in CDC 

6500 seconds. The problems were all unicost SCP's with the rows of 

the SCP representing vertices of a graph and the columns representing * 

cliques. The graph covering and heuristic bounds were almost identical 

in value and within 2% of the LP bound in 3 of the 4 problems solved. 

In each case all the bounds would have fathomed the root node had the 

optimal solution been available at the root of the tree. The solution 

times of the heuristic and LP methods were similar and the additional 

time spent to try and get an improved bound from graph covering was 

not computationally worthwhile. 

Korman's program, a dynamic programming algorithm, was then compared 

with the best bound tree search, described in §7.3, using the graph 

* A clique is a subgraph"that -is a maximal complete graph; A clique 
has the property that every vertex in the clique is joined to 

'every other vertex and no vertex can be added to the clique without 
destroying this property. 

\ 



TABLE 5.3 

Number Of Graph Covering Subproblems. Tree Search Nodes And Computing Time To Show 

Variation With Stepaize Parameter, 3 , And Number Of 1*3 Per Column^KCOL-,for 30 x 60 SCP 

0.5 1.0 2.0 2.5 3.5 

Column Number KGRAPH KNODE TIME KGRAPH KNODE TIME KGRAPH KNODE TIME KGRAPH KNODE TIME KGRAPH KNODE TIME 

KCDL 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 4.1 4.2 4.3 5.1 5.2 5.3 

2 420 12 15.6 356 16 14.4 307 13 12.7 354 14 13.9 300 13 12.52 

3 5293 * * 5000 * * 2521 * * 1670 * • 2215 • * 

4 2017 * * 1641 * * 1922 * * 1959 * * 1377 * a 

5 1193 * * 972 * * 1112 * * 1036 * * 808 * * 

10 361 12 40.1 301 16 35.6 444 * * 301 16 35.6 343 * • 

30 300 . 9 33.2 300 16 33.6 400 17 37.7 400 17 38.4 300 12 32.8 

KGRAPH is the number of graph covering subproblems solved 

KNODE is the number of tree search nodes required to solve the SCP 

TIME is the computation time on the CDC 6500 at Imperial College using the MNF5 FORTRAN compiler 

* means that the time limit was exceeded. 



TABLE 5.4 

A Comparison between the relaxations GCRl, GGR2 and a combination of these two Relaxations 

PROBLEM GCRl GCR2 GCRl combined with GCR2 Optimal 
Solution 

No. Size « Bound at 
Root Node 

Tree Search Bound at 
Root Node 

Tree Search Bound 'at 
Root Node 

rree Search z* 

m n P Value Time No. of 
GCP's 

No. of 
Nodes 

Total 
Time 

Value Time No. of 
GCP's 

No. of 
Nodes 

Total 
Time 

Value Time M o . O f 
GCP's 

No. of 
Nodes 

Total 
Time 

(i) !ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (xiii) (xiv) (xv) (xvi) (xvii) (xviii) (xix) (XX) 

SALK8 30 80 .07 12.7 0.1 26 5 0.3 12.7 0.4 30 3 0.6 . 12.7 0.3 250 29 3.5 13 

SALK9 30 90 .07 12.8 0.1 206 39 1.1 .12.8 0.2 305 38 1.6 12.8 0.2 305 38 1.6 13 

94 100 800 .02 455.7 1.3 130 27 3.2 455.3 2.9 161 7 8.9 455.2 11.7 788 17 20.4 461 

SALK13 104 133 .04 1674.5 0.6 294 46 2.4 1675.2 0.9 140 13 3.5 1674.5 3.6 461 31 10.4 1678 

LSSC16 200 1000 .02 428.7 1.5 198 44 5.1 428.0 5.7 - - * 428.0 16.3 - -
* 429 

LSSC17 200 1000 .02 510.3 4.3 - -
* 510.2 9.2 - - ' 

* 510.1 3.7 - . - * 512 

* means that, the iteration limit of 30 CDC 7600 sec was exceeded 

CDC 7600 seconds FTN compiler, OPT=2 



TABLE 5.3 

Comparison between the Heuristic, Graph Covering and Linear Programming Lower Bounds for Korman's Test Problems 

PROBLEM Optimal 
Solution 

HEURISTICS GRAPH 
COVERING 

LINEAR 
PROGRAMMING 

TREE SEARCH 
with graph bound 

KORMAN'S 
ALGORITHM 

No. m n z* 

Upper 
Bound 
z 
u 

Lower 
Bound 

Time Bound 
Value 

Time Bound 
Value 

Time N o . of 
Nodes 

Time No. o f 
Nodes 

Time 

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (xiii) (xiv) (xv) 

K8 25 136 6 7 5.70 .2 5.70 0.8 5.80 0.3 3 6.4 3889 39.6 

K9 25 136 5 6 4.90 .8 4.90 1.5 5.00 0.2 6 7.4 816 11.8 

K10 30 139 7 7 6.50 .5 - 6.63 0.5 - 0.5 4318 51.6 

Kll 30 252 6 6 5.40 .3 - - 6.00 0.5 - 0.3 6*00 

K15 35 564 <7 7 5.49 .1 5.53 2.3 6.00 1.3 * > 6 0 + >6000 71800.0 

CDC 6500 sec. 

MNF5 Compiler 

** fcf^e It nib 



covering lower bounds. As two of the problems were solved by 

heuristics and as the other two terminated when the search found the 

optimal solution the tree search ended quickly.For all the problems the 

graph covering algorithm using heuristics before the graph covering 

phase was substantially faster than Korman's algorithm, in the case 

of the problem K11 180 times faster. The fifth problem of 35 rows 

and 564 columns required over 2 an hour of computer time for Korman's 

method and was still unsolved after 1 minute of the graph covering 

algorithm. 

5.7.3.2 Four test problems of Salkin and Koncal 

The four test problems here each have density 2% and were used by 

SalKin and Koncal [S2]. Here the graph covering algorithm is compared 

with the CDC linear programming package APEX and Balas and Ho's method 

of. disjunctive cuts. The results are shown in Table-5.6. Computing 

time is in CDC 7600 seconds with the FTN compiler except for column 

(xxi). Columns (i) to (iii) give problem number and size. In 

brackets in columns (ii) and (iii) is the number of rows and columns 

remaining after preliminary reduction tests. Column (iv) gives the 

optimal solution. 

Lower bound values together with computation times are given in 

columns (vi)-(xi) for the heuristic, graph covering and APEX lower 

bounds. The time gives in column (ix) for the APEX lower'bound is 

the time taken to solve the LP relaxation on the problem remaining 

after using reduced costs to eliminate some variables in the pre-

processing stage. As can be seen the LP lower bound was greater than 

the other bounds in all problems except the first which was solved 



TABLE 5.3 

A Comparison between the Heuristic, Graph Covering and Linear Programming Lower Bounds for Four Test Problems 

of Salkin and Koncal 

PROBLEM ' Optimal 
Solution 

LOWER BOUND VALUES AT THE ROOT NODE COMPLETE TREE SEARCH 

No. Size z* UPPER 
BOUND 

LOWER BOUNDS 

Heuristic Graph Covering LP( APEX) Heuristic Graph Covering LP (APEX) Balas & Ho 

(i) 
m 
(ii) 

n 
(iii? (iv) (v) 

Bound 

(vi) 

Time 

(vii) 

Bound 

(viii) 

Time 

(ix) 

Bound 

(x) 

Time 

(xi) 

No. 

?xif) 

of 

f 

Time 

(xiii) 

No. of Time 

(XV) 

No.of 

S K f 

No.of Time 

SvffXxviii: 

No. of Time 
Cuts 
(xix) (xx) 

AHSC14 100 500 656 556 656.0 0.1 - - - - - - - - - - - 4 4.0 

aHSC15 

RHSC16 

100 
(73) 

188) 

600 
(128) 

M ) 

670 

600 

579 

511 

664.9 

595.7 

0.1 

0.2 

666.3 

595.7 

1.3 

2.5 

668.0 

596.0 

1.2 

1.3 

9 

12 

0.5 

0.6 

8 

26 

19.8 

23.3 

800 

392 

7 . 

3 

1.5 

1.6 

146 42.6 

59 24.0 

AHSC17 100 
(100) 

800 
(227) 

460 473 454.2 0.2 455.3 2.9 456.0 1.1 12 1.0 7 8.9 73 4 1.8 682 >300.0 

All the times are CDC 7600 sec with the FTN compiler except for column (xx) where the times are for a DEC 20/50. 

The DEC 20/50 is approximately 10 times slower than the CDC 7600. 

For the Balas and Ho method the times are for solution of the problem at the root node using only cuts 

to raise the lower bound. When this method was used in a tree searcl^ problem AHSC17 was solved in 92.24sec 

with 30 nodes and 362 cuts. 



{Fable 5.7 Computational Results for Graph Covering Problems 

PROBLEM HEURISTIC BOUNDS LINEAR P R O G R A M I N G GRAPH COVERING 

N o . of N o . of 
vertices arcs 

Upper 
Bound 

Lower 
Bound 

Time LP 
Bound 

to. of 
>Jodes 

Time Solution Time 

No. 

(i) 

m 

(ii) 

n 

(iii) (iv) (v) (vi) (viij (viii) (ix) (x) (xi) 

95 35 350 99 92.J> 0.4 92.S 290 38.2 94 0.6 

96' 45 450 127 118.5 0.3 119. £ 350 58.0 121 0.4 

97 55 250 172 165.0 0.3 166.5 3 ' 1.1 167 1.7 

98 150 1000 466 428.0 0.5 430.0 7 5.3 431 2.6 

99 200 1000 652 612.5 0.5 617.£ 2 4.2 618 3.6 

CDC 7600 sec. 

FTN compiler (OPT-2) 
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by heuristics and for which the LP solution was optimal. In problems 

(ii) and (iv) the graph covering bound was about 0.3% above the 

heuristic bound and was not as great as the LP bound. 

Results for tree searches are given in columns (xii)r(xxi). Columns 

(xiii) and (xiv) give the number of tree search nodes generated and 

the time when heuristics are used to calculate the lower bound. 

Columns (xv) and (xvi) give the same information for the graph 

covering lower bounds.• 

5.7.3.3 Results for graph covering problems 

Five randomly generated graph covering problems were solved as SCP's 

using APEX linear programming package and the results are shown in 

Table 5.7. Bounds on the solution value were obtained using the 

heuristics of PROCEDURE 3, but upper bounds were also obtained using 

the methods of §2.3. The best upper bound is given in column (iv) 

and the lower bound in column (v). Column (vi) gives the time to 

calculate these bounds. The APEX linear programming code was used 

to solve the GCP's and the number of tree search nodes is given in 

column (viii). As can be seen the number of tree search nodes for 

the first two problems was approximately 300. The reason for such 

a large tree was that the APEX code took several branches before an 

upper bound was found. The graph covering solution is shown in 

column (x) and the time taken to compute it in (xi). For all the 

problems except problem 98 it was quicker to use the graph covering 

code than the APEX code. There was less difference in the computation 

times for the larger problems. Also the LP bound was very close to 

the optimal solution, differing by only 0.5 in the larger problems, 

whereas in the small problems it differed by 1.5. The heuristic 

upper bounds were on average 5% higher than the optimal solutions. 



TABLE 5.8 

Using the Graph Covering/ Heuristic and LP Bounds in a Tree Search 

PROBLEM HEURISTICS GRAPH COVERING LINEAR PROGRAMMING Optimal 
Solution 

No. m n 
* 

P Bound at No. of Total Bound at to. of Total Bound at No. Of Total z* 
Root Node Nodes Time Root Node todes Time Root Node Nodes Time 

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (xiii) (xiv) 
LSSC1 200 2000 .02 250.2 42 4.2 250.5 - * 251.2 - insolved 253 

ifter 10 
LSSC9 200 2000 .02 277.3 25 2.3 277.5 19 41.7 279.0 1 1.7 279 

LSSC16 200 1000 .02 427.1 10 2.1 428.0 44 15.3 429.0 1 4.9 429 ' 

LSSC20 200 1000 .02 512.0 ' 1 0.8 - - - 512.0 1 4.8 512 

LSSC21 200 1000 .02 555.75 • 15 3.2 555.81 >50 * 557.3 10 23.3 560 

LSSC22 200 1000 .02 428.53 3 1.3 429.6 >50 * 430.0 1 19.1 430 

SALK12 30 90 .04 12.5 1 0.1 - - - 12.7 11 1.2 13 

SALK13 104 133 .04 1668.3 15 0.3 1674.5 46 2.4 1674.0 4 0.9 1678 

CDC 7600 sec 
FTN compiler (OPT=2) 



Thus using better methods to obtain the upper bounds would have been 

advantageous. 

5.'7.4 Using the Heuristic, Graph Covering and LP Bounds 
in a Tree Search 

As the previous tables of this chapter have shown the graph covering 

bounds were not very quick to compute. Hence when they were embedded 

in a tree search most of the test problems failed to be solved 

because of the time taken to find the bound. The results are shown 

in Tqble 5.8 and it is seen that the heuristics give the best 

algorithm for most of the test problems. The LP however gave a better 

bound than both the graph covering and heuristic solutions. It was 

also quicker at solving the problem, LSSC9, 200 x 2000 SCP of density 

0.02. 

5.7.5 Conclusions 

The bound calculated by the graph covering relaxations is expensive 

to compute and it is usually better to use the less good heuristic 

bound in a tree search. Only one problem, SALK 13 of Table 5.8 did 

the graph covering bound exceed the LP bound. 
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CHAPTER 6 

LOWER BOUNDS TP THE SCP USING: 

DECOMPOSITION AND STATE SPACE RELAXATION 

6.1 Introduction 

Two methods of finding lower bounds to the SCP are described in this 

chapter. A decomposition method, in which the SCP is divided into 

smaller SCP's whose solution values are summed to give a lower bound, 

is described first. Secondly a relaxation of a dynamic programming 

algorithm in which not all the state spaces are stored is used to 

give a lower bound to the SCP. More details on state space relaxations 

for the vehicle routing problem are given in Christofides et al [C7]. 

Both methods are illustrated on examples. The first method produces 

an excellent lower bound but is slow to compute. The second 

bound is more quickly computed but does not give a particularly high 

value. Extensions to the second method which improve the bound are 

also discussed. 

6.2 - Tftg, Decomposition Method For Obtaining A-Lower-Bound 
- To The SCP ' 

6.2.1 Definition 

The constraints M of the SCP are partitioned into r disjoint subsets, 

i? pi?;^ ... Thus the constraint matrix (after suitable rearrange-

ment of the rows if necessary) is given by: 

A = 

A 

(6.1) 
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Let the non-zero columns of A b e denoted by A . Whenever the jth 

column of A0 is non-zero a variable Y is defined. Let T . be the 
x» 3 

index set of variables derived from the jth column of the SCP. 

Let d^ be the cost of variable y^ such that: 

I 
tzTj d,=o. 

t 3 
(6.2) 

For notational convenience let j and d ^ ^ be vectors of problem 

variables and costs corresponding to columns of A T h e SCP can then 

be reformulated as the problem SCPD(<i): 

SCPD(cZ) 

subject to A^ y^i) 

A2 

> 1_ 

> 1 (6.3) 

A y , , > 1 
r * tr) — — 

y+ = £ m y/\ T . i (6.4) 
re T . r 1 j . 

' J 

y e {0,1} for all t 

This formulation of the SCP has the same structure as those used to 

derive the problems NF1 (<5) and GCR2 id). Dropping constraints (6.4) 
/ 

.from SCPDCd) gives the problem DEC(d) which is again a set covering 

problem. Define the problem SCP^Cd) as: 

min y 

SCP id) 
Subject to A^ 2/^j > J_ 

y t e {0,1} 

for all i -(6.5) 

for all t 
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Problem DEC(d) is solved by solving each of the problems SCF̂ Cc?) 

T 

for I = 1,2,...,r. Then i>(DEC) = E yfSCP^) is a lower bound to 

the SCP. Even if it is not possible to solve the problems SCP^ exactly 

lower bounds can be calculated which, added together, give a lower 

bound to T;(DEC) and hence to the SCP. 

As in the relaxations IMFKd) and GCR2(d) the aim is to divide the costs 

o so that optimal costs d* for the relaxation are found where: 

tf(DEC(<Z*)) = mgx ?;CDEC(cZ)) 

subject ,1 d,-o. (6.6) 
• -ce r. t 0 

One way of calculating the costs d^ is to use subgradient optimization 

as described in the next two sections. 

6.2.2 Calculating the Costs d° Initially 

If u is a feasible solution to DLP and s is the vector of associated 

reduced costs then a cost d^ •derived- from column-j'and*rows R' of .the 

original SCP can initially ke defined as: 

d l - V l + i b t \ f 6 - 7 ) ' 

This value guarantees that the bound obtained from the relaxation 

m 
DEC(a) is at least as great as the heuristic lower bound, .Z u.. 

1= 1 % 

Further if u* is an optimal solution to DLP then y(DEC(<£)) > v (DLP) 

= v( LP) thus giving a bound at least as good as that obtained from 

the LP relaxation. 

6.2.3 Updating the Costs 

The costs, d , are updated as for NF1 and GCR2 at- an iteration k of 
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the subgradient optimization for k > 0 by first solving SCPD(d ). The 
£ 

solution y is then tested for feasibility to the SCP, by checking 

that 
K, 

constraints (6.4) are satisfied. If y^ = 0 for all tz Tj then 

k 
x. = 0 in the SCP and similarly if y. = 1 for all tz  T^ then x. = 1. 
3 t 3 j 

Otherwise let J' = {j|(-6.4) is not satisfied} and let p^. be the 

number of variables in set equal to 1. At iteration k the 

penalties TT̂  are given by: 

For jzj' and tz. T . 
° 3 

Wj 

i f y t - 1 

= -"pj  ( 3u-zz] 

11 "i 

if y t = 0 

For atJ' and te T . J 
w = 0 

where a is an a priori chosen constant 

z^ is an upper bound to the SCP 

k 
z i s the lower bound, tf(DECid )). 

2 ^ 
I |w| I is equal to p p / |t.| 

The costs d, are updated at iteration k by: 

dt  =  dt  +  (6.9) 

The iterations terminate when either (i) the optimality conditions 

(6.4) are satisfied, (ii) the bound v(DEC) > z - 1 + z where z is an 
— u u 

upper bound to the SCP, z is a tolerance and the costs o. are integer 
3 

or (iii) the bound has not increased for several iterations. 

6.2.4 Using Integer Costs d£ 

If the costs d, are restricted to be integral then the solution to 
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each subproblem SCP^ and hence to DEC must be integral. Therefore in 

any tree search to solve the subproblem SCP^(d) rounding up non-

integral lower bounds may accelerate the computation time. Instead 

of using heuristic solutions to DLP to calculate the initial costs, 

d°, they are given integer values satisfying d^ = c .. 

J 

Changes to the costs must subsequently be made in integral amounts. 

6.2.5 Reduced Costs for the SCP 

Both the networK flow and graph covering relaxations can be described 

as linear programs from which reduced costs for the SCP are then 

derived. The decomposition relaxation yields combinatorial problems 

CSCP^], albeit smaller problems than the original SCP, and hence 

integer programming duality defined in §1.3.4.4 must be used to define 

reduced costs. 

First let b e j'th column of Then let be an optimal 

subadditive function analogous to optimal dual variables in linear 

programming. One choice for is as the optimal solution to 

the SCP^ with right hand side replaced by i-
e
-

fd i aj/i) -  d m 

subject to Z £ z / m > a . / % . 

f I0!'} 
r 

Then letting = ^ t h e reduced cost of the Jth column 

of the original SCP is given by : 

8 . - o . - FSa J (6.10) 
J J d J 

As with linear programming duality the jth column of the SCP can be 



1079 

removed if: 

s. > z - 1 + e - vCDECCd)) (6.11) 
j — w 

Unless SCP^(<i) is solved by an LP relaxation, in which case 

f,(a. / 0) can be chosen as .Z u*. a..(where u*. is the optimal LP dual 
CL J / a< . "Z»EiT0 % "V3 u 

X. 't 

variable for row i), it is difficult to calculate exactly. 

Instead an upper bound to i s calculated giving F^, an upper 

bound to F^, by: 

W = J l ~ fd { ao/!? C6"12) 

then 

s . = ^ c . - Fjta.) (6.13) 
J 3 a J 

is a lower bound on the reduced cost s.. Thus if (6.11) is true when 
3 

s . is replaced by s\ the jth column of the original SCP can be removed, 
3 3 

Unfortunately no easy way of calculating f was found. To remove 

variables using reduced costs it is sufficient to find a function f 

that is an upper bound on an integer dual feasible subadditive 

function where f'tY) = v(DEC(<2)). Again no such function f' that, 

could be calculated easily was found. 

6.2.6 Recursive Tree Search 

The decomposition method involves splitting the SCP into smaller 

SCP's, SCP^(<i), that are solved using a tree search. The lower bound 

v(DECid)) is in turn used in a tree search. Thus the tree search 

procedure is used at two levels in the algorithm presented in 

PROCEDURE 14 DECOMPOSITION BOUND below. There may be an advantage i n 

decomposing SCP^((i) as if it were the original SCP. Thus a whole 
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sequence of SCP's could be generated and tree searches used at a depth 

of up to a fixed number, say q, levels. 

6.2.7 Sorting the Constraint Natrix A Initially 

If the constraint matrix A is almost in block diagonal form initially 

then fewer variables will be generated and it is less likely that 

constraints (6.2) will be violated. Therefore a heuristic procedure 

should be used to sort the matrix into block diagonal form. Such a 

procedure has been developed by King and Nakornchai [K2a] which sorts 

the matrix into blocKs by sorting columns as in §1.3.3.2. The 

procedure is then repeated by sorting the rows into blocKs. The 

columns and rows are sorted alternately until no further improvement 

is made. The procedure tends to cluster the non-zero elements 

near the diagonal of the matrix. 

6.2.8 Description of the Decomposition Algorithm 

The procedure below describes how the decomposition algorithm is used 

to obtain a lower bound to the SCP. 

PROCEDURE 14 DECOMPOSITION BOUND (SCP, z , z , u, NPART) 
U XF 

. COMPUTE A LOWER BOUND TO THE SCP USING A DECOMPOSITION METHOD 

Input: SCP The set covering problem 

z 
u 

An upper bound to the SCP 

NPART The number of subproblems into 

which the SCP is to be divided 

Lower bound from heuristics and 

dual feasible solution 
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Output: z 

z 
u 

1. Initialise Variables 

KMAX 

kz = 0 

A lower bound to the SCP 

Upper bound to the SEP 

Maximum number of iterations allowed 

Set iteration counter to 0 

Tolerance within which the solution 

must lie 

2. Define The Relaxation 

Partition the constraint matrix A into NPART submatrices. Calculate 

costs d, for each problem SCP.(d). 

3. Iteration k 

k: = fe+1 Update iteration counter 

If k > KMAX goto 8, 

Z: = 0v 

£: = <{> 

Z is index of the current subproblem SCP^ 

L gives solutions of relaxed problems 

Initialise bound value 

4. Solve SCPg,id) 

4.1 li = A+1 

If Z > NPART 

then goto 5. 

else solve SCP^C^f) 

z^: = z'z + t>(SCP Cd]] Calculate bound 

L: = L\){t\y = 1 in solution to SCP„Cc?)} 
^ z 



5. Test Solution Value 
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If 2 >2 - 1 + e 
%— u 

then goto 7. 

else let «7={j |equation 6.4 of text 

is not satisfied} 

Test if lower bound exceeds 

upper bound 

Test feasibility of solution 

for the SCP 

if «7=4> then goto 6. 

else change costs 

cL for all tz T ." 
t j 

and all o'zJ 

goto 3. 

6. Solution Is Feasible For The SCP 

Set x . = 1 Whenever there is y, = 1 
<7 u 

and teFj 

Set z : = zn 
u I 

7. Exit With Optimal Solution z 

Exit with z g i v e s optimal solution to the SCP 

8. Iteration Limit Exceeded 

Exit-with z a lower bound to the SCP 

The computational results for the decomposition method are given 

alongside those for the state space relaxation in §6.5. 
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6.3.1 Definition 

In principle the SCP can be solved by dynamic programming, but this 

requires too much storage to be useful in practice. This section 

shows how the dynamic programming states can be mapped on to a smaller 

set of states. Instead of obtaining an optimal solution to the SCP 

solving dynamic programming recursions on the smaller set of states 

gives a 1 ower bound to the SCP. This is Known as state space 

relaxation and can be thought of as a generalisation of Lagrangean 

relaxation. In Lagrangean relaxation-Bach constraint has a single 

M StoJ* r4b*oajhar+ 
multiplier A^. and^ a subset of constraints, S , is given a value 

W - ilg V 

State space relaxations enable functions fiS) which are non linear to 

be computed for a given state^S . For example fiS) could be the number 
> 

of elements in S. To calculate the state space relaxation (SSR) ^ 

bound a f u n c t i o n gisY i s u s e d t o map the sets S onto-a smaller1 set of s e t s . 

Suppose S represents a right-hand side vector b of the integer program, 

IP. At iteration k+1 the lower bound is given by: 

F.Agib)) = min [F,ig[b<a 0•) + c.] . C6.14) 

r 

where N, = {j\a, 0} , F [gib)] = 0 for all b and a . . > 0 
K kg o 

6.3.2 State Space Relaxation 1, SSR1 

6.3.2.1 Definition 

In the first state space relaxation, SSR1, the function gib) for a 

0-1 vector b is given by two values (a,g) where a is the number of 
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components equal to 1 in b and $ is the index of the row containing 

the last 1. The lower bound to the SCP, obtained using dynamic 

programming recursion (6.14), is given by F^igiJ_)). 

6.3.2.2 Reduced costs 

F ib), which will be used as an abbreviation for Fmigib)), is a 

subadditive integer dual feasible solution and thus the reduced cost 

of column a . can be defined as: 
3 

s . = c . - F ia .) 
3 3 m 3 

The reduced cost test is if 

s- > s - F C1) (6.15) 
3 u m — 

then x. equate 0 in any solution better than z . 
0 zt 

6.3.2.3 Improving the bound value using subadditivity 

Since any subadditive non-decreasing function that satisfies the 

dual feasibility conditions can be used one has: 

FCfcvz.) + Fia.) > Fib) 
3 3 ~ ' • 

or Fib^a.) > Fib) - Fia.) C6.16) 
3 — 3 

Now because a relaxation is used condition (6.16) may be violated and 

hence it may be possible to improve Fib^a.). 
3 

An example for the 30 x 60 SCP used in previous chapters 

gave values for F as shown below: 
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Tha value of F ta.B) - F„Iglb)) m m 

is the number of constraints in ths SCP 

ia an m-dimsnsional binary vector 

is the number of 1's in the binary vector b 

is the index of the last non-zero component of b 

m • 30 

b 
a 

a 1 2 3 4 5 6 7 5 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 .26 27 28 29 30 

9 
14 16 
13'- 20 25 
9 18 22 29 

7 9 16 22 29 
7 13 13 16 22 29 

11 11 13 18 20 27 33 
7 7 16 18 18 25 25 27 
7 7 14 14 16 25 24 27 32 

11 7 7 7 7 13 14 18 20 25 27 29 
12 7 7 9 9 14 14 16 16 22 23 27 29 
13 9 11 11 11 11 18 18 18 18 24 25 27 31 
14 7 7 7 7 9 11 18 18 18 18 24 25 25 27 
15 7 7 7 7 7 14 14 14 14 16 18 25 25 25 25 

16 7 7 7 7 9 14 14 14 14 16 21 21 21 23 25 27 
17 9 9 9 9 9 16 16 16 16 16 23 23 23 23 25 27 30 
18 9 9 9 9 11 16 16 16 18 20 23 23 23 25 27 30 30 32 
19 7 7 7 7 7 11 16 16 16 18 20 23 23 25 27 27 30 30 32 
20 7 7 7 7 7 14 14 14 14 14 18 23 23 23 25 27 30 30 32 34 

21 7 7 7 7 7 9 13 14 14 14 16 20 21 21 21 23 27 30 30 32 34 
22 7 7 7' 7 7 9 14 14 14 14 16 18 21 21 21 23 25 28 28 28 30 32 
23 7 7 7 7 7 7 9 14 14 14 14 16 18 21 21 21 23 25 27 28 28 30 32 
24 9 9 9 9 9 9 9 11 16 16 16 16 16 18 23 23 23 23 25 27 30 30 30 32 
25 7 7 7 7 9 9 13 13 16 16 16 18 18 20 22 23 23 25 25 27 29 30 32 32 34 

26 7 7 7 7 7 7 9 14 14 14 16 16 18 18 20 23 23 23 25 25 27 30 30 32 32 34 
27 7 7 7 7 7 7 13 13 13 14 14 14 16 20 20 21 23 23 25 25 27 30 30 30 32 32 
28 7 7 7 7 7 7 9 14 14 14 14 14 16 20 20 21 21 21 23 25 27 28 30 30 32 32 
29 11 11 11 11 11 11 11 18 18 18 18 18 18 20 25 25 25 25 25 27 31 31 32 32 32 34 
30 7 7 7 7 7 7 11 13 14 14 16 16 15 18 20 20 21 25 25 25 27 31 31 32 32 32 

Notice that F(9,9) - 27 and F(8,8) « 33 and ^(9,9) <F(8,8). This means 

that^least cost of covering the first 9 rows of the SCP is less than 

that of cohering the first 8 rows. Hence ^(9,9) can be increased to 

33. This Kind of checK can improve the bound further and can be 

generalised using (6.153. 



1086 

6.3.2.4 Comparison with other relaxations 

If the parameter 3 is dropped then the state space relaxation gives 

the same result as solving the knapsack problem when all the 

•constraints are added together. Hence the bound is at least as good 

as solving the knapsack relaxation. 

6.3.3 State Space Relaxation 2, SSR2 

In this relaxation a third parameter, y, is used to define giS) = (ct,3,y) 

This parameter is defined.by assigning-to the ith row of the SCP a small 

m 
integer value u. say and then for a 0-1 vector b, y = .E . u.b.. Then 

^ i-1 i i 

a and 3 are defined as before. This bound is then at least as good as 

that obtained from solving the weighted knapsack problem where the 

constraints of the SCP are added together after being multiplied by 

the weights u.. Is 

If the weights do not take integer values but instead take the LP 

optimal dual variables then y can take real values instead of integer 

values and hence the number of values of giS) may be very large. 

If all these values can be stored and optimal values of the 

dual variables (weights) ,. u^, can be found then the bound is 

at least as good as that obtained from the LP relaxation. If 

there are too many values then g(S) must be redefined as 

(ot/3/ LyJ ) where [*J
 t h e

 largest integer less than , 

or equal to *. This means that the bound may be less than that from LP. 

6.3.4 Other State Space Relaxations and Extensions 

Other possibilities for gib) are to put g[b] =• (a,3*y) where a and 3 are as 

before and y is the index of the row containing first non-zero entry 

of b. Thus £(01 0 11 100]* = (4,6,2). 

For problems in which consecutive I's occur for example b = 
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T 
(0111 000 11111 0000) a function gib) = (a,3,y) can be used where 3 

§ 

is the index of the row containing the first non-zero entry, y is the 

index of the last row of the first string of 1's and a is the number 

of components of b equal to 1. This can be extended to gib) = 

(a,3i*Yi*32*Y2> •' • '^"k'^y} w h e r e i s t h e i n d e x the first row and 

Y^ is the index of the last row in the Jlth string of 1's. Thus for 

the vector 8 above and k=2, gib) = (8,2,4,8,12). 

Another possibility is to divide the matrix A of the SCP into r sub-

matrices A^, Z= 1,2,...,r,as in §6.2.1 and set: 

gib) = (ai,a2,...,ar,3) 

where a^ is the number of components of b equal to 1 that are rows of 

Ap and 3 is the index of the row containing last non-zero entry of b. 

6.4 Solving A: Class Of. S.CP's 

6.4.1 Introduction 

The SCP's that are considered in this section have columns made up 

of strings .of 1's. A string of 1's in a column 3 is a set of rows 

..,^2 with a. . = a(. = a • • = 1. If is not the first 
'Z'lJ IJ Q t2v 

then a, . ,n- = 0 and if io is not the last row then a. . = 0 . row 

For the column: 

a . = 
3 
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there are two strings of 1's from rows 1 to 3 and 5 to 6. 

When only one string of 1's occurs in each column the SCP can easily 

be solved as a shortest path problem as shown in §1.3.2.1. Strings 

of 1's occur frequently in vehicle scheduling and routing problems. 

Shephardson and Marsten [S8] solved problems with two strings of 1's 

in each column. Their method is generalised here. For a problem 

that can have any number of strings of 1's first a decomposition of 

each column is defined. This is in contrast to a decomposition of 

the entire matrix as given in §6.2. A lower bound is obtained from 

this relaxation which is solved as a shortest path problem. Costs 

of the relaxed problem are changed by subgradient optimization to 

improve the lower bound. 

6.4.2 Defining the Relaxation 

Let each string of 1's in the constraint matrix be indexed by t. Let 

ĵf be the index set of strings of 1's that occur in the jth column 

of tne SCP. Let the variable, y b e associated with the tth string 

of 1's. The column a. of the SCP is then split | Tj.' \ into columns, 
<7 vj 

B^C^s Tj ). If the tth string of 1's goes from rows to then 

column has 1's in rows to ^2 and O's elsewhere. Thus for the 

column a . defined in the previous paragraph there are two strings of J 

1's so 81 and 3 2 are defined as follows: 

a - = 3 i + 3 2 

~1 ~ ~ 1 " ~0 ~ 

1 •1 0 

1 1 0 

0 _ 0 
+ 

0 

1' 0 1 

1 0 1 

0 0 0 

_ 0 _ 0 _0 



As in relaxation GCR2 and the decomposition relaxation the cost of 

column Bj. is d, and ,Z _ d = a. : 
u V VZ ij . o J 

n 

SCPPCd) 

m, i n ah th. •  dt yt y 
n 

subject to t Z T ^ S t y t > 1 

^ = ^relltzTj (6.17) 

2/̂  e {0,1}, for all t for «/=1 

Constraints (6.17) can be relaxed to give the Lagrangean relaxation, 

LRP(X): 

LRPCX) 
n 

j = 1 . t a t — 

e {0,1} for all t 

where , Z d,=o. 
tzT. £ J 

3 

As in the graph covering relaxation GCR2 the problem can be reformulated 

by letting: 

** = K- V I T J | t jSz r. 
for te'T. 

3 
(6.18) 

6.4.3 Changing the Costs 

Subgradient optimization gives exactly the same formula for updating 

the costs d^ at iteration k as in §6.2.3. At the kth iteration the 

problem that is solved is the shortest path problem, SPP(<f). 

SPP(d) 

n it 
min .Z„ ,Z - d, y, 

y •3 = 1 te<2> t "t 
tf j 

S/+E {0,1} 
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SPP(<i) naturally has an integer solution. 

The aim, as before, is to find optimal costs d* that satisfy: 

v{SPPid*)) = max viSPPid)) 
d 

subject to ,Z d.-c. for all j. 
° tz t  1 t j  v  

J 

This gives a lower bound to the SCP that is at the best bound equal 

to the LP bound. The proof follows the proof that yfNFKd*]] = v(LP) 

given in Chapter 4. Firstly it can be shown that if the costs d, are 

negative they can be set to non-negative values, d^ say, with no 

decrease in bound, so that: 

i>(SPP(<i')) > viSPPid)) 

Then associated with the solution to SPPCd') is a dual feasible . 

solution which is dual feasible for DLP and hence 

uCSPPCcZ')) < tf(DLP) = viLP) 

• - T 
The LP bound can be attained by-setting d, equal to s . + $,u* for u* 

v J t 

an optimal solution to DLP and s . the corresponding reduced cost where 
3 

tz Tj, .Hence the best bound obtainable-from this relaxation is the 

same as that obtained from the LP. The advantage of this method is 

that shortest path problems can be solved more qoiekly than linear 

programs. Also each string of 1's can be stored as two figures, the 

first and last row of the string. This reduces the storage require-

ments for the SCP when the strings of 1's are long. 

/ 

6.5 Computational Results 

6.5.1 Case Study 

For the same 3 0 x 6 0 example of density 0.15 as used in the other 
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chapters the state space relaxation bound was 39 as shown in 6.3.2.3. 

The CDC 6500 time under the MNF compiler was 6 sec. The value of the 

bound obtained from the decomposition relaxation when the SCP was 

partitioned into 4 subproblems was 55.11 and the corresponding time 

was 22 sec. on the CDC 6500. This bound value obtained after 29 

iterations of Procedure DECOMPOSITION BOUND. Bound values are shown 

in Table 6.1. The computing times were slow partly because of the 

time taken by the depth first on rows'tree search strategy. Using an 

anti-zigzagging strategy in the subgradient ascent and a better choice 

of steplength would improve computing time. The SCP solution was 56.0, 

LP bound was 51.0 and the knapsack bound (formed by adding the 

constraints) of the SCP together) was 29.0. Hence the relaxation SSR1 

is an improvement over the knapsack bound. The decomposition bound 

quickly exceeded the LP bound, at the 3rd iteration of Procedure . 

DECOMPOSITION BOUND. 

6.5.2 Comparison Between the Heuristic Bounds and the 
Decomposition Relaxation 

Bounds from the decomposition relaxation are compared with heuristic 

bounds for five problems in Table 6.2. The first five columns give 

details of the problem as in previous chapters. For the subgradient 

optimization phase of the decomposition relaxation the parameter 6 

was equal to 1.0. The optimal solution value to the SCP, z*, is given 

in column (vi). The number of tree search nodes and computation time 

for a depth first tree search on rows using heuristic bounds used to 

find 2.* is given in columns (vii) and (viii). 

Lower bound information is given in columns (ix) to (xiv). The 

heuristic bound value at the root node of the search tree is given in 

column (ix) together with the computation time in column (x). 



TABLE 5.3 

Bound Values For The 30 x 60 Example 

Using The Decomposition Relaxation 

Iteration 
Number 

Bound Value 

1 49.44 

2 48.42 

3 51.58 

4 50.53 

5 49.66 

6 52,39 

7 51.34 

8 50.65 

9 50.64 

10 50.47 

11 51.67 

12 50.39 

13 53.05 

14 52.14 

15 52.11 

16 52.39 

17 51.33 

18 '53.'35 

19 51.59 

20 52.57 

21 ' 54.63 

22 51.53 

23 55.11 

The LP bound is 51.0. 

The SCP solution, z*, is 56.0. 

The best bound available is underlined. 
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Columns (xi) to (xiv) give the same results for the decomposition 

bound. The SCP constraint matrix A was divided into submatrices A^ 

which had at most 15 rows. The number of subgradient iterations at 

which the decomposition bound exceeded the heuristic bound by at least 

of the heuristic bound is given in column (xi). Column (xiii) 

gives the first subgradient iteration at which the decomposition bound 

exceeds the heuristic bound by at least 2%. The times taken to 

calculate the bounds from decomposition are given in columns (xii) 

and (xiv). Average results for columns (xi) to (xiv) are also given. 

Table 6.3 gives the computing times for the heuristic and decomposition 

bounds of Table 6.2 as a percentage of the total computation time (as 

given in column (viii) of Table 6.2). 

For the two most sparse problems, numbered 71 to 72, the time taken to 

calculate a decomposition bound that was 1% higher than the heuristic 

bound was longer than the time taken to solve the SCP. However as 

Table 6.4 shows both of these problems were solved very quickly and 

the initial bound calculation using heuristics was approximately one 

third of the total computing time. For the most dense problem, number 

74, calculating this first decomposition bound was less than 4% of the 

total time. For all the problems it was possible to get a bound 2% 

greater than the heuristic bound from the decomposition relaxation 

after an average of 17 subgradient iterations. However the computing 

time was long and even for the most dense problem was nearly a quarter 

of the total time. 

Table 6.4 gives the best decomposition bound found in 30 subgradient 

iterations. Compared with the heuristic bound the balue was high, 

but for 3 of the five problems the computation time was longer than 

that taken to solve the entire SCP. 



TABLE 6.2 

Comparison Of The Decomposition Bound And The Heuristic Bound 

PROBLEM OPTIMAL SOLUTION 
HEURISTIC 

BOUND DECOMPOSITION BOUND 

NO SIZE COST 2 * NODES TIME TIME 
BOUND EXCEEDS 

by 1% of 2c. 

BOUND EXCEEDS 
Z^ by 2% of ^ 

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) 

Iteration 
No 
(xi) 

Time 

(xii) 

Iteration 
No 

Cxiii) 

Time 

(xiv) 

70 40 150 0.00 X 92 616 36.1 86.0 0.8 10 9.3 28 22.7 

71 50 100 0.06 X 146 3 1.12 141.9 0.4 4 1.5 15 5.2 

72 50 100 0.08 U 11 13 3.29 9.9 1.1 23 16.3 23 16.3 

73 50 100 0.10 U 10 176 21.21 7.9 1.9 1 4.2 10 19.5 

74 50 100 0.15 X 81 1370 198.4 65.8 2.2 1 7.12 9 47.4 

Average 8 7.7 17 22.2 



TABLE 6.2 

Computing Times for the Decomposition and Heuristic Bounds 

PROBLEM HEURISTIC BOUND DECOMPOSITION BOUND 

No. Size Costs Time to compute bound as % 
of total computing time. 
(Bound = z.) 

(v£) 

Time to compute bound as % 
of total computing time. 

Time to compute bound as % 
of total computing time. 

(i) 

m 
(ii) 

n 
(iii) 

P 
(iv) ( V ) 

Time to compute bound as % 
of total computing time. 
(Bound = z.) 

(v£) 

(Bound = 1.01 x z.) 
(vii) 

(Bound = 1.02 x z^) 
(viii) 

70 40 150 .08 X 2 26 63 

71 50 100 .06 X 36 134 464 

72 50 100 .08 U 33 495 494 

73 50 100 .10 U 9 19 92 

•74 50 100 .15 X 1 4 24 

Average 16 135 227 

CDC 6500 sec. 

MNF5 Compiler 



TABLE 6.4 

Decomposition Bound as a Percentage of the Optimal Solution 

PROBLEM HEURISTIC BOUND DECOMPOSITION BOUND Optimal 
Solution 

No. Size Costs Bound as % 
of z* 

Time as % 
of total 

Best Bound in 
30 iterations 

Time to calculate 

bound as % of 
Time 

(i) 

m 
(ii) 

n 
(iii) 

P 
(iv) (v) (vi) 

time 
(vii) 

as % of z* 
(viii) 

total time 

(ix) (x) 

71 40 150 .08 X 93 2 97 63 36.1 

72 50 100 .06 X 97 36 100 799 1.1 

73 50 100 .08 U 90 33 92 494 3.2 

74 50 100 .10 U 79 9 96 277 21.2 

75 50 100 .15 X 81 1 . 98 61 198.4 

Average 88 16 97 338 

CDC 6500 sec 
MNF5 Compiler 



TABLE 6.5 

Decomposition Bounds for Different Partitions of A 

'ROBLEM HEURISTIC BOUND DECOMPOSITION BOUND after 30 subgradient iterations 

No, Size 

m n 

Bound Time 

Max No. of Rows 
in A ^ = 1 5 

Bound rime 

Ylax. No. of Rows 
• 1 0 

Bound rime 

Max No. of Rows 
A * m 8 

Bound Time 

f.j.j > 
\ t (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) 

75 

76 

77 

78 

71 

30 

40 

40 

40 

50 

100 

100 

100 

100 

100 

.12 

.06 

.08 

.10 

.06 

45.0 

122.6 

' 96.8 

68.8 

146.4 

0.6 

0.2 

0.5 

0.7 

0.6 

51.9 

125.2 

98.3 

71.5 

147.2 

17.9 

6.0 

8.0 

16.3 

2.1 

46.0 

124.8 

97.8 

70.9 

147.0 

7.9 

4.0 

5.0 

7.0 

2.8 

45.3 

1124.1 

97.7 

70.0 

147.0 

5.1 

2.5 

4.5 

3.5 

1 . 6 

All the problems have randomly generated costs of type X as defined in Chapter 2. 

CDC 6500 sec. 

MNF5 Compiler. 
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Tests were carried out on a further set of five problems to ascertain 

the difference between bound values when the constraint matrix was 

partitioned into submatrices of different sizes. 

The bound value when the maximum size of a submatrix took different 

values was calculated. If a problem had 50 rows and the maximum 

submatrix size was 15 then 3 matrices with 15 rows would be generated 

and one matrix of 5 rows. Generally if MMAX was the maximum number 

of rows allowed in a submatrix then an SCP with m rows was divided 

into |tf?/f1MAX] submatrices each of MMAX rows except possibly the last 

which would have all the remaining rows in the original SCP. The 

bound value and times for MNAX = 15, 10 and 8 are shown in columns 

(viii) to (xii) of Table 6.5. When the matrix was partitioned into 

the smallest number of submatrices the bound was higher as expected, 

but also the computation time was higher. For problem 75 the optimal 

solution was 56. This problem was only split into 2 parts when ITIAX 

was 15. Although the corresponding decomposition bound of 51.9 was 

considerably higher than the heuristic bound of 45.0 it was far from 

the optimum and took considerable time to compute. 

6.5.3 The State Space Relaxation, SSR1, Bound Compared 
With the Decomposition and Heuristic Bounds 

i 

This bound is shown with the heuristic bound and the best decomposition 

bound in 30 iterations (when the maximum size of a submatrix was 15) 

in Table 6.6. In all cases the SSR1 bound was lower than the heuristic 

bound and in most cases slower to compute. The SSR1 bound was 

approximately 2/3 of the optimal solution. 

6.5.4 Conclusions 

The decomposition bound is too costly to be useful as implemented. 



TABLE 6.2 

Comparison between Bounds from Decomposition, State Space Relaxation 1 and - Heuristics 

PROBLEM HEURISTIC BOUND STATE SPACE 
RELAXATION BOUND 

DECOMPOSITION BOUND 
(after 30 subgradient; 

Optimal 
, Solution 

No. Size iteratior is) 

(i) (ii) :iii) iv) (v) 
Bound 

(vi) 
Time 
!vii) 

Bound 
(viii) 

Time 
(ix) 

Bound 
(x) 

Time 
(xi) 

z* 
Cxii) 

Time 
(xiii) 

75 30 150 .05 U 5.7 1.6 5 0.3 5.7 1.9 7 5.4 

76 40 100 .15 X 51.0 1.5 50 0.7 54.8 102.2 64 -

70 40 150 .08 X 86.0 0.8 63 1.6 89.0 22.7 92 36.1 

77 40 150 .10 U 6.4 2.1 6 0.9 6.6 42.0 8 10.5 

78 50 100 .05 X 173.3 0.5 130 1.2 177.1 3.3 178 1.1 

79 50 100 .06 X 141.9 0.4 100 1.1 145.5 9.0 146 1.1 

71 50 100 .06 X 146.4 0.6 129 ' 0.9 147.2 2.1 150 1.5 

80 50 100 .09 u 92.9 0.9 69 1.4 94.6 4.8 98 .1-7 

73 50 100 .10 u 7.9 1.9 6 . 0.7 8.2 22.8 10 21.2 

74 50 100 .15 X 65.8 2.2 62 3.2 68.5 121.0 81 198.4 

CDC 6500 sec. 

MNF5 Compiler 
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Improvements could be made to the tree search, but as both the SCP 

and the subproblems SCP^Cd) were solved using the same tree search 

it was felt that this had little effect. However decomposition could 

be useful for specially structured problems that had an almost block 

diagonal constraint matrix. Also experiments could be made on choosing 

the partitions more carefully. As the bound value was quite high it 

is probably sufficient to get lower bounds to the subproblems SCP^(d) 

rather than solve them exactly. Also further tests using integrality 

of the original costs could be made as described in §6.2.4. 

The state space relaxation, SSR1, bound was too low to be useful. 

However it may be improved by combining it with other parameters as 

described earlier in this chapter. 
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CHAPTER 7 

BRANCHING STRATEGIES FOR THE SCP 

7.1 Introduction 

Branch and bound is one of the most successful approaches in solving 

combinatorial programming problems. As mentioned in Chapter 1 

extensive studies have been made of branching strategies. Thus this 

chapter only briefly discusses methods applicable to the SCP. 

First a simple binary tree search is used to illustrate the 

importance of choosing a branching variable. Three different methods 

of selecting the branching variable are presented and an example is 

shown. 

The number of rows in an SCP is usually much less than the number of 

variableSj hence three implementations that use branching on rows are 

described. Branching on rows is of interest for several reasons. 

Firstly if the constraint coefficient 'matrix of the SCP is stored by 

row as a list of non-zero columns then it is very easy to implement. 

Secondly the successful branching strategy of Marsten [Ml] for the 

SPP used branching on rows. In the SPP, unlike the SCP, the fixing 

of a variable to 1 in constraint i means all other variables in the 

constraint must be fixed equal to 0. Thus at each node of the search 

tree several variables can be fixed. Thirdly the dynamic programming 

algorithm of Korman [K4] was based on branching on rows. In Korman's 

algorithm to transform an algorithm for the SPP to one for the SCP 

many extra columns had to be generated. The SCP can however be solved 

directly by branching on rows without generating extra columns*as 

described in §7.3. Thus although branching on rows has been used 
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previously for the SPP this is the first time that it has been used 

for the SCP. Fourthly fewer nodes are generated than in the simple 

binary search. This is of little importance as a good tree search 

need not attempt to find a lower bound at every node of the tree and 

could branch forward without calculating bounds at selected nodes to 

save computational time. 

Topalian [T6] gives an extensive analysis of branching strategies for 

small SCP's. 

7.2 Tactical Problems - Choosing The Branching Variable 

The relaxation NF1id) is used to find, a bound when nodes are 

generated by choosing a variable x . and fixing it first equal to 1 
3 

and then to 0. Of the many ways in which x. can be chosen, three 
3 

methods are - -- given. In each case the variable x . was picked from 
3 

amongst the set, S, "of variables that were not fixed equal to 0 or 1 

by the solution to the relaxation NF1id). That is some variables 

derived from the jth column of the SCP were fixed equal to 0 and some 

fixed equal to 1 in the optimal solution to NF1(<2). There are 

usually several such variables x a n d it was to decide between these 

variables that the following three methods were used. 

The first method is to calculate a lower bound on the amount of 

increase of the lower bound /y(NF1(<i)] if a variable x^ is set equal 

to 0. The variable for which this penalty is maximised is then 

selected as the branching variable. For each variable x., a 
3 

penalty TI . is computed as: 
3 

n . = E (( min d . . T) - d..) 
3 tile^-1} i'eN{ **  V 3  

a'* 3 
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this m e a n s , that if £ • • = 1 then fixing £ . . equal to 0 (i.e. branching 

by setting a:. = 0) will increase the bound by at least the difference 

between the second minimum cost, d..„ = min d... and the minimum 

3'* 3 

cost, d. ., in row Thus rj. is a lower bound on the amount the lower 
id 0 

bound to SCP will increase if x . is set equal to 0. The choice of 
0 

branching variable is that for which n . is maximised. 

Selecting the variable in S for which the reduced cost is least gives 

the second method. The aim is to incur a heavy penalty when this 

variable is set equal to 0. This may mean that another variable with 

higher - reduced cost will then be set equal to 1. The reduced cost 

is already available at the end of the networK flow problem and 

therefore it requires less computational effort to find the branching 

variable than the first method. 

The third method is to select the variable in S with the largest 

reduced cost as the branching variable. The expectation-.is that the 

bound will increase as much as possible when the variable is set equal 

to 1. As this gives no indication of how the bound changes when the • 

variably is set equal to 0 this is not a very good strategy. 

For each of the above strategies Figures 1 to 3 show how much of the 

tree has been searched after 50 nodes have been generated for a 

60 x 400 randomly generated SCP of density 5% (problem number 15 of 

Tables 2.1 and 4.2). It is seen that strategy 1 is the most successful 

and strategy 3 the least. The number encircled is the index of each 

node. 
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Fig .7.1 AMOUNT OF TREE SEARCHED BY STRATEGY 1 

I 
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Fig.72 AMOUNT OF TREE SEARCHED BY STRATEGY 2 

- • / . 
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Fig .7.3 AMOUNT OF TREE SEARCHED BY STRATEGY 3 

LARGEST REDUCED COST 

7.3 Strategic Problems - Branching Qn Rows For The SCP' 

7.3.1 Description of Branching Strategy 

Instead of branching on a single variable as in the computational 

example of section 7.2 it is possible to branch on rows or blocKs. 

The extension of this method to the SCP will.now be discussed. 

This strategy was successfully used for the SPP by Marsten [M1 ]. 

Marsten sorted the constraint matrix into blocKs and the extensions 

to the SCP are described in §7.3.2. For the SCP it is only advantageous 

to sort the constraint matrix into blocKs when either it is stored 

only once as a list of non-zero rows by column or if decomposition 

techniques are to be used. Branching strategies for both implementations 

will be described. 
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7.3.2 Branching on Rows When the Constraint Matrix 
is Sorted into BlocKs 

7.3.2.1 Sorting the matrix 

The columns of the constraint matrix A are sorted into blocKs, B^ 

(1 <k<m) say, some of which may be empty. BlocK B^ is the set of 

columns of A that have the first non-zero entry in row k. The sorted 

matrix is shown below. 

FIGURE 7.4 

Constraint Matrix A Sorted Into BlocKs 

B\ B2 Bs BH B 
r 

11111 

1111 
All entries are 0 

11111 

111,1 111,1 
1111 

All E ntries are 0 or 1 

7.3.2.2 The branching strategy 

If the matrix A is partitioned into blocKs then, unliKe the case of 

the SPP where at most one variable from each blocK can equal 1, it 

is possible in the SCP for more than one variable in a block to be 

set equal to 1. Thus the branching strategy will record only the 

blocK of highest index which covers each row. The m-dimensional 

vector g is used to record the block covering a row. Row £ is 

covered by block k means that gtt) = k and gtt) = 00 if row i has not 

not been assigned to a block. In the procedure given by Marsten for 

the set-partitioning problem the blocks are assigned to rows in 
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increasing order of row index, which gives a depth-first strategy. 

The method presented here can be used for any strategy. 

Let B^ii) be the set of variables not fixed equal to 0 or 1 in block 

B^ which have a 1 in row i. Consider assigning row (r+1) to a block 

By, for 1 < k < r > giving gtr+1) equal to k. First notice that if 

g[k) t k or 00 then it is impossible to assign row r+1 to By. If 

gik) = °° then g[k) must immediately be set to k. If = 0 then 

it is also impossible to set gir+1) = k. Suppose that row r+1 can be 

assigned to block By then it may be possible to reduce the size of 

problem to be solved by removing rows, columns or elements of the 

constraint matrix. This is described in the next three sections. 

7.3.2.3 Removal of rows 

To remove rows, only columns of Block By need be considered. Recall 

B?(r+1) = {jlx.zB,, a . 1}. Any row t, k < t <m and t 1 r+1 
k ' o k r+1, j — — 

for which ay^ = 1 for all can be removed. This is the row 

dominance test of §1.3.3.1 applied to a block instead of a row. 

7.3.2.4 Removal of columns or blocks 

Columns can be removed in two ways. First consider the case when 

B?(r+1) consists of a single element, j say. Then x . can be set 
K ° °o 

equal to 1 and rows removed as in §7.3.2.3. Secondly if gtr+13 = k 

then Xj = 0 for all j satisfying a ^ . = 1 and j eB^,' k < k r
 < r+1. In 

particular all the variables in block B A are removed. K r+1 

7.3.2.5 Removing coefficients of constraints 

Not only can variables and rows be removed as in the preceding two 

sections, but if row r+1 is assigned to block B1t then a A . can be 
K 2?+1 
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set equal to 0 for all j in blocKs B , 1 < t < k-1. This means that 

the problems tend to become sparse as one proceeds down the search 

tree. For lower values of k not many coefficients will be set equal 

to 0, but on the other hand several blocKs of variables can be 

removed. On the other hand for larger values of k, whereas few blocks 

will actually be eliminated, the subproblem is liKely to be easily 

solved, because it is sparse. 

7.3.2.6 Solving the problem after assigning blocKs to all rows 

After blocKs have been assigned to all the rows there may not be a 

unique solution to the SCP. At each stage of the branching a 

relaxation of SCP is used to find a lower bound. If the relaxation 

solves SCP or provides a lower bound which exceeds an upper bound 

then backtracking can take place. In the case of no solution to SCP 

after the branching strategy has been completed then smaller SCP's 

will have to be solved. For each block By which has not been 

completely determined and has been assigned to some row let = 

tt\g(i) - k} be the set of rows to which it has been assigned. Then 

solving the SCP: 

min Z „ Q.x. 

i&l 3 3 

subject'to I a . JC . > 1 -iz $(/c) 
3 ^  3 ~ 

x . = 0 or 1 
0 

o 171 

will give the required solution. By is equal to z ^yir) 
v-k 

7.3.2.7 Example 

For the example all costs, o equal 1 and it is assumed that the 
J 
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matrix has been sorted. The rows are chosen in ascending order of 

index. The constraint matrix is shown below. 

BlocK 1 2 3 4 

Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Row 

1 1 1 

2 
3 1 
4 1 
5 1 
6 
7 1 
a 

Row 

1 1 1 

2 
3 1 
4 1 
5 1 
6 
7 1 
a 

1 1 1 

1 

1 1 

1 

1 

Row 

1 1 1 

2 
3 1 
4 1 
5 1 
6 
7 1 
a 

1 1 1 

1 

1 1 

1 

1 

1 1 1 1 
1 

1 
1 1 

1 
1 

Row 

1 1 1 

2 
3 1 
4 1 
5 1 
6 
7 1 
a 

1 1 1 

1 

1 1 

1 

1 

1 1 1 1 
1 

1 
1 1 

1 
1 

1 1 1 1 1 
1 

1 1 
1 

1 1 

A = 

An upper bound is given by x 1 = x^ = x? = x11 = 1 and has value z = 4, 

The search tree is given in Figure 7.5. 

The simple lower bound z i s calculated as: 

A . z - E min o . 
Z kzK jsB k

 J 

where K is the index set of blocKs 

that have been assigned to a row. 

The cost of the fixed solution is denoted by z„. 
F 

The following calculations are carried out for each node: 

Root Node: Node 1 

gC1)=1 

Branch from Node 1 Node 2 

gi2)=2. Note, since S 1[2]=0, g{2) cannot 

equal 1. 

Branch from Node 2 Node 3 

£7(3)=1. Set #1 = 1 and remove #3 and B3, 3 = 1 

Rows 1, 3 and 5 are covered by Xi. 
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Node 4 

gi 3)=2. Set 0:3=1, remove B3, z =1. Rows 2, 

3 and 5 are covered by 0:3. 

Node 5 

#(3)=3, V 3 

Branch from Node 3: Node 6 

remove B4, infeasible 

Node 7 

gi4)=2, remove S^, infeasible 

Node 8 

gi 4)=4, 3 r 3 

Branch from Node 4: Node 9 

gi 4) = 1, remove Binfeasible 

Node 10 

g (4)=2, remove infeasible 

Node 11 

gi 43=1, z =3 
I 

Branch from Node 5: Node 12 

gi 4) = 1, set a?i = 1. Remove Xif, £5, XQ, BIF. 

In addition single 1 in row test. 

Sets #7=1 and 0:3=1. Upper bound = 3 

The tree search is completed as a new upper bound has been found. 

7.3.3 Branching on Rows When the Constraint Matrix is Stored as 
a List of Non-Zero rows by Column 

7.3.3.1 Description of the forward step of the branching strategy 

The basic forward step to generate successor nodes is made by choosing 

a row t at a node of the search tree. Suppose N t h e set of non-zero 

columns of the SCP contained in row i, is the set { j • • • >Jp}« 

This set is readily available if the constraint matrix is stored as a 
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list. Then p subnodes are generated by setting x . = 1 and x . = 0 

for k<Z for I = 1 Two implementations, a depth-first and a 

best bound search, are described below. 

7.3.3.2 A depth first implementation 

As a depth first tree search requires little storage this is the most 

practical approach for solving large problems. If a node is not 

fathomed then a new branching row is chosen and the first variable in 

this row is fixed equal to 1. When a node is fathomed for which row 

'i is the branching row then if N . = {«? i > • • • *3 ) and x . is fixed 

equal to 1 then backtracking occurs by setting x. = 0 and x • = 1 to 

generate a new node until A+1 > p. When this arises the level of the 

tree search is decreased by 1 and the variables fixed at the father 

node are changed 

as for the previous level of the tree search until 

the entire tree has been searched. An example is given in Appendix 3. 

The method is described formally in PROCEDURE 15 DEPTH. FIRST SEARCH 

below. 

PROCEDURE 15 DEPTH FIRST-SEARCH. CSCP) 

A DEPTH FIRST TREE SEARCH ON ROWS FOR THE SET COVERING PROBLEM 

Input: SCP The set covering problem 

1. Initialise Variables 

LEV is depth of the search tree 

NREP is the number of variables fixed 

in the current search tree 

LEV: = 0 

NREP: = 0 
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LREP: = <{> LREP is the set of variables fixed 

in the current search tree 

IZ: = <p 12 is the cost of the variables fixed 

in the search tree 

MR: = <}> MR is the set of rows removed at the 

current node of the search tree 

BIG: = big number 

e: = small number, tolerance 

NODE: = 0 ' NODE is the number of tree search nodes 

NODEMAX: = maximum number of tree search nodes that can be examined 

MRN: = vector of rows covered at each level by fixed solution 

2. Calculate Lower Bound To The SCP 

zni = lower bound to the SCP % 

u: = corresponding dual variables 

= upper bound to the SCP 

If node is fathomed 

then goto 4. 

else goto 3. 

3. Forward Step, Create A New Tree Search Node 

NODE: = NODE+ 1 Increase the number of nodes examined 

If (NODE>NODEMAX) goto 7. Test for limit on number of nodes 

generated 

LEV: = LEV + 1 . Increase the depth of the search tree 

3.1 Calculate Reduced Costs 

For j: = 1 to n 

if s . > z - z. - 1+e Test the reduced costs 
— 3 — u I 

then Q. \ = Q . + BIG 
3 3 
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NREP: = NREP + 1 

LREP: = LREPV {j} 

else next 3. 

3.2 Store Rows and Columns at this Node 

MRNCLEV): = MR Store rows covered by variables fixed 

equal to 1 

NRNCLEV): = NREP Store number of columns removed 

3.3 Calculate Branching Row 

Find a row i on which to branch 

IBRCLEV): = % Store branching rpw 

KBRCLEV): = M . Store set of possible branching 
it 

variable 

3.4 Calculate Branching Variable 

If KBRCLEV) = <f> 

then goto 5. 

else find branching variable 

3 e KBRCLEV) 

JBR: = 3 

KBRCLEV): = KBRCLEV) - {j} 

3.5 Reset Parameters after Choosing Branching Variable, JBR=j* 

IZ: = I Z + Q . Update cost of fixed variables 
3 

q .: = o. + BIG Remove x - from the problem 
3 3 3 

NREP: = NREP + 1 

LREP: = LREP I){3} Set x . equal to 1 

MR: = MRUiy_. Update rows removed from the problem 

Goto 2. 
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4. Backward Step, Remove Branching Variable, JBR 

Branching variable is j where j 

IZ: = IZ - c . 
0 

MR: = MRNCLEV) 

goto 3.4. 

5. Decrease Level In Search Tree 

LEV: = LEV - 1 

If LEV = 0 

then goto 6. 

else NREP: = NRNCLEV) Recalculate fixed rows and columns 

MR: = MRNCLEV) at this level of the tree search 

LREP: = set of variables removed at level LEV 

goto 4. 

B. Tree Search Completed Successfully 

Stop with optimal solution. Tree search has been completed. 

7. Tree Search Terminated Because Too Many Nodes have Been 
Generated 

Stop. 

7.3.3.3 A best bound implementation 

The main reason for studying this approach to a branch and bound 

algorithm was so that dominance tests could be used to eliminate nodes. 

The dominance tests consider two nodes in the search tree, N0DE1 and 

N0DE2 say. MRNCNODE) is the set of rows covered by the variables fixed 

: = JBR 

Set x . equal to 0 
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equal to 1 and IZCNODE) is their cost. Then if IZCN0DE1) > IZ(N0DE2) 

and MRN(N0DE1) ̂  MRN(N0DE2) N0DE1 is dominated by N0DE2 and can be 

removed from the problem because N0DE2 covers more rows for less cost 

than N0DE1. Hence when a node, NODE, is generated the corresponding 

values of NRN and IZ were stored. Also an estimate of the lower bound 

A 

value at the node, z is stored. This can be obtained by taking z 

the lower bound at the father node and the branching variable x . that 

generated NODE. Then if u, corresponding-to z^, is the vector of dual vari-

ables, in the case of the heuristic lower bounds^and is the vector of 

vertex weights (including blossom weights), in the case of the graph m 

covering relaxations then zn = s +max(0, c.- u .a.. The node at 

which the next lower bound is calculated in a tree search strategy is 

the one for which z i s least. A second reason for this approach is 

that if the algorithm terminates prematurely the least bound of 

unfathomed nodes remaining in the problem gives a lower bound on the 

solution to the SCP. 

When a node is not fathomed all the successor nodes are generated by 

choosing a branching row i and storing information for all possible 

nodes that can be generated as in step 3 of PROCEDURE 15 DEPTH FIRST 

SEARCH. 

The tree search strategy is described in PROCEDURE 16 BEST BOUND 

SEARCH below. . 

PROCEDURE 16 BEST BOUND SEARCH (SCP) 

A BEST BOUND SEARCH ON ROWS FOR THE SCP 

Input: SCP The set covering problem 
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1. Initialise Variables 

3 n : = 0 cost of fixed variables at root node 
F 

MR 

MRN 

BIG 

NODE 

NODEMAX 

LD 

= 0 set of rows covered at root node 

= MRN is vector of rows removed at current node of search tree 

= large number, e: = small number, tolerance 

= 0 index of current node being examined 

= maximum number of nodes that can be stored 

= list of nodes stored 

2. Calculate Lower Bound To The SCP 

2 : = lower bound to the SCP 

u : = corresponding dual variables 

- upper bound to the SCP 

If node is fathomed 

then goto 5. 

else goto 3. 

3. Forward Step 

3.1 .Calculating Branching Row 

Find a row £ on which to branch 

3.2 Generate. Subnodes 

NODEX: = NDDE 

For all <7 e N . z 

let NODE: = first free position in list LD 
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if NODE > NDDEMAX 

then goto 6. 

else father node(NODE): =NODEX 

bound estimate(NODE): =3„ 

MRN(NODE): = MRU M . 
0 

IZ(NODE): = 3 + o . 
F C 

LD: = LDU{j} 

Branching row(Nnr,,~) : = i 

Branching variable(NODE): = j 

If NODE is dominated 

do not store node 

If NODE dominates other 

nodes in list LD remove 

them from LD 

4. Choose A New Node At Which To Calculate Bound 

Record father node 

Calculate estimate of 

lower bound 

Calculate rows covered 

by fixed variables 

Calculate cost of fixed 

variables 

Perform dominance tests 

Let NODE be the node for which 

the lower bound estimate is least 

3 : = IZ(NODE) 
F 

MR: = MRN(NODE) 

Generate subproblem of SCP using 

branching row, branching variable 

and father node to set: 

Q .: = Q . + BIG for variables fixed 
3 Q 

equal to 0 or 1 

Goto 2. 

Retrieve cost of fixed variables 

Retrieve rows covered by fixed 

variables 
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5. Backward Step 

Remove NODE from list LD. Also if the father node of NODE has no 

successors left remove father node from LD. Repeat on the father 

node of the father node until no more nodes can be removed from LD. 

Goto 4. 

6. Storage Allocation Exceeded 

Stop with tree search not completed. A lower bound on u(SCP) is 

available from the least lower bound estimate of the active nodes. 

7. Stop With The CDptimal Solution 

z^ is an optimal solution to the SCP. 

/ 

In practice dominance tests were only rarely useful. They were .used to 

remove two o-r three nodes in problems of about 40 rows and 150 columns and 

density 0.15. Larger problems could not be solved by the tree search. 

7.3.4 Improving the Branching on Rows Method 

Unless calculating a lower bound has a good chance of either fathoming 

a tree search node or removing variables, using reduced costs to prevent 

a large number of successor nodes being generated, it is probably 

quicker to branch forward and generate successor nodes than calculate 

the bound. Thus improvements to computing times could be made by not 

calculating a lower bound at each node. 

A problem with the branching on rows method is that once a branching 

row has been chosen every single variable in the row is fixed to 1. 
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It may be that when some of the variables in a row, say those that 

are most likely to be in an optimal solution to the SCP, have been 

fixed equal to 0, that it is unnecessary to fix any of the remaining 

variables equal to 1. To Implement this suppose, for row i, N . 

consists of variables { j j , J 2 , . . . T h e n setting: 

a;. =1 <71 

x. = 0, x. =1 
31 <72 

x> = 0 , ... x. = 1 say 
3l 

and x . = 0, ... ,x. = 0 
<71 3 l 

would partition the SCP into £+1 nodes instead of p as before where I 

is chosen so that l<p. So that the variables x . , x . ,... ,x. are 
<71 32 3% 

those likely to be in the optimal solution when a branching row i is 

chosen the set N. can be sorted in ascending order of c./h. where h. 
3 3 3 

is the sum of non-zero entries in column a. that are in rows not-
3 

covered by fixed variables. 

7.4 Computational Results For The Depth First and Best 
Bound Tree Searches On Rows 

7.4.1 - Case Study 

The same 30 x 60 problem used previously was studied in detail. 

The branch and bound trees for the depth first and best bound 

strategies are shown in Figs. 7.6 and 7.7. The branching variables 

and lower bound values are shown for each node. In both cases an 

estimate of the heuristic lower bound z^ was available, thus it was 

not always necessary to use the heuristics to calculate the bound at 

a node. For this example the optimal solution is x^ = x^ 2 = x 2 7 - = 

= = 1 and the remaining x . = 0. The node at which this solution 



•FIGURE 8.2 

The Branch and Bound Tree for the Best Bound Strategy For a 3 0 x 6 0 SCP of Density 0.15 



•FIGURE 8.2 

The Branch and Bound Tree for the Depth First Strategy for a 3 0 x 60 SCP of Density 0.15 
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is found in the depth first tree search is given by branching on 

1 at the root node and £15= 1 at the first level. No successor 

node is generated from the node at the second level because the bound 

estimate was greater than 55. Dominance tests were not used in the 

best bound strategy to reduce the number of nodes searched. 

7.4.2 Test Problems 

Fifteen randomly generated problems were tested. The results in 

Table 7.8 show that the average time to perform the best bound search 

was 6.0 sec. whereas for the depth first search it was 14.1. The 

number of nodes in the tree for the best bound search was 81 which 

was less than that for the depth first search that had on average 164 

nodes. For dense problems the differences were greater and this may 

have been because dominance tests were used in the best bound search. 

The best bound search also tended to find the optimal solution earlier 

in the search than the depth first method. The average time to find 

the optimal solution, shown in Table 7.9, was 4.5 CCDC 6500) sec. for 

the best bound search and 10.3 sec. for the depth' first search. The 

time taken to find the optimal solution as a percentage of total 

computing time is also shown in Table 7.9. The best bound search found 

the optimal solution half way through the search on average. The 

depth first search found 2* in about three quarters of the total time 

on average. There were wide deviations between the average results 

and the results for individual problems however the best bound search 

was nearly always faster and generated fewer nodes. 

The maximum number of nodes stored by the best bound search was close 

to the total number of nodes examined as columns (vii) and Cviii) of 

Table 7.8 shown. It would therefore be worthwhile to use pointers to 



The Nuinber of Nodes generated by 

TABLE 7.8 

the Depth First and Best Bound Tree Searches using Branching on Rows 

PROBLEM Optimal Heuristic Bound Best Bound Search Depth First Search 
Solution as % of z* Max. No. of Total No. Total Max. Depth o r Total No. > Total 

Mo • m n P z* 100 x z^f z* 
Nodes Stored of Nodes Time Search Tree of Nodes Time 

(i) [ii) (Ui) (IT) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) 

31 30 100 .12 53 85 46 61 3.9 4 109 5.2 

82 40 100 .10 75 89 64 78 5.6 5 102 6.0 

83 40 100 .12 68 87 135 146 9.2 6 240. 10.7 

70 40 150 .08 92 93 53 64 6.6 6 616 36.1 

34 40 150 .08 90 97 67 74 4.6 2 22 2.5 

35 40 150 .10 67 93 104 110 10.7 . 5 175 14.0 

36 40 150 .10 69 94 72 72 4.6 5 213 19.0 

71 50 100 .06 146 90 3 3 1.1 2 3 1.1 

37 50 100 .08 126 88 111 175 24.8 5 186 19.8 

38 50 100 .08 112 90 21 26 2.8 5 39 3.5 

39 50 100 .08 111 90 66 81 8.0 5 72 7.2 

90 50 100 .08 103 88 65 92. 10.7 8 328 18.9 

31 50 100 .10 89 91 49 69 11.3 4 65 13.5 

92 50 100 .10 86 91 • 32 47 7.7 5 103 13.5 

93 50 100 .10 91 90 116 120 11.2 8 194 18.2 

Average 90.4 81 8.0 164 14.1 



Table 7.9 To Show the Time Taken to find the Optimal Solution by the Depth First and Best Bound Tree Searches 

PROBLEM OPTIMAL HEURISTIC DEPTH FIRST BEST BOUND 

SOLUTION 
LOWER 

SOLUTION 
BOUND (as % 
of optimal 
solution) 

Time taken 
to find z* 

Time taken 
to find £* 
as % of total 

Time taken 
to find z* 

Time taken 
to find z* 
as % of total 

No. 
(1) 

m 
(ii) 

n 
(iii) (?v) 

z* 
(V) 

100 X zjz k  

(vi) Cvii) 
search time 

(viii) (ix) 
. search time 

(X) 

81 30 100 0.12 53 85 1.2 31 1.7 33 

82 40 100 0.10 75 89 4.7 
84 5.8 97 

83 40 100 0.12 68 87 6.7 73 9.8 92 

70 40 150 0:08 92 93 1.9 29 35.3 98 

84 40 150 cr.08 90 97 3.4 74 1.5 60 

85 40 150 0.10 67 93 6.6 62 11.4 81 

86 40 150 0.10 69 94 2.6 57 18.8 99 

71 50 100 0.06 146 90 0.9 86 0.9 84 

87 ' 50 100 0.08 126 88 1.4 6 19.1 • 96 

88 50 100 0.08 112 90 1.7 
61 2.0 57 

89 50 100 0.08 111 90 0.7 9 0.7 10 

90 50 100 0.08 103 88 2.7 25 18.2 96 

91 50 100 0.10 89 91 2.2 19 2.2 24 

92 50 100 0.10 86 91; 2.5 32 11.8 87 

93 50 100 0.10 91 90 7.8 70 15.7 86 

Averat je -90.4 4.5 47.8 10.3 73.3 



186 

successor nodes so that nodes are no longer stored once all their 

successors have been fathomed. It should also be realised that the 

computational work in redefining a subproblem was greater for the 

best bound search than the depth first. If the methods of defining 

the subproblem were improved the computation times would be even 

quicker for the best bound search. Details of how this can be done 

for the travelling salesman problem are given in Carpaneto and Toth 

[C2]. 



* 

187 
CHAPTER 8 

IMPLEMENTATION OF AN ALGORITHM FDR SOLVING 
THE SCP USING GRAPH COVERING RELAXATIONS 

8.1 Introduction 

A FORTRAN program for solving the SCP using the graph covering 

relaxations of Chapter 5 embedded in a tree search is described 

in this chapter. The design of the program and the data structures 

used for storing the SCP are discussed in §8.2 and §8.3. The 

solution of the graph covering problem and reduced cost tests are 

described in §8.4. Parameters of the problem are discussed in §8.5. 

8.2 Design Of A FORTRAN Program 

The aim of this research was to produce a program that could easily 

be modified so as to allow a wide variety of branching and bounding 

strategies to be tested. The program is run entirely in-core. The 

amount of available storage proved to be a limitation and hence the 

ability to pack arrays or read data from the disc would have to be 

added to enable large problems (of greater than 10000 non-zero entries 

in the constraint matrix A, siiy). to be solved. There are three main 

sections to the code as shown in Fig.8.1. 

The first is the preprocessing stage in which the heuristics of 

Chapter 2 are used to reduce the size of the problem. Only two 

reduction tests were found to be particularly useful for random 

problems. These were the reduced cost tests and the single 1 in a 

row test of §1.3.3.1. 



FIGURE 8.1 

Design Of A FORTRAN Computer Program For The SCP 
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If the size of the problem decreases after the pre-processing stage 

then the columns that have been removed from the problem are discarded 

completely and the storage reallocated. This has to be done because 

the Lagrangean relaxation and branching strategy use much more storage 

than the heuristic algorithms. 

Thirdly there is the branch and bound phase which is divided into 

three parts: 

(a) calculating a lower bound 

(b) branching forward • 

(c) backtracking-

8.3 Data Structures For The Graph Covering Algorithms 

8.3.1 The Set Covering Problem 

To store the costs of the set covering problem a single vector of 

dimension n is required. The constraint matrix is stored twice, 

both by row and by column to speed up the computation. The matrix 

is stored as a list of non-zero columns in a vector ITJ together 

with a pointer vector of dimension m, IP, which gives for each row i, 

the total number of elements stored in ITJ up to the end of row i. 

This is illustrated in Appendix 3. Likewise a vector JTI which lists 

the non-zero rows is stored and JP is a vector of dimension n that 

points to the end of each column. Hence the total storage for the 

costs o and the constraint matrix A is approximately 2mnp + 2n +m where 

p is the density of the constraint matrix. 

To mark columns that have been removed the cost e . is set equal to 
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a . + BIG where BIG is a suitably large number. So that columns that 
0 

have been removed can be added back to the problem at a later date a 

vector LREP of maximum dimension n gives the index of each column 

removed. This can s.tore... a "negative number, • - j, if x . is set equal 
• - - 0 

to 0 and j, a positive number, if x. is set equal to 1. 
<7 

To indicate which rows have been removed a vector ILK of dimension m 

is required. This is a linked list of rows currently in the SCP and 

ILK(i) is set equal to a negative number if the row has been removed. 

This vector allows rows that are in the SCP to be accessed quicKly 

and also enables one to determine whether or not a row % has been 

removed by testing the sign of ILK(I). In addition the first row of 

the SCP must be stored. 

The storage required to marK whether rows or columns have been removed 

is 1 + m + n. The total storage required for an SCP in which some rows 

and some columns may be removed -is_ about 2mrtQ. + 3n + 2m + 1. 

8.3.2 Lagrangean Relaxation 

8.3.2.1 Graph covering relaxation GCR1, the row relaxation 

Indices of rows removed in a Lagrangean relaxation of the SCP can be 

stored in a list LREL, of dimension at most m. They are also marKed 

as removed in the vector ILK. The Lagrange multipliers require m 

words of storage and in addition it is convenient to store their sum. 

There is no need to store both costs of the relaxed problem and Oj as 

one can be calculated from the other. 

In testing the feasibility of the graph covering solution for the SCP 

firstly a list LCD, of length at most m (in the absence of negative 

costs in the GCP), of indices of columns of the SCP corresponding to 
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arcs in the graph covering solution and the lower bound value is 

needed. 

A list of relaxed rows for which u . ( a x - 1) / 0 is stored, together 
is 

with a search direction, v, and steplength, o. Thus the additional 

storage required for this Lagrangean relaxation excluding the 

amount required to solve the graph covering problem is at most 3m + 2 . 

8.3.2.2 Graph covering relaxation, GCR2, the column relaxation 

A Key to the arcs that are in the graph covering problem of length 

n — — 
at most X\h./2\, which is less than irnnp +n/2), is stored in the 

d ~ ' J 

vector JLK. 

If arc k is the first arc to be derived from column J then JLK(Z) = J. 

Otherwise each time an arc that is not the first arc to be derived 

from a column j is created a counter NNOW, that starts at n, is 

increased by 1. Then JLKiK) = NNOW. Thus if arcs are generated from 

each column j In turn the list JLK is a list of integers and each time 

an integer less than or equal to n appears in the list the corresponding 

arc is derived from a new column of the SCP. Hence for an SCP with 

two columns a\ and <22 below: 

1 1 
0 l " 
1 0 
1 0 
1 0 
1 1 

1 0 

Column a\ would give 3 arcs and column a2 would give 2 arcs hence JLK 

would equal (1, 3, 4, 2, 5). 
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As in GCR1 a list of arcs LCD, equal to (1, 2, 3, 4) say, and lower 

bound value is given by the graph covering algorithm. To indicate 

that an arc is in the graph covering solution the corresponding 

component of JLK is then multiplied by -1. In this case JLK would 

equal (-1, -3, -4, -2, 53. It is then easy to count the number of 

arcs derived from a particular column that are in or not in the graph 

covering solution. For the example arcs 1, 2 and 3 derived from 

column a-i are all in the graph covering solution thus a^ in the SCP 

can be set equal to 1. The cost vector of arcs in the GCP is of the 

same length as JLK. The costs are changed in the subgradient 

optimization phase by using a list of columns of the SCP JCH from 

which at least one arc in the graph covering solution has been derived. 

For each such column both the total number of arcs In the GCP derived 

from the column, NCH, and the number of arcs that are in the graph 

covering solution, NWON, are stored. If NWON and NCH are equal'then the 

feasibility conditions for the SCP are satisfied. Otherwise it is 

easy to calculate the penalties with which to change the costs in 

subgradient optimization from these parameters. The maximum storage 

required for this relaxation is then approximately rrnip + n for JLK and 

the costs of the relaxed problem^??? + 1 for the graph covering solution 

plus 3m for the information needed to change the costs. The total 

storage is then rnnp + 4m + 1. 

8.3.3 Branching Strategies 

8.3.3.1 Depth first search on rows 

The depth first search branching on rows of §7 requires firstly that 

variables fixed equal to 1 and 0 are marKed. This can be done using 

the list LREP of §8.3.1. In addition LEV is a variable that gives 

the depth of the search tree. IBR(LEV) gives the branching row at 
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level LEV. The position KST(LEV) at which the branching variable is 

stored in the list ITJ is registered. This means that J = ITJ(KST(LEV)) 

gives the index of the variable x . that is fixed equal to 1 and 
3 

ITJ(K1),... ,ITJ(KL) where K1 = IP(IBRCLEV) - 1) + 1 and KL = KST(LEV) - 1 

gives variables fixed equal to 0. (The convention IP(0) = 0 is used). 

In addition it is necessary to record KREP(LEV) the number of variables 

stored in LREP at level LEV in the tree search. If LEVMAX is the 

maximum depth of the search tree the additional storage is thus 

3 LEVMAX. Additionally the cost of the fixed variables at each level 

can be stored to speed up computation. Also the rows that are covered 

at each level can be stored in bits. 

8.3.3.2 Best bound search on rows 

The best bound search requires more .storage than the depth first method. 

For each node, NODE, in the search tree the position of the branching 

variable in the list ITJ and the branching row^ KST(NODE) and IBR(NODE), 

are stored. In addition the estimated bound valueA VLDtNODE)^ is stored. 

To record the tree structure the father node,JPR(NODE), is stored, with 

JPR(NODE) = 0 signifying the NODE is the root node. This gives 

sufficient information for variables to be fixed at a node. Firstly 

NODE is chosen as the node for which VLD(NDDE) is least. Then I= 

IBR(NODE), the branching row is calculated. Variables xj in row J 

are "fixed equal to 0 until variable x. for which JO = ITJ(KST(NODE)) H 30 

is reached. This is then fixed equal to 1. This method of fixing 

variables is then repeated for the father node of NODE until the root 

of the tree is reached. To facilitate the computation it is 

advantageous to store the cost of the fixed variables. 

The speed with which the node that has the best bound can be retrieved 

can be greatly improved by using a linKed list to linK the nodes in 



order of increasing estimated bound value. When a node is generated 

and inserted into the linked list time is taken in finding a location 

for it. This can be reduced by using a heap instead of a linked list 

to store the nodes, at the expense of additional storage. Further 

details are given for the travelling salesman problem by Carpaneto 

and Toth [C2]. 

The search is also quicker if the rows covered by variables fixed 

equal to 1 are stored in bits at each node of the search tree. In a 

best bound search this information can be useful for dominance tests. 

Nodes are discarded in a best bound search either because they are 

fathomed or because all their successors have been fathomed. To 

free the storage space left when the latter case has occurred at each 

node the first successor node should also be stored. 

The minimum total storage for a best bound search is then 4 MXND 

where MXND is the maximum number of tree search nodes allowed at any 

one time. Additional storage of MXND+ MXNDx MWORD, where MWORD is 

the number of words needed to store the bit pattern of m bits which 

indicates which rows have been removed, is required to implement the 

dominance tests. To store a linked list and successors nodes requires 

2 MXND words. Hence the total amount of storage required is 

7MXND * .MXND"' x ' MWORD. 

8.3.4 Total Storage Required 

To solve the SCP with both graph covering lower bounds in a depth 

first tree search requires at least 3mnp + 3n + 9m + 3 LEVMAX words of 

storage plus the amount of storage required to s'olve the GCP which 

is at most I m p + 13m including storing the graph in adjacency lists 

which use imp + 2m. Hence the total storage is 4mrcp + 3n + 22m + 3 LEVMAX. 



In addition some work arrays in which to perform calculations are 

required, but some of the graph covering algorithm and Lagrangean 

relaxation can share the same storage, so in practice this formula gives 

an estimate of the required amount. For a best bound implementation 

this increases to 4imp + 3n + 22m + 7MXND + MXND + MWORD which unless 

using packed arrays and disc storage means that the best bound search 

requires too much storage to be practical. 

8.4 'Solving The Graph Covering Problem 

8.4.1 The Graph Covering Algorithm 

The algorithm used for the GCP was based on the matching algorithm of 

Edmonds' [E1, E2] which is described in Minieka [M4a] and Lawler [L2]. 

As no graph covering code was available, an algorithm of Derigs and 

Kazakidis [D3a] for solving the'minimum-perfect matching problem on a 

graph was modified. This is described in §8.4.2. Before the graph 

covering code could be used all arcs of negative cost were removed 

from the problem. Their values and indices were stored and then they 

were replaced with arcs of cost equal to 0. The graph was stored in 

adjacency lists as described in Aho et al [A1] and Derigs and Heske 

[D3]. The advantage of this representation is that it not only takes 
\ 

advantage of sparsity but it also, allows graphs with multiple arcs to 

be handled. Instead of using reduced costs to reduce problem size 

after solving the GCP, lower bounds on the reduced costs were available 

and were -used instead as described in §8.4.3. Sensitivity analysis of 

the GCP was considered but was not very useful because it was difficult 

to implement except in very simple cases. The graph covering algorithm 

starts by finding a matching in the 0-graph. Using start procedures 

that make the 0-graph as large as possible was found to be an effective 
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way of reducing computing time as described in §8.4.4. 

8.4.2 Converting an Algorithm for Solving the Minimum Perfect 
Matching Problem to a Graph Covering Algorithm 

8.4.2.1 Introduction 

In a graph G(V,E) a perfect matching is a set of arcs for which each 

vertex is incident with exactly one arc in the set. A matching is a 

set of arcs that meets each vertex at most once. In a graph that has 

a cost associated with each arc and possesses a perfect matching, the 

problem of finding a minimum cost perfect matching is the-inu^ger .: 

program, MPMP: 

MPMP 

min ex 

Ax = 1 

x .e{0,1} Q = 1,2,...,« u 

where A is the vertex-arc incidence matrix of the graph and q. the 

cost of the jth arc. It is assumed c . > 0 for all j. 
0 

To get a graph covering program that can be used repeatedly to solve 

Lagrangean subproblems in a reasonable time a FORTRAN code for the MPMP 

was modified. The graph covering problem is MPMP with Ax = 1 replaced by 

/&:>'[. A' is the vertex-arc incidence matrix of a graph G T o modify 

the code note that the GCP can be reformulated as MPMP, [K4], by the 

addition of an extra variable for each constraint. For the'ith constraint 

a column <2.>., is added with a single 1 in row and the cost of the 

corresponding column is o .f ... = min o.. 

The resulting problem has the form of MPMP except that some columns 

including the extra columns that have been added may then have only one 

non-zero entry. Thus an extra constraint is added with 1's in columns 

that ensure that the constraint matrix has exactly two 1's in each 

column. Let the resulting constraint matrix be A'. This is the 



•FIGURE 8.2 

An Augmenting Path 

(i) • $ 0 * 3 g 

The path is changed to match as shown below 

(ii) i < 

So 
1 • 

FIGURE 8.3 

Formation Of A Pseudo Vertex 

-©44 circaifc 

\ 
The graph is shrunk to give 

^V-pSendo- wcrfeerjc 

Edges in the Hatching are shown in heavy lines, 



198 
vertex-arc incidence matrix of a graph G. The MPMP code was 

modified so that the vertex corresponding to the extra constraint did 

not necessarily have to be covered at the end of the.algorithm and it 

had a corresponding, dual, variable that was fixed equal to 0. 

8.4.2.2 Outline of the matching algorithm (Edmonds' Algorithm! 

The MPMP code followed the algorithm of Edmonds for which data 

structures are described in detail in Lawler [L2]. The algorithm 

starts by first giving each vertex v . a weight (dual variable), w.,r 

that satisfies q . - W . - w y > 0 where o. is the cost of j that joins 
<7 k J 

vertices v^ and Vy. This gives subgraph of GtV,E) for which the 

reduced costs of each arc are equal to 0, the 0-graph. Edmonds' 

algorithm starts with a matching of the 0-graph. This is also a 

matching of G{V,E). If all the vertices are covered then the algorithm 

terminates with an optimal cover. Otherwise a vertex is found that is 

not covered, sQ, say. This vertex forms the root of a tree made up of 

arcs of G that are alternately not in the matching and in the matching 

The tree is grown in the 0-graph from the root sq by adding a non-

matching and matching edge until one of the following three conditions 

occurs, illustrated in Fig. 8.2 and Fig. 8.3: 

(a) An augmenting; path is detected. 

(b) A pseudo-vertex is formed. 

(c) The tree can be grown no further 

Case (a) means that a path of arcs in the 0-graph has been found of 

odd length with non-matching edges at each end. The matching edges 

in this path are changed to non-matching edges and vice versa thus 

covering the two vertices at each end of the path. Case (b) means 

that an odd circuit of vertices in the 0-graph has been found. This 

is shrunk to form one pseudo-vertex. If case (c) arises the dual 
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variables must be changed. They are only changed for vertices in a 

tree, that is for vertices that are connected by a path made up of 

matching and non-matching arcs alternately until a root vertex s i s 

reached. 

8.4.2.3 Modifying Edmonds' algorithm 

The following modifications to Edmonds' algorithm must be made to give 

a graph covering algorithm. The extra vertex that is added to ensure 

that each column of the vertex-arc incidence matrix has exactly 2 1's 

will be labelled v F i r s t l y can never be the root of a tree. 

Secondly V # is never allowed to be shrunk into a pseudo-vertex. The 

first property is straightforward to implement and the second is 

handled by considering two cases when V+ is joined to a tree. These 

are: 

Case 1 - Vertex V* is Matched by a Vertex in the Tree 

This case is illustrated in Figure 8.4. There is an augmenting path 

from the root, s . of the tree containing V to The roles of 
o s 

edges in this path can be changed as in (a) so that vertex s is 

matched. Then vertex V is matched by an arc in the path and not by 
s 

arc (V which is removed from the matching. The tree with root 
s 

s o is no longer a tree in the next graph covering iteration. 

Case 2 - An Augmenting Path from sq to v# Has Been Found 

In this case, illustrated in Fig. 8.5, matching and non-matching 

edges are changed as in (a). There is a vertex v in the path from 
s 

8 to V# such that (V becomes a matching edge. The tree rooted 
U S 

at s is destroyed as in Case 1. This means that v can never become 
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FIGURE 9.4 
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part of a tree as long as it is matched by U*. Hence the reduced 

cost of arc iv ,Vh) remains equal to 0 as long as iv • ,Vt) is a 
S K S 

matching edge. 

Just as Edmonds' algorithm terminates with a matching in a shrunken 

graph so the graph covering algorithm terminates with a set of arcs 

in a shrunken 0-graph that meets each vertex of the original graph 

exactly once except possibly the extra vertex u^which may or may 

not be covered any number of times. The matching then induces a 

covering in the original graph in exactly the same way as Edmonds' 

algorithm induces a matching from the matching in the shrunken graph. 

To transform the graph to one on the original graph the arcs that are 

in the cover and joined to the extra vertex must be mapped back to 

the arcs from which they were originally derived. For example if arc 

) is in the solution and has been added to the graph because the 

cost o . - min o . (where S is the set of arcs of the original GCP 
3 0 jzS 3 

which have one end equal to s) then the original arc jo in the GCP is 

marked as being in the optimal cover. The optimal graph covering 

solution has the property that if c . > 0 then all arcs in the solution «7 

are incident with at least one vertex that is only covered by one arc 

in the solution. This corresponds to a prime cover of the SCP. 

The example in Fig.8.6 shows an optimal matching in a Graph G'which 

corresponds to an optimal cover in a graph G . The cost of each arc 

is shown alongside it and the extra vertex. The arcs in the 

optimal matching and optimal cover are shown in heavy lines. The 

original GCP was the problem. 
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FIGURE 8.6 

A Graph G in Which an Optimal Matching 
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min xi + X2 + + + 3o?5 + 3x$ + 3a?7 + 

subject to 

1 1 
x > 

which was modified to give the matching problem: 

min [1 1 1 1 3 3 3 3 1 1 1 1 1 1 ]a: 

subject 
to 

1 

1 

x = 

In theory it is not necessary to store the minimum cost arc incident 

to every vertex. If the vertices are labelled = 1,,,.,/n to 

calculate the minimum cost arc incident with vertices that are 

connected to vertices of lower index is all that is necessary. However 

there is nothing to be gained in the overall algorithm from this 

observation as to find such vertices outweighs the, disadvantages of 

storing a few extra arcs. 

8.4.3 Use of Reduced Costs to Reduce Problem Size 

Associated with each vertex V . in the graph covering problem is a 
i> 

weight u . equal to the dual variable w . plus»the sum of blossom dual 
Is Is 

variables for blossoms containing v.. For each arc e . joining vertices 

V . and V v a lower bound on the reduced cost of arc e- in the GCP is: is K. J 
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Oj - u. - uk (b.D 

Thus a column a. of the SCP has a lower bound on the reduced cost of: 
3 

m 
s . = c . - u .a . . (8.2) 
3 3 1 = 1 i> 13 

where the weights u. correspond to vertex weights in a column splitting 

relaxation of the SCP. If z i s the lower bound from GCR2 then a 

column can be removed if: 

s. > z - z. (8.3) 
3 — u I 

where z i s an upper bound to the SCP. 

For the combined relaxations (where rows R are relaxed) if z is the 

lower bound and all the Lagrange multipliers satisfy: 

X. > 0 #or all izR 
% — - -

o . - .2 X.a.. > 0 for all 3 (8.4) 

then if 

o. - X.a.. - u.a.. > z - z ' 
3 izR % zgR t-3 — w £ 

the corresponding column can be removed from the SCP. To ensure the 

reduced cost test, (8.3), is valid;, firstly the constraints (8.4) must 

be satisfied and secondly when the best value of the lower bound is 

calculated for a given node in the search treesthe multipliers X^ and 

u^ are stored in a single vector. This test is particularly effective 

in a branch and bound algorithm as it can substantially curtail, the 

number of branches generated at a node. 
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The graph covering problem, when used in subgradient optimization, 

is likely to have arcs of negative cost. Either the procedures of 

Chapter 5 for making the costs non-negative by adjusting the Lagrange 

multipliers can be invoked or they can be removed from the problem 

and stored in a list and added at the end of the GCP solution to the 

remaining problem. Also costs equal to 0 can be stored in a list. 

Thus a graph with positive costs remains. The initial dual variables 

are obtained by considering their optimal value at the previous sub-

gradient iteration and then testing that the reduced cost, 

a . - u . - u,, is not negative for all arcs e . joining vertices V. and 
0 % K j 

V,. If o . - u . - u 7 < 0 then u . is reduced until either o . - u . - u, 
k o V k i j % k 

> 0 or u^ is equal to 0. This procedure is repeated until all arcs 

have non-negative reduced cost. Then the minimum cost, 6, of arcs 

incident to each vertex is found. If this is not equal to 0 then the 

vertex weight, u., can be increased by 6. This gives a 0-graph in 

which a matching is found from which to start the graph covering 

algorithm. 

8.5 Parameters Of The Program 

Two tolerances are used in the graph covering algorithm. The first is 

EPS and is approximately 10~ 3 and is the tclera-nce. i r ) which the optimal 

solution must lie. The second is ETA and any variable with absolute 

value less than ETA is regarded as being equal to 0. 

Iteration counters were used to limit the number of tree search nodes, 

graph covering iterations, Subgradient iterations and number of times 

the relaxation could be changed. In addition two parameters were 

used to limit the number of subgradient optimization iterations 
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allowed without an increase in bound. These had a critical effect on 

the execution time and it is essential that if a subgradient ascent 

Is not producing an increase in the bound that the ascent is terminated. 

The stepsize parameters and parameters 0 have been discussed in 

Chapter 3 and choice of a was found to have a significant effect on 

the search. 

The number of rows relaxed in GCR1 prior to splitting columns to give 

GCR2 did not seem to be a crucial factor. The most important factor 

seemed to be the actual number of graph covering problems solved. 

However relaxing a large number of rows initially means that small 

GCP's are solved and this can reduce the computation time. 

The option of whether or not to perform the preliminary reduction 

phase was tested. It was found best,in almost.all cases,.to.use the 

heuristic procedures firstly to reduce problem size and secondly to 

get good bounds before the graph covering relaxation was used. 

It would be advantageous to control the parameters dynamically in the 

algorithms because^for example^the best stepsize parameters at tree 

search nodes near the root were not always the best parameters further 

down the tree. Also if there is a large gap between an estimated 

lower bound value and upper bound at a node in a tree search it is 

probably quicker to continue branching forward for one or two stages 

without even calculating a bound. 
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CONCLUSIONS 

9.1 Summary 

The most successful algorithm for small problems uses the heuristic 

methods of Chapter 2 in a simple tree search. However they are 

unsuitable for larger problems for two reasons. Firstly the upper 

bounds they give are often much higher than the optimal solution. 

Secondly the lower bound produced by the heuristics is bounded above 

by the LP bound which often does not solve the SCP. 

Although the attempts in Chapter 3 to accelerate the subgradient 

ascent were not very successful some improvement was possible with 

careful choice of parameters. The slow rate of increase in the bound 

for the subgradient optimization ascent was a problem in Chapter 5 

where theoretically the graph covering bound is greater than the LP 

bound but in practice it is difficult to get the former bound to 

exceed the latter. 

The networK flow relaxations were not particularly useful as they 

are superceded by Etcheberry's method [E4]. 

In Chapter 5 the graph covering relaxations are rarely able to compete 

with the bounds obtained using the commercial LP code, APEX. 

There are several reasons for this. The first, already mentioned, 

is that the search direction and steplength used in subgradient 

optimization were not particularly effective in increasing the lower 

bound. Secondly the LP code uses a basis, that is a subset of the 

columns for the bulK of the calculations. Thirdly the branching 
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strategy used by the APEX code is superior to that used in Chapter 5. 

The decomposition algorithm of Chapter 6 is too costly for randomly 

generated problems. However it is likely to perform much better on 

problems for which the constraint matrix is almost in block diagonal 

form. This is often the case in practical vehicle scheduling and 

routing problems. The state space relaxation method was only briefly 

studied and it gave lower bounds that were too low for practical 

application. However combining it with the heuristics of Chapter 2 

could produce good bounds. 

The best bound strategy performed better than the depth first. However 

it had storage limitations which made it impossible to use it on 

large problems. Both of the branching on rows strategies used could 

be improved by instead of solving for the bound at nodes that are 

unlikely to be fathomed taking forward steps to generate new nodes 

instead. 

9.2 Extensions And Ideas For Future Research 

g.2. l Extensions of the Graph Covering Algorithms 

The blossom contraints in the graph covering relaxations are of the 

form: 

V„ E a., x. > 

where V is the logical 'or' sign 

R is a subset of the rows of the SCP 
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where tKSC/?)) is the optimal solution to the unicost problem SiR): 

min ^ x. 

-H n 

S(K) a . . x . > 1 for all J - ' 'Z'J J 

a?.e{0,1} 

It may be possible to find SCP's with special structure for which 

this type of constraints can be used to raise the bound. For the 

graph covering relaxations R is a set of row of the SCP of odd 

cardinality with at most 2 non-zero entries per column. 

9.2.2 Aggregating Constraints 

Although constraint aggregation may not in practice produce a bound 

much better than that obtainable by Lagrangean relaxation it may be 

computationally beneficial. Thus constraints can be multiplied by 

variables and added together to give an integer knapsack problem. 

The bound is at least as good as the LP bound and may be better. 

9.2.3 Extensions to 0-1 Integer Programs 

Several of the methods illustrated here are applicable to a more 

general class of integer programs. For example the heuristics could 

be used to. ^get dual feasible solutions to the LP relaxation of the 

problem: 

min ox 

Ax > b 

Xjz{0,1} j = 1,2,.... ,n 

especially when the coefficients a., and right hand sides b. take small 
I'd 

non-negative integer values. 
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9.2.4 Improvement of the State Space Relaxations 

The state space relaxations can be improved using the heuristics to 

either give integer weights to each row or a dual feasible solution 

to the LP. These can then be used to extend the state space as 

mentioned in Chapter 6. 

9.2.-5 Duality 

The application of integer programming duality was only briefly 

discussed in Chapter 6. It is useful because it enables reduced 

costs to be calculated. Variables with large reduced costs are 

rejected. Alternatively if a subset of columns is used for the 

calculations variables with negative reduced cost' can be added to the 

problem. Alternatives to LP duality should be investigated. These 

could use cutting planes from which integer programming dual variables 

can be defined. 

9. 2.6 Methods For Improving The Code 

This section deals with topics that have already been used by previous 

researchers. It gives ideas for improving the SCP code. 

1) . The subgradient ascent could be improved by using a linesearch 

to calculate cr, the steplength. For example a cubic linesearch 

could be used. 

2) Using a subset of columns for the major calculations of the SCP 

algorithm would speed up the program. This is analogous to 

using a basis in LP. Reduced cost tests at nodes in a branch 

and bound tree would then enable columns with negative reduced 
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costs to be brought into the problem. 

3) Storage is a major problem in solving large sparse SCP's. 

The CDC computer has a large word length which means that the 

arrays can be packed. It would be possible to pack the arrays 

that store the constraint matrix to roughly 1/6th their current 

size. A slower way of handling larger problems would be to 

store the constraint matrix out of core. 

4) Often the upper bound produced by the heuristics was not optimal 

and this meant that the tree searches were unnecessarily long. 

Thus it would be useful to Calculate, initially an upper bound 

from an r-optimal method. 

5) Disjunctive cuts as used in Balas and Ho can be generated from 

the graph covering dual variables. These would raise the bound 

further at little extra cost, but possibly extra storage. 
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APPENDIX 1 

Analysis Df Preliminary Reduction Strategies 

To Prove 

For an m x n SCP in which the fixed probability that a.. = 1 is p 

the probability given any two rows and "that either row 

dominates row or vice versa is: 

2(1 - p + p 2 ) n - (1 - 2p + 2p 2) n  

Proof 

Suppose row i-i has r non-zero entries then the probability that row 

r non-zero entries in the same position and hence row i-i dominates 

row is: 

p r (A1.1) 

This case is shown below: 

row i\ 1 1 1 1 . . . 1 0 0 0 . . . 0 

row 1 1 1 1...1 1 0 0 ... 1 

r non-zero.entries 

row dominates row £2 

The second case is when row i,2 dominates row and the rows are not 

equal. Given that row has r non-zero entries the probability that 

row has 0 whenever row i\ has 0 in a column and row has 0 in at 

least one of the r non-zero columns of is: 

(1 - p r H l - p ) n " r (A1.2) 

The case is shown below: 
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row i\ 1 1 1 1...1 0 0 0 

row 1 0 1 0...1 0 0 0 

. 0 

. 0 

r non-zero entries in row 

row i>2 dominates row 

Hence the probability that row i-i dominates row o r vice versa for 

a given set of r 1's in row •ij is Cadding equations A1.1 and A1.2): 

f. n-r r 
C 1 - p ) ( 1 - p ) + p 

and 

for r > 1 

for r = 0 (A1.3) 

The probability that a row has exactly r 1's is: 

Cr p (1 - p ) 

Yl, 
n: 

where C' is the binomial coefficient r,' in-r)J . Thus the probability 

that row dominates row %2. o r vice versa is: 

(1-p2*)(1 n-r r\ 
-p) + p \ 

-1 X\?«~p> 
n „ = Z  nC 

r= 1 r (1-p) 
2n 

p/C1-p) - C1-p) 
2n 

P 2/(I-P) 2 

r 
(1-p) 

rc 
P 7 d - P ) 

r 
C1-p) 

n 

t1 -p ) 2 n 1 + p 
n 

- d - P ) 2 n 1 + p 2 
n 
•+ C1-p)n 1 + p 2 

(1-p) 2 

IK ^ 
(1-p) 2 (1-p) * > 

n 

[since (1+cc)
n
 - 1 = 2?= 1 2? 

(1 - 2p +p 2 + p ) n - C1 ~ 2p +p 2 + p 2 ) n + (1 - p + p 2 ) n 

2(1 - p + p 2 ) n - (1 - 2p + 2p2 

O 



APPENDIX 2 

INDEX OF TERMINOLOGY 

This list gives the section of the thesis in which a term is 

described. The page number is the page on which the term is 

first used. 

TERM SECTION PAGE 

Active node 1.2 4 

Affine independence 1.3.3.4 27 

Applications of the SCP 1.3.1 7 

Balanced matrix 1.3.4.3 29 

Bank float location problem 

(BLP) 1.3.2.2 14 

Best bound tree search 1.2 6 

Branch and bound 1.2, 1.3.3.5 4 

Branched node 1.2 6 

Branching strategies 1.3.3.5, 7 23 

Breadth-first tree search 1.2 6 

Brother node 1.2 6 

Chord 1.3.2.1 9 

Chorda! graph 1.3.2.1 9 

Circle graph 1.3.2.1 9 

Circuit 1.1 2 

Claw free graphs 1.3.2.1 9 

Complexity results 1.3.4.1 26 
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Term 

Cover 

Crew scheduling 

Cutting planes 

Cyclic matrix, A(p,q) 

Data structures 

Decomposition 

Depth-first tree search 

Dual feasibility 

Dual integer program 

Dual linear program (DLP) 

Dual set covering problem 
(DSCP) 

Dynamic programming 
relaxations 

Dynamic set covering 
problem (DYSCP) 

Facets 

Father node 

Fathomed 

Feasible solution 

Generalised Lagrangean 
Relaxation (GLR(F)) 

Generalised set covering 
problem (GSCP) 

Graph 

Graph Covering Problem(GCP) 

Graph Covering relaxations i 
Graph Covering 

Section Page 

1.2, 5.2 4 

1.3.1 7 

1.3.3.6 25 

1.3.2.1 12 

1.3.5 30 

6 134 
1.2 6 

2.2 35 

1.3.4.4 29 

1.2 2 

1.3.4.4, 29 

6 134 

1.3.2.2 15 

1.3.4.2 28 

1.2 4 

1.2 4 

1.2 4 

1.3.4.4, 29 

1.3.2.2 15 

1.1 1 
1.1, 1.3.2.1, 5.2 1 

5 96 

1.1, 5.2 1 
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SECTION PAGE 

Heuristics 2 31 

Heuristics for Lov/er Bounds 

to the SCP 2.2 32 

Heuristics for Upper Bounds 

to the SCP 2.2,2.3 32 

Information Retrieval 1.3.1 7 

Integer Program (IP) 1.2 2 

Interval graph 1.3.2.1 8 

Knapsack Problem (KP) 1.2 2 

Lagrange Multiplier,"X 1.2, 3 3 

Lagrangean Relaxation, LR(X) 1.2, 3.1 2 

Line Graph 1.3.2.1 9 

Linear Programming Relaxation(LP) 1.2 2 
Lower Bound, z 1.2, 1.3.3.3 4 

» 

Minimal Cover 1.1 1 

Near-alternative solutions 3.4.3. 63 

Network Flow Relaxations 4.1 78 

Network Flow Relaxation, NF1 4.2 33 

Node Covering Problem (NCP) 1.3.2.1 8 

Non-deterministic Algorithm 1.3.4.1 26 

NP Complete 1.3.2.1 8 

Partitioning the constraints 5.3.4 100 

Path 1.1 ' 1 

Polyhedra 1.3.4.2 27 

Preliminary reductions 1.3.3.1 18 

Prime cover 1.2 4 

Production Planning 1.3.1 8 
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TERM SECTION PAGE 

Projection Method 3.2 52 

Related Problems (to the SCP) 1.3.2 8 

Relaxation 1.2 2 

Root Node 1.2 4 

Rotation of constraints 5.3.4 4 

Routing Problems 1.3.1 7 

Row Relaxation 3, 5.3 7 

Scheduling Problems 1.3.1 7 

Search Directions 3.3 55 

Sensitivity Analysis 1.3.5 30 

Set Covering Problem (SCP) 1.1 1 

Set Partitioning Problem (SPP) 1.1 1 

Shortest Path Problem 1.3.2.1 10 

Sorting the Constraint Matrix 1.3.3.2 21 

State Space Relaxation 6 134 

Stepsize 3.4 51 

Subgradient 1.2, 3 3 

Subgradient Optimization 1.2, 3.2 3 

Successor Node 1.2 2 

Target Value 3.4.2 6 2 

Theoretical Results 1.3.4, 26 

Tree . 1 . 1 2 

Tree Search 1.2 "2 

Uncapacitated Plant Location 1.3.2.2 3 
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APPENDIX 3 

AN EXAMPLE 

A3.1 Introduction 

This appendix illustrates the algorithms developed in each chapter 

on the following example, SCP: 

EXAMPLE A l -

minimise L \ 5 3 2 4 3 ] 

subject to ~1 1 0 0 0 0" ~1 ~ 
0 1 1 1 0 0 1 
1 0 1 0 1 1 1 

SCP 
0 1 0 1 1 1 

X 
SCP 

0 1 0 1 1 1 1 
0 1 1 0 1 0 1 

_1 0 0 1 0 1 _ _1 _ 

x . 0 or 1 a = 1,2,. n 
— 

0 

optimal solution to the SCP is given by X* = CO, 1, 0, 0, 0, 1) 

and has a value y(SCP), equal to The optimal solution of the 

corresponding LP, = (5, 5. 0, 0) and has value 7_. The 

solution to DLP is u* = ( 2 , 0 , 1, 1, 2, 1) and the bound obtained is 

obviously also 7. 

A3.2 The Heuristic Lower Bounds, Chapter 2 

The heuristic algorithms for upper and lower bounds are described. 

Procedure 1 INITIAL BOUNDS starts with the column sums: 

h = (3, 4, 3, 3, 3, 3) 
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and the dual variables are all zero giving reduced costs: 

3 = (4, 5, 3, 2, 4, 3). 

Iteration 1 

» 
The least cost per row satisfied is given by A = 0.6 from column 4 

r 
which covers rows 2, 4 and 6. Thus Ui = = ug = 0.6. 

Rows 2, 4 and 6 are removed from the problem and updating the reduced 

costs and column sums gives: 

s = (3.3, 3.6, 2.3, 0, 3.3, 1.6) 

h = (2, 2, 2, 0, 2, 1) 

Iteration 2 

The least reduced cost per row covered is given by A - 1.16 from 

column 3. Thus W3 = U5 = 1.16. Rows 3 and 5 are removed and reduced 

costs and column sums are updated to give: 

s = (2.16, 2.5, 0, 0, 1, 0.5) 

h = (1, 1, 0, 0, 0, 0) 

Iteration 3 

The least reduced cost per row covered is given by A = 2.1*6 from 

» 

column 1. Thus U\ = 2.16. All rows are covered and a prime cover 

is given by: 

x = (1, 0, 1, 1, 0, 0) with cost 3 = 9 
u 

and a dual feasible solution to DLP is: 

u = (2.16, 0.6, 1.16, 0.6, 1.16, 0.6) with lower bound s =6.5. 
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Procedure 2 LPBOUND then finds rows for which u.fa Zx- 1) ^ O.In this 

case rows 2, 3 and 6 do not satisfy the complementary slackness 

conditions. 

For row 2 u 2 is set equal to 0. and the reduced costs are then: 

s = C O , 1 . 0 , 0 . 6 , 0 . 6 , 1 , 0 . 5 ) . 

Considering row 4, u4 is increased to 1.16 and the reduced costs 

become: 

s = (0, 0.5, 0.6, 0.16, 0.5, 0) 

Then u 5 is set equal to 1.6. Hence the lower bound is increased to 

6.83. Reduced costs are now: 

s = (0, 0, 0.16, 0.16, 0, 0) 

and u = (2.16, 0 , 1.16', l.'l6, 1.6, 0.6) 

A new prime cover is found because s .x . ? 0 for 3 = 3, 4. Thus the 
3 3 

new cover must be chosen from the columns 1, 2, 5 and 6, for example 

= #2 = 1 with cost 9. Subsequent iterations do not yield an 

improvement in the lower bound value. 

A3.3 The NetworK Flow Lower Bounds tjCNFU, Chapter 4 

This section illustrates the first of two networK flow relaxations, 

NF1Id) together with subgradient optimization. 

An initial matrix of costs d®.. — c ./h. for all 3, %zM. is given below: 
3 3 3 J 



Fig A3.1 Graph for Network Flow Relaxation NF1« 

source 
vertex 

t Sin k 
W-rtex. 

Vertices 
Representing 
Rows 

Vertices 
Rc/v-esê fcioj 
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d*. 

\3 
i\ 1 2 3 4 5 6 

1 1.33 1.25 

2 1.25 1.00 0.66 

3 1.33 1.00 1.33 1.00 

4 1.25 0.67 1.33 1.00 

5 1.25 1.00 1.34 

6 1.34 0.67 1.00 

Zeros are omitted and is underlined whenever £.. = 1. The value 

of the lower bound is 5.25. The networK flow solution is shown in 

Fig.A3.1. The costs are changed in columns 2 and 3, for which tj 

feasibility for the SCP is not satisfied. Suppose that for the 

subgradient ascent a is chosen so that a - z^)/\ |i<?| | 2 = 0.5 then U AJ 

Pz  =  1> = 4, p3 = 2, hz r 3 giving: 

tt12
 = 0.475 and tt22 = -= ^52 = "0.125 

and TT32 = -0.333 and TT33 = TT35 = 0.166 

The costs are then changed to d*. given below: 
13 

X 
1 1.33 1.63 

2 1.12 0.66 0.66 

3 1.33 1.17 1.33 1.00 

4 1.12 0.67 1.33 1.00 

5 1.13 1.17 1.34 

6 1.34 0.67 1.00 

13 

The bound then increases to 5.46. 

At the final iteration the costs d.. were given by 
1*3 
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v 1 2 3 4 5 6 

1 2.06 2.02 
* 

2 -0.02 0.04 0.00 
3 0.92 0.96 0.97 1.00 
4 0.95 0.94 0.94 0.95 
5 2.05 2.00 2.09 
6 1.02 1.06 1.05 

The lower bound from this solution is 6.88. The costs can be changed 

to non-negative values so that ̂ 52 becomes 2.05 - 0.02 = 2.03 and d22 

becomes 0. The dual feasible solution u obtained from these costs 

is then (2.02, 0.00, 0.92, 0.94, 2.00, 102) giving a slightly improved 

bound of 6.90. The corresponding reduced costs s., are given by 
0 

s = (0.04, 0.04, 0.08, 0.04, 0.14, 0.12) and since min s. > 0 for all 
jeN^ 3 

i, it is possible to increase W5 and Wg each by 0.04, giving u = 

(2.02, 0.00, 0.92, 0.94, 2.04, 1.06). The corresponding reduced costs 

are then (0.00, 0.00, 0.04, 0.00, 0.10, 0.08) and the lower bound is 
6.98. The costs d.. are now as shown below: 

id 

X 1 2 3 4 5 6 u 

1 2.02 2.02 2 

2 0.00 0.02 0.00 0 
3 0.92 0.93 0.95 0.95 1 
4 0.94 0.94 0.97 0.97 1 
5 2.04 2.05 2.08 2 
6 1.06 1.06 1.08 1 

It is not easy to find an LP feasible solution from this result. The 

feasible solution suggested for the SCP here is = x2 = 1. This 

solution has a cost of 9. 



FIGURE A3.2 

Graph For Example, NF2 
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The optimal flow is shown in heavy lines and has a cost of 5.5, 
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A3.4 The Second Network Flow Lower Bound, iKNF2) 

The graph for the second network flow relaxation is shown in Fig.A3.2. 

Initial costs are given by £./(/z. + 1). Each arc is labelled with 

a cost and the index, j, of the column from which it is derived is 

circled. The initial bound has value 5.5. 

In this example set covering feasibility constraints are violated for 

and 3. This means that costs in arcs ( s ^ ) 1 , Ctf^Vs) 3, 

IvJ , t) 3 are increased and costs in arcs B^*^) 1» (s,v 2)
3 and 

3 are decreased. The number of arcs derived from column 1 in 

which the flows are non-zero, pi, = 2 and for column 3, p 3 , = 2. 

V 
Suppose a is chosen so that r— = 0 . 5 

I M I 2 

then ir^ = 7r}3 = 7r
3
5 = rr^ = 0.25 

and ir*6 = = irf3 = - 0 . 2 5 

The corresponding costs are changed to give values as follows: 

d l  
aS 1 = = 1. 25 

d 3 

35 **u -

1. 00 

d l  

"36 •  dlt = 0. 75 

4 a •

 d h -

0. 5 

A minimum cost flow in the resulting graph is non-zero in the same 

arcs as before and has cost 6.5 which is greater than the initial flow 

of 5.5. 



FIGURE A3.2 

Graph G, The Complement Df The Row Intersection Graph 
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FIGURE A3.4 

Graph Covering Problem For GCR1 

vfc v/v 
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A3.5 The First Graph Covering Relaxation, GCR1, Chapter 5 

A row intersection graph for the example is the complement of the 

graph G shown in Fig.A3.3. The £th row is represented by a vertex, 

i>., of G and is an arc whenever rows i and k do not intersect. t I K 

A maximal clique in G is {v,V } corresponding to rows 5 and 6 which a r e 
D D 

disjoint in the SCP. Adding row^to rows 5 and 6 gives 3 rows which 

make a graph covering problem. Assume the multipliers for the relaxed 

constraints are equal to the LP optimal dual variables. Hence Xj = 2, 

X 2 = 0 and X3= 1. Then the graph covering problem GCR1 is: 

min [ 1 3 2 2 3 2 ] a: + 3 

subject to 0 1 0 1 1 1 ~ ~1 ~ 

0 1 1 0 1 0 x > 1 

1 0 0 1 0 1 _ 1 

x .€{0,1} 0 = 1,2,...,6 
<7 

The graph covering problem is shown in Fig.A3.4 and an extra vertex V+ 

has been added to ensure that each column has at least two non-zero 

entries in it. Each arc is labelled with its cost and the column from 

which it is derived is encircled. The graph covering solution has cost 

4, given for example by #3 = JC4. = 1, and added to the Lagrange 

multipliers this gives a lower bound of 7 to the SCP. 

Other solutions are = x2 = 1, #3 = x$ = 1 and = X5 = 1. The 

subgradients (1 -Ax) for relaxed constraints corresponding to these 

4 solutions are (1, - 1 , 0 ) , (-1, 0, 0), C1, 0, -1) and (0, 1, -1). 

The optimal value of the Lagrangean function is 7, 
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A3.B The Second Graph Covering Relaxation, GCR2, Chapter 5 

The initial costs are derived from the optimal dual variables to the 

LP relaxation to give the following graph covering problem: 

Column'No. * 1 2 ' 3 4 5 6 7 8 9 10 11 12 

min d y = [ 3 1 2 3 1 2 1 1 2 2 2 1 ] y 

subject to 1 i. 1 

• LL' 1 1 1 
1 ' - 1 1 1_ y - 1 

1 1 1 ± 1 
1 1 1 1 

1 1 JL 1 

yte{0,1} t = 1,2,...,12 

(O's have been omitted from the constraint matrix) 

An optimal solution is given by 1/3 =2/5 = y\\ = y 12 = 1, giving a 

lower bound equal to 7. The solution is not feasible for the SCP 

because y^ = 0 and 2/5 = 0 therefore the costs d4 and d$ decreased to 

give costs: 

d = [3 1 2.5 2.4: 1.5 1.5 1 1 2 2 2 1] 

The lower bound given by the graph covering relaxation is then 

A3.7 A Second Example To Illustrate A Combination Of The Two 
Graph Covering Relaxations, Chapter 5 

To illustrate the use of both graph covering relaxations together a 

second example will be used. 
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Example A2 

Consider the SCP with costs c• and constraint mgtrix A given below. 

Column No. 

Cost: 

Row No. 1 

2 
3 

4 

5 

6 

7 

8 

9 

10 

A heuristic solution to the dual of the LP relaxation of SCP is given 

by: u = (1, 0, 0, 1, 1, 1, 1, 1, 0, 0), giving a lower bound of 6. 

The procedure for partitioning gives a row intersection graph G 

from which a maximal independent set J° = .{1,5} can be removed. In 

the resulting graph J 1 = {2,4} is a second maximal independent set. 

Thus rows 1, 2, 4 and 5, corresponding to J°UJ1, from A 2* To these 

rows can be added row 3. Then M\; the set of relaxed constraints, 

is {6, 7, 8, 9, 10} and M , the set of graph covering constraints is 

{1, 2, 3, 4, 5}. 

Using the values of the given vector u to get initial multipliers X, 

the resulting problem GCR1 is: 

Column No. 1 2 3 4 5 6 7 8 9 10 11 12 

min [ 1 , 1 , 1 , 2 , 2 , 1 , 3 ,' 2 , 4 , 5 , 1: , 4 ] x + 3 

I 2 3 4 5 6 7 8 9 10 11 12 

I I 1 2 2 2 6 3 6 6 3 6 

1 0 1 1 0 0 0 0 0 0 0 0 

1 1 0 0 1 0 0 0 0 0 0 0 

0 1 1 0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 1 1 1 0 0 0 

0 0 0 0 1 0 0 1 1 1 0 0 

0 0 0 0 0 1 1 1 0 0 1 0 

0 0 0 0 0 0 1 0 1 1 0 1 

0 0 0 0 0 0 1 0 1 0 1 1 

0 0 0 0 0 0 0 1 0 1 0 1 

0 0 0 0 0 0 0 1 1 0 1 1 

Subject to 
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Row No. 1 ~1 0 1 1 0 0 0 0 0 0 0 0~ ~1 ~ 

2 1 1 0 0 1 0 0 0 0 0 0 0 1 

3 0 1 1 0 0 1 0 0 0 0 0 0 X > 1 

4 0 0 0 1 0 0 1 1 1 0 0 0 1 

5 _0 0 0 0 1 0 0 1 1 1 0 0 _ _1 _ 

A solution is = = xq = 1 which gives a bound of 7 to the SCP. 

Constraints 7 and 8 are not satisfied and constraint 6 is oversatisfied 

since x§ + Xq > 1. This means that X 6 must be decreased and X7 and X 8 

increased. Suppose the values of X are changed to X 6 = 0, X 7 = 2, 

Xq = 2. The objective function in GC1 then becomes: 

( 1 , 1 , 1 , 2 , 2 , 2 , 2 , 3 , 2 , 4 , 1 , 2 ) ac + 4 

which has a solution â i = x2 = x$ = 1 and the lower bound is 8. 

Subgradient optimization is continued until no further increase in the 

bound is possible. The relaxation can now be rotated. Since = x2 

- rcg = .1 constraints 6 and 9 are not satisfied. In this example, the 

constraints that are not satisfied have equal multipliers, £5 = = 0; 

therefore suppose constraint 6 is chosen arbitrarily to be added to the 

graph covering constraints. Column 8 then has 3 1's in it so the 

program is no longer a GCP. Either constraint 4 or constraint 5 can 

be removed from the GCP, suppose constraint 4 is relaxed. Then 

constraint 7 can also be added to the graph covering constraints. 

Therefore Mi = {4, 8, 9, 10} and Af2 = {1, 2, 3, 5, 6, 7}. We compute 

initial values of X: XT+ = 1, XQ = 2 , Xg = X 1 0 = 0. 

Then the GCP after the rotation is: 

Column No. 1 2 3 4 5 6 7 8 9 10 11 12 

min [ 1 , 1 , 1 , 1 , 2 , 2 , 3 , 2 , 3 , 6 , 1 , 4 ] a : + 3 



Row No. 1 1 0 1 1 0 0 0 0 0 0 0 0 

2 1 1 0 0 1 0 0 0 0 0 0 0 

3 0 1 1 0 0 1 0 0 0 0 0 0 

5 0 0 0 0 1 0 0 1 1 1 0 0 

6 0 0 0 0 0 1 1 1 0 0 1 0 

7 0 0 0 0 0 0 1 0 1 1 0 1 

~1 ~ 

x > 
1 

1 

1 

1 

_1 _ 

An optimal solution is given by = 0:5 = Xj = 1 which leads to an 

improved lower bound of 9. Constraints 9 and 10 of the original GCP 

are not satisfied. 

To combine the two relaxations first GCRKA) is solved and then 

constraints that are not satisfied are added to the constraint matrix, 

At the third iteration, the lower bound = 9, constraints 4, 8, 9, 10 

are relaxed, and an optimal solution to GCR1CX) is cc3 = #5 = x7 = 1. 

Constraints 9 and 10 are not satisfied. Adding these constraints to 

the GCP the problem is: 

Column No. 1 2 3 4 5 6 7 8 9 10 11 12 

min [ 1 1 1 1 2 2 3 2 3 6 1 4 ] 

Row No. 1 1 1 1 

2 1 1 1 

3 1 1 1 

5 1 1 1 1 

6 1 1 1 1 

7 1 1 1 1 

9 1 1 1 

10 1 1 1 1 

x> 

Columns 8, 9, 10 and 12 contain more than two 1's and so they must be 

split into the sum of columns as in GCR2(<i). A heuristic feasible 

solution to-DLP is given by U\ = 1, u2 = 0, U3 = 0, U5 = 2 Wg = 0, 

u-j - 3. Then calculating costs the problem becomes: 
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Col.No. 
of SCP j 

Col.No. 
of GCP * 

m m 

2 3 4 5 6 7 8 8 9 9 10 10 11 12 12 

2 3 4 5 S 7 8 9 10 11 12 13 14 15 16 

Cost 1 1 1 1 2 2 3 2 0 3 0 5.7 0.3 1 3.7 0.3 

Row No 

1 1 1 1 

2 1 1 1 

3 1 1 1 

5 1 1 1 1 

6 1 1 1 1 

7 1 1 1 1 

9 1 1 1 

10 1 1 1 1 

The solution 2/3 = 2/5 = 2/7 = 2/9 = 1 gives a lower bound of 9 and 2/8 ^ 2/9? 

therefore the set covering problem is not solved and d& must be decreased 

and <5g increased. Taking ttq = -0.5 and irg = 0.5 the costs are changed 

to dQ = 1.5 and d$ = 0.5. The optimal solution is 2/1 3 3 2/10 = 2/11'= 2/13 = 1 

The bound is 9*3. Since 2/12 = 0 and 2/13 = <̂ 12 c a n be decreased to 

5.2 and d\z increased to 0.8. The costs are then: 

Col.No. 
of GCP,£ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 1 1 2 2 3 1.5 0.5 3 0 5.2 0.8 1 3.7 0.3 
+ 3 

The solution is 2/3 = 2/5 = 2/7 = 2/9 = ^ giving a bound of 9.5. Again the 

set covering feasibility are not satisfied for 3 = 8. Thus, increasing 

<ig to 1.0 and reducing ds to 1.0 gives: 

Col.No. 
of GCP,* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 1 1 2 2 3 1 1 3 0 5.2 0.8 1 3.7 0.3 
+ 3 

A-solution is t/l = 2/2 = 2/8 = 2/11 = 2/15 = The cost of this solution 

is 9.7; etc. 



It is worthwhile to note here that the value of the LP solution to 

the example used in this section is 9.5. 

A3.8 Lower Bounds From Decomposition, Chapter 6 

Using example A1 again and splitting the constraints as in the first 

graph covering relaxation GCR1 one obtains the 2 SCP's, S1 from rows 

1 to 3 of the SCP and S2 from the remaining rows: 

min c-'y' = [ 3 2 1 0 1 1 ] y' 
y 

S1 
subject to 

~1 1 0 0 0 0 " ~ 1 " S1 
subject to 

~1 1 0 0 0 0 " ~ 1 " 

0 1 1 1 0 0 y' > 1 

— 

_1 0 1 0 1 1 _ _ 1 _ 

y- £ {0 ,1} 0 = 

and 

min o"y" = [ 1 3 2 2 3 2 ] 
y" 

S2 S2 
Subject to " 0 1 0 1 1 1 ~ ~i ~ 

0 1 1 0 1 0 y" > 1 
_1 0 0 1 0 1 _ _i _ 

y'U {0,1} Q = 1,2,...,6 
V 

An optimal solution to S1 with value _3 is y ' = CO, 1, 0, 0, 0, 1) and 

to S2 with value _4 is y" ~ (0, 0, 1, 0, 0, 1). The lower bound to 

the SCP is then 7_. 

Decreasing the costs and e£ and increasing costs a£ and o^ because 

y'l ~ y3
 = 0

 and y'2 = 2/3 = 1 gives costs: 



o' = [ 3 2.5 

c" = [ 1 2.5 

then tf(SC1) = 1>(SC2) 

0.5 0 1 1 ] 

2.5 2 3 2 ] 

= 3 . 5 giving again a lower bound equal to 7. 

A3.9 Lower Bounds From State Space Relaxation, SSR1 

A state S is given a mapping glS) = where -i is the last non-

zero index of S. F^igtS)) is the value of state S at iteration k 

of the state space relaxation. F^igiS)) = 0 for all S and 

F.igiS)) = min [F. AgiS-a.))+e.]. 
K jeN k

 d 3 

The SCP is: 

min [ 4 5 3 2 4 3 ] x 

subject to 

x > 1 

F (0,0) = 0 
o 

x.e{0,1} j = 1,2,... 
0 

Iteration 1 

2^(1,1) = min [0+4, 0+5] 

= 4 

from row 1 

Iteration 2 

F2(1,2) = min Fg(0,0)+3] = 2 from row 2 

F2{2,2) = min [F 0(0,0) + 5, ^ ( 1 , 1 ) + 3, ^ ( 1 , 1 ) + 2] = 5 from row 2 
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Iteration 3 

F 3(1,3) = min [F 0(0,0) + 4, F 0(0,0) + 3] = 3 

F 3(2 ,3) = min [F 0C0,0) + 4, F 0(0,0) + 3, F ^ ^ D + 4, 2^(1,1) + 3 

F 2(1,2) + 4, F 2(1,2) + 3] = 3 

F 3(3,3) = min [F 2(1,2) + 4, Fx(1,1) + 3, F 2(2,2) + 4, F 2(2,2) + 3] = 6 

The remaining states have values: 

( 1 , 4 ) = 2 , 2 ^ ( 2 , 4 ) = 2 , F 4 ( 3 , 4 ) ' = 5 , F I T ( 4 , 4 ) = 5 

F 5 ( 1 , 5 ) = 3 , F 5 ( 2 , 5 ) = 3 , F 5 ( 3 , 5 ) = 3 , F 5 ( 4 , 5 ) = 5 , FC-5,5) = 5 

F G ( 1 , 6 ) = 2 , F 6 ( 2 , 6 ) = 2 , F 6 ( 3 , B ) = 2 , F 6 ( 4 , 6 ) = 5 F(5,B)" = 6 , . F 6 ( 6 , 6 ) = 7 

Again the lower bouhd equals the LP bound having a value of 7. 

A3.10 Branching Strategies For The SCP, Chapter 7 

A depth first tree search strategy branching on rows is shown in Fig. 

A3.5. The first branching row is row 1 and xi is fixed equal to 1. 

The next branching row is row 2 and x2 is fixed equal to 1. This 

covers all rows hence in the absence of lower bounds. The tree search 

backtracks x2 is set equal to 0 and £C3 is set equal to 1. Row 4 is 

the next branching row and Xi+ is set equal to 1. The search backtracks 

and rctf is set equal to 0 and #5 = 1. Then is set equal to 0 and 

Xq = 1. ThuSj row 4 has bBen. completely,-considered and backtracking" to 

row 2 takes place w h e r e i s set equal to 0 and-x^ becomes 1. The 

rest of the search is shown in Fig.A3.5T. 

A breadth first tree search would trace the same nodes in the order: 

1, 9, 2, 3, 7, 10, 13, 15, 4, 5, 6,8,11, 12, 14. 



FIGURE A3.2 

A Depth First Tree Search Branching On Rows For The SCP 

gives the total cost of the variables fixed equal to 1. 

0/>Mr»<tl so/H Hon xz- xb s / cost - 8 

© node number h 
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A3.11 Implementation, Chapter 8 

Storage of the constraint matrix in the list of non-zero rows JTI 

with pointer JP to the end of each column gives for example A1: 

JTI = (1, 3, 6, 1, 2, 4, 5, 2, 3, 5, 2, 4, 6, 3, 4, 5, 3, 4, 6) 

JP = C 3, 7, 10, 13, 16, 19) 

and the list of non-zero columns ITJ with pointer IP to the end of 

each row is: 

ITJ = (1, 2, 2, 3, 4, 1, 3, 5 / 6 , 2, 4, 5, 6, 2, 3, 5, 1, 4, 6) 

IP = ( 2, 5, 9, 13, 16, 19) 

In the first graph covering relaxation GCR1 the first three constraints 

are relaxed giving MREL, the number of relaxed constraints equal to 3 

and the list of relaxed constraints equals: 

LREL = (1, 2,' 3) 

The linked list ILK that links rows not in the problem starts at row 4 

and equals: 

ILK = (-1, -1, -1, 5, 6, 0) 

For the second graph covering relaxation, GCR2, the linKed list that 

defines how the columns are split, JLK, is given as: 

JLK = (1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6, 12, 0) 

In a branching strategy consider node 5 for the depth first tree 

search of Fig.A3.6. This is at depth 3 in the tree, hence LEV, the 

depth of the search tree is equal to 3. 

The list of branching rows, IBR, is equal to (1, 2, 4). For each row 

KST is a vector that gives the position in ITJ of the branching 
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variable. Therefore: 

KST = (1, 4, 12) 

being the positions where the branching variables that are fixed equal 

to 1, x\, and #5 are storeA in try. The list of variables fixed is: 

LREP = (1, -2, 3, -4, 5) 

indicating that x2 = Xi+ = 0 and Xi = = #5 = 1. 

The number of variables fixed at each level of the tree search is: 

KREP = ( 1 , 3 , 5) 

The cost of the fixed variables is 11 and this is stored. 

For a best bound tree search for each node the position of the father 

node is stored in a list. Here node 5 has father node 3 which has 

father node 0 which is the root. The branching row is stored for each 

node, as is the position of the branching variable in the list ITJ. 

In addition the bound value must be stored at each nods. 
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The Test Problems Used 

4.1 Randomly Generated Problems 

The problems used in Chapters 2, 3, 4, 6 and 7 were all 

randomly generated. The constraint matrix was of two types, type A 

and type B. The first type had a fixed probability, p, that 

was equal to 0 or 1. The second type had a constraint matrix that 

increasedan density as the index of the constraint increased. 
h 

This density ranged from 0.5p in the first constraint to 1.5p in 

the last constraint. The costs were of three types. The first 

was U in which all the costs equalled 1. The second was H in which 
'm 

Cj was equal to E a^.. The third type of cost was obtained by 

m 
setting c . to 2 z a.. + 5 and if this value was greater than 15 

J i = 1 i J 

it was reduced by 10. This was denoted by x in the tables « 

A4.2 Korman's Test Problems; Table 5.5 

These problems were generated from random graphs. The columns 

of the SCP represented cliques in a graph. All these problems had 

costs equal to 1. 

A4.3 Problems AHSC14 - AHSC17; Table 5.6 

These problems were used by Sal kin and Koncal (S2) and are 

numbered 3.5 to 3.8 in Balas and Ho (B7). They had coefficient 

matrices of 2% density. In addition every column had at least one, and 

every row at least two, non-zero entries. The costs ranged between 1 

and 100. 
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A4.4 Problems LSSC1, LSSC9; Table 5.8 

These two 200x2000 problems had density of 2% and are problems 

5.1 and 5.9 of Balas and Ho (B7). They were randomly generated. 

A4.5 Problems LSSC16, LSSC20, LSSC21, LSSC22; Table 5.8 

These problems were also randomly generated and had 2% density. 

They correspond to problems 4.1 9 4.5, 4.6 and 4.7 of (B7) 

A4.6 Problems SALK12, SALK13; Table 5.8 

Problem SALK12 is attributed to A.M. Geoffrion. It was randomly 

generated with a coefficent matrix density of 7%. However the reduction 

tests gave a problem with aidensity of 4%. it is problem 1.12 of 

(B7). Problem SALK13 is described by Salkin and Koncal (S2) as coming 

from American Airlines. 
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The Language used in the Procedures 

The description of Pidgin ALGOL given below explains the language used 

in the Procedures. 

Pidgin A L G O L is unlike any conventional programming language in 
that it allows the use of any type of mathematical statement as long as its mean-
ing is clear and the translation into R A M or RASP code is evident. Similarly, f 
the language docs not have a fixed set of data types. Variables can represent 
integers, strings, and arrays. Additional data types such as sets, graphs, lists, 

and queues can he introduced as needed. Formal declarations of data types 
are avoided as much as possible. T h e data type of a variable and its scopet 
should he evident either from its name or from its context. 

Pidgin A L G O L uses traditional mathematical and programming language 
constructs such as expressions, conditions, statements, and procedures. In-
formal descriptions of some of these constructs arc given below. 
A Pidgin A L G O L program is a statement of one of the following types. 

1. variable expression 
2. if condition then statement else s ta tement! 
3a. whilecondition do statement 

b. repeat statement until condition 
4. for variable «— initial-value step step-sizc§ until final-value do statement 
5. label: statement 
6. goto label 
7. begin 

. statement; 
statement; 

statement; 
statement 

end 
8a. procedure name (list of parameters): statement 

b. return expression 
c. procedure-name (arguments) 

9a. read variable 
b. write expression 

10. comment comment 
11, any other miscellaneous statement 

t The scope of a variable is the environment in which it has a meaning. I-or example, 
the scope of an index of a summation is defined only w ithin the summation and has no 
meaning outside the summation. 
$ "else s t a tement" is optional. This option leads to the usual "dangling e l se" ambi-
guity. We take the traditional way out and a s sume else to be matched with the closest 
unmatched then. 
§ "step s tep-size" is optional if step-size is 1. 
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We shall give a brief synopsis of each of these statemc..» types. 
1. The assignment statement 

variable expression 

causes the expression to the right of*— to be evaluated and the resulting value 
to be assigned to the variable on the left. The time complexity of the assign-
ment statement is the lime taken to evaluate the expression and to assign the 
value to the variable. If the value of the expression is not a basic data type, 
such as an integer, one may in some cases reduce the cost by means of pointers. 
For example, the assignment A — li where A and li are n x n matrices would 
normally require (Hir) time. However, if li is no longer used, then the time 
can be made finite and independent of n by simply renaming the array. 

2. In the if statement 

if condition then statement else statement 

the condition following the if can be any expression that has a value true or 
false. If the condition has the value true, the statement following then is to 
be executed. Otherwise, the statement following else (if present) is to be exe-
cuted. The cost of the if statement is the sum of the costs required to evaluate 
and test the expression plus the cost of the statement following then or the 
cost of the statement following else, whichever is actually executed. 

3. The purpose of the while statement 

while condition do statement 

and the repeat statement 

repeat statement until condition 

is to create a loop. In the while statement the condition following while is 
evaluated. If the condition is true, the statement after the do is executed. 
This process is repeated until the condition becomes false. If the condition 
is originally true, then eventually an execution of the statement must cause 
the condition to become false if the execution of the while statement is to ter-
minate. The cost of the while statement is the sum of the costs of evaluating 
the condition as many times as it is evaluated plus the sum of the costs of exe-
cuting the statement as many times as it is executed. 

The repeat statement is similar except that the statement following repeat 
is executed before the condition is evaluated. 
4. In the for statement 

for variable <— initial-value step step-size until final-value do statement 

initial-value, step-size, and final-value are all expressions. In the case where 
step-size is positive the variable (called the index) is set equal to the value of 
the initial-value expression. If this value exceeds the final-value, then execu-
tion terminates. Otherwise the statement following do is executed, the value 
of the variable is incremented by step-size and compared with the final-value. 
The process is repeated until the value of the variable exceeds the linal-valuc. 
The case where the step-size is negative is similar, but termination occurs 
when the value of the variable is less than the final-value. The cost of the 
for statement should be obvious in light of the preceding analysis of the while 
statement. 



The above description completely ignores such details as when the ex-
pressions for initial-value, step-size, and final-value are evaluated. It is pos-
sible that the execution of the statement following do modifies the value of 
the expression step-size, in which case evaluating the expression for step-size 
every time the variable is incremented has an effect different from evaluating 
step-size once and for all. Similarly, evaluating step-size can affect the \ . t lue 
of final-value, and a change in sign of step-size changes the test for termination. 
We resolve these problems by not writing programs where such phenomena 
would make the meaning unclear. 

5. Any statement can be made into a labeled statement by prefixing it with 
a label followed by a colon. The primary purpose of the label is to establish 
a target for a goto statement. There is no cost associated with the label. 

6 . ' The goto statement 

goto label ( 

causes the statement with the given label to be executed next. The statement 
so labeled is not allowed to be inside a block-statement (7) unless the goto 
statement is inside the same block-statement. The cost of the goto statement 
is one. goto statements should be used sparingly, since they generally make 
programs difficult to understand. The primary use of goto statements is to 
break out of while statements. 

7. A sequence of s tatements separated by semicolons and nested between 
the keywords begin and end is a statement which is called a block. Since a 
block is a statement, it can be used wherever a statement can be used. Nor-
mally. a program will be a block. The cost of a block is the sum of the costs 
of the statements appearing within the block. 

8. Procedures. In Pidgin A L G O L procedures can be defined and subse-
quently invoked. Procedures are defined by the procedure-definition state-
ment which is of the form: 

procedure name (list of parameters): statement 

The list of parameters is a sequence of dummy variables called formal param-
eters. For example, the following statement defines a function-nruccdjiiv* 

procedure MIN(.i\ y): 
if .v > v then return v else return x 

The arguments x and v arc formal parameters. 
Procedures are used in one of two ways. One way is as a function. Af te r 

a function procedure has been defined, it can be invoked in an expression by 
using its name with the desired arguments. In this case the last statement 
executed in the procedure must be a return statement 8(b). The return state-
ment causes the expression following the keyword return to be evaluated and 
execution of the procedure to terminate. The value of the function is the value 
of this expression. For example. 

A MIN(2 + 3. 7) 

causes A to receive the value 5. The expressions 2 + 3 and 7 are called the 
actual parameters of this procedure invocation. 

The second method of using a procedure is to call it by means of the 
procedure-calling statement 8(c). This statement is merely the name of the 
procedure followed by a list of actual parameters. The procedure-calling 
statement can (and usually does) modify the data of the calling program. A 
procedure called -this way does not need a return statement in its definition. 
Completion of execution of the last statement in the procedure completes the 
execution of the procedure-calling statement. For example, the following 
statement defines a procedure named I N T E R C H A N G E . 



procedure I N T E R C H A N G E D , v): 
hen in 

/ — .v: 
.v — v; 
y — t 

end 

To invoke this procedure we could write a procedure-calling statement such as 

I N T E R C H ANCi E(/l [/], A [ j J) 

There arc two methods by which a procedure can communicate with other 
procedures. One way is by global variables. We assume that global variables 
are implicitly declared in some universal environment. Within this environ-
ment is a subcnvironincnt in which procedures arc defined. 

The other method of communicating with procedures is by means of the 
parameters. A L G O L 60 uses call-by-value and call-by-name. In calj-by-
value the formal parameters of a procedure are treated as local variables which 
are initialized to the values of the actual parameters. In citll-by-numc formal 
parameters serve as place holders in the program, actual parameters being 
substituted for every occurrence of the corresponding formal parameters. l*'or 
simplicity we depart from A L G O L 60 and use call-hy-reference. In call-by-
reference parameters are passed by means of pointers to the actual parameters. 
If an actual parameter is an expression (possibly a constant), then the corre-
sponding formal parameter is treated as a local variable initialized to the value 
of the expression. 
9. The read statement and write statement have the obvious meaning. The 

read statement has a cost of one. The write statement has a cost of one plus 
the cost of evaluating the expression following the keyword write. 
10. The comment statement «d!ows insertion of remarks to aid in the under-
standing of the program and has zero cost. 

11. In addition to the conventional programming language statements we in-
clude under "miscellaneous" any statement which makes an algorithm more 
understandable than an equivalent sequence of programming language state-
ments. Such statements arc used when the details of implementation are cither 
irrelevant or obvious, or when a higher level of description is desirable. Some 
examples of commonly used miscellaneous statements are: 

a) let a be the smallest clement of set 5 
b) mark element a as being "a ld" t 
c) without loss of generality (wig) assume that . . . otherwise . . . in statement 

1-or example, 

wig assume a b otherwise interchange c and </ in statement 

means that if a ^ b the following statement is to be executed as written. 
If a > />, a duplicate of the statement with the roles of c and d inter-
changed is to be executed. 
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