UNIVERSITY OF LONDON
IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF MANAGEMENT SCIENCE

"ALGORITHMS FOR THE SET COVERING PROBLEM
by

ANGELA MARGARET HEY MA, MMaTH, FRGS

A thesis submitted for the

Degree of Doctor of Philésophy
and)

Diploma of Imperial College

JULY 1980

: ABSTRACT

Solution methods for the set covering problem, SCP, are the subjecf'
of this theéis. This problem is widely encountered, notably in
operational research, computer science and electrical engineering.

A survey.of applications and aigorithms is given in the first
chapter. Heuristic algorithms fhat'obtain upper and lower bounds on
'tﬁe optimal'solution value' are givgn in Chapter 2. The SCP can be
formulated as an integer program and one of the more sucecessful
approaches to this type of problem is Lagrangean felaxétion embedded
in a branch and bound (tree sear;h] strategy. Chapter 3 illustrates“
. techniques for efficiently increasing lower bounds obtained from
Lagrangean relaxations. Lower hounds to the SCP are derived using
network flow»and graph theory in Chapters 4 and S. Chapfér 8 discusses
- decomposition and state sbace relaxétiéns fﬁr obtainiﬁg 10Wer bounds
to tﬁe SCP. Branching strategies are considered in Chapter 7. The
implementation of an algorithm Fﬁr the SCP using the graph covering

relaxations is glven in Chapter 8. Conclusions, together with ideas

for future research, are given in the final chapter.

(1i1)

ACKNOWLEDGEMENTS

Firstly I should like to thank my supervisor Dr N. Christofides for
many stimulating discussions, encouragement and support throughout
the project. I am grateful to Dr T. Coleman of Argonne National
Laboratory, Illinoils for helpful comments on Chapter 3. Dr U. Derigs
and Mr G. Kazakidis of the University of Cologne not only supplied me
with their matching code but allowed me full use of their facilities
for one week. I am indebted to them for their.a. .tance and for
explaining ﬁheir programs to me. I should like to thank

Prof. E. Balas of Carnegie-Mellon University, Mr C. Krabek of Control
Data and Dr S. Korman (formerly of Imperial College) for supplying

test praoblems.

Above all many thanks must go to Miss K. Shrimanker for the excellent
typing of this thesis. I am also grateful to Miss Suzy Brown for

typing the contents, index and some tables.

The financial support of the Science Research Council and the Department
of Management Science is gratefully acknowledged. Appendix 5 is included
by kind permission of Bell Laboratories, New Jersey. Finally I should

like to thank the many others with whom I have had discussions.

CONTENTS
Title page
Abstract

‘Acknowledgements

Gontents

Figures, Diagrams and Tables

Index to Procedures

Notation

CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Definitions

1.2 Relaxations

1.3 Literature Survey

1.3.1. Applications

1.3.2. Problems related to the SCP and probiems
used in its solution

1.3.2.1.

1.
1.3.2.3.
1.

3.2.2.

3.2.4.

Well-solved cases of the SCP

pdY
(1)
(i)
(1ii)
(1v)
(xiii)’
(xvi)

{(xviii)

8

Problems of which the SCP is aspecial case 13

Relationship between the SPP and the SCP

Network Floﬁ Problems

1.3.3. A]gorithms for the SCP

1
1
1

.3.3.1.
.3.3.2.
.3.3.3.
.3.3.4.
.3.3.5.
.3.3.6.

Preliminary reductions

Sorting the constraint matrix
Algorithms'for Tower Bounds.to the SCP
Algorithms for upper bounds to the SCP
Branching strategies for the SCP

Cutting plane strategies for the SCP

16
17

18

19

21

22
23
23
25

(v)

Page
1.3.4. Theoretical Results for the SCP 26
1.3.4.1. Complexity results ; ' 26
1.3.4.2. The set covering polyhedron 27
1.3.4.3. The structure of the constraint matrix 28
1.3.4.4, Duality 29
1.3.5. Data structures 30
CHAPTER 2 HEURISTICS
2.1. Introduction 31
2.2. Qutline of the Heuristic Methods 32
2.3. Additional Methods for Computing Upper Bounds 40
2.4. Reasons for Failure of the Heuristics to Solve the SCP 41
2.5. Computational Results ' 42
CHAPTER 3. LAGRANGEAN RELAXATION
3.1. Introduction » 50
3.2. Implementation of Lagrangean Relaxation ' 52
3.3. Calculating the Search Direction,) 55
3.4. Ca]cq]ating_the Stepsize, o 61
3.4.3. Introduction A | | 61
3.4.2. Computing ¢ Using a Target Value - 82

3.4.3. Computing o Using "Near Alternative" Solutions 63
3.4.4. Other Methods of Computing o 64

3.5. Computational Results - .66

3.5.1. Case Study &6

3.5.2. Comparison of the methods on different problems 753

-

4.3.

4.4,

5.1.
5.2.
5.3.

5.4.

CHAPTER . 4 NETWORK FLOW RELAXATIOMS OF THE SCP
4.1. Introduction
4.2. Network Flow Relaxation, NF1

4.1.1. Formulation
4,2.2. Changing the costs dij on the Network GI
4.2.3. Further improvements

4.2.4, Summary of the Algorithm
Network Flow Relaxation, NF2

4,3.1. Construction of the Network, G2, from SCP

4,3.2. Formulation o? the problem and calculation of .-

- " costs

Computationa] Results

4.4.1. Explanation of Table of Results
4.4,2. Implementation of the Algorithm

CHAPTER 5 GRAPH COVERING RELAXATIONS OF THE SCP

Introduction

The Graph Covering Problem, GCP

Graph Covering Relaxation 1, GCR1, a row relaxation of
the SCP . ' ,

5.3.1. Description of the relaxation

| 5.3.2. Quality of the bound

5.3.3. Calculation of A*
5.3.4.. Partitioning the constraints

5.3.5. Changing the partition of a'

Graph Coyering Relaxation 2; GCR2, a column relaxation

5.4.1. Description of the relaxation

(vi)
Page

78
78
78
81

&3

85

89
89

:90

93

93
94

96
96

.98

99

99
100
102 -

104
104 .

5.5.

5.6.

5.7.

(vii)

Page
5.4.2. Quality of the Bound . : 107
5.4.3. Calculating the Costs ’ 107
Further Improvements to the Graph Covering Relaxations 108
5.5.1. Ensuring the costs of the relaxed problem are
non-negative in GCRI. 108
5.5.2. Ensuring the costs of the relaxed nroblem are
non-negative in GCR2. 110
5.5.3. Changing costs of arcs in a GCP to retain the 11
same opt1ma1 so1ut1ons .
5.5.4. Using the graph covering solution in consecutive
iterations of the subgradient optimization
procedure 113
Combining thé two relaxations GCR1 and GCR2 114
Computational Results 122
5.7.1. Case study : : : 122
5.7.2. Comparison between GCR1, GCR2 and a ' 123
Combination of the Two Relaxations
5.7.3. Comparison between the Graph Covering 124
Relaxation, Heuristics and Linear
Programming
5.7.3.1. Korman's Problems o - 124
5.7.3.2. Fouk Problems of Salkin and Koncal 128
- 5.7.3.3. Results for Graph Covering Problems 131
5.7.4. Using the Hedristic; Graph Covering and
LP Bounds in a Tree Search 133

5.7.5. Conclusions 133

CHAPTER 6 LOWER BOUNDS TO THE SCP_USING DECOMPOSITION

6.1.
6.2.

6.3.

6.4.

AND STATE SPACE RELAXATION

Introduction

The Decomposition Method for obtaining a Lower
Bound to the SCP

6.

o OO0 O O

b~ T « LI =2 W =)

o O

6
6

2.1. Definition

.2.2. Calculating the costs initially

.2.3. Updating the coéts

.2.4, \Using integer costs dt

.2.5. Reduced costs for the SCP

.2.6. Recursive-tree search
.2.7. Sorting the constraint matrix initially
.2.8. Description of the decomposition algorithm

lowekﬁbund‘tothe SCP from State Space Relaxation

.3.1. Definition
.3.2. State Space Ré]axation 1, SSRI
6.3.2.1. Definition
| 6.3.2.2. Reduced Costs
6.3.2.3. Improviné the bound using éubadditivity

6.3.2.4. Compafison with other relaxations

.3.3. State Space Relakation 2, SSR2

.3.4. Other State Space Relaxations and Extensions

Solving a class of SCP's

6
6
6

.4.1. Introduction
.4.2. Defining the Relaxation
.4.3. Changing the costs

(viii)

Page
134
134

134
136
136
137
138

139
140
141
143
143
143
143
144
144
146
146
146

147
147
148
* 149

6.5.

Computational Results

6.5.1. Case Study

6.5.2. Comparison between the Heuristic Bound and the
Decomposition Relaxation .

6.5.3. The State Space Relaxation, SSR1, Bound compared
with the Decomposition and Heuristic Bounds

6.5.4. Conclusions

CHAPTER 7 BRANCHING STRATEGIES FOR THE SCP

7.1.
7.2.

7.3.

7.4.

Introduction

Tactical Problems - choosing the branching variable
Branching on rows for thé set covering problem
7.3.1. Description of Branching strategy .

7.3.2. Branching on Rows when the Constraint
Matrix is Sorted into Blocks

7.3.2.1. Sorting the Matrix
7.3.2.2. The Branching‘Strategy
- 7.3.2.3. Removal of Rows
7.2.3.4. Removal of Columns or Blocks
7.2.3.5. Removing Coefficients in Constraints
7.3.2.6. So]viTg the problem after assigning blocks

to all rows
7.3.2.7. Example

’

7.3.3. Branching on Rows when the Constraint Matrix is
stored as a 1ist of Non - Zerorows by Column

7.3.3.1. Description of the forward step of the
branching strategy

7.3.3.2. A depth first implementation
7.3.3.3. A best bound impliementation |
7.3.4. Improving the Branching on Rows Method

Computational Results for the Depth First and Best
Bound Tree Search on Rows

7.4.1. Case study

7.4.2. Test problems

(ix)
Page

150

150
151

158

158

161
162
165

165

166

166 -
166
167
167
167
168
168
170

170

171
174
177

180
183

CHAPTER 8 IMPLEMENTATION OF AN ALGORITHM FOR SOLVING

THE SCP USING GRAPH COVERING RELAXATIONS

8.1. Introduction
8.2. Design of a FORTRAN program
8.3. Data Strucfures for the Graph Covering Algorithms

8.3.1. The Set Covering Problem

8.3.2. Lagrangean Relaxation

8.3.2.1. Graph Covering Relaxation, GCR1, the
Row Pelaxation

8.3.2.2. Graph Covering Relaxation, GCR2, the
) Column Relaxation

8.3.3. Bfanching Strategies
8.3.3.1. Depth First Search on rows

8.3.3;2. Best Bound Search on rows
*8.3.4., Total Storage Required
8.4. Solving the Graph Covering Problem

8.4.1. The Graph Covering Algorithm
8.4.2. Converting an Algorithm for Solving

the Minimum Perfect Matching Problem
to a Graph Covering Probliem

8.4.2.1. Introduction

8.4.2.2, Outline of the Matching Algorithm
’ (Edmond’'s Algorithm)

8.4.2.3. Modifying Edmond's Algorithm

8;4.3. Use of Reduced.Costs to Reduce Problem Size

8.4.4, Start Procedures for the Graph Covering Algorithms

8.5. Parameters of the Program

Page

137
137
189
139
190
190

191

192
192
193
194

195
195
196

196
197
198

203
205

206

(x1)

Page
CHAPTER 9 CONCLUSIONS
9.1 Summary 207
9.2 Extensions and Ideas for Future Research : 208

9.2.1 Extensions of the Graph Covering Algorithm 208
9.2.2 Aggregating Constraints 209
9.2.3 Extensions to O0-1 Integer Programs 209
9.2.4 Improvement of the State Space Relaxations 210

9.2.5 Duality 210
9.2.6 Methods for Improving the Code 210
References . 212
Journal Abbreviations 230

Appendices ' 232

{xii)

Appendix 1) Page
Analysis of Pré]iminary Reduction Strategies 233
Appendix 2
Index of terms used 235
Appendix 3
An Example . . 239
A3.1 Introduction o239
A3.2 The Heuristic Lower Bounds, Chapter 2 239
A3.3 The Network Flow Lower Bound ‘ ' 241
A3.4 The Second Network Flow Lower Bound, v {NF2) - 246 -
A3.5 The First Graph Covering Relaxation, GCR1, Chapter 5 248
A3.6 The Second Graph Covering Relaxation, GCR2, Chapter 5 249
A3.7 A Second Example to I1lustrate a Combination of 249
the Two Graph Covering Relaxations, Chapter 5
A3.8 Lower Bounds from Decomposiiton, Chapter 6 254
A3.9 Lower Bounds from State Space Relaxations, SSRI . 255
A3.10 Branching Strategies for the SCP, Chapter 7 236
A3.11 Implementation, Chapter 8 258
Appendix 4
Explanation-of the Test Problems Used - 260
Appendix 5

.Language used in the PROCEDURES 262

Fig. 1.1

- Fig. 1.2
Table 2.1
Table 2.2

Table 2.3
Table 2.4

Fig. 3.1
Fig. 3.2

Fig. 3.3

Table 3.4

Table 3.5
Table 3.6

Table 3.7_

Fig. 3.8

Fig. 3.9

FIGURES, DIAGRAMS and TABLES

An Example of a Search Tree for a Branch and Bound
Procedure

Graph Gi in which a Shortest Path Solves SCPI
Quality of Bounds obtained using Heuristics

Performance of Heuristics when Incorporated in a
Tree Search

Lower Bound as a Percentage of Upper Bound

Comparison of Heuristic Bounds with LP Bound
at Root Node

A Flowchart of PROCEDURE 8 SUBPROBLEM to solve
the Lagrangean Relaxation of a problem B

Level Sets of L(A) for example 3 show1ng Zigzagging
path

Non-Zero Indices of x for example. TO show
Behaviour Near Subgradient Optimum

To show the Effect of Varying B when Imp]émenting
the Subgradient Ascent Proéedure of Camerini et al
Bound Values for 3 Subgradient Optimization Methods
Best Bound Values and Tree Search Information
Best Bound Values at Root Node for 4 Methods
Comparison of Bound Values Against Iteration
Number for 3 Different Subgradient Optimization
Methods

Comparison of Bound Values Against Compuf1ng

Time for 3 Different Subgrad1ent Optimization
Methods

Table 3..10 Comparison of 4 Metﬁods for Subgradient

Table 4.1
Table 4.2

Optimization embedded in a Tree Search
Network Flow Graph, G1, for example NF1

Lower Bounds from the;Network Flow Relaxations

Page

1
44
46

48
48

51

65

67

68
71
72
73

74
76

80
92

(xiii)

Fig. 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 5.8

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 6.%
Table 6.6

A Flowchart of PROCEDURE 13 GRAPHBOUND to
Compute Lower Bounds to the SCP from Graph
Covering Relaxations

Graph Covering Lower Bounds for a 30x60 problem,
density 0.15, to show variation with stepsize
parameter &, and number of 1's per column, KCOL

Number of Graph Covering Subproblems, Tree
Search Nodes and Computing Time to show Variation
with Stepsize Parameter, &, and number of 1's

per column, KCOL, for 30x60 SCP-

A Comparison between the Relaxations, GCR1, GCR2
and a Combination of these two Relaxations

A Comparison between the Heuristic,Graph
Covering and Linear Programming .ower Bounds
for Korman's Test Problems

A Comparison between the Heuristic, Graph Covering
and Linear Programming Lower Bounds for Test
Problems of Salkin and Koncal

Computational Results for Graph Covering Problems

Using the Graph Covering, Heuristic and LP
Bounds in a Tree Search

Bound Values for the 30x60 example Using the
Decomposition Relaxation

Comparison of the Decomposition Bound and the
Heuristic Bound

Computing times for Decomposition Bound and the
Hdur1st1c Bound

Decomposition Bound as Percentage of 0pt1ma1
Solutions

Decomposition Bounds for Different Partitions of z

Compar1son between Bounds from Decomposition, SSRI1
and Heuristics

121

125

126

127
129
130
132
152
154

155

. 156

157

(xxiv)

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

7.1
7.2
7.3
7.4
7.5
7.6

7.7

Table 7.8

Table 7.9

. Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

8.1
8.2
8.3
8.4
8.5
8.6

A3.1

A3.2

A3.3

A3.4

A3.

5

Amount of Tree Searched by S£r$£é§y”1'
Amount of Tree Searched by Strategy 2
Amount of Tree Searched by Stwnategy 3
Constraint Matrix 4 sorted into blocks
Tree Search for Example

The Branch and Bound Tree for the Best Bound
Strategy for a 30x60 SCP of Density 0.15

The Branch and Bound Tree for the Depth First
Strategy for a 30x60 SCP of Density 0.15

The Number of Nodes generated by the Depth
First and Best Bound Tree Searches using
Branching on Rows

The Time taken to find the Optimal solution
by the Depth First and Best Bound Searches

Design of a FORTRAN computer program for the SCP
An Augmenting Path J

Formation of a Pseudo - Vertex

Case 1 Vertex v, is Matched in the Tree

Case 2 Vertex v, is not Matched

A Graph G in which an Optimal Matching Corresponds
to an optimal Cover 1n G'.

Graph for Network Flow Relaxation NF1

Graph for Example, NF2

Graph G, The Complement of the Row Intersection Graph
Graph Covering Problem for GCRl

A Depth First Tree Search Branching on Rows for
the SCP

(xv)

Page

164
164
165
166

181

182

184

185

188
197
197
200
200
202

242
245
247
247

257

(xvi)

INDEX TO PROCEDURES

The algorithms tested in this thesis are outlined in the following
procedures. A description of the language used in the procedures

is given in Appendix 5.

Procedure number Title ~ Description Page
1 -INITIAL BOUNDS Computes upper and lower 33
: bounds to the SCP using
heuristics
2 LP BOUND . Computes a lower bound 36

from a feasible solution
to DLP using an extension
of Erlenkotter's method

for the facility location

problem
3 HEURISTICS Combines Procedures 1 and 2 38
4 RELAX '~ Forms a Laqgrangean not explicitly
' Relaxation of an Integer described
Program :
5 " SOLVELR | Solves a Lagrangean .. . "o
' ' - Relaxation
6 - | FEASTEST‘ Tests whether or not a ne

solution to a relaxed
problem is feasible for
the original IP

7 Changes the costs in
COSTCHANGE a Lagrangean relaxation

8 SUBPROBLEM Describes the basic steps 53
in solving a Lagrangean
Relaxation of an Integer
Program using subgradient
optimization

(xvii)

Procedure Number Title Description Page

9 PROJECT Computes a search direction 59
for optimizing-L(A) using
projection methods

10 NETFLO 1 Soives the network flow 86
relaxation NF1 of the SCP

11 PARTITION Partitions the constraints 101
- of the SCP to give a
Lagrangean relaxation

12 COSTPLUS Ensures all costs are non- 109
negative in a Lagrangean
- : relaxation in which rows
of the SCP are relaxed

13 GRAPHBOUND Computes lower bounds to 17

the SCP from graph covering
relaxations

14 - DECOMPOSITION Computes lower bounds to the 140

BOUND SCP by partitioning the

problem and solving smaller
problems

15 DEPTHFIRST A Depth First T.ree Search 172

" $SEARCH ~ on rows for the SCP
16 * BESTBOUND A Best Bound Tree Search on 176

SEARCH Rows for the SCP

g .
Bk (Z)

BDCH

BLP

P44
NOTATION AND ABBREVIATIONS (xviii)

In a table of results denotes a randomly generated

constraint matrix

SCP constraint matrix

Submatrix of A consisting of some rows of 4

A cyclic matrix with P non-zero entries per column

and q zero entries

ith row of 4

Jth column of 4

Matrix used for relaxed constraints (Ch.3)

Matrix used for blossom constraints (Ch.5])

&f= 0 for all 2£<k} kth block of

constraint matrix

{j‘akj= 1 and a

Set of variables in block Bk with a 1 in row 7© that

have not been fixed equal to 0 or 1
Logical variable in Procedure 3

Bank location problem:

max|I L d..x..-Z c.y.|L x..=1 for all %,
x?y{i i tiid Y1 7 td a

1<L Y.< kxye{0,1}
J 9

Cost vector for the SCP

OLP

DLPB

psce

DYSCP

)

iJ

G1

G2

G(V,E)

(xix)
Costs for a relaxation of the SCP in which columns

are split
T, T
Dual linear program to LP: max[1 ulA u=<e, uz> 0]

Dual linear program to LPB:

m T T
g?x[igq w, + LEp pz’plA w+B <c.w 2 0]

Integer programming dual of the SCP:
mgx[F[ﬂ)]F[Ax)'g e, F subadditive, F(0) = 0]

Dynamic Set Covering Problem:

m%n[% 5 xjkcjkl§ @ik 2 1 for all Z.d. xjke{0,1}]

Cost of arc (Z,J) in network flow relaxation NF1(d)
(Ch.4)

Cost of tth variable of GCR2 (Ch.5), Cost of tth
variable in DEC{d) (Ch.B)

Arc set of a greph G(V,F)

Set of vertices in a graph incident with vertex vi

Eost of flow in arc (Z,7) for network flow problem

Graph G(V,E)
Graph for network flow relaxation NF1

Graph for network flow relaxation, NF2

Graph with vertex set ¥, arc set E

(xx)
GCP Graph Covering Problem: min{ex|dz > 1, ze{0,1}" 24
feod

has at most 2 non-zero entries per column].

GCR1(A) Graph Covering Relaxation 1 obtained by relaxing
rows of the SCP.

GCR2(d) Graph Covering Relaxation 2 obtained by relaxing
columns of the SCP.

GLR(F) Generalised Lagrangean Relaxation:
min[ch-F(Ax-leBx‘z d, x integer]
x

GsCP Generallsed Set Covering Problem: min[ch|Ax3:1, xs{0,1}n]
x

where a¢.. = 0, 1 or -1,
1d

hj Number of non-zero entries in column J of the SCP:

‘ m

h, = I, a..

J =1 1J
I Index set of rows under consideration.
7 Subscript corresponding to rows (constraints) of the SCP.
Iﬁ The mxm identity matrix.
IP Integer program: min[ecx|4x > b, Bx > d, x integer]
x

IP1 Integer program to partition constraints:

max[l?ylATy < 2, ye{0,1}]

J Index set of columns under consideration.

J! Index SCP of columns of the SCP that have been split to

give variables of unequal value.

Jo

K*

KCoL

KMAX

KP

Tk

LX)

LP

LPB

LX)

LR

(xxi)

Subscript corresponding to columns (subsets) aof the SCP.

Current variable under consideration.

A feasible solution the the SCP or GCP.

An optimal collection of subsets for the SCP or arcs in

an optimal sclution for the GCP (Ch.5).
Iteration counter, or subscript.

Number of non-zero entries in any column in a row
relaxation of the SCP.

Maximum number of iterations allowed.

Knapsack problem: min[exz|axz > b, = > 0]
x

Lower bound on flow in arc {Z,k).
List of non-zero elements of x.
7_

Optimal objective function of LR(A): ¢z - Al4x - b).

Linear programming relaxation of the SCP:

min[chIAx >1, x> 0]
s _

Linear program equivalent to SCP:

min[chlA;x >1, Bx, r, 1>z > 0]
e -
Optimal objective function of LR(A).

Problem of finding the best multipliers A for LR(});
max L{AJ}.
A

(exii)
LR(X) Lagrangean relaxation: m%n[czk-l(Ax-b]|sz:d, x integer]

LR1(A) Lagrangean relaxation eqguivalent to the LP relaxation
that gives the network flow relaxation NF1(d).

M Index set of rows (constraints, elements) for the SCP.
m Number of rows (constraints, elements) for the SCP.
M. Zla.. = 1} , M. < M.

d ¢ I 1d } Jd

N Index set of columns (variables, subsets) for the SCP

also used for a matrix-in Procedure 10.

n ‘ Number of columns (variables, subsets) for the SCP.
N(F) Network flow problem equivalent to the LP relaxation.
NF Network flow problem:

mén[% E rr Eik‘i £ 2 B - uld), w8 > 1]

NF1 Network flow relaxation 1:

m
Ly g, d, £, 2 0]

min{, ij,jglvi big =1 &g

P Set of odd subsets of vertices of a graph.
P, Set of odd subsets of vertices that contain vertex <.
Plw) Reformulation of the problem, LR:

max[w < ¢ ale) + AL (B (£))]
w

P, number of variables derived from column J equél to 1.

|

|

SCcP

SCPD(d)

SCPG(d)

SPP

7(s)

(xxiii)

Set of relaxed constréints.

Set of subgradients in the projection.(Ch.B].
Set of constraints not relaxed (Ch.5).
Vector of slack variables (Ch.2).

Right hand side for blossom constraints (Ch.5).

Subset of constraints or vertices.
Set of subgradients to be considered for the projection.

Vector of reduced costs.

Also source vertex for network flow relaxations (Ch.4).
Set covering problem: min[ex|dx > 1, xe{0,1Y"]
x

A definition of the SCP that defines the decomposition

relaxation (Ch.B1].
A definition of the SCP that defines relaxation GCR2 (Ch.5).

1, xe{0,1¥"]

Set partitioning problem: m%n[cxle=
Superscript T denotes transpose of a matrix.
Index set of arcs derived from column th relaxation GCR2.

Set of arcs with at least one and in set of vertices S.

Problem variahle for DLP.

u.
7k

UIP

- UPLP

v(P)

8]

Z*

(xxxiv)
Upper bound on flow in arc (Z,%).

Unconstrained Integer Program:

minlclz + T k.(@"z-b.)2|xel0,1}]
x z T z

Uncapacitated Plant Location Problem:

infz s d.x.. + I e.y. e > 1 -
m n[, X p JyJ|§ x,: 21 for all %

T4 WU J

x'zij syj, x, ye{0,1}]

Vertex set of graph'G(V,E].
Vertex of graph G(V,E).

The optimal solution value of problem P.

Problem variable in §3.3 used for projection method Ch.3).

Dual variable corresponding to constraint a‘z > 1 in GCP.

Problem variable &, j=1,2,...,n.
Optimal solution to the SCP.

Prime cover for the SCP.

‘Objective function value for the SCP: z==ch

Optimal objective function value.
Lower bound to the SCP.

Upper bound to the SCP.

[

v

A

(xxv)

Constant used in subgradient optimization

Parameter for Camerxrini et al's method (Ch.3)

Colunn derived from column aj of the SCP for te Tj
Subgradient of the Lagrangean Function
Amount by which a variable is changed

Parameter used to calculate steplength

Small positive number used as a tolerance

Arc in a graph

Dual Variable for blossom constraint (Ch. 5)
Parameter for Camerini et al's method (Ch. 3)

Number of arcs in the GCP derived from column ajin the SCp
Lagrange multipiier

Search direction for subgradient optimization (Ch. 3)
Penélty for changing costs in the relaxed problem
Flow in an arc for a network flow problem

Density of the SCP

Steplength for subgradient optimization (Ch. 3)

Dual variable for vertex in the GCP

Vector with all éomponents equal to 1

Superscript + gives the value of a variable at the next
iteration

Logical inclusive ‘'ox'

Logical 'énd'

Greater thén or equal to

Less than or equal to

Isl

1n

(xxvi)
Cardinality of a set S
Set inclusion. A <B means A is contained in B.
Set intersection. A nB means the eleménts in both A and B,

Set Union. A U B means the elements in either A or B.

CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Definitions

The set covering problem, SCP, is the integer program:

sScP min{chlez-_'l_;xje{D,’l},j='1,2,...,n}
- Z ,

where A is an m x n matrix with.aig equal to 0 or 1 and 1 is an m-
dimensional vector of 1's . It is so called because each column
of the constraint matrix A represents a suQset of a set, M say, of
m elements with a£j==1 if and only if the %th elément of M belongs
to the Jth subset, k%. The cost of subset A% is ¢ The optimal
solution, x*, to ths SCP gives a minimum cost collection of subsets,
K *,in which each element of M occurs at least once. A subset, A%,
is in X* 1f and only if xj‘= 1. Let N:= {1,2,...,n} be the index
set of subsets of M and let Ni =.{j]aij= 1}. The Jth column of 4

will be dencted by as and the Tth row by a’.

Closely related to the SCP is the set partitioning problem, SPP, in

whibh the inequality constraints are replaced by eduality constralnts.

The graph covering problem, GCP, is a special case of the SCP in which

each column has at most two non-zero entries.

A‘grébh, G = G(V,E), consists of a vertex set V and an edge (arc) set
E, -1t theres are m vertices denated by Vs =1,2,...,m, and n arcs -
denoted by sj, J=1,2,...,n, let A be the vertex-arc incidence matrix.

S £, . ee = . = 1 and , = 0 faor
Thus if arc eJ connects v$ and vk then aia akg a al& .

% # 2,k. Associated with each arc Ej let there be a cost cj' The

resulting SCP 1s the problem, GCP, of finding a minimum cost saet of
arcs such that aéch,vertex is incident with at least ane arc in the set.
A path of length p 1s a sequence of vertices vio,bil,...,vip and a
circuit is a path V05V 150005000 i? # 2% for % £ L. A_Ezgé is a

connected graph with no circuilts.

1.2 Relaxations

- A relaxation of an SCP is an easier problem such as a graph
covering, network flow or linear program whose feasible region
contains the feasible region of the SCP. Thus solving the relaxation

gives a lower bound to the SCP.

The linear programming relaxatlon of the SCP, LP, is obtained by
. replacing xje{0,1} by 1 Z,lez 0 in the SCP. The dual linear program,

DLP, 1s then:
OLP max{lTulATu <ec,u >0}

Another relakation of the SCP gives a knapsack problem, KP:

T, m n m
KP min{c z| B, % a.x.> %

PNy z;el0,1}, 7=1,2,...,n}

where the weights Ai'z 0 are given and the weighted constraints of
the SCP are added together to give a single constraint.
Given an intéger program, IP,

-

IP min{ch]Ax_z b,Bzx >d, x integer}
' z

o Lagrangean rslaxation [68], LR(A), is the problem:

LR(A) min{ch - AT(BJ:-—;Z) |A.§c > b, x integer}
x A

The constraints'Ax.Z,E are chosen so as to glve an easily solved
problem LR(A) such aé a network flow, minimum spanning tree or
shortest path p;oblem. If L(A) is the optimal‘objéctive function
value of LR(A) this gives a lower bound to the optimal solution value
of IP.. If a solution, x, to the rélaxation LR(A) satisfies AT[EEQd]= 0

and is feasible for IP than x is an optimal solution to IP.

The best lower bound obtainable from such a Lagrangean relaxation is
given by L(A*) where A* is an optimal solution to the problem LR

below:

LR [L[A*J = r}rc%(L(A)

One method of solving LR is to use subgradient

optimization, in which, for a given value of A, LR(A) is solved. If

the optimal solution to LR(A), &, is not optimal for IP then a sub-

. gradienf ¥y is given by ¥y = d-BiQ» The Lagrange;mﬁltiplier A 1s then
updatgd by A « XA + oy_fof‘a poéitiv9 constant o. More gene?ally a
subgradient, v, of a function fW‘ép + R at a point XeRf is a‘bector
for which f(Ai-odJ-fEAJ‘s,cde for all de® and sufficiently small

og,0 >0. v ’ :

’

A network flow problem [F2] isused to describe the problem of finding

a minimum cost feasible flow in a network in which each arc has an

upper and lower bound on the flow and a cost. This is formulated as

the integer program, NF,

mn PCiktik
subject to
NF y | _
-'igik - igki = (<€) for all vertices %2
B Usp 2 Eik,z Rik for all arcs (Z,k)

where v(Z) = v if © 1s the source vertex, v(Z) = -v if © is the sink

vertex and v(Z) = 0 otherwise;

usq 1s an upper bound on the amount of flow in are (Z,k)

Rik is a lower bound an the flow in arc (Z,k).

A ?easible solution to the SCP is one that satisfies the constraints

and is known as a cover. A prime (minimal) cover, X, is a cover for

which no element 53 that 1s set egual to 1 can be set equal to O
without violating a constraint. An optimal solution to the SCP is a
prime cover if all the costs are positive. The optimal solution of a
problem P will be marked. by * and the aptimal objective function
value by v(P). An optimal solution of the SCP will be donoted by x*
and 3* = czx* = »(SCP}. An upper bound to the SCP will be denoted by

“zu and a lower bound by zz.

A successful technique in solving integer programs is branch and

bound [B3] ltree search). The given SCP corresponds to the root node
of the tree. Subsequent SCP's are generated by fixing variables in
the original problem and these give rise to successor nodes. The
boundé can be generated by solving a relaxation of the SCP at each

| node. A node i3 ﬁxumcl 'If mqf U«ﬂ»fp’uo&airy Conditims biolds:-

{1} The lower bound exceeds an upper bound, B, to
the SCP

{i1) The relaxed problem is infeasible

{1i1) The solution to the relaxed problem corresponds
to a feasible solution to the SCP and satisfies

the complementary slackness canditions.

No successor nodes are generated from a fathomed node, otherwise
variables are fixed and further subproblems are generated until all

the nodes have been fathomed. An active node in a tree search is

Figure 1.1

An Example of a Search Tree for a Brench and Bound Procedure

An upper bound, 3u. is 11
Nodes are labelled (:)

The lower bbund at a nocde, zz, 1s shown as b

®| 7

A depth-first tree search would search the nodes in the order

A, B, D, €, E, F, G, H

A breadth-first tree search would search the nodes in the order
A, B, C, O, E, F, G, H

‘A best bound search would search the nodes in the'order
A, C, F, E, G, H, B, D

Node C is the father of E

Node F is the brother of E

Nade D is fathomed since zz =2,
Nodes E, -G and H are active

Node F 1is branched

one which 1is naot fathomed and from which no branching has taken

place. A branched node 1s one from which branching has taken place

and which has not been fathomed. A father node of a node, Pu’ in a
search tree is the node immediately above Pu in the tree and a

brother node of Pu is one which has been generated frem the same

father node as that of P&. A depth-first tree search explores

recursively a successor node until a node is fathomed.¥he algorithm
then backtracks until a node from which a successor node can be

generated is found. A breadth-first tree search explores all the

successor nodes of a single node and then takes the first successor
node and explores all its successors, the second successor node and
all its successors and thus continues until all nodes are fathomed.

The best bound search chooses the next node from which to branch as

the one with the lowest bound. Other heuristics can be used for the
strategic problem of choosing the next node from which to branch.

Tree searches are shown in Fig.1.1.

1.3 Literéture Survey

Applicatiﬁﬁs of the SCP are listed in the first of four parts to this
section. A discussion of problems that are related to the SCP follows.
Solution £echniques for these problems are often applicable to the SCP.
Algorithm; for the SCP are reviewed briefly in the third part and the
final part outlines some of the many theoretical results that have
been obtained for the SCP. Surveys of the SCP are given in Garfinkel
and Nemhauser [GS], Gondran [G16] and Christofides and Korman [csa].
Many ﬁf the practical problems given in the survey paper for the SPP

by Balas and Padberg [BB] can also be solved using the SCP.

1.3.1 Applications

One of the first applications of the SCP was to . airline crew

scheduling problems [A2, B1, M5, R3, B26]. The columns of the SCP
represent sequences of flight legs and the rows represent crews.- The optimal
sdlutiqn’to‘the SCP then gives an optimal allecation of crews to flight
legs. More general personnel scheduling problems that have been

solved by SCP's are given in [T3]. The sCP has also been used to

allocate buses to schedules [G5, S8].

Location of emergency facilities can be analysed using SCP's [B22, B2S,
R1, T7, T8, W1].. In these problems each row of the SCP represents a

district in a town and each column a possible location for an emergency
facility such as an ambuiance or fire stat;on. A,iocaﬁio; problgm”
using the cardinality constrained set covering problem in which the

number variables that can be set equal to 1 is constrained is given

in [cs].

The SCP is also used in routing problems. For a delivery problem
each route can be represented by a column of the SCP and each
destination by a row. Associated with each route 1s a cost (distance)
and the SCP solution'gives a set of routes of minimum cost (distance].

that visits each destination. This is described in Pierce [P4].

The SCP has been used for circuit and switching theory in electrical
engineering and for minimising boolean expressions [B32, G612, Q1, R4,
sg]. Other network and graph theoretic problems, such as the vertex
colouring and minimum dominating set in a graph problems can be solved

using the SCP [B18, B13, B24].

Other problems to which the SCP can be applied are thosz of data

storage and information retrieval [C13, D1]. For an information

retrieQal problem each variable xj can represent a library and aij:=1
if and only if the informaticn indexed by < can be found in the Jth
library. The cost of visiting the Jth library is given by cj and an
optimal solution x* to the SCP has xj*= 1 1f and only if the Jth

library is used in a minimum cost set of libraries needed to access

all the information.

In production planning the SCP can be used for scheduling problems
such as a simple assembly line balancing analysis (84]. Decision

theory can also be modelled using SCP's [K3].

1.3.2 Problems related to the SCP and prablems used in its solution

1.3.2.1 Well-solvad._cases of the SCP

The SCP belongs to a class of problems that is knowrn as NP- complete
[62]. This means that it can be solved.by a nondeterministic algorithm
in polynomial time or that the depth{of a8 binary search tree is poly-
nomial [A1, H3]. No polynomial algorithm is known that can solve the
SCP. However, in the case when there are at most two 1's per column

of the constraint matrix,the SCP is a graph covering problem. Algorithms

for this problem are based on the matching algorithm of Edmonds [E1, E2].
This algorithm maintains a primal feasible and dual feasible solution

to the eguivalent LP problem and aims_to satisfy compleméntary slackness.

Edmonds® algorithm is 0(n*) and by using improved data structures

0(n2-8) [B1, L2] and 0(n2:5) [L2] implementation can be obtained. For
an efficient algorithm to solve successive matching problems on the

same graph. with slightly different costs for each problem;sénsitivizy
analysis can be useful; for example if the cgsts are-changed only on arcs

incidént‘fa onébﬁértiéhlér ver%e*. Thiéipfobédure'is‘aéscribed in a primal

algorithm for the matching problem in [616]. Further details on semsitivity
analysls for the case when only two costs on arcs are.- changed are given

in [w2], where the matching problem is used to solve a Lagrangean
relaxation of the SPP. An algorithm for the graph covering problem

is given in White and Gillenson [w5] which starts with a set of arcs

that cover all the vertices in a graph and removes afcs until an

optimal solution is obtained.

Unlike the GCP the node covering problem, NCP, of finding a set af
vertices in a graph of minimum weight such that each arc is incident

with at least one vertex in the set is not well solved except for

special classes of graph. These are firstly chordal graphs [G6]i.e. qraphs
.- ~.which there are no ciréﬁits:of length greater than three without
chords (a chord is an arc whaose ends are both vertices in the circuit].
Secondly, node covering problems on circle graphs can be solved by a
polynomial algorithm [G7]. A circle graph is defined by letting each
vertex represent a chord in a given circle. If two chords intersect

then the corresponding vertices are linked by an arc. Claw-free graphs
and interval graphs are other classes of graphs for which the node
covering problem can be solved optimally [82]. A claw-free graph 1is ape ’
without a subgraph that is a claw. A claw is thé¥Eipartite graph,

Kl,g. An interval graph is formed by letting each interval between

two numbers on the real liné be represented by a vertex and connecting
two verticeé if their corresponding intervals have a non-empty inter-
section. Lastly if the graph is a line graph the node covering problem
can be well solved [H2]. A line graph L of a graph G is derived by
letting each arc oflG represeﬁt'a vertex of L and~£wo vertices are

Jjoined iniL if and oniy if the,corresponding'ércs meet each other in

G.
H bi?ﬁ[*“‘f/ 8fnl‘3l\ h“s tha U-Ef‘HCQS pa_r-*“-iof\ul buul"o +usop *b’/ Vl ond V'L ‘.ﬁg.
EWh arey Jons o vertex w V, tua wrfex i Vy | Hence fuee e o odd Ortinily

Kus)\ |

10

The SCP is'an easily solved problem whenever the non-zero entries

of 4 occur 1in consecutive rows as the.example SCP1. below shows. (815

Exampla 1

B min 4ry + Sxp + 3wz + Bxy + 25
X
Subjsct to x) + X3 > 1
1 v X * X3 + x5 = 1
SCP, .

Ty ot X : Xy v x5 = 1
Xo + Ty > 1
xje{0,1} J=1,2,000.,0

Dynamic programming can be used to solve the problem by first defining
an m-dimensional vector Bk that has 1's in the first kX components and

0’s elsawhers. DOefine Bﬁ\xaj for a column gj of the SCP constraint
k 'k
matrix by Bi\aij = max(0, 81:

vectors 81,82....,Bk by:

-aij)' Let function Fk be defined on

E;[D)

Fk(B] = min [? _ ~a.]-+cé]

“for k= 1,25000,m,

The SCPKOPV{-'\N.VL» solubiom radea is Fm[Bm)‘. Unlike dynamic programming

when applied to the general SCP this problem doeé not need excessive
storage because only vectors of type Bk are Used in the abovg
recursion equation. This problem can also'be thought of as a shortest

path problem on a graph. An initial vertex vo is defined plus m

vertices vl,vz,...,vm, one for each row of the SCP. Each column aj of
the SCP is,represented by hj arcs, whers hj is the number of 1's in the
column. If the first non-zero entry occurs in row £; and the last in

row 15 then arcs (vi v2] are constructed for £ = 2;,2;+1,...%,.

1-1

11

Each arc has cost cj. The SCP solution is given by the shortest
path from vy to vm. The graph G1 for the example is.shown in
Figure 1.2. The shortest path from vy to v, is given by the path

(vg,v1,vy) and has cost 8.

Figure 1.2

Graph Gy in Which a Shortest Path Solves SCP1

Each arc 1s labelled with the distance between endpoints. (v, .v7,04)

is the shortest path from v, to Uy,

The case of cyclic matrices can be solved by a rounding argurnent. A

cyclic matrix, A(p,q), has p 1's per column and ¢ 0's. The Jth column

has 1's in rows J,J+1,....,J+p-1 (mod(p+q)) and O's elsewhere. As an

example A(3,2) is shown below.

Example 2
A cyclic matrix A(3,2)

-)
11 1
11 1
11
(R B i

In generai the LP solution to the unicost SCP with constraint matrix
Alp,q) is given by setting each xj equal to 9? and since there are
p+q columns the optimal solution value is equal to (1 + ¢/p). Suppose
p+q =K p+r where p > r > 0 and k and r are integeré. Then the lower
bound to an optimal solutionvuf the SCP is &k if r=0 and k+1 if r > 0
since 1t must be integer. A feasible solution to the SCP can be -
obtained by setting x3==1 for J=1,p+1,...,tp+1 where ¢ is the largest
integer for which #¢p + 1 < p+q. Hence if r=0, t=k-1 giving k% non-zera
components of & with total cost X and the SCP solution equals the

LP solution. If r > 0 then t=k and the cost of the SCP solution is
k+1 and again equal to the lower bound. The cost of the unicost SCP

with constraint matrix 4(p,q) is thus 1 + f&/ﬁ] where [y | denotes

12

the least integer greater than or egual to y. This type of constraint
matrix occurs frequently in scheduling problems and the determinant of
the matrix can be very large which means that traditional cutting

planes derived from LP, such as Gomory cuts, are unlikely to solve the

problem quickly.

Details of how the raws can be manipulated using graph theory to give

a related network flow problem are given in [B14, B15].

1.3.2.2 Problems of which the SCP is a special case

The SCP is a special case of the following uncapacitated plant

location problem, UPLP:

) t, 1 d r
mn B gE %5 Tag ¥ Ea O
x,y
. n J
UPLP SubJeét to j§1 xij.E 1 for ¢=1,2,....,m
mij s_yi for all 2,J
z..y.{0,1} For all Z.,J
_ i§*%; J
This can be transformed into an SCP by setting dij = o if aij =0
and dij =0 if aij = 1. The coefficients of yj in the object&ve

function are the costs of the SCP. The dual heuristic procedures
for this problem given by Erlenkotter [E4] can be applied to the
SCP as shown in Chapter 2 to give lower bounds. This problem is
similar to the bank float location problem, BLP, given by Cornuejols,

Fisher and Nemhauser [C14] as:

13

14

B m n 4 n
L, .5 WX, = B, CLY.
$?§ 21 g2 %% T 421 %Y
n o
Subject to I x..=1 for z = 1,2,...,m
g=1 *
BLP
n
1< ¥ y.<K
j=1
0 < xij < yj <1 1el,ged
i xij’yj integral

The worst case analysis for this problem is applicable to the SCP

[c1s].

The generalised set covering problem, GSCP, is an integer program:

GSCP min{cTilAm_z.l, xje{0,1} »Jd=1.2,...,n}
p .

in which the constraint matrix A can have @atciles equal to 0, 1 and
-1. It can be shown that any integer program is squivalent to a

GSCP [G17]. Itis assumad that tha inlgRe Uraaldes hare uppar aud fower borands,

A stronger result, given by Zarychta [23], is that any 0-1 integer
programming problem can be converted to an SCP. Since an integer
program can easily be transformed to a 0-1 integer program this
means that any integer program is equivalent to an SCP. Zorychta

shows that an mxn 0-1 IP can be converted to an SCP with at most

Eiéfll constraints and EL%;ll

bownded. .
Firstly anykIP can be transformed to one in which all the costs,

variables in 0(mn?) steps.

constraint coefficients and right-hand sides are non-negative.
Additional variables may have to be added at this stage. Let m and n

be the numbef of rows and columns, respectively in the resulting IP.

The IP:

IP m%n{chle=b ,xje{0,1}}

is then equivalent tao the following unconstrained integer program,
UIP:

T m Z 2
uIP mén{c z+ L, klax-b,) |xje{0,1}}

for sufficiently large kif Replacing xcmﬁ by a single variable xfj’

adding the constraints:

x@j'z Tp * xj -1

and transforming the objective function of UIP to remove redundant
information gives an SCP with constraint matrix of the form (S,I)
where S has at most 2 non-zero entries in each row and I is an

identity matrix of appropriate dimension.

Other variations on the SCP inclucde the dynamic SbP, DYSCP and a

J

stochastic SCP [H1].

The former is the following SCP with special structure:

R
DYSCP min|;Z, ;I

n
oy xjkcjk|j§1 aijkxjk2:1’ 221, ..,m3 k=0,1,..,r,xjke{0,1}.

The subscript k refers to time periods and for a location problem

xjk= 1 if a facility is located at site J in time k. The term:

n r
51 ko YT * %5,k-1 T FaE, -1
can be added to the objective function where ujk is a phase-in/

phase-out cost for facility J in time period k.

The stochastic SCP differs from the SCP in that a variable xj is
chosen to be in the cover with probability pj. The objeective 1s to
find a sequential procedure for selecting the variables x3 which
minimises the expected cost among all selection programs. In general

this is a hard problem to solve and therefore is only useful for

15

constraint matrices with special structure.

The SCP is a particular case of a general IP problemtfor which
heuristlics are often useful as shown in the survey by Zanakis

[21]. In the next chapter heuristics are given which compute upper
and lower bounds to the SCP and can be used to reduce problem size.
Other techniques that are usefuljfdr 0-1 programming problems are
branch and bound, Lagrangean reléxation énd logical tests. . These

are discussed fully in subsequent chapters.

1.3.2.3 Relationship between the SPP and the SCP

The only difference between the SPP and the SCP is that the former

has equality constraints and the latter inequality constraints. The
question of which is easier to solve has been considered by several
authors, e.g. [B8]. The answer depends on the solution technique

used because to find a feasible solution to SCP is trivial, but not

so for the SPP. 1In a branching strategy for the SPP fixing a

variable equal to 1 excludes many more variables than in the SCP and
therefore an algorithm based purely on branching would generate

fewer nodes for an SPP than for én SCP. 0On the other hand a lower
bound to the SCP based on a dual feasible solution to LP would also

be a lower bound to SPP. To improve the lower Eound for SPP may
require extra work by considefing negativevvalues of the dual variables
that are not feasible for DLP. Hence an algorithm based on lower
bounds from the dual linear program may be easier for the SCP than

for the SPP. Any SPP can be transformed to an SCP withoqt changing

the constraint matrix [B8]. This can be done by adding & Vealo?: of slack
variablesy to the SPP with suitable large cost 6, then SPP is

equivalent to:

16

17

min[-cz+01 y |Az=y=1 y= 0, 2.e10,1} , §=1,2,....n]
x,Y - - J

Substituting for y and letting ¢’ = QlTA—c gives the SCP:
m%n[c[x-emlegzj',xﬁe{0,1} , 3=1,2,0.0,m]

To transform an SCP into an SPP the canstraint matrix A must be
modified [K4]. Each column aj is represented by lajl columns each

of cost 05. The rth column derived from column aj is equal to

column aj with the first (r-1) non-zero elements set equal tao 0.

The modified constraint matrix then has J,g::lajl columns which is
equal to the number of non-zero entries in the original constraint
matrix. The problem size can be reduced by the dominance tests of
§1.3.3.1. The SPP resulting from these additional columns is net
equivalent to the SCP from which it was derived, but o algovithem waad
ko sSWwe fwis SPP [icyd com ba adapled & sile -t Sch.

1.3.2.4 Network flow problems

In this thesis two network flow relaxations of the SCP are given.
Both graphs have been describéd before but have not been used in
Lagrangean relaxations of the SCP as in Chapfer 4. The first graph,
in which vertices represent both rcws and columns of the SCP and arcs
represent non-zero elements of 4, was first used by Swissair for
airline crew scheduling and the costs were assigned to arcs by a
somewhat arbitrary procedure [AZ]. A variation of this graph in
which columns of the SCP with less than 3 non-zero elements were
treated differently from other columns is given by Glover and
Mulvey [G15]. They solved an integer programming problem with 300
rows and 460 columns with a éimple depth first search in 10 seconds
(CDC B6600) which had proved to be intractable by using linear

programming for a lower bound. The network formulation had 2860 arcs

18

and 780 nodes. The success of this method, thch can only give a
bound as good as that obtained from linear programming, can be
attributed to the efficient data structures in the network flow
routines of Glover et al [G14] that were used. The simplex pivats
on these networks then have a simple graph theoretic interpretation
because the basis is represented as a tree. Efficient labelling
schemes enable simplex pivots to be made by traversing a tree [G14,

G15].

The second network in which the vertices represent rows of the SCP
and paths represent the columns was used in a relaxation for the
unicost SPP by Nemhauser et al [N1]. Again the bound is only as
good as that obtained from LP. A more theoretical interpretation of
the second network was given by Fulkerson [F3, F5] in conjunction with
blocking and antiblocking theory. The main purpose of this was to
give a round-off result similar te that for cyclic matrices that
could be used in a bound for the SPP. The network was also used by
Tind [T4] again in conjunction with antiblocking theory to get a
lower bound for the SPP. It has also been used in electrical
engineering for finding a set of paths in a circuit that start at a

source and end at a sink and pass through all vertices, [Ha].

1.3.3 Algorithms for the SCP

- All practical algorithms for the SCP have three components. The first

is preprocessing in which elementary tests are used to remove some of

the variables and constraints. The second is to find upper and lower

bounds to the problem. The third is to close the gap between the

bounds by either generating more problems as in branch and bound

methods or reducing the size of the feasible region as in cutting

plane methods. The preprocessing strategles for the SCP are well

known and comments concerning theilr practicability are given here.
There then follows a survey of methods for lower and upper bounds tao

the SCP.

1.3.3.1 Preliminary reductions

Before using an algorithm for the SCP a number of elementary reductions

can be made.

(a) Negative Costs

If a cost cj is negative then xj equals 1 in any optimal solution of
the SCP and all rows covered by aj can be removed. In a practical
SCP it 1is unlikely that any of the costs are nega&ive, however if the
SCP is being used as a sub-problem of some other problem as in
Lagrangean relaxation it is likely that negative costs will occur

and thus this reduction test 1s useful.

(b) Single 1 in a Row

If any row,Z, of the constraint matrix has just one non-zero element,

say, then =z, must equal 1 in any feasible solution to the

%414) 7(2)
SCP. Although this is unlikely to be useful initially in a branch
and bound procedure, further down the search tree subproblems do

occur with single 1’s in a row and it 1s here that this reduction

is most useful.

(c) Row Dominance

If a for any two rows 71 and £, all § then row Z; can be

. . >a. .
11d — tad 4 .
removed as any x satisfying the constraint atzx,z 1 will also satisfy

atlx_z 1. In a randomly generated problem in which the coefficients

aij are independent random variables with p a fixed probability that

20

aij = 1 the probability(given any two rowslthat one dominates another

is:

Plp,n) = 201-p+p2)7 = (1-2p+2p2)"

For small p, equal to 0.05 say, this is wvery small. This reduction

1s therefore only likely .to be useful when nris very small or e is
larger. The prbbability'can be increased and 7 reduced by conmsidering
- the test ohly on atblogk of columns as in awbraqghing strategy éiven

in Chepter 7. LT

(d) Column Daminance

For a subset S of columns and a siqgle column Jo if jés"cj-f cjo

and .L, Q.. > for all < then column jo can be removed from the

Jes “1J —-aijo
praoblem. This test means that rows covered by column jo can be
covered for no greater cost by columns in S. For a unicost problem

that is randomli generated as in (c) the probability that one column

dominates ancther is Plpym) - . which is small for sparse matrices.

Thus these tests are only useful if m is small or the constraint

matrix is dense for random problems.

(el Reduced Costs

I a dual feasible solution to LP, u, is available then the reduced

cost of column J§ is given by:

§. ¢, - uTa
Jg - d J |
If 2z, is a known upper bound on the solution of the SCP then zz=:f%4

is a lower bound and if

..
sj__ u a

0 in any solution with value less than zu.

ct
o
(U]
3
8
it

If 2 is the cost of a known feasible solution to an SCP with integer

costs then zu = Ezfﬂ:¥e for any € > 0 is-a suitable upper bound. In

* See Appendix 1.

21

practical problems reduced costs are extremely useful. They are not
useful in praoblems for which the cost of a column cj.is equal to a
scalar, 0, say,times the number of 1's in the column (i.e.

cj==6 i§1 aij)' Then a dual feasible solution is U, = 8 for all ¢

and all reduced costs equal 0. 1In this case if the corresponding SPP
has a feasible solution this will be optimal for the SCP. If the
constraint matrix has some structure then the column dominance tests
may work well as all that is required, given a column jo, is to find

a subset of columns, S, for which jg ai.==a..o for all Z and then

5 "tg g

column Jo can be removed.

1.3.3.2 Sorting the constraint matrix

Both the rows and columns of tHe constraint matrix can be presorted.
The algorithms given in [G4, K4, M1, P5] for set partitioning and

set covering sort the columns of the constraint matrix A into blocks
Bi’ £=1,2,...,m. A black Bi is a set of columns whose first non-zero
entry occurs in row %, that is ai'j:=0 for 2'<% and aij=:1 for all
j!;Bi' The advantage of this approach for the set partitioning
problem is that if z, is fixed equal to 1 in a branch and bound
scheme then all blocks Bi for which aij=§1 can be removed from the
praoblem. Experiments on row.permutations have been carried out for
the SPP in [M4] and [B7] and it generally seems better to try and

cover rows with the least number of elements at the top of a branch

and bound tree.

In pradtice the procedure that generates the SCP constraint matrix
from a scheduling problem say, can usually be designed to produce a

matrix in block form as shown in §7.3.2.d.

22

1.3.3.3 Algorithms for lower bounds to the SCP

The LP solution was one of the first lower bounds to'be used in a tree
search method for the SCP [L5]. A problem with the LP is that it
cannot handle large sparse problems because of degeneracy and this
means that many simplex iterations are required to reach optimality.
An improvement is to solve OLP, the dual of LP, for which a sub-
optimél solution gives a baound to the SCP [82]. Although faster

than LP, DLP.is slow to solve large problems,

" Another relaxation is the knapsack relaxation in which the constraints
of the SCP are added together to form a single éonstraint 87, P5].
This gives a very weak relaxation and it is usually possible to get

an improvement by premultiplying the constraihts by positive scalers

before adding them together.

Heuristics for findlng feasible soluﬁions to DLP are given by Balas

[B5] which are discussed together with other heuristics in Chapter 2.

A group theoretic relaxation which depends on the size of determinants
of square submatrices of 4 is given in [G16], but group theory has

not been very successful in the solution of large scales 0-1 programs.

Lagrangean relaxation [GB] has Been used for a wide variety of
combinatéfial pfbgrams such as the travelling salesman [H4],
facility location [G8] and cluster analysis [M6] problems.
Etcheberry [ES] used this approach for the SCP in which some of the
constraints were relaxed and the remainder had no variables in
common. This relaxation was also used in the disjunctive cut
approach of [B7]. Subproblems of the SCP that are network flow and
graph covering problems are solved by Lagrangean relaxation in this

thesis.

1.3.3.4 Algorithms for upper bounds to the SCP

Upper bounds to the SCP can be found from any feasibie solution and
heuristics have been studied and analysed by Johnson [J1], Chvatal

[c11] and Ho [H7?]. One of the easiest ways to find a prime cover is
to use the"least-cost-per-constraint-satisfied"to choose columns of

the SCP that are in the solution. Hence if cj, = min cj where

T 3
h; hJ
m
h,= .I, a.. then x,, 1s set equal to 1 and all rows covered by x.
J =1 g J Jr

are removed. The procedure is repeated for the remeining rows and
columns until all the rows are covered. The resulting cover is then

reduced to a prime cover. If instead of cj' the minimum of any
"
function f[cj,hj) is chosen as the criterion for fixing xj = 1 then
d
the upper bound 2, satisfies 2 < 2* .I, 1 where d = max[M.I and this
Uu Uu J=1 3- Jel J
o~ -7 - bound . -. can be qftained.
An r-optimal method for an upper bound is given by Roth [R2]. " This
method means that if any subset of »r columns is deleted from the pro-
blem no better solution can be obtained by covering the remaining
rows with another subset of up to » columns. For r = 1 this would
mean that if xj = 1 in a féasible solution to the SCP then setting
x. = 0 and setting another variable, xﬁ, say, equal to 1 would not

o d
vield an improvement in the bound. This type of method is also used

by Baker et al [B1] for solving large airline crew scheduling problems.

1.3.3.5 Branching strategies for the SCP

Any branching strategy can be divided into two parts, the tactical
problem of deciding how to fix variables at a node to generate sub-

nodes and the strategic problem of finding which node to expand next.

23

The easiest approach to the tactical problem is to alternately fix

xﬁ = 0 and 1 [BS]. Thls does not work very well for.most problems.

The algorithm of Pierce and.Lasky [P5] uses a depth first binary

search but the block structure of the constraint matrix means that
additional variables can be removed. In an algorithm for the SPP
Marsten tM1] branches on blocks of variables instead of a single
variable. Only one variable in each block can be fixed equal to 1.
Blacks of variables can be removed at each node of the search tree
instead of fixing a single variable xj equal to 0 as in a conventional
tree search.

Etcheberry [B5] uses logical combinations of rows to branch. Suppose
aix > 1 and ai’x‘z 1 are two constraints of the SFP with some variables
occurring in both constraints. These can be used to divide the SCP into
two problems. In the first problem the st of variables that occur in
both constraints must be greater than or equal to 1. In the second

problem their sum must egqual to 0. As an example consider the constraints:

1 .fx2*x3 = 1

and. @ xg +ay > 1

Then either) + 23 > 1

or xy =x3 = 0 implying that x; > 1 and xy > 1

Marsten’s algorithm for the SPP generates a subset of the tree search
nodes generated by the above method when the latter is implemented as

a depth first strategy.

A theoretical survey of branching strategies for IP is given by
Ibaraki [I1]. As expected the depth first search is less likely to
work well than say a heuristic search where the next node to branch
form is chosen by a rule such as the node having the best bound.

Breu and Burdet [831] give a computational survey of branching

24

strateglies and a computational comparison between depth-first and
breadth-first methods for the SCP is given in [TG]. . Dominance tests

to eliminate nodes are given in [K4].

1.3.3.6 Cutting plane strategies for the SCP

Traditional cutting plane strategles for integer programming have been
employed by Salkin and Koncal [S2] who used Gomory cuts [G3] derived
from the tableau for DLP. However the large number of cuts generated

makes this method unsuitable for large problems.

An algorithm that was able to solve some very large problems (up to
150 rows and 7000 columns) and yet failed on other smaller ones and
was therefore not robust was developed by Martin‘[MZ]. This was a
cutting plane algorithm based on Gamery cuts with additional steps to
try and enforce integrality of the simplex tableau. Other cutting
plane approaches based on disjunctive cyts have been proposed by
Balas [B5] and Lev and Soyster gave a similar method which uses an LP

relaxation [L6].

Disjunctive cuts are generated by considering a set S of reduced costs
for which jgs Sj.Z 2 - z2 where 2, is the lower bound corresponding
to the dual variables used to give‘ég. It can be shown that at least
one xj, JjeS, must be 0 in any solution to the SCP of value less than
Derniss are ywta wa (B85]
zu. Cuts can then be generated that ars SCP type constraints.,\These
cuts are superior to the cutsxgenerated by Bellmore and Ratliff [B19]
in an earlier cutting plane method and preliminary computational tests

indicate that they are capable of solving sparse problems of up to

200 rows and 1000 columns more efficiently than previous methods.

Strengthening inequalities in 0-1 integer programs has been studied

by Zemel [Z2] but this method seems unlikely to be useful in a practical

algorithm for the SCP.

25

26

1.3.4 Theoretical Results for the SCP

1.3.4.1 Complexity results

The SCP is an NP-complete problem which means that it is unknown if
it can be solved by a deterministic algorithm in polynomial time.
It can be solved by a non-deterministic algorithm in polynomial time.

A non-deterministic algorithm can be solved by a tree search in which

the depth of the tree is a polynomial in the dimension of the problem.
Further detalls are given in Aho, Hopcroft and Ullman [A1] (Chapter

10), Horowitz and Sahni [HS] (Chapter 11) and Garey and Johnson [G2].

Q1 A question can be posed: Is there a polynomial time algorithm
that gives a solution 2, to the SCP such that (z, -2*)/3*<e,

for a glven €>07

No fixed value of ¢ 1s known for the SCP. For the unicost SCP
Johnson [J1] shows that the heuristic of the previous section gives
zu;5[1 + log(k))z* where k is the maximum number of 1's in a column

of the SCP constraint matrix.

Q2 A second question arises: Is there a polynomial time algorithm
that gives a solution 2, to the SCP such that (zu-z*]/z*:ge

‘most of the time?

Karp [KZ] proposes a tfee search algorithm for the unicost randomly

generated SCP in which unpromising nodes are discarded and the number

bound to the SCP.

27
of nodes expanded 1s 0(7) and which gives g8, < (1+e)z* almost Hlways.
Probabilistic search methods have also been studied by Gimpel [G12] who
shows that for sufficiently large random unicost set'covering problems
randomly picking columns to cover each uncovered row until all the rows
are covered solves the SCP almost always within 1+e. These results
say little about algorithms for SCP's with specific costs or problems
less than a given size, but Karp's result helps to explain why a trae
search method which has exponential worst case behaviour can very often
praoduce an optimal solution quickly even if it cannot be proved so.
Further, complexity results are given in Karp [K2] and Sahni and

Gonzales [S1].

1.3.4.2 The set covering polyhedron

The convex hull of all feasible solutions to the set covering constraints
(Ax > 1, xjs(0,1]]defines a polyhedron, P. Facets of P are linear

inequalities that are satisfied by exactly d * affinely independent points

xeP where d is the dimension of P. Facets uniquely define the econvex hull

of the feasible region of SCP unlike cutting planes which do nnt necessarily
intersect the convex hull. For an example dquﬁs:ie&ﬁ;; ..~ . for the SPP
see [PS]. The reason that the study of facets is useful is that they can be

used to generate cuts and thus reduce the gap Hetween an upper and lower

~ Fulkerson [F3] shows that if the row dominance tests of §1.3.3.1 are

used to remove all redundant rows then for the set covering polytope
the remaining inequalities Az > 1 define all facets of the form

mc > 1 where m is a 0-1 vector. A complete characterisation of all

* r vectors Tyseees®, are affinely independent if the veectors

xz—xl,...,xr—xl are linearly independent or alternatively if every

vector ¥ can be written in at most one way in the form:

r r
Yy = k§1 Akxk nhere kET Xk = 1.

28

the facets of an integer program is only known for a few speclal cases.

One of these is the GCP.

The constraints that must be added to a linear programming relaxation

of the GCP are the following:

iEree) 5 2 tle] + 172

.where s is a set of vertices with odd cardinality and T(s) is the

index set of arcs that have at least one end in s, for all:-such s.

These are the facets that are used in the graph covering relaxations.

Iﬁ principlé i;_woﬁla>5e possible to solve an SCP by considering a
feasible solution as a vertex of the set covering polyhedron and then
finding all adjacent vertices , that is other prime covers, and

showing that none of them have lower objectivg value than the given
feasible solution. In practice only polyhedra with a few vertices

can be analysed this way and therefore this is not a practical

approach. Codes for adjacency in polyhedra are given by Von Hohenbalken
[v1] and a mathematical analysis of adjacency is given by Hausmann

and Korte [H3].

1.3.4.3 The structure of the constraint matrix

The question of when the solution to the LP relaxation of the SCP has
an integer solution has been studied extensively, but no necessary
and sufficient conditions exist. The most well known sufficient

condition is unimodularity. The constraint matrix 4 is unimodular

if all square submatrices have determinant equal to 0, 1 or -1, In
this case the LP has an integer solution [G3]. A balanced 0-1 matrix
is one for which no submatrix of odd size has row and column sum
equal to 2. If the matrix 4 is. balanced then the LP solves the SCP
rPZ]. An eaflier result which is less strong was given in the form
of a tree structure associated with the constraint matrix by Meir and
Moon [M3]. Cyclic matrices can be transformed by using trees to give

a network flow constraint matrix [B14].

1.3.4.4 Duality

Analogous to linear programming dualitx,a duality for integer
programming can be developed using subadditive functions [WB].
A function f is subadditive if fla) + f(b) > fla+b). Thus,one can

define the dual of the SCP as:

i max F{1) (1 is an -dimensional vector
F of 1's)
DSCe subject to Fldx) < ¢
F subadditive

Thus, for LP duality F(.) is the function uT[.J'For u > 0. For the
problem IP giVen a subadditive function #F with F(0) = 0,a generalised

Lagrangean relaxation, GLR(F), is given:

GL(F) = m:jx.:n cTac - Fldx-b)

GLR(F) subject to Bx > d

x integer

Then analogous to linear programming duality, where v(LP) = v(DLP),

v(IP) = v(GLR) where GLR is the problem:

29

[—max GL(7)
GLR F subadditive
F(Q) =0

The optimél solution to GLR canndt be found easily without using
branch and bound, cutting planes, dynamic programming or any other
technique of integer programming. However state space relaxation
could be used to get lower bounds as used in Chapter 6. Wolsey [W6]
uses dynamic programming on a large network to generate subadditive

functions for the SCP.

1.3.5 Data Structures

As can be seen by the results for network flow problems, efficient
data structuring is essential for fést algorithms. This is even more
impartant for combinatorial problems where subproblems have to be
solved many times. It is also useful to have a data structure which
allows transition from one subnode of the tree search to another.
Data structures are explained in [A1, HB]. Algorithms for the SCP
which store the non-zerc entries of'the constraint matfix in bits
are those of Garfinkel and Nemhauser [G4], Pierce and Lasky [P5]

and Korman [K4], Storage in lists is used by Marsten [M1], Mevert
[M4] and gives faster computation times. Chapter 8 describes the
data structures used in the algorithms here. A survey of sparse

matrix techniques is given by Duff and Reid [D4].

Data structuring for the graph covering relaxations follows those
given in Gabov [G1], Derigs [D3] and Even and Kariv [EE] for the

matching problem.

30

31

CHAPTER 2

HEURISTICS FOR UPPER AND LOWER BOUNDS TO THE SCP

2.1 Introduction

Heuristic algorithms are not guaranteed to solve the SCP optimally
but they can be used to get both upper and lower bounds on the
solution cheaply and quickly. A survey of three heuristic methods
for a class of IP's proposed by Senju and Toyoda [SS], Kochenberger,‘
McCarl and Wyman [K3], and Hillier [H5] is given by Zanakis [z1].

The IP's have inequaliéy constraints and non-negative coefficients
and thus there is no problem finding a feasible solution. This

study concludes that for large problems there is little to choose
between the three methods in terms of bOundgmug_ For small problems
Hillier's method was more accurate, but it was unsuitable for large
problems because it requifed an excessive'amount of storage. 1In
terms of speed.the Senju-Toyoda method was the fastest. Other
heuristics for both upper and lower bounds are given by Balas [B5] and
Balas and Ho [B7]. The SCP is a spécial case of the uncapacitated
facility location problem. A suocessful.heuriétic for this problem

. devised by Erlenkotter [E4] can alsoc be applied to the SCP to improve

the lower bound.

The heuristics used in this chapter obtain a lower bound, 2y, to the
SCP from a feasible solution, u#, to DLP which means that ZQ can

never be greater than v(LP). An initial value of u is obtained from
an adaptation of Senju-Toyoda's heuristic which calculates the least

cost per constraint satisfied and is summarised in Procedure 1 in

2.2, The lower bound is improved by testing the linear programming

complementary slackness conditions for u and a feasible solution, x,
to the SCP. I they are satisfied then is an optimal solution to
the SCP. This is an applibation of Erlenkotter's method and is
described in Procedure 2 in 2.2. Reduced costs are associated with
any dual feasible solution, u, to the LP relaxation and these can be
used to remove variables. The heuristics are also used to obtain

initial costs for the graph covering and network flow relaxations.

Besldes giving lower bounds to the SCP Procedures 1 and 2 also give
an upper bound. The computaticnal results of §2.5 show that this
bound was often above the optimel solution to the SCP and thus

further methods of obtaining upper bounds are discussed in §2.3.

2.2 Outline aof the Heuristic Methods

The first heuristic, described in Procedure 1 below, initially sets
u=0 as a dual .feasible solution to the P which implies that the
associated reduced costs, s, are equal to the costé é. A column Jo
for which the reduced cbst per constraint satisfied is least is
chosen and dual variables are fixed for all rows covered by this
column. These rows are then removed and the procedure is repeated
until nd rows are left. By setting xjo= 1 for each such column
chosen a feasible solution to the SCP is obtained which satisfies
sjom50==0. This solution may be improvéd by reducing x to a prime

caover. (A description of the language used in the Procedures is

given in Appendix 5). An excrple IS givea in A’Wiﬁ 3.

32

33

PROCEDURE 1 INITIAL BOUNDS (SCP, 2,0 2y, T, ul

COMPUTE UPPER AND LOWER BOUNDS TO THE SCP

Input: SCP The set covering problem.
Dutput: zu, z, Upper and lower bounds to the SCP
A feasible solution to the SCP

u Dual variables, feasible for DLP

1. Initialise Variables

u:=0 Set dual variables equal to O
m :
@j:=,i§1'aij for all J Set hj equal to column sums
g :=¢ Set reduced costs equal to costs SCP
J :=1{1,2,...,n} J is the index set of columns
I:={1,2,.0.,m} I is.the index set of rows
L :=¢ L is the index set of non-zero elements
of x
k:=0) K is the iteration counter.

Ottar dlefrmetions a*iaiﬂw1|g S

2. Iteration k : -

X
]

k+1

3. Calculate Least Reduced Cost Per Row Covered

= &§. /h., = min §./h. Calculate minimum reduced cost
do’ "Go T eg "3’ cost per
constraint satisfied

Lu {Fo} Add column jJo to the cover.

og]
n

34

4, Calculate Dual Variables in Rows Covered by Column jo
For 7 e M. ﬂ;l’

ui: = ui + A Increase dual variable

T : = IN{Z} Remove. row © from further consideration
135: J € Nilw J

sj: = 8j - A Decrease reduced costs

hj: = hj -1 Decrease columa sums

If h. =20

ama— J .

then " J: = NG}
If I#¢
then goto 2.
5. Reduce & to a Prime Cover
For J e L
z , e .
If FeL aig > 2 for all 7,E:M‘7
Remove column J from the cover if
all rows it covers are overcovered

Set L: = L~{j}
6. Calculate Upper and Lower Bounds
Z 1 = L e Calculate upper bound

m ,
g2+ = I U.) Calculate lower bound
L £=1

7. Calculate
xji = 1 for JelL

= 0

far JéL

35

8. Test for Feasibility to the SCP

= 0 for any < Set U, = @ and 3, = 2 +@

L .
1T geL %5 %; [)

Ei 32 > zu

then the problem is infeasible.

PROCEDURE 2 describes the second heuristic which checks that the
primal and dual feasible solutions, x and u, obtained by PROCEDURE 1

satisfy the eptimality conditions for linear programming, i.e.:

a. Primal Feasibility

Ax
L

v

1 . (2.1)

>0

[\
8

b. Dual Feasibility

Aus<e (2.2)
u>0
c. Complementary Slackness
uf (az-1) = (2.3)
o te=aTu) = 0 (2.4)

Constraints (2.1) and (2.2) are satisfied by x and u. Also x was
chosen to satisfy (2.4]. PéUCEDURE 2 adjusts u if constraints (2.3)

are not satisfied. This is done by choosing a constraint Z for which
us EAx-l)i'% 0 and reducing u, to 0. This alters the reduced costs

aéa an attempt is made to increase dual variables u; for which

(Am-l]i = 0. If it is possible to increase the lower bound by these
adjustments then constraints (2.4) may be violated and another vector

x may have to be chosen. The adjustments to u are made so that it is
always possible to find a vector x satisfying 2.4. If (2.1),(2.2),(2.3)

and (2.4) are all satisfied then the SCP is solved. The method is given

in PROCEDURE 2, below:

6 -

PROCEDURE 2 LPBDUND (SCP, 2 Z9, &, u,)

ADJUST PRIMAL AND DUAL FEASIBLE SOLUTIONS IN AN ATTEMPT
TO IMPROVE BOUNDS

Input: SCP Set covering problem
U Dual feasible solution
x Primal feasible solution satisfying sja3==0
Qutput: u Dual feasible solution
x ‘ Prime cover satisfying sj?j= 0
zu,zl Upper and lower bounds to the SCP
1. Initialise Variables
L: = {j[xj=1} L is a list of non-zero indices of z
r: = I _(a.x.~-1) r. is the slack variable for the Zth canstraint
jeL d J = T
2. Check Complementary Slackness on Rows, ui(azx—13= 0
For 2 =1%tom
If uiri # 0 Check complementary slackness conditions
then A: = ui . If they are not satisfied reduce ui to O
u.: =0
1’ ~
1., =
J : L u Ni
I': =U'.» M'
Jeg* d
For jeNi, sj:==sj-+A Increase the corresponding reduced costs

For 2' = 4+1,....,m,1,2,...,2 Try to increase some other U

If 2'el’ and I a..x.=1

- JeL v J
then A: =.,mig gj
JENi
If A>0
then u.,t = U4A Increase u.,
—_— 7 Sz
g.: = &.~A Decrease corresponding reduced costs

K] .3
(for JeNi)

3. Check min s. = 0 for Each Row 7
Jely
If 4 = min SJ- # 0
JEN?:
then ui: = ui + A ‘
.t =g, - A for all JeN.
sJ SJ Jd i
4. Check Complementary Slackness for Columns J for which ,ijj.= 0
For JjeL
If s.p. 70
= 5%
then L: = L\{}' } Remove column j from cover if ijj #0
r: = r-q. -~
Jd
5. Cover Exposed Rows
For =1 &g m
It r, = 0
then .L: = L U {jo} Find a column to cover exposed row €
r: = r+aj0 Adjust slack variables
where 8. =min §.
Jo JelN. J
A
6. Reduce & to a Prime Cover
For Jeb
If, for all ieMj, r’i22 Remove acj from cover if all the rows
then L:=IL ~{j} it covers are overcovered
r:=r=-q.
J
7. Calculate Upper and Lower Bounds
= 3 :
zu. jel c(7 Calculate upper bound
m
2 = I U, Calculate lower bound
A =1 1

37

The heuristic of PROCEDURE 2 is repeated until no change in either

the upper or lower bound is obtained. The results are summarised

in PROCEDURE 3, at the end of which reduced.costs are used to remove

variables.

PROCEDURE 3 HEURISTICS (SCP, B 2

o0 L u)

COMPUTE UPPER AND LOWER BDOUNDS TO THE SCP AND REDUCE THE

PROBLEM SIZE USING REDUCED COSTS

Input: SCP

Qutput: SCP

Z ,z
u’”L
z

1. Initialise Variables

BDCH: = .FALSE.
KMAX

® . T O

2, 1 =00

The set covering problem

The set covering problem, possibly
reduced in size

Upper and lower bounds to the SCP

Feasible solution corresponding to
best upper bound

Feasible solution to DLP

BOCH is a logical variable which is
.TRUE. when the lower bound has
changed

Maximum number of iterations allowed

Set iteration counter to O

VInitialise bounds

38

2. Calculate Upper and Lower Bounds

INITIAL BOUNDS (sce, 2 s zl' x, u)

Use Procedure 1 to get initial bounds

then if zz = o then the problem is N\feo,sgm

else 2, is the optimal solution to the SCP

else goto 3.

3. Calculate Improved Bounds, Iteration X

k: 1 -Use PROCEDURE 2 to improve bounds
' . and replace old bounds by new
If k > KMAX then STOP : bounds if they have improved
else LPBOD(SCP, 2 ', 2.7, ', u')
» u 7
If. z "<z
- u
. = r
then zu. zu
x: = x!
!
Eﬁ 22 > zl
. [4
then zz. > z2
u: = u’

If BDCH = .TRUE.
then repeat 3

else goto 4.

4. Use Reduced Costs to Reduce Problem Size

For 4 = 1,
Eﬁ sj,z zu - zl

then remove xj from the SCP

zu and 2, are upper and lower bounds

2
STOP.

The computational results for these methods are given in §2.5.

40

2.3 Additional Methods for Computing Upper Bounds

The method used in Procedure 1 of calculating an initial solution x
was to choase columns for which sj/hj was the least and then reduce
this to a prime cover. Instead of using sj/hj three other functions

were used, i.e.:

- (1) cj/%j
J/loglh,
(i1) cJ/ ogl J)

(111) cj/hjlog(hj]

where hj is updated as rows are covered and log equals the logarithm
to base 2 if @j;:1 and 1 otherwise. If hj is not updated at each
iteration and remains constant then the bounds obtained are not very
good thus the reason for updating % at each iteration. For large
problems using (i), (ii) or (iii) often gave a better bound than the
one obtained at the end of Procedure 3. 1In [B7] Balas and Ho found
that (i) and (ii) were the most useful functions on large randomly
generated problems in that they gave the best upper bounds most

often.

Another approach was to take a feasible solution to the SCP and dslete
a variable xj and replace it by another variable. This approach
produced many solutions of the same value as the original feasible
‘solution but only on small problems did it‘produce a solution that

was better than one obtained by one of the preceding metheds. This
method of caiculating an'ubgéf.bound generalises to the r-optimal
method which was first used by Lin [L7] for the travelling salesman
problem and later by Roth for the SCP [R2]. Table 2.1 présents the

upper bound calculations for several SCP's using the above methods.

41

2.4 Reasons for Failure of the Heuristics to Solve the SCP

The value of the lower bound obtained from the heuristics is never
greater than that obtained from the LP relaxation as the former
bound is cobtained from a dual feasible solution to the LP. The
heuristic method, like a complementary pivot algorithm [L4a] for the
LP, maintains both primal and dual feasible solutions but fails to
reach the LP optimum because the primal variables are restricted to
take integer values and also unlike a complementary pivot algoritbm
the heuristics always maintain ijj = 0 for all j. Thus even in

cases where the LP solves the SCP the heuristics may not do so.

One reason that the heuristics can fail to solve.the SCP is because

of an odd circuit in a graph covering relaxation gf the SCP. The
graph covering relaxations are defined in Chapter 5. The 0-graph

of a graph is a subgraph which consists of all the arcs with reduced
cost egual to O. Spppose that the following SCP, SCP2, which is also
a graph covering problem, has dual feasible solution and corresponding
reduced costs equal to 0 in Columns 1 and 2, i.e. é;==82= 0. Then

if SCP2 is given by:

v

|subject tox; * 1
SCP2 xy *+ x3 > 1
x1 3 = 1

xjs{0,1} J=1,2,3

e

a prime :cover generated by Procedure 1 would'be ry1=%2=1, x3=0,
If uy >0 then complementary slackness is not satisfied. If s3=4A
and A<u; then Procedure 2 sets up<us+A and u;«uj; -A. Hence the
lower bound is unchanged. However s)x; is no longer equal to D

hence the prime cover is changed to x= (0,1,1) which has a cost less

42

than that of = (1,1,0) if A>0. If A>u, then u becomes equal to

(0, up +uy, ug+min(A-u;,uy)). This means that the lower bound is
equal to u; +up +ug+min(A-uy,%;). Since the last term is positive
the lower bound has increased. If neither the upper nor the lower
bound change for this problem then A=0 and if for simplicity it is
assumed that e;=ep=e3=2 and uy=1uy=uz=1 the bound can be improved
by using a cut x; +xy +x3>2. This corresponds to an odd circuilt in
the graph with vertex-arc incidence matrix equal to the constraint
matrix above. The above analysis can be extended to larger constraint
matrices but as it is lengthy will not be consldered here. Example
SCP2 suggests that the vertex weights obtained by the heuristics will
give columns of the SCP with reduced costs equal to 0 which in graph

covering relaxations of the SCP will give odd circuits,

2.5 Computational Results

Most sparse SCE'S with less than 20 rows and less than 100 columns

can be solved optimally using heuristics without entering a tree search
and thus all the test problems have at least 30 rows. The results,
showing percentage differences betWeen upper .and lower bounds at the
root node of a braneh.and bound tree, are givemn in Table 2.1. Table 2.2

shows how the heuristic procedure performs in a best bound tree search.

Columns (1) to (3) of Table 2.1 give the -number of rows, m, number
of columns, n, and density, p, of the SCP. The density is the
ratio of non-zero entries to mxn the total number of entries in

the constraint matrix.

Column (4} gives the structure of the constraint matrix. Type A

means that there is a fixed probability p that any element aij= 1

43

Type B has a density that varies uniformly from p/2 in row 1 to

3p/2 in row m.

The cost structure is given in Column (5) and indicates that ﬁj= 1
for all J. An X indicates that e, = 2 ?1a.j +5, but if e exceeds 15
it is reduced by 10. The caosts cj wa?é not set equal to i?1a..
because then a dual feasible solution is u.=1 for all % a;d all
reduced costs equal 0. For this type of problem 1f the corresponding
SPP is feasible then it gives an optimal solution to the SCP. If it
is not feasible then any method which gives a ldwer bound derived

from dual feasible solutions to the DLP will fail. Hence this cost

structure was not used.

Column (6) gives the best upper bound known for the problem, z . If
zu is optimal then it is marked by *. The bound was found by one of

the methods mentioned earlier in this chapter or by tree search.

Column (7) gives the percentage by which the upper bound obtained at
the end of Procedure 1 exceeds zu' As can be seen it can sometimes

be 50% above the best known solution.

Column (8) gives the percentage by which best upper bound at the root
rnode of the search tree exceeds zu' The next column gives the method
by which it was calculated. PROC3 means that the best upper bound
was calculated using heuristics and for small problems this was often
optimal. The upper bound was calculated by Procedure 3 and then by

using:

(ii) -cj/log(hj)

(iii) cJ/leog[JJ

TABLE 2.1 NUALTTY OF BOINDS OBTAINED USING HEURISTIC

* Optimal soluticn

z;oblem S1 20 Dansit)/ Type | Costs{Best known| Upper Bound { Upper Baund{ Method of Lower Bound|] tower Bound| Rumbar of |Final Gap 1ima
Solution | After Proct At Root Nodu] Calculating] After Proci{ After Proc3) rterations (Patwean Cru
b ni, » z % ebove (6) | % above (6}f (8) t of (6) t of (6) lto get z |3y 2™ Z sec
el @ [w e | (7) (8) (3) (10 (1) (1207 |G
1 30f{ s0/0.45 |aA X 56¢ 5 0 PROC3 | 66 88 3 11 ¢.03
2 30 | 100 { 0.15 A X $0° 24 4 PROC3 73 85 10 14 0.06
3 30 | 200{ 0.1s A X . 48°¢ 37 11 cm 76 76 1 14 0.03
4 30 | 300 { 0.15 A X 44 59 1 C/H 80 80 1 20 0.04
5 30140010.15 |A X 44 43 1 £M 80 80 1 20 0.05
& 30 |s00{0.15 |a X a4 43 1 c/H 80 80 1 20 0.06
7 anleos{0.15 A X 44 43 11 CH 80 80 1 20 0.07
8 30 |708{0.15 | A X 44 43 1 oM 8o 80 1 20 0.08
9 30 {68001{0.15 A % 42 50 0 C/H 83 83 1 17 0.09
10 vi900{0.15 |A X 42 50 0 cH 83 83 1 17 0.09
1" 50 | s00 § 0.04 A u 14° 21 7 PROC3 73 84 16 14 0.30
12 50 {500 } 0.15 A X 76 29 0 C/LIH]) 77 77 1 22 0.98
13 60 {400 { 0.11 A u 4 0 0 PROC3 82 82 1 0 0.01
14 60 | 200 } 0.05 A u 14 21 0 c/ 72 80 15 14 .44
15 60 400 | 0.05 |B u 14 14 7 o 72 83 13 14 0.3
18 60 | so0 | 0.08 [A X 93 35 o cAi 75 75 1 25 0.29
17 60 { 500 { 8.00 B X [:74 23 5 . C/L(H) 72 72 1 28 0.09
10 60 | 600 | 0.04 A u 14 14] em 73 82 12 14 0.49
19 100 }ivog { 0.02 A u 29 0] PROC3 67 76 17 24 1.22
20 150 | 600 | 0.02 A X 314 0.1 c/i 65 85 6 14 0.66
21 150 { 600 } 0.02 D X 355] tm 66 88 15 12 1.08
22 150 } 800 } 0.02 A u 35 22 3 t/H 69 80 17 20 2.00
23 160 }1000 § 0.02 | A u 36 6 o cH 87 74 16 T 25 2.65
24 200 pooo [0.02 | A u 40 5] cA 1] 76 16 22 4.1
25 200 {1000 § 0.02 : a y 12 19- 1] CMH G3 70 [17 21 1.06
Average | 73.8 0.3 | 7s 17

vy

45
in that order as explained in §2.3. "C/H"” in Column (9} means that
method (i) above gave the best upper bound and "C/L(H)" means that

(ii) gavé the best upper bound.

Column (10) gives the lower bound at the end of Procedure 1 as a
percentage of a, . The lower bound at the end of Procedure 3 as a

percentage onu is given in Column (11]).

The number of iterations of Procedure 3 is given in Column (12).
Lastly Column 13 gives the CPU time required to calculate the bounds
excluding data 1nput time. The FTN FORTRAN optimizing compiler was
used under the SCOPE 2.1 operating system on the CBC 7600 at the

University of London.

From Taﬁle 2.1 for the 25 problems tested only 5, which tended to be
the smaller ones, had the best upper'bﬁund for the root node of the
.search tree generated by Procedure 3. Thus it is important tq use
other methods. The number of variables removed by reduced costs was
17 out of B0 fér Problem 1, which had 30 rowé. However for larger
problems no variables were removed. Thus reduced costs are most
useful at the nodes in the search tree of a branch and bound
procedure that are not near the root. The average ratio of the lower
bound at the end of Procedure 1 to the best solution known was 74%
and this percentage varied between B3% ;nd 83% for the proplems
studied. Using Procedure 3 increased this ratio on average to 80%.
Problems 2 to 10 were generated by increasing the number of columns
by 100 eacH time. As can be seen the upper bound was the same for
Problems 4 to 8 and Problem 4 has less than half the columns of
Problem 8. Also the lower bound was the same for Problems 4 to 10.
Thus it would be advantageous in a randomly generated problem to

calculate the lower bound from a subset of the columns anly and then

TABLE 2.2 PERFORMANCE OF HEURISTICS WHEN INCORPORATED IN TREE SEARCH

l PROBLEM
Problem| Size Density| Type] Costs |Optimal | Number of |[Number of Variables | Time
Number Solution| Tree Search|Removed by reduced CPU Sec
Value Nodes Costs at the root of

: M vl oo the tres

(1) | (23] (3) (4) £5) (6) (73 . (8} (9}
1 30 |60 |0.15 A X 56 20 23 0.11

30 {100 [0.15 A X 52 48 19. 0.37

30 200 }D.15 A X 48 502 2 4,99
13 60 400 {0.11 |A |uU 4 1 Not tested* 0.38
26 50 {100 | 0.06 A X 132 8 57 0.09
27 50 {100 {0.09 A X 76 5 74 0.08
28 50 |100 {0.08 A u 10 6 - 0.17
29 50 J100 |0.06 A u 14 3 67 0.08
30 s0 |00 |D.12 |{A |u B 124 - 1.60
31 a0 |wolo.os |a |x |7 33 2 0.27
32 35 l1o0 {0.13 A |x 58 50 - 0.47
33 40 {100 {0.15 A X 69 50 - 1.05
34 65 |100 |0.15 A X 84 50 - 0.886
35 50 |100 {0.08 A X 111 50 - 0.58
36 50 100 {0.10 A X |80 50 - 1.45
37 50 {100 }0.10 A u 10 50 - 1.87
38 . 50 {100 }0.12 A X 83 50 - 1.48
3g 50 |100 j0.12 A u 8 50 - 1.31
40 50 1100 {0.14 A u 8 50 - 2.20
41 {50 {100 {0.15 A X 80 50 - 2.30

*Not tested because lower bound < (upper bound - 1 + € } and all costs were

equal to 1

av

a7
test the remaining columns to see 1f the reduced costs were negative.
Any columns with negative reduced costs could be added to the problem
from which the lower bound 1s calculated., This would be similar
to bringing elements into the basis in the simplest method.
Analogous to removing elements from the basis, columns with large
posifive reduced costs could be disregarded for the purpose of
calculating bounds. An initial set of columns could be chosen by
picking the first 100, say, and then all other columns for which
cj/hj was less than a certailn value. It is not necessafily true that
denser problems are Wa~r to solve than sparse ones as Problems 13
and 14 show. In this case Problem 13 - with more than twice as many
elements as Problem 14 and the same dimensions and cost structure is
solved optimally whereas there is a gap of 14% between the best upper

and best lower bounds for Problem 14.

Table 2.2 shows how the heuristics performed in a best bound tree
search procedure. The branching rules are given in Chapter 7 and
are using branching on rows. The first 10 problems in this table
could all be solved optimally. The second set of 10 problems could

not be.

Columns (1) to (8) give the same information as in Table 2.1. For
the problems that could not be sclved the best bound after 50 tree
search nodes is given. Column (7) gives the number of tree search
nodes examined and Column (8) gives the number of variables removed

gither by reduced costs or by the °'single 1 in a row test’.

The maximum size of problem solved was a unicost problem of size
60 x 400 and density 0.711. Problems with less than 4 41's per column

and less than 100 columns were easily solved, often with less than

TABLE 2.3

LOWER BOUND AS PERCENTAGE OF UPPER BOUND

TABLE 2.4

COMPARISON OF LP BOUNDS WITH HEURISTIC BQUNDS AT ROOT LOGE

Lower Bound

Lower Bound
after S0 Tree

PROBLEM - HEURISTIC LCWER BOURD | LP BgunD

Size Density | Type | Costs | Bound as * Time Time

Problem

Number n 3 CPU Sec | CPU Sec
(41) | (111) | () | (W) (vi) {vii) {viil)

42 100 0.10 A X 97 0.14 0.28
43 300 0.10 A X g8 0.08 0.83
44 400 0.05 A X 98 0.21 3.40
45 300 0.20 A X 98 10.3 17.70
48 400 0.04 A X 86 i.3 5.02

Z:onbblge;n Stze :: PR:: cter?!?ad:e ::apl::cew:td:sg Beoeusntd U\?ap leu:a
m " ' of Bgzzngpper of Best Uppgr zu
Bound :
(1)] 2) { (3 (4) (5) (6)
32 35 { 100 |0.13 84 98 58
33 40 | 100 ({0.15 78 97 69
34 45 | 100 0.15 77 85 84
35 50 | 100]0.08 a9 95 111
a6 50 | 100 [{0.10 78 91 90
37 S0 | 100 10.10 78 . 87 10
38 S0 | 100 }0.12 82 94 83
39 S0 { 100 {9.12 78 . 85 8
40 50 { 100 !il. 14 71 48 8
41 50 | 100 |0.15 78 8s an
Average 78.4 an. s

314

49

50 tree search nodes being examined. In Problems 26 and 27 half the
variables were removed by reduced costs and subsequently fixing
variables by the ’'single 1 in a row' test reduced the problem size

further by removing rows.

Table 2.3 shows for the problems that were not solved the lower

bound as a percentage of the best solution known at the root of the
search tree and the least lower bound at an active node as a per-
centage of the best solution known after 50 nodes had been searched.
The results show that there is least improvement in the bound for the
larger denser problems as expected. The average value of the lower
bound as a percentage of best known solutlon at the root of the tree
was 78.4% and after 50 iterations 890.5%. A comparison of LP solution
values and heurlstic values at the root node of the search tree is
given in Table 2.4. As can be seen from these results the heuristic
gives a good approximation to the LP bound, within 5% in most cases
in reasonable time. The LP solution was found by solving DLP

using the Land and Powell FORTRAN code [L1]. Further results comparing
the APEX III linear programming package with the heuristics on standard

test problems are given in Chapter 5.

CHAPTER 3

LAGRANGEAN RELAXATION

3.1 Introduction

The Lagrangean relaxation, LR(A), of IP [G8] is defined in §1.2 as:

F LX) = min L{\,2) = m';icn[ch— AT[Bx—d]:l
x
FROV) subject to dx > b
x integer
L

A lower bound to v(IP), the optimal solution value of an integer
program, is given by the optimal solution value, L(}A), for any
A > 0. The best such lower bound is given by L(A*) where A* is the

optimal solution to the problem LR:

max L(A) E , (3.1}
A=>0

LR

Computing A* exactly is not easy and in practice a suboptimal value
of A is often used. An initial value of X is chosen and this is

updated recursively, as described in §83.2, by the formula:
A" = max(A+o», 0) . (3.2)

where o is a positive scalar steplength and » a search direction.
The computation of these two variables is discussed in §3.3 and §3.4
and results of different methods are considered in §3.5 for a

relexation of the SCP given by Etcheberry [E5].

S0

FIGWRE 3.1

A FLOWCHART OF PROCEDURE 8 SUBPROBLEM
TO SOLVE THE LAGRANGEAN RELAXATION OF A PROBLEM P

INPUT
Subproblem, P
Upper Bound to P, zy,
Iteration Limit, kmax
Multipliers

INITIALISATION
T =0

+

PROCEOURE 4 RELAX - Define the Relaxation
(1) Defina in such a way that the relaxation can be solved easily
{(41) Define ths set of rslaxed constraints
(111) Calculate the costs of the relaxed problem

1

ITERATION &
2im g4+

[

PROCEDURE 5 SOLVELR - Solve LR(A] To Get A Lowsr Bound, 2,

Solve LR(X)
otherwise

Let 2= L(A)
Let 3=

if LR(™ is feasible -

2

Yes

PROCEDURE 6 FEASTEST -~ Test The Solution To LR{A) For Feasibility To P
. | Test the relaxed constraints. If Bx>d and AT(Bx-dJ = 0 thenx solves P

Does
2 solve P?

Yes

Replace Upper Bound
z = zl‘

1

51

(1)
(11)
(111)
(1iv)

PROCEDURE 7 COSTCHANGE - Change Cqsts Of The Relaxed Problsem SUTPUT

Calculate a ssarch direction v by which it is changed
Calculats a steplength o, the amount by which it 4is changsd
Update A := max(a-+gv,0)

Update costs of the relaxed problem

Node is .
not fathomed
The itaeration
1imit hes -

been exceeded

3.2 Implementation of Lagrangean Relaxation

Initially X takes the value A® which can be obtained by setting A°
equal to u, a dual feasible solution of the LP relaxation of IP
obtained from the heuristics of Chapter 2. Subgradient optimization
is used to obtain Ak for k > 1. 1Iteration k, k > 0, starts by
solving LR[Ak) and obtaining a soclution, xk say., If Bxkiz d and

Ak(Bxk-d] =0 theﬁ xk is optimal for IP. Otherwise the search

direction v and steplength a are computed from mk and Ak+1 1s updated
by equation (3.2) above. SCP's of up to 30 rows and 100 variables
can usually be solved optimally by Lagrangean relaxation without

the need for a branch and bound procedure, because the lower beound

is in fact the optimal solution.

For most largsr problems it is necessary to use Lagrangean relaxation
to obtain lower bounds in a branch and bound procedure. To solve a
subproblem, P, of the SCP at a node of a branch and bound tree there
are four distinct stages. Firstly the constraints of P must be
partitioned so that the relaxed probiem can be solved easily using
PROCEDURE 4 RELAXATION. Then PROCEDURE 5 SBLVER is used‘to solve the
problem LR(A} and it solution is tested for optimality to the IP
using PROCEDURE 6 FEASTEST. Either the solution solves IP in which
case the node of the search tree is fathomed or it does not. If
LR({A) exceeds the best known optimal solﬁtion to the IP or LR(X) is
infeasible the node is fathomed otherwise the fourth stage,

PROCEDURE 7 COSTCHANGE, is executed in which the multipliers A

and hence the costs of the relaxed problembare changed. PROCEDURES 5,
8 and 7 together make one itefation of the subgradient'opﬁimization
phase in an algorithm for the SCP. A flowchart of the subgradienf
optimization algorithm, described as PROCEDURE 8 SUBPROBLEM below, is

given in Figure 3.1.

52

PROCEDURE 8 SUBPRCBLEM (P, 2, zl, kmax, A)

SOLVE A SUBPROBLEM OF THE SCP AT A NOBE OF THE BRANCH AND BOUND
TREE USING LAGRANGEAN RELAXATION

Input: P a subpraoblem of the SCP
A (optionally) feasible dual variables for an LP
relaxation of P from which multipliers A can
be defined
2, an upper bound to the SCP
. ’ m
2y a lower bound to the SCP equal to iéﬂ ki

kmax maximum number of iterations allowed

Output: A solution to P or an indication that P has not been solved.

zg a lower bound to the SCP from Lagrangean relaxation.

1. Initialise Variables

Set the iteration counter k: = O

2. Define the Lagrangean Relaxation

PROCEDURE 4 RELAX Relax the constraints

3. Iteration k

ki = k+1

4, Subgradient Optimization

PROCEDURE 5 SOLVELR

Set lower bound 3y = v(LR(A))

If 2) 2%, goto 6.

Update the iteration counter

Solve the Lagrangean relaxation-

PROCEDURE 6 FEASTEST

If the solution to LR(A),x, Test the solution to LR(A) for

is feasible for P and feasibility to P and complementary
N (Br-d) = 0 goto 5. slackness conditions.

If k > kmax goto 7. Test if the iteration limit has

been exceeded.

Call PROCEDURE 7 COSTCHANGE
to change the multipliers A
and the costs of the relaxed

problem. Goto 3.

5, Replace the Upper Bound to the SCP

t =3
Set zu

6. P Has Been Solved

Exit with the solution zu to P

7. P Has Not Been Solved

The iteration limit has been exceeded. . Exit.

PROCEDURE 4 RELAX considers whether or not to represent P by the data
structures used for the original SCP. It is not always necessary to
store the constraints Bzr > d explicitly as shown in Chapter 4 for the
two network flow relaxations, NF1, NF2, and in Chapter 5 Forvthe second
graph covering relaxation, GCR2. Data structures are discussed in
more detail in Chapter 8. For each relaxation the PROCEDURES

SOLVELR, FEASTEST ‘and COSTCHANGE are described in Chepters 4 and 5.

54

55

3.3 Calculating the Search Direction,v

Three ways of choosing the search direction v which is used to update
A in maximizing L(A) are described here. If LR(A) had the same
solution & for all values of A then methods one and three would be

equivalent to the steepest ascent methad [B15a].

The first choice of vk, the search direction at iteration k of

PROCEDURE 8, is to set:

VL g - g (3.3)

This method uses only one solution, mk, to LR(Ak] and is widely used

because it is quick to compute.

The second method [C15a] also uses only single solutions xk to LR(Ak]

but includes information from previous iterations to compute Ak. Let
the initial search direction be}lo, with3® = 0. Then to update v

the following recursioh_is used:

V'L - BeR) + ekVK ' (3.4)

: -k
where is a positive scalar. Two methods of choosing ek were
compared. The first was to set Gk egual to a constant between 0 and

1. The second choice of ek used by Camerini et al [C1] is to set:

k k
ek - -Bv (dk- Bx') if \)k. [d-Bxk
v

} <0
=0 otherwise

where B is a constant, 0 < B < 2. If B=1 then vk+1 is orthogonal
to vk and the method resembles the conjugate direction method for
optimizing quadratic functions. In [C1] B = 1.5 was found to be a
suitable value for the travelling salesman problem, but here no such

conclusions for the SCP could be drawn.

Thirdly v can be chosen by considering more than one solution to
LR(Ak] and then combining the resulting subgradients. Ideally a
direction A that follows the lines of discontinuity of L(A), formed
by alternative solutions to LR(X), should be chosen as it is likely
that at A* L(A) is non-differentiable. This can be explained by

considering the optimality conditions for L(A} [B17].

Alternative solutions to LR()) are denoted by x(£) where
Q=@ (\) = {¢t|L(A) = LA x(£))} Then A* is an optimal solution to

LR if there exist scalars Tl't such that:

tEth -= 1 and Trt > 0 ‘ (3.5)
* tt _
A tEQﬂ Yy = 0 (3.6)
] t t
tEQTr y = 0 (3.7)
£ ;
where ¥~ = d - Bx(%) (3.8)

Thus for each non-zero component of A* there is a convex cbmbination
of subgradients with corresponding components equal to 0. At A* very

often there is more than one solution to LR(A*].

Example 3, LR(A), below is a Lagrangean relaxation of an SCP (denoted

SCP3) and contours of the function L(XA) are plotted-in Figure 3.2.

min 3ry v 2xy + 4x3 + x:, + .xg
x
subject to x + X3 > 1
Ty + X3 =z 1
SCP3 xy + x5 > 1
xry +* X + x5 = 1
x X3 toxy > 1

56

Level Sets of L{A) for

Example 3 Showing Zigzagging Path

A LN =3
oy
al V' - LN =4
2+ L\(’\) = \

N4

S 2',37_9, Ss’uﬂ 9 path

57

Relaxing the first two constraints the Lagrangean relaxation, LR(AJ,

is:
—
L{A) = min (B-Al](L‘l + [2‘)\2)-’52"‘ [4')\1-}\2](83*'3:4*‘(85*}\14‘ AZ
£X
subject to xy + x5 > 1
LR(A) xr) + X2 + 25 > 1
xzq + X3 + Xy > 1
x. = 0,1 = 1,2,000,0
- d J

The optimal solution is given by 2 < AI{g 3and 1 < A3 <2 glving
L(x*) = 5 with 2* = (0,0,1,0,1). A line of non-differentiability of

L(X) is gilven by the line A} + Xy = 4.

Suppose that an initial vector of multipliers is given by A = (0,4);
then using a single subgradient leads to the zigzagging search path
shown. An alternative strategy from this starting position that
eliminates zigzagging‘is to search directly along the line A; + XAy = 4,

The discontinuitiles arise at A = (D,4) because LR{(A) has three solutions.

x(4) = (0,1,0,1,0)
x(2) = (0,1,1,1,0)
x(3) = 1(0,1,1,0,1)

The given zigzagging path gives relaxations LR[AkJ that oscillate

between having x(1) and x(2) or x(3) as solutions.

When alternative solutions to LR(A) are present the computation of v
is better understood by reformulating LR using an additional variable,

w, to give P(w):

max w
T T : .
Plw) w<cx(t) + AV (d-Bx(t)) for &1l te @A) (3.9)
Ay 20 2€eR where R is the set of relaxed
| constraints

58

Let the set of relaxed constraints R equal {1,2,...,7} then in the absence
of constraints (3.8) an ascent direction for maximizing w in‘P[wJ is

the vector vo = (0,0,...,0,1) where tLe first r» components correspond

to the vector X and the last component to w. Projection methods can

be used to incorporate constraints (3.9) as was successfully used for

the minmax problem in [C3]. The aim is to project v® so that A is
changed in such a way that w increases. Rosen [R1a] suggests how a
matrix Pz can be computed iteratively which enables a search direction

v2 = szo to be computed. This is described in PROCEDURE 9 below.

PROCEDURE 9 PROJECT

CALCULATE SEARCH DIRECTION, =y

1. Initialisation

Calculate the alternative solutions x(#) to LR{A)
vS: = d-Be(t)
To each vector Yt add a component corresponding to w equal to -1 to

give the vector 7$

R: = 0 be the set of subgradientsin the projection
S: = @A)

v%: = (0,0,...,0,1) be an (r+1) dimensional vector

Pi=1 ., be the (r+1) identity matrix

2: =0 be the iteration counter

2. Find A Subgradient

If S =¢ then goto 4.

59

60

else &4: = 2+1 update iteration counter

Let ¢’ be the ¢ that minimizes

[2.-1]T _t-
\v Y
-1 t
[V T
If v2-1 Ttlz 0 then goto 4.

14
3. Add ?j To The Projection

R: = RU{t'} and S: = §~{t'}
. _ Ter.

q: = q/llq]|

% 2-1 7

P7r=1 - qq

9 2-1 o

vi=] v

4, Check The Signs Of The Lagrange-Multipliers Corresponding
To Vt For teR

Since v = Ztht for some m > 0, Tl't is approximately vT "xt

E,:2
Hy“)
If [vR'T'\?t

) >0 -for all teR goto B.

5. Drop Subgradients From The Projection -

AT " | ' o

It (v’)" y° <0 for some t" remove ¥ from the projection

R: = R~N{t"} and S: = Su{t"}

Let N be the matrix with 'Y-t for teR s
P = r-wam T
vg': = on

6. Search DOirection v Is Obtained

If llylll < e then exit A* has been found.

else v: = vz exit with search direction v.

In practice if, for some felaxedAconstraint;, yit is equal to a
constant, o say, for all Ze®(A) then this component can be dropped
from 7t as the corresponding component of v will also equal c.

Only components of y which take different values need be considered

thus reducing the size of P.

The first method of computing v is quick and effective in the absence
of alternative solutions to LR(A). The second method requires the
storage of an additional vector of dimension at most m and very few
additional computations. The third method requires more computatian
and storage but enables an ascent direction to be found that gives

an increase in L(A) in the presénce of multiple solutiens. Section

83.5 gives a computational analysis of these methods.

3.4 Calculating the Stepsize,o

3.4.1 Introduction

After computing a direction v by one of the above three methods a

steplength o must be chosen. In theory [H4a]any stepsize ok satisfying

n k
lim L, 0o = o
k—)co k= 1
lim ck =0
ke .

has the property that if vk is a subgradient of L(A*) then setting

k k k
A +1: =X +g vk ensures that Ak converges to an optimal value A*

61

62

as k + =, The difficulty 1is that X may be very large before an

optimal value of A 1is found.

One method of computing ok, which was used by Held and Karp [H4]

for the travelling salesman problem is to set

k L
o alz
U

i

2
R - ok v | (3.9)

where o is an a priori constant, O <a< 2, ziR is' an upper bound on

2 m ‘
L(x*) and |[v]] = 2L viz for any m-dimensional vector v.

q

3.4.2 Computing ok Using a Target Value

In practice using a fixed value of ziR did not lead to a rapid increase

in the lower bound L(A). Instead using a variable ZT which can be

adjusted depending on the value of L(A) is preferable. Initially Zn

is set to a value slightly greater than L(x°).

It zz is much less than ZT then it is unlikely that the lower bound

will increase much and thus ZT must be reduced. As éT is not a true

upper bound on z_ it may be exceeded by z2 in which case 2, must be

2 T

increased. In practice if zl exceeds ZT—E‘for a positive constant e
then ZT is increased. It is necessary to use e for otherwise the

algorithm may stop with a suboptimal value of X satisfying L(A) = 2o
The adjustments to ZT were made using an a pfidri éhosen constant 6.

The following rules were found by experiment to give suitable values

of z,:

T
If &, >z, + 28 set zpt = 22 + 1,58 (3.10)
If ZT.< Zk + §/40 set Zpt = zh + §/10 (3.11)
If zp > 3 set Z,1 = 3.+ 8 (3.12)

] T U

where 2, is an upper bound on v(SCP). In the third rule (3.12) using
an overestimate of the upper bound usually gives a better increase in
the lower bound than if the exact upper bound is used. The initial

value of z2 can also be used to scale §.

3.4.3 Computing ck Using "Near-Alternative” Solutions

The projecticon method is most effective when LR(X) has more than one
solution. Using Ao equal to a dual feasible solution of the LP
relaxation of IP usually gives a relaxed problem that has several
solutions. At subsequent iterations an attempt is made to make
LR(A+ov]) have several solutions. This is done by calculating values
of x, ' say, for which L(X,x') ~ L{A) is small, where L(A,zx') =

czx' - AT(Bx'r-d). Suppose x is an optimal solution to LR(A) then
the aim is to find by how much one can change A in the direction of v
without the optimal solution, x, changing. Suppose that it changes

to x' when o equals 0. Then LR(A+Gv) has optimal solutions z' and z.

Therefore:
L(x+ov,x) = L{r+ov,x']
or oz = o)L (Be-d) = elx’ - (aov)T (B '-d)

T VP (Bx'-Bx) = (¢ =ATB)(x'-x)

thus if vT[Bx'—BxJ Z0

(e =2TB) (z "~z) (3.13)
vTEBx'—Bx]_

]

otherwise 0 = ®

Thus one way of computing o would be to calculate a set Q’(A) of

'near-alternative' solutions to LE(X), that is solutians for which

L(x,x'") - L(X) is small. Each ’'near-alternative' solution would give
a value of o by (3.13). These could then be ranked, assuming c >0,

as:

olry) < olryl} <

e s

where PK denotes the Kth 'near-alternative’ solution.

In general since L(A) is concave one expects L[AFUv) to increase as o .
increases from 0 and then decrease. Thus o should be set equal to
the first c(rKJ for which L(A+o(rK)v),3 L[A+o(rK+1Jv]. A heuristic

for deciding when rK has been found would be to find the first 'near-

alternative' solution for which:
T
v Ed—Bx[rKJ] <0

If vT[d—Bx[rKJJ.E 0 for all 'near-alternative' solutions then o could
be chosen using the first method'suggested. In practice it was found
that L{A+ov) varied considerably with ver& small changes in ¢ and the
above method ténded to give values of o that were too large. Another
reason why this method did not often give any increase in the bound

value 1s that in solving LR(A) the solution x may have been an

optimal solution to LR(A*) even though A was not an optimal multiplier.

3.4.4 O0Other Methods of'Computing ck

The third method of computing o was to set o equal te the minimum of
ol and 02 where 01 is calculated from (3.9} and 02 is calculated by
(3.13). if L(x+ov]) 1s very much less than L(X), say less than

L(A) - 0.18 (where & is as before), then o is halved until

L{X+ov) > L(A) -~ 0.18. Very often this gave a good increase in the

lower bound.

64

x
}

FIGURE 3.3

Non-Zaera Indlces Of x For Exampls, To Show Behavisur Near Subgradient Optimum

ITERATION | BOUND Index of =, J
NUMBER VALUE -

k L{ul 11112113] 1415116117 19]20{21122123|2612728{28|30]31}35]36}37|41
2 35.93 olo o (o] o|o olofo o
3 42.93 ofo o 0 olo o o o
4 46.54 olo]elololo]o|lo]o]lo]ole olo}o
5 48.50 o o]
6 48,98 o o o o o
7 49,05 0 o o ofo o
N 48.82 olo o o olo o ojo
32 48.57 o oo
33 50.04 oo o o 0]
34 50.06 clo 0 o
35 50,12 o o o
36 50.14 ojo|o o o}o
37 50,27 o 0 0 o
36 50.32 °

0 maans xs= 1 in solution to LR(A) at itergtion k.

LP solukion= SI0

66

A fourth alternative which was not tested would have been to use

either exactly or approximately a cubic linesearch as in [C1].

3.5 Computational Results

3.5.1 Case Study

Firstly Etcheberry's relaxation will be used to examine in detail how
the different ascent methods performed on one particular problem.
This relakation relaxes canstraints of the SCP unfil there is at most
1 non-zero entry per column for the constraints of LR(A). This
problem had 30 rows, 60 columns and density 0.15. It was randomly
generated with a fixed probability of 0.15 phat aij was equal to j.
The costs cj were set equal to 2.? a.. + 5, but if cj exceeded 15

1=1 "19

it was reduced by 10.

The zigzagging between solutions to LR[Ak) for successive iterations
as Ak approachés A* is illustrated in Figure 3.3. It shows indices J
for which xﬁ = 1 for iterations 2 to 7 and 31 to 38 of the subgradient
optimization. Iterations 2 to 7 were chosen és.the bound value was
least for these. It is noted that there are 30 different values of J
for which xj = 1 and also that.iF xﬁ = 1 for more than one iteration
_these iterations are likely to be consecutive. For example x;7 = 1

in iterations 2, 3 and 4 and 15 = 1 in iterations 4, 5 and 6. For
iteration 38 the bound value was greatest and in the 7 preceding
iterations it is seen that there are 15 difFerent values of § for
which xﬁ = 4, Further if xj = 1 at one iteration it may be4a1ternately
equal to 0 and 1 at subsequent iterations. Fop example xj2 = 1 only
at iterations 31, 33, 35 and 37 and %3¢ = 1 at iterations 31, 34, 36

and 38. This illustrates the zigzagging between solutions that is

TABLE 3.4

7O SHOW THE EFFECT OF VARYING BVWHEN IMPLEMENTING THE SUBGRADIENT ASCENT PROCEDURE OF CAMERINI et al

§ = 1.5 = 2.0 2.5 = 3.0
B
ITERATION BOUND ITERATION BOUND ITERATION BOUND ITERATION BOUND
NUMBER VALUE NUMBER VALUE NUMBER VALUE NUMBER VALUE
25 49,66 25 49,71 25 . 49,43 25 48.76
1.5
47 36 50.01 38 50.05 50 43,99
25 49.44 25 49,14 25 47.85 25 47.09
2.0
38 50.00 50 50.26 40 49,75 50 50.02
25 49.48 25 49.09 25 48.19 25 47.01
2.5 _ ,
50 50,06 48 50.20 50 50 49.98

[:[gives best bound value for given 6.

L9

TABLE 3.5

68

BOUND VALUES FOR 3 SUBGRADIENT OPTIMIZATION METHODS

BOUND VALUE

IaiﬁﬁiisN SINGLE CAMERINI |¥PROJECTION
SUBGRADIENT | et al METHOD
(1) (i1} (11ii)
1 49,27 49.27 43,27
2 35,93 35.93 42.96*
3 44.91 33,74 48.55
4 47.38 34.68 47.27
5 47.44 39,27 47.55
5 37,15 40,14 47,79
7 47.62 41.00 47.96
8 47.72 41.70 47.61
g 46.855 42.43 47.40
10 43.04 43,20 48.52
T 35,44 43.06 38,27
12 48,33 44.72 47.66
13 49.07 45,45 48.22
14 49. 39 45, 83 47.37
15 43,65 45.33 48.54
16 39,81 46.36 48,64
17 48,97 46.42 48.45
18 38.09 46.84 . 48.92
19 45,30 46.91 48.30
20 48.07 47.33 43.08
77 36,72 47,39 43,43
22 48,32 47.72 48,03
23 48.50 47.83 48.55
24 48.05 47.87 47.83
25 48.12 48.19 48. 30
26 33.65 48,26 37.74
27 48.53 48.33 47.31
28 48.74 48.64 48. 35
29 47.47 48.76 48.40
30 48.40 48. 81 43.00
37 48.52 33,00 39,30
32 47.94 43.19 49.58*
33 48. 86 49.26 49,71*
34 48.25 49.40 50.20*
35 49,39 43.52 50.20*
36 48.76 39.60 50, 20"
37 48.99 49.67 50.20*
38 48.55 49.71 50.20*
39 48.78 49.73 50.22*
40 43,24 © 49.76 50.22*
37 48,80 49.78 50.22%
42 43, 31 49.88 50.22*
43 43,16 49.95 50.24*
44 49.63 49.98 50.25*
45 43,20 50. 01 50,25*
26 48,92 50,11 50,207
47 48,93 50.13 49,72*
48 48,62 50.13 49,34
49 43,19 50.15 49,45
50 43, 30 50.20 43, 30

Steplength Parameter

2.5

Problem

30 x 60 density 0.15

The starting value of
A was obtained using
the heurlstics of
Chapter 2.

#For method (11i) it
was too expensive to
use the projection
method at each
iteration of sub-
gradient optimization.
Therefore 1t was only
used at iterations
marked *. The other
iterations used
method (ii).

* means that bound
has been obtained
using projection
method

69

characteristic of subgradient optimization near an optimal solution

to LR. In other problems it is often found that the values of J for
which xj = 1 for values of 2, near the best bound obtainable from

this Lagrangean relaxation are precisely the values of J for which

xj is non-zero in an optimal solution to the LP relaxation. This is
because the value of an optimal LP solution is equal to the best bound
obtainable ‘from this rglaxation and any optimal LP solution can be
written as a convex combination of all the possible 0-1 solutions to
the best Lagrangean relaxation, LR(A*). The frequency with which

variables occur as solutions toc a Lagrangean relaxation can be used

to determine branching variables in a tree search.

Of the different methods of calculating v First.Camerini et al's
method [C1] is examined. Although the choice of B uéed in-(3.6)
affected the value of the lower bound no firm conclusions as to the
best value of B could be obtained. Tableg3.4 shows the best value

of the lower bound in the first 50 iteratgons and the itération at
which it occurfed for differeﬁt values of B and 6. It also gives the
bound value after 25 iterations. The best bound value of 50.26 with
this metﬁod was given by §=2.0 an "~ =2.0 at iteration 50. The LP
solution gives a bound value of 5{.0 andvthus is the best theorefically
obtainable lower bound value for this relaxation. The bound values
were also calculated using a fixed value of 6 in (3.5) and were
slightly worse than those derived by varying 6 és in (3.6). This was

therefore not analysed further.

The bound values, L{A), for the three methods of computing the ascent
direction v for maximising LR(A) are given in Table 3.5 for § = 2.5.
They are plotted against iteration number for the first 50 iterations
in Table 3.6. The ascent pattern was found to be similar for other

values of §. The simple subgradient procedure produced a very erratic

variation in the bound. The method of Camerini et al ascended slowly
at first, but then was very steady and reached a ﬁigher bound value
than that obtained by using a single subgradient. The computaticnal
effort of Camerini et al's method was slightly greater than that
required by the simple method. The extra storage required was one
vector of minimum dimension equal to the number of relaxed constraints,
MREL, and in any case less than.m. The projection method required more
storags, 0((MREL)?), and as it was more expensive to use than the other
two methods was only used when the bound exceeded its previously best
known value. Iterations for which it was used are marked by * in

Table 3.5. At the other iterations Camerini et al'é method was used.
The main problem was that the search direction generated was extremely
sensitive to small changes in the éteﬁsize 6 and for ?Qe results
recorded here the stepsize was caleculated for all iterétions by the
method used by Held and Karp given in (3.10) as this was then the same
for all three ascent methods. The projection method had the feature
that it reached a relatively high‘value of the bound at an earlier
iteration than by the other two methods. Since the simple subgradient
- method was used in (iii1) for the ascent direction when the projection
method was not used, i.e., when the bound had not reached a better
value than in previous iterations, the bound value was efratic for

these iterations.

Thus the projection method and Camerini et al's method were combined
to produce further improvements. The computation times for the three

methods plotted here are:

(1) 0.75
(i1) 0.88
(iii) "1.34

where the times are CDC 6500 sec. under the NOS BE operating system

and the MNF5 Fortran compiler at Imperial College.

70

TABLE 3.6

BEST BOUND VALUES AND TREE SEARCH INFORMATION

MNF5 compiler

ROOT NODE TREE SEARCH
METHOD BEST BDUND” ITERATION TIME NUMBER OF Sﬁgggiglg:T TOTAL TIME
VALUE NUMBER CPU sec NODES ITERATIONS CPU sec
(1) Single subgradient 50.38 150 1.63 8 364 3.2
(1ia) Camerini et al B=1.5 50.82 144 1.86 9 647 5.3
(4ib) B=2.0 50.80 123 1.586 10 472 4.3
(ii1) Projection method 50.70 130 3.17 5] 415 12.7
(iva) 6 fixed at 0.25 50.53 112 1.31 7 516 4.2
[;vb) 0 fixed at 0.5 50.82 116 1.33 10 697 5.4
(ive) © fixed at 0.75 50.81 148 1.61 13 1088 8.3
Time CDC 6500

1L

TABLE 3.7

BEST BOUND VALUES AT ROOT NODE FOR 4 METHODS

(1) (iia) (1i1) (ivb)
ITERATION | Single Subgradient Camerini et al B=1.5 | Projection Method | Fixed o = 0.5
NUMBER
Bound | Time Bound } Time Bound | Time Bound | Time

10 49.03 0.5 49.64 0.5 48,81 0.6 49,33 0.5
20 49.90 0.5 50.24 0.6 50.12 0.9 50.08 0.6
3a- 50.24 0.7 50.27 . 50.27 g.9 50.25 0.7
40 50.38 0.8 50, 32 1.1

50 50.38 1.3 50.40 0.8
80 50.261 0.9 50.53 1.0 50.40 1.4

70 50.291 1.

B0 50.30} 1.1 50.55 .1 50.48 1.7 50.62 1.1
90 - 50.33] 1.1 50.68 1.2 50.55 { 1.9 50.67 1.1
100 50.34| 1.2
110 150,35 50.75| 1.3
120 50.37 1.4 50.68 2.4 50,82 1.3
130 50.70 3.1

140 + 50,38 1.6

150 50. 38 1.6 50.82 1.7

Time CDC 6500

MNF5 campiler

cL

FIGURE 3.8

Comparison of Bound Values Against Iteration Number for 3 Different Subgradient Optimization Methods

LPsolution value
Value S0 S
' i izzeeeee,. Camerini et al. fixed 6=0.5
== Camerini et al. P=1.5
Projection Method
Single Subgradient
So-0}
Lot
1) 1) " 1 1 [} . N,
° a0 40 - 69 go ioo /20 g0 Ieo 7
) lteration
Numbar

tL

FIGURE 3.8

Comparison Of Bound Values Against Computing Time For 3 Different Subgradient Optimization Methods

Bo“nd ,.\ M
Value
Sic LP solution value
Camerini et al. 6=1.5
g Camerini et al. f=1.5
e ew—=———"Projection Method
***** * Single Subgradient
soqg
/
{
49-0 ! g >
] , 2 .,
Tlme
CDC 6500 ¢ pu sec.
PINFS 2o mpilen

~3
D

75

As the bound value was still increasing at 50 iterations the iteration
limit was increased to 150 iterations, beyond which no improvement was
obtained. With this new limit and 86 =1.5 the three methods were

compared in a tree search procedure.

For method (i1} two tests (iia) with B=1.5 and (iib) B= 2.0 were
made. The projection method used method {ii) at iterations where
the bound had not increased and a linesearch based on all the methods
described in (3.3). In addition using 8 fixed at 0.25, 0.50 and 0.75
gave tests (ival, (ivb) and (ivc). The best bound values at the root
node of the search tree, the iteration number at which it was reached
and the time is shown in Table 3.7 together with total computation

times and number of tree search nodes used.

Table 3.7 gives the best bound values at.the root node for methods
(1), (dia), (4ii) and (ivb) and the results are plotted against

iteration number in Figure 3.8 and against computing time in Figure
3.9. The subgradient optimization gave at best a 3% improvement in

the bound at the end of the heuristic procedures.

There was little difference at the root node betweén methods (ii) and
(ivb) in terms of bound value or time. The single subgradient
method gave a worse bound than the other methods at the node, but for

this size problem had the fastest overall computing time.

3.5.2 Comparison of the Methods on Different Problems

Table 3.10 gives 5 problems which were solved by the abaove methods
using the same best bound tree search as in Chapter 2. The first
4 columns 'describe the problems as in Chapter 2. The first column
for each method gives the increase in the bound obtained from

'Lagrangean relaxation over that obtained by the heuristics as a

COMPARISON OF 4 METHODS FOR SUBGRADIENT OPTIMIZATION EMBEDDED IN A TREE SEARCH

TABLE 3.10

PROBLEM

METHOD

SINGLE SUBGRADIENT

FIXED 8=0.5

- CAMERINI et a1l B8=1.5 PROJECTION METHOD
§=1.5 For All Problems (1) | (11a) : (111) (1vb)

No | m n 0 . Cost (% Increass | No of | Totel | % Increass | No of | Total | % Increase | No of | Total | % Increasa | No of | Total
“Type in Bound Nodes | Time in Bound Nodes | Time in Bound Nodes | Time in Bound Nodes | Time

37 | 201 80| 0.2 X 5 3 1.13 7 3 1.15 7 1 2.13 1 8 1.35

48 ao 80 | 0.15 X 3 1M 6.74 4 18 8.8 3 10 16.6 1 111 33.6

21 30 100 0.15 X 3 37' 15.83 0 § 22 14.05 3 38 23.0 1 750 21.

49 . 36 80 0.17 X 2 13 4,83 3 16 4.66 1 13 8.3 0 72 21.53

S0} 40 300 0.15 X 0 4 16.5 5 2 22,0 7 4 60.6 3 10 26.0

9L

77

percentage of the heuristic bound. As can be seen method (ii) was
the most robust and on further larger problems not listed here tended
to generate fewer nodes than by (i). However for the size of problem
tested here there is little to choose between methods (1) and (ii).
Although there was little difference between (i1) and (iv) for the
gxample problem, the latter generated many more tree search nodes and
is therefore not recommended. The projection method thlst not
generating too many nodes was costly to implement at each node and
there were storage problems on larger examples. The advantage of
using method (i1) to overcome the zigzagging is demonstrated here as is
the importance of ﬁéing a\good target value by adjusting 6. Thus
using method (ii) with either a robust way of choosing § or a line-
search procedure leads to an effective implementation of Lagrangean

relaxation.

CHAPTER 4

NETWORK FLOW RELAXATIONS OF THE SCP

4.1 Introduction

Network flow problems can be salved using conventional linear
programming methods, but by exploiting their structure more efficient
algorithms result which easily solve problems of up to 500,000 arcs
and 1000's of vertices [B12, G15]. Two different network flow
relaxations of the SCP.are described in 884.2 and 4.3 and in both
cases the lower bound obtained from the network flow solution is
bounded above by v(LP)}. The conclusions of Section §4.4, where
computational results are presented, are that the first relaxation
produces a bound very close to the LP bound in a reasonable time but
that the second rélaxation requires too much storage to be useful.
Unlike the integer progrémming problems of [G15] the SCP has its own
structure which can be more efficiently exploited than the.structure

of the derived network flow problems.

4,2 Network Flow Relaxation, NF1

4.2.1 Formulation

Network flow relaxation NF1, is derived from the LP relaxation of the

SCP by replacing a single variable x& with a set of variable 5ij when-
ever aij = 1., For each J there are constraiﬁts that the variables

5ij must take equal values for all iek%. This gives the problem N(f)

which i1s clearly equivalent to the problem LP:

78

B 5
m:én =1 jeN, fv,JEzJ
subject to I .. > 1 £=1,2,...,m
JEN’I: Jd
= [1/h) g Jel .
NS z zaM 1) 1
1=1,2,00.,m.
12 Eij >0 for all Z,J
and
zeM f j

(4.1)

(4.2)

The original SCP constraints give inequalities (4.1). All variables

Eij derived from the jth column of the SCP must take equal values (as

in constraints (4.2)) and their costs must sum to cj' Associating a

multiplier Aij with each constraint (4.2) a Lagrangean relaxation,

LR1(A), of SCP is:

~ m
m%n i§1 jg”i [fyj + - (1/h. JQZM zJ]EzJ
LR1(A) ' =
subject to jENi gij =1 1=1,2,¢...m
L 1> Ev:j >0 for all Z,J

This can be simplified by letting:

A= AL.- (1/R) A

] N J 2an %)
= Y = i :
and dfj féj'*k i a. Tbls gives the problem NF1(d):
— . m d
" ik g, %G tid
NF1(d j . . . L = o
(d) | subject to Jéﬁi 513-2 1 1=1,2, m
1> gij >0 for all z2,g

(4.3)

(4.4)

(4.5

(4.8)

This is a network flow problem in the graph G1 shown in Figure 4.1.

Each row of the SCP is represented by a vertex vi which 1s connected

to a source vertex § and each column by a vertex v; which is

79

FIGURE 4.1

Network Flow Graph, G1, For Example NF1

Source

s Sink

. /

v g
Vertices Vertices
Fepresent represent
rows: columns

’ ’
Arcs (s,vi] [vi,vj) (vj ,t)
y Bounds N. 1 h=M
pper Bo N | =M]
Lower Bounds 1 0]
Costs g d.. g
4 1d

connected to a sink vertex t. Arcs (s,vi) have a lower bound of 1
/ -

on the flow. There 1s an arc [vi’vj] if aij = 1 with cost dij in

which the flow must be between O and 1. All other arcs have zero

cost.

A minimum cost flow in this network can be found by setting Sij = 1
= min . L=

for all arcs satisfying dij j%Ni dig’ and then setting gzg 1 for

any remaining arecs for which dij is negative.

Problem NF1(d) always has an integer solution. This is feasible
(and thus optimal) for the SCP providing constraints (4.2) are

satisfied.

4.2.2 Changing the Costs dij on the Network G1 '

I+ the solution is not feasible for the SCP then the costs d%j must
be changed. In the last chapter the multipliers Aij were changed

using subgradient optimization. Here it is more efficient to change

dij directly. From (4.4) it follows that changing xij by Yij such
that igk. Vg = 0 is equivalent to changing X;j by another variable,
ﬂij say,Jsuch that ig&. “ij = 0. By (4.5) this is equivalent to
changing dij diractiy.J At iteration X > 0 let d = dk and w = ﬂk,
then

AL | (4.5)

. 0 . .
Initially d 4 can be set to u. + %j/hj where the variables u. are
dual variables computed as in Chapter 2 and s. are associated reduced

costs. It is clear that .2 d°.. = e¢. and 7° can be set to O.
zeNj 1J

The algorithm aims to find d* where:

vINF1(d*)) .= mgx[v(NF1[d))|¢gM. dij = cj] (4.6)
J

82

Then v(NF1(d*)) = v(LP) and d%j can be obtained from an optimal

solution «" to DLP by setting

dt. = u* + s*/h.
J (2 J d

where 8% are the corresponding reduced costs.

To increase the bound v(NF1(dk)J using subgradient optimization at

each iteration the set of penalties 1 is computed as follows.

Let J° be the index set of columns J for which equation (4.2) is not
satisfied. If J' is empty (i.e. equation (4.2) is satisfied for all
values J) then the solution to NF1(d) is feasible and therefore
optimal for SCP. Assuming J¢ is not empty then for every jed? let
p; be the number of Eij which are equal to 1 and E} be the number of

gij which are equal to 0. The penalties "ij are then calculated as:

. — ., F _F ,)
For Jed’ i T o pjg(zu - &) if &= 1 (4.7)
' 2
T 1Z
- F_F -
ﬁij— oapj [zu zz) if E’ij 0
he |Iw]]2
T
. ? -
For J ¢ ;%j-c
2 2 . = 2
= I, .. = p./h. = L.lp.p./R%), i s
where | |w] | Ry (gzg pJ/ J] ; pJpJ/ J] by definition of P

0<a<2 is an a priori chosen constraint and zi and zi are upper

and lower bounds on v(NF1(d*)).

The penalties wﬁj calculated at iteration X from the sclution to
NF1[dk) are used to derive dk+1 using equation (4.5). The iterations
continue until either a solution & is found which satisfies constraints

(4.2) giving an optimai solution to LP (which incidentally happens to

be integer) or the maximum number of permitted iterations is reached.
L]

' T
This describes the procedures RELAX, SOLVELR, FEASTEST and COSCHANGE

for relaxatlon NF1.

4,2.3 Further Improvements

Further improvements can be made. Firstly resetting any negativs
cost dpq to a non-negative value cannot decrease the bound. In many
cases the bound may actually improve after all the negative costs

have been removed. This is given in Lemma 4.2.3.1 below:

4.2.3.1 Lemma

If dbq < 0 for some p,q then dpq can be reset to a non-negative

value without decreasing the bound.

It is sufficient to consider a single cost dpq < 0 and set this tn
a non-negative value. The procedure can then be repeated for all

negative costs until dpq'z 0 for all p,q.

Proof

e~ 3

Suppose d__ < 0 for some p,q then since .
PP g p.q 1 %q q

ositive there exists d say for which d > 0.
P p'q °% p'q

Setting déj = dij . for (£.4) # (phq) or (p,q)
and d’pq = min[dbq + dp’q’ o]
d s = 'd . +«d.,o0
p'q = mx(dy, + 4y 0]
means v(NF1(d')) > vINFIL(d)).

It follows that if & is an optimal solution to NF1(d) then there is

an optimal solution £ to NF1(d") such that in only one component &'

d. = ¢ and cq is assumed

83

84

differs from E,Ep' . The change in bound value 1s then v(NF1(d'}) -

q
v(NF1(d)) which equals:

d' -d ' £' -d
pg " %pq * %prq Bprq T %prq Ppig

If Ep,q = 1 then since d’, 13 = 1 and since the sum of the

<d ;. &
p'q pq prq
changed costs remains unchanged the change in bound is equal to O.

If Epiq = 0 then since dbq < 0 the change in bound is positive and
therefore the bound increases. Hence dpq can be increased without
decreasing the bound. This process which is finite is repeated until

all the costs in a column are non-negative. o

A second improvement that can be made is to reduce a priori the
number of variables in the SCP using reduced costs, E;j' These are:

given by:

e..=d., - max[0, min d.]
1d 1d LEN: T2

1
Then, if E;. EX V(NF1(d)) this implies that Eij = 0 and hence
x3 = 0 in any optimal solution to the SCP of vaer less than zu,

where 2, is an upper bound on v(SCPJ].

Thirdly, a problem arises in solving NF1(d) when there is more than

one variable 5ij for a given value of Z that can be set equal to 1.

This can arise when there is more than one value of J(Z) satisfying
ee, ey =min d.. , .. = 0,

17 (%) ?222 ¥ or it can happen when dtJ 0 In both of these

cases the following strategy which first fixes those variables that

can be chosen uniquely and then fixes the remainder, can be used.

!l

First set gij 1 if dij < 0,

then set Eij

1 if there is a unique J such that 4.. = min [d.,
que J ¥ QeNif 2]

then set £. 1 where column J has the highest proportion of

]

85

variables Ekj already set squal to 1 from J e J(Z) where
J(Z) = {Jldij = Qé@i diz}' The problem of multiple solutions in

NF(d) corresponds to degeneracy in LP.

Fourthly, attempting to satisfy the LP optimality conditions can

improve the bound. Thils is done by assuming-all costs dij are non-

negative and setting u. = min d... Clearly this gives a feasible
T JeNp U

solution to DLP from which reduced costs Sj can be calculated.

To derive an optimal solution to LP from DLP it is first necessary

to consider the set of columns, S, for which the reduced costs are

zero. Thus § = {jlsj = 0}. If u, represents an optimal solution to

DLP then thers is a vector p with 1 > uj,z 0 and “i‘jés “jaij - 1) = 0.
The vector u can‘be found by iteraﬁiohs similar tabbﬁééemﬁ> B
of the Simplex Method [H8]. If there is no u satisfying these ~.

constraints then % is not optimal for DLP. If u is found, then setting
mﬁ = uj , JeS and xj = 0 otherwise, gives a solution to the LP. From
the formulation of NF1 it follows that v(NF1(d)) < v(LP).

Lastly,a feasible solution, x, to the SCP can be cobtained from a
solution, £, to NF1 by letting xj = 1 whenever there is an Z for

which gij = 1 and then reducing this to a prime cover.

4.,2.4 Summary of the Algorithm

An example is given in Appendix 3 and the algorithm is summarised

in PROCEDURE 10 NETFLO1 below:

PROCEDURE 10 NETFLO1 (SCP, B o Bys Ty U, £)

SOLVE RELAXATION NF1 OF THE SCP

Input: SCP Set covering problem
u Dual feasible solution
2z, Upper bound to the SCP

Output u Dual feasible solution to the SCP
g Network flow solution _
Zu,zz Upper and lower bounds to the SCP
x Feasible solution to the SCP

1. Initialise -Variables

kmax Set iteration limit
k:=0 Set iteration counter
BIG BIG is a large number

2. RELAX . Define the Relaxation

For

Calculate column sums and

n
uivls
Q

a..u. reduced costs

For g =1 ton
d.. : = U +'sj/%j Calculate cost of arc (Z,J) for NF1(d)

3. SOLVERR., Solve the Relaxation at Iteration k

k:=k+1
If k > kmax then goto 8.

g =20

For 7 =1 tom

d': = BIG
J': =0
. For JeIVi
If d..<d'
— 1d
then d': = déj . Calculate minimum cost of an arc
Jg's =4 incident to vertex <
If dij <0 : : Set flow equal to 1 in arcs with
. = negative cost
then Eij' 1
. = pL.t+
~pJ pJ i .
o R Y
If d'>0
then gijn =1 .- set flow equal to 1 in arc of
p.l:=py'-+1 minimum cost if this cost is
« = r -
Zg: z£-+dij non-negative

4, FEASTEST . Test the Network Flow Solution for Feasibility
to the SCP

If 2, >3

then goto 7.

else w: =10

For J =1ton
. . h.
If pJ # 0 or P; # g

then w :==w+pj(1—pj]/h; Arcs derived from column J

J':=J{j} are not feasihle for the SCP
If w =0 then goto 6. ' ‘ - o '

If k > kmax goto 8.

87

5. COSTCHANGE . Change Costs in the Network

For Jed'
g o=xp, (3 -2)/hw
Y p; (2,=2,)/h;
For ZeWN,
If E..=1 then d..:=d..=v.(1-p.)/p.
—_— E'LJ en d 1Jd YJ[pJ]/pJ
else d..:=d..-Y.
— 2 1d J
Goto 3.

B. Network Flow Solution is Feasible for the SCP

It .= h,; then z. : =1

=L Bty 7
glse x. : = 0
_— J

7. Stop With an Optimal Solution

-

The uppser bound zu is optimal for the SCP.

8. Try to Improve the Bound

Readjust costs to non-negative values.

For 7 =1 tom
u. : = min d..
‘7"81\71: 1

For J =1 ton

m
L, U Calculate reduced costs

3.2 = O -
° g 181 TL7g

d

Use heuristics to improve dual
feasible solution and try to
improve the upper bound.

Stop with lower bound zz

upper bound 2,

89

In the implementation of PROCEDURE 10 it 1s not necessary to store
the variables Eij as separate variables. If the non-zero columns of
the SCP are listed by row in the vector I7J then if Eij = 1 the
corresponding element of ITJ can be set equal to -J. An additional
array for dij is required which makes the storage for this method

greater than that required by Etcheberry's relaxation.

4,3 Network Flow Relaxation, NF2

A secand Lagrangean relaxation of the SCP involves a minimum cost
flow problem, NF2, in the graph G2 - described below - and can be
used to give a lower bound to the SCP. As in the.previous relaxation
and ascent procedure is used to maximise the Lagrangean function and

thus increase the bound further.

4,3.1 Construction of the Network, G2, from SCP

Each row © of SCP is represented by two vertices vi and vé and an arc
{vi,vé) in which the flow must be at least 1. Each column J is
represented by a path in the graph G2. For éach column J, whenever
a.. and akj are two consecutive non-zero entries (i.e. when q,. = 0,

1d L9
Z < % < k) with 2 < k an arc [vé,vk)t7 with cost d%k is constructed.

A source vertex S is added and an arc (s,vi]J for © the first non-zero
entry in each column J (i.e. Z = min[l[azj = 1] with flow Egi and

cost dJ..
81

Likewise there is a sink vertex ¢ with flow Ezt in arc [vi,t]J when-
ever ¢ is the last non-zero entry in column J and the cost of this

arc is dit. The set of pairs (Z,k) derived from column J together

with (8,2'), (2'',£) (where 2’ is the first one in column J and Z''
the last 1 in column J) form the set I’j. The flows &ii 'Eik and
gq are constrained to lie between 0 and 1. The costs dg., dz and
1t) sz’ 1k

dq are chaosen so that

2 =c.. A dix 3 gilv le.
vt (a,Ble T, dis ¢ ppendix 3 glves an example
J

The Graph G2 has been used by Nemhauser et al Bﬂ{] to find a lower
bound to the set partitioning problem (SCP with gquality constraints)
in the case of equal costs. The problem was then to decompose G2
into a minimum number of chains. (A chain is a directed path or

isolated vertex].

The network flow problem NF2 can alternatively be thought of as that
of finding a set of paths of minimum total cost so that each path
starts at a source vertex s. It ends at a sink vertex t and every

other vertex in the graph lies on at least ane path.

4.3.2 Formulation of the Problem and Calculation of Costs

The problem of finding the minimum cost flow in G2 can be stated as

follows:
— n - .
: J
mn Ly ey | % Sik
3 :
- J . J J
subject to 33 & 15 5‘77@ i Fin é: £y 14.8)
NF2(d)
J J
A
j . . s _
B OSE,L-kS_’l ('L,k]s 1;,3—1,.....,n

If constraints (4.8) below are added to NF2{d} and E%k is restricted

to take integer values the resulting problem is equivalent to SCP.

X Eis
j _ (a,BJGT.; :
gik = (hj 1) (4.9)

91

Constraints (4.9) can be incorporated in the objective function of

NF2(d) to give a Lagrangean Relaxation:

L . v
min 24 UL & %k Nk

M3

(a,Ble Tj'

Ty
Q.
i3

J J
subject to 5 gsi +k?j ki k{:j F;?/k+2; g

<1 (Z,k)enp,
. J
. d=1,2, 000007

As in the previous relaxation, one can substitute penalties 'rr‘z:k for

S

[z AJB / (h + 1JJ and the costs d‘Z:k can be computed recursively.

(a B]ET.i
In this case let p be the number of variables «i k y (Z,K)eq, .
J
- which are set equal to 1 and pj=hj + 1 - pj. Denoting by J' the
set of columns J§ for which E.'z:k does not satisfy (4.9); the penalties

J s)
"ik'JsJ , are:

— NN
i P Gl ¢ &l =1
ik 2 ik
| w
(4.10)
: . N N
o omapLh. (27 =2 : .
Ay A if 5§k=0
Hwl |2

Where zuﬂ, zQ‘N are upper and lower bounds on v(NF2(d*)) and ||w]|? =

. oy -
pj I For all ge J/, Tk a.

.01

The costs d‘7 are then updated to d'7 + 1r‘7. as in Section 4.2.
ik] 1k ik

TABLE 4.2

LOWER BOUNDS FROM THE NETWORK FLOW RELAXATIONS

" PRO3LEM

HEURISTIC BOUND

NF4. ECUND) NF2 BOUND LP 'EOUND
2123 4 5 6 7 3 9 10 11 2 3 14 15 19
No[m | n [denst ty jcost | ® g?::.\.‘ugm time = ‘é‘:_’i“z ten Wo.Xtns |time % gi;‘:"&on Ho.Itns]time v(LE)} { Lo. Ttas| tine
s1 140] 3507 .20 ’ 4.4 0.7 3.2 200 2.4 - - - 3.44 128 2.6
532 | 40 S00| .20 F 2.4 1.4 2.3 22 1.8 2.2 20 25.0| 47.79 124 3.9
£ 83 | 4c| 500 .25 ¥ 4.6 2.C 2.4 11 2.8 - - - 49.731 146 5.4
$4 |:0} 300 .30 F 1.5 3.4 1.3 20 3.9 - - - 75.38 181 5.4
s5 { 50|00 .13 |u 0.0 2.8 0.0 - - - - ~ | so.00| wis |12.9
5§ 1 50]1000] .15 u 4.3 2.5 2. " 30 3.1 - - - 3.96 154 9.3
57 | 60 2CO} .05 v 3.6 0.6 2.7 150 0.8 0.7 52 | 48.0] 15.27 127 0.8
58 | 60| 200| .15 H 0.0 1.3 0.0 - - - - - - 60.00 241 113.5
$9 |60 3C0{ .13 F 2.7 3.0 2.2 41 104 - - - 79.37 206 5.5
I1s | 80{ 400f .0S u 2.0' 0.7> 1.2 100 2.0 © 1.0 27 115.5] 10.37 151 2.8
6ol &0 400f .10 [\ 3.8 0.8 2.0 ’ 200 3.2 3.7 0 90 6.13 181 d.d
&1160) 400} .20 u 5.4 0.9 4.2 1C0 S.1 5.1 4 0.5 3.55 222 7.2
62| 601} 700 .05 U 5.3 0.8 3.9 100 1.5 4.2 10 94.2 9.76 184 5.3
631601206} .05. U 3.2 1.8 3.0 100 | 4.5 - - ~ 2.02{ 217 |o9.s
64) 76| 400 .05) ’ 4.7 0.9 3.7 100 1.4 - - - 11.53 227 4.9
ést 751 300} .16 ¥ 2.2 4;2 1.9 - 38 Se - - - 107.35 1713 S.4
66| 60§ 300 .20 u 3.9 0.9 2.5 100 7.1 3.9 1 75,0 3.95 228 7.7
. b7] 80| 400 .20 2.1 7.2 2.1 1 7.3 . - -] 12¢.08 290 12.7
68| £9 |1000 .18 H 0.0 - 5.9 0.2 - - - - - 80.0 |»200C0 54.0
6312110{ 300{ .20 F 1.6 10.3 1.4 21 j13.0 .= - - 190.71 345 117.7
Mrerage for problems
with cost: . .
) F 2.5 2.1 2.3 27 | ks ©2.2 10 |25.0) - 197 | 7.2
(i1) a 3.74 1.6 2.9 92 3.5 2.3 17 85.5 - 178 6.2
(114} H 0.0 3.3 0.0 - - - - - - >1196 [26.8
huerage: for all . .
prouleds 3.0 2.6 2.3 67 4.4 .1 2.9 " 16 6041 - > 333 9:5

(4

93

4.4 Computational Results

4.,4.1 Explanation of Results, Table 4.2

All the problems were randomly generated. The algorithms were
written in FORTRAN and tested on the CDC 7600. Columns 2 and 3 give
m and n the number of rows and columns, respectively, of the SCP.
The density of the SCP (Column 4) is the ratio of non-zero entries

to the total number of entries in the constraint matrix A.

The problems tested belonged to one of the following three classes,

denoted by U, H and F in Column 5:

(1) U - these are unicost problems with ?j= 1 for all 4.

(11) H the cost of each column is equal tb the number

of 1's in each column, e hj for all 4.

(iii) F this is a combined fixed cost and variable cost,

cj==ahj-+b, where a and b are positive constants.

(a=2, b=5].

The bounds given in Table 4.2 are expressed as a percentage deviation
f;om the LP bound. The heuristics given in Chapter 2 almost always-
obtained a solution within 4% of the LP solution value. This
was 1lmproved by NF1 by an average of 1%. The'network flow algorithm
used for NFZ2 was a straightforward implementation of the Out-of-
Kilter algorithm [F2] and proved toc be very slow for a bound
calculation. The LP code used was that of Land and Powell [L1], and
problem DLP {(rather than the primal problem) was solved because there
were fewer rows than columns, and this was much faster in most cases.
The initial costs for algorithms NF1 and NF2 were derived from the

dual variables u and associated reduced costs s found by the algorithms

of Chapter 2. For NF1 and NF2 an iteration consits of solving a
particular relaxation and then changing the costs using the sub~

gradients derived from the solutians.

4.4,.2 Implementatlion of the Aigorithms

The heuristic bound was calculated by first using PROCEDURE 3
Heuristics until there was no further increase in the lower bound up
to a maximum of 5 iteratiomns. Very often the upper bound on SCP

decreased during these calculations.

For NF1 it was found that using a fixed upper bound zi in (10) did
not always give a good lower bound at the end of the subgradient
optimization phase. Therefore zi (an estimate of zi] was used which
was not necessarily a true upper bound on v(NF1). This was computed

as:

2, = 1.08 x heuristic lower bound -

F
u
In all the examples tested this would have overestimated v(LP) slightly

and - as others, [H4a],have noted - an overestimate of the uppér bound

is often more successful than using the upper bound itself.

Initial costs dik for NF1 were derived from the solution % to DLP
after usirg algorithm-Z. Had this not been the case it would have
taken NF1 considerably longer to reach the same value of the lower
bound as shown in Table 4.2Z. Howgver”tests showed that Qhen‘the
maximum number of allowable itefations wasvvery large, say 700, then
very often the soclution of NF1 after using the worse starting position
was better than that obtained after using the heuristic solutions.

As the number of computations required to achieve this better.bound

94

was so large it was not practical to use NF1 without using the
heuristics first. The bound obtained from NF1 is on. average within
2.5% of v(LP). The subgradient iterations were stopped if the bound
did not increase for 10 iterations. On the size of problems tested
the bound never found a feasible solution to SCP which is hardly

surprising considering that none of the LP solutions was integer.

As can be seen from Table 4.2 an excessive amount of computing time
was required to solve NFZ2 and in each case the algorithm terminated
because the time 1limit had been reached. This was despite the fact
that the network flow solution was saved as the starting flow at
the next itgration. The main reason for the slow execution time of
the algorithm was because auxiliary storage had to be used to

accommocdate all the network flow information.

95

96
CHAPTER 5

GRAPH COVERING RELAXATIONS OF THE SCP

5.1 Introduction

Graph covering problems are used in two different Lagrangean
relaxations of the SCP to obtain lowér bounds. In each case the
optimal lower bound value for the graph covering relaxation is
gréater thaa that obtained from the LP. The two relaxations can

be combined to give further improvements in the bound. Computational
tests which compare the two relaxations and then combine the two are

presented.

5.2 The Graph Covering Problem, GCP

The graph‘covering problem, GCP, of finding a minimum cost set of

arcs that cover all the vertices of a graph was defined in §1.2.
It can be represented as an SCP with at most two 1's in each column.
(Any praoblem with a single 1 in a column can be transformed into one:
with two 1's in a column by the addition of an extra row which is
considered to be covered]. In this case the constraint matrix>A

of the>SCP is tﬁe vertex-arc incidence matrix of a graph G =®V,E)

where V is the set of vertices and F is the set of arcs of G. Thus,

the rows of 4 represent vertices of G and the columns represent arcs.
Suppose the Zth row of A is represented by a vertex v.. If the Jth
column of 4 has non-zero elements in rows Z and kX then it is

represented by an arc Ej = (vi’ka of cost cj. A cover, K, is a set

of arcs which " Heets every vertex of (. The graph covering

97

problem 1s solved by finding a cover K* of minimum cost. The
corresponding solution, x*, to the SCP has xj* = 1 1if the Jth arc is

in X* and xj‘ = 0 otherwise.

The GCP can be formulated as a linear program, LPB:

i min cx
: x
. subject to Ar > 1 : (5.1)
LPB Bx >r “(5.2)
1>x.>0 21,2, 000,71
2% =2 Jd
.

where cj is the cost of arc ej énd A is the vertex-arc incidence
matrix. It is assumed cj‘z 0 otherwise xj*v=-1.and vertices covered
by arc ej can be removed. Constraints (5.2) are.added to the LP
relaxation of the GCPﬂand are exponential in number. They restrict
every set of vertices of odd cardinality, 2r -1 say, to be covered

by at least » afcs. These constraints, known as blossom constraints,
need not be stored explicitly as the géaph covering algorithm detects

them when certain odd circuits arise in the graph G. The implementation

of the graph covering algorithm is described in §8.3.

The linear programming dual of LPB is DLPB:

i m
nox iE Vst phe e Yo
oLPB T T

subject to Aw+BL < ¢ {5.3)

w,. > 0
where P is the set of odd cardinality subsets of V.

An approximate solution to the GCP can be cobtained from any feasible
solution (w, &) to DLPB. Using the heuristics of Chapter 2 to get w

and setting ¢ = 0 gives a lower bound. The reduced cost of arc ej

98
is given by:

m
3. .- oW, — L b,
7 7% T 21 %5 Y T pép Ppi tp

and if zg is an upper bound to the GCP then if Sj > 23 - zg then

xj = 0 in any feasible solution the the GCP of lower cost than zu

whers zg is the lower bound to the GCP corresponding to (wif). For

convenlence ui will be used to denote wi + Cp where 2} is the

ngi
set of odd cardinality subsets containingvvertex vi' Then

s.=¢.- X, a.. u. 1s a lower bound on the reduced cost s. and
J J =1 g 1 J
hence if 3. > zG - zG then column a. can be removed.
J u '3 : J
5.3 Graph Covering Relaxation 1, GCR1, A Row Relaxation
of the SCP

5.3.1 Description of the Relaxation

The constraint matrix 4 of the SCP is partitioned into two sets of
rows R, the relaxed éonstraints, and R= M~R, the graﬁh covering
constraints. The rows in R have at most 2 non-zero entries in each
column. Thus if:

A< {4, (5.4)
As

where 4; is made up of rows of 4 indexed by R and 4, of rows indexed
by R the Lagrangean relaxation, GCR1(A) is a graph covering problem:

' iy T :
min cx - Aldyz- 1)
x

GCR1(A) | subject to Arx = 1 (5.5)

xj 6{0,1} j=1,2,...,7’l

For A > 0, v{(GCR1(A)) is a lower bound to the SCP and the optimal value
of this bound for all A > 0, v(GCR1(A*)) say, gives a bound no

lesg than v(LP) as proved below in Lemma 5.3.2. Let the graph ke Gl.

99

5.3.2 Quality of the Bound
LEMMA

To prove
The best lower bound to the SCP obtained from GCR1 is at least as
good as that obtained from the LP relaxation, i.e.

v(GCR1(A*}) > v(LP)

Proof

Let u*be an optimal solution to DLP and for relaxed rows in R let

X. = u%., Sipce A* is optimal and X:.Z 0
7 7 7
v(GCR1(A*)) > v(BCR1(A)) (5.6)
Let LP1 be the LP relaxation of GCR1 then
v(BCR1(X)) *>" vILP1(X)) (5.7)
From LP duality theory it follows that
v(LP1(X)) = v(LP) (5.8)

Hence from (5.86), (5.7), (5.8) the result follows.

5.3.3 fLalculation of A

The calculation of the Lagrange multipliers is the same as in Chapter 3
for Etcheberry's relaxation of the SCP. Initially the multipliers,

Ao, fof GCR1 are obtained by setting A; = N%For Z € R where u, is a

dual feaéible solution to DLP obtained using heuristics. Subgradient
optimizétioﬁ is used to obtain subsequent values of the multipliers.

At iteration k, k > 0,

keq Ak + atzg —zi]yk
A =|max O, - (5.9)

% 2
[y

where o i1is a constant, 0 < a < 2

xk is a solution to GCR1(Ak]

Yk = (Alxk—l)

100

is an upper bound on V(GCR1{A*)})

= v(GCR1[Ak]). As described in §3.3,zg can be replaced

b2l
~

and 2

_QOR 0N

by a 'target value' zg and the method of Camerini et al can be used

to make the bound increase more rapidly.

5.3.4 Partitioning the Constraints

If a graph is bipartite then the GCP can be solved optimally using
the LP relaxation. Hence the solution to the GCP ¢an only be greater
than that obtained from LP in non-bipartite graephs. To ensure
that the matrix 4 1is partifioned so that 4, gives a non-bipartite
graph is not easy and in any case this does not guarantee that the
bound obtained from graph covering is better than that cbtained from
the LP. A practical way of partitioning 4 is to choose Ap with the
maximum possible number of rows. This can be done by solving the

integer program, IP1:

B m
m;x 151 Yz
1P subject to ATy'g 2 (5.10)
y; 10,1} o= 1,2,.00,m .

If yi = 1 in an optimal solution to IP1 then row i‘is a graph covering
constraint, otherwise constraint 7 is relaxed. In practice iP1 is a
large problem to solve and therefore it is solved heurisficélly by
choosing the row Z; with as few 1's as possible in it. Row 75 with
with the next fewest number of 1's in it is then chaosen. Dther rows
covered by columns j that have ailj = aigj = 1 are removed. Row %3
has the least number of 1's in it in the remaining problem. Rows
covered by columns J that have a. . = a =1ora., .=a. .=1 are

11d 13 12 13
removed. The procedure is repeated until all the rows have either

101

been chosen or removed. The removed rows define the relaxed

constralnts R and the chosen rows the graph covering.constraints R.
This heuristic can be generalised to give a relaxed problem with at
most KCOL nan-zerc entries 1n any column in the relaxed problem and

is summarised in PROCEDURE 11 PARTITION, below.

PROCEDURE 11 PARTITION (SCP, KCOL, R)

PARTITIONS CONSTRAINTS FOR LAGRANGEAN RELAXATION

Input: SCP Set covering problem

KCOL Maximum number of 1's in any calumn
of the constraint matrix of the
relaxed problem (KCOL =2 for GCR1)

Cutput: R : Set of relaxed constraints
0. Initialisation
R: = ¢,'§: = ¢ R = set of relaxed constraints,
R = constraints not-relaxed
S: = M S set of constraints to be considered
J: = N J set of columns to be considered
k: =0

1. Iteration %

Set k: = k+1 Update iteration counter

102

Find row with the leést number of

Remove raw ik from further consideration

2. Select ikth Row to be in Constraints
Let row ik satisfy
1's in it
L _a, ., = min[.z a..]
Jed d 1eS Jed g
3. Find Relaxed Rows
For Jed
- X . =
it Ip ag = Koo
then set J: = J~{j}
set R: = RU[MJ._I?)
set S: = S\(Mj‘?t‘-)
else next J.
If S # ¢ goto 2.
4, Exit

R is set of relaxed constraints

R =

5.3.

5

constraints for relaxed problem

(if KCOL =2, R gives the graph covering constraints])

Changing the Partition of 4

If the constraints of A are partitioned into a set of relaxed

constraints R and a set of graph covering constraints R and the

bound v (GCR1(A*)) has been obtained as described earlier, it may

still be possible to improve this bound by using a different

103

partition of rows A. The aim is to find a partition in which the
penalty - A(4yx- 1) incurred in the Lagrangean relaxation GCR1(}) is
as small as possible. Let z be the solution to G;R1[A*]]. If

A1Z > 1 and A*(4yx - 1) = 0, then & is optimal for the SCP and the
procedure can terminate. If l*(Alé - 1) #.0 and 4z > 1 thsn a new
feasible (possibly better) solution to SCP can be found by reducing
Ai‘ to 0 for a constraint ZeR for which Ai*(Alé - 1Ji > 0. Suppose
now that this is not the case and 2 is not feasible for the SCP.

Let Rjc R be the set of constraints that are not satisfied by &.

The penalty for not satisfying a constraint Z is Xi*. Let %4 be the

constraint for which this penalty is greatest, that is, Ai+ = mag_(li).
: 'LEl

Constraint Z* is then removed from 4; and added to A». This means
that some columns in A will now have more than 2 non-zero entries.

Let J+ denote the index set of these columns.

Some constraints of A must now be relaxed so thaé the resulting
problem is a graph covering prdblem. A heuristic estimate of the
penalty incurred for relaxing a constraint of Ay can be made by
considering its associated dual variable ki which is aveilable after
solving GCR1(A*)). Constraints for which g is smallest are relaxed:"
until Ay has at most 2 1's in each column. It may then be possible
to add further constraints fram A; to A so that 4 still gives a

graph covering problem.

Rather than just considering the dual variables wi one can also take

, A z
into account the blossom constraints. A pena}ty term ui wi + peP;C p

can be defined where Pi is the set of odd subsets of vertices
containing vertex vi. Let R be the set of constraints that are rows
of A, and let Z* be chosen as before. Then a subset Bo_'g R of

constraints that must be relaxed can be chosen so that the penalty

term .o 4 is small.
1eF 1.

R

104

The process of changing the partition [/11] is termed a "rotation®.
A

+
After the rotation, let R denote the index set of relaxed constraints.

Then multipliers A+ for Ze R+ can be chosen by setting:
o +
A. = A, for 1€RNR

A, = ui for ie¢ RnE

+ . .
The dual variables, wi’ for the graph covaring problem can be found

by setting:
W, = AL for Ze FnR

7 z
" f e FnE

where F+ is the set of constraints in A4, after the rotation. Then w

can be checked for dual feasibility.

5.4 Graph Covering Relaxation, GCRZ, A Column Relaxatiom

5.4.1 Description of the Relaxation

Whereas the last relaxation, GCR1, was derived from the SCP as
originally defined in Chapter 1 this relaxation GCR2 relies on an
alternative formulation. Each column of the original SCP, a i’ is

split into a set of 0-1 vectors 8, taTJ., such that a ic tET' B, .
J

rx

108

Each column 8 has at most 2 non-zero entries. For example the

vector a; defined below equals B, + B, + B3 and Tj = {1,2,3}.

Row No. aj = 81 + Bo + B3
1 [1] 1] D] [0
2 1 0 1 0
3 0 0 8] 0
4 1 = 1 + o + 0
5 1 0 1 1]
3 0 0 0 0
7 1] | 0] 0| L 1]

The matrix with columns Q_is the vertex-arc itncidence matrix of a

_ graph G2.

"The SCP is then defined as SCPG(d):

[n
min L L d Y,
= . "t
n
subject to j§1t§T- By =1 (5.11)
SCPG(d)
X ’
Y, @ET.yﬂ}/xj (5.12)
J
i ‘ ‘ yte{0,1} (5.13)
where L d =c¢.
tel. [543

J

N

t Jd
o]
and [—f__l is the least integer greater than or equal to % This
relaxation is similar to the network flow problem NF41(d) except'that

the constraints (5.11) have at most 2 non-zero coefficients for each

variabls Yp instead of at most 1 non-zero coefficient.

w

If m 4dis chosen so that z n

106

-’

Associating a Lagrange multiplier, A , with each constraint (5.12)

gives the relaxation LR2(A):

n
< Sz

r?ﬂin jrrter ek We [“Tj o/
LR2(A) T

subject to constraints (5.11) and (5.13).

Let GCR2(d) be the problem SCPG(d) with constraints (5.12) omitted.
= - .z . ter,
Defining m. = A (zeqj Az/hJ] for :eTb the Lagrangean relaxation

LR2(A) is simply GCR2(d + w).

This suggests compu._..g d recursively instead of changing the
multipliers A directly as in the first graph covering-relaxation.
At iteration k, let d and 7 be given by d¥and * with k= 0

initially. Then..

d =d + k = 0,1,2,... (5.15)

ET 0 at each iteralion, then constraint
(5.14) is always satlsfied by the costs d%° 1. Calculation of w is
described in §5.4.3. This means that the total cost of variables y
derived from the Jth column of the SCP is the cost of the column, e

Section 5.4.3 gives an algorithm for computing d* for which

v(GCR2(d*)) = max v(GCR2(d)) | (5.16)

107

5.4.2 Quality of the Bound

Since the optimal solutlon u* to DLP is feasible for GCR2 then
V(GCR2) > v(LP). Hence this bound is better than that obtained from

the LP relaxation of the SCP.

5.4.3 Calculating the Costs

Initially one would like to split a column aj into columns B : tsfb,
t

so that the resulting GCP gives as high a lower bound as possible;
but in general it is not easy to see how this should be done.
Therefore assumeagis split arbitrarily. The initial costs d%:can.“
be found by first calculating a feasible solution u# to DLP. If the

m
. = .« - oz oll o oy H
reduced costs are sJ ct7 254 uzcz?«7 then

o
dt = Upy * Uy ¥ 23j/ﬁj , if column Bt has 2 non-zero
entries in rows Z' and 2"
0 - .
cand d = u, + s./h. , i 1 : g -
..an ALY .J/ ; f column 8. has a single non

zero entry in row Z.

The method used to improve the lower bound and compute d* is an ascent
method based on subgradient optimization. Initially 7° is zero and .
the solution Qo to GCR2(d°] is found by solving the graph covering
problem. The costs dtf tsTj, are only_altefed if they do not satisfy
(5.12). Let the values of J§ for which this is true comprise a sef J!

i i~] z
i.e. J {let# rer yz/Kj}'

If J’= 0, the algorithm can terminate with the optimal solution to
the SCP. This can be obtained by letting x5 = yi:for some £ s?j. If
J’'# 0 the penalties L tfszj for all jeJ, must be calculated. First,
for Jed’, let pj be the number of variables yf,teﬂy, which are set

1 and . =K.~ p..
equal to and let pg 5 pJ

108

The penalties 7, are then defined by:

t
- G_ G
m,= 2P Pu “zz , if yp =1 (5.17)
Rj 1wl]
~Q ZG - ZG
mos0F Fu TR, ary=o0 (5.18)
. 2
s [wl]]

Where zg, gf are upper and lower bounds on v(GC2(d*)), a isanspriori

determined constant with 0 < a < 2 and [|w|[2 = .Z (p.p./K%). The
Jed “g73" g

costs are then updated as in (5.15).

5.5 Further Improvements to the Graph Covering Relaxations

-5.5.1 Ensuring the Costs of the Relaxed Problem Are Non-
Negative in GCR1

If an arc, B in G1 has a cost c’j < 0 then .(assuming the original

SCP had positive costs) it is always possible to increase the cost
to be non-negative without decreasing the value of the graph covering

salution.

' = - 2 a.a.. .
Suppose cj cj LeR Azazg then since ca > 0 there must be a

positive multiplier, A, say. Let & = min[-c’j ;‘Xz] and set Az to

2

Az-A thus increasing c'j to c'j-+A. Let & be an optimal solution

to the GCP corresponding to GCR1 with costs ¢’ and & be an optimal
soclution to the GCP after the costs are changed. By the optimality

of é, the feasibility of = for the GCP and the observation that since
g -
Zoa, x>

J=12%3"g =

e';+4 < 0 it can be assumed that 53 = 1 (implying that 1)

Jd
it follows that:

.A n
- IXatn I A. +A T, -
> ox iefé‘a xo+ Lods s (J.g,l g% 1)

v
8>
]
[ae]
)
8

L
; .Z . =

ZeR Y iER A; = V(&CRIMO))

Thus the solution to the GCP is not decreased after changing the

caosts. For each negative cost qjg A can be calculated repeatedly

and the above changes made until cj'

> 0 for all arcs ej. It may
then be possible to increase some of the multipliers as in

PROCEDURE 2 LPBOUND by setting & = mix 03 where constraint < is
. Jelz

relaxed. Then Ai is increased to Ai + A’and the costs c'j are
correspondingly changed. This cost changing method applies to all
Lagrangean relaxations in which inequality constraints are relaxed

" and PROCEDURE 12 COSTPLUS summarises it below.

PROCEDURE 12 COSTPLUS (SCP, R, A)

SETS ALL THE COSTS IN A LAGRANGEAN RELAXATIGN TO NON-NEGATIVE
VALUES

Input: SCP The set covering problem
R v Set of relaxed constraints
A Lagrange multipliérs
e’ Costs of relaxed problem
EPS Tolerance
Output: A and e Multipliers and costs for Lagrangean

relaxation with A >0, ¢’ > 0O

110

1. Find A Nepgative Cost

(1a) If e¢.' >0 then next g

else goto 2.

2, Find a Positive Multiplier

Find isMbn.R for which Ai >0

JACIIES -a.! .
Set : min(cJ 'Azl

Set Aot = A=A
7 1
r,o_ (AN]
epli=ey s for keNt
Goto 1a.

3. Try To Increase The Multipliers

For <%eR

Set A: = min e.’
Jd

If A < EPS then next

glse set)\1:: =)\ifA

cJ.': = cj'-A for jeIVi

next <

4, The Required Costs Are ¢’ And The Required Multipliers Are A

5.5.2 Ensuring the Costs of the Relaxed Problem Are Non-
Negative in GCR2

As in the previous section the costs on arcs in G2 can be adjusted

to take non-negative values without decreasing the value of the bound.

This can be done by finding an arc, e,, of negative cost, ct',

derived from column J of the SCP. Then there must be an arc 62‘ 2513

with cz' > 0 (since it 1s assumed that the costs of the original SCP
are positivel). If A = min[cl', -c%'] then 02’ and ci’ are changed to
cz’-A and ct' +A respactively. Thils can be repeated until all costs

are non- nesa.tl'ue .

5.5.3 Changing Costs of Arcs in a GCP to Retain the Same
Optimal Solution

This section considers the general problem of how to change the costs
of arcs in a graph, G, so that the optimal solution to a GCP is

unchanged.

Let Ei be thé set'of arcs incident with vertex v Let c’j be the
cost and sj’»be the reduced cost of arc aj. As the vertex-arc
incidence matrix from which G is derived may have columns with only
cne non-zero entfy it is assumed that an extra vertex has been added
to the graph so that all columns have exactly 2 non-zero entries.
Further details on the use of an extra vertex are(given in §8.3. A |
vertex vi is said to be overcovered if it is covered by more than one
“arc in an optimal solution to the GCP. bThe O-graph is the subgraph

of G for which the reduced costs equal 0 at the end of the graph

covering algorithm.

Changes that can be made to costs of arcs are firstly if an arc Ej

!

is in an optimal cover the cost cj can be reduced and if it is not

in a cover the cost cj' can be increased,

4

The amount Aj by which a cost cj can be increased for an arc €5 in

111

112

the optimal solution will now be computed. Suppose ej is the arc

[vi'vk]’ Two cases must be considered.

Case 1 - One Vertex, v} say, is either the Extra Vertex or
Overcovered

In this case the cost of arc €. can be increased until it equals the

cost of some other arc incident to vi' Hence 4 . = min (c '] -ec.!
ReEy J
LET

cj' can be increased.by AH if Aj >0

Case 2 ~ Vertices vi and vk are Not Overcovered

!

Assuming that reduced costs sj are avallable at the end of the graph

covering algorithm for each arc then
A. = min Es ’] + min (é ']
I pemptt teEy
LA t#J
Notice that Aj will equal 0 if the degree of both v and vk is greater
than one in the O-graph. If the degree of a vertex, vi’ say, 1s one

in the O-graph then the dual variable u; and the cost cj' can be

increased by Aj'

The amount Aj by which the cost of an arc € that is not in the
optimal solution can be reducged will now be,ppnsidéreg; This is equal

to sj’, the reduced cost of arc Sj'

Having determined for each arc the amount Aj by which the cost of an’
arc can be decreased or increased without altering the optimal-solution
gives the amount by which the costs dy in the relaxation GCR2

can be changed to leave the solution unchanged. -For GCR2 suppose the

amounts A by which the costs dt? tefﬁ, for arcs in G2 derived from

113

columns aj of the SCP have been calculated. Then if A = min [At] this

t ETJ'

means that arcs that are not in the solution must have their costs
decreased by Z' and arcs in the solution must have their costs
increased by 4. This is done for each column a- After
each change the variables A must be updated for arcs incident to

vertices that correspond to rows covered by column aj'

For relaxation GCRlthe bound can be increased by reducing Ai’ if a

n
7 igfi i I e L. =
relaxed constraint 7 is not satisfied, i.e., 721 athJ 0, and
n
. L .. . i
increasing Ag if 721 aing =1 If the relaxed constraint is

satlsfied with equality then if Ai is changed without altering the
solution & no change in the bound results. For the case in which thé
relaxed constraint ¢ is not satisfied, consider the effect of reducing
Ai by 3. Now 3 must be less than or equal to Xi to prevent xi from

becoming negative. Suppose that the arc derived from column a, of

d
the original SCP 1is denoted by sj. Then, if sjz:k* and < 15 = 1,3 must be
no greater than Aj’ so that the solution to the GCP does not change.
n .
' i .z . = .
Hence if, for a relaxed constraint, 521 azgxb 0 Az can be reduced
by:
A . .
A =min(A,, min &)
7 Q. -=1 !7
'LJK*
£ .e
)

5.5.4 Using the Graph Covering Solution in Consecutive
Iterations of the Subgradient Optimization Procedure

Retaining the graph covering solution from the solution to a
Lagrangean relaxation of the SCP and using it as an input for the
next iteration in the subgradieht optimization phase was not possible
because of the type of graph covering algorithm used. However .it is

possible to save the optimal dual variables for the vertices in the

114

GCP, i.e., the variables corresponding to constraints (5.1), from

one iteration to the next. These are then checked for dual feasibility
and increassed as in PROCEDURE 2 LPBD. This gives a O-graph aof the
graph G2 in which an initial ﬁatching can be found to start the graph

covering algorithm.

5.6 Combining The Two Relaxations GCR1 And GCR2

The two graph covering relaxatians can be combined. Firstly a subset
R of the constraints of the SCP is relaxed until there is a maximum
number of noﬁ-zero entries,bKCDLAsay, in ééch column of the resulting
SCP. For a given vector of Lagrange multipliers A let this relaxation
define the problem SCPR(KCOL,A). Then if KCOL = 2 the problem
SCPR(2,A) is equivaleﬁt to GCR1(A) and heuristics used to determine
the relaxed constraints in the latter relaxation can be extended to
obtain SCPR(KCOL,A)., If KCOL exceeds 2 then the cqlumns of
SCPR(KCOL,A) must be split as in GCR2 to give a graph covéring problem,
GCP(A,d), this is the second stage. To increase the bound in the
graph covering problem the costs of arcs are. changed until either the
solution to GCP is feasible for the column splitting relaxation and
hence an optimal sclution to SCPR(KCOL,A) or an iteration limit is
réached. In the latter case a feasibls solution.to SCPR can be

found by taking the solution y to the GCP when the iteration limit is
reached and setting m& = 1 whenever yt = 1 for-beTﬁ. The solution x
is a cover for SCPR which is then reduced to a prime cover. This
prime caver is then Lé;d fO_ChaAégyﬁhe penalties of the relaxed SCP
constraints as iﬁ GCR1. Thié“de?inés a8 problem SCPR with different
casts to which the relaxation GCR2 is once more applied. The procedure
is repeated until the bound increases no further then the relaxation
can be changed using a rotation of constraints as in §5.3.5. The

method is illustrated in the flowchart of Fig.5.1 and outlined in

»d

\/

FIGURE 5.1

A FLOWCHART OF PROCEDURE 13 GRAPHBOUND

TO0 COMPUTE

LOWER BOUNDS TO THE SCP FROM GRAPH COVERING

INPUT

scP

Upper and lower bounds,
%, and 3y

KCCL maximum numter of 1's
per column in SCP2

Se? KCH: = 0

[PEOCECURE 11 PARTITION - Ralax rcwa of the SCP

Define costs of the rel3xed provlams

ITERATION XCH
KCH: = KCH+1
KR: = 0

¥

Y

—¥ ,
RCW _RELAXATICH, ITERATION KR
KRy & KRe%

KC: = 0

%COL > 21 ALY

Yo
N

o constraint matrix

1
PRGCEDURE 4.RELAX =QR GCR2
Spiit columns of the SCP

KCs « KCeo1t
1

Y

[COLUMN RELAXATION, ITERATICN <C I

problam GCP

PROCECURE 5 SOLVELR = Salve tha gragn covering
Ceizulate 2 laower bound to tha SCP

Yes

1
2eim 28
~Stc:lr- c)jel'
varisdles
in vector u

(3]

~No

6 FEASTEST FCR GCR2
I Test golution to GCPR for feasibility to

SCPR

salution to GCP

easible to SCPR

l FROLEDURE 7 COSTCHANGE FOR GCRZ
Changa costs of GCR2)

Calculate
cover x fo

U

FLAG: = .TRUE,

- [Calculata an optimal
solution @ for SCPR

a prime
r SCPR v

PROCEDURE 6 FEASTEST FUR GCR1
‘ Tnst snlution x fnr feasibllity to SCP

¥

2

»d

FIGURE 5.1 (cont.)

A Flowchart.of Procedure 13

aolution

gasible for SCP

vES

FROCEDURE 7 COSTCHANGE FOR GCR1

Changa multipliers li for relaxad rows

i

CH > KCHMAX?,

<
)
<
I\

CHANGE THE RELAXATION

£ 4

uurPuT ol Pyt
Iteration Optimal
imit solution

excendad

vISCP): = 2,

116

PROCEDURE 13 GRAPHBOUND below.

117
PROCEDURE 13 GRAPHBOUND(SCF, z, 22, x, u, KCOL, RB' LB]
COMPUTE LOWER BOUNDS TO THE SCP FROM GRAPH COVERING
Input: SCP The set covering problem
~ 2 Upper bound to the SCP -
u ‘
u Dual feasible soclution to the LP
relaxation
m
zg Lower bound = i§1~ui
KCOL Maximum number of 1's pér column of
constraint matrix in SCPR.
Qutput: zg Graph covering lower bound
RB Set of branching rows
LB Set of branching variables
u Lagrange multipliers for relaxed
‘constraints
1. Initialise Variables
€: = positive tolerance
KR: = 0 iteration counter for row relaxation is set equal to O
KRMAX: = maximum number of row relaxation iterations allowed
KC: = 0, iteration counter for column relaxation is set equal to O
KCMAX: = maximum number of column relaxation iterations allowed
KCH: = 0, iteration counter for number of times relaxation can be changed
KCHMAX: = maximum number of times relaxation can be changed

FLAG: = ,FALSE. °‘FLAG' is set to the value .TRUE. if the graph

covering problem solves SCPR.

2. Partition Constraints

PARTITION(SCP,KCOL,R) ' Relax rows

R is the set of relaxéd rows

Aoy = ui for all <ZeR Form relaxation SCPR and initialise
Lagrange multipliers

e.!': =, ~

I, A Calculate costs of relaxed problem
J J el 1 1g

3.1 Constraints Partition Number, KCH

KCH: = KCH + 1 Update iteration counter
IR :=0

4,1 Row Relaxation Number, KR

KR: = KR + 1 Update iteration counter
XC: =0

4.2 Split Columns

I+ KCOL > 2 Form relaxation GCR2 of SCPR

then split columns
of the SCP
constraint
Matrix 4

5.1 Column Relaxation Number, XC

KC: = KC + 1 Update iteration counter

5.2 Solve Graph Covering Problem

V(GCP): = value of graph covering solution

zz’: = p(GCP) + igR Ai Calculate lower bound to the SCP

118

If 2" > 2 119
then 2,: = zz' Update z, as the best lower bound
to the SCP
u.: =w.,+ LT Store information concerning graph
7 7 peF% p
for 1eMiE covering dual variables
if 2,22 - T+e Test 1f lower bound
then poto 4.3 exceeds upper bound
5.3 fest Feasibility of Graph Covering Solution For SCPR

If graph covering solution
is feasible for SCPR

then

else

5.4 Chan

FLAG: = .TRUE.

x: = optimal solution to SCPR
goto 4.3

if KC > KCMAX

then goto 5.5

Reset cos

Gotq 5.1

ge Costs OFf The Graph CdQéfing-Problem

ts of graph covering problem as in §5.4.3 of the text

5.5 Calculate A Prime Cover For SCPR

x: = prime cover for SCPR

4.3 Test

The Solution x For Feasibility To The SCP

then

else

If Ai(a?x- 1) = 0 for all 7eR

goto 4.4

1f KR > KRMAX

then goto 3.2

else change the
multipliers Ai,ieR Update the Lagrange multipliers
and costs cj' for SCPR using subgradient

goto 4.1 optimization

4.4 Test Feasibility Of Graph Covering Solution For The SCP

If FLAG = .TRUE.

then goto 7

3.2 Change The Relaxation By A Rotation

If KCH > KCHMAX
then goto B

else change relaxation as in
§5.3.5 of text

goto 3.1°

B. Exit With A Lower Bound

2 1is a lower bound to the SCP

L
Rb = {ilaax # 1 for ZeR} Calculate set of branching rows
LB = J as defined in §5.4.3 Calculate set of branching
variables

7. Exit With Optimal Solution

8 1 =2

u L
RB: = ¢ There are no branching rows or
LB: = ¢ branching variables

optimal solution to the SCP: = x

Exit

The numbering conventioq in the above procedure is to label 5 steps
corresponding to relaxation GCRZ, the column relaxation, 4 steps
corresponding to GER1 and 3. steps connected with changing the

relaxation.

120

TABLE 5.2

Graph Cavering Lower Bounds for A 30 x 60 Problem, Density D.15, To Show

Variation with Stepsize Paramater, &, And Number Of 1's Paer Colunn, KCOL

[0.5 1.0 2.0 ’ 2.5 3.5

Column Numbar | 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 1.1 4,2 4.3 4.4 5.1 5.2 5.3 5.4
KCQL=2
Bast Bound, KCH,KR,KC 50.75 4 250 50.84 4 230 50.71 2 134 50.77 4 210 50.42 3 186
Bast Bound in 100 Iterations | 50.48 100 50.83 100 50.65 99 50.12 36 50.12 36
Best Bound in 200 Iterations | 50.67 139 50.80 170 50.71 134 50.63 198 50.42 186
KCOL=3 - : .
Best Bound, KCH,KR,KC 50.27 1 65 5293 | 50.09 ([8 627 { 50.06 0 1 11 50.06 4] 1 1] 50.08] k] 4
Best Bound in 100 Iterations | 50.08 1 50.06 1 50.05 1 5D.08 1 50.46 1
Bast Bound in 200 Iterations | 50.08 1 50.06 1 50.06 1 50.08 1 50.08 1
KCOL=4
Bast Bound, KCH,KR,KC 50.28 1 6 688{50.38 O 5 476 150.25 D 3 332|50.068 O 1 1160.23 ¢ 3 298
Best Bound in 100 Iterations | 50.08 1 50.06 1 50.06 1 50.06 1 50.06 1
Best Bound in 200 Iterations | 50,07 178 50.06 1 50.06 1 50.06 1 50.08 1
KCOL=S -)
Bast Bound, KCH,KR,KC 50.54 1 13 1193 {50.26 O 2 186 | 50.61 0 5 550 | 50.46 1 4 451 | 50.14 a 1 L1
Bast Bound in 100 Iterations | 50.24 - a3 50,24 . 43 50.19 24 50,17 48 50.14 45
Past Bound in 200 Iterations | 50.24 83 50.26 185 50,21 135 50.17 46 50.14 45
KCOL=10 . A
Bast Bound, KCH,KR,KC §0.37 O 2 186 | 50.50 2 2 200 {50.57 3 3 239 | 50.52 1 1 100 | 50.53 4 1 161
Best Bound in 100 Iterations {50.33 82 50,39 73 50.41 49 50.52 100 50.45% S1
Best Bound in 200 Iterations | 50.37 186 50.51 200 50.41 49 50.52 100 50,93 161
KCOL«=30
Bast Baund, KCH,KR,KC 50.23 0 1 98 150.30 0 1. 71 |50.40 o} 1 a7 150.38 Q 1 81 {50.43 0O 1 72
Best Bound in 100 Iterations |50.29 98 50,30 71 50.40 az 50, 3G a1 50.43 72

CDC 6500 MNF 5 Compiler

for the best bound in X iterations column n.1 gives the
problems solvad to gat this lower bound

KCOL is
KCit is
KR is
KC is

An iteration takes place ‘each time a graph covering problem is solved when the best

tound value and n.3 the number of graph covering .

the maximum number of 1's per column of the SCP after rows have been relaxed.
the number of times that the relaxation has been changed by a rotation.

the number of times the multipliers have been changed on the relaxed rows.
the number-of times the costs of the GCP are changed for relaxed columns.,

bound in k iterations is calculated.

121

122
5.7 Computational Results

5.7.1 Case Study

The same 30 x 60 example as used in Chapter 3 was used for the case
study. The optimal solution is 58.0 and v(LP) = 51.0. Table 5.2
attempts to show variation in the bound value with variation in the
. stepsize parameter, 0, and KCOL, the maximum number of 1's per column
in the constraints of SCPR. Columns n.1 {(for n=1,...,5) give the
lower bound value. Columns n.2 give the number of times the
relaxation has been changed to get the bound. Columns n.3 give

the number of row relaxation iterationé énd ﬁalumns‘n.4lgive the
number of column relaxation iterations needed to get the lower
bound. For each value of KCOL the best bound obtained after an
unlimited number of iterations is obtained, the best bound after -
100 row relaxation iterations and the best bound after 200 row
relaxation iterations obtained was given (except for KCOL = 30).
KCOL = 2 corresponds to the relaxation GCR1 and KCOL = 30 corresponds
to GCR2, No definitive conclusions can be drawn from the results
but when KCOL = 2 the best results were obtained. This could partly
be due to the use of an anti-zigzagging strategy used in the
subgradient ascent and also because changing the type of relaxation
tends to make the bound decrease initially. Using small values of
KCOL, equal to 3 or 4 say, was not particularly_successful because
it was difficult to find an optimal solution x to SCPR from the
graph covering solution. This meant that in changing the multipliers
Ai in 4.3 of Procedure GRAPHBOUND an ascent direction for the

Lagrangean relaxation was not always available.

Table 5.3 shows how the lower bound was used in a tree search. There
was no possibility of solving the problem in a reasonable time using

KECBL = 3 or 4 and the best times were given for the relaxation GCR1.

123

5.7.2 Comparison between GCR1, GCR2 and a Combination
of the Two Relaxations

Six test problems are shown in Table 5.4 where the relaxations GCR1
and GCRZ are compared. Also shown are results for the two relaxations
combined. Five of the problems were standard test problems, T he
first problem was randomly generated. Appendix 4 gives the source

of the problems. Many more proElems were tested, but they did not
give a graph covering bound that was significantly better than that
obtained using heuristics. On average these bounds were 0.2% better
than the solution obtailned from heuristics. The maximum increase

gver the heuristic bound was obtained by the prablem SALK 13 where

the GCR1 relaxation was 0.6% above the heuristic bound and the GCR2
relaxation was G.7% above the heuristic bound. Table 5.4 shows results
for the row relaxation, GCR1, in columns (v} to (ix). The bound value
at the root node of a depth first tree search is given in column (v).
The time taken to calculate this bound is given in column (vi). The
number of graph covering probf;ms solved in the tree search is given
in column (viiil). The number of tree search nodes is given in column
(viii) and the total time taken for the tree search is given in

column (ix). The same information for the column splitting relaxation,
GCR2, is given in columns (x) to (xiv) and for the two relaxations
bombined in .columns (xv) to (xix). Column (xx) gives the optimal

solution.

The relaxation GCR2 gave graph covering praoblems with more vertices
than GCR1 and thus it took longer to solve each graph covering problem.
The number of tree search nodes generated by this relaxation was less
than for the two relaxations combinmed or for the relaxation GCR1. One
explanation for this is that the reduced cost tests removed more

variables when they used the graph covering dual variables from the

124

larger graph given by GCRZ than when they were obtained from a smaller

graph, GCR1.

For the graph covering relaxations combined the maximum number of 1's
in a column of the problem SCPR obtained after relaxing the rows of
GCR1 was determined according to the number of rows in the problem,

It varied between 10 and 30.

5,.7.3 Comparison Between the Graph Covering Relaxation,
--Heuristics and Linear Programming

5.7.3.17 Korman's praoblems

Five problems of Karman [K4] were tested and Table 5.5 shows the lower
bound values at the root node of a branch and bound tree for the
heuristic, graph covering and LP relaxations. The times are in CDC
6500 seconds. The problems were all unicost SCP's with the rows of
the SCP representing vertices of a graph and the columns representing *
cliques. The graph covering and heuristic bounds were almost identical
in value and within 2% of the LPrbound in 3 of the 4 problems solved.
In each case all the bounds would have fathoméd the root node had the
optimal solution been available at the root of the tree. The solution
times of the heuristic and LP methods were similar and the additional
time spent to try and get an improved bound from graph covering was

not computationally worthwhile. .

Korman’s program, a dynamic programming algorithm, was then compared

with the best bound tree search, described in §7.3, using the graph

s B

e

* A clique is a sibgraph-that is a maximal complete graph: ‘A clique
has the property that every vertex in the clique is joined to

~+ gvery other vertex and no vertex can be added to the clique without
destroying this property. :

TABLE 5.3

Number Of Graph Covering Subproblems, Tree Search Nodes And Computing Time To Shaow

Variation With Stepsize Parameter, 8, And Number Of 1's Per ColumnKCDL,for 30 x 60 SCP

a.5 1.0 2.0 2.5 3.5
Column Number | KGRAPH KNODE TIME | KGRAPH KNOBE TIME | KGRAPH KNODE TIME | KGRAPH KNODE TIME | KGRAPH KNODE TIME
KCoL 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 4.1 4.2 4.3 5.1 5.2 5.3
2 420 12 15.8 356 16 14.4 307 13 12.7 354 14 13.9 300 13 12.52
3 5293 * * 5000 * 2521 * * 1670 * * 2215 * *
4 2017 * * 1641 * * 1822 * * 1959 * * 1377 * *
5 1193 * * 972 * * 1112 * * 1036 * * 808 * *
10 361 12 40.1 301 16 35.6 444 * * 301 16 35.6 343 * *
30 300 8 33.2 300 16 33.6 400 17 37.7 400 17 38.4 300 12 32.8

KGRAPH 1is the number of graph covering.subproblems solved

KNODE
TIME

*

is the number of tree search nodas required to solve the SCP

is the computation time on the CDC 6500 at Imperial College using the MNF5 FORTRAN compiler
means that the time 1limit was exceeded.

ezl

TABLE 5.4

A Comparison between the relaxations GCR1, GCR2 and a combination of these two Relaxations

PROBLEM GCR1 - . GCR2 ' . . . GCR1 combined with GCR2 Optimal
) A Solution
No. Sizes = Bound at Tree Search Bound at Tree Search "PBound at ['ree Search z*
Root Node Root Node IRoot Node
m n 1] Value |Time ([No. of|No. of |Total |Value [I'ime [No. of [No.of |Total [Value [Time No. of [No. of | Total
: GCP's |Nodes |Time GCP's |Nodes JTime GCP's |Nodes Time
(1) ‘i) {(id1)] (iv) {v) (vi) (vii) J (viid) | (dx) | (x) Hxi) | (oedd) [(xddi)) (xiv)} (xv) |[(xvi)] (xvii)l (xviid)} (xix) (xx)
SALKS . 30 80} .07 12.7 0.1 26 5 - 0.3 12.71 0.4 30 3 0.6} .12.7 0;3[250 29 3.5 , 13
SALK9 30 a0} .07 12.8 0.1 206 39 1.1} ..12.8 0.2 305 38 1.61. 12.8 0.2 305 38, 1.6 13
94 100 800] .02 }455.7 |- 1.3 130] 27 3.2 455.3 2.9 161 7 8.9 | 455.2| 11.7 788 17 20.4 461
SALK12Z 104 133 ..04 1674.5 0.6 294 46 2.411675.2] 0.9 140 13 3.5)1674.5 3.6 461 31 10.4 1678
PSSCIG 200| 1000{ .02 |428.7 | 1.5 198 44 5.1 428.01 5.7 - - * 428.0} 16.3 - - * 429
‘ h
.SsC17 200| 1000 .02 |510.3 4.3 - - *| 510.2{9.2 - - * 510.1 3.7 - . - * . 512

* means that the iteration limit of 30 CDC 7600 sec was exceeded

CDC 7600 seconds FTN compiler, OPT=2

IA

A Comparison between the Heuristic, Graph Covering and Linear Programming Lower Bounds for Korman's

TABLE 5.5

Test Problems

PROBLEM Optimal HEURISTICS GRAPH LINEAR TREE SEARCH KORMAN'S
Solution ’ COVERING PROGRAMMING with graph bound| ALGORITHM
Upper|Lowex| Time |[Bound [Time | Bound | Time | No. of|Time No. o Time
Bound | Bound Value Value : Nodes Nodes
No. m n z#* z z ’
u 2
(1) (ii)| (iii) (iv) {(v) (vi)] (vidi)] (viii)] (ix)l (x) (xi) | (xii) | (xiii) (xiv)i (xv)
K8 25 136 6 7 5,70} .2 5.700 0.8/ 5.80] 0.3 3 6.4 3889 39.6
K9 25 136 5 6 4.90f .8 4.9 1.5 5.00| 0.2 6 7.4 816 11.8
K10 30 139 7 7 6.50] .5 - ~ 6.63)] 0.5 - 0.5 4318 51.6
K11 30 252 6 6 5.40] .3 - -1 6.00] 0.5 - 0.3 4600 345
K15 35 564 (<7 7 5.49} .1 5.531 2.3 6.00} 1.3 * >60 # Yo000}»1800.0

CDC 6500 sec.

MNF5 Compiler

* Eme limit

Lzt

129

cavering lower bounds. As two of the problems were solved by
heuristics and as the other twa terminated when the search found the

optimal solution the tree search ended quickly.For all the prohblems the

U 1 o—

"grébh covering algorithh ﬁéing he&ristics before the grapﬁ'co;éfinéw
phase was substantially faster than Korman's algorithm, in the case
of the problem K11 180 times faster. The fifth problem of 35 rows
and 564 columns required over i an hour of computer time for Korman's
method and was still unsolved after 1 minute of the graph covering

algorifhm.

5.7.3.2 Four test problems of Salkin and Kancal

The four test problems here each have density 2% and were used by
Salkin and Koncal [82]. Here the graph covering algorithm is compared
with the CDC linear programming package APEX and Balas ahd Ho's method
of disjunctive cuts. The results are shown in Table-5.6. Computing
time 1s in CDC 7600 seconds with the FTN compiler except for column
(xxi). Columns (i) to (1i1i) give problem number and size. 1In
brackets 1n columns (ii) and (iii] is the number of rows and columns
remaining after preliminary reduction tests. Column (iv) gives the

optimal solution.

Lerr bound values together with computation times are given in
columns (vi)-(xi) for the heuristic, graph covering and APEX lower
bounds. The time gives in column (ix]) for the APEX lower bound is
the time taken to solve the LP relaxation‘on the problem remaining
after using reduced costs to eliminate some variables in the pre-
processing stage. As can be seen the LP lower bound was greater than

the other bounds in all problems except the first which was solved

TABLE 5.6

A Comparison between the Heuristic, Graph Covering and Linear Programming Lower Bounds for Four Test Problems

of Salkin and KXoncal

PROBLEM Optimal LOWER BOUND VALUES AT THE ROOT IIQODE COMPLETE TREE SEARCH
Solution " : o
No. Size z* UPPER LOWER BOUNDS
BOUND :
Heuristic Graph Covering] LP(APEX) Heuristic {Graph Covering LP (APEX) Balas & Ho
o n Bound] Time | Bound Time Bound | Time No. of |Time [No. of Time | No.of|No.of Time %%Egaf Time

()l (@i vl | o) |t ity | x| o | e YEIEP kxatilMUSES) | xv) | BT VRS vitd) (xix) (xx)

AHSC14| 100 | 500} 656 56 656.0 0.1 - - - - - - - - - - - 4 4.0

AHSC15] 100 | 600 | 670 679. 664.9 0.1 666.3 1.3 | 668.0 |1.2 9 0.5 8 19.8 800 17 . 1.5 J46 42.6
(73} (128)

AHSC16 {88) (399) 600 pit 595.7 0.2 595.7 2.5] 596.0 |1.3 12 0.6] 26 23.3 392 13 1.6 59 24.0

" JAHSC17} 100} 800 | 460 473 454 .2 0.2 455.3 2.9 | 456.0 1.1 12 1.0 7 8.9 73 |4 1.8 82 >300.0

(100)] (227)

All the times are CDC 7600 sec with the FIN.compiler except for column (xx) where the times are for a DEC 20/50.
The DEC 20/50 is approximately 10 times slower than the CDC 7600. <
For the Balas and Ho method the times are for solution of the problem at the ‘xoot node using only cuts

to raise the lower bound. When this method was used in a tree search, problem AHSC17 was solved in 92.24sec

with 30 nodes and 362 cuts.

ST A

Fable 5.7 Computational Results for Graph Covering Problems

PROBLEM HEURISTIC BOUNDS LINEAR PROGRAVMMING GRAPH COVERING
No. of No. of Upper | Lower (Time LP 'Qo. of Time Solution Time
vertices arcs Bound | Bound Bound Nodes '

No. m n

(L)} (id) (iii) (iv) (v) (vi) (vii}| (viii) (ix) {x) (xi)
95 35 350 - 99 9%75 0.4 92.&! 290 38.2 94 0.6
9671 45§ 450 127 118.5 0.3 119.% 350 58.0 121 0.4
97 55 250 172 165.0 0.3 166.5; 37 1.1 167 1.7
98 | 150 1000 466 428.0 0.5 430.0; 7 5.3 431 2.6
§9 200 1000 652 612.5 0.5 617.% 2 4.2 618 3.6

cpC 7600 sec.
FTN compiler (OPT=2)

-t

oel

131

by heuristics and for which the LP solution was optimal. In problems
(ii) and (iv) the graph covering bound was about 0.3% above the

heuristic bound and was not as great as the LP bound.

Results for tree searches are given in columns (xii)-(xxi). Columns
{x1iii) and (xiv) give the number of tree search nodes generated and
the time when heuristics ere used to calculate the lower bound.
Columns (xv) and (xvi) give the same information for the graph

covering lower bounds. -

5.7.3.3 Results for graph covering problems

Five randomly generated graph covering problems were solved as SCP's
using APEX linear programming package and the results are shown in
Table 5.7. Bounds on the soiution value were obtained using the
heuristics of PROCEDURE 3, but upper bounds were also obtained using
the methods of §2.3. The best upper bound is given in column (iv)
and the lower bound in column (v). Column (vi) gives the time to
calculate these bounds. The APEX linear programming code was used
to solve the GCP's and the number of tree search nodes is given in
column (viiil). As can be seen the number of tree search nodes for
the first two problems was approximately 300. The reason for such

a large tree was that the APEX code fook several branches before an
upper bound was found. The graph covering solution is shown in
column (x) and the time taken to compute it in (xi). For all the
problems except problem 88 it was quicker to use the graph .covering
code than the APEX code. There was less difference in the computation
times for the larger problems. Also the LP bound was very close to
the optimal solution, differing by only 0.5 in the larger problems,
whereas in the small praoblems it differed by 1.5. The heuristic

upper bounds were on average 5% higher than the optimal solutions.

Using the Graph Covering, Heuristic and LP

TABLE

5.8

Bounds in a

Tree

Search

PROBLEM HEURISTICS GRAPH COVERING LINEAR PROGRAMMING Optimal
Solution
No, | m n ‘p Bound at |No. of |Total |Bound at {No. of | Total |Bound at |[No. of |[Total z*
" Root Node' | Nodes Time Root Node | fodes Time |Root Node }Nodes Time
Coo(d) [(dd) (iii) | (iv) - A “(vi) (vii) (viii) (ix) (x) (x1) (xii) (x1ii) (xiv)
Lssc1 200 ROOCO .02 250.2 42 4.2 250.5 - * 251.2 - insolved 253
nfter 10
LSSC9 200 000 .02 277.3 25 2.3 277.5 19 41.7 279.0 1 1.7 279
LSSC16 RO0 [1000 .02 427.1 10 2.1 428.0 44 15.3 429.0 1 4.9 429.
LSSCc20 P00 {1000 .02 512.0 1 0.8 - - - 512.0 1 4.8 512
Lssc2i RO0 {1000 .02 © 555.75 ¢ 15 3.2 555.81 >50 * 557.3 10 23.3 560
1.8sc22 P00 {1000 .02 428.53 3 1.3 429.6 >50 * 430.0 T 19.1 430
SALK12 | 30 20 .04 12.5 1 0.1 - - - 12.7 11 1.2 13
SAIK13 {104 133 .04 1668.3 15 0.3 1674.5 46 2.4 1674.0 4 0.9 1678)
CDC 7600 sec
FTN compiler (OPT=2)

CET

Thus using better methods to obtain the upper bounds would have been

advantageaus.

5.7.4 Using the Heuristic, Graph Covering and LP Bounds
in a Tree Search

As the previous tables of this chapter have shown the graph covering
bounds were not very quick to compute. Hence when they were embedded
in a tree search most of the test problems failed to be solved
because of the time taken to find the bound. The results are shown
in Tgble 5.8 and it is seen that the heuristics give the best
algorithm for most of the test problems. The LP however gave a better
bound than both the graph covering and heuristic solutions. It was
also quicker at solving the probilem, LSSC8; 200 x 2000 SCP of density

0.02.

5.7.5 Conclusions

The bound calculated by the graph covering relaxations is expensive
fo compute and it is usually better to use the less good heuristic
bound in a tree search. Only one problem, SALK 13 of Table 5.8 did

the graph covering bound exceed the LP bound.

134,

CHAPTER &

LOWER BOUNDS TO THE SCP USING:

DECOMPOSITION AND STATE SPACE RELAXATION

6.1 Introduction

Two methods of finding lower bounds to the SCP are described in fhis
chapter. A decomposition method, in which the SCP is divided into
smaller SCP’'s whose solution values are éummed to give a lower bound,
is described first. Secondly a relaxation of a dynamic programming
algorithm in which not all the state spaces are stored is used to
give a lower bound to the SCP. More detalls on state space relaxations
for the vehicle routing problem are given in Christofides et al [C7].
- Both methods are illustrated on examples. The first method produces
an excellent lower bound but is | slow to compute. The second
bound is more quickly computed but does not give a particularly higﬁ
value. Extensions to the second method which improve the baund are

also discussed.

6.2 - -The. DScomposition Method For Obtaining A- Lower Bound
" "TFo. The SCP o ST o - :

6.2.1 Definition

The constraints M of the SCP are partitioned into » disjoint subsets,
J?r}ig...,ﬁ}. Thus the constraint matrix (after suitable rearrange-

ment of the rows if necessary) is given by:

A,
Agy
A= . (6.1)

A
r

J

135

Let the non-zero columns of Az be dencted by Z&. Whenever the Jth
column of Az is non-zero a variable Y is defined. Let Tj be the
index set of variables yt derived from the jth column of the SCP.

Let dt be the cost of variable y, such that:

z d =oc. (8.2)

For notaticnal caonvenience let y(&i and d(lj be vectors of problem
variables and costs corresponding to columns of Z&. The SCP can then

be reformulated as the problem SCPD(d):

min T dT

10 ke Yo Yo

subject to Al y[l]

TV
—_

2 ¥(2) 1 (6.3)

v

ScPD(d)

Ar y(r] z 1

Yy =r§.»~,Tj yr/l_ 7l (6.4)

Yy € {0,1} for all ¢

This formulation of the SCEvhaé'tﬁé"Séme~strUéture as thosé;used to

derive the problems NF1(d) and GCR2(d). Dropping constraints (6.4)

!

" from SCPD(d) gives the problem DEC(d) which is again a set covering

problem. Define the problem SCPz(d] as:

min dT Y
2
() (2) Y(2)
SCPl(d] Subject to Z&Iytzl = 1 ‘for all £ -(6.5)

for all t

138
Problem DEC(d) is solved by solving each of the praoblems SCQ}d]
for & = 1,2,...,7r, Then v(DEC) = 2§1 v(SCPR) is a lower bound to
the SCP. Even 1f it is not possible to solve the problems SCPQ exactly
lower bounds can be calculated which, added together, give a laower

bound to v(DEC) and hence to the SCP.

As in the relaxations NF1({d) and GCR2(d) the aim is to divide the costs

¢ so that optimal costs d* for the relaxation are found where:
v(DEC(d*)) = mgx v(DEC(d))

subject *- ~t513 dt = cj | (6.6)

DOne way of calculating the costs dt is to use subgradient optimization

as described in the next two sections.

6.2.2 Calculating the Costs d° Initially

If u 1s a feasible solution to DLP and s is the vector of assaciated
reduced costs then a cost divderiyed-frbm column-g “and. rows R, of-the

original SCP can initially be defined as:

0 . | :
d? sj/T T, | + ing ", (6.7)

This value guarantees that the bound obtained from the relaxation

U

: m
DEC(d) is at least as great as the heuristic lower bound, i§1 5

Further if u* is an optimal solution to DLP then v(DEC(d)) > v (DLP)
= v(LP) thus giving a bound at least as good as that obtained from

the LP relaxation.

6.2.3 Updating the Costs

The costs, d, are updated as for NF1 and GCR2 at- an iteration k of

137

the subgradient optimization for k¥ > 0 by first solving SCPD(ko. The

solution yk is then tested for feasibility to the SCP, by checking

k

that constraints (6.4) are satisfied. If Yg = 0 for all te T; then

xﬁ = 0 in the SCP and similarly if yi = 1 for all Ze Tj then xj = 1.
Otherwise let J' = {j|(6.4) is mot satisfied} and let p; be the
number of variables in ?j set equal to 1. At iteration k the

penalties ", are given by:

For jeJ' and te. T,

J
Ty = all le-ij[zu-zl] if Yy = 1
12
(70 |]wi]
T, = "“pj (zu-zzl ify, = 0O
2
1zl 11wl

For géJ' and te T

where d is an a priori chosen constant
b is an upper bound to the SCP
3, 1is the lower bound, v[DEC[dk]].

||wllzis equal to pp. / |7.I*
The costs dt are updated %t”iteration k by:

& e d g

+ " £ (6.9)

The iterations terminate when either (i) the optimality conditions
(6.4) are satisfied, (ii) the bound v(DEC) > zu-1 +e where 2 1is an
upper bound te the SCP, € is a tolerance and the costs cj are integer

or (iii) the bhound has not increased for several iterations.

8.2.4 Using Integer Costs dy

If the costs dt are restricted to be integral then the solution to

133

each subproblem SCPQ and hence to DEC must be integral. Thersefore in
any tree search to solve the subproblem SCPz(dJ rounding up non-
integral lower bounds may accelerate the computation time. Instead
of using heuristic solutions to DLP to calculate the initial costs,
d?, they are given integer values satisfying tém. dt = C..

J
: J
Changes to the costs must subsequently be made i1n integral amounts.

A8.2.5 Reduced Costs for the SCP

Both the network flow and graph covariﬁg relaxations can be described
as linear programs from which reduced costs for the SCP are then
derived. The decomposition relaxation yields combinatorial problems
(SCPQJ, albeit smaller problems than the original SCP, and hence

integer programming duality defined in §1.3.4.4 must be used to define

reduced costs.

First let ?j/z be the Jth column of Az. Then let fa(.] be an optimal

subadditive function analogous to optimal dual variables in linear

programming. One chaoice for fa[aj/zl is as the optimal solution to

the SCPZ with right hand side replaced by aj/z, i.e.
fila.,) = min dT“y
d"q/s yoy (272
subject to AQ y[K] > ag/l

r
Then letting Fd(ajJ ='2§1 fa[aj/ll the reduced cost of the Jth column

of the original SCP 1s given by :
s. =c.-F_la.) (6.10)
g dg

As with linear programming duality the jth column of the SCP can be

139
removed if:

Sj E 1 + e - v(DEC(A)) (6.11)

Unless SCPz[d] is solved by an LP relaxation, in which case

. * ,

variable for row %), it is difficult to calculate f,la.,,) exactly.
d g/

fﬁ(aj/zj can be chosen as I, ul aij(where u; is the optimal LP dual

Instead an upper bound to fa.?k, is calculated giving ?&, an upper

bound to F,, by:

— r
Fd(aj) = I fa[aj/z) (6.12)
then

is a lower bound on the reduced cost sj. Thus if (8.11) 1s true when

sj is replaced by 53 the jth column of the original SCP can be removed.

Unfortunately no easy way of calculating'? was found. To remove
variables'using reduced costs it is sufficient to find a function ?
that is an upper bound on an integer dual feasible subadditive
function f' where f'(1) = v(DEC(d)). Again no suchvfunction f! that

could be calculated easily was found.

6.2.6 Recursive Tree Search

The decomposition method involves splitting the SCP into smaller
SCP’s, SCPz(dJ, that are solved using a tree search. The lower bound
v(DEC(d)) is in turn used in a tree search. Thus the tree search
procedure is used at two levels in the algorithm presented in
PROCEDURE 14 DECOMPOSITION BOUND below. There may be an advantage in

decomposing SCPz(d] as if it were the original SCP. Thus a whole

140

sequence of SCP's could be generated and tree searches used at a depth

of up to a fixed number, say q, levels.

6.2.7 Sorting the Constraint Matrix 4 Initially

If the constraint matrix A is almost in block diagonal form initially
then fewer variables Y. will be generated and it is less likely that
constraints (6.2) will be violated. Therefore a heuristic procedure
should be used to sort the matrix into block diagonal faorm. Such a
prdcedure has been developed by King and Nakornchai [K2a] which sorts
the matrix into blocks by sorting columns as in §1.3.3.2. The
procedure is then repeated by sorting the rows into blocks. The
columns and rows are sorted alternately until no further improvement
is made. The procedure tends to.cluster the non-zero elements

near the diagonal of the matrix.

6.2.8 Description of the Decomposition Algorithm

The procedure below describes how the decomposition algorithm is used

to obtain a lower bound to the SCP.

PROCEDURE 14 DECOMPOSITION BOUND (SCP, 2, Bgs Uy NPART)

. COMPUTE A LOWER BOUND TO THE SCP USING A DECOMPOSITION METHOD

Input: sScP The set covering problem
zu An upper bound to the SCP
NPART The number of subproblems into

which the SCP is to be divided

2 ,U Lower bound from heuristics and

dual feasible sclution

141

Qutput: = A lower bound to the SCP

z Upper bound to the SCGP

1. Initialise Vardiables

KMAX : Maximum number of iterations allowed

k: = 0 Set iteration counter to O

€ Tolerance within which the solution
must lie

2. Define The Relaxation

Partition the constraint matrix 4 into NPART submatrices. Calculate

costs dt for each problem SCPztd].

3. Iteration k

k: = k+1 Update iteration counter

If k > KMAX goto 8,

L: = 0 % is index of the current subproblem SCPz
L: = ¢ . ' L gives solutions of relaxed problems
z£:= 0 ~ Initialise bound value

4, Solve SCPy(d)

4.1 %1 = 2+1

If £ > NPART

then goto 5.
else solve SCPQ[d] - - o

zé: =z£-+v[SCP2[d]] Calculate bound

L: = LlJ{tIyt= 1 in solution to SCP (d)}

142

5. Test Solution Value

If 2 gzzu- 1+¢ Test 1f lower bound exceeds

A
upper bound

then goto 7.

else let J={jlequation 6.4 of text Test feasibility of solution
is not satisfied} for the SCP

if J=¢ then goto 8.

else change costs

dt for all te T,
J
and all Jed

goto 3.

6. Solution Is Feasible For The SCP

Set xj = 1 Whenever there is Yy = 1

r.
and te 3

Set zu: = zz

7. Exit With Optimal Solution 2,

Exit with 2, gives optimal solution to the SCP

8. Iteration Limit Exceeded

Exit with zl a lower bound to the SCP

The computational results for the decomposition method are given

alongside those for the state space relaxation in §8.5.

143

6.3 A Lower Bound To The SCP From State Space Relaxation

6.3.1 Definition

In principle the SCP can be solved by dynamic programming, but this
requires too much storage to be useful in practice. This section
shows how the dynamic programming states can be mapped on to a smaller
set of states. Instead of obtaining an optimal solution to the éCP
solving dynamic programming recursions on tﬁe smaller set of states
gives a lower bound to the SCP. This is known as stgte space
relaxation and can be thought of as a generalisation of Lagrangean
relaxation. In Lagrangean reiéxatidh:eadwconstraint has a single

ﬂ1shu¢$fa4&.likuqu(rh
multiplier ki anq4a subset of constraints, §, is given-a value

flg) = igs Age

State space relaxations enable functions f(f) which are non linear ta

be computed for a given stah%s; For example fTéJ could be the numier

of elements in . Ta calculate the state space relaxation (SSR)‘:

bound a function g(sfsis used-te map the sets S ,optoia sma1ler‘set ‘of sets.

Suppose $§ represents a right-hand side vector b of the integer program,

IP. At iteratdion k+1 the lower bound is given by:

- F,(gibia,)) + e, _
Fk+1(g[b)l grgl%72+1 [19 aJJ] +cJ] (6.14)
‘where N, = {3|akj;40} , Fb[g(b)] = 0 for all b and aii_z 0

6.3.2 State Space Relaxation 1, SSR1

6.3.2.1 Definition

In the first state space relaxation, SSR1, the function g(b) for a

0-1 vector b is given by two values (a,B) where o is the number of

144

components equal to 1 in b and B is the index of the row containing
the last 1. The lower bound to the SCP, obtained using dynamic

programming recursion (6.14), is given by F&[g(l]].

6.3.2.2 Reduced costs

Fh[b],which will be used as an abbreviation for F,(g(b]), is a
subadditive integer dual feasible solution and thus the reduced cost

of column aj can be defined as:

Sj = cj - Fm[aj]

The reduced cost test 1is if
s.>2 -Fh(jj (6.15)

J~— "u

then xj equals 0 in any solution better than 2«

6.3.2.3 Improving the bound value using subadditivity

Since any subadditive non-decreasing function that satisfies the

dual feasibility conditions can be used one has:
F(b~a.) + Fla.) > F(b)
d Jd -
or F(b~aj]_3 F(b) - F[aj] {6.16)

Now because a relaxation 1s used condition (6.16) may be violated and

hence it may be possible to improve F[buaj].

An example for the 30 x 80 SCP used in previous chapters

gave values for F as shown below:

Ut W AN >

ODWoOND

1

13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

The value of Fm(a.B) - Fm(g(bll

m= 30 1s the number of constraints in the SCP

b 1s an m-dimensianal binary vector
a i3 the number of 1's in the binary vector b
8 is the index of ths last non-zero component of b

‘a1 2 3 4 5 6 7 8 910 111213 1415 16 17 18 18 20 21 22 23 24 25 .26

145

27 28 29 30

13.20 25
9 18 22 29

NONNNN~
Y
H
-
m

9 16 22 29

13 13 18 22 29

18 18 20 27 33

7 16 18 18 25 25 27

7 14 14 16 25 24 27 32

NNO NN
-
NN 2NN
-

-

13 14 18 20 25 27 29

14 14 16 16 22 23 27 28

18 18 18 18 24 25 27 31

9 11 18 18 18 18 24 25 25 27

7 14 14 14 14 18 18 25 25 25 25

NNO Ny~
-
NN =Sy
=
NN ON
-
NN SO
-~
puS

7 7 7 7 8 1414 14 14 16 21 21 21 23 25 27
9 9 9 9 9 16 16 16 16 16 23 23 23 23 25 27 30
g 9 9 911 16 16 16 18 20 23 23 23 25 27 30 30 32
7 7 7 7 7 1116 16 16 18 20 23 23 25 27 27 30 30 32
.7 7 7 7 7 1414 1414 14 1823 232325 27 30 30 32 34
7 7 7 7 72 913141414 16 20 21 21 21 23 27 30 30 32 34
7 7 7 7 7 914141414 16 18 21 21 21 23 25 28 28 28 30 32
7 7 7 7 7 7 89141414 1416 18 2121 21 23 25 27 28 28 30 32
5 8 8 ¢ 9 9 91116 16 16 16 16 18 23 23 23 23 25 27 30 30 30 32
7 7 7 7 9 9131316 16 15 18 1B 20 22 23 23 25 25 27 29 30 32 32 4
7 7 7 7 7?2.7 8141414 16 16 18 18 20 23 23 23 25 25 27 30 30 32 32 34
? 7 7 7?2 7 713131314 14 14 16 20 20 21 23 232525 27 30 30 30 32 32
7 7 7 7 7 7 9141414 14 14 16 20 20 21 21 2123 25 27 28 30 30 32 32
11111111 1111 18 18 18 18 18 18 20 25 25 25 25 25 27 31 31 32 32 32 34
7 7 7 7 7 7111314 14 16 16 15 18 20 20 21 25 25 25 27 31 31 32 32 32

Notice that F(9,8) = 27 and F(8,8) = 33 and P(9,3) <F(8,8). This means
thatalaast cost of covering the first 9 rows of the SCP is less than
that of cavering the first 8 rows. Hence F(9,9) can be increased to
33, This kind of check can improve the bound further and can be
generalised using (6.18).

34

34 38

36 38 339

34 36 38 39

146

6.3.2.4 Comparison with other relaxations

If the parameter 8 is dropped then the state space relaxation gives
the same result as solving the knapsack problem when all the
constraints are added together. Hence the bound is at least as good

as solving the knapsack relaxation.

6.3.3 State Space Relaxation 2, SSR2

In this relaxation a third parameter, vy, is used to define g[sl = (a,B,v)
This paramster is defined.by assigfing-to the Zth row of the SCP a small
infeger.value u, say and then for a 0-1 vector b, y = i£1 uibi' Then

o and B are defined as beforg. This bound is then at least as good as
that obtalned from solving the weighted knapsack problem where the
constraints of the SCP are added together after being multiplied by

the weights Uy

If the weights do not take integer values but instead take the LP

optimal dual variables then y can take reél values instead of integer
values and hence the number of values of g(S) may be very large.

If éli‘ these~ vélues can be stored and optimal véiﬁes df the

dual Qariables (weights),,ui, can be found then the vbound is

at leést as good -as that obtained from the LP relaxation. If
there are too many values then g(S) must be redefined as

‘@8 lx)) vhere |#] is the largest integer less than

or equalvto_%,_ This means that the bound may"be less than'thgt f??T,LP'"m

6.3.4 Other State Space Relaxations and Extensions

Other possibilities for g(b) are to put g[b] = (a,B,y) where o and B are as

before and y is the index of the row containing first non-zero entry

T
of b. Thus g(D1 0 11 100)" = (4,8,2).

For problems in which consecutive 1's occur for example b =

(0111 000 11111 DUDD)T a function g(b) = (o,B8,Y) can be used where B
is the index of the row containing the first non-zero entry, vy is the
index of the last row of the first string of 1's and o is the number
of components of b equal to 1. This can be extended to g(b) =
[a,Bl,Yl,Bz,YZ,...,ﬁk,yk) where 62 is the index of the first row and
Yy is the index of the last row in the 2th string of 1's. Thus for

the vector B above and k=2, g(b) = (8,2,4,8,12).

Another possibility is to divide the matrix A of the SCP into r sub-

matrices Az, L=1,2,s..,1,as 1n 86.2.1 and set:
g(b) = (al,uz,...,ar,B]

where oy is the number of components of b egqual to 1 that are rows of

A2 and B 1s the index of the row containing last non-zero entry aof b.

6.4 -Solving A.Class Of_SCP's

6.4.1 Introduction

The SCP's that are considered in this section have columns made up
of strings of 1's. A string of 1's in a column J is a set of rows

21, T1+1,...,%2 with a. 1. If 2; is not the first

AT R AT IF R A

row then a[ﬁ1—1]j==0 and if 2p is not the last row then a[£2+1] =0.

For the column:

(XY
O O A o 0O 22 o o

147

148
there are two strings of 1's from rows 1 to 3 and 5 to 6.

When only one string of 1's occurs 1n each column the SCP can easily
be solved as a shortest path problem as shown in §1.3.2.1. Strings
of 1's occur frequently in vehicle scheduling and routing problems.
Shephardson and Marsten [88] solved problems with two strings of 1's
in each column. Their method is generalised here. For a problem
that can have any number of strings of 1's first a decomposition of
each column is defined. This is in contrast to a decomposition of
the entire matrix as given in §6.2. A loWer bound is obtained from
this relaxation which i1s solved as a shortest path problem. Costs
of the relaxed problem are changed by subgradient optimization to

improve the lower bound.

- B.4.2 Defining the Relaxation

Let each string of 1's in the constraint matrix be indexed by ¢. Let
T}; be the index éet of strings of 1's that occur in the Jth column
of tne SCP. Let the variable, Yyo be associated with the #th string
of 1's. The column aj of the SCP ig then split | fg‘l into columns,
Bt(te Tj). If the tth string of 1's goes from rows 21 to Z, then
column St has 1's in rows %y to Z, and 0's elsewhere. Thus for the
column aj defined in the previous paragraph there are two strings of

1's so B; and B, are defined as follows:

aj = By + B2

1] 1 [o7]
1 1 0
1 1 D
0 - 0 . 8]
1 0 1
1 0 1
0 0 0

L 0] _G_ | 0]

149

As in relaxation GCRZ2 and the decomposition relaxation the caost of

column Bt is dt and tg - dt =,

J .

T.o5 . d
”‘;” JE tEr, o %Yy

13

subject to L z 7 By, =21
SCPP(d) . g=1 e T; "EE

-3 N T, :
Yy séTj ys/]\T_7 | for all te f (6.17)

Y€ {0,1}, for all ¢ for J=1,....,n

Constraints (6.17) can be relaxed to give the Lagrangsan relaxation,

LRP(A):

[nin 3 d Ay, - 5, 7. ']}
”‘;“ FE ek o %Y T MW Lk /| T
J J
P(}) 3 > 1

LR 7 tEp, Be¥e 2
L Yy € {0,1} for all ¢

where téT dt=cJ

As in the graph covering relaxation GCR2 the problem can be reformulated

by letting:

T, = A, - L A . for téT, {6.18)
/| TJ' g

5.4.3 Changing the Costs

Subgradient optimization gives exactly the same formula for updating
the costs dt at iteration k as in §6.2.3. At the kth iteration the

problem that is solved is the shortest path problem, SPP(d).

n k
mn-gEe thg g ¥y
7
SPP(d) n
JE1 ekp Be¥eZ 1
7
y.c{0,1}

150
SPP(d) naturally has an integer solution.
The aim, as before, 1s to find optimal costs d* that satisfy:

(SPP(d*)) = mgx v(SPP(d))

Q
n

subject to tng Gy
b

This gives a lower bound to the SCP that is at the best bound equal

e, for all J.
J 81t d

to the LP bound. The proof follows the proof that »(NF1(d*)) = v(LP)
given in Chapter 4. Firstly it can be shown that if the costs dt are
negative they can be set to non-negative values, dé say, with no

decrease in bound, so that:

v(SPP(d']) 2 v(SPP(d))

Then associated with the solution to SPP{d') is a dual feasible

solution which is dual feasible for DLP and hence -
v(SPP(d'}) < v(DLP) = v(LP)

The LP bound can be attained by setting dt equal ta}sj-+B£u* for u*

an optimal solution to DLP and Sj the Corresponding reduced coét where
‘te 7} . ..Hence the best bound obtainable-from this relaxation is the
same as that obtained from the LP. The advantage of this method is
that shartest path problems can be solved more guiekly than linear
programs. Also each string of 1's can be stored as two figures, the
first and last row of the string; This reduces the storage require-

ments for the SCP when the strings of 1's are lang.

6.5 Computational Results

8.5.1 Cése Study

For the same 30 x 60 example of density 0,15 as used in the other

chapters the state space relaxation bound was 39 as shown in 6.3.2.3.
The COC 6500 time under the MNF compller was 6 sec. The value of the
bound obtained from the decomposition relaxation when the SCP was
partitioned into 4 subproblems was 55.11 and the corresponding time
was 22 sec. on the CDC 6500, This bound value obtained after 29
iterations of Procedure DECOMPOSITION BOUND. Bound values are shown
in Table 6.1. The computing times were slow partly because of the
time taken by the depth first on.rows”tree search strateg&. Using an
anti-zigzagging strategy in the subgradient ascent and a better choice
of steplength would improve cohputing time. The SCP solution was 56.0,
LP bound was 51.0 and the knapsack bound (formed by adding the
constraints} of the SCP together) was 28.0. Hence the relaxation SSR1
is an improvement over the knapsack bouna. The decomposition bound
quickly exceeded the LP bound, at the 3rd iteration of Procedure

DECOMPOSITION BOUND.

6.5.2 Comparison Between the Heuristic Bounds and the
Decomposition Relaxation

Bounds from the decomposition relaxation are compared with heuristic
bounds for five probléms in Table 6.2. The first five columns give
details of the problem as in previous chapters. For the subgradient
optimization phase of the decomposition relaxation the parameter §

was equal to 1.0. The optimal solution value to the SCP, z*, is given
in column (vi). The number of tree search nodes and computation time
for a depth first tree search on rows using heuristic bounds used to

find z* is given in columns (vii) and (viii).

Lower bound information is given in columns (ix) to (xiv]). The
heuristic bound value at the root node of the search tree is given in

column (ix]) together with the computation time in column (xJ.

151

TABLE 6.1

Bound Values For The 30 x 60 Example

Using The Dec@mposition Relaxation

Iﬁi;iiisn Bound Value
1 49.44
2 48.42
3 51.58
4 50.53
5 49,66
6 92,39
7 51.34
8 50.65
9 50.64

10 50.47
11 51.67
12 50.39
13 ' 53.05
14 52.14
15 52.11
16 52.39
17 51,33
18 - 23.35
19 51,59
20 52.57
21 - 54.83
22 51.53
23 - 55.11

The LP bound is 51.0.
The SCP solution, =2*, is 56.0.

The best bound available is underlined.

152

153

Columns (x1) to (xiv]) give the same results for the decomposition
bound. The SCP constraint matrix A was divided into submatrices A2
which had at most 15 rows. The number of subgradient iterations at
which the decomposition bound exceeded the heuristic bound by at least
13, of the heuristic bound is given in column (xi). Column (xiii)
gives the first subgradient iteration at which the decomposition bound
exceeds the heuristic bound by at least 2%. The times taken to
calculate the Bounds fram decomposition are given in columns {xii)

and (xiv). Average results for columns (xi) to (xiv) are also given.

Table 8.3 gives the computing times for the heuristic and decomposition
bounds of Table 6.2 as a percentage of the total computation time (as

given in column (viii) of Table 6.2).

For the two most sparse problems, numbered 71 to 72, the time taken to
calculate a decomposition bound that was 1% higher than the heuristic
bound was longer than the time taken to solve the SCP. However as
Table 6.4 shows both of these problems were solved very quickly and
the initial bouﬁd calculation using heuristics was approximatély one
third of the total computing time. For the most dense problem, number
74, calculating this first decomposition bound was less than 4% of the
total time. For all the problems it was possible to get a bound 2%
greater than the heuristic bound from the decomposition relaxation
after an avérage of 17 subgradient iterations. However the computing
time was long and even for the most dense problem was nearly a quarter

of the total time.

Table 6.4 gives the best decomposition bound found in 30 subgradient
iterations. Compared with the heuristic bound the balue was high,
but for 3 of the five problems the computation time was longer than

that taken to solve the entire SCP.

TABLE 6,2

Comparison Of The Decomposition Bound And The Heuristic Bound

PROBLEM OPTIMAL SOLUTION i DECOMPOSITION BOUND

BOUND EXCEEDS | BOUMD EXCEEDS

ND SIZE €osT| g2, | NoDES | TIME T | TIE| 2 oy s or 2, |z by 2% of 2
Iteration| Time |Iteration| Time

No No

(1) | (44) ¢ (44i) | C(dv) | Cv) | (vi) § Cvdi) | (viii) | "(ix) (x) (xi) (xii) (xiii) (xiv)
70 | a0 | 150 |[o.08| x | 82 | 16 | 3.1 | 86.0| 0.8 10 9.3 28 22.7
71 { s0 | 100 |o.08)| x | 146 3 1.12 | 141.9 | 0.4 4 1.5 15 5.2
72 | so | 100 Jo.08) u | 1 13 | 3.28 | 8.9} 1.1 23 16.3 23 16.3
73| s0 | 100 |00 | u | 10 | 478 | 21.21 | 7.9 1 4.2 | 10 18.5
74 | s0 | 100 |[o0.15 | x | 81 | 1370 | 188.4 | es.8 | 2.2 1 7.12 9 47.4
Average 8 7.7 17 22,2

PS1

"TABLE 6.3

‘Computing Times for the Decomposition and Heuristic Bounds

PROBLEM HEURISTIC BOUND DECOMPOSITION BOUND
No. Size Costs [Time to compute bound as % |Time to compute bound as % |Time to compute bound as %
of total computing time. of total computing time. of total computing time.
m | n o (Bound = ZZ) (Bound = 1.01 x zg) (Bound = 1.02 x zz)
(L) (iL)(aii)(div) {(v) (vi) (vii) (viii)
70 401150} .08] X 2 26 63
71 50{1001] .06}] X 36 134 464
72 | 50{100} .08{ U 33 495 494
73 50f{i00¢ .10 U 9 19 92
‘74 501100§ .15 X 4 24
. Average 16 135 227

CDC 6500 sec.
MNF5 Compiler

5S8T

TABLE 6.4

Decomposition Bound 'as 'a 'Percentage of the Optimal Solution

PROBLEM HEURISTIC BOUND DECOMPOSITION BOUND Optimal
Solution
No. Size Costs Bound as % Time as % Best Bound in Time to calculate Time
of z* of total 30 iterations bound as % of
m |n o} time as ¥ of z* total time

(1)} (ii) {(iid) | (iv) (v) (vi) (vii) (viii) {(ix) (x)
71 40 } 150 .08 X a3 2 97 63 36.1
72 50 {100 .06 X 97 36 100 799 1.1
73 50 1100 .08 U Q0 33 92 494 3.2
74 50 {100 .10 U 79 9 96 277 21.2
75 50 }100 .15 X 81 98 61 198.4
Average 88 16 97

338

CDC 6500 sec
MNF5 Compiler

981

‘"TABLE 6.5

‘Decomposition Bounds for Different Partitions of A4

PROBLEM HEURISTIC BOUND DECOMPOSITION RBOUND after 30 subgradient iterations
Max No. of Rows Max. No. of Rows Max No. of Rows
in a4, = 15 a =10 A, = 8

No. | Size ound Time Bound”~ [Time Bound ime Bound” Time

m | n o)

) ddy - {idid) [(iv) | (w») (vi) (vii) (viii) (ix) (x) (xi) (xii)

75 30 {100 .12 1 45.0 0.6 51.9 17.9 46.0 7.9 45.3 5.1

76 40 {100 .06 | 122.6 0.2 125.2 6.0 124.8 4.0 124.1 2.5

77 40 (100 .08 596.8 0.5 388.3 8.0 97.8 5.0 97.7 4.5

78 40 l100 .101: 68.8 0.7 71.5 16.3 70.9 7.0 70.0 3.5

71 50 (100 .06 | 146.4 0.6 147.2 2.1 147.0 2.8 147.0 1.6

All the problems

have randomly generated

costs of type X as defined

in Chapter 2.

CDC 6500 sec.

MNF'S5 Comp

iler.

LST

Tests were carriled out on a further set of five problems to ascertain
the difference between bound values when the constraint matrix was

partitioned into submatrices of different sizes.

The bound value when the maximum size of a submatrix took different
values was calculated. If a problem had 50 rows and the maximum
submatrix size was 15 then 3 matrices with 15 rows would be generated
and one matrix of 5 rows. Generally if MMAX was the maximum number
of rows allowed in a submatrix then an SCP with m rows was divided
into ﬁ%/MMAXW submatrices each of MMAX rows except possibly the last
which would have all the remaining rows in the original SCP. The
bound value and times for MMAX= 15, 10 and 8 are shown in columns
(viii) to (xii) of Table 6.5. When the matrix was partitioned intao
the smallest number of submatrices the bound was higher as expected,
but also the computation time was higher. For prﬁblem 75 the optimal
solution was 56. This problem was only split into 2 parts when MMAX
was 15, Although the corresponding decomposition bound of 51.9 was
considerably higher than the heuristic bound of 45.0 it was far from

the optimum and took considerable time to compute.

6.5.3 The State Space Relaxation, SSR1, Bound Compared
With the Decomposition and Heuristic Bounds
]

158

This bound is shown with the heuristic bound and the best decomposition

bound in 30 iterations (when the maximum size of a submatrix was 15)

in Table B.56. In all cases the SSR1 bound was lower than the heuristic

bound and in most cases slower to compute. The SSR1 bound was

approximately 2/3 of the optimal sclution.

6.5.4 Conclusions

The decomposition bound is too costly to be useful as implemented.

Comparison between Bounds

TABLE 6.6

from Decomvosition,

State Space Relaxation

1 and - Heuristics

PROBLEM HEURISTIC BOUND STATE SPACE DECOMPOSITION BOUND Optimal
RELAXATION BOUND (after 30 subgradientj. Solution
No. Size iterations) :
F : Bound Time Bound Time Bound Time z* Time
(L) i1y (iii) [div) | (w) (vi) vii) (viii) (ix) (%) (xi) (xii) (xiii)
75 130 150 |.05(U 5.7 1.6 5 0.3 5.7 1.9 7 5.4
76 |40 100 |.15] X 51.0 1.5 50 0.7 54.8 102.2 64 -
70 (40 150 |.08] X ° 86.0 0.8 63 1.6 89.0 22.7 92 36.1
77 {40 150 |.10] © 6.4 2.1 6 0.9 6.6 42.0 8 10.5
78 |50 100 }.05| X 173.3 0.5 130 1.2 177.1 3.3 178 1.1
79 {50 100 | .06] X 141.9 0.4 100 1.1 145.5 9.0 146 1.1
71 |50 100 | .06] X 146.4 0.6 129 ° 0.9 147.2 2.1 150 1.5
80 |50 100 | .09 U 92.9 0.9 69 1.4 94.6 4.8 38 1.7
73 |50 100 1.10f U 7.9 1.9 6 - 0.7 8.2 22.8 10 21.2
174 |50 , 100 | .15] X 65.8 2.2 62 3.2 68.5 121.0 81 198.4
cDpe 6500 sec.

MNF5 Compiler

4ST

160

Improvements could be made to the tree search, but as both thé SCP

and the subproblems SCPz(d] were solved using the same tree search

it was felt that this had little effect. However decomposition could
be useful for specially structured problems that had an almost block
diagonél constraint matrix. Also experiments could be made on choosing
the partitlons more carefully. As the bound value was quite high 1t

is probably sufficlent to get lower bounds to the subproblems SCPZ(d]
rather than solve'them exactly. Also further tests using integrality

of the original costs could be made as described in §6.2.4.

The state space relaxation, SSR1, bound was too low to be useful.
However it may be improved by combining it with other parameters as

described earlier in this chapter.

161

CHAPTER 7

BRANCHING STRATEGIES FOR THE SCP

7.1 Introduction

Branch and bound is one of the most successful approaches in solving
combinatorial programming problems. As mentioned in Chapter 1
extensive studies have been made of branching strategies. Thus this

chapter only briefly discusses methods applicable to the SCP.

First 'a simple binary tree search is used to illustrate the
importance of choosing a branching variable. Three different methods
of selecting the branching variable are presented.and an example is

.

shown.

fhe number of rows in an SCP is usually much less than the number of
variables, hence three implementations that use branching on rows are
described. Branching on rows is of interest for several reasons.
Firstly if the constraint coefficient matrix of the SCP is stored by
row as a list of non-zero columns then it is very easy to implement.,
Secondly the successful branching strategy of Marsten [M1] for the
SPP used branching on rows. In the SPP, unlike the SCP, the fixing
of a variable to 1 in constraint < means all other variables in the
constraint must be fixed equal to 0. Thus at each node of the séarch
tree several variables can be fixed. Thirdly the dynamic programming
algorithm of Kaorman [K4] was <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>