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ABSTRACT 

An explanation is put forward in terms of Alfv£n waves to 

account for the observations of magnetic field-aligned currents 

which are seen to be flowing along field lines which map from the 

auroral zone, via the boundary of the plasma sheet, to the neutral 

line in the distant magnetotail. 

The assumption is made that there exists a process within 

the neutral sheet which generates a strong electric field across a 

thin layer. The effect of this field should propagate earthwards 

as a shear-mode Alfven wave, which in the steady state should be 

stationary relative to the earth. 

In this situation field lines, with cold polar wind plasma 

on them, E A B drift through the wave. The problem is therefore 

amenable to an initial formulation in terms of cold plasma theory, 

and a further development of linear theory by computation. 

Following a discussion of the various wave modes which can 

exist in a cold plasma, linear theory is used to obtain the dispersion 

relation and expressions for the growth rate. The growth rate is 

found to be a critical function of the angle between the wave normal 

and the magnetic field. This fact is demonstrated in plots of the 

y-component of the magnetic field, and the non-linear behaviour of 

these diagrams are explained in terms of constant current. 

It was found necessary to derive approximations in order to 

compute the pure Alfven mode, and these are discussed fully in 

Chapter 4 where they are shown to be essential in order to suppress 



rapid oscillations which are present. 

Finally an exploratory search is made of the high resolution 

ISEE 1 and 2 magnetometer data for representative plasma sheet 

crossings which occurred in the first half of 1978. Comparison is 

made between the results of the computation and these selected plots, 

and in the final chapter conclusions are drawn and suggestions for 

further work made. 
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CHAPTER 1 

FIELD ALIGNED CURRENTS AND THE 

EARTH'S MAGNETOSPHERE 

1.1 Introductory Remarks 

Since the late 1950's, spacecraft of varying degrees of 

sophistication have been launched into Earth orbit in order to 

study the interplanetary environment and its relationship with the 

Earth. Spacecraft have been launched with the purpose of studying 

the solar wind, auroral zone and magnetosphere-ionosphere 

interactions, as well as the deep space probes such as Voyager; and, 

during the past two decades, magnetospheric physics has undergone a 

successful period of discovery and exploration. A morphological 

description of the magnetic field and its time variations has been 

obtained as well as a knowledge of the particle populations imbedded 

within. Many of the physical processes at work have been identified 

and a fairly good quantitative understanding of the radiation belts 

has been obtained. However, there is still much to understand about 

the precise roles played by various turbulent processes and their 

relationship to such phenomena as anomalous resistivity and parallel 

electric fields; and also about the large, and small scale, field 

aligned currents which flow into and out of the auroral zone, as 

these are crucial in the coupling of the magnetosphere and ionosphere. 

Progress in understanding the physical processes at work is therefore 
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achieved at the expense of added complexity, as each spacecraft poses 

many more questions than it provide's answers for. A magnetosphere 

arises from the interaction of a continuously streaming, hot, 

collisionless plasma with a magnetised body, in this interaction a 

cavity is formed in the flow by the magnetic field of the central 

body; and it is this, the magnetospheric cavity, which was first 

discussed by Chapman and Ferraro (1931) . 

This magnetic field also physically ties the points of the 

magnetosphere together, guiding charged particles, plasma waves and 

electric currents; trapping thermal plasma and energetic particles; 

and transmitting hydromagnetic stresses between the exterior flow and 

the central body. 

In the Chapman-Ferraro theory the solar plasma was assumed 

to be diamagnetic, thus the Earth's field was thought to be confined 

completely within the cavity. The assumption of a diamagnetic solar 

wind was first criticised by Alfvdn (1939, 1950), however it was 

Dungey (1961) who first put forward the concept of the "open model", 

whereby geomagnetic field lines from the polar regions are merged 

with the interplanetary magnetic field (IMF); and the merged field 

lines are then referred to as open. In the situation where the IMF 

field vector is directed southward, a magnetic neutral line is 

formed which surrounds the magnetosphere, a plane consisting of field 

lines which cross the neutral line can therefore be imagined, and 

the intersection of this plane with the ionosphere coincides with 

the location of the auroral oval, as discovered by Feldstein (1963). 

This oval is then the projection along the geomagnetic field lines of 

the neutral line, and it is within this region where the various 

coupling processes which link the ionosphere and magnetosphere (such 

as field-aligned currents) show themselves in the form of auroral 
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displays. An important aspect of the open model is that it allows 

the solar wind to blow across open field lines, thereby providing 

the electromotive force, and power for a wide range of magnetospheric 

phenomena; it is this magnetohydrodynamic (MHD) dynamo which is 

responsible for converting the kinetic energy of the solar wind into 

electrical energy (Akasofu and Chapman, 1972); and auroral displays 

are often described in terms of electrical discharge phenomena which 

is powered by the solar wind - magnetospheric dynamo. 

In support of this it was Zmuda and Armstrong (1974) who first 

showed that there is an inflow of electric current to the poleward 

half of the auroral oval in the morning sector, and an outflow from 

the poleward half during the evening sector. The presence of field 

aligned currents is vital for the formation of the auroral forms seen 

in the poleward section of the auroral oval, and the aurora can be 

divided into essentially two categories : 

a) The diffuse aurora - which is largely due to pitch angle 

diffusion, and 

b) The discrete auroral arcs - which are associated with 

different particle populations than the diffuse aurora, 

and are also associated with intense field-aligned 

currents. 

Spectrograms obtained from rockets which have been flown through 

auroral forms identify two principal types of particle precipitation : 

c) The high latitude region - this corresponds to the location 

of the discrete arcs - and has field lines which map to the 

boundary of the plasma sheet (BPS) J and it is this region 

which is of special importance in this work. And 
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d) An area which lies equatorward of the BPS region, and 

consists of an almost uniform area of precipitation. 

Field lines here map to the central plasma sheet (CPS); 

and for the aurora, the difference between BPS and CPS 

corresponds really to electrons of different energies 

and pitch angle distributions; pitch angles peaking near 

0° for the BPS particles and 90° for the CPS populations. 

In concluding this introductory section, which has tried to 

stress those parts of the magnetosphere which are especially relevant 

to this work it is perhaps best to summarise by giving a diagram 

which displays most of the points discussed above, and Fig. 1.1 shows 

a section through the noon-midnight meridian, which may serve as a 

reference. 

1.2 Field-Aligned Currents 

In fairly recent times it has become generally accepted that 

magnetospheric field-aligned currents provide a mechanism by which 

the aurora can be produced, however there is still confusion over 

the precise roles played by phenomena such as anomalous resistivity, 

double layers and electrostatic shocks (Swift, 1976; Hudson and 

Mozer, 1978A; Hudson and Mozer, 1978B; Kindel and Kennel, 1971). 

The evidence which has brought about this recognition has been 

largely due to particle and field observations acquired during the 

last decade from a variety of rocket and satellite experiments. These 

have not only confirmed the presence of large scale field aligned 

currents, but have also shown them to be an important and permanent 

feature of the system coupling the magnetosphere and ionosphere 

(Arnoldy, 1974; Anderson and Vondrak, 1975; Potemra and Saflekos, 

1978; Fairfield, 1973; Frank et al, 1980). The direction in which 



Figure 1.1 
Noon-midnight section of the Earth's 
Magnetosphere 



the large scale field-aligned currents (FAC) flow is summarised in 

Fig. 1.2. These diagrams were constructed from (a) data obtained 

from 439 passes of the TRIAD spacecraft during weekly disturbed 

conditions (|AL| < 100y) and (b) data obtained from 366 triad 

passes during active periods (|al| £ 100y), and show the "Region 1" 

(poleward side) and "Region 2" (equatorward side), current systems, 

(Zmuda and Armstrong, 1974; Iijima and Potemra, 1976a,b). 

In addition to the macroscopic currents represented by Fig. 1.2 

the first report of thin current layers in the aurora was made by 

Cloutier et al (1970), who were the first to associate the currents 

in thin sheets with individual auroral arcs, and in 1975 the first 

reports of similar layers on the plasma sheet boundary were made by 

Thomas and Hedgecock (1975). It seemed clear therefore, that an 

understanding of plasma sheet boundary dynamics and current flow in 

thin layers would be essential for an understanding of individual 

arc-forming processes. 

In order to estimate the size of these field-aligned currents 

it is necessary to work from the observed magnetic perturbations and 

the magnitude and direction of the equivalent FAC's can be calculated 

from the observed transverse magnetic perturbations (AB) by an 

application of Maxwell's equations, viz. 

j = - i- (v a (ab)) 1.1 
o 

(Zmuda and Armstrong, 1974). 

Magnetic disturbances observed with polar orbiting spacecraft 

are often seen to occur in the geomagnetic east-west direction, and 

in this case the current density is given by : 



7 

o xi 

Figure 1.2 
Macroscopic Field-aligned current systems 
(after Potemra, 1976a,b) 
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where refers to the field-aligned flow. In equation 1.2 x is 

positive in the northward direction, jM downwards and AB^ in the 

eastward direction. Under these circumstances the magnitude of the 

current density, / j„ dx, is given directly by the amplitude of the 

magnetic perturbation, i.e. 

/ j„ dx = (-J-) AB 1.3 
o 

Thus for example, a 100y perturbation would correspond to a current 

intensity of about 0.087 Am ^. 

Field-aligned current determined for example from TRIAD 

magnetometer data have been positively correlated with observations 

of visual aurora acquired with ground based all-sky cameras (Kamide 

and Akasofu, 1976), with the DMSP satellite (Kamide and Rostocker, 

1977), and with the ISIS 2 satellite (Kamide et al, 1978). It has 

been, shown that in the evening sector, the discrete auroral arcs 

are in general confined within the region of upward flowing FAC; and 

it is in this region where intense electron precipitation is seen 

along with the "inverted V" events, and associated ion-cyclotron 

turbulence (Mozer et al, 1980); it is also this region which has 

magnetic field lines which map, via the boundary of the plasma sheet, 

to the neutral line in the distant magnetotail and upon which 

extensive noise has been reported at both low altitude and in the 

distant tail (Gurnett and Frank, 1977; Gurnett, Frank and Lepping, 

1976). 

Conversely, the diffuse aurora occupies the region which is 

equatorward of the discrete, and it is contained within the "Region 2" 

current system of downward flowing FAC's; and it has already been 

mentioned that the essential difference as far as the auroral 

particle populations are concerned is that those causing the discrete 
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aurora are believed to originate from the BPS region, and those 

causing the diffuse from the CPS (see section 1.1). 

For the purposes of this work we are primarily concerned with 

the region which maps to the boundary of the plasma sheet, i.e. the 

region containing the discrete auroral arcs; this part of the 

magnetosphere-ionosphere system is crucial in the understanding of 

phenomena such as substorm dynamics, turbulence levels and the 

causal relationships between turbulence and electrostatic shocks, 

double layers and anomalous resistivity (see Mozer et al, 1980; 

Southwood, 1978; Hudson and Mozer, 1978a,b) and it is important to 

realise that field-aligned currents are the common denominator 

between discrete arcs and the plasma sheet boundary. For present 

purposes it is useful to have a definition of the plasma sheet, 

other than the qualitative one inferred from Fig. 1.1, and the one 

given by Dungey (1975) is suitable, in that the plasma sheet may 

be defined "by a population of electrons and protons whose pressure is 

comparable to the magnetic pressure, and whose characteristic energy is 

of the same order as that of auroral primaries, viz. a few keV". 

It is also necessary to say, briefly at this stage, something 

about the spatial scales which are involved in that the scales of the 

region 1 current systems are very much larger than those associated 

with the discrete arcs which are imbedded in them; arcs themselves 

are associated with spatial scales which are measured in tens of km, 

rather than the hundreds associated with the region 1 macroscopic 

current system. The arcs may therefore be thought of as fine 

structure within the large scale region 1 system, existing as they 

do on field lines which map to the plasma sheet boundary : it is 

this latter system that is of particular interest here. 

Finally, in concluding this section, mention should be made of 
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the importance of boundaries within the magnetosphere, for example 

the magnetopause, the importance of which has been realised for about 

20 years, particularly in connection with the generation, via the 

Kelvin-Helmholtz instability, of certain types of geomagnetic pulsation 

(Southwood, 1974; Chen and Hasegawa, 1974). 

However, the plasma sheet boundary, first reported by Bame et 

al (1967), has only been seen to be of importance, particularly in 

connection with the auroral sybstorm, for about 10 years (Meng and 

Anderson, 1971; Akasofu et al, 1971; MtJbius et al, 1980). The boundary, 

which has a sharp density gradient across it, is typically about 1 Re 

thick (Andrews et al, 1980), and marks the transition from magnetotail 

lobe plasma in which the plasma S << 1, and particle densities are of 
- 1 - 3 . . . 

the order 10 cm , and the plasma sheet its-elf m which 6 - 1 , and 

the number density at least an order of magnitude greater. 

It is in the outer layer of this boundary in which this work is 

based, as it is field lines in this region which would support current-

carrying shear mode Alfv£n waves as they propagate Earthwards from the 

tail neutral line. 

1.3 Preliminaries and Initial Formulation 

The purpose of this work is therefore to offer an Alfven wave 

explanation which will be able to account for the observations of 

field-aligned currents which flow along field lines mapping from the 

tail neutral line to the auroral ionosphere. However, before the 

problem can be formulated the assumed existence of these waves in this 

region of the magnetosphere should be justified. 

For the purposes of this model it is assumed that within the 

neutral sheet there exists some process which generates a strong 

electric field across a thin layer, and it turns out that justifying 

the existence of the shear-mode wave is equivalent to justifying the 
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existence of the above electric field. Alfv£n (1968), following on 

from work done by Speiser (1965) on the orbits of particles in neutral 

sheets, was the first to discuss a model which, like the magnetotail, 

is finite in the y-direction; and while this model has the virtue of 

giving a value for the cross tail potential it is based on an 

approximation which neglects all current due to particles from the 

magnetosheath, at the flanks of the tail, entering the neutral sheet. 

Using this model Alfven predicted that all the protons would drift 

to the dusk side, and all the electrons to the dawn, and that far 

enough away from the neutral sheet the fields given by B and E are ~x ~y 
uniform therefore all particles drift towards the neutral sheet with 

Ey a speed given by However, Cowley (1971) pointed out that although 
B 

protons and electrons drift towards the neutral sheet at the same speed, 

once in the sheet the protons, because of their greater mass, are 

accelerated more slowly than the electrons and therefore spend longer 

in the neutral sheet. This would then result in a space charge being 

set up, and Alfvenfs assumption of uniform electric fields would not 

therefore be self-consistent. 

Cowley therefore generalised the model by allowing for any 

electrostatic field and solved for the self-consistent potential, 

showing that all the equipotentials go almost to the dusk edge of the 

sheet (as shown in Fig. 1.3), and on either side of the sheet all 

charged particles drift approximately along the equipotentials. He 

found also that the region where the potential varies rapidly close to 

the dusk edge of the sheet was of the order of the proton wavelength, 
227.7 . . . . which may be taken as A = , N i and if the number density n, is m 

J p (n)2 J 

_3 units of "cm " then X is in kilometres. P 
In this model electrons approach very close to the dusk edge of 

the sheet before encountering the centre plane at z = 0 , after which 



12 

DUSK DAWN 

Figure 1.3 The Alfven-Dungey-Cowley model, showing electron 
layer at centre plane 
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they move towards dawn in a layer which is much thinner than the layer 

of positive charge. This electron layer is therefore a thin layer of 

negative charge and the potential in the centreplane at z = 0 should be 

between the dawn and dusk side values. 

It can therefore be seen from Fig. 1.3 that a large positive 

space charge exists which has the effect of setting up a local 

polarization electric field which is at right-angles to the current 

sheet. With this in mind the following scenario for generation of the 

shear mode waves can be put forward. 

Following the consequences which result from the merging of 

terrestrial field lines with the IMF, the open field lines are then 

blown over the polar cap by the solar wind and it is these field lines, 

which contain cold polar wind plasma, that proceed to E A B drift 

towards the centre plane of the magnetotail at speeds of 10-15 km s 

As these field lines approach the region of polarisation field close to 

z = 0, they follow the equipotentials, or flow streamlines in this case, 

and it is evident from Fig. 1.3 that near the point of field line 

reconnection they undergo a two and fro motion. However, the presence 

within the sheet of the dawnward flowing electron beam ensures that a 

potential difference exists between the middle and the outside of the 

sheet, and it is the effect of this electric field which should 

propagate Earthward as a shear mode Alfven wave; the voltage due to the 

perpendicular field E is then fed along the field lines to a thin z 
layer in the auroral ionosphere thereby driving currents, the magnitude 

of which is determined by the amount of resistance in the circuit, in 

this case the ionosphere is the main load plus any anomalous resistance 

which, might be present on the field lines. 

In the steady state this wave should be stationary relative to 

the earth, and the flux tubes which are then E A B drifting equatorwards 
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through the wavefront ensure that the reflected wave returns to a point 

which is Earthward, by several tens of Earth radii, from its point of 

origin. This is summarised schematically by Fig. 3.1, in which the 

source region is represented by a battery, and the wave is shown to be 

returned at a substantial Earthward distance from its source. 

It is useful at this point to estimate orders of magnitude for 

some of the plasma parameters which are of importance to the model, 

for example the Alfv£n Mach number M^, and the Alfv£n speed V^, and 

while the magnitude of V^, which is the characteristic speed for the 

propagation of low frequency waves, is given strictly by : 

V A [47m (m +m ) ] P e 

numerically we may use the following equation : 

VA * 2 2 

-3 -i 

where B is in nT(y) and n in cm , then V^ will be in km s 

For the purposes of this work we are interested in distances 

down tail of perhaps 20 Re, and for a position just outside the plasma -3 
sheet, i.e. m the lobe plasma, we may take B = 15y and n = 0.1 cm 

3 -1 hence, V. = 10 km s . Now the wave frame is such that the wave A 
normal, and therefore the x-axis, is pointing almost into the E A B 

flow (see Chapter 3, section 3.2, Fig. 3.2). Thus for an Alfv£n mach 

number defined with respect to the wave normal, and an E A B drift 

speed of about 10 km s ^ the value of M^ is given by 
w 1 0 - 2 
MA = I03 = 1 0 

Now in Chapter 3, equation 3.H , an expression is given for the growth 

rate which has the following form : 
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^ 2 a2 _ M A ~ cos G 
O 2" " 2 cosz9 + 1/1800 P 

we therefore see the result, well known from cold plasma theory, that 

cos0 < M^ : where 0 here is the angle between the wave normal and the 

magnetic field line. 

The wave therefore, has a large field-aligned component of 

current and with its wavefront nearly parallel to the local magnetic 

field it is able to stand in the very low Mach number flow. 

1.4 Some Wave Characteristics 

Plasma waves which are propagating at an oblique angle to the 

magnetic field are inherently more difficult to analyse than either 

the parallel or perpendicular case primarily because of the greater 

variety of linear modes which can exist and also because the modes 

are coupled. Figure 1.4 is a schematic plot of to v k for oblique 

waves in a plasma : lines with slopes equal to the Alfven and sound 

speeds are shown as dotted,, and intersection of a dispersion curve 

with a line of slope equal to the shock speed V^, determines the 

frequency and wavelength (oi and k) of the possible solutions. It can 

be seen that for high Mach number shocks there are no points of 

intersection, and therefore no oscillatory solutions, whereas for 

lower Mach numbers there are at least two solutions possible. 

In Chapter 3 the dispersion relation for waves propagating at 

an angle 9 to the magnetic field is derived and this has the following 

familiar form : 

= 1 - i sin29 ± {| sin49 + cos29}* - J ^ L 
A p e p 

where w = u)/k = phase velocity, and the other symbols are defined in 

Chapter 3 and in the symbol's table. However, it can be seen that 
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— V = V A 

Figure 1.4 Schematic plot of a) against k for oblique waves in 
a plasma. 



1
7 

Figure 1.5 
Dispersion plot for real oj, to show the 
modes for each sign. 
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there are two possible solutions depending on whether the positive 

or negative sign is being considered, and physically this corresponds 

to choosing either the whistler or shear mode respectively. This 

separation is shown more clearly by plotting w against OJ - and this 

is done in Fig. 1.5 where the difference between the two modes is 

apparent. 

The shear mode wave is therefore characterised by an angular 

frequency GO which is less than the proton gyrofrequency ft , and in 

fact a mode transition occurs for to = ft . 
P 

1.5 Summary 

The four sections of this chapter have tried to put into 

perspective the environment within the magnetosphere in which most of 

this work is based. The first section charts the progress made in 

magnetospheric physics since the beginning of the space era. The 

second section attempts to show the relationship between the auroral 

phenomena and processes at work in the plasma sheet by discussing the 

field-aligned currents which are common to both regions. In the 

final two sections the problem is formulated in a qualitative way and 

the assumptions of a polarisation field perpendicular to the sheet is 

justified; and finally concludes with a brief discussion of the 

dispersion relation. The final sections indicate that the procedure 

to be followed is to investigate numerically the cold plasma equations 

for shock-like solutions in this particular wave mode and for this low 

value of the Alfv£n Mach number. 

In Chapter 2 it is shown how the various modes arise which can 

exist in a cold collisionless plasma, and this serves to define 

properties and terms which recur throughout. In Chapter 3 the problem 

is formulated in a quantitative fashion and a linear analysis of 
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the equations is done along with the derivation of the dispersion 

relation. 

The fourth chapter deals with the process of computing the 

equations, starting by showing quantitatively that shock solutions 

exist for M ^ < 1, and discusses the approximations which are required 

in order to compute the Alfv€n mode. In Chapter 5 results of the 

computations are given and discussed in the light of magnetometer data 

from the ISEE 1 and 2 spacecraft, and a short discussion on what 

each should see upon traversing the plasma sheet is made. 

The final chapter draws conclusions on the previous five, 

summarises, and makes suggestions for further work. 



CHAPTER 2 

A FORMULATION OF HYDROMAGNETICS 

2.1 Introduction 

Under certain conditions, oscillatory processes in a 

quiescent plasma can be suitably described by making use of an 

equation which involves a self-consistent field without a collision 

term, coupled with the Maxwell equations which describe the 

electromagnetic field. 

For this description to be valid it is necessary that the 

quantity U)T >> 1, where OJ is the frequency of the oscillation and T 

the relaxation time. 

However, when ojt << 1 higher order correlation effects must 

be considered beginning with the collision integral. In principle 

therefore, progress can be made by using the kinetic equation with 

a self-consistent field and a collision integral together with 

Maxwell's equations; but, this method can rapidly become very 

complicated and is in fact unnecessary because for ojt << 1 the more 

compact hydromagnetic description is valid. 

The full equations of hydromagnetics (HM) can be written in 

the following form : 

!*r+V.(pu) = 0 2.1. 
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VAE = - f 2.3 

VAB = y Q j 2.4 

V.B = 0 2.5 

ds 

dt = 0 2.6 

In equations 2.1 through 2.6 B is the magnetic field, E is the 

electric field, p the density, u the macroscopic velocity and s the 

entropy. 

Equation 2.6 is necessary in order to be able to apply the HM 

description, as it expresses the assumption that macroscopic processes 

proceed slowly, and also that dissipation is absent : in other words 

it expresses the adiabaticity of the process. 

2.2 Determination of the Hydromagnetic modes 

The process of determining which wave modes and oscillations 

can be excited, and which can propagate through the plasma will just 

involve equations 2.1 through 2.6, assuming no energy dissipation. 

In the case of one dimensional waves propagating along the 

z-axis, with all HM quantities functions only of z and t, the equations 

take the form : 

= A 
at 3z 3z 

i l + u z = 

at az 

3H2L+uz3ux._BiLaBx. = Q 

3t 3z p 3z 

3u v r u7. 9u v _ B z 3 B V = 0 

3t 3z p 3z 
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8t p 3z p 3z 3z p 3z p 3z 
= 0 

3B X _ B z 3ux + B x 3uz + u z 3B, 
3t 3z ' 3z 3z 

= 0 

8B, 
3t 

B z 2l*SL + B y 5Hz. + u
z ^ 

3z 3z 3z 
= 0 

3B Z _ 3B 

at 3z 
2- = 0 

Where from the last equation, B z = constant. 

Following Bohachevsky (1962), the above set can be written in a 

more compact form : 

21+ J z . . ( a ) | 2 i - 0 
t IJ 3z 

_3_a-
3i j=l 

2.7 

where a^ is the HM state vector and is given by : 

P 
s 
u x 

"y 
u z 
Bx 

and the index takes on the values 1 -v 7, 

So for a 1-D wave there are seven HM variables. 

In equation 2.7 Z.. is the matrix given by : 
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Z. . = 
2-J 

u 
z 

0 0 0 P 0 0 

0 u 
z 

0 0 0 0 0 

0 0 u 
z 

0 0 " B z / P 0 

0 0 0 u 
z 

0 0 - B z / p 

p/p p/p 0 0 u 
z 

B x/P yp 
0 0 - B 

z 
0 B 

X 
u 
z 

0 

0 0 0 - B 
z 

B 
y 

0 u 
z 

Equation 2.7 thus represents the entire HM set of equations in a compact 

fashion. 

To examine each of the seven modes it is useful to assume small 

amplitude perturbations and then linearize the set represented by 

equation 2.7. 

Therefore, assuming a^ = a°\ + a'^ where a°^ is the unperturbed 

state of the plasma, the linearized form of 2.7 is just 

3a'. 
i + 

3t 

7 
E Z. . 

i-l 1 J 

( a ? i ) 
8a'. 

J 
3z 

= 0 2 . 8 . 

A technique can now be employed to reduce Z.. 
ij 

to a simpler form. 

If a frame is chosen so that it moves with the plasma velocity 

then u° = 0 , and by rotating the frame about the z-axis , B° = ' y 
= 0 . In 

this case Z.. is 
ij 

now given by • 

0 0 0 0 P 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 - B z / p 0 

Z. . = 
ij 

0 0 0 0 0 0 - B z / p 

p /p p /p 0 0 0 B x / p 0 

0 0 -B 
z 

0 B 
X 

0 0 

0 0 0 ~ B z 0 0 0 
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With this simplification plane wave solutions to eqn 2.8 can be sought. 

Assume a ^ = A^ exp i (kz - cot) differentiating and substituting 

into 2.8 gives 

7 

Z Z. . A . = V A,* 2.9 
IJ J 1 

j=l 

where V = to/k and is just the phase velocity. 

Equation 2.9 suggests that the amplitudes of the different HM 

quantities which occur in the plane wave are components of an eigenvector 

r^j of the matrix Z .j, and the phase velocity of the wave is then an 

eigenvalue of that matrix, 

therefore : Z Z.. r . = V r. 
• i iJ J 1 

J=1 

The phase velocities of the various modes are then the roots of 

the seventh degree equation given by : 

DET IZ.. - V 6..I = 0 2.10. 1 iJ IJ 1 

It is therefore clear that seven kinds of plane waves can exist 

in a plasma. 

The phase velocities can be found from eqn 2.10, and the 

simplified matrix for Z^j (Herlofson, 1950) - and are : 

V^ ^ = G ^A C O S ® 

V3,4 * e V + 
V5,6 = e V -
V7 " 0 

Where V ^ is the Alfv£n speed and 8 the angle between the wave normal and 

the constant magnetic field, the parameter e = +1 for a wave propagating 

in the positive z direction, and -1 for the negative. 



25 

The value V^ = 0 is the phase velocity of the entropy wave 

and will not be discussed further, while the other values represent 

essentially two magneto sound waves, or magneto acoustic waves, and 

two Alfvdn waves. V^ ^ a r e then the phase velocities of the two 

Alfv£n waves propagating at an angle 0 to the magnetic field, V^ ^ = 

eV are the two fast mode waves and V_ ,, = eV are the two slow m o d e . 
+ 5,6 

Where for completeness 

V ± = { H V
2
 + C

2
 ± [ ( V

2
 + C

2
)

2
 - 4 V

2
 C

2 C O S 2 0 ] 2 ] } 2 

and C g = (p)^ = sound speed. 

All these quantities refer to the plasma frame but can easily 

be transformed to a frame which moves with say velocity u°, i.e. : 

V.. « = u° + V. cos 
1,2 z A 

V_ . = u° + V 
3,4 z + 

V , , = u° + V 
5,6 z 

V = u° 

z z 

Where in this frame the entropy wave now has a positive velocity. 

In the case of the Alfv£n waves (Alfv£n 1950) which are 

described by the vectors r^ and r^ there are no perturbations of either 

the density or the entropy, or of those components of the velocity and 

magnetic field which lie in the plane through the unperturbed magnetic 

field B° and the direction of propagation, i.e. 

p T = u 1 = u 1 = B T = s ' = 0 
x z x 

and u' £ 0, B f i 0 
y y 

In the case of the magneto-acoustic modes described by r^ and 

r^ (fast waves), and by r,. and r^ (slow waves) there are no perturbations 

for the entropy or components of velocity and magnetic field which are 
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at right angles to both B° and the direction of propagation, i.e. 

u' = B' = s' = 0 
y y 

and p' t 0, u f 0 , u 1 ^ 0 , B' ^ 0 
X Z X 

thus the magneto acoustic waves are plane polarized. 

It is easy to see therefore how the HM modes arise in a 

plasma, and also how the phase velocities of the Alfv£n and magneto-

acoustic waves depend on the angle of propagation, however as mention 

will later be made of shocks, something should be said on the evolution 

and structure of shock's in plasmas. 

2.3 Hydromagnetic Shocks and Discontinuities 

Landau and Lifshitz (1959) showed that in a simple wave, points 

with larger density move faster than points with lower density thus the 

compressional magneto-acoustic mode can steepen to form a shock, whereas 

the Alfv£n mode being purely transverse does not, and therefore 

propagates without distortion of its profile. 

A simple wave is thus distorted when it propagates, parts with 

3p/3z > 0 being stretched and parts with 3p/3z < 0 being compressed, 

and the situation is illustrated simply in Fig.2.1 which shows 

qualitatively the evolution of a typical shock wave. 

The situation depicted in Fig.2.1c is unrealisable in practice 

since the density is a multi-valued function of the coordinate. In 

addition to the "simple" shock wave depicted below other discontinuities 

can also form and it is important now to classify these. 
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A As 

a. initial wave ^ b. steepening 

4s 

c. shock 

Figure 2.1 Evolution of a typical shock wave 

HM Discontinuities 

Discontinuities in the macroscopic quantities are only 

possible when the differential equations which describe the state 

-of the medium have characteristics — i.e. lines which separate 

different kinds of solution. Along the line of the discontinuity the 

differential equations represented by eqn 2.7 lose their meaning as they 

do not determine the resultant jumps in the HM quantities, and in 

this case it is necessary to specify as many boundary conditions as 

there are HM variables. 

There are essentially three kinds of discontinuity : 

1. Alfvgn or Rotational Discontinuities 

In these the velocity and magnetic field are discontinuous, 

while the density, pressure, and entropy are continuous, i.e. 
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Au ± 0 , AB h i 0 and 

Ap = Ap = As = 0 

Here = transverse field, and A represents the change in the 

parameter. 

2. Contact Discontinuities 

In this case pressure, velocity, and magnetic field are 

continuous; and density and entropy are discontinuous : 

Ap f 0 , As ^ 0 and 

Ap = Au = AB 
t 

0. 

3. Tangential Discontinuities 

Only the tangential component of velocity is discontinuous, i.e. 

Aufc ^ 0, and 

Ap = Ap = As = A u ^ = 0 

The Alfv£n discontinuity has assumed some importance in space plasma, 

for example in relation to the properties of the neutral sheet, which 

exhibits a 180° rotation of the magnetic field.(Coroniti et al, 1980). 

The width of these discontinuities increases with time 

according to the following empirical relationship, 

where v and v m are the HM and magnetic viscosities respectively, both of 

which are small in space and therefore permit the discontinuity to exist 

for an extended period and allow observation by spacecraft. For Alfv£n 

discontinuities, the magnitude of the transverse components of the field 

and velocity do not change, and the vectors u and B only rotate through 

an angle on the discontinuity surface, therefore if the state in front 

is given, the state behind is determined by the single parameter A B t < 

If ,the field rotates through 180° they can be said to be plane-polarized -

i 
L * { (v + v )t Y m-



29 

although observation shows that this is rarely the case. 

In addition to shock w a v e s , only the Alfv£n discontinuities 

are moving with respect to the m e d i u m , for which j ^ 0 (j = current 

density). In this case the following condition must hold : 

± = - L = 
P]_ P 2

 4<IrJ 

Thus it follows that the velocity of propagation of the Alfv£n 

discontinuity is (appropriately) the Alfv£n speed, i.e. 

u = V. = .. " l 
n A (4irp)2 

2.4 Structure of Discontinuities 

In any calculation of structure, computational problems arise 

almost at once, even for collision-dominated shocks a quantitative 

calculation involves solution of the appropriate transport equations 

inside the shock, using either upstream or downstream states as a set 

of boundary conditions. 

In the case of a collisionless regime, non-linear dissipation 

mechanisms must be taken into account. More will be said on this 

problem in a later section, b u t some insight can be gained by 

considering the simplest case, that of two groups of particles moving 

with different velocities, and with a small thermal spread in their 

velocities. 

In this case the relevant equations are : 

3n + 7.(nu) = 0 2 . 1 1 . 

8t 

mn + mn(u.V)u = en(E + uAB) 2 . 1 2 . 

at ~ ~ 

and a similar set for the other species. 
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E and B must also satisfy the Maxwell equations, i.e 

VAB = y j + 9E o —— 
3t 

V.B 0 2.13 

Equations 2.11 - 2.13 can be used to consider a shock propagating with 

velocity u^ in the direction of negative z : in this case, the plasma 

ahead of the wave, i.e. at z = is characterised by the following 

parameters : 

Therefore over the whole range, i.e. < z < +«, we have 

from equations 2.11 through 2.13 

E = E = B = B = U = u . = 0 
x z y z ex ix 

In order to consider the state of the plasma inside the 

discontinuity it is useful to change to a frame which is moving at 

the wave speed u^, this has the particular advantage that all 

quantities are time independent and functions only of x and y . 

Therefore, in this frame we have 

E = E = -u- B_ , and E = E = 0 
y 1 1 ' x z 

the only other assumption being the plasma approximation, or quasi-

neutrality, 

E = 0, B- B z = 0 , B x = B. ~X1 

u = u. = 0 , and n 
~e i ' 

n = n. = n 
e L 

Under these conditions we have 

u = u. = u 
ez i z z 
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It therefore follows from M a x w e l l f s equation (2.13) that : 

j v = 1 <*BX 
y M dz 

o 

and as j = -neu 
y ey 

1 dBx u — ^ 2.14 
ey y ne dz 

Combining components of equation 2.12 for both species gives 

d u r d „2 
m . n u — = - B o i c 
l z dz dz x 2.15 

which can be written as : 

2 - 2 
u = £ 1 Bx 
z + u, 2.16. 

m. n u, 1 

and for the y-component 

m n u<7 d^ey e z —dz" = " n e E y " n e U z B x ~ m e n u e y v 2.17. 

where the term with v represents a dissipative mechanism. 

If the expression for Ey = - u^ B^ is used along with equations 

2.14 and 2.15 an expression for B can be obtained : 

where dx = dz/u z (Sagdeev 1962) 

and 

*(B> • "Be { ^ . n ' u ^ " (B " Bl> > 

= electron Langmuir frequency. Equation 2.18 determines the magnetic 

field inside the shock. As for the field at t = -k», i.e. behind the 

shock, in this region ~ = —j- = 0 so in this region cj)(B) = 0 , which 

has three solutions viz : 
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B 1 = B n and 

B 2 , 3 = - i B. ± [J B? + m.n u?] ̂  2 . 1 9 . 
* 1 * 1 l 1 

where superscripts refer to the number of the solution. 

The solution B̂ " = B^ is particularly interesting as it 

corresponds to a shock wave in which the upstream and downstream 

conditions are identical, it therefore describes a soliton - hence for 

the soliton solution 

B = B 

z = —°° z = +00 

2 3 . . . . . 
Of the other two solutions, B and B , if the positive sign is taken in 2.19 

to give 

B 2 = - \ B x + [| B 2 + m.n u 2 ] * 

this then corresponds to a true shock as the final state is different from 

the initial. However if the negative sign is taken the result implies that 

the transverse magnetic field changes sign - which it cannot do, thus the 

T . . . . 
solution B J does not correspond to a shock solution, and the positive sign 

must be taken. 

For the corresponding situation ahead of the shock, i.e. at t = -» 

the magnetic field should approach B^ monotonically. 

Returning now to equation 2.18 - i.e. 

this equation has the form of a 1-D anharmonic oscillator, whose 

potential energy is given by : 

V ( B ) = U ) « = 

B.j 1 1 

which can be represented diagrammatically in Figure 2.2. 
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Figure 2.2 Plot of potential "V" against the field B. 

Figure 2.3 Cross section through a collisionless shock. 
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B 

Figure 2.4 Phase space trajectories corresponding 
to Figure 2.2. 
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The point A corresponds to the initial state for which — = 

= 0, and B = B^; however, due to non-linear damping effects, the 

state shows a zig-zag approach to the final equilibrium point G; 

this point therefore corresponds to the final state for which the 

following are true : 

dB = d 2 B = 

dx dx"2" 

and 

B = B 2 

This is made clearer if the shock profile is drawn (Fig. 2.3), and is 

representative of a collisionless shock. 

It can therefore be seen that without dissipative terms the 

solution is just a soliton, hence dissipation of some kind is necessary 

to convert a soliton into a shock solution (Tidman and Krall, 1971; 

Akhiezer et al, 1975). This may be seen from Fig. 2.2. The 

corresponding phase-space trajectories are shown in Fig.2.4, and 

represent the variation of the magnetic field in a shock wave; the 

letters A , B and C having the same meaning as in Fig. 2.2. 

2.5 Summary 

The sections of this chapter have attempted to show, albeit 

from a mathematical standpoint, how the various hydromagnetic modes -

especially the Alfvdn mode - can arise. Later sections described 

the various kinds of shocks and discontinuities which can arise and 

are of relevance to this work; it concluded with a brief excursion 

into the methods of calculating the parameters which are of importance 

in the context of the discontinuities. 
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CHAPTER 3 

DEDUCTIONS FROM LINEAR THEORY 

3.1 Introduction 

If the magnetosphere is free from perturbing influences it 

will tend toward a configuration in which the electrical equipotential 

surfaces are parallel to the magnetic field. 

In response to a localised perturbation, which may exist for 

example in the magnetotail, a readjustment of potential occurs 

throughout the flux tube linking the region of disturbance. The time 

required for this readjustment to take place depends on the speed at 

which electric fields and their associated currents propagate along 

the field lines - i.e. the Alfv£n Speed. 

In cases where there is a convective motion of the magnetospheric 

plasma relative to the perturbation region, dynamic equilibrium can be 

reached whereby currents generated by the disturbance flow continuously 

away from the region along the convecting flux tubes. These currents 

can suffer reflection at the ionospheric interface but do not return 

to the source region because of plasma convection. The assumption is 

therefore made that a discontinuity exists in the electric field at a 

point in the distant magnetotail; such a discontinuity being necessary 

to account for the "Inverted V events". Regardless of the mechanism for 

generating this field it will propagate towards the ionosphere along a 

flux tube as a shear-mode Alfv€n wave (cf. Chapter 1). 

The presence of convection in the model is important as it 
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essentially controls the orientation of the wave, as well as carrying 

away energy which may be deposited in the form of heat, thereby 

ensuring that the cold plasma approximation remains valid. 

The picture is therefore of a shear-mode Alfv£n wave propagating 

along flux tubes which pass through the cold polar wind plasma existing 

in the lobe-regions of the magnetosphere. This may be summarised by 

Fig. 3.1 and by reference to the Introduction in Chapter 1. 

3.2 Mathematical Formulation 

The equations which describe the above situation are just those 

of classical electrodynamics, i.e. the Lorentz equation and Maxwell's 

equations, viz. : 

+ (v.V) v = - (E + v A B) 3.1. 
d t ~ ~ m 

and the equation of continuity : 

| | + V.(n v) = 0 3.2. 

These equations are true for both electrons and ions.where v = (v x, Vy, 

v z ) and B = ( B x , B y , B z ) and E = ( E x , E y , E z ) . 

VAB = y 0 4 + , V.B = 0 3.3, 3.4. 

when j = current density and D = displacement current. 

The analysis can proceed in almost any frame of reference - but 

the two most useful are the plasma, and wave frame's, where equations 

linking the parameters in the different frames are well known. It is 

useful, initially, to formulate the problem in the wave frame, which 

has the advantages that the problem is time-independent (i.e. all 9/3t = 

0), and all variables are functions only of x . 

The geometry of the frame is shown in Fig* 3.2 and is such 
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Figure 3.3 Geometry of the plasma frame. 



AO 

that the x-axis is coincident with the wave normal, which makes an 

angle 0 with the magnetic field direction. The situation here is 

one of limiting flow normal to the wave, with plasma streaming into 

the wavefront, and far ahead of the wave is taken to be at x = -«>. 

Equations 3.1 - 3.4 now become : 

V.VV = - (E + V A B) 3 . 5 . 
~ m 

V. (n V) = 0 3 . 6 . 

V.B = 0 3 . 7 . 

VAB = y e (n. V. - n V ) 3 . 8 . 
o i - i e ~e 

n^ and n g are the number densities of ions and electrons respectively, 

and by the plasma approximation we can write, 

n. = n = n 
l e 

then 3.8 becomes 

VAB = u n e (V. " V ) 
o e ~i ~e 

On this assumption and equation 3.7, we also have 

B = B = constant 3 . 9 . 
~x ~xo 

The set of equations consists therefore of the components of 3,5 for 

electrons and protons, and equation 3.9, which are just, 
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m U ^ - = - e ( E + V B - W B ) 
e dx x e e ~y 

m U = _ e ( E + w B - U B ) 
dx y e -x ~z 

m U ^ = -e (U B - V B ) e dx ~y e ~x 

3.10. 

3.11. Electrons 

3. 12. 

m U ~ = e ( E + V B - W B ) 
p dx x p ~z p ~y 

m U = e (E + W B - U B ) P dx y p ~x ~z 

m u ^ P - = e (U B - V B ) 
p dx ~y P 

3.13. 

3.14. Protons 

3.15. 

and 

dB 
= y 0 n e (W p - W e ) 

dB 
, — = -y n e (V - V ) 
dx o p e 

3.16. 

3.17. 

Maxwell 

where subscripts e and p refer to electrons and protons respectively, 

the notation V = (U, V , W) has been used, E = const = U B , and 
~y x xo 

E = 0 . Ahead of the w a v e , at x = B and B are constants, and 
~z x z 

n + N 

.'. from continuity (eqn 3.2) 

n U = N U X xo 3.18. 

hence the number density n can be eliminated. 

The above set of equations (3.10-3.17) can be used to obtain several 

constants of the motion, from which it is possible to eliminate either 

the protons, or the electrons. 

A first s tep is to obtain expressions for the electric field, 

multiplying 3.10 by m^ and 3.13 by m ^ and subtracting -»-
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0 = E (ra +m ) + m (V B -W B ) + m (V B -W B ) 
x e p e p ~z p ~y p e -z e -y 

E = 7— 7— r ( B (m W +m W ) - B (m V +m V ) } 
~x (m e+m ) -y e p p e ~z e p p e 

The procedure now is to take linear combinations of the component 

equations and derive the appropriate constants of the motion : 

Adding eqn 3.10 and eqn 3.13 gives an expression which can be 

interpreted in terms of the stress : 

U ~ (m + m ) = e { B ( V - V ) + B (W - W ) } 3.19. 
dx p e ~z p e ~y e p 

this equation can therefore replace 3.10 and 3.13. The full set is then 

equations 3.11, 3.12, 3.14, 3.15, 3.16, 3.17 and 3.19. 

Combining 3.11 and 3.14 gives 

m e U ^ + m n U ^r 1 1 = e ( E + W B - U B ) - e (E + W B - U B ) 
dx P dx y p ~x -z y e ~x -z 

= e B (W - W ) 
~x p e 

but from Maxwell
1
s equation (3.16) 

(W - w ) . ̂ ^ <3s. 
p e y n e dx r o 

TT D VD TT d V e B x dBy 
m U —7-P + m U — = — ^ 
p dx e dx y n dx o 

If n is now eliminated by using 3.18 (i.e. n u = N U ) 

m + a . ( _ | v - ) 
e dx p dx y N U dx 

o xo 

and this can be written in "integral" form as 

m V + m V - ( §Bfl—) B = 0 3.20. 
• e e p p y N U ~y 

* o xo J 

this equation can then be used to eliminate V . 
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Similarly 3.12 and 3.15 can be added to give 

m u ^ P + m u 4 r £ - = e ( U B -V B ) - e (U B v - V e B x ) 
p dx e dx ~y p -y e 

= -e § x ( V p - V e ) 

and using -(V - V p ) = 
1 d B z 

P e y Q n e dx 

ra dWp + m d ^ = B x d ^ = ( B^ d g ^ 
P dx e dx y n ii dx y N U x o dx 

where n u = N U 
xo 

Again, in integrable form : 

m. W + m W - ( VTT ) B = V T T ) B 3.21. 
p p e e y N U -z y N U ~zo r o xo Ho xo 

and 3.21 can be used to eliminate W . 
P 

Finally, combining 3.10 and 3.13, and using Maxwell's equations gives 

y n u ^ (m + m ) = - J (B 2 + B 2 ) 
o dx p e * dx ~z -y 

again, using n u = N U , they integrate to give : XO 

y N U Cm +m ) U + L
2 ( B 2 + B 2 ) = N (m +m ) U 2 + | B 2 

o xo p e z ~z ~y p e xo ' -z 

i.e. 

2y N U (m +m ) U + B 2 + B 2 = y 2 N (m +m ) U 2 + B 2 3.22 
o xo p e x ~z ~y o p e xo ~zo 

Equations 3.20, 3.21 and 3.22 state constants of the motion, the remaining 

equations constitute a set of four coupled differential equations 

for calculating B^, B z > V and W . 

Before these equations could be computed, they would need to 

be de-dimensionalized, but before doing this it is necessary to 

examine the other frame, i.e. the plasma frame - and to do linear 

theory in order to relate the space and time scales. 
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3.3 The Plasma Frame and Linear Theory 

In the plasma frame 3/3t ^ 0, and the orientation can be chosen 

such that the magnetic field B , is along the z-axis (Fig. 3.3). The 

Lorentz equation for electrons is now : 

m e Dt = ~ e (E + V A B) 

where ^ = 3/3t + V.V 

In component form this is just 

m e i t = " e E x " e V e ?o 3.23. 

m ^rr- = -e E + e U B_ 3.24 
e dt y 

m ^ = -e E 7 3.25 
e dt z 

From these equations U, V and W can be determined. Equations 3.23 3.25 

can be linearized on the assumption that all variables are equal to 

their equilibrium values plus a small perturbation which is 

proportional to exp[at + K(x sin© + z cos0]. Here, a is the temporal 

growth rate, K the spatial, and are related through V = ofK. Under 

this assumption the linearized form of equations 3.23 3.25 are : 

a m U = - e E - e V B 3. 26. 
e x ~o 

a m V = - e E + e U B 3. 27. 
e y ~o 

a m W = -e E 3. 28. 
e z 

Rearranging the second of these equations for V, and substituting into 

the first gives, upon using ft = e B Q / m e 
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U = — { E + H a E } 
a m (1 + fte) x a y 

e —T 

as the current density ^ = n e (V - V^) we therefore have 

j = a E + B E 3. 29 
~x x M y 

where-a and 3 are constants defined by 

a = n e 2 a {[m (a 2 + ft ) ] _ 1 + [m (a 2 + ft2)]"1 } 
p p e e 

and 

n e "e (a2 + ft2)"1 m e 
e 

Similarly for | 

j a E - B E 3. 30, 
iy y x 

and for j , as we have 

a m W = e E 
e z 

J 
n e

2
 E 

z m a 
e 

therefore 

j = 3.31 
~ z a 

where OĴ  is the plasma frequency. 

The current densities can also be related to the orientation 

of the wave by the following procedure : 

From Faraday's law 

= - f 

taking the curl of both sides, gives 
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V A (V A E) = - V A ~ at 

and as perturbed quantities vary as 

exp { at + K(x sin 0 + z cos 0) } 

we have 

V A (V A E) = - a y Q j 

which upon using V A (V A E) = V (V.E) - V 2 E becomes 

a P q j = K 2 E - K (K.E) 

but as K = K sin 0, K = 0 and K = K cos 0 we have finally 
x y z J 

K 2 (cos 2 0 E - sin 9 cos 9 E ) = a y j 3.32. 
x z o J x 

K 2 E = a y j 3.33. 
y o J y 2 

K 2 (sin 2 9 E - sin 0 cos 0 E ) = a y j = y c o E 3.34. 
Z X 0 Z 0 p z 

Equations 3.32 - 3.34 are the expressions which relate the component-current 

densities to the orientation of the wave. 

The equations 3.29 through 3.34 enable expressions for the ratios 

of the electric fields to be derived, this may be seen by combining 

equations 3.30 and 3.33 : 

= a E - B E 
y a y x o 

E (a - —— ) = 3 E 
y P 0 a x 

h - = 3.35. 

ô a 

which has the advantage of being independent of 0. 

(/ E 
Similarly f r o m 3.31, i.e. = P^ z and equation 3;34 we have 
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a y ^p = K 2 sill2 e E - K 2 sin 0 cos 6 E 

0 0 z X 

E (K 2 sin 2 9 - y u ) = K 2 sin 0 cos 0 E 
z o p X 

E 7 _ sin 9 cos 6 
E sin z9 - cop po 

3.36 

K-

which is independent of ft. Rearranging equation 3.36 for E^ and 

substituting in equation 3.32 gives 

v 2 a si sin 20 K 2 . E K ^ c o s z 9 (1 - ttt—:—77" 5 ) = a y j 
x K z s m z 9 - or y ' Mo J x 

P o 

which reduces to 

- - Ex K 2 a)2 c o s 2 9 . 
J x " a (K 2sin*6 - a)2 y ) 

P 0 

which is also independent of ft. 

Equation 3.37 is for the general angle, however it simplifies 

considerably for the limit in which cos 9 1 and sin 9 0 to give 

j = ) E 3.38 J x a y ~x o 

and from 3.33 

j = ) E 3.39 
y a u 0 ~y 

If use is made of equations 3.29 and 3.30 these become 

j = a E + 8 E = (——) E 
x x y a y Q ~x 

K2 
and j = a E - 3 E = (——) E 

y y x a y ' ~y 

which upon using 3.35 for E ^ become 

„ 2 
j = E { a + 772 > 3.40, 
x ~x ~ K z ^ 

CT uo 
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and 

v2 
j = - ) E 3.41 Jy ay ~y 

Equation 3.37, for the general angle can be rearranged to give 

(K 2 sin 2 6 - to2) y a j = - u)2 K 2 cos 2 6 E 3.42. 
p o J x p ~x 

and it is from a combination of equation 3.40 with 3.42 that the dispersion 

relation can be derived. However, before proceeding in this direction 

it is useful to ask what form the equations take which relate the 

wave and plasma frame quantities. 

3.4 General Relationships between the Frames 

The velocity perturbations occurring in the wave frame can be 

simply related to the parallel, perpendicular and z components of the 

electric field in the plasma frame. In this case expressions can be 

obtained by an appropriate frame transformation, which involves 

rotation and translation (Fig. 3.4). In Fig. 3.4, " and J- refer to 

directions parallel and perpendicular to the magnetic field. From 

the figure, the velocity of the frame in the parallel direction is 

just W sec 0, and the component velocities are given by : 

V x = V„ cos 9 + V± sin 9 

and 

V = - V„ sin 9 + V . cos 9 z x 

and wave vector components are 

K„ = K cos 9, = K sin 9, K z = 0 

Letting primes denote quantities in the wave frame, expressions can 



Figure 3.4 Relationship between the frames. 
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be written down which relate the parameters between the two frames. 

Hence : 

K = E„ 

E! = E, - W sec E b 
z 

E' = E + W sec 8 b , = 0 
z z -1-

where b z is the perturbation in the z-direction and is given by 

b z = (E x cos 6 - E„ sin 0)/W 

where W is the phase velocity, and can be obtained from the dispersion 

relation (see Section 3.5). 

For the other components of the magnetic field perturbation we 

have 

b„ = Tan 8 

b = b„ cos 8 + b x sin 8 = 0 

and b = b . sec 8 = - E /W 
y A z 

The above equations therefore constitute a set of expressions 

for which the perturbed wave frame quantities are expressed as functions 

of plasma frame parameters. 

3.5 Derivation of the Dispersion Relation 

Equations 3.40 and 3.42 state 

^ • ? { ° + . , } 3 - 4 0 -

(a ) 
a yo 

(K 2 sin 2 8 - a)2) y a j = - to2 K 2 cos 2 6 E 3.42 
p o J x p ~ x 
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which may be combined to give 

(K
2
 sin

2
 G - 03

2
) { (a

2
 - + B

2
 } = - w

2
 (a -

p y
o

 a P y
o

 a 

K
2
 o 

cos
2
 6 3.43, 

Proceeding as 

a + l = ^ { 
ft

 1 

e f̂ti + i) 
e 

a ttp/fl-i 
~ -, | o z • a ~ 

ft. ft 1 ft. 
l e l 

2 2 2 
Writing M = ^ , then 

e i 

K 2 (a - ig) _ 1 , a 2 

a (a z + B z ) ~ M2" ft ft. 
e l 

working on the real part, and using the equations 

K 2 a 1 n x P 2 n , 

(a 2 + B 2)a M2" ftl^ a n d 

e I 

, K* _ 1 a2 + a2. 
(az + ez)az " M^ U i + ftT} 

Substituting in equation 3.40 gives 

OC* sin 2 e - i»p (1 - ^ (1 + 5-ij-)) - - cos 2 6 
e i r 

£ ( 1 + a 4 r > - 3F { ^ + F 4 T > 2 + §? e i e l l 

If we now put £ = M z - 1 - cr2/ft ft. and multiply by M^/OJ2 to simplify, 

the above equation goes to : 
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{ s r i r s i n 2 e - 5 - 1 - 5 T 1 T } 5 " - c o s 2 e { 5 ( 1 + - i f } 

e i e i e l i 

which simplifies to : 

2 
+ £ sin 26 + c o s 2 0 = 0 3.44. 

Equation 3.44 is the required dispersion relation and is best seen by 

re-substituting for £ as 

£ = M 2 - 1 - a2/ft ft. 
A e l 

to give 

^ Z = 1 - J sin 20 ± { \ sin^e + (^-) 2 cos 26 - 3.45. 
A p e p 

where M. = has been used in equation 3.45 and u is the phase velocity, 
A V A 

The dispersion relation represented by equation 3.45 is shown plotted 

in Fig. 1.5, Chapter 1. 

In equation 3.45 the positive sign corresponds to the Whistler 

mode and the negative sign to the shear mode. 

In view of the comments made in the introduction in section 3.1 

it is the shear mode wave which is of principal importance in this 

work. The growth rate, a quantity which can be estimated from the 

linear theory, can be found by writing equation 3.45 in the form : 

u 2 - cos 2e + i sin 2e a 2 

Vf • ^ "ft ' smH 0 ft ft 
A p e p 

and because 6 ^ 90°, sin 0 % 1 
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u 2 
7T Z cos 2e + 2(77-) COS 20 + 

ft ft 
e p 

Solving for cr2/ft2 gives 

2 
a

2
 = U

2
/ V A - c o s 2 e 

ft7 2 cos z6 + 1/1800 b* 
P 

Hence a can be found. 

Equation 3.46 implies that there is imaginary a unless the 

inequality cos9 < M ^ is satisfied. It also shows that for a wave 

propagating at an angle 0 to the magnetic field, then, providing u 

can be estimated and the position in the magnetotail is known, at least 

approximately, then : 

P 
0.01525 BCy) Hz 

and 

V 
A 

21.808 

Then for n ^ 0.1 c m - 3 and B 'v 14y 

ft = 0.214 Hz « 0.2 Hz and V A = 965 km s""
1
 ~ 10

3
 km s""

1 

P A 

hence 

u2 1 1 
a = (yZ ~ c o s 2 0 ) 2 « (M2 - cos 0) 2 

V A A 
3.47. 

and 3.47 may be used to determine the growth rate. 

3.6 Summary 

This chapter has been concerned with formulating the problem 

in the most appropriate frames of reference, and with examining the 
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linearised equations in order to determine expressions which enable 

straightforward determination of parameters such as current 

density, and growth rate. Section 3.5 showed how the dispersion 

relation for the general case of oblique propagation may be derived 

(eqn 3.45), an expression which shows the relationship between the 

Alfv£n Mach number (M^ = and the angle of propagation. 

The formulation of the problem in the correct frame is 

necessary to enable the computation to proceed in a straightforward 

way, and this is given in sections 3.2 and 3.3. 

The next chapter is concerned with a discussion of shock 

solutions and the process of computation. 
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CHAPTER A 

COMPUTATION 

A.1 Introduction 

The equations which goven the behaviour of a cold, collisionless 

plasma consisting of electrons and one species of ion may be obtained 

by considering velocity moments of the collisionless Boltzmann, or 

Vlasov equation in the absence of any effects due to turbulence or 

temperature, together with the Maxwell equations : Clemmow and 

Dougherty (1969). The Vlasov equation has the following well known 

form : 

where L is the "Liouville operator", f the particle distribution 

function and F is the force acting upon a particle and is taken to 

be the Lorentz force which is given by the following equation : 

F = e £ (E + V A B) 

where e = ± depending on the particle species, and E, V and B are 

the electric, velocity and magnetic fields respectively. 

In what follows we are primarily interested in the zeroth and 

first order moment equations, as these are just the conventional 

continuity and momentum equations, and may be obtained by multiplying 

the Vlasov equation by 1 and m v respectively, and integrating over 

velocity space : the equations to be solved therefore have the 
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following form : 

/ L [f] d 3 v = 0 

and 

/ mv L [f] d 3 v = 0 

For the first of these integrals we therefore have : 

D 3 ? + & • / F L - F • 0 

Writing the last term in the following way : 

/ ( S - f ^ • I (E- / f d3v) ( V A B ) | d 3 v 

where the Lorentz force has been substituted for F, and the 

summation is over all species present, however, if Gauss's theorem 

is applied to the first term, and the second is integrated by parts 

we obtain : 

/ (£.|f.) d^v = £ (E .J fi f d 2 s ) - I J f -Jr (V A B) d=>v 1 ^m 9V-7 m ~ ~ m L J 3V ~ 

where n is the unit vector normal to the surface, s, of integration. 

The advantage of the above equation lies in the fact that the 

second term is identically equal to zero, while the first one 

vanishes due to f decreasing exponentially as |u| we therefore 

have : 

f f d 3 v + ( f . f V f d 3 v ) = 0 
3t J J ~ 

or, as 
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n (r,t) = / f d : 'v 

and 

/ *-\
 f V f d 3 v 

u = u (r,t) = ~ . 3— 
- ~ / f d°v 

- particle density 

- hydrodynamic velocity 

We have finally : 

9n 

at 
+ V.(n u) = 0 

and this is just the continuity equation. If this process is followed 

through for the second integral, i.e. 

/ m V L [f] d 3 v = 0 

(see Clemmow and Dougherty, p.347), the following well known set of 

equations are obtained : 

r 9Y . 
m

£
 + ~E" '~E V F . VVf) = e £ (E + Y e A B) 4.1 

an 
+ V ' ( n

E V " 0 4.2 

which are to be taken together with Maxwell's equations : 

V A E = - j)B 
at 

4.3 

V A B = p o j + § 4.4 

and 

V. B = 0 4.5 

where again E takes the value ±, depending on whether we are 

considering electrons or protons, and n^, and m^ are the number 

density and the mass respectively, and the velocity and magnetic 

field components are taken to be : 
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V = (u,v,w) and B = (B ,B ,B ) 
x y z 

In the above equations, 4.1 through 4.5, we are interested in 

examining one-dimensional wave motion, consideration must therefore 

be given as to which is a suitable frame of reference in which to 

base the formulation. Despite the number of frames available, it is 

of advantage to work in the wave frame, as all quantities are then 

independent of time and functions only of x; in such a frame the 

components of equation 4.1 become : 

m u = e (E + v B - w B ) 4.6 
e e dx £ ~x e ~z e 

m u = e ( w B - u B ) 4.7 
e e dx e e ~o e ~z 

and 

dw 
m u = e ( u B - v B ) 4.8 
e e dx e e ~y e 

In equation 4.4 the displacement current can be neglected, and 

if use is made of the equation for the current density j, i.e. 

j = In e v 
(species) 

and furthermore, if the plasma approximation is assumed to be valid, 

i.e. if n^ = n g = n , the components of 4.4 become : 

^f-y y n e ( w - w ) 4.9 
dx o p e' 

and 

dB_ , N , 
= -y n e (v - v ) 4.10 

dx o p e 



59 

where subscriptios refer to protons and electrons. Finally, from 

4.5 we have B = B = constant, 
x xo 

4.2 Structure and Properties of Equations 4.6 through 4.10 

In considering the structure of the set of equations 4.6 through 

4.10 it is an advantage to write the equations in their dimensionless 

form, and while this process is done fully later in the chapter it is 

necessary at this stage just to state the results : Saffman (1961) 

Hence 

M ^ i i dvp _ E + v A B 4.11 
y dx ~p 

MaYU ^r 6" = -E - v A B 4.12 
A' dx ~ 

and 

u VAB = —**A - . (v - v ) 4.13 
y + y 1 ~p ~e 

where y 2 = ^Z 1 0]? a n d ^ i-s t*16 Alfvgn Mach number, defined in terms of 

the Alfven speed as M ^ = u / v ^ > a n d is based on the velocity of the 

plasma normal to the w a v e . 

The frame of reference appropriate to equations 4.11 - 4.13 is 

shown in Figure 4.1. 

In seeking solutions to the above set, an essential condition 

which must be maintained if the solutions are to remain valid is that 

the x-component of the plasma velocity does not change sign; this 

corresponds physically to the restriction that the particle 

trajectories do not loop back upon themselves. With this in m i n d , 

solutions are sought for which u 1, b sin 9 and b^ -»- 0 at x = 

By defining a dimensionless time as 



Y 

/N u t a n e 

c 
21 

I 

— CO X 4- co 

Figure 4.1 Frame of reference for equations 4.11 
4.13. 
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and using t as the independent variable - Montgomery (1959); then 

upon adding the components of 4.11 and 4.12 and using 4.13, Saffman 

(1961) showed that the resulting equations possessed three first 

integrals, viz : 

u + i M " 2 (B 2 + B 2 ) = 1 + 2 M ~ 2 sin 2 0 4.14 z A y z * A 

Y " 1 v + YV - (Y+Y L) M " 2 B cos0 = (Y+Y - 1) Tan 6 (1-M 2 cos 20 p ' e A y v i i / v A 

4.15 

Y_1 w + Y^ " ( Y+Y - 1 ) m 7 2 b COS 0 = 0 4.16 p e A z 

To obtain the transverse velocity components v and w , equations 4.15 and 

4.16 can be combined with equation 4.13 to obtain the velocities in 

terms of the magnetic field and its derivatives, i.e. 

v = B M"2 cos 0 - y ^T? M"1 + Tan 0 (1 - M~2 cos2 0) 
p y a dt A A 

v = B M~2 COS 0 + Y " 1 ^rr- M71 + Tan 0 (1 - MT2 cos2 0) 
e y A ' dt , A A 

w = B MT2 cos 0 + y —t-VT 1 
p z A dt A 

w = B M"2 cos 0 - Y " 1 M71 
e z A ' dt A 

Substitution in equations 4.11 and 4.12 produces two second order 

differential equations for B^ and B^, viz : 

+ (Y""X-Y) K 1 ^T2- COS 6 - B ( U - M ~ 2 cos20) = -sin0 ( 1 - M ~ 2 coszG) 
d t

z
 A dt y A A 

and 

+ (Y"*1_Y) M^1 ^ C O S 6 - B Z (u - M^2 c o s 2 0) = 0 
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where u is given by euqation 4.14. 

Thus, if the above two coupled equations can be solved for 

B and B , the transverse velocities v and w will follow, 
y z' 

Saffman (1961) showed that analytic rather than computational 

progress can be made if the above two equations are linearised in 

By - sin 0 = <f>i and B^ = ^ at a point near t, or x = The 

equations obtained have the following form : 

where A = (y 1-y) M 1 cos 9, y = 1 - M 2 and u = 1 - M ~ 2 cos 2 6. A A A 
If solutions to 4.17 and 4.18 are sought for which and <}>2 are 

Pt 

proportional to e then 4.17 and 4.18 can be written as a quadratic 

in P 2 , 

P 2 + y u P " 2 = y + u - A 2 4.19 

equation 4.19 yields different solution depending upon the relative 

magnitudes of y, u and A. These are summarised in Table 4.1. 

In summary, the above equations represent infinitesimal, linear 

exponential waves which are propagating at an angle 9 to the magnetic 

field in a cold collisionless plasma. From these, the conditions for 

solutions to exist which initially grow exponentially from a uniform 

state may be obtained. Essential conditions for the above solutions 

to be physically meaningful, is that the solutions be bounded for all 

t, and that u > 0 . 

In view of the observational and theoretical evidence presented 

in Chapter 1 it seems clear that Mach numbers of interest correspond 
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TABLE 4.1 Solutions to Equation 4.19 

Case Parameter Magnitudes Alfven Mach N o . Roots and Comments 

1 u > o > y cos 3 < M. < 1 
A 

2 real roots, one of 
each sign. Negative 
root violates 
boundary conditions at 
t -co, .*. one unique 
solution only 
(see later) 

2 u > y > 0 M . > 
A 

1 2 positive roots if : 
y + u - X 2 > 2v/(yu) 
and .2 complex if : 
2/(yu) > y + u - A 2 > 
2/yu" as 2 values of P 
still present, implies 
infinite number of 
solutions 

3 y = u > 

(6 = o) 

0 H a > 1 Complex roots with 
non-zero real part 
if y > X 2 i.e. Ma> 
JCY^+Y) ~ otherwise 
imaginary 

4 y = o M A = 1 One root = 0 , the 

other is positive 

unique solution 

5 o > u > V MA < 
A 

cos E 2 negative r o o t s , 
solution corresponds 
to all variables 
constant 
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to Case 1 i.e. cos 0 < M. < 1. Whether the solution is a soliton or 
A 

a quasi shock it is physically significant providing the Alfvdn 

Mach number lies within this range. It therefore seems feasible 

that the particular values of y, M ^ and 0 determine whether a 

soliton or a quasi-shock is obtained, and it is unlikely that the 

solution will always be a solitary wave as successive perturbations 

are unlikely to return the particle to its original position - thus 

a quasi shock should be a common solution for this range of M ^ . 

From Chapter 3 the dispersion relation for oblique HM waves -

as derived from linear theory - is : 

S i = M
2 = l - i sin 2 6 ± U sin 4 0 + ( ^ c o s 2 0}' -

Vf A ^ ~ vft ' J ft ft 

A p e p 

4.20 

where W = oa/k = phase velocity. 

In view of the theoretical arguments and the observational 

evidence presented in Chapter 1, we consider only the negative sign 

in equation 4.20, which corresponds to the shear mode wave and is 

just given by : 

| = i - J s i „ 2 e - u + cos 2 e ) * - ^ 
A p e p 

or equivalently, 

a)2 = K 2 V 2 [1 - j sin 2 0 - U sin 4 0 + (-f-)2 cos 2 0}* -
A ql el 

P e p 

As in the previous sub-section, to understand in a quantitative way how 

the solutions behave, it is desirable to use the equations in their 

dimensionless form, and the next section will give the details of 

this process. 
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4.3 The De-Dimensionalising Process 

From the formulation in Chapter 3 the appropriate equations to 

be written in a dimensionless form are : 

m u ^ = -e (E + w B - u B ) 4.21 
e dx y e x z 

m u = -e (u B - v B ) 4.22 
e dx y e x 

= y n e ( w - w ) 4.23 
dx o p e' 

•—r2- = -u n e (v - v ) 4.24 
dx o p e 

Equations 4.21 through 4.24 are the four coupled differential equations 

from which v , w , B and B can be determined and may be used for 
e e y z 

either electrons or protons, one species being eliminated by use of 

the constants of the motion, viz. equations 3.20, 3.21 and 3.22. 

The process to de-dimensionalise the equations is carried out 

with respect to a characteristic velocity, in this case the Alfv£n 

velocity, and a characteristic length taken as c/ui where oj • is • pe pe 

the electron plasma frequency. 

The normalised magnetic field B q is defined by equation 4.25 as : 

B = (B 2 + B 2 4.25 
~o xo zo 

and each field component is then given by : b = B /B , b = B /B , and r ° y x x o* y y o* 

b^ = . Similarly, the dimensionsless velocities are given by 

u = V / V A , v = V /V. and w = V /V. where V . is the Alfv^n speed in km X A y A Z A A 
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An expression for can be obtained by using equation 3.22, 

i . e . : 

2 y N u (m + m ) u + B 2 + B 2 = y ' 2 N (m + m ) u 2 + B 2 

o xo p e x y z o p e xo zo 

where the parameters are as defined in Chapter 3. Then, 

2 y N u (m + "m ) {u - u } = B 2 - B 2 - B 2 

o xo p e x xo zo y z 

and using b = B /B etc. we obtain 
y y o 

2 y N u (m + m ) {u - u } = B 2 (b 2 - b 2 - b 2 ) 
o xo p e x xo o zo z y 

B 0 

As u = u V., and V . = —r r;—7 r-r-i we then have 
x A ' A [y N (m + m ) ] 2 

2 u (u - u ) = b 2 - b 2 - b 2 

xo x xo zo z y 

u = u + ^ — (b 2 - b 2 - b 2 ) 
x xo 2 u zo z .y 

xo J 

and noting that u x o M ^ we obtain finally, 

u = m a + o^T" (b 2 ~ b 2 - b 2 ) 4.26 
x A 2 M a ZO Z Y 

However, for the equations involving differentials such as 

—y y n e ( w - w ) 4.27 
dx o p e 

it is convenient to write 

_d_ _ _d_ 
dx dx 

and all differentials are then taken to be with respect to x (Montgomery, 
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1959, Saffman 1961, and Kellogg,1964). In this case, w^ can be 

eliminated. From equation 4.27 and equation 3.21 we obtain : 

B x o 

m w - m w = (B - B ) 
e e P P J J N U Z ZO r r o xo 

and using b = B /B etc. gives 
° z z o & 

m w - m w 
B o b x o (b z - b 2 0 ) 

e e p p y N u r r o xo 

B 0 Substituting for B from V. = - • r-r-l on the RHS and using 
o A [y 0 N (m + m )]2 & 

P e 

w . . 
w = — on the LHS gives, on dropping the primes : 

A 

m w - m w 
[Ho N ^ p + me)]^ b x o (b z - b z 0 ) 

e e p p y N u r o xo 

hence w can be eliminated. 
P 

Applying the boundary condition u M . and putting = XO A GX 

^r^" the dimensionless form for b becomes 0 dx y 

^ = y"5 { M A w + b (b - b )} 4.28 
dx A e xo z zo 

where = m /m . And in what follows v and w are in their dimensionless 
' p e 

form, and refer to the electron component. 

An identical process applied to equation 4.24, but this time making 

use of equation 3.20, gives 

Q z . = (M v - b b ) 4.29 
dx A e .xo y 

and for equations 4.21 and 4.22 we obtain 
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dv 
di 

4.30 

4.31 

The above set of equations along with equation 4.26 form the de-

dimensionalised coupled equations which describe the behaviour of the 

various parameters which are of interest, and they are solved on the 

assumption that all the parameters approach their equilibrium values 

pt a point far ahead of the w a v e , i.e. as x -»• 

4.4 Characteristics of the Modes 

In order to proceed with a numerical integration it is first 

necessary to obtain starting values for the various parameters; with 

these values as input and an appropriate time step, the equations can 

then be solved on a step by step basis. While these starting values 

could be found by trial and error the method used in this case was to 

make use of the results of the linear theory done in Chapter 3. 

However, information on the characteristics of the modes which can be 

obtained may be found by perturbing equation 4.28 through 4.31. To 

achieve this the assumption is made that the parameters consist of 

. . . . . . CTT 

their equilibrium value, plus a small perturbation which behaves as e , 

and a should have a positive non-zero real part. On this assumption 

equations 4.28 through 4.31 become : 

a v 4.32 

i 
a w y 2 {-M. b + v b } 1 L A T7 YFL J A y xo 

4.33 

a b. 
y 

y~ 2 {M w + b (b - b )} 
' a xo z zo zo 

4.34 
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a b 
z y xo 

and for non-zero solutions, the determinant of the above set must equal 

zero i.e. : 

a
4
 + a

2
 [b

2
 ( y + y

- 1
) + b

2
 - 2M

2
] + ( M

2
- l ) ( M

2
- b

2
 ) = 0 4.36 

xo zo A A a xo 

Letting A = [b2 ( Y + y "
1 ) + b 2 - 2 M 2 ] 

XO ZO ii 

and B = (M 2 - 1) (M 2 - b 2
Q ) 

this condition becomes : 

o k + A a 2 + B = 0 

a 2 = H - A ± (A 2 - 4B)^} 4.37 

Thus there is a whole spectrum from which to choose a. 

The domains for roots of different types are similar to those 

enumerated by Kellogg (1964) and Tidman and Krall.. (1971) for the zero-

temperature soliton problem. In this context it is useful to 

generalise slightly Kellogg's notation in describing the characteristics 

of the various roots, and the following table can be constructed for the 

solutions to equation 4.35 (Tablelf.2). 

Roots with Designation 

Re(a) > 0 in Fig.2 

B < 0 1R 

B > 0 A 2 - 4B < 0 2C 

B > 0 A 2 - 4B > 0 A < 0 alR> a 2 R 
2R 

B > 0 A 2 - 4B > 0 A > 0 ±ia 
li' 

±i a 
2i 

41 

TABLEV.2 Solutions to Eqn 4.35 
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In TableV.2 the following notation applies : 

1R = 1 real root 

2C E 2 complex roots 

2R E 2 real roots 

41 E 4 imaginary roots 

It is an advantage to display the tabulated data in a figure of b 
Z
1 

against b , where : 

b E sin 0/M., and b = C°F
 9 

zi A x M ^ 

but first the boundaries of the various regions must be found. 

a) The boundaries of region 1R occur when B changes sign, i.e. 

when B = 0 , where from equation 4.25, i.e. B 2 = (B 2 + B ) 2 

o xo zo 

we have upon using b 2 = B 2 /B 2 etc. r ° xo xo o 

b 2 + b 2 = 1 4.37 
xo zo 

hence, when b 2 0, b 2 -»- 1 and vice-versa, 
zo xo 

b) The boundary of 2C is given by equating A - 4B = 0, i.e. 

b
4
 (Y+Y"

1
) + b

4
 + 2 b

2
 (b

2
 -2){Y^"Y"') 2

 = 0 
xo ' ' zo xo zo 1 1 

when b = 0 , we have 
zo 

4 y-2- or b = 0 . 
xo (1+Y) x o 

c) The boundaries of regions 2C and iR have one point in common 

when B = 0 and A = 0 , i.e. 

b - v b 2 = ( 7 " 1 ) 2 

x y z~y+1* zo y z - Y + l 
2 _ 

Since A goes through zero at this point it is also a boundary 

between regions 2R and 41. 
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A plot of the various solutions can now be made and is shown 

in Figure 4.2. In this diagram it is taken that fields depart 

from their upstream values at the leading edge of the "shock" as 

e a T , where T = x a) /c 
pe 

From Figure 4.2 it can be seen that the character of the waves 

depends on whether the parameters upstream from the shock lie in 

region 1R, 2R, 2C or 41, in which a can have one real, two real, 

two complex or all four roots imaginary. However, a clear distinction 

is that in region 2 all velocities are greater than the Alfv£n speed, 

V^, while in region 1 they are less. 

Thus from the evidence of Chapter 1, in which it was shown that 

the Alfven Mach number M ^ << 1, (or u << V^), it is region 1 which is 

of particular interest in this w o r k . 

In regions 41 and 1R there exist pure imaginary roots to 

equation 4.35. These correspond to waves which do not grow in 

amplitude from one oscillation to the next since a does not have a 

real part. Many authors in the past have adopted the process of 

excluding the imaginary roots and while this is of small consequence 

in region 1R - as there is still one real root present which can 

produce non-linear waves, in region 41 all the roots are imaginary and 

to exclude this region is to exclude many oblique waves of interest. 

In considering this region it is necessary to modify slightly 

the assumptions of the plasma state at x = i.e. the upstream 

conditions must be modified to include small amplitude linear 

oscillations about their zero order values. In addition to this, means 

must be found to enable the waves to grow non-1inearly. A way of 

achieving this is to allow for a small amount of dissipation at x = 

if the linearised equations are then modified to include a term which 

has its origin in the microturbulence inside the wave, it is found 
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Figure 4.2 Plot of the regions represented by the 
Table 2 data. 
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that the large wavenumber root in region 41 will damp out as x 

increases positively. 

However, at high enough Mach numbers the small wavenumber root 

also grows, and in this case only the lower of the two wavenumbers 

would be of physical interest. These solutions correspond in fact to 

precursor wave effects, and the shock solutions which occur in region 

41 afford an explanation of the whistler precursors. 

To conclude this section, it should be mentioned briefly that 

an analogy can be drawn between the equations which govern the motion 

of particles in the above analysis, and those which control the motion 

of particles moving in a potential field of force which has a uniform 

magnetic field perpendicular to the plane of motion. This analogy 

has been discussed by several authors in the past, and no further 

mention will be made here (Saffman, 1961; Cordey and Saffman, 1966; 

Dixon and Woods, 1975). However the nature of this problem enables 

further progress to be made analytically, and further simplifications 

can be made which also help to illuminate the problem. From the first 

chapter we know that the range of values for the Alfvdn Mach number are 

less than one, (i.e. M ^ << 1), or equivalently, the speed u, is very much 

less than the Alfvdn speed, (.i.e. ^ << V^) . The next sub-section gives 

the form of the equations under the above conditions. 

4.5 The Case for u « V^ 

Equation 4.36, v i z . 

a 4 + a 2 [b 2 (y+y" 1) + b 2 - 2M 2] + ( M 2 - l ) ( M 2 - b 2 ) = 0 
xo ' zo A A A xo 

implies that for the case u << V ^ , or equivalently M ^ << 1; then under 

these circumstances the roots are well separated and can be approximated 

too by the following pair of equations : 



<j2 =
 — b 2 y + b 2 , and a 2 

xo 
(l-Mj)(Mg-bgn) 

Vh2 TvTZ y b 2 + V 
xo zo 

where b sin 6 = 1 . 
zo 

There are therefore two kinds of solution, one oscillatory with 

short wavelength and the other, real exponential and slowly changing. 

The presence of the rapid oscillation makes a computation for the 

Alfv£n mode difficult, Kellogg(1964), as for a realistic value of y 

the integration step size must be chosen so as to be small compared 

to the oscillation otherwise the accuracy of the computation will 

suffer, while the actual distance over which the equations must be 

integrated is determined by the slowly changing real exponential; 

however despite this complication and approximation to the Alfvdn 

mode can be found which enables computational progress to be m a d e , 

and this will form the subject of the next sub-section : but it can 

be seen that the second of the two solutions is always positive, 

providing ( M 2 - l ) ( M 2 - b 2 ) > 0 that is there is always one real root, 
A A . . X O 

and it is this solution which gives the behaviour at large, negative T. 

4.6 Approximation to the Alfvdn Mode 

Considering equations 4.28 through 4.31, it can be seen that 

they are of fourth order overall, and to approximate to the Alfven 

mode it is necessary to reduce this order by two; that is we require 

to drop two of the differentials to ensure that 

and the choice of which pair to ignore depends strictly on the mode 

which we require to model - in this case the shear mode, which in 

turn is characterised by the polarisation. A good contender for the 
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Alfvdn mode is the equation involving , i.e. equation 4.35, we 

therefore start by ignoring the left hand side of 4.35 and examine 

the consequences : on doing this we obtain 

b x o b y 

v = — 
MA 

and upon substitution in equation 4.33 we have, 

1 
aw = Y 2 (b - 7— ) v 4.47 

xo b 
xo 

However in sub-section 4.5 it was shown that for the case u << V . a 
A 

real exponential root was obtained which has the form : 

2 (1 ~ M|) - BXO) 
a " Y b

z + b z 

xo zo 

which for M ^ << 1 is approximately 

2 2 
2 s (MA ~ b y n ) 

yb; 
xo 

a 2 (MA ~ b x o ) , / D 

o r — ~ 7—T7 4 . 4 8 
y y b 
' ' XO 

However, from 4.47 we have : 

2 i = {b 2 — M? } 4.49 
Y y 2 wb XO A 
' xo 

hence from equation 4.48 and 4.49 we find 

ov 
Y2wb 

xo 
- ( Yb ) v 1 xo' 

- 2 4.50 
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This equation shows that providing (yb ) 2 >>1, then av (equation 4.32), 
XO 

d v 

and hence — (equation 4.30) can be dropped. It therefore seems that 

the Alfvdn mode can be approximated to by dropping the differentials 

and in equations 4.29 and 4.30 respectively, however, the 

criteria for neglecting d b z / d T may be seen from equation 4.32 as 

neglecting the aV term on the left hand side enables the equation to 

be written in the following form : 

(b 2 - M 2 ) (b - b ) = -M. wb 
zo A z zo A xo 

and because M . << 1, and b ~ 1 the term in (b 2 - M 2 ) = 1, 
A zo zo A 

therefore we can write 

b - b * - M a w b 
z zo A xo 

and upon using equation 4.50 for w we obtain finally : 

b - b = M A b 2 y 3 / 2 a v 
z zo A xo ' 

If this is now used in equation 4.35 we find that in order to justify 

the dropping of the differential db z/dx we require that the following 

inequality be satisfied : 

a << t— r— ^ 4.51 
(Y b ) 

xo 

Equation 4.51 shows that the approximation will only be valid providing 

a is restricted to values very much less than unity which will clearly 

be the case as reference to the real, exponential a root, viz. 
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; 2 = 
(1 

- M i > 
— b 2 " 

( M A " 
b 2 ) 
xo 

y xo 
+ b z 

zo 

shows. 

Finally, these approximations have been used in the computation, 

and providing equations 4.50 and 4.51 are satisfied, and the validity 

of this assumption should be tested for different regions of the 

computation, for example the linear and non-linear regime, then the 

Alfv£n mode may be reasonably approximated to by neglecting the two 

differentials db /dx and dv/dx. 
z 

4.7 Summary 

The six sub-section of this chapter have concerned themselves 

with the process of verifying that shock-like solutions to the 

equations exist for Alfv£n Mach numbers which are less than unity, 

and essentially summarises earlier work. Other sections are 

concerned with discussing the characteristics of the various modes, 

and the final sections detail the approximations which are required 

to suppress unwanted oscillatory solutions and compute only the 

Alfv£n mode. 

The next chapter deals with the results of these computations, 

and makes an exploratory investigation of magnetometer data from the 

ISEE-1 and 2 spacecraft. 
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CHAPTER 5 

SOME RESULTS AND OBSERVATIONS 

5.1 Preliminaries 

In this chapter attention is given to the results of 

computing equations A. 26 through 4.31, and some simple features 

which were discovered are discussed in terms of physical processes. 

The results are then compared to spacecraft magnetometer data for 

representative crossings of the plasma sheet and events are shown 

which illustrate similarities. 

The software written to solve the equations employs an 

Euler algorithm which is essentially a one-step method in that 

values of the function are calculated one at a time, and these 

values are then used in the calculation of later values. 

In general the problem is of the following form : 

^rk+l 
y ( x k + 1 ) = y(x^) + J y ! ( x ) dx 5.1 

*k 

and Euler's method is then the means of approximating the integral in 

equation 5.1. Therefore, if the behaviour of y'(x) in the interval 

(x^, c a n be predicted, the exact value of may be 

obtained. Assuming y'(x) is continuous, the mean value theorem states 

that : 

- y ( V y (e) = 5.2 
V l " 
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where x^ £ e $ xk+l* 

Re-arranging equation 5.2 for y C 3 ^ ^ ) g i v e s 

y ( W = y ( V + y'(e) (xk+i" V 5-3 

and if this equation is compared with equation 5.1 we have : 

y'(e) ( X ^ - x k ) = J k + 1 y' (x) dx 5.4 
*k 

and equation 5.3 shows that the integral of a function over an 

interval is identical to the interval length multiplied by the value 

of the function at some point in the interval. The success of a method 

therefore depends on obtaining an approximate average derivative to 

use in place of the y'(e) term in equation 5.3; and the approximation 

used in the Euler method is to use the value of the derivative at the 

starting point of the interval. Thus if we write h = x^+i ~ ^ 

equation 5.3 we have 

y ( W = y < v + h 

and upon writing y(x^) = y^, and substituting for y ' we obtain finally 

the Euler algorithm, viz. 

y k + i • yk + h f ( v V 5 - 5 

Equation 5.5 is straightforward and simple to use. It is particularly 

useful in the context of this work as the problem is essentially "one 

point", in that given suitable starting values solutions can be 

generated by repeated application of equation 5.5. 

However, the algorithm is not without errors, and a full 

discussion of this is given in Appendix 1, but there can also be 
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hidden difficulties associated with the type of computer being 

used, for example, if h = 0.0001 then it cannot be represented 

exactly in a binary system, thus after sufficient steps, a 

significant error can be accumulated in the independent variable. 

Similarly, if the interval size is small the amount added to the 

ordinate at each step may be very small when compared to the ordinate 

itself; however, all of these errors are likely to be small when 

compared to any truncation error which may be present; and this 

point is discussed in the Appendix. 

5.2 Results 

From the linear theory done in Chapter 3, it may be expected 

that when the equations are computed they will initially show 

exponential growth from a uniform state, and that this will continue 

until non-linear effects become important. That this is the case may 

be seen from Figure 5.1. This figure corresponds to a cos 9 value 

of 0.009 (9 = 89.484°), and it suggests that the non-linear effects 

constrain the perturbat ion in the y—component of the magnetic field 

to increase steadily. 

Further examples of this effect are shown in Figures 5.2 

through 5.5, and the range of parameters used in the computations 

are given in Table 5.1. These plots show that for a wide range of 

parameter space the solutions initially obey linear predictions, 

however, when non-linear terms become important they appear as a 

straight line increase in the B^ perturbation, the sign of which is 

crucial in determining the character of the non-linear behaviour. 

The interpretation of this may be through of in terms of 

constant current, whereby the effect of the wave field accelerates 

electrons steadily in the field-aligned direction, thereby producing 



Figure 
Number cos 0 w(l) B (1) ~y Bz(l) u(l) AT 

5.1 0.009 -0.0023 0.000199 1 .000000 0 .00998 3.0 

5.2 0.0095 -0.001895 0.0000948 1 .000000 0 .009982 6.0 

5.3 0.0099 -0.001818 0.0000909 1 .000000 0 .00994 6.0 

5.4 0.00995 -0.00996 0.0000901 1 .000000 0 .009982 20.0 

5.5 0.00892 -0.00231 0.000197 0 .999999 0 .00997 3.0 

TABLE 5.1 Showing parameter space examined 
for Figures 5.1 - 5.5 



Figure 5.1 
Plot of the B 

component against the 'P' 
parameter, wh?ch is a function of the plasma 
wavelength c/ojp 
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As for Figure 5.1 but refer to Table 3. 
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the current which is necessary to describe the behaviour of the B 

component. The direction of particle flow is towards the earth, the 

current therefore flows tailwards. 

An obvious consequence of this field-aligned acceleration 

would be a substantial increase in the field-aligned velocity, and 

Figures 5.6 through 5.10 show the corresponding velocity plots for 

the Table 5.1 events. All these plots show essentially the same type 

of behaviour, namely that as the magnetic field-perturbation increases, 

the field aligned velocity increases accordingly and in the case of 

Figures 5.6, 5.7 and 5.10 we see at least a two order of magnitude 

increase. 

It can also be seen that as cos 9 approaches 0.0099, and 

particularly at higher values, the maximum value of velocity achieved 

is substantially reduced, and this corresponds to an order of 

magnitude reduction in the growth rate. An important point to note 

from Figures 5.1 through 5.5 is that the rate of growth of the 

exponential region varies : that this is primarily a function of the 

angle 9 may be seen by recalling equation 3.46, which stated : 

2 u2/V2 - cos29 _ A 
ft7" = 2cosz9 + 1/1800 P 

and which was shown to be almost equivalent to a ^ (M2 - cos29)5. .. A 
(equation 3.47). Computationally, this dependence is best shown by 

holding all parameters except the angle constant, and this has been 

done for the set of starting values which correspond to Fig.5.1 (cf. 

Table 5.1). Figures 5.11 and 5.12 show the results of computing for 

cos 9 = 0.007 and 0.0009 respectively. It can be seen from these 

plots that the values of the B^ perturbation are an order of magnitude 

greater in the case of Fig.5.12 than the corresponding Fig.5.11. As 
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P for the Figure 5.1 case. 
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against P for cos9 = 0.007. 
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Che Alfvdn mach number was constant for each case at 0.01, the growth 

rate can be easily estimated, and is 0.007 and 0.011 s ^ for Figures 

5.11 and 5.12 respectively, thus an angular change of less than 0.35° 

results in an order of raangitude reduction in the B^ perturbation. 

The full dependence of a on cos 9 is shown in Fig.5.13 

which represents the results of several computations for which 0.0009 

$ cos 0$0.00999. The computation itself is insensitive to very 

small changes in B , hence as B is almost 1.0 it is generally ~ Z "" z 
adequate to approximate it to be exactly unity. However, in order to 

check the Alfv£n mode approximations (eqns 4.50 and 4.51), we require 

a knowledge of b • This is easily obtained from eqn.4.25 which 

defines the normalised magnetic field by the following equation : 

B = (B2 + B2 )J 
"O -xo ~zo 

and upon using b = B /B we obtain, r ° xo ~xo ~o 

b2 + b2 = 1 xo zo 

and if b is now taken as 0.999999 (cf. Fig.5.5, Table 5.1), then zo 
this produces a value of equal to 0.0014, hence, from equation 

4.51, which states : 

a « (yb )~l ' xo 

we are able to satisfy this condition. 

However, the other condition (equation 4.50), states : 

av 
y2wb xo (yb ) 1 xo 
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against P for five values of cos9. 
The 

B^ scale is normalised and the diagram is 
tS show variation of growth rate only. 
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b b 
in which we compute v from v = y (see Chapter 4); and upon 

A 
taking representative values of b and w from the non-linear region, 

for which purposes we may assume that when b^ goes from the exponential 

to the non-linear region, then this corresponds to the point on the 

exponential where w assumes the value for the straight line portion. 

If this is done we find that the second approximation is no 

longer valid; this therefore impl ies that — in equation 4.30 should dx 
now be computed in a similar fashion to ̂  and . We therefore 

need to reconsider the approximations, and to base new ones on the 

non-linear region. The main point here is in the scales of the 

linear and non-linear regions of the plots; the linear theory done 

in Chapter 3 is adequate to allow an estimation of the space scales 

of the linear region, however the corresponding scales for the 

computed non-linear portion are different. We therefore require 

approximation which are based on the straight line part of the plot 

and this is explained in more detail in the next subsection. 

5.2.1 Scales_for the_Ex£onential_and_Non-linear_ 

Considering the exponential region first, we have defined in 

Section 4.3, Chapter 4, the following equation : 

_d_ _ d 
dx dx 

However, on the right hand side u and x are dimensionless, i.e. u = 

u/VA and x = xw /c it is therefore convenient now to re-define A pe 
according to : 

= u-ĵ  (as we wish to consider spatial scales). 

Thus for the purpose here we have 



98 

(M2 - cos20)^ 
dx M, 

As the abscissa of the plots are expressed in terms of the electron 

plasma wavelength where C is the velocity of light and UJ^ 

the electron plasma frequency, we therefore have sufficient information 

to estimate the computed scale. As C/OJ is a function of the number pe 
density n, and for most purposes can be approximated by 

5 l km u) (n) 2 pe 

the scale of the linear region is therefore given by 

M A 5 
S c a l e = (M^ - c o s ^ i <STi ** 

However, for the non-linear, straight line region we know from Chapter 

4 that u = cos20/M^, to quite high accuracy. We also have an expression 

for w, viz. 

w = (ub - M.b )/b z A zo xo 

whereupon substituting for u, and using bzQ ~ 1 and z cosQ we obtain 

cos0 mA w = Mt cosl A 

Furthermore, from equation 4.28, viz 

^ = Y~2 {M.W + b (b - b )} dx A xo z zo 

Whereupon, keeping only the dominant term and substituting for w produces 
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,, i M? ~ cos29 
^ L s -i } 
dx T 1 cos 0 J 

The point where the exponential passes over to the straight 

line corresponds to the point where the non-linear effects begin to 

predominate. We can find an expression for b̂ . at this point by noting 

that s (M2 - cos20)^, which gives 

-4 2 - A 
y cos0 

b „ Y 2 (Ma - cos20) 

-1 

This equation is a function of cos0, and is generally < y 2. We 

therefore see that at the point of non-linearity bv is usually small. 

In addition to the above equation, we also have from the 

approximations done in Chapter 4 : 

v = ubv _ uby 
b cos0 xo 

and substituting again for u produces 

i cos0 , v = — — b 
Ma y 

Differentiating with respect to x gives 

2 dv (Ma - cos20) 
dx Y MA A 

Hence from the approximation equation (4.50), we have 

, dv/dx =
 M | ~ cos20 „ _ 

y5 w cos0 y M^ w cos9 ~ y 

which suggests that the approximation is still valid. 

In discussing the scale size for the non-linear region it is 
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important to note that a rotation of the field is occurring at this 

point, the increase in the field-aligned electron speed constitutes 

the current which then perturbs the b component of the magnetic 

field; as this perturbation grows the field undergoes a rotation 

which is just b radians. 
y 

Thus, in this case for unit radian rotation the scale is 

given by : 

M. cosQ I 
7T2~ Ta 5 (—) km Mf - cosz9 n A 

and the straight line scale is therefore greater than the linear 

exponential region. 

Summarising, for both regions, linear and non-linear, the 

scales are functions of the angle 9, and the number density n, which 
-3 

may be taken as 0.1 cm . The value of b when the non-lmear terms 

take over is small, and generally < y 2, however from equation 4.50 

we can infer that the approximation is probably still valid. 

The essential difference between the computed plots and 

observation lies in the fact that the computation shows the 

perturbation to be continually increasing. This is clearly something 

which could not take place in reality, and by the time the computation 

would exhibit this facit warm plasma effects should have become 

important. At this time instabilities will also become important, 

especially the two stream instability, a simulation of which would 

require extra terms in the equations. This is primarily because in 

many cases the velocity grows from zero and goes unstable at a drift 

velocity which is much less than the electron thermal speed. At 

this time non-linear effects arise to prevent the further increase of 

the drift velocity. However it is unlikely that the inclusion of a 
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pressure term would be sufficient to simulate the above effect. 

This may be seen by considering the following : 

The Lorentz equation with pressure included can be 

written in the following form : 

D 8 where e = ± depending on species and • = — + u.V, if P « ynkT and v t o t 
2 c = ykT/m then we can perturb, and solve for w in the form : 

3t 

e 
w m io) e 

However, for general 9, the shear mode wave has k.co = 0, because they 

are almost perpendicular, therefore cold plasma theory should be 

adequate, at least initially, to describe the behaviour. It is 

therefore likely that to account for the actual non-linear behaviour 

throughout the whole range of the computation would at best require 

a term in the equations which would take account of any microturbulence 
\ 

which may be present, or at worst a kinetic approach along the lines 

of quasi-linear theory. 

5.2.2 A case of particular interest to consider is the changes which 

occur as cos9 approaches, and becomes equal to 0.00999, and Figure 5.14 

shows the variation of the B perturbation for cos9 = 0.0099, 0.00995 

and 0.00999, which corresponds to an angular change of only 0.005°. 

The growth rate is clearly substantially reduced for the cos9 = 0.00999 

case, and can again be calculated approximately from a ~ (M2 - cos29)2 

-3 -4 which gives values of a = 1.4 x 10 and 4.6 x 10 for the cos9 = 

0.0099 and 0.00999 cases respectively. This is more clearly seen in 
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the velocity plots (Figures 5.15, 5.16 and 5.17), in which Figure 5.17 

represents the case of cos0 = 0.00999 and shows that w exhibits a 

tendency to decrease slightly, if only in the second decimal place. 

Once again, if the approximations for the Alfv£n mode are tested we 

find that equation 4.50 is violated, and we can no longer trust the 

predictions of the computation. The order of magnitude decrease in 

the growth rate for such a small change in angle exemplifies how 

crucial the orientation of the wave normal with respect to the 

magnetic field is in determining a sensible rate of growth. 

5.3 The Case for Positive w(l) and Negative By(l) 

It can be seen from Table 5.1 that the sign of the starting 

values for w(l) and B^(l) were the same for each run. However, 

the predictions of linear theory should be essentially unchanged if 

w(l) is made positive and B^(l) negative. Figure 5.18 shows the case 

for the following set of parameters : 

cos9 = 0.0096 

B (1) = -0.0000935 
y 

w(1) = 0.00187 

B(z) = 1.000000 

u(l) = 0.009982 

and a AT = 2.0. The figure shows the same initial exponential growth, 

and an order of magnitude increase across the region of computation 

(which is largely in the linear regime). Figure 5.19 shows the 

corresponding velocity plot which again shows features which are 

almost identical to the case of opposite sign. 
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Figure 5.17 
w plot for cosQ = 0.00999. 
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5.4 Summary 

The previous two subsections have displayed plots resulting 

from solutions of the cold plasma equations which were used to model 

the propagation of a current carrying shear mode Alfven wave which 

could arise via the scenario given in Chapter 1. The essential point 

is that because of the field-aligned flow towards the earth, the 

current is tailwards and the linear theory predictions of exponential 

growth from a uniform state ahead of the wave should be followed by a 

period of constant current, which is also field-aligned, and which 

should manifest itself as a non-linear effect present in the By 

component of the magnetic field perturbation. This effect has been 

shown to be present for a wide range of parameters and the effect of 

the angle between the wave normal and the magnetic field was shown to 

be the crucial parameter in determining the growth rate. The question 

to be asked now is whether such signatures are seen in actual 

spacecraft magnetic data and if so can a similar interpretation as to 

the nature of the field-aligend currents causing them be made? The 

next subsection will therefore briefly introduce the ISEE mission and 

discuss what is seen upon crossing the boundary of the plasma sheet. 

5.5 The ISEE Spacecraft 

The International Sun-Earth Explorer (ISEE) is a three 

spacecraft mission deployed to measure the dynamic properties of the 

magnetosphere and its surrounds. The heart of the mission consists 

of a pair of spacecraft (ISEE 1 and 2), with carefully matched 

payloads which orbit through the magnetosphere at a known, and 

controllable distance apart. By observing the time difference and 

the variation of characteristics between the passage of each 

spacecraft through a given phenomena, the speed and direction of 
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magnetospheric boundaries such as the bow shock, magnetopause or 

the boundary of the plasma sheet can be determined, and the spatial 

and temporal variations can be separated, something which is not usually 

possible from single platform measurements. 

ISEE 1 and 2 were launched in October 1977 and both spacecraft 

travel in identical orbits which have an initial apogee and perigee 

of 22.6 Re and 270 km respectively. The orbit remains static in 

space, so as the Earth orbits around the sun the line of apsides 

rotates through the magnetosphere, as shown by Fig.5.20, where the 

date circle indicates the apogee line at the time shown. This 

figure also shows why spacecraft data presented in this chapter comes 

from the first half of the year. The speeds and separation distance 

of the two spacecraft vary considerably around the orbit and although 

the separation in time is almost constant, separation distances 

vary from about 200 km at apogee to about 1000 km at perigee. 

Adjustment to the separation distance can be controlled by means of 

thrusters on board ISEE 2. 

At the beginning of this section mention was made of a 

three spacecraft mission, and while no ISEE 3 data is discussed in 

this work it should perhaps be stated that the third spacecraft is 

in a halo orbit around the Earth-Sun libration point, and is therefore 

well placed for solar wind studies, and correlative work between 

upstream and downstream phenomena. 

Finally, the instrument on board ISEE 1 and 2 which supplies 

the magnetic data, later to be discussed, is the UCLA fluxgate 

magnetometer which consists of orthogonal triads of ring core sensors 

having two ranges, ± 8192y and ± 256y for each of the three magnetic 

field components. The accuracy is ± 0.0025% of full range, and the 

data available is averaged over 0.5, 4.0, 16.0 and 64.0 seconds; the 
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Figure 5.20 Lines of apsides for ISEE spacecraft 
orbit. 
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lesser dynamic range, ± 256y is generally employed for magnetotail 

measurements (Russell, 1978; Frank et al, 1979). 

5.6 Plasma Sheet Characteristics 

The plasma sheet, the location of which is shown in Fig.1.1, 

Chapter 1, is perhaps the most dynamic region in the terrestrial 

magnetosphere; it consists of a reservoir of warm plasma particles 

with an inner edge located between 7-10 R^ in the geomagnetic equator, 

and although the magnetotail has been calculated to extend to at 

least 1000 R (Dungey, 1965), observations of the tailward extent of e 
the plasma sheet have been reported at lunar orbit, which is about 

60 R^ down tail. The plasma sheet was predicted theoretically by 

Parker (1958) and seems to be an intrinsic feature of the interaction 

of a plasma flow agains a magnetised obstacle. The importance of 

studying plasma sheet dynamics is based upon the fact that it is 

central to the fundamental processes that control the dynamic 

response of the magnetosphere to certain changes in solar wind 

conditions. In the near Earth plasma sheet unidirectionally 

streaming particles are seen as the spacecraft encounters the 

boundary of the plasma sheet (BPS), the fast flow layer being terminated 

on its inner boundary by the return flux of particles which has the 

effect of reducing the net bulk speed to smaller values (Coroniti et 

al, 1980; Carbary and Krimigis, 1979). Observed thicknesses of this 

layer are about 1 R (Hones, 1977; Frank et al, 1979), and relate 
6 

to plasma flows observed in the plasma sheet region during both 

expansion and recovery phase associated with substorms (Hones et al, 

1972a; Hones, 1977; Frank et al, 1976); these flows have been shown 

to be predominantly field-aligned (Lui et al, 1977; Frank et al, 

1978b; De Coster and Frank, 1979). The ion distribution functions of 
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these flows have been investigated by several authors (Frank et al, 

1979), who show them to be of the "mushroom cap" variety, the axis 

of which is almost field-aligned, which may be interpreted as a 

wide spread in pitch angle combined with a narrow spread in velocity 

about the mean. 

Inside this fast flow layer, that is closer to the centre 

line, is the plasma sheet proper, which is characterised by particle 

distributions which are more nearly Maxwellian : Spjeldvik and 

Fritz (1980). 

The overall picture then is consistent with an acceleration 

region (neutral line), downstream of the spacecraft observation point, 

and we are interested in the magnetic signature of the plasma sheet 

as the ISEE spacecraft cross the boundary, which is marked by field 

lines mapping between the neutral line and the auroral zone. The 

characteristic magnetic signature of a plasma sheet crossing is shown 

in Fig.5.21 and is seen to consist typically of a decrease in |B| 

and B^ and a perturbation in the B^ component, the Bz component is 

usually seen to increase slightly. 

While the fine structure of crossings may vary, the gross 

features given above are fairly consistent in that field-aligned 

currents are almost always seen to be flowing in the vicinity of 

the plasma sheet boundary : Parks et al (1979). It can be seen from 

the figure that the overall character of the plasma changes as the 

spacecraft traverse the plasma sheet, and the turbulent nature of 

the field trace is a result of the diamagnetic plasma within the 

sheet; this again is typical of almost all plasma sheet encounters. 

5.7 BPS Events 

This subjection will show a few selective plots of data 
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intervals which correspond to plasma sheet crossings. Because of the 

scaling, the x, y and z components are shown on separate plots, but 

both ISEE 1 and 2 are plotted on the same scale. Table 5.2 lists 

the relevant data for each event, and the events themselves correspond 

to Figures 5.22 through 5.33. Figures 5.25, 5.29 and 5.33 are 

magnetic hodograms, one purpose of which is to test the assumption 

of plane geometry upon which the cold plasma equations were computed, 

and Figure 5.29 in particular shows that this assumption is largely 

born out. These three figures will be returned to shortly. 

The event represented by day 128 is an encounter with the 

plasma sheet which probably corresponds to the expansion phase of a 

substorm during which the plasma sheet undergoes large scale thinning; 

the boundary therefore contracts past the spacecraft which then finds 

itself in the high latitude lobe. As the sheet contracts the B 

component jumps to a lobe value of about 20y, and the y-component shows 

the signature of field-aligned current flowing at the boundary. The B^ 

component shows a characteristic exponential rise from a hitherto quiet 

state, followed by a 4y general increase in the perturbation; this 

would correspond to the non-linear region of the computed plots shown 

in Fig.5.2 etc. There is however a maximum reached, and the 

perturbation settles down to a value some 5y higher than the initial 

state, the signature is therefore very much that of a collisionless 

shock, and if the argument for warm plasma effects causing the turn-

over in B is applied then the data bears a reasonable relationship . 

to the theoretical predictions. 

The other events, days 94 and 86 are slightly different in 

that they occurred during the recovery phase of a substorm; a period 

during which the plasma sheet is being inflated with fresh plasma 

from the reconnection zone as the neutral line moves rapidly down 



Figure Day Time at Plot Approximate x-position y-position z-position 
Number Number Start Duration Crossing (Rg) (RE) (Rg) 

Time (GSE) (GSE) (GSE) 

5.22 
5.23 128 10.18 7 mins 10.20 -16.00 7.90 6.50 
5.24, 5.25 

5.26 
l'2J0 94 17.21 2 mins 17.22 -19.70 -3.39 6.22 j .zo 
5.29 

5.30 
10.44 6 mins 10.45 -15.00 2.70 7.00 

5.33 

TABLE 5.2 Showing Plot information and corresponding 
Figure numbers 
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Figure 5.22 
B
x for day 128 (10.18-10.25). 

ISEE 1 is 
the faint trace and ISEE 2 the heavy. 
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Magnetic hodogram for day 128 
event. 
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for day 94. 
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Figure 5.28 
B 

for day 94. 
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event. 
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Figure 5.33 
Magnetic hodogram for day 86 event. 



129 

tail. They were therefore seen by the spacecraft as the boundary of 

the plasma sheet expanded past them. Considering day 94, i.e. 

Figures 5.26 through 5.29, which show two minutes of data, the B^ 

component shows a clear plasma sheet entry with ISEE 2 sampling the 

boundary some 10 seconds before ISEE 1 and passing from a lobe 

field of 30y to a plasma sheet field of about 18y. The B^ component 

again shows the effect of the field-aligned currents, and the 

perturbation is again seen to have an exponential start going into 

a steady increasing region. Figure 5.29 is clearly indicative of 

plane geometry, showing a steady increase in B as B^ falls. 

Because of the short time interval plotted in this event 

the similarity with the earlier computed plots is especially clear; 

and Fig.5.27 also enables a determination of the spatial scale, 

which also will be returned to shortly. 

The final example, day 86, shows an example of multiple 

entry to the plasma sheet, and is again taken from a recovery phase 

when the plasma sheet was expanding past the spacecraft. 

Multiple entry is a common feature and may be often seen on 

both the magnetic and plasma data; this is probably due to corrugations 

of the plasma sheet boundary, where the spacecraft then pass briefly 

into the sheet, exit from the corrugation and then re-enter for an 

extended period of time. This is clearly seen from the B component X 
on day 86, the first entry occurring at 10.45 where the field strength 

drops from 42y to 34y, the spacecraft samples the diamagnetic plasma 

of the plasma sheet for some 3.5 minutes only to exit back into the 

42y lobe field at about 10.48; a second entry then occurs at about 

10.52 and the spacecraft then goes on to be engulfed by the expanding 

plasma sheet. The B^ component shows a large system of currents 

flowing on the boundary, but we can still see the quiet lobe field 
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rising exponentially into a large (almost 12y), steadily increasing 

region; by 10.45.40 the spacecraft is well into the plasma sheet, 

thus, the plasma $ is large (~ 1), and warm plasma is certain to be 

present; this is also the region in which counter streaming flows 

are reported (Frank et al, 1979), thus instabilities such as the two-

stream may also be important. However, this is well past the region 

of validity for the approximations with which we have computed the 

Alfvdn mode. 

Returning now to Figures 5.25, 5.29 and 5.33 which show 

the magnetic hodograms; much more information is available from these 

diagrams in addition to a test for plane geometry. On each of these 

figures an arc of a circle is drawn which is centred on the origin 

of coordinates. This is of value in time sequencing the plots, for 

example Fig.5.25, which corresponds to an exit from the plasma sheet, 

and is therefore best considered by working backwards in time. It 

shows that at about 10.21.00 the spacecraft encounter the plasma sheet 

boundary whereupon the magnetic pressure falls rapidly, while the 

plasma pressure increases, thereby causing the decrease in field 

strength. The close adherence to the circle is exhibited by all the 

hodograms as the spacecraft first sample the boundary, and it is 

this region which is the expected location of the Alfven wave. Fig.5.29 

again shows the sequence as the interchange between magnetic and plasma 

pressure occurs, however the difference here is that the spacecraft are 

being engulfed by the expanding plasma sheet and the overall appearance 

of the hodograms may be thought of in terms of the wave field of the 

Alfven wave, at about 17.22.00, accelerating particles in a field-

aligned direction, which in turn produce the increasing perturbation in 

the By component of the magnetic field, and upon encountering the 

plasma sheet proper, at about 17.22.50, the plasma pressure increases 
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and the magnetic pressure falls away while the B component of the ** X 

magnetic field settles down to a plasma sheet value of about 19y 

(cf. Fig.5.26). However, one point to be noted is that the picture 

is really three dimensional, and for this reason the magnitude of 

is indicated at selected points on each hodogram. 

As a final point in this subsection some mention must be 

made of the spatial scales which are relevant to these events, and 

this information can quite easily be obtained from the magnetic data. 

At this point in their orbit ISEE 1 and 2 are separated by a total 

distance of about 370 km, with a time separation of 250s; however 

the trace-time separation for day 94, Fig.5.27, is about 15s. This 

implies a boundary speed of around 25 km s \ a value which is 

consistent with observation. 

Returning to Fig.5.27 and considering the field at 17.22.3 

we see that ISEE 2 observes a different field orientation to ISEE 1, 

which has to go a distance equal to the y-coordinate separation of the 

spacecraft before it encounters the same field, by which time ISEE 2 

is sampling a different field again; and hence until about 17.22.55 

when both spacecraft see the same field. Thus by knowing the y-

coordinate separation and the number of "steps" through the event we 

can estimate its size to be at least 1200 km, and as for this event 

|B| was 30y, and if the near earth field is taken as 50,000y, a size 

of 1200 km at the plasma sheet boundary will map to about 30 km at 

ionospheric altitudes. In this context there are two points to be 

noted, firstly, that the size of the events is thin when compared to 

the boundary itself, which is of the order of 2500-3000 km (Andrews 

et al, 1980), and secondly that the ionospheric size is within the 

range of dimensions reported for the "inverted V" events (Mozer et al, 

1980). 
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5.8 Discussion 

Sections 5.2 through 5.7 have presented both theoretical 

and actual data plots, the latter of which confirm in part the 

predictions of linear theory, and enable a simple interpretation 

to be made for the events which were seen in the data. 

It has been shown how the thin events seen in the boundary 

of the plasma sheet map to ionospheric sizes which correspond to the 

inverted V events, and while these are often of sizes of the order of 

100 km they have been reported at very much smaller dimensions. 

Returning to the computed plots shown in Figures 5.1 etc., 

for the B component, as the abscissa is in units of c/cup , an 

estimate of the computed scale size can be made. This is achieved 

by making use of the formulae in section 5.2.1, and by considering 
-3 . 

a lobe density of 0.1 cm . It is clear that we can consider a wide 

range of cos0 values, and for cosG = 0.00999 we can estimate an 

approximate scale size of about 800 km. While this is less than the 

observational size as deduced above it is still very much thinner 

than the plasma sheet boundary itself. The order of magnitude 

agreement between computation and observation does suggest that the 

model may have some physical significance. 

Before summarising this chapter, a short section will be 

included on the subject of streaming plasma which has been reported 

on the boundary of the plasma sheet. While not directly associated 

with the work done here, it is possible, from the magnetic data 

examined, that some insight can be gained as to what processes are 

at work in this region of the magnetosphere. 

5.9 Particle Beams and the Plasma Sheet Boundary Layer 

Brief mention has already been made earlier in this chapter 

as to the existence of particle beams seen in the vicinity of the 
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boundary of the plasma sheet. However most authors have used plasma 

data to examine plasma sheet crossings, and at most supported these 

conclusions with only small amounts of magnetic data. It is often 

seen in such crossings that detached spikes of plasma can sit just 

outside the plasma sheet, separated by about 1-2 minutes from the 

main entry; mention was made above of corrugations which are 

frequently present on the boundary and such conditions are capable 

of explaining the presence of detached spikes. However a possible 

candidate for producing the vertical flapping of the plasma sheet is 

a transverse Alfv£n wave, and if such a wave is present we may expect 

to see some kind of magnetic signature. If the wave is fast mode, 

such a signature, if it exists, should be present in the B^ component. 

The purpose of this sub-section is to consider briefly this 

possibility by examining suitable events for which we also have the 

plasma data. 

a) Day 109 

The period of interest is about 07.40 UT. At this time the 

spacecraft wrre situated at : 

x 

y 

z 

At this time the B^ component of the magnetic field data indicates 

that the spacecraft briefly entered the plasma sheet (Fig.5.34-36), the 

By component confirms the presence of a small system of field-aligned 

currents flowing towards the earth, as evidenced by the northward tilt 

of the field, which is seen from the positive B component. Fig.5.37 ~z 
shows the flux of high energy protons (E > 115 keV), from both ISEE 1 

= - 17.08 R e 
1.03 R GSM coordinates e 
5.89 R 
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Figure 5.34 
B 

for ISEE 1 and 2 for 07.36-07.45 on 
day 109 (plasma sheet encounter = 07.39). 
ISEE 1 trace is faint. 
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Figure 5.35 
for ISEE 1 and 2 on day 109. 
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Figure 5.36 
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for ISEE 1 and 2 on day 109. 
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Figure 5.37 
Proton flux data (energy > 115 keV) for 
day 109 (after Andrews et al, 1980). 
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and 2, and shows clearly the presence of a detached plasma spike at 

07.42 UT which is clearly just prior to the main plasma sheet entry; 

simultaneously with this the B z component was seen to undergo a ± 4y 

oscillation. It can also be seen that a second smaller spike occurred 

right on the boundary at about 08.02 UT. However, for this event there 

was hardly any significant change in either the B^, B^ or B^ components. 

The second example, which is slightly different in that the 

spike is seen to be attached to the boundary occurred on day 87. 

b) Day 87 

The time of interest is about 03.40 UT, however, during the 

whole of day 87 the spacecraft was seldom further than 8 R^ from the 

neutral sheet, and often as close as 1 R . It therefore encountered e 
the plasma sheet on three distinct occasions, the first of which was 

at about 03.40 when the spacecraft were situated as follows : 

x = - 20.00 R e 
y = - 3.60 R GSM coordinates J e 
z = 7.40 R e 

Fig.5.38-40 show the magnetic data and are typical plasma sheet entries. 

Prior to the encounter ISEE 1 was unfortunately suffering some 

directional uncertainty, and the large negative pulse on entry is an 

artefact of the data, however ISEE 2 shows a decrease of some 4y in 

the B^ component while the B^ component again registers the presence 

of a small current system flowing on the boundary. The next figure, 

Figure 5.41, again shows energetic proton flux, and it is clear that 

the spike at 03.42 UT coincides almost precisely with the boundary 

crossing. Looking now at the Bcomponent, there is again a ± 4y 

perturbation which comes out of a quiet field. This perturbation is 
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Figure 5.39 
for 03.00-04.00; day 87. 
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centred on 03.42 UT and shows a "double humped" appearance similar to 

the plasma data. 

A second example occurred at about 15.12 UT on day 87 (Figs.5.41 

~ 44), and this is seen again to correspond to the main plasma sheet 

boundary crossing. The plasma data shows a spike of flux which is 

clearly sitting on the boundary itself, and checking with the B z 

component, a sharp ± 5y perturbation is seen; however it is not easy 

to associate this directly with the spike as the B z field displays a 

rather noisy character just before and after the perturbation, 

although it can be stated that both events occur almost simultaneously. 

To conclude this sub-section, while three examples cannot 

be said to be conclusive evidence of a magnetic signature, and a more 

complete analysis would need to attempt a match between the periods 

of the magnetic fluctuations and the appearance and disappearance of 

the plasma sheet for many crossings, it can perhaps be said that 

Alfven waves cannot be ruled out as a cause of vertical flapping of 

the plasma sheet. 

As a final note, the small scale, local, north-south 

oscillations of the B z component are difficult to interpret, but 

because of the component in which they occur they could possible be 

related to loops of closed flux, caused perhaps by the tearing mode 

instability, Sohindler (1974), and which are subsequently convected 

over the spacecraft. However, these beams are not the subject of 

¥ 

this work, and the final sub-section serves to summarise sections 

5.2 to 5.7. 

5.10 Summary 

The accuracy and success achieved when obtaining numerical 

solutions to differential equations is a function of several factors, 
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arid to a large extent the characteristics of the equations concerned 

determine the type of algorithm which could be used. Section 5.1 

discussed briefly the choice for solving the equations which were 

relevant to this work, while the subsequent two sections presented 

typical solutions for a range of parameters. Special reference was 

made to the growth rate and its relationship to the magnitude of 

the angle 9. Following from the approximations derived towards the 

end of Chapter 4, it was seen in these sections how the validity of 

these approximations changed as the non-linear effects assumed an 

increasingly important role, finally reaching a point where the 

computation could no longer be relied upon to give accurate 

predictions. 

Section 5.5 gave an introduction to the ISEE mission and 

extended the discussion of the plasma sheet given in Chapter 1, while 

the following two sections discussed selected events in relation to 

the computer predictions. Also mentioned both: here and in the 

discussion (section 5.8), was the relationship between the dimensions 

of these events and the inverted V ' s . 

Finally, section 5.9 discussed the possibility of a magnetic 

signature which may be present when plasma spikes are seen both on, 

and separated from the plasma sheet boundary. The presence of 

component field fluctuations suggested a possible explanation for the 

flapping of the boundary region in terms of fast mode Alfven waves. 
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CHAPTER 6 

SUMMARY AND DISCUSSION 

6.1 Results for the Model and their Magnetospheric Relevance 

The contents of the previous chapter resulted entirely from 

a computation of the cold plasma equations. This was done subject 

to the observational constraint that the Alfv£n Mach number, M^, be 

very much less than one; and a value of M ^ = 0.01 was chosen based 

on the E A B drift velocity and the Alfv£n speed at about 20 R g down 

tail.• 

In the case of b > 0 , the computation led to the discovery 

of non-linear effects which cause the perturbation to increase at a 

constant rate. This is the "straight line" region of the computed b 

plots and is exhibited by all the plots, regardless of the value of 

cos0. However cos9 is the crucial parameter in determining the growth 

rate of the waves and the maximum value reached by the perturbation. 

In the case of b < 0 the situation is less simple to describe, 

but departure from the linear exponential region still occurs at the 

corresponding value of w . It was found necessary to devise approximations 

which would ensure that the pure Alfven mode only was computed, and 

these were obtained by neglecting db^/dT and dv/dT, however upon 

reaching the non-linear region a modification was required which 

involved basing the approximations on the straight line part of the 

plot. In both cases, for b > 0, and b^. < 0, the approximations are 

valid and break down only when the field has undergone an appreciable 
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rotation, which physically corresponds to b^ becoming an appreciable 

fraction of b^. Computationally progress could still be made by 

introducing an angular variable for the field, however observationally 

it would be meaningless as generally b < b^ 

Interpretation of the magnetic and velocity plots was made 

in terms of constant current, and an exploratory search of ISEE 1 and 

2 magnetometer data for selected plasma sheet crossings was made on 

the basis of model predictions. Events were shown and discussed, 

which were in gross agreement with the results of computation, and 

phenomena which had ionospheric scale sizes of the order of inverted 

'V' events were shown to results when the mapping to ionospheric 

altitudes was done. As the cold plasma equations were computed on 

the assumption of plane geometry it was necessary to test this 

hypothesis for each of the plasma sheet events. 

It turns out that the magnetic hodogram, a plot of B against 

B^, is a useful device for achieving this test while at the same time 

enabling insight to be gained as to the physical processes at work. 

By examining such hodograms a point can be found where the plasma 

pressure begins to rise at the expense of the magnetic, this causes 

the field to decrease as the spacecraft goes deeper into the plasma 

sheet boundary, which is physically equivalent to a rise in temperature 

of the plasma and hence the onset of warm plasma effects. 

It was found that in the majority of plasma sheet encounters 

the direction of the B component is predominantly northward, with some 

small variation, and is thus in qualitative agreement with the 

requirements of the Petscheck model (Petschek, 1964), the essential 

point of which was the suggestion that the flow of a conducting 

incompressible plasma in the convection region surrounding an X-type 

neutral line should involve an exchange process involving field and 
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flow energies which occurs across a standing shock wave. 

As for the model, which is essentially for an Alfv£n wave, 

which is standing between the earth and a source region located at 

a distance of 20 - 30 R g down tail. The gross features of the model 

require only the existence of a strong electric field which exerts 

its influence across a thin layer, and the justification of this 

field in terms of the Alfv£n-Dungey-Cowley model, given in Chapter 1, 

was shown to be equivalent to the justification of the existence of 

such a standing wave. That the wave is able to stand in such a low 

Mach number flow is clearly seen from cold plasma theory, where cosQ 

< M^, thus for this value of M ^ , v i z . 0.01, the angle is close to 

90°. Under these circumstances the wave, with its wavefront almost 

parallel to the magnetic field and with a substantial field-aligned 

component of current, is able to stand in the flow. This therefore 

permits a plausible explanation of the small scale field-aligned 

currents, which are observed to flow in the auroral zone, in terms of 

the standing shear mode Alfv£n w a v e . 

Furthermore, as such a wave propagates past a given altitude 

the field increases and the current density rises. At this point 

the finite inertia of the electrons requires a parallel electric 

field to be set up and for an E„ of 0.1 to 0.2 mvm ^ a cold electron 

population can be accelerated to the critical velocity whereupon 

electrostatic ion cyclotron turbulence sets in. Such acceleration can 

occur in milliseconds, which is much less than the period of the 

Alfv£n waves, and Kindel and Kennel (1971) have shown that this 

instability can be current driven; whereas Hudson and Mozer (1978b) 

have shown a positive correlation between the location of such 

turbulence and the inverted 'VT events. 

For the case of the model, we can estimate the magnitude of 
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E ^ from the following expression 

= v B 0 -i 
x t^tt nivni L 

10° 

which for a lobe field of 15y produces an E^ of 0.15 mvm"^. This is 

for the linear region and while it is fairly low it is within the 

range of observation. 

6.2 Discussion 

In Chapter 1 it was shown that upon reflection from the 

ionosphere the presence of the E A B convecting plasma in general 

assures that reflected waves return to a position which is well 

downstream from the original source. A consequence of the convection 

of the reflected wave away from the path of the incident, is the 

production of a pair of oppositely directed electric fields which 

exist above the ionospheric structure. Since the conductivity of the 

ionosphere is high the wave should lose little of its amplitude 

during reflection, thus as the field lines are closed, many transits 

through the magnetosphere may occur. However, as the wave propagates 

earthwards the cross-section of the flux tube in which it travels 

undergoes a change in cross-section. This effect, which is essentially 

geometrical in character, may have the effect of influencing the 

magnitude of the electric field and also the current, when the effect 

is mapped to ionospheric altitudes. 

Another potentially more serious effect which may have an 

effect on the stability of the system,arises from local variations in 

density which can occur along the flux tube, thereby giving rise to 

small reflected waves before the ionosphere is reached. For low 

frequency waves the characteristic propagation speed is just the 
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Alfv£n speed, and is given numerically by : 

V A = 22 km s" 1 

A (n) 2 

and is therefore a function of field strength and number, density, 

both of which increase earthwards. This implies that the value of 

M ^ will change as the earth is - approached, thus the calculations 

would require repeating for a different value of M ^ than that used 

for ^ 20 R e < However the order of magnitude is unlikely to change 

by a significant amount. Mallinckroot and Carlson (1978) gave an 

expression for the magnitude of the ionospheric field-aligned 

current which showed that it is essentially a function of the 

incident wave magnitude, viz. 

- 2 1 ( A ) Z E_ 
M o p ~D 

M o p 

where ^ ( ^ Q ) i-s the mapped flux tube conductivity just above the 

ionosphere, Z^ is the height integrated Pedersen conductivity and E^ 

is the electric field of the incident Alfven wave. 

We can generally assume that Z^ >> » hence we have : 

I„ = - 2E m(A ) E d 6.1 

where a typical value of ~ 0.15 mho. Similarly, the ionospheric 

electric field is given by : 

2Z..(A ) 2£ (A ) 
M o M o 

= E M(A ) + Z 5D = — ?D 6 , 2 

M o p p 

which shows that the ionospheric electric field is just that which is 

necessary to close the current with the local value of Z . Also we see 
P 
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that the electric field in the magnetosphere is larger than that in 

the ionosphere by a factor of E /2E..(X ). r j p' M o 

Equations 6.1 and 6.2 illustrate two important features, 

firstly that the magnitude of the sheet current is directly 

proportional to the mangitude of the electric field of the incident 

Alfv£n wave; and secondly if w e use equations 6.1 and 6.2, we obtain 

an expression for the ratio of the current to the electric field, viz. 

^•H _. y 
AE p 

Viewed in this context the wave nature of the auroral zone field-align* 

current is apparent. 

6.3 Conclusions and Suggestion for Further Work 

The most obvious feature which is absent from the computed 

plots is the saturation of the b perturbation, the consequence of 

which would be the settling at a higher state of the magnetic field, i 

a true collisionless shock. It was suggested in Chapter 5 that the 

inclusion of a pressure would not be sufficient to model this effect, 

and attention should now be given as to a possible course of action. 

In this region of the plasma sheet, $ is increasing rapidly. The 

spacecraft pass, from a cold to a hot plasma regime in a few minutes 

(at most) of time. The most likely course would be to use a kinetic 

approach, which is essentially a Vlasov-Maxwell formulation, but to 

include a term which has its origin in the microturbulence inside the 

wave. This would involve writing the Vlasov equation as follows : 
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and then assuming that the distribution function and the electric and 

magnetic fields behave as follows : 

f = f + 5f, E = E + 5E, B = B + 5B 

where subscript 'o' refers to the zeroth order and '3' is the 

fluctuating portion. 

Averaging 6.3 gives : 

3f 3f 3f 
+ V.-x-^ + — {E + V A B }.—2. = C ( 6 f ) 

3t 3x m ~o ~ ~o 3V 

e 3 <S f 
where C(6f) {(6E + V A 6B) . and is sometimes referred to as 

m - ~ d V. 

the ' stoss'. This quantity plays the role of a collision term in that 

it contributes to changes in the values of f etc., as a result of 

interactions between the fluctuating quantities. The quantity C(6f) 

therefore depends entirely on momentum and energy transfer which goes 

back and forth between the fluctuating fields. 

While this approach should describe the behaviour in a more 

accurate fashion there are still the usual problems of deciding on 

suitable expressions for f Q , as well as closing the equations by 

deciding on the form of the fluctuations in C(6f). However, in 

practice simplification is possible and C(6f) is often approximated 

by an expression of the form : - u ( Y e - V^) where V , V^ are velocities 

of electrons and ions respectively and u is a constant. 

While this approach, although complex, might prove its worth 

in the longer term, the model used in this work is still capable of 

extension. The most obvious extension follows from the observation 

in the previous chapter that the approximations to the Alfven mode 

break down for both cases considered, viz. b > 0 and b < 0 , when 
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the field has undergone a rotation of a few radians or less. This 

implies that b^ is becoming an appreciable fraction of b^ thus by 

introducing an angular field variable would enable the calculation 

to proceed further. However, as was pointed out in Chapter 5 this 

would have little meaning observationally. 

A more desirable procedure would be to perform a fully time 

dependent analysis. In Chapter 4, which dealt with the computation 

it was stated that one of the principal boundary conditions was the 

restraint on the x-component of the velocity, i.e. u, not to change 

sign. If the calculation was performed with 3/8t £ 0 this restraint 

could be relaxed. This however would lead to instability problems 

as the physical consequence of relaxing this condition is to permit 

the particles which are accelerated by the wave to reverse direction. 

This in turn would lead to the growth of two stream instability. 

As a final word of conclusion, the model in its present 

form is both plausible and realistic in its predictions for the 

linear, and part of the non-linear behaviour of the shear-mode 

Alfven wave and its application to explaining small scale auroral 

zone field-aligned currents. It successfully predicts non-linear 

features which are visible in part in spacecraft data. However, if 

extensions were made to the model on the lines of the above suggestions 

a more complete description should be possible. 

Ultimately, the characteristics of the plasma sheet itself 

must determine the approach to the problem. In view of the presence 

of what are often substantial corrugations on the plasma sheet 

boundary, the dimensionality of the problem would need to be increased. 

Finally, the concept of a normal to the plasma sheet boundary would 

need to be defined with some precision. 
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LIST OF ESSENTIAL NOMENCLATURE 

Chapter 1 

j Current density 

j„ Parallel current density 

B = (B x,By,B z) Magnetic field components 

Ap The proton wavelength 

n Particle number density 

E = ( E x > E y , E z ) Electric field components 

V ^ The Alfven speed 

M. The Alfven Mach number 
A 

Proton gyrofrequency 

ft^ Electron gyrofrequency 

a) Angular frequency 

k Wave number 

w = oj/k Phase velocity 

Chapter 2 

a^ Hydromagnetic state vector 

P Particle pressure 

£ ±, depending on particle species 

u, u m Hydromagnetic and magnetic viscosities 

AP etc. Change in parameter across a discontinuity 
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Chapter 3 

m , m 
P e 

a 

K 

V„ 

V. 

Proton and electron masses 

Temporal growth rate 

Spatial growth rate 

Parallel, (field-aligned) velocity 

Perpendicular velocity 

Chapter 4 

Y = m /m 
P e 

T = X 0) / C 
pe 

(JO 
pe 

Particle distribution function 

Liouville operator 

Mass ratio 

De-dimensionalising parameter 

Electron plasma frequency 

Chapter 5 

R 

e 

BPS 

CPS 

y(nt) 

Earth raaxi 

Boundary of the plasma sheet 

Central plasma sheet 

Equivalent to nano teslas (nt) 
field measurement 

- unit of magnetic 

Chapter 6 

I„ 

m o 

Parallel component of current 

Mapped flux tube conductivity 

Height integrated Pedersen conductivity 
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APPENDIX A 

ERROR ANALYSIS FOR THE EULER ALGORITHM 

The Euler algorithm was discussed briefly in the first 

section of Chapter 5 , together with a somewhat arbitrary mention 

of possible sources of error which may occur during the course of a 

computation which is based on this particular algorithm. The purpose 

of this appendix is to quantify the errors which are usually involved. 

In its most general form the one-step method may be written 

as follows : 

y i + 1 = y£ + h cj) ( x i , y i ; h ) , i = 0, 1, ..., n-1 A.l 

Equation A.l is well known, and here we take <p(x^, y^; h) to be the 

function of interest. This equation can be used to estimate the 

solution of the initial-value problem, y f = f(x,y), subject to the 

condition, y ( x Q ) = y , and providing a £ x £ b . 

Our goal is to estimate the error bound, thus we may define 

a local truncation error, x^, according to the following equation : 

y(x. -) = y(x.) + h <j>[x., y(x.); h] + h x. A.2 
l+i I 1 1 I 

where y(x) is a solution to the initial value problem. 

The virtue of x. is that it tells us by how much y.., would I j J 

miss if computation were started at x^ with the exact answer, 

i.e. if y. = y(x.). j 1 i 

In the case of Euler, we have from A.2 with <j>(x,y;h) = f(x,y) 

y ( x i + 1 ) = y(x.) + h f(x., y ( x i ) ) + h t i A.3 
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Using a Taylor expansion on A.3 w e have to second order in h 

h 2 

y ( x . + 1 ) = y(x.) + h y ' ( x i ) + y r y " (9.) A.4 

where x. < G. < x.,,. However, because y'(x.) = f[x., y(x.)l we 
l l i+l ' J l I I 

therefore find that for the Euler method the truncation error is 

expressed by the following equation : 

T I - | Y " ( 8 ^ A. 5 

for some 0. within the range of x . x . T h e absolute truncation 
l & i i+l 

error is therefore given by : 

y i + l " y ( x i + l ) A ' 6 

and is seen to consist of two parts 

a) the accumulated error that is made in passing from 

X q to x^ and using y^ in place of y(x^) in eqn.A.l 

b) the local truncation error, h T . , that is made at x. 
l l 

in going from y^ to if y ^ were numerically equal 

to y(x^). 

On substituting A.l and A.4 in A.6 we obtain for the absolute truncation 

error e^, the following formula 

e i + 1 = Y i " y(x£) + h[(|>(xi,yi;h) - <|>(xi,y(xi) ;h)] - tn^ 

or 

e i + 1 = + h[(J>(xi,yi;h) - <j>(xi,y(xi) ;h)] - h-^ A.7 

Computationally we assume that c|) satisfies a Lipshitz condition, viz. 

that there is a constant L, such that 
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|<j>(x,u;h) " <j>(x,v;h)| S L|u-v| 

hence, the Lipshitz condition requires that 

| e . | s T ( e L ( x i " x o ) - 1)/L 

where x is the local truncation error. Hence for the Euler algorithm 

we have : 

I i h M , L(x.-x ) s A o 

' ei' 2~~L 1 ° A - 8 

where M = max. |y M(x)|. 

In practice it is often found that the Lipshitz constant, L, 

is ~ 1, and that x = 0; in this case the absolute truncation error 9 o ' 

is just 

l | h M / x,' , N 

Rounding Errors 

Errors such as these can often be partially overcome by using 

double precision arithmetic, and as such errors can often severely 

limit the accuracy that can be obtained. We will only be concerned 

here with their effects upon the Euler algorithm. 

From the Euler method : y i + l = y £ + h f ( x i , y i ) , i - 0, 1, 2..., A.9 

we see that there are two places in which rounding errors may occur, 

viz. in the evaluation of f(x£,y^) and in the formation of y^ + hf(x^,y 

and while double precision arithmetic helps in the latter case, it is 

difficult to avoid errors when evaluating f(x^,y^). 

In theory the Euler method calculates the left hand side of 
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eqn.A.9, although in practice the computer actually calculates the 

numbers 

u . M = u. + hf(x.,u.) + cS. A.10 
1+1 l l l 

where is the local rounding error, which occurs as the machine 

goes from u^ to • Subtracting A.10 from A.9 produces : 

y.,, - u . _ = y. + hf(x.,y.) - u. - hf(x.,u.) - 5. 
l+l l+l l I'^I l i* i / l 

Defining A^ = y^ - u^, which is just the difference between what 

the machine calculates and what Euler's method would produce if no 

errors were present, we obtain : 

A.,, = A. + h[f(x.,y.) - f(x.,u.)] - 6. 
l+l l i w i l l l 

However, recalling eqn.A.7, and again making use of e^ = y(x^) - u^ 

we obtain 

s. . = e. + h[f{x.,y(x.)} - f(x.,y.)] - hT. 
l+l I i J I I J I I 

Therefore the error between the true solution at x^ and the computer 

approximation u^ can be denoted by E ^ , given by 

E. = e. + A. 
i l l 

hence using the expressions for and A^ gives : 

E. - = E. + h[f{x.,y(x.)} - f(x.,u.)3 " ht. - 5. 
l+l i i I I I 

again assuming a Lipshitz condition for f(x^,y^), i.e.|f(x,v) -

f(x,w)| £ K|V - wj for all v , w where K is a constant. We find that 

for the absolute rounding error the Lipshitz condition requires 

i+l 

l E i + i l « o « " « { ( 1 + h K )
h K - 1 ! 
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whereupon using the bound (1 + h K ) £ obtain finally 

for the absolute rounding error : 

I , * , e K ( e i + 1 - x 0 ) _ 

| y ( x i + l ) " u i + l l < K ( T " h } A " U 

Again in practice K is often unity and X q = 0 whereupon we have : 

l y ( W " u i + i l * e X i + 1 ~ 1 ( T " A - 1 2 

It is convenient at this point to restate eqn.A.5 for the 

truncation error : 

= I y" < V 

If this, and eqn.A.12 are considered together we find that the term 

(T is the significant one, as for the truncation error we see 

that T decreases as h decreases, but eqn.A.12 tells us that the term 

S/h increases with decreasing h , also the smaller h becomes the 

greater the number of steps required to obtain solutions, therefore 

the greater the influence of rounding errors. 

In conclusion, for most problems which are suitable for solution 

using one step algorithms such as the Euler method, there is clearly 

an optimum value of h for which the quantity (x - j-) is a minimum, 

while this depends on the nature of the problem, it is often best to 

attempt an educated guess at what this optimum value might be. 
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