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ABSTRACT 

This thesis studies admissibility, in the context of linear 

model theory, under general quadratic risks, when only linear 

estimators are considered. Algebraic representations of admissible 

linear estimators are obtained for the following cases: the space of 

the mean parameter is IRP and the design matrix X is full rank or non 

full rank; the space of the mean parameter is a subspace of 1RP and 

X is full rank. Minimax properties of linear estimators over special 

cubes and any ellipsoid centred at the origin are given. In particular 

the following questions are answered: given a constraint region of 

such a kind and a quadratic risk what is the minimax linear estimator 

under this risk for this region? Given a' linear estimator and a quad-

ratic. risk onwhat regions the estimator is linear minimax under the 

quadratic risk. The region where an admissible linear estimator has better 

matrix quadratic risk than the best linear unbiased estimator is 

characterized. An optimal property of restricted best linear estimators 

is proved and finally admissible linear estimators are characterized 

in terms of minimax properties. 
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CHAPTER 1 

INTRODUCTION 

To set the background for this thesis it is necessary to sketch 

some of the main branches in the evolution of the theory of statistical 

linear models. We shall not attempt to give a full history since the 

introduction of least squares by Gauss (see the 1855 book) but 

rather make use of more recent work, some of which themselves contain 

extensive bibliographies. 

Before the 1960's the theory separates roughly into two main 

groups. The first tries to interpret many of the statistical 

procedures and concepts arising in practice in terms of least squares. 

Some of the questions are: the definition of the best linear unbiased 

estimator* (BLUE) as a least squares estimator (LSE) when the variance 

of the model is of the form cr̂ V (Aitken, 1935), when X is a non full 

rank matrix (Bose 1944, Rao 1946) or when the parameter of the mean 

is restricted to lie in a subspace (Rao 1945), the formulation of 

hypothesis testing in terms of least squares (Rao 1946). The second 

group, with a smaller literature (Durbin and Kendall 1951), but 

nevertheless important, develops geometrical understanding of the 

least squares estimator. It becomes clear that a least squares estimator 

can always be seen as the projection (using an appropriate inner 

product) over some subspace contained in the range of the design 

matrix X. 

Kruskal's free coordinate approach (1961) extends existing 

geometrical interpretations to other practical situations. The relation 

between BLUE and LSE is studied again (Zyskind 1967, Kruskal 1968). 
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The g-inverses are adopted as a standard algebraic device to solve 

problems related to the estimation of the mean. This work has been 

extensive since the early 1960's (see Mitra and Rao 1971 for a good 

account). By the end of the 1960's the theory of BLU. estimation had 

been thoroughly worked and indeed it was probably a common belief 

that BLUE's were the only useful linear estimators. 

The beginning of the 1970's brought fresh life into the topic. 

Mainly motivated by computational problems, Hoerl and Kennard 

(1970a, 1970b) used perturbations of the LSE of the form 

M^Y = (X'X + kl) *X'Y as estimators. They were called ridge estimators, 

It was a turning point for the estimation procedures of the mean of the 

linear model: the new estimators had interesting statistical properties 

which qualified them as possible competitors of the BLUE's. . A wide 

field was open up to research. As a first consequence, a host of new 

estimators, generalizations of the ridge estimator, became available. 

Their increasing use in practical situations generated a considerable 

number of theoretical and applied studies. On the applied side the 

paper by Goto (1979) (see also its bibliography) is a guide to the 

developments in the area. Three main avenues of theoretical research 

can be distinguished. 

Efron and Morris (1973) developed the ideas of Stein (1956) whose 

famous work showed the inadmissibility of the ordinary unbiased estimator 

of the multivariate normal mean and hence the LSE in regression for 

dimensions greater than two. Exploiting some of the connections between 

shrinkage estimators and ridge estimators Thisted (1976) gave a "ridge 

rule" which had uniformly smaller risk than the relevant BLUE (in the 

normal case). There has been considerable subsequent work in this area. 
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Although with the assumption of normality a wide range of practical 

situations can be covered it is also important to have properties which 

depend only on second order assumptions. Kuks and Olman 1972, 

Kuks (1972) and later Bunke (1975), Lauter (1975) studied minimax 

properties of those estimators in the set of linear estimators, which 

depend only on second order assumptions. 

Finally another important contribution was to recognize that all 

those new estimators had a common property: the class of the linear 

admissible estimators was defined. This gradually became apparent 

through the works of Cohen (1966), Shinozaki (1975) and mainly Rao 

(1976) who gave a clear characterization of them. (See Definition 2.1 

and Corollary 2.3.1 in this thesis.) Hoffmann (1977) studies the 

class of admissible linear estimators when the mean is restricted to 

be in an ellipsoid centred at the origin. 

In the meantime the theory of BLUE's has produced important 

developments. Seely (1970a,b) emphasizes the notion of estimable 

function due to Bose (1944) to build up an elegant and flexible theory, 

and applies the results to the estimation of the components of variances 

in the mixed linear model. Eaton (1970) gives a free coordinate 

approach of the estimation of the mean in a mixed linear model. Gnot 

et al (1980) is the most refined prolongation of this work, their list 

of references gives a good idea of the main intermediary developments. 

Rao (1971) also builds up a general theory of BLUE's. Its main concern 

is to reduce most of the problems of BLU estimation and testability 

to the one of calculating a g-inverse. 

Despite all the contributions mentioned above a close look at the 

subject reveals a number of gaps and shortcomings. It is the main 

motivation for this thesis to try and make up for some of these. 
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Here is a list: 

(i) Some useful properties have been proved only for particular kinds 

of admissible linear estimators. An immediate question is to see if 

those properties are in fact a property of all the admissible linear 

estimators. For example: Farebrother (1976) and Obenchain (1978) 

studied the good region for ridge and generalized ridge estimators. 

What is the good region for an admissible linear estimator? (see 

Section 5.1.). Kuks and Olman (1972) proved a minimax property for a 

dense subset of the set of admissible linear estimators. In Section 5.3 

we extend that property. 

(ii) Some of the theoretical work such as that developed by Kuks (1972) and 

Lauter (1975) is-difficult to apply in practice because of the complexity 

of the algebraic formulation. It is reasonable to expect that further 

work in this direction would be helpful; see Chapter 4. 

(iii) There is a big division between the full rank case and the non 

full rank case. The g-inverse algebraic machinery has reached a high 

degree of sophistication and is successfully applied to treat the non 

full rank case in the least square theory of estimation. It seems, 

however, that a similar application of g-inverses to admissible linear 

estimators in the non full rank case is more intractable (see Sections 

3.2 and 3.3). 

(iv) Another desirable feature, which is absent from admissible linear 

estimation theory is a good geometrical interpretation. This is despite 

the fact that the use in practice of admissible linear estimators, is 

restricted to those for which a clear geometrical understanding of the 

bias function is available (see Corollary 2.2.1 and Corollary 2.3.2): 
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(v) For an arbitrary admissible linear estimator only one algebraic 

representation has been given (see Rao 1976) but it does not seem to 

have attracted much attention. It can be proved that any restricted 

BLUE is an admissible linear estimator but the representation given by 

Rao does not help us to see this easily. Moreover, whereas in this 

representation, all admissible linear estimators look very much the 

same,the usual representations of subclasses of admissible linear 

estimators look very different (see Sections 2.1 and 2.3). 

(vi) A more remarkable fact is that the concept of admissible linear 

estimator has been studied for the case when quadratic restrictions are 

imposed on the parameter (see Hoffmann, 1977) but for the intuitively 

easier case where only linear restrictions have to be satisfied 

(i.e. the parameter is restricted to be in a subspace) no work exists 

on admissible linear estimators (see Section 3.4). 

All these apparently divergent points have a common root. The 

aim of this thesis is to expose this. To do this a general represen-

tation of admissible linear estimators is given (Theorem 2.3). This 

representation is, from a purely algebraic point of view, just a step 

further than the one given by Rao. It is nevertheless this small step 

which will allow us to discover most of the relations underlying 

different approaches in the literature. As a byproduct of this, the set 

of admissible linear estimators will appear as a natural extension, from, 

a statistical point of view, of the set of BLUE's (see end of Section 2.2). 

In previous works on BLU estimation, geometrical interpretation was 

mainly used to give proofs of already known propositions or to understand 

in geometrical terms some of the algebraic procedures used. Our work 

goes further in that as a consequence of it we make some progress in 

stating and solving unsolved problems in the theory, also new algebraic 
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procedures for old problems are suggested (see the method at the end 

of Section 3.2). In our approach geometry plays an essential part. 

The results are a natural consequence of working in the geometry 

defined by the inner product given by X'V ^X (the information matrix 

of the model). Algebra plays the other part precisely because it 

provides the notation and operational rules which gives the approach 

its flexibility and utility in practical situations. The main tool 

which enables us to take advantage of both the geometry and the algebra 

underlying the subject is the component estimator (see Definition 2.3). 

For completeness we should mention areas not covered in this thesis 

but to which the work may eventually have applications. The main areas 

are: (1) dynamic linear system theory, much of the development of 

which has been in control theory. (2) Robust regression techniques 

introduced largely to cope with non-normal errors. (3) Special study 

of particular design situations (restrictions on X). (4) Computational 

aspects of the new theory developed. 

Before giving a chart which indicates some of the main inter-

relations between chapters and describes the structure of the thesis, 

» 

some notation will be given. 

The standard notation used in set theory will be adopted. If X 

is a matrix, X 1 will denote its transpose; if C is a subset of the 

domain of X,X(C) will denote the image of C under X, N(X) the kernel 

of X and Range (X) the range of X. 1R , 1RP and A/ will denote the set 

of real numbers, the usual euclidean vector space and the set of natural 

numbers respectively. <f> will denote the empty set and [a,b] the closed 

interval with extremes a and b. C-Z will denote the set difference 

between C and Z. |a| , ||v|| will be the absolute value and the euclidean 

norm of a and v respectively. Lim and Lim will be the upper and lower 
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limits, k will denote vector k as opposed to the scalar k. The 

letter I will be reserved to denote the identity p*p matrix. 
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CHAPTER 2 

Let X be an £xp matrix of rank p, V an positive definite 

symmetric (p.d.s.) matrix and Ca subset of 3RF . The triplet (X,V,C) 

will be called a linear model with design matrix X, variance V and 

parameter space C. 

Let Y = {Y |Y is a random &xl vector and 3 6 C}. is 
C p p C 

said to satisfy the linear model (X,V,C) iff 

E[Y ] = X3 , V 3 6 C. 

Var[Y 0] = V , V M C, 
p 

Where E [Y ] and Var[Y ] are the expectation and the covariance matrix p P 

of Y . The last equality implies that the variance of Y is 
P p 

functionally independent of 3. This assumption will be kept throughout 

the thesis. 

In practice a realization Y of one of the random variables Yfl 

p 

is observed and 3 is not known. The problem is to obtain some 

information about 3 from Y. One usual way for this is the following one: 

Choose (independently of the observed value Y) a px£ matrix M. 

Consider the value MY as an estimate of the value of the unknown 3» 

When such a procedure is followed, it is said that 3 has been estimated 

linearly or that MY is a linear estimate of 3 or even that MY is a 

linear estimator of 3. According to this we will use MY to designate 

any of the random vectors MY 0 with 6 6 C, and we will call it a 
p 

linear estimator of 3« The set of linear estimators of 3 will be 

denoted by L. Since nothing is lost in clarity and to avoid superfluous 

symbols, we will make the following conventions: 
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E 0[M] will be E [MY ] • 
p p 

Var[M] will be Var[MYe]. 
p 

Cov[M,N] will be Cov[MY ,NY ]. 
p p 

(Here Cov means covariance). 

As a result of long theory and practice some elements of L are 

of particular interest from a statistical point of view. The next 

paragraphs will give a short account about those particular estimators 

and some properties that are important statistically. They also will 

help to situate the content of the chapter in a proper perspective. 

A linear estimator which has been widely used in practice is 

the generalized least squares estimator (GLSE). One standard 

expression for it is: 

8 = (X fV~ 1X)~ 1X lV~ 1Y . 

a 

Another common expression for 8 is obtained using the spectral 

decomposition of X'V ^X (see Watson 1967) and it is given by: 

P 1 , -1 
8 = E v.v. 'X'V Y , 

. - X. i l 
1=1 l 

where {v-i/^-i i-s a complete set of normalized eigenvectors of X'V 

and X^ are the corresponding eigenvalues. Since a basis 

of 1R P , for any 8 6 1RP there are scalars b^,...,b such that 
P -i P 

8 = £ b.v.. Let 8 the linear estimator given by 
i=l 

8 1 = -T" v . v . ' X ' V ^ Y . (2.0.1) 
X. 1 1 
l 
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We then have: 

P -i 
E 3 • (2.0.2) 

i=l 

And: 

i 1 -1 p 

E„[3 ] s T ^ v.v.'X'V X( E b.v.) = b.v. . (2.0.3) 
B A . i i . , 1 1 1 1 M l 1=1 

A 
The estimators 3 are called principal component estimators because 

they satisfy (2.0.3). One of the main reasons to use the GLSE in 

estimation problems is the fact that it is the unique linear estimator 

which satisfies: 

E g[3i - 3 , v 3 e m p 

Var[3] < Var [M] , V MY 6 L such that E. [M] = 3 , V8 € 
3 

If A and Q are symmetric matrices, A ^ Q means that A-Q is a non-

A 

negative definite (n.n.d) matrix. Because 3 has those two properties 

it is often called the best linear unbiased estimator of 8 (BLUE of 8). 

Another subset of L which is important is the one formed by the 

restricted BLUE's, which are the BLUE's of 8, when 8 is restricted to 
P As . 

lie in some subspace S of , i.e. 3 is an S-restricted BLUE if: 

E g[3
S] - 3 , V 8 6 S 

Var [8s] < Var [M] , V M y 6 L such that E_[M] = 8, V 8 e S. 
3 

The function E [M] : 1RP 1RP defined as E[MI(8) = E. [M] for all 
3 

8 e 1RP will be called expectation function of (the linear estimator) MY. 
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The function B[M, ] : 1RP 1RP defined as B[M,8] = 3 -E[M](0) for 

all 3 6 1RP will be called the bias function of MY. With statements 

of the kind "MY is a biased estimator of 3 if E_[M] ? 8 for some 
p 

0 6 IRP " or "MY is an unbiased estimator of 8 if E 0 [M] = 8 for all 
p 

8 6 H P " the explicit use of the expectation and bias functions is 

avoided. Nevertheless in contrast to this tradition we will make 

extensive use of both in the thesis. Some reasons for this choice are: 

When MY 6 L > the expectation function of MY has a particularly simple 

form: E [M] = MX. We feel that those concepts give more freedom to 

state some propositions like the generalization of the Gauss'-Markov 

Theorem given in the first s ection. A third reason is that when we 

want to give a description of the bias of an S-restricted BLUE on ]RP , 
^ s p 

which goes beyond the trivial "E [8 ] ^ 0 for some 8 6 1EU " we are 
P 

somehow compelled to speak of the expectation function of the S-restricted 

BLUE. This last point has been one of the motivations for this 

chapter and Corollary 2-1 gives a geometrical description of B[M,8] . 

Another motivation for the results of the first section is the 

following one: as it was pointed out above s the BLUE can be expressed 

as the sum of particular estimators called principal component estimators. 

This representation has its advantages and has been exploited (as it 

will be seen later) in the context of generalized ridge estimators. 

The fact is that an analogous representation for S-restricted BLUE's 

is not available and in general the representation of an S-reStricted 

BLUE is relatively complicated. A unified representation is therefore 

useful. As a result of this one is led to introduce the concept of 

component estimator which seems to be the natural generalization of 

the principal component estimator. This concept, besides having a 

clear statistical interpretation will prove to be very useful from a 

mathematical point of view for further developments in the thesis. It 
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is somehow appealing that both motivations lead to the same kind of 

results. 

Since 1970, arising out of the works of Hoerl and Kennard, 

other kinds of linear estimators have been used for estimation problems. 

They introduced the ridge estimators which are estimators of the form: 

MjJ = (X'V^X + k i r V v ^ Y , (2.0.4) 

where k is a positive number. Those estimators are advantageous 

from at least two points of view: 

The first one is that the inversion of X'V ^X + kl if k is 

"large enough" is a lot easier than the inversion of X'V ^X when 

X'V XX is an ill conditioned matrix. 

The second one, which is more relevant from a statistical point 

of view, is that for any k > 0 there exists a set C^CI 1RP such that: 

E e[(M k-B)'(M k-B)] < E g[(B-B)
f(B-0)] , V 86 . (2.0.5) 

In current literature [(M-8)'(M~B)1 is denoted by MSE[M,$] and is 
p 

the mean square error of MY at B- (2.0.5) can be written as: 

MSE[M,8] < MSE[B,B] , V $ 6 . 

An estimator which satisfies (2.0.5) is said to be better than the 

GLSE B on C^ (in terms of the mean square error). 

The second property of the ridge estimators aroused an interest 

in the MSE properties of the elements of L. In this context the notion 

of minimum mean square error linear estimator (MMSELE) or best linear 

estimator (BLE) appeared (see Theil 1971, Rao 1971, Bibby 1972, 



18 

Farebrother 1975). MY 6 L is a MMSELE (or BLE) if there exist 

& 6 1RP such that 
M 

MSE[M,0.J < MSE[N,kJ . V NY 6 1 . 
M — M 

The second section of the chapter studies some properties of this 

kind of functions and it is shown that they are closely related to 

the component estimators discussed in the previous section. 

Another property, which in some sense is in contrast to the 

above one, but closely related, is the notion of admissibility 

when the set of estimators considered for the definition of admissibility 

is L. Since this notion will play an essential part in the thesis, 

a formal definition of it is made: 

DEFINITION 2.1. 

Let MY 6 L. MY is an admissible linear estimator for the model 

(X,V,]RP) (i.e.: MY is an ALE) if and only if there does not exist 

NY 6 L and 0 Q 6 1R
P such that 

MSE[N,0] < MSE[M,0] , V 0 6 1RP . 

and 

MSE[N,3 q] < MSE[M,0q] 

Shinozaki in 1975 studied this property and Rao (1976) gave the 

following characterization: MY 6 L is an ALE if and only if 

M = AX'V*"1, A is symmetric and AX'V^XA < A. (2.0.6) 

(Here again £ is the partial order in the set of non negative symmetric 

matrices). Although this characterization is very clear from a 
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mathematical point of view it has at least one important disadvantage 

from a statistical point of view. The bias of MY is given by: 

B [M, 3 ] - (I - AX fV _ 1"X) 6 . (2.0.7) 

From this expression and (2.0.6) it is not easy to have a geometrical 

description of the bias. This is perhaps one of the main reasons to 

prefer using in practice the ridge estimator and some of its 

generalizations. In fact using the spectral decomposition of X'V ^X, 

"k 
can be written as: 

P 1 -1 
\ = £ t - ^ t v . v . ' X ' V , . , A.+k i i 

i=l l 

or 

P 
i i 

V A r 4 k 6 
1=1 l 

A 
where the 3 are the principal component estimators and A. are the 

-1 P 

corresponding eigenvalues of X'V X, If 3 ~ E b.v. we have that the 

i=l 1 1 

bias function of M^Y is: 

A. 

I N - " = .1, ( 1 - r ^ V i 
i=l i 

which has a clearer geometrical interpretation than B[M,3] in (2.0.7). 

The "spectral form" of the ridge estimator suggested th«se generalizations 

p A. 

= s jf?k. ^ > k i l ° ' 1 l i l P> 
i=l i i 

and 

P -i • * 
M«Y = Z 6 . 3 . 0 < ° i < l , l < i < p . 
6 . - l J — — — — 

1=1 



Those estimators have been studied by Mayer and Willke 1973, Goldstein 

and Smith 1974, Rolph 1976 and Obenchain 1978 among others. They are 

usually called: "shrunken estimators", "shrinkage estimators", or "genera-

lized ridge estimators". The are called shrinkage factors. One common 

feature to those estimators is that all of them are ALE and their bias 

function has the general form 

P 
B [ M . , 0 ] = £ ( 1 - 6 . ) b . V . , 

£ 1=1 i l l 

which again is easily interpretable in geometrical terms. 

When in (2.0.4), kl is replaced by a non negative definite 

symmetric matrix G an important generalization of the ridge estimators 

is obtained; the estimators of the form: 

M q Y = (X'V^X + O ^ X ' V ^ Y . 

For each k = (k->... ,k ) , k . > 0 , 0 < i < p , there exists an n.n.d.s 
l p i - - — — 

matrix G such that 

V • m g y • 

The converse is not true. Any estimator M^Y is an ALE and for any 

ALE MY there exist a sequence {G } of n.n.d.s. matrices such that, 

M M , (as n «) , G 
n 

Despite their explicit form (as opposed to the Rao's characterization 

given in (2.0.6)) the estimators M^Y lack in general an interpretable 

form of their bias function: 

B[M g,0] = (I - (X'V^X + G r V v ^ X ) 3. 
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In the third section of the chapter it is shown that any ALE MY can be 

represented as the sum of appropriate MMSELE. This representation is 

analogous to the one given in the first section for the restricted 

BLUE's in terms of component estimators. It allows us to give an 

expression for the bias function which has the same geometrical 

interpretation as the one for shrinkage estimators. 
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2.1 THE SET OF S-BLUE's 

It is common in practice to be working with a linear model 

(X,V,]R P) with linear restrictions of the form HB = 0. When those 

restrictions apply we are working with a linear model (X,V,S) where 

S = {$|HB = 0} and in this case the GLSE B corresponding to the 

"full model" (X tV,]R
P) is not any more the BLUE and the restricted 

GLSE B S corresponding to the "restricted model" (X,V,S) is better 

than B in the sense that 

Var[B S] < Var[B] > (if S ^ 1RP) . 

We will now introduce some notation that will soon prove to be 

useful. Given a function f and a subset C of its domain, the restriction 

of f .to C will be written f^. In general when a function appears in 

the text with a subscript which is being used to name a set it will be 

understood that the domain of the function is the set denoted by the 

subscript; when no set subscript appears, the domain will be assumed 

to be 1RP unless the contrary is specified. When two functions f and g 

coincide on a set C, we will write f = g-. Let f = E [M] , then 
C) L> 

E[M]^ - f̂ ,; i.e.: the restriction to C of the expectation function of 

MY will be denoted by E[M] C < The letter S will be used to name sets 

which are subspaces. The next definition will play an essential part in 

the thesis, it is a convenient generalization of the definition of BLUE. 

DEFINITION 2.2. 

Let S a subspace of ]RP and f a function; f : ]R
P 1RP . Let 

MY 6 L. Then MY is an S-BLUE of f if and only if: 

E[M] g = f s , 
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and 

Var[Ml < Var[N], V NY 6 L such that E[N] g = f g . 

DEFINITION 2.2 1. 

When in the above definition f is the identity on 1RP , i.e.: 

f = I, the S-BLUE of f will be called S-BLUE and will be denoted by j3s. 

The ]RP- BLUE will be written 3. 

The next theorem has been used by Seely and Zyskind (1971) to 

build up their theory of minimum variance linear unbiassed estimators 

and it is due to Lehmann and Scheff£ (1950) (Theorem 5.3). 

LEHMANN-SCHEFFE THEOREM. 

Let (X,V,S) a linear model. Let L S = {NY 6 L|E[N] = 0}. Then 
0 s 

MY is an S-BLUE for f g = E [M] g if and only if Cov[M,N] = 0 for all 

NY 6 I / . 

PROOF. If MY is an S-BLUE of f g we have that Var[M+N] > Var[M] for 

all NY 6 L 0
S or 2 Cov[M,N] + Var[N] > 0 for all NY 6 L Q

S ; this implies 
2 

m particular that 2t Cov[M,N] + t Var[N] > 0 for all t 6 1R , but 

this is only possible if Cov[M,N] = 0. Conversely suppose that 

Cov [M,N] = 0, then Var [M+N] = Var[M] + Var[N] > Var[M] , but this implies 

that MY is an S-BLUE of f c because any estimator M Y 6 L such that 
o 0 

E[M 0] S = f must be of the form M Q Y = MY + NY for some NY 6 L Q
S . 

The next .propositions will prove the general Gauss-Markov Theorem 

which constitutes essentially Theorem 2.1. 

PROPOSITION 2.1. 

Let a linear model (X,V,]RP) and LY 6 L. Let S a sub space of ]RP , 

dim S = r. Then: 
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(i) There exists an S-BLUE M^Y of E[L]g. 

(ii) M^Y = AX'V 1 Y and the rows of A are in S. 

PROOF. Let M be the space of matrices with the inner product 

<N^,N 2> = N^VN 2'. For linear estimators N^Y, N 2 Y we have 

CO V[N 1,N 2] = <N 1,N 2> and V a r t N ^ - <N X,N >. Let M Q
S C M such that 

if N 6 then t L N ] * 0 . Let {N.}? , an orthonormal basis of S .4; o»-ovn cL i. 
0 n s i L=1 0 J r 

• V V 
let(M^J= Lj- Z < L-» Ni > N i = L i ~ P 0 (here P 0 is the projection 

. S 

according to the inner product <,> of M onto M ). From its definition 

it is easy to see that = 0 for all N 6 M Q
S and so CovtM^M] = 0 

for all MiY 6 L Q
S . The L.S. Theorem tells us that M^Y is an S-BLUE of 

o 

E t \ 1 S ' T ° p r o v e f i r s t notice that NY 6 L Q iff the rows of N 

are orthogonal to X(S). Let MY 6 L, the L.S. Theorem tells us that 

MY is S-BLUE of the restriction to S of its own expectation function iff 
q 

MVN' = 0 for all NY 6 . This is equivalent to asking that nu 'Vz = 0 

for all z 6 X(S) X and for all rows m . of M. This in turn is equivalent 

to Vm. 6 X(S) for i = 1,...,p or m. f = a.'X ' v " 1 for some a. 6 S, 
1 r 1 x 1 

i = l»...,p. This proves (ii). 

PROPOSITION 2.2. 

Let S a subspace of 1R
P
 . Let M^Y, M 2 Y 6 L such that: 

(i) E [ M l ] s = E [ M 2 ) S . 

(ii) Var[M x] = Var[M 2] < Var[M] for all MY 6 L such that 

E[M] S = E t M ^ g . 

Then: M^ = M^. 

PROOF. From (i) we have that E [M^-M^ = 0. Since 

Cov[M^-M 2,N] = Cov[M 1,N] - Cov[M 2,N] and CovIM^N] = Cov[M 2,N] = 0 

for all NY 6 L Q
S (L.S. Theorem) we have that C o v ^ - M ^ N ] = 0 for all 

g 

NY 6 Lq and then again from the L.S. Theorem we can conclude that 
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(M 1-M 2)Y is an S-BLUE for f g = 0. Since MY = 0 (for all Y 0 / ) 

is an S-BLUE of f g = 0 and Var[M]
 a 0 we must have that 

Var[M^-M 2] = 0 which is equivalent to ( M j - M ^ V C M ^ M ^ 1 = 0; but 

this is only possible if M^-M 2 = 0, because V is a p.d. matrix. 

PROPOSITION 2.3. 

For any subspace S of 1RP , there exists a unique S-BLUE. 

PROOF. The uniqueness is assured by the previous proposition. The 
a 

existence from the fact that E[B] g = I g . The next proposition is 

important to prove Theorem 2.1 and Theorem 2.2. 

PROPOSITION 2.4. 

Let MY = AX'V and the rows of A span a subspace S. Then MY 

is the S-BLUE of f g = E[M] g. 

PROOF. From Prop. 2.1, the S-BLUE of E[M] g has the form M^Y = A ^ ' V ^ Y 

with the rows of A^ in S. Let T = X'V we then have 

E 0[M] = ATB = A-TB for all B € S. This implies that (A-A )TB = 0 
p l 1 

for all 6 6 S and the rows of A-A^ are in S. Since T is a p.d.s. 

matrix this is only possible if A-A^ = 0 ; or A 3 A^. 

The next theorem, which summarizes the results contained in the 

preceding propositions, is a generalization of the Gauss-Markov 

Theorem which we have not found in the literature, 

THEOREM 2.1 

Let a linear model (X,V,]RP ). Let MY 6 L such that MY = A X ' V ^ Y . 

Let S a subspace of TRP . Then:_ MSf is the unique S-BLUE of E[M] g if 

and only if: the *?ows of A are in S. 

To start the study of S-BLUE's we will consider the simplest case, 

the case when dim S = 1. 
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DEFINITION 2.3. 

MY is called a component estimator if there exists a subspace S 

of dimension 1 such that MY = 0 (i.e. MY is the S-BLUE, see 

Definition 2.2'). 

Given a p.d.s. matrix T we will say that 0 is T-orthogonal to y 

iff 0 !Ty = 0. We will write 0J-J.Y- The set is a set of 

T-orthonormal vectors iff 0.' T 0. = 6 . . (here 6.. denotes the 
1 J iJ iJ 

Kronecker delta). B = {0.}1} , is a T-orthonormal basis of S iff B 
1 1 = 1 

is a basis of S and B is a set of T-orthonormal vectors. Also the 

1/2 
T-norm of 0 will be | J3J | T = (0'T0) . The T-orthogonal complement 

of S is the set of T-orthogonal vectors to S and will be denoted by 

J.T 

S . When T = I, the T will be dropped in the above definitions and 

notation. The following proposition gives an explicit expression for 

component estimators. 
PROPOSITION 2.5. 

Let 0 6 1R P and S = Span {0}. Let T = X ' V ^ X . Then: 

.q 1 -1 
0 = —y 00'X'V Y . 

l l e | | T 2 

PROOF. Let y 6 S and X 6 1R such that y " By Prop. 2.1 

~1 p 
0 = a0'X'V Y for some vector a 6 H , because any matrix with rows 

in S has the form a0' if S = Span {0}. From this we must have that 

E^[3
S
] = a0

,
X'V~

1
Xy = X||0|| T

2
a. From the definition of S-BLUE we 

must also have that E [0 ] = y = A0. This implies that a = 0 

. N e l l / 
and the proposition is proved. 
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If v^ is an eigenvector of T, we have that 

Tv. - A.v. = 0 , 1 l i 

or 

v.'Tv. - A.v.'v. = 0 , 
i i i l l 

and then 

v j l / = X.llvJI 2 

When v. is normalized 
l 

I M T 2 = x. . 

Then if in Prop 2.5, 3 is replaced by v., the principal component 
1 > 

. a i . , . . . . . 
estimator 3 is obtained. This justifies partially the name of 

Ag 
component estimator for 3 when dim S = 1. 

Let P^ : 1RP ]RP a linear function such that P^ (3) = 3 
b b 

T 1»T T 
if 3 6 S and P g (3) = 0 if 3 6 S . P g is in fact the projection of 

onto s when the inner product used is given by <3,y> = 3'Ty. 

We will call it T-projection (of 1RP onto S) . From now on T = X ' V ^ X 

unless otherwise specified. A simple calculation shows that if 

{3.}. i is a T-orthonormal basis of S (see after Definition 2.3 for 
i i=l 

T •
 r 

the definition); we have that P_ = M C T = Z 3.3.
!
T. Using this 

b b . , 1 1 1=1 , A g — Ĵ  
notation in Proposition 2.5 we see that 3 = M_X'V Y and it becomes 

b 
AS T 

evident that E[3 ] " E g . The next theorem shows that those properties 
Ag 

are true for 3 even if dim S ^ 1. The proof is immediate: let 
r -1 

MY = Z 3.3.'X'V Y, from Prop. 2.4, MY is the S-BLUE of f c = E [M] c • i l l b b 
i=l r r 

(because the rows of Z 3.3.'are inS); also E 0[M] = Z $.0.'T$ = P n($ . , 1 1 p . , 1 1 S 1=1 1=1 

and then E[M] g = I g . Definition 2.2' implies then that MY is the 

S-BLUE. 
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THEOREM 2.2. 

Let (X,V,1RP ) a linear model. Let S a subspace of . Let 

-1 r 
T = X'V X and (3.). a T-orthonormal basis of S. Then 

l i=l 

-s r -l 
(i) 3 = E 3.3. 'X'V Y. 

• i r I i=l 

T 
(ii) E[0 a] = Pg . 

As an immediate corollary we obtain a geometric interpretation for 

the bias of 0 . 

COROLLARY 2.2.1 

The bias function of the S-BLUE is given by B[0 S] = I - P^ . 

Theorem 2.2, (i) suggests an "additive law" for S-BLUE's. 

COROLLARY 2.2.2 
S S 

d * 1 2 
Let S, S^, S 2 subspaces of IR^ . Then 0 = 0 + 0 iff 

S = S 1 © t S 2 and S 1 x T
s
2 -

r n 
PROOF. Let B., = {0.}. , , B« = {y.}. -, T-orthonormal bases of S, and S„ 

I i 1=1 2 i i=l 1 2 

respectively, then B^ U B 2 is a T-orthonormal basis of S (if S = S^ |J S 2), 

but this implies as a consequence of Theorem 2.2, (i) that 

0 = 0 + 0 The other implication can be seen as follows^ Suppose 

J ? T -c 
that 0 = 0 + 0 , then we have that P_ (0) = E o[0 ] = 

J J S 0 

= E q[0
 l] + EJ0 2] = P^ (0) + (0) (from Theorem 2.2(ii)); but since 

p f S-. S. 
T T T . 2 

P_ y P_ and P_ are projections this can only be possible if 
S bx 2 

Sx (J S 2 = S and Ŝ  j. -p 
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COROLLARY 2.2.3. 

r /n 1 
Let

 a
 T-orthonormal basis of S and 0 the component 

estimator corresponding to 0^. Then: 

r 
0

S
 = E 0

1
 . 

i=l 

PROOF. It is immediate from Prop 2.5 and Theorem 2.2, (i). This 

corollary can be seen essentially as a generalization of the spectral 

decomposit ion of the GLSE. This further justifies the name of component 

estimators to the S-BLUE's of subspaces of dimension one. 

The following remark perhaps helps to avoid possible confusion. 

r 
Given an arbitrary basis I Y ^ ^ - i S, which is not T-orthonormal or 

even T-orthogonal, the S-BLUE can always be decomposed as the addition 
r . r 

of estimators y (i.e. 0 = E y ) . such that if 0 = E b.y. we have 
i=l . i=l 

. i . . 
E n [y ] = b.y.. The existence of the y can be seen m the following 
0 i i 

r . 
way; for {Y^}^.-^ there exist always a p.d. matrix ir such that the 

u-projection p7 of ]RP onto S^ = Span{y.} satisfies P^(0) = b.. We 
1 r . 1 

7T TT 
then have that 0 = E P^ (0)y^ and y = p 0 . Now only if we further 

IT
 AS ^ r 

require that P^0 is the S^-BLUE (1 £ i £ r) the set {y^}^^ must be 

T-orthonormal. 

COROLLARY 2.2.4. 
r 

The variance of an S-BLUE 0 = E 0.0.'X'V Y is 

i=l 1 1 

-s r 

Var[0 ] = E 0.0.' . 

i=l 1 1 
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2.2. THE SET OF MINIMUM MEAN SQUARE ERROR LINEAR ESTIMATORS 

Minimum mean square error linear estimators (MMSELE) have been 

studied } among others, by Theil (1971), Rao (1971), Bibby (1972), 

Farebrother (1975). In this section a new way of deriving MMSELE fs 

will be given. Also some properties of MMSELE's are obtained. In our 

context the most important property of MMSELE's is their connection 

with the component estimators which is summarized in Proposition 2.6. 

At the end of the section a subset of L is defined by analogy with 

the set of S-BLUE's. 

DEFINITION 2.4. 

Let (X,V,]RP) a linear model. Let 3 6 1RP . The minimum mean 

square error linear estimator (MMSELE) of 3, MflY is the linear estimator 
p 

which satisfies: 

MSE[M ; 31 < MSE[M,31 , V MY 6 L (2.2.1) 

To be able to state some properties of this section and of the next 

chapters we will introduce more general notions of "quadratic risks". 

DEFINITION 2.5. 

Let Q a n.n.d. matrix. The Q quadratic risk of MY at 3 will be 

R q[M,3] « Eg[(M-3)'Q(M-3)]. 

It is immediate that: 

R I[M,3] = MSE[M,3] 

The Q-bias of MY at 3 will be: 

V M > 3 ] = M V M 1 " 3 H q 2 -
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The Q-variance of MY at 3 will be: 

Var Q[M] = Tr[Q Var[M]] . 

(Here Tr[A] denotes Trace of A.) 

We shall often use the well known relationship between R q , B q and 

Var Q: 

R q[M,8] = B q[M,0] + V a r Q [ M ] . (2.2.2) 

Now let S = Span{0} and Pg the Qrprojection of 1RP onto S (we 

consider that Q is a p.d.s. matrix). We then have: 

B Q[M,81 - ||E0[M] - 8|| Q
2 = ||(MX-I)8|| Q

2 

> ||p£ (MX-I)8|| Q
2 = ||E0[pQ M] - 8 | | Q

2 = B Q[P^ M,8] , (2.2.3) 

and if H = S l Q : 

Var_ [M] = Tr [QMVM' ] = Tr[Q(P^ +p2 )MVM'] 
Q o H 

= Tr [QP^ MVM'l + TrtQP? MVM' ] 
o H 

= TrtQPg MVM'(Pg )'] + Tr [QP^ MVM'(P^ )'] 

i T r l Q P g MVM' (Pg )'] = Var Q[Pg M] ; (2.2.4) 

(2.2.3) and (2.2.4) imply that if M 0 Y satisfies: 

R qCM 3,33 < R q[M,31 , V MY e L . 

M 0 Y must also satisfy E 0[M 01 = X0 for some X 6 ]R . Since 

Q 
VarQ [X§ ] < VarQ CM] for all MY 6 L such that E^tM] = X0 we have that 

/v C 
M.Y = X0 , for some X 6 1R . 
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Also: 

R 0[M R,S] = | | ( X - i i L T - I ) S | | 2 + T r t Q C X - S ^ T -2£l— X)] 

Q $ I I s l I t q IIBIIt H e l l * 

2 . . .. 2 2 I I lo 

R q [ M 6 , 6 ] = ( X - 1 ) 2 || 6||
2
 + X 2 ^ § . 

Then if M 0 Y satisfie* (2. 2 .1) , we must have: 
p 

2 
(x-i) 2||e|| 2 + x 2 M L = o 

l l e | | T 

Or 

A - 1 + = 0 • 

Ilell 2 

From this we obtain 

I I 8I.I/ 
X = =— 

i + I|B|| t
2 

Since this result is independent of I, it is also true that for any 

p.d.s matrix Q we have: 

V V 3 3 1 R Q [ M , 3 ] ' Y MY € L . 

This result was quoted by Bibby 1972. The proof we have given is 

shorter and avoids matrix differentiation. The result can be extended 

to n.n.d.s matrices Q in the following way: let Q^ such that 

Q £ = Q + eQ^ is a p.d.s. matrix for all e > 0. The result follows from 

the fact that: 

Rq[M,3] = lim RQ [M,3], V MY 6 L . 
e-K) e 
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We obtain in particular that 

Raa» [ V 3 ] - Raa' [ M ' 3 ] * 6 ]R P, V MY e L 

Since 

a'Eft[(MR-6)(M -3)']a = R , [M,3] 
p P p CLCL 

We have that 

E g[(M g-3)(M g-3)'] < E 3[(M-3)(M-3)'] , V MY 6 L, 

We also have 

2 2 I I S| | Q
2 

2 I I B I I q I|6|| 2||S|| 2 

Var-IM ,8] = X 4 * = , 
Q 6 l|B|| 2. (1 + I |S| I P . 

and 

tr e m q 

W TTTTI 
Q B i + I 1 B | | 

To be able to refer to those results we will put them in form of 

propositions. 

PROPOSITION 2.6. 

(i) MY 6 L is a MMSELE (for some unknown 3) iff it has the form 

A g A g 

MY = 63 , 0 £ 6 < 1 and 3 is a component estimator. 

(ii) The MMSELE for 3, M 0 Y is given by 
p 

M Y = i-r- 6 S • 
6 1 + IIBIIT 

Where S = Span (3). 
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PROPOSITION 2.7. 

(i) Let a 6 1RP . Then: 

R , [M ,$] < R r[M,8], V MY 6 L act 8 — aa' ' 

(ii) Let Q a n.n.d.s. matrix then 

R Q[M 6,8] < RQ[M,8]» V MY 6 L. 

(iii) E 3[(M 3-8)(M g-8)'] < E 3[(M-8)(M-8)'], V MY 6 L 

PROPOSITION 2.8. 

For any 8 6 3RP , and Q n.n.d.s. matrix we have 

l l s I L 2 
(i) Br,[MD,6] = 

(i + lle|| T
2) 2 ' 

(ii) Var n[M ] = 
S I I T 2 I | B | 1 0 2 

Q B ( 1 + ||B|| T
2) 2 ' 

2 

(iii) Rn[Mfl,3] = 9 . 
Q 3

 1 + I |B| I t 

The MMSELE have no practical value mainly because B n[M 0,8~] 

U p u 

grows fast as soon as 8q is "not near" to 8- They should be considered 

mainly as theoretical objects. By analogy to the shrinkage estimators 

and in the light of Theorem 2.2 and Proposition 2.6 it is natural to 

ask about the properties of estimators of the form 

P -I 
MY = £ 6.8.8.'X'V Y , 

• _ i 1 1 1 
1=1 

where 0 < 6* < 1> i = l , . . . , p and {8*}? 1 is a T-orthonormal basis of 
— 1 — Hi J 1=1 

H P . It will be proved in the next section that these estimators form 

in fact the set of admissible linear estimators of the linear model 

(X,V, ]RP ) . 
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2.3. THE SET OF ADMISSIBLE LINEAR ESTIMATORS 

The next lemma will play an essential role in most of the results 

of the thesis. The statements given in it are given in enough 

generality to cope with the different applications in which it 

will be used. 

LEMMA 2.1. 

Let T be an arbitrary n.n.d.s matrix (not necessarily X'V ^X) ; 

A a symmetric matrix, nach f'Aat N ( A ) 1 C N CT) . 

Let Ag, A^ and Aj the restriction of A to S, H and J respectively; 
•L t 

where H = S f| (S fl N(A)) * J = A = N W 1 " and 

h 
h = dim A(S) = dim H = dim J. Then there exist a basis B„ = {8.}. .. 

1 l 1=1 

of H and a basis B 2
 = of J , such that 

(a) 3 i
, T 8 j = Y.'T Y j = 6.J i,j = l,...,h. 

(b) A = T( Z A.B.8. f)T A. = 3. 'A. 3. . 
. . . I l l 1 1 1 1 = 1 

h _ i 
(c)i A, = Z y.Y.y.' , y. = (y.'A_ y.) and A T is the 

1 1 1 1 1 J 1 J 

inverse of the restriction of A to J. 

h 
(d) A " 1 = ( Z J 3.3.')_. 

H \ m l A. i i T 

h 
(e) A " 1 =(T( Z —y.y. ')T )T 

J i-i i i J 

(f) Let T ^ be the inverse of the restriction of T to S. Let 
b 

r = dim S and {e.}. _ any T c-orthonormal basis of S. Then 
i 1=1 P 

V 1 -< * ei ei') s • 
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PROOF. Let C. = 5 f| (3| || B|| ̂  = 1} fl ( 3 ^ .. . ̂ ^ ^ ^ > the 

vector 0 ̂  which satisfies 

max ||3||? = ||B.||\ ; (2.3.1) 

can be found using Lagrange multipliers through the equation: 

l-I 1 , 
I r B ' A B - A.(0'T3-1) -Iv v(3'T3 v) - 21 fK p'v^O , (2.3.2) 
op 1 Kit Js K= I 

£ 
Ls 0. b<u<.M of MCI). 

(the existence of the solution comes from the fact that CD is a compact 

set and I I $11^ is a continuous function of 3). We will prove that 

3^ 6 satisfies (2.3.1) if and only'if the following equality is 

satisfied 

(A - A iT)3 i = 0 . (2.3.3) 

For i = 1 it is immediate that (2.3.3) reduces to (2.3.2). Suppose 

that the equivalence is true for i-1. It is obvious that (2.3.3) and fti tC^ 

implies (2.3.2). To see the other implication notice first that 

(2.3.2) implies that (A - A.T)0. belongs to S. = Span{T0 UcovoM-

i i l k k~ i 
oaocL fW,, (A-\.T)0. = V V T0 . If (A.-A.)T0. i 0 there is an n < i 

. . 1 1 . . K K 1 1 
k=l . 

such that v f 0 and 0 n ' (A. -A.T)0. = v n 3 n ' T0, = v n (from the 
1 1 k=l 

induction hypothesis); since 0^ 6 CD we must have 3 n'
T3£ ~ 0 a n c* then 

0'A, 0. # 0. From the induction hypothesis, since n < i, we have that 
n i 

3 'A = A . 3 'T and then 0 'A. 0. = A 3 !T0. = 0 (because 0. G C.); 
n n n n l n n l l i 

we have reached a contradiction; this proves that (A^-A^T)0£ = 0. 

2 
Now because 6 CD we have that | |g.J | t = 1 and (Z-. 4 ) 

= Bi'A. 0 Lf I <t h \ _ . The set {3 i>i = = 1 

obtained in this way is called a set of T-eigenvectors of A^. From 

its construction it is immediate that it satisfies 3.'T0. = 6.., 
1 J U 

i,j = l,...,h and that it is a I^-orthonormal basis of H. Now since 
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v 6 S can be written as v = Z b.8. + u where u 6 N(A we have 
i=l 

A (v) = A ,( E b.8.) = A ( Z b.8.) = 
i=l 1 1 i=l 1 X 

= Z b.A .(8.) = Z b.X.T8. = T( Z b.X.8.) = 
i=l 1 1 i=l 1 1 1 i=l 1 1 1 

T( Z b.X.8.(8.'T8.)) = T( Z X.8.8.'(Tb.$.))= 
i i 1 i i i = 1 i l l i i 

= T( Z X.8.8.')T( Z b.3.) = T( Z X.8.8.')TV 
i=l 1 1 1 i=l 1 1 i=l 1 1 1 

This proves (b) and part of (a). To see (d) we only need to see that 

A A 1 = I . , A 1 A = I„ . Those conditions can be checked using (a) 
q n A (H) ri ri ri 

by expressing the elements of A (H) and H as linear combinations of 

^ ^ respectively. 

To see (c), from the proved part of (a) and (b) we know that there 

h ~1 11 -1 
exist* a set {y.}. - such that A T =( T Z r.y.y.'T)-. , f . = Y.'A_ y. 

i i=l J i i i J 7 i I J I 
i=l 

- 1 - 1 1 
By (d) we obtain A_ = (A_ ) = ( E — y.y.') T. By similar arguments 

J J ._, r« i l J 

h i 
£ — y.y. i= i r i 1 1 

all V eft . This proves (c) and (e) . If we make A = T, (f) follows 

immediately from (d). 

The next theorem shows that the set of estimators defined at the 

end of Section 2.2 is the set of ALE's. This theorem will play an 

essential role in the thesis. 

i = 1 1 h 
1 

to those used in (b) it can be seen that A (v) = ( E — y.y.')v for 
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THEOREM 2.3 . 

Let a linear model (X,V,]RP) . Let MY 6 L. Then MY is an ALE 

for the linear model (X,V,1RP) if and only if 

P -i 
MY = E 5.3.3.'X'V Y , 

i=l 1 1 1 

where (8.)? is a T-orthonormal basis of 1RP and 0 < 5 . < 1 , 1 < i < p. 
l i=l — i — — — 

PROOF. The first point is that if MY is an ALE it must be the BLUE 

of its own expectation function. To see this, let f(3) = E 0[M] and 
p 

M^Y the BLUE of f(8), then we have that for any 8 6 TRP 

R-j- = B I[M 1,8] + V a r ^ ] , 

= B][[M,8] + Var^. [M^] < B].[M,8] + V a ^ [M] - ^[M.B] , 

and then MY is not an ALE. From Proposition 2.1 (ii) MY has the form 

MY = AX'V Now from Prop. 3.4 MY must be an ALE under the risk 
P 

defined by T; but then Prop. 3.5 and 3.6 imply that A = E 6.8.8.', 

i=l 1 1 1 

where {8.}? , is a T-orthonormal basis of 1RP and 0 < 5. < 1 for 1 i = l - 1 -

1 < i < p. The other implication of the theorem is Prop. 4.8. 

We will prove now as a corollary the characterization given by 

Rao, 1976. 

COROLLARY 2.3.1. 

MY is an ALE iff MY = AX'V ^Y and A is a symmetric matrix which 

satisfies ATA £ A. 

PROOF. If MY is an ALE, from the theorem we know that MY = A X ' V ^ Y , 
p 

A is symmetric and A = E 5.3.8.' where (8'}? is a set of T-orthonormal . , 1 1 1 1 i = l 
i=l 

vectors. Thus 
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( E 6.0.0.')T( E 6.8.0.') = E 6. 8.0.' < E 6.8.8.'. 
i=l 1 1 1 i=l 1 1 1 i=l 1 1 1 • " i=l 1 1 1 

To obtain the other implication, from Lemma 2.1 (c) we know that 

th( ere exists a setlB^}?^ of T-orthonormal vectors such that 
P 2 

A = E 5.0.0. ' . Let a. ' = 8. 'T, then a. 'ATAa. = 6. and a. 'Aa. = 5., 
. a 1 i l l i i i l l i i i 

2 
since ATA < A we must have 6. < 6 . but this implies that 0 < 6. < 1. 

- l - i v - i -

This completes the proof. 

The next corollary provides us with a geometrical understanding 

of the bias function of an arbitrary ALE. 

COROLLARY 2.3.2. 

P _X P 
Let MY = E 6.0.0.'X'V Y an ALE. Let 0 = E b.0.. Then the 

i-1 1 1 1 i=l 1 1 

bias function of MY is 

P 
B[M,0] = E (l-5.)b.0. . 

i-X 1 1 1 

We will use Lemma 2.1 to see how an estimator MY which is given in 

the form MY = (T+G) ^X'V \ can be put in the form given in Theorem 2.3. 

Consider the ellipsoid B^ = {3|3 1G 3 1}* BY analogy to the case when 

th 
T = I the i T-main axis of B^ is defined to be just the set of vectors 

of the form ±/ X 0. with X < -— where 8. and X. are given by 
P
 1 - 1 

G = T( E X-.0.0,.')T (in the case that G is singular, the T-main axis 
i=l 1 1 1 

corresponding to X^ = 0 will be the subspace spanned by 0^). Let y ̂  

be a vector of the subspace spanned by 0^, such that y / G y ^ = 1; we 

have that || yjl ^ = j - (if X. i 0) and 

i 

x II T i l l / 
1 " 1 T . (2.3.4) 

1 + X i x H I r j l T
2 
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From Lemma 2.1, (f) we have 

-1 p 

TT T = T ( E 8 . 8 . ' ) T . 
i=l 1 1 

Therefore 

P 
T+G = T ( E (1 + A.) 8.8.') T, 

• i l l 
i=l 

From Lemma 2.1, (6) 

-1 P 1 
(T+G) = E * . 8.8. ' • 

i=l 1 + X i 1 1 

From (2.3.4) 

I M L 2 
(T+G) 1 = E — i— T 8.6. ' + Z 8.8. 

\ * > 1 + l l Y i l l / 1 1 A. = 0 1 1 

From Proposition 2.6 

( T + G ^ X ' V ^ Y = E My.Y + E B.B.'X'V^Y. 
A. T̂O 1 A.=0 1 1 

i i 

If G is a p.d. matrix all the A^ are different from zero and 

-1 -1 P 

(T+G) X'V Y = E My. Y. 
i=l 1 

i.e. (T+G) ^ is the sum of the MMSELE corresponding to extreme points 

of the T-main axis of the ellipsoid Bg. 

From the previous development it becomes clear that the only ALE 

which cannot be put in the form (T+G) ^X'V ^Y for some n.n.d.s. matrix G 

P -i 
are those which in the form E 5.8.8.'X'V Y have 6. = 0 for some 

i=l I X 1 3 

1 < j < p. The results are summarized in the next theorem. 
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THEOREM 2.4. 

P 
Let MY = E 6.3.0.'X'V Y an ALE. 

i=l 1 1 1 

(i) There exists a n.n.d.s. matrix G such that MY = (T+G) 1X'v" 1Y 

if and only if 6^ 0, I < i < p, When such a G exists, it is unique 

and is given by 

p 1-6. 
G = T( E -r-^ 3.3. ') T. 

• a 1 o. 1 1 
i=l i 

(ii) Let G a p.d.s. matrix; let (Y^)?-^ a s e t extreme points of the 

T-main axis of the ellipsoid B^ and the corresponding 

MMSELE. Then 

-1 -1 P 

(T+G) X'V Y = E My .Y. 
i=l 1 

If G is not p.d. but only n.n.d, the equality remains valid if the 

M corresponding to zero T-eigenvalues of G are replaced by the 

component estimators of their T-main axis. 

P -I n 
From now on if MY = E S.B.B.'X'V Y the set {3.}? will be 

i-1 1 1 1 1 1 = 1 

called a set of axis of MY and the set of shrinkage factors 

of MY. One set of axis and one set of shrinkage factors define 

a unique ALE. An ALE defines a unique set of shrinkage factors 

(including possible multiplicities) but in general it does not define 

a unique set of axis. 
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CHAPTER 3 

In the previous chapter the inner product defined by the matrix 

T = X ' V ^ X has been extensively used. When X is not full rank the 

matrix T no longer defines an inner product on 3RP. Nevertheless it 

will be seen that the results obtained in Chapter 2 can be kept 

with just minor changes. 

The chapter will have four sections: 

(i) In the first section necessary and sufficient conditions are 

given for the existence of S-BLUE's. It is also proved that the 

representation for an S-BLUE in terms of component estimators 

(Theorem 2.2) remains valid when X is not full rank, if the S-BLUE 

exists. 

(ii) The second section of the chapter deals with the connection of 

our formulation and the formulation in terms of g-inverses. 

(iii) The third section characterizes the set of ALE when X is non-full 

rank. To prove this characterization some general propositions about 

risk inequalities are proved. Those results will also be useful in 

the next chapters. 

(iv) The fourth section will give a characterization for admissible 

linear estimators when 8 is restricted to be in a subspace. In that 

section X will be assumed to be full rank. 
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3.1. THE EXISTENCE OF S-BLUE's 

The first step in this section will be to extend Prop. 2.1 

and Prop. 2.2 to the present situation. 

PROPOSITION 3.1. 

Let LY 6 L. Let S a subspace of 1RP . Let f g = E[L] g. Then: 

(i) There exists an S-BLUE of f c; 
b * 

(ii) Any S-BLUE of f g has the form 

MY = (A + M 1)X'V""
1Y, 

with the rows of A in S and the rows of M^ in N(X). 

(iii) The S-BLUE of f c is unique, 

b 

PROOF. (i) can be proved exactly the same way as Prop. 2,1(1). 

Following the line of the proof of (ii) of Prop 2.1 we can conclude 

that Vnu 6 X(S) for all rows nu 1 of M, but this is equivalent to asking 
that m.' = a.'X'V *, a. 6 S, i = l,....p. Since V is invertible 1 l ' 1 > >r 
m. = V ^X'y. if and only if y. = a. + u. where u. 6 N(X). Then we 
l l J l l I I 

obtain that MY = (A + M- )X'V Y where the rows of A are given by the 

cu' 's and the rows of M^ by the u / 's. The proof of the unicity of 

the S-BLUE of f g is the same as the one given in Prop. 2.2. 

Without loss of generality we will always assume that M^ = 0 

- 1 - 1 £ 
because MY = (A+M^X'V Y = AX'V Y for all Y 6 1 . The next 

proposition is a generalization of Prop. 2.4. 

PROPOSITION 3.2. 

Let MY = AX'V ^Y and S a subspace spanned by the rows of A. 

Suppose that S f) N(X) = {0>. Then MY is the S-BLUE of f g = E [M] g. 

PROOF. From Prop. 3.1 (ii) the S-BLUE of f g has the form MY = 

A-jX'V 1 Y and we have A ^ g = AT p= E 0[M] for all 8 6 S. Since 
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S f| N(X) = {0} we have that T g (the restriction of T to S) induces 

an inner product T g on S. Then (A^-A)T(3 = 0 for all 3 6 S implies 

that each row of A^-A is T g-orthogonal to all the vectors in S, since 

the rows of A^-A are in S, this implies that they are zero or 

equivalently A^ = A. 

As in the previous chapter a general version of the Gauss Markov 

Theorem can be obtained. 

THEOREM 3.1. 

Let a linear model (X,V,]R P). Let MY 6 L such that MY = AX'V~ 1Y. 

Let S a subspace of R P such that S f| N(X) = {0}. Then MY is the 

unique S-BLUE of E [M] if and only if there exist* a matrix M with 
b O 

rows in N(X) such that the rows of A-Mq are in S. 

If v $ N(X) we have that v'Tv ^ 0 and then M Y =? w ' X ' V ^ Y 
' V V TV 

is well defined. It is immediate that if 3 = Av then 

E fM 1 = Ay = 3 and then also from Prop. 3.2 we can conclude that M Y 
3 v J r v 

is the S-BLUE for S=Span{v}. If S f| N(X) = {0} and dim S = r, there 

x 
exist a T c-orthonormal basis {£.}. . for S. Using the T -orthonormality 

b 1 1 — L b 

it is easy to see that: 

r -x 
E q [ E 3.6.'X'V ] = 3 , V 3 6 S. 

3 i=l 1 1 

Ag 
Again from Prop. 3.2 we can conclude that the S-BLUE 3 is given by 

r , 

3 = E 3.6.'X'V Y. 
i=l 1 1 

THEOREM 3.2. 

Let S a subspace of ]RP such that S fl N(X) = {0}. Then there 

A g 

exists an S-BLUE 3 and it is given by 
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, -i 
8 = Z 8.8.'X'V Y, 

i 1 

i=l 

where {8.}. 1 is a Tp-orthonormal basis of S. 1 i=l S 

THEOREM 3.3. 

Let S a subspace of 1RP . Then: 

There exists an S-BLUE if and only if S fl N(X) = {0}. 

PROOF. Theorem 3.2 gives the "if" part. To see the other implication 

let MY = 8 S , then we have from Definition 2.2' that E 0[8
S] = 8 

p 
for all 8 6 S. We also have E e[M] = MX p= 0 if 8 6 N(X). Then if 

P 

there exists 8 6 S fl N(X) different from zero we would have simultaneously 

Eg[8 S] = 6 and C0S] = 0, which is impossible. 

Among the S-BLUE1 s, when X is non full rank, there are some 

which are particularly important, those which are maximal in the sense 

that Span(S \J N(X)) = ]RP . 
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3.2. g-INVERSES AND S-BLUE's 

The normal equations for the linear model (X,V,]RP) are given by 

X'V - 1XB = V V ~ 1 Y 

When X is a full rank matrix the solution is readily obtained using 

the inverse of X'V When X is non full rank, X'V is not 

invertible. The solution of the problem is now an affine variety and 

not just a point. In most practical situations, statisticians are 

not interested in the whole variety but mainly in obtaining a point 

in this variety. Two main methods have been used to obtain such a 

"solution point": 

(i) Through the use of g-inverses of T. 

(ii) Putting some restrictions on 8 in such a way that there is only one 

point in the variety which satisfies the restrictions. 

The second method has the advantage over the first that the restrictions 

can have some meaning (or can even be "true") in the particular context 

where the problem arises. The first method has the "advantage" that no 

particular assumptions are made on 3 to obtain the solution, but the 

use of one particular g-inverse leads to an implicit choice of where 8 

lies. It is now a well known fact that both approaches are equivalent 

in the sense that for each g-inverse there exists a set of linear 

restrictions such that the solution to the normal equations obtained 

by using them is equal to the one obtained by using the g-inverse. 

Also for each set of linear restrictions which define a unique solution 

to the normal equations there is a g-inverse with which the same 

solution is obtained. 

Due mainly to their use for obtaining a solution to the normal 

equations, g-inverses have been widely studied. Geometric properties of 
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AA , A A and A (where A is a g-inverse of A) have been given (see for 

instance Rao 1962, Kruskal 1975) and also many methods for calculating 

them are available (see Shinozaki, 1975). Nevertheless the implications 

of the geometrical properties do not seem to have been fully exploited 

to give a method of calculating the g-inverses of T. The next theorem 

which is not essentially new is given mainly for the sake of complete-

ness. We will first give some preliminary definitions and results. 

Given an arbitrary pxp matrix A, a_ g-inverse A of A is a matrix which 

satisfies 

AA~A = A . (3.2.1) 

It is easy to see that any matrix which satisfies (3.2.1) must satisfy 

CS(A") f| N(A) = (0} 

and 

Span{CS(A~A) (J N(A)} = 1RP , 

where CS(A ) is the vector space spanned by the columns of A . This 

suggests the following equivalence relation on the set G(A) of 

g-inverses of A 

A 1 " ^ A 2" if and only if CS(A 1~A) = CS(A 2"A). 

Given a subspace S of such that S N N(A) = {0} and Span 
(SUN(A)) = 1R 

Gg(A) will be the equivalence class in G(A) defined by the subspace S. 

THEOREM 3.4. 

Let S a subspace of 1RP such that 

S fl N(X) = {0} and 

Span(S U N(X)) = 1RP . Let G g(T) the equivalence class of g-inverses of 1 

defined by S. Let {6.}. , a T^-orthonormal basis of S. Then: 
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(i) I 8.8.' 6 G C(T). 
i=l 1 1 S 

(ii) For any T~ G G g(T) we have 

r 
( E 8.8.')T8 = T T8, for all B 6 1RP . 
i=l 1 1 

PROOF. Let (u^}?"* a basis for N(X) , then: 

T ( E 8.8.')TB. = T6., i = l,...,r. 
• - i l l 1 1 

1 = 1 

r 
T ( E 6.6.')Tu. = T u . = 0, j = l , . . . , p - r . 

i=l 1 1 J J 

Since forms a basis of 1RP this proves that 

r r 
E. 6.6.' is a g-inverse of T. It is immediate that Range( E 6.6.'T) = S 1 1 . . l i 

i=l i=l 

Then we have proved (i). To see (ii) notice that TT T6^ = T6£> this 

implies that T T6^ = &£ + v£ where v^ 6 N(X) . Now if v. ^ 0 , since 

Range (T T) = S we would have that (3.+V.-8. 6 S and so S n N(X) {0}, 

contrary to our assumptions. Then: 

E 6 i 6 i ' T 6 i = T T6£, i = l , . . . , r , 
i=l 

and 

E 8.6.'Tu. = T~Tu. = 0 , j = l,...,p-r, 
i = 1 i i J J 

if T G G g(T). This implies (ii). 
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COROLLARY 3.4.1. 

Let T a g-inverse of T such that Range T T 5 S. Then: 

- -1 AS 
T X'V Y = 8 . 

A very common situation in practical applications is to impose 

a set of linear restrictions: H8 = 0. The theorem suggests the 

following method to obtain a solution which satisfies the restrictions. 

METHOD. Let S Q = CS(H'); applying Gram-Schmidt orthonormalization 

method to the rows of H an orthonormal basis {u.}? - of S^ is 

n i i=l 0 
obtained. Let P Q = Z u i u i ' t 1 i e o r tbogonal projection of 1RP onto S Q 

i=l 

and {e.}? n the canonical basis of IRP . Let v. = e.-P_e., i = 1,....p. 
l i=l l l 0 i 

Then it is immediate that:. {v.}? ,1 S and Span({v.}?,) = S^ 

X 1 • v 1 1 1 U 
It is worth noticing that S^ = {8|H8 = 0}. We now apply to 

the Gram-Schmidt orthonormalization method (but using as "inner 

IT 

product" the one given by T) to obtain a maximal set 

ti » jl 

T-orthonormal vectors contained m S . Then the estimator 
r -i 

M^Y = Z B.B.'X'V Y satisfies the restrictions and is an S-BLUE 
i=l 1 1

 ± 

(notice that r = dim S £ dim S Q ) . 
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3.3. CHARACTERIZATION OF ALE WHEN X IS NON FULL RANK 

Although the characterization that will be given at the end of 

this section is the one that would be intuitively expected from 

Theorem 2.3, Theorem 3.2 and Theorem 3.3, the formal proof is not 

immediate. We will need to generalize some results due to Shinozaki 

1975 and Rao 1976. Those results will be useful also in other chapters. 

PROPOSITION 3.3. 

Let Q a n.n.d. pxp matrix. Let C a subset of TRP . Let MY 6 L. 

If there exists an M Y 6 L and y 6 C such that: 

V V 3 ] < Bq[M,$] V 8 6 C, 

and 

Q 1 0 Q 

there exists an NY 6 L such that: 

R t[N,3] < R t[M,8] V 8 6 C, 

and 

R j [ N , y ] < R x [M ,y ] 

PROOF. M exists only if Q ^ 0, Then let F = | Q where X is the largest 
U A 

eigenvalue of Q. Then 

V M 0 ' 3 ] - V M j 3 ] V 0 e C (3.3.1) 

and 

R F [ M Q , y ] < R y t M ^ ] (3.3.2) 
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Let NY = MY + F [MQY - MY]. Then: 

R [N,B] = RjIM.B] + E [(Mq-M) 'F
2(M 0-M)] + 2E g [(M-8)'F(MQ-M)]. 

2 

Since 0 F < I, we have F < F and 

E g[(M 0-M)'F
2(M 0-M)l < E 0[(M O-M)

,F(M O-M)] ; 

Also: 

E g[(M 0-M)'F(M 0-M)] = R f[M q,B] + R f[M,8] - 2E g [(Mq-B)'F(M-B)] . 

We then have 

R I[N,B] < R I[M,$] + Rp [Mq , 8 ] - RpCM.B] ,V 8 6 C. 

From (3.3.1) 

R I[N,3] < Rj[M,$] , V 3 6 C. 

From (3.3.2) 

RjCN.y] < R ICM,y] 

This proves the proposition. 

By MY is an ALE under the risk Q, we will understand that MY 

satisfies the conditions obtained by substituting in Definition 2.1. 

R^ by R q . We have then the following known result (Shinozaki 1975, 

Rao 1976). 

PROPOSITION 3.4. 

Let Q a n.n.d pxp matrix. Let MY be an ALE, then MY is an ALE 

under the risk Q. (X full or non full rank). 
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' In the next lines we will describe a generalization of unitary 

transformations and some related topics. As it is well known an 

unitary transformation from 1RP into IRP is an isomorphism which 

transforms orthonormal sets into orthonormal sets. Given an arbitrary 

n.n.d.s. transformation T, the restriction T g of T to a subspace S 

such that S f| N(X) 53 {0}, defines an inner product on S. We will speak 

of T -unitary transformations as those linear transformations from S 
u 

to S which transform T g-orthonormal sets into Tg-orthonormal sets. 

r r 
If B, - (B,»}. n and B 0 = {y.}. , are two T 0-orthonormal bases of S, 

1 i i=l 2 1i i=l S ' 

a matrix for the T g-unitary transformation which transform B^ into B 2 

is given by 

r 

U = ( E y.B. 1) T. 
i=l 1 1 ' 

It is easy to see that if dim S = p - dim N(X) 

U'T U = T . 

This is a generalization of the 

property (for unitary transformations) 

U'U = I. 

Also any px.p matrix,D-- 3 ^ c h - + ka.f. Ran^e D c U (t> R ^ ^ ^ - T 

has a T g-singular decomposition; i.e. there exist two T g-unitary 

matrices U^ and U 2 and a symmetric matrix A such that 

D = u2
f A U X . 

To see this first notice that D'T D and DT D 1 are symmetric matrices. 

_ r , 
Rere T = 2 6.8., {6.}. .is a T -orthonormal basis of S. If there . , i i i 1=1 S 

1=1 
exists a T ^ singular decomposition we should have 
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D'T~D = U x ' A U 2T"U 2' A U x . (3.3.3) 

DT~D' = U 2
f A U T"U X

!A U 2 . (3.3.4) 

Now from Lemma 2.1 we know that there exist Tg-orthonormal bases 

it r 
{y.}. {a.}. . of S such that 

i i=l i i=l 

r 2 1 
D'T D = T ( E A. y.y.')T, 

i=l 1 1 1 

r
 2 

DT D 1 = T ( E y. a.a. 1)T, 
i=l 1 1 1 

2 2 

(we chose A^ and y^ only for notation conveniences). From considerations 

arising from the forms of (3.3.3) and (3.3.4) and from the Tg-ortho-

normality of the Yp's and cu's, we must have that • 

U 1 « E B y 1 T, 
i=l 1 1 

U« = E B.a.'T, 
2 i=l 1 1 

2 2 
\ i = M i , l = 1,...,p, 

and 

A = T( E X.B.B.')T, 
i=l 1 1 1 

with {8 •)._-, a T c~orthonormal basis of S. It is easy to check that 

1 1 1 Q 

those matrices satisfy (3.3.3) and (3.3.4). We are now ready to prove 

the next proposition. 
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PROPOSITION 3.5. 

Let C a subset of 1RP . Let MY = A X ' V ^ Y . Then if TAT is not a 

symmetric matrix there exists an estimator M^Y such that: 

R t [ M Q > 8 ] < R t[M,0] , V 8 e C. 

PROOF. For any g-inverse T of T, we have 

B t[M,8] =-8'(l-TA')T(AT-I)8 

=-8'(T-TA ,T)T"(TAT-T)8 . 

Let D = T-TAT, then TAT is symmetric if and only if D is symmetric. 

Let U^, U 2 and A such that D = U / A U^ is a T Q-singular decomposition 

of D (Tq is the restriction of T to NCX)"1* ) defined as above. From 
r 

this, if 8 = E b.y. + v, v 6 N(X) 
i=l 1 1 

r 2 2 
B t[M,81 = E X . b . 

.i=l 1 1 

We also have 

Var T[M] = Tr [TATA1 ] = Tr [T~~TATT~TA' T] , 

= Tr [T""(D-T)T*"(D'-T)] , 

= Tr [T~~ (DT"*-TT" ) (D
f
 -T) ] , 

and 

= Tr [T~ [DT~D' -TT~D
 1
 -DT~"T+TT~T] ] . 

Using the T -singular decomposition of D , we have 
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TT D' = D', 

DT T = D, 

DT~D' = T( E A.2<x.a.')T, 
i-1 1 1 1 

r 
D 1 = U- 1 A U 0 = T( E A.y.a.')T, 

1 2 . = 1 x x x 

and 
r 

D = T( E A.a.'y.) T. 
. , i l l 

Then 

r _ 
Var-[M] = E a.'(DT~D f-D'-D+T)a., 

T i-1 1 

r
 2 

= E (A. -2A.a.'Ty. + 1). 
i-1 1 

Let 

r -I 
M Y = ( E (l-A.)y.y.')X'V Y, then 

o i m l 

B T[M 0,8] = E A A . 2 = B t[M,8I 
i=l 1 

and 

2 
Var-[M ] = E A. - 2A. + 1. 

u i=l 1 1 

If TAT is not symmetric, ^ U 2 and then there exist l£ j < r, such 

that a. f y. and therefore la.'Ty.l < 1. Since for 1 < i < r, 
J J J J - -

|a•1Ty.| £ 1 we have that 

Var T[M Q] < Var T [M]. 
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Since B T[M Q,8]
 3 B^,[M,8] for all g fl R p , this proves the proposition. 

PROPOSITION 3.6. 

Let C a subset of 1RP . Let MY = AX'v" 1Y. Suppose that TAT = 

r r J . 

T( E (1-A.)y.y.')T and {y.}._, is a T -orthonormal basis of N(T) . 

issl 1 1 1 l 1=1 0 
Then if A^ $ [0,1] for some 1 < j < r, and Span '(C) ID Span ^ j ̂  Q 

there exists M Q Y € L and y€C such that: 

R T[M 0,6] < R t [m,3] ,V0€C and R ^ M ^ y ] < R^M^y] • 

-1 r 

PROOF. Let M Y = A X'V Y with A_ = E (l-y.)y.y.' and 
0 0 r° i=l 1 1 1 

1-y. = min(l, 11-A. | ) . Let 0 = E b.y. + v, v 6 N(T),then 
l l i = 1 i i 

r 2 2 
B t[M ,6] = E y. b. , 

T ° i=l 1 1 

and 

r 2 
Var T[M Q] = E (1 - y . ) Z . 

i=l 

From the definition of y^ it can be seen that A^ $ [0,1] implies that 

0 < y. < |Aj and A^ 6 [0,1] implies that y^ = A^. From this if 

Aj $ [0,1] for some 1 <_ j £ r, we have that 

r r 
B t[M ,3] - E y .

2
b .

2
 < E A .

2
b .

2
 = B T[M,8] ,V 8 6 ]R

P
 . 

T O i = s l i i . = 1 i i T 

r 2 r 2 
Var T[M n] = E (1-y.) < E (1-A.) = Var„[M]. 

1 0 i i T 
1=1 i=l 

and from the condition on C, there exists yec such that yT/^ ^ O and 

so B t [ M , y] < B t [ M,y] . This proves the proposition . 
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PROPOSITION 3.7. 

If MY is an ALE, then MY = AX'V 1 Y with TAT a symmetric matrix, 
r 

TAT = T( Z 5.8.3.')T, 0 < 5 . < 1 for 1 < i < r and , is a 
. , 1 1 1 — i — — — l i = l 
1 = 1 J. 

T Q-orthonormal basis of S Q = N(T) 

PROOF. As in Theorem 2.3, it is easy to see that any ALE must be the 

BLUE of its own expectation function, hence it must have the form 

MY = AX'V ^Y for some matrix A . From Prop. 3.4 MY is also an ALE 

under the risk defined by T , but then from Prop. 3.5 TAT must be 
r 

symmetric; from Lemma 2.1 (b) TAT = T( E S.B.B.'JT for a T -orthonormaL 
«_i i i i O 

, i=l 

basis { 3 i > £ = 1 of S Q = N(T) . Finally from Prop. 3.6, 0. < 6. < 1 for 

1 < i < r. 

From the last proposition the condition that TAT is symmetric becomes 
important. Next we will characterize the set of matrices A which 

r 
satisfy this condition. If TAT = T( E A.8.8.')T with (8.)* , a 

i = 1 i i i i i=l 
Tg-orthonormal basis of S Q = NCT)"1, we have that TAT8^ = TA B.i 

1 < i < r. This implies that AT8. = A.(8. +a.) for some a. 6 N(T) , 
— — r i i i i l 

1 < i < r. Let y. = 8« +a., 1 < i < r, then 
— — I i i — — 

E A.y.Y.'TS = AT8 , V 8 6 ]R
P
 . 

i=l
 1 1 1 

Let A, = E A.y-Y- . We will see that A„T = AT if and only if 
1 i l I 2

 J 

i=l 

A 2 = A 2 + M 2 where the rows of M^ are in N(T). If one row of Mj $ N(T) 

then for some 8, M ^ f 0 and so A 2T8 = (A-jT+M-jT^ ^ A^TS = AT8- The 

other implication is trivial. We will see now that (y.). , is a set r l i=l 

of T c-orthonormal vectors and S = Span{Y •}•_•, satisfies 
S fl N(T) = {0} 

U 1 1— 1 

Y.'TY. = (8.'+<*.') T(8.+ct.) = 8.'T8. = 5.. . 
i J i i J J i j i j 
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This proves the Tg-orthonormality, Suppose that v = E a.y. 6 N(T) 
i=l 1 

then 0 = 8.'Tv = a., 1 < i < r. This implies that v = 0 and so 
i l — — r 

S 0 N(T) = {0}. We obtain the next proposition. 

PROPOSITION 3.8. 
r 

TAT is symmetric if and only if A = E ^xY£Y.£ , + Mx where 
y ^ ^ 

{Y£}£-X is a Tg-orthonormal basis of S 3 Range AT and the rows of M^ 

are in N(T). 

Now we will give the main result of this section. 

THEOREM 3.5. 

Let MY 0 L, S 3 Range M . Then MY is an ALE if and only if 
S f| N(X) = {0} and there exists a matrix A such that MY =AX ,V~ 1Y, 

r 
A = E S.y.y. 1, {y.}._-, is a T c-orthonormal basis of S and 0 < 6. < 

£—X i l l 1 1—1 b 1 — 
for 1 < i < r. 

PROOF. The necessity of this condition is a direct consequence of 

Prop. 3.7 and Prop. 3.8. To see the sufficiency let us suppose that 

there exists M Q Y 6 L such that M Q Y = A ^ ' V ^ Y and 

R
X

[ M
o

, e l
 -

 R
i

[ M
> B ] » * 3 6 1R

P
 . 

This implies that 

W
3 3

 < » V 8 6 S. (3.3.5) 

There is no loss of generality in taking the rows of A Q in S. Let X 

such that X+X^ is a full rank matrix and EgX^
1
 = 0 (P g is the 

orthogonal projection onto S). Let NY = A(X+X^)
f
V and 

N q Y = A 0(X+X 1)'v"
1Y. We have that 

R-^N^l = R i[M,3] , V 8 6 S. 

R j ^ . B l = R I[M o,0] , V 3 e S. 
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(Because rows of A and A are in S and P^X. ' = 0) . From Theorem 3.6 

0 b L ' 

NY is admissible for the model (X+X^, V, S) and therefore there does 

not exist N QY 6 L and 6 S such that 

W B 1 - R i [ N , e ] » V 8 6 S, 

and 

R I [ N 0 , 3 0 ] < V N , 3 0 ] ' 

(3.3.5) implies that 

RptN^B] = RjEN.B] , V 3 e S . (3.3.6) 

Since NY is ALE for the model (X+X^ V, S), (3.3.6) implies that N QY 

is also an ALE for (X+X^, V, S). But this implies, again by Theorem 3.6, 
r 

that A is symmetric. Let T_ = E y.y. ' then for 8 6 S: T ~*TB -
0 b i"~1 ^ ^ 

= I g8 = 8- Hence 

B i[M,3] = 8'T(A-T S")(A-T S~)T8 , V 0 6 S, 

and 

B i[M q,3] « 8'T(A 0-T S")(A 0-T S")T8, V 3 e S. 

Let y = T0. Then from (3.3.6) we have 

y'uy = y 1[(A-Tg") 2 - (A Q-T s")
2]y = 0 , v Y « Range T. 

Since IT is symmetric, the rows of IT are in S and S D N(T) = {0} 

(A-T s')
2 - (A 0-T s")

2 = 0. 
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Since T -A and T -A n are symmetric and n.n.d. this implies that 
S S u 

A = Aq. As a consequence we obtain. 

COROLLARY 3.5.1. 

MY = AX'V is an ALE if and only if TAT is symmetric and 

(TAT)T (TAT) £ TAT. (T is any g-inverse of T) . 

PROOF. If MY is an ALE from Prop. 3.7 TAT is a symmetric matrix and 
r 

TAT = T( E 6.8.6. !)T, 0 < 6. < 1 for 1 < i < r. 
. i=l 1 1 1 " 1 " - " r

 2 

Then (TAT)T (TAT) = T( E 5. 8-6.')T. From this it is immediate that 

i=l 1 1 1 

(TAT)T (TAT) _< TAT. To see the other implication; since TAT is 
r 

symmetric from Lemma 2.1 (b) TAT = T( E X.8.6.')T for some 
i=i 1 1 1 

r . I 
T-orthonormal basis {B.}_:_, (t is the restriction of T to N(T) ). 
0 l i=l 0 

2 
From (TAT)T (TAT) < TAT it follows that X. < X. and this implies that 

— l — i 

0 £ X^ _< 1 for 1 < i < r. Prop. 3.8 and Theorem 3.5 imply that MY is 

an ALE. This corollary generalizes to the non full rank case the 

characterization given by Rao 1976, for ALE's in the full rank case (see 

Corollary 2.3.1). 

COROLLARY 3.5.2. 

. -1 c 1 

The ridge estimator (T+kl) X'V Y is an ALE even if X is a non 

full rank matrix. 

PROOF. (T+kl) * = A+M^ where A and M^ are symmetric matrices, rows 

of A are in N(T)4" and rows of M^ are in N(T). Then 
—1 —1 —1 ^ 

(T+kl) X'V = AX'V . It is also easy to check that A = I 5.6.$.' 
i=l 1 1 1 

where 0 < 5. < 1 for 1 < i < r and {8.}. , is a T-orthonormal basis of 
— i — — — i i=l 0 

N(T)"*" . From Theorem 3.5 we can conclude that ( T + k l ^ X ' V ^ Y is an 

ALE. 
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3.4. LINEAR ADMISSIBLE ESTIMATORS FOR SUBSPACES 

In the thesis, until now, we have studied admissible linear 

estimators when the parameter space is 1RP . In this section the 

notion of linear admissibility, when the parameter space is a subspace 

of 1RP , will be studied. Hoffmann (1977), studied the problem for 

ellipsoids centred at the origin. First some propositions will be 

given. The next one, which is very useful, is essentially Lemma 1 

in Hoffmann 1977. 

PROPOSITION 3.9. 

Let A a n d Q two p.d. symmetric pxp matrices. Let MY, NY 6 L. 

Then there exists M Q Y 6 L such that 

Rq[Mq»B] < R q[M,3] for all 8 such that R A[N,8] < R A[M,&] , 

and 

R Q[M 0,8] < R q[M,8] for all 8 such that R A[N,B] < R A[M,8] 

PROOF. Let A the maximum eigenvalue of A and y the minimum eigenvalue 

of Q, let D = y- and tt = — . Let 
x
 y 

M q = (l-ir"1D)M + T T A N . 

We then have 

W 3 ] = V ( V 3 ) 7 T ( 1 V 3 ) ] > 

= Eg[(M-B)'ir(M-8)] + Eg[(M-N)lDTT~1TTTr~1D(M-N)] 

-E g[(M-N)
fD 7 r"

1Tr(M-8)] - [(M-g) ITnr~1D(M-N)] , 

< R [M, 8] + E 0[(M-N)'D(M-N)] - 2E [(M-N)'D(M~8)], 
— TT P P 

• R W[M,B] + Rj.[N,8] - R n[M,3] 



62 

< R [M,S1 , if R A [ N , 8 ] £ R A [ M , 8 1 , 

or 

< R ^ t M . 0 ] , if R a [ N , 6 ] < R a [ M,0] . 

The first inequality is a consequence of Dir ̂ D < D. The last two 

inequalities are a consequence of the hypothesis of the proposition 

and the fact that RA(N,8] £ RA[M,0] if and only if R^ [N, 0] £R][)[M,8] , 

(idem for <). The same reason and the inequalities obtained imply 

the proposition. 

PROPOSITION 3.10. 

Let Q be a p.d. symmetric pxp matrix. Let X full rank. If 
-1 r 

MY 6 L is not of the form MY = AX'V Y, A = Z S . 8 .6 . ' , { 8 . H , 
1=1 1 1 1 1 1-1 

a T-orthonormal basis of S and 0 £ £ 1 for 1 £ i £ r, there 

exists an estimator MQY 6 L and y -e S Such that 

R^M0#- e]< R [. M, e],V.B€S .and R q [ M 0 , Y ] <H Q [ M , Y] • (3.4.1) 

PROOF. If MY is defined as above, Propositions 3.5 and 3.6 show the 

existence of an estimator NY 6 L and y £ S 

Rip[N,6] < Rrj,[M,0]/V3 € S and R j N ^ ] <RT[M,y] * 

Since X is full rank, T is invertible and so p.d. Making T = A, 

(3.4.1) follows from Proposition 3.9. This proves the proposition. 

PROPOSITION 3.11. 

Let Q be a p.d. symmetric pxp matrix. Let X full rank. Then MY 

is an ALE if and only if MY is an ALE under the risk defined by Q. 

PROOF. The proposition is an immediate consequence of Proposition 3.9, 

the definition of ALE and ALE under the risk given by Q. 



63 

The last proposition was already proved by Shinozaki (1975). The 

next definition makes precise the notion of linear admissible 

estimators for subspaces. 

DEFINITION 3.1. 

Let Q a p.d. symmetric p*p matrix and S a subspace of 3RP . 

Let MY 6 L. Then MY is a S-ALE under the risk Q if and only if there 

does not exist NY 6 L and y 6 S such that 

R Q [ N , 6 ] < R q [ M , B ] , V M S 

and 

RQ[N,y] < Rq[M,Y] • 

When Q = I we will simply say that MY is an S-ALE. 

Proposition 3.9 implies that MY is an S-ALE under Q if and only if MY 

is an S-ALE. The next proposition is important for the main result 

of the section. 

PROPOSITION 3.12. 

Let S a subspace of 1RP . Let MY 6 i. Then 

(i) If Range M c j : S , RQ[P^ M , B ] < R Q [ M , 3 ] , for all M S . 

(ii) If MY is an S-ALE then Range MCZ S. 

PROOF. For any $ 6 S we have 

B q [ M , 3 ] = | | ( M X - I ) 3 1 | 2 > | | P ^ ( M X - I ) 8 | | 2 , 

= | | ( P ^ M X - I ) 8 | | 2 = B q [ P ^ M , 3 ] . ( 3 . 4 . 2 ) 
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1 0 Let SQ = S Then 

Varn[M] = Tr[QMVM'] = Tr[(P^+pS VQCP^+pS )MVM'] , 
S SQ S SQ 

= Tr[(Pg)'Q(Pg)MVM'] + Tr[(P^ )'Q(P^ )MVM'] , 
0 0 

= Tr [QPgMVM' (Pg) 11 + Tr[Q(P^ )MVM'(P^ )»] 
0 0 

= Varg[PgM] + Varq[Pg M] . 

If Range M<f S we have Varn[P^ M] > 0 and 
* S0 

VarQ[M] > VarQ[P^M] . (3.4.3) 

From (2.2.2), (3.4.2) and (3.4.3) we have 

RQ[PgM,B] < Rq[M,B] V 8 6 S. 

This proves (i). And (ii) is an immediate consequence of the definition 

of S-ALE and (i). 

THEOREM 3.6. 

Let MY 6 L. Let S be a subspace of 1RP . Then 

(i) MY is an S-ALE if and only if Range M CZ S and MY is an ALE. 
r _i 

(ii) MY is an S-ALE if and only if MY = E S.B.B.'X'V Y where . . i l l 1=1 
{8.}. i is a T-orthonormal basis of S and 0<<5. <1, 1 < i < r. l i=l — i — — — 

PROOF. Proposition 3.10 implies that if MY is an S-ALE then it is 

an ALE. Proposition 3.12 implies that if MY is an S-ALE then Range 

M C S. This proves the first implication in (i). From Theorem 2.3 

Range M C S and MY is an ALE is equivalent to asking that MY has the 

form given in (ii). Then to prove the theorem we only need to see 

that any estimator MY of the form given in (ii) is an S-ALE. But this 

last implication follows from Theorem 4.1 and Theorem 4.2 using a 

similar argument as in Proposition 4.8, restricted to S. 
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CHAPTER 4 

The chapter studies minimax estimators over some subsets of 1RP , 

when the risk considered is a quadratic risk defined by a 

p.d. symmetric matrix Q and attention is restricted to the set of 

linear estimators. Those estimators will be called Q-minimax 

estimators. We will assume that X is a full rank matrix. 

The first section of the chapter studies a particular class of 

subsets of 1RP which will be called T-cubes. This class appears to 

be in some sense a "natural" class of sets for the problem. It also 

contains a wide variety of sets which can make it useful for applications. 

As opposed to the second class of sets studied in the chapter, this 

class can be defined by linear restrictions on the parameter 3. 

The second section of the chapter studies the problem for the 

class of ellipsoids with center at the origin. The ellipsoids are 

defined by quadratic constraints on the parameter 3• Part of the 

problem for this class has been already studied by Kuks (1972) and 

Lauter (1975). 
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4.1 Q-MINIMAX ESTIMATORS OVER T-CUBES 

The section is structured as follows: 

Proposition 4.1 shows that the Q-minimax estimator over a T-cube is 

the same as that over the set of vectors formed by its "corners". 

That is why the whole section studies Q-minimax estimators of 

T-orthogonal subsets C of . Proposition 4.2 simplifies considerably 

the study by relating the axis (see end of Chapter 2) of the Q-minimax 

estimator of C, to the vectors of C. The unicity of the Q-minimax 

estimator McY of C is proved in Proposition 4.3. From Proposition 4.2 

we only need to determine the shrinkage factors (see end of Chapter 2) 

of M£Y to have it totally specified. A property satisfied by the 

bias of Mc on C (proved in Proposition 4.4) allows us to calculate, 

using Lagrange multipliers , a condition on the shrinkage factors 

which defines them implicitly. This is mainly the content of 

Proposition 4.5. Proposition 4.6 shows how to build a set C for 
M 

which the ALE MY is a Q-minimax estimator, if the shrinkage factors 

of MY are less than unity (the case when some of the shrinkage factors 

are one can be treated using the results of Theorem 4.2). Proposition 

4.7, translates the results of Proposition 4.6 into the usual represen-

tation for ALE's. Theorem 4.1 gives an explicit expression for the 

shrinkage factors of McY if it is known on which axis of McY the 

shrinkage factors will, be different from zero. As a consequence of 

the theorem we are able to give a method to calculate the Q-minimax 

estimator of an arbitrary T-orthogonal set of vectors C. After this 

some particular examples are studied, where the previous results are 

used. Theorem 4.2 is essentially the natural extension of Theorem 4.1. 

Proposition 4.8, give us a result which is a consequence of the previous 
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results of the chapter and whose main application is in Theorem 2.2. 

The section ends with Proposition 4.9 and Theorem 4.3 which are the 

starting point for the second section. 

The next two definitions make precise our terminology. 

DEFINITION 4.1. 

Let MY 6 L. Let Z be any subset of 1RP. If 

sup Ro[M,0] < sup R_[N,3] , V NY 6 L , 
36Z ^ 36Z ^ 

we will say that MY is a Q-minimax estimator for Z. Sometimes Q-rainimax 

estimator will- be written Q-m.e. 

DEFINITION 4.2. 

Let Z be a subset of ]RP . Let cc(Z) denote the convex hull of Z 

and let Sym(Z) = {X3U 6 [-1,1], 3 6 Z}. Then Z will be a T-cube 

if there exist a set C^ of T-orthogonal vectors of 1RP such that 

Z = cc(Sym(C )). z 

Sometimes the elements of Cz will be called corners of Z. 

The next proposition simplifies considerably the study of 

Q-minimax estimators for T-cubes. 

PROPOSITION 4.1. 

Let Z be a T-cube. Let C a set of corners of Z. Then MY is a z 
Q-minimax estimator for C if and only if MY is a Q-minimax estimator z 
for Z. 

PROOF. For all MY 6 [ we have 

sup RQ [ M , 3 ] = sup RQ [ M , B] = sup R Q [ M , 3 ] 
36C ^ 36Sym(C ) V 36cc(Sym(C )) W 

z z J z 
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= sup R q [ M , 6 ] . 
8GZ H 

The second equality follows because R Q [ M , 6 ] is a convex function on 6 

and the first equality from the definition of Rn[M,$] and Sym(C ). x z 

From the proposition it is clear that the problem of finding a 

Q-m.e. for a T-cube Z is the same as the one of finding a Q—m.e. for 

one of its sets of corners Cz; it is for this reason that from now on 

we will deal only with Q-m.e. for T-orthogonal subsets of 1RP . 

PROPOSITION 4.2. 

Let C = ^Ti^i-i a s u^ s e t T-orthogonal vectors of 1RP . Let 

Yi 

3i = jj ŷ  |j—' > (1 £ i £ m). Then any Q-minimax estimator MY for C 

has the form 
m -1 MY = Z 5.6.8. 'X'V Y , i l l 1=1 

where 5^ depends on Q, T and C. 

PROOF. Any Q-minimax estimator must be the BLUE of its expectation 

function, a similar argument to the one given at the beginning of 

Theorem 2.3 shows that MY = AX'v"1Y. Now let P^ the Q-orthogonal 

projection of ]RP onto the S. = Span{6.}. Let MrtY = ArtX'V_1Y such that 
i i 0 0 

A 0 T y . = P R ' A T Y - . V Y£ 6 C , 

and 
1 T 

AqTY = 0 , V y 6 C . 

Since T is invertible MQ is uniquely defined and since: 

BQ[M,Yi] = || (AT-Dy.ll Q 2 , 
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and 

B Q C V V = II ( P i AT-DYil! Q = II P- (AT-DYJI Q: 

we have 

BQ[M,y.] > BQ[M0,y.] , l < i < m . (4.1.1) 

Let a T-orthonormal basis of 1RP obtained when 

completed. Then from Lemma 2.1(f) we have 

P 
T = T( Z 8.8.')T. 

i=l 1 1 

Therefore 

VarQ[M] = Tr[QATA1] = Tr[QAT( Z 8i8i')TAl] , 

= E Tr [QAT8.8. 'TA1 ] = E ||AT8.|[ , 
i=l 1 1 i=l 1 Q 

and 

Var [M0] = " H P I A T B J I 2 . 
1=1 X 

Then 

VarQ[M] > VarQ[MQ] , (4.1.2) 

with strict inequality if for some 1 <_ j < m, AT8j is not in Ŝ  or if 

AT8X t 0 for m < i < p. From (2.2.2), adding (4.1.1) and (4.1.2) we 

obtain 

RQ[M,y.] > Rq[M0,Y.] , 1 < i < m, 

with strict inequality if Varq[M] > Varq[M0] . This implies that MY 

must be of the form stated in the proposition if it is a Q-minimax 

estimator of C. 
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The next proposition shows that for each T-orthogonal subset C 

of 1RP there exists a unique Q-minimax estimator MY of C. 

PROPOSITION 4.3. 

Let C = {y^}™-! a s e t o f T-orthogonal vectors of ]RP . Then there 

exists a unique Q-minimax estimator MY of C. 

PROOF. From the previous proposition any Q-m.e must be of the form 

m -1 
M, = E 6.3.3.'X'V \ where 3. = Y; / || Y-|| - and 5 =(6-,.... 6). <5 i l l i l 11 T 1 m 

Then 

V W = ( 1 - S i > 2 " Y i ] l Q 2 + 5 i 2 1 1 S i " Q 2 = • 

Each f^(6) is a quadratic function of 5, so that each f^ has 

a unique minimum. Now the supremum of a finite number of functions 

which have each a unique minimum has itself a unique minimum. Thus 

there exist 5^ sudh that 

sup f. (6) > sup f. (6 ), ? 6 IR® such that S 4 5 . 
l<i<m 1 ~ l<i<m 1 -

sup R [M ,y.3 > sup R [M ,y.3 ,9 5 6 IR®, 6 4 6 . 
l<i<m ^ : l<i<m ^ °0 1 ~ 

This proves the proposition. 

From now on McY will be the Q-minimax estimator of C. Also it 

can happen that some of the shrinkage factors of M£Y are zero. There 

is no loss of generality in assuming that these shrinkage factors 

correspond to the larger i's; that is we can always reorder the vectors 

Y^ in such a way that 

r -1 m -1 r -1 M Y = Z 6.3.3. 'X'V Y + Z 5.3.3. 'X'V Y = Z 5.3.3.'X'V Y, c . , 1 1 1 ._ , 1 1 1 . - 1 1 1 i=l i=r+l i=l 



71 

6 ^ 0 i f l < i < r and 6, = O if r < i < m. This ordering assumption 

will apply from now on. The next proposition gives an important 

property satisfied by the bias of McY on C. 

PROPOSITION 4.4. 

Let C = { y ^ ^ x a set of T-orthogonal vectors of ]RP and 

Yi r -1 B. s 71 rr~" , 1 < i < m. Let M Y = E 6.6.8.'X'V Y the Q-minimax i II v ill T " " i=l 1 1 1 

estimator of C. Then 

(a) B q [ M c, Y.] = B Q[M c , Y j ], 1 £ i, j £ r. 

(b) BQ[Mc,Yil £ BQ[Mc,Ykl , H i <r, r < k £ m. 

(c) BQ[Mc,Yi] - sup B [Mc>Y] , 1 < i < r. 

Y6C 

PROOF. It is immediate that (c) implies (a). Let us then suppose that 

(c) does not hold and let n such that 1 £ n £ r and 

B0[M .yJ < sup B [M ,Y] . (4.1.3) 
^ C n

 Y6C q C 

We will build an estimator M^Y which is "better" than M Y for C. Let 
0 c 

r - 1 - 1 M Y = E 6.8.0.-'X'V Y + 66 6 'X'V Y. Then for any 6 <5. we have 0 1 1 l n n i 

VarQ[MQ] < VarQ[Mc] , (4.1.4) 

and 

W Y i ] = BQ[Mc^i] ' 1 £ i £ m, i f n. 

Therefore 

R [M0,Yi] < R [Mc,Yi] , 1 < i £ m, i f n. (4.1.5) 
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As 6 -v 5., B^M ,y ] B.[M ,y ] and then from (4.1.3) for 6 < 6. 
i Q 0 n Q c 'n i 

close enough to. we must have 

V M 0 ' Y n ] <
 B Q [ m c > y ] 

Thus from (4.1.4) we have 

W Y n ] < Sup RQ[Mc'Yl 
yec 

From this last inequality and (4.1.5) we obtain 

sup R [M ,y] < sup R [M y] 
y€C H yec ^ 

Then (4.1.3) is impossible and (c) is proved. To see (b) we again 

suppose that it does not hold and then show the existence of an 

estimator M^Y which is "better" than M Y for C. Let now n be such that 0 c 

n > r and R [Mc,y ] > sup RQ[Mc,y.]. 
l<i<r 

m _i And let M_Y = MY + Z SB.B.'X'V Y. Then 

° i-r+1 1 X 

RQ[M0,y.] = (1-5)2|| Til! q 2 + S 2 . ^ || B.|| Q 2 + VarQ[Mcl , 

r < i < m. (4.1.6) 

Now if 6 > 0 is chosen small enough we have 

U - 6 ) 2 | | T i l l Q2 + « 2 II B i l l Q2 < II Y . l l Q 2 . r < i < m, ( 4 . 1 . 7 ) 

and 

R0[M0'Yi] = R0tMc'Yi] + Z II M n
2 < sup R0CM .y], 1 < i < r. H * 1 i-r+1 1 ° y6C 

(4.1.8) 
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From (4.1.6) and (4.1.7) we obtain 

2 
V W < I' Q + VarQ[Mc] = RQCM

c
>Yi] ' r < i < m. (4.1.9) 

Finally from (4.1.8) and (4.1.9) we have 

sup RQ[M < sup [M ,Y] , 
Y0C ^ YgC 

which contradicts the assumption on McY. The proposition is proved. 

PROPOSITION 4.5. 
L® Q oaf af T̂ awfLlnnannl ..aofawo TD P Let C = a s e t of T-orthogonal vectors of ]RF . Let 

Yi r -1 • 3 n n— > 1 < i < m. Let M Y = Z 6.6.6.'X'V Y the Q-minimax 1 II *Yil| T C i=l 1 1 1 

estimator of C. Then M£Y must satisfy 

(a) 0 < 6. < 1, 1 < i < r. 
i — — 

(b) (l~q)|| y^H q = Yj|| q ' > l £ i , j < r . 

r 5. , 
( c ) I T = | ^ = 1 -

i=l ''i II Y j l / 

PROOF. From Prop 3.10 and 4.3, we know that 0 < <_ 1 for 1 < i < r . 

By the ordering assumptions adopted just before Proposition 4.4, > 0 

for 1 £ i £ r. Then, we only need to prove that 6^ 4 1 for 1 < i < r. 

To see this suppose that 6 ^ = 1 for some 1 < n < r and let 
M Y = M Y + M Y - 6 6 'X'V^Y, where M Y is the MMSELE of y . Then 0 c n n n n n 

VarQ[M0] = VarQ[Mc] - || Bn|| Q 2 + VarQ[Mn] < VarQ[Mcl . 

B0[M0,Yi1 = " o ^ W ' 1 - i - m* i / n-
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Joining the last two expressions we obtain 

V W < RQ[Mc,Yi] > 1 1 1 i i n. (4.1.10) 
2 

Also, since rqtM
n• V < II V ' Q , we have 

V W = V W + V a r
Q
[ Mc ] - H S„H q2 < V a r Q [ V - V W • 

From (4.1.10) and the last inequality we have 

sup R [Mn,y] < sup R [M 
Y6C ^ U y6C 

This contradicts that M Y is the Q-m.e. for C. Then 6. <1. l < i < r 
c i — — 

and (a) is proved. The condition (b) is essentially Proposition 4.4 (a) 

(if it is known that 0 < < 1). The problem of finding McY when it 

is known that M Y has the form given m the proposition can be put in 

terms of a minimization problem with Lagrange multipliers if the 

restrictions on the bias proved in Proposition 4,4 are used. Since 
Rn[M ,y.] as a function of 6 = (6-,...6 ) is quadratic, the solution q c i -* i. r 
of the Lagrange problem is unique and it is a minimum. We have, if 

1 < n £ r, for all 1 £ i £ r 

a i r v v v - W W - V W 1 = 

i^n 

Or 

V ( 1 - V » Y „ n Q
 + ' V I I M q " . V i I ( 1 V " V Q' i x i=l x i=l x 

- ( 1 - 6 . ) 2 | | y ii 2 ] = 0 . 
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Then 

i^n 
and 

2«.|| ̂ ll Q 2 " 2y.[(l-6.) || y.|| Q2] = 0, l < i < r , i * n, 

From this 

(1-6 ) 9 9 r 1 -6 
" T ^ II Y J I Q " I' 6 J I Q " - °> 

n x x i=l n x 
i^n 

and 

II " i l l o2 A 
y a _ _ 1 < i < r, i f n. 

II Yi" Q ' " " 

Substituting y^ we have: 

9 9 r lU-lln2 0 (1-6 )6. 
V n i , - n « - " • • » ' . - a ^ = 

i^n 1 ^ 

Or 

9
 r 9 II || 2 (1-6 )6. * 

- v 1 1 ' . « - » « A 5 ^ " " ' 

Then 

. r IIB-II 2 6. 
V 1 II Y j o2 tl" 2 = 0. 

n " Q i-i II rjl Q 2 i-^ 

Since Q is a p.d. matrix, || ŷ j] > 0 and the last equation is equivalent to 
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From the definition of the last formula is equivalent to 

r . 5. 
Z - _ = i 
• i II II 2 ' 1~<S-
i = s l II yJ I T

 1 

and then the third condition (c) is proved. 

It is not immediate that McY as defined in the above proposition 

is the Q-m.e. for the set C^ = {y.}«_£. next proposition will show 
r r 1 -1 that for any estimator MY = Z 6.0.0.'X'V Y there exist5a set Cw i i i M i=l 

for which MY is the Q-m.e. As a consequence we obtain that McY is 

indeed the Q-m.e. for C . x r 
PROPOSITION 4.6. 

r -i Let MY = Z 6.3.0.'X'V Y such that 0 < 6. < 1. 
i = 1 i i i 

(a) Let = , a set of T-orthogonal vectors of 1RP which 
M l i= I 

satisfy the following conditions: 

(i) Y- = b.B. for some t. 6 ]R , 1 < i < r . 
i l l i — — 

(ii) (1-6.) || Y.|| Q - (1-0|| y . \ \ Q, 1 < i ; j < r. 

r 6. x 
(iii) Z t r ~ 

i=i II rjl T 2 

Then MY is the Q-minimax estimator for C . 
M 

(b) The estimator McY defined in Proposition 4.5 is the Q-minimax 
IT estimator for C = (Y'K • r ' i i=l 

PROOF. Suppose that MY is not the Q-m.e. for C^, then from Propositions 

4.2 and 4.5, the Q-m.e. M Y for C_, must have the form 
c M 

q -i M Y = Z d.0.0.'X'V Y, with q < r. The indexes of the vectors in c . . 1 1 1 1=1 
r C^ = {y^K-^ c a n Be taken, without loss of generality, in a way that the 
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indexation in M Y coincides with the one in MY until i = q. From c n 

Proposition 4.5 we have that 0 < d^ < 1, 1 £ i £ q> 

Cl-d.)!!^!! p - CWjJll Yj||Q, l < i , j<qand j ^ — L — . i . 

Since we also have (iii) and r > q, at least for some 1 £ n £ q we must 
6 n dn 

have , . < , , and so 6 < d . If M Y is Q-m.e. for Cw from 1-6 1-d n n c x M n n 
Proposition 4.4 we must have 

a-dn)||rn||Q> H V l | | p . 

this implies 

. ci-yi|Yn||Q> || Yq+1IIQ, 

and then for any 0 < 5* < 1 we have 

( 1 " V H Y J q > a ' 5 ) l l Y q + i " Q • 

But this contradicts that 

( 1"V 1 1 Y J Q = (1"6q+l)H Yq+lH Q • ° < « q + 1 < l . ' 

which in (ii) we assume it holds. This proves that MY is the Q-m.e. 

for C . Now (b) follows immediately from the fact that if M Y is M c 
the Q-m.e. for C, from Proposition 4.5 it satisfies conditions (i), (ii) 

and (iii) in (a) and then it must be the Q-m.e. of = Cr= C^. 
When 0 < 6^ < 1, 1 £ i £ p, we know from Theorem 2.4 (i ) that 
P -1 -1 -1 MY = Z 6.3.8.'X'V Y can be represented as MY = (T+G) X'V Y where 
i=l 1 1 1 

G is a p.d. symmetric matrix and a set of T-eigenvectors of G is 

The next proposition gives similar results to Proposition 4.6 

for MY represented in this way. 
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PROPOSITION 4.7. 

Let MY = (T+G) *X'V *Y, G a p.d. symmetric matrix. Suppose that 

is a set of T-orthonormal eigenvectors of G. Then MY is the 

Q-minimax estimator of the set Cn = {y.}? . defined as follows: 
G 1 i i = l vTor some. 

(i) y. = t.0. ̂  t. 6 1R , 1 < i < p. 
1 1 « X 

(ii) If a. = Y . ' ( T ( T + G ) ~ 1 - I ) Q ( ( T + G ) ~ 1 T - I ) Y.> then a. = a., 
X X X X J 

j 1 p. p 1 (iii) Z r = 1. 
i = 1 H^illc2 

P 
PROOF, (i) Follows from the fact that if MY = I 6.0.0.'X'V Y 

i=l 1 1 1 

the set i-8 a s e t of T-eigenvectors of G and Proposition 4.2. 

(ii) is only a reformulation of Proposition 4.6 (ii). We will see that 
P 

(iii) is equivalent to (iii) in Proposition 4.6. Let G = T( Z A.0.0.')r, 
i l l 1 1 1 

then from Lemma 2.1(f) and (d) we have 6. = —=—- or , l 1+A. 
i 1 1 

= j—, 1 £ i £ p. Therefore Proposition 4.6 (iii) can be written as 
i i 

z 1 i . 1 
i - 1 l l r j l , 2 x i 

2 2 
Now noticing that || Y-JI T • = II Ŷ ll G because y^ - and 0^ is 
a T-eigenvector of G corresponding to the T-eigenvalue X^, (iii) follows. 

Since conditions Proposition 4.5 (c) and Proposition 4.7 (iii) are 
- 1 - 1 

equivalent, the T-cube for which (T+G) X'V Y is Q-minimax estimator 

is totally contained in the G-unit ball, that is in the set 

Bg = {0|0'G0 < 1}. The next theorem summarizes the results of some of 

the previous propositions, gives explicit expression for the shrinkage 

factors and gives the supremum of the Q-risk of M£Y on C. 
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THEOREM 4.1. 

Let C = {y.}1? i a set of T-orthogonal vectors of H P and l i=l 
Yi r -1 8. = n — V — , 1 < i < m. Let M Y = E 6.8.8.'X'V Y. Then 

1 II YiH Q " " ° i-1 1 1 1 

(a) MCY is the (unique) Q-tninimax estimator of C if and only if McY 

satisfies 

(i) 0 < 6. < 1, 1 < i < r. 
i — — 

(ii) (1-<5.)|| Yill Q - (l-Oll YjH q> 1 < i, j < r. 

r 6i 1 (iii) E T T ~ — o ~ 1-
i-1 X " 6 i II Y.ll T 

(iv) (l-«.)|| r ill Ql ||Y kll Q. l < i < r . r < k < m . 

(b) If MCY is the Q-minimax estimator of C, its shrinkage factors are 

given by 

II Y i l l 0 
r 
Z n 

1 i-1 I Y« 2 

<5 = 1 " n—~T|— x * " — 1 — 1 — , 1 < n < r. 
i + I _ i " " 

i=i II rjl T 2 

2 

(c) sup Rq[mc)T] - II Yjl Q 2 ( i - a n ) 2 c i • j x ^ ^ , • 

PROOF. Proposition 4.6 implies that if McY satisfies (a) (i), (ii) 

and (iii), M Y is the Q-minimax estimator for C = {y.}. .. It is also ' c r 'i i=l 
clear that (iv) implies 

sup Rn[M ,y] = sup R0[M ,y] . 
y6C ^ ° YeCr ^ C 
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But this implies that Mc is the Q-minimax estimator for C. Now 

suppose that McY is the Q-m.e. for C, then Proposition 4.5 implies (a) 

(i), (ii) and (iii). Condition (a)(iv) is implied by Proposition 4.4 (b) 

The unicity of M£Y is established in Proposition 4.3. This completes 

the proof of (a). To see (b) from (a)(ii) we have 

5i 1 II Vjll Q 

Substituting this expression for each i in (a)(iii) we obtain 

r ! II Q ! 
2 ( r V ii v i ~ — — i = 
i=l 1 n H y j Q || Y.|| / 

' I I Y - I L 
(i-6 ) = s ( s _ ) , 

n i=i llrjl JlTill/ I I y J I / 

r 1 r II V-ll 0 (1-6 ) (1 + E =0 = E 1 Q , 
i=i||Y.||T

2 i-i || Y J q|| y.|| t 2 

And then 

I M i 

! i-1 II Y. II 6 = 1 - 1 T 
n it II r 

i - 1 I I y J I / 

We will now prove (c). From (a) (ii) we obtain 

1 II T J i" T 
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Therefore 

r r 6 
Var. [Ml = I S.2|| 8.11 } = (1-6 )2|| Y II } E V r " ) 2 1 

Q ' C i = 1 i - i n Q n " ' n " Q 1-6. „ ^ ^ " 

From Proposition 4.4, (c), we have r 

sup Rp[Mc,Yl = RQ[Mc,Yn] = ( 1 - S n )
2
| | Y nll

 2 + VarQ[Mc] . 
y6C 

We then obtain 

r 6 
sup R [Mc,y] = ( W >2|| y || 2 [1 + Z C ^ ) 2 — ] . 
yGC 1 = 1 1 llYillx 

The theorem provides us with the following way of calculating the 

Q-minimax estimator McY of an arbitrary set of T-orthogonal vectors 

C = {y^x-^. Let first order C in such a way that || y^ || > || y2 II q * 

••• > II Y II ^ a n d calculate the Q-m.e. M,Y for C, = •, • Then if — 11 'm" Q 1 1 1 1=1 

BQ[M1>Yl] > || Till Q 2 , l < i < m , (4.1.11) 

Theorem 4.1, (a) (iv) says that M.Y is in fact M Y. If (4.1.11) does 1 c 2 not hold we calculate the Q-m.e. MnY for C = {y.}. •, using Theorem I 2 i 1=1 
4.1 (b). If 

Bq[M2,Y2] > || Y.|| Q 2 , 2 < i < m , (4.1.12) 

then from Theorem 4.1, (a) (iv) , we know that M2Y is McY. If (4.1.12) 

does not hold we do the process until the step r <_ m where 

BQ[Mr,Yr] > || Y.|| Q 2, r < i < m, (4.1.13) 

holds. From Theorem 4.1, (a) (iv), we know that M Y is M Y. The ' r c 
only remaining point to clear up in this method is that if at the step 

n < m we have 
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W V < " V i H Q 2 - <4-1-14) 

then the Q-m.e. C
n+£ m u s t have all its n+1 shrinkage factors 

different from zero. Let us suppose the contrary and let W a proper 

subset of (1 ..., n+1}' such that M.,Y = £ 6. 0. 0. 'X'V^Y is theQ.m.e. of 
V i8W 1 1 1 

Cn+l,<Si ^ ieW* F r o m Pr°P0siti0n 4.6(b), M^Y is the Q-m.e. for 

C^ = (y^Ji 6 W}. Let k the smallest number which satisfies 1 < k < n+1 

and k (jl W. We will see that W cannot be contained in (1,... k-1}. If 

we suppose the contrary from Proposition 4.6, (b) and the condition on k 

is the Q-m.e. for C^-l* Also because M^Y is the Q-m.e. for cn+£ > 

from Proposition 4.4, (b) we have 

W V i 1 ± II Y iH q2 > k i 1 ± n+1> 

and then from Theorem 4.1, (a) (iv) J^Y is also Q-m.e. for C^, by 

unicity we then have M^Y = M 'Y; But then from the last equality we have 

V W I 1 I H V I I I Q 2 • 

This last inequality contradicts (4.1.14); then W is not contained in 

{l,...,k-l}. From this, the condition on k and the definition of M^Y 

there exist k < j £ n+1 such that > 0. From Proposition 4.4, (b) 

we have 

II Yj II Q2 > " q P V V ^ 'I \ H Q: 

This contradicts the assumption on the ordering of the yPs made at the 

beginning of the method. This proves that all the n+1 shrinkage 

factors of M _Y will be different from zero and then Theorem 4.1,(b) n+1 
can be applied to calculate them. 
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When || Ŷ ll q 3 || Yj || q, 1 < i, j < m, some important simplifications 

can be done. This particular case will be studied in the next corollary. 

COROLLARY 4.1.1. 

Let C = (Y£)™=x
 a set of T-orthogonal vectors of R P such that 

II Yjl q2 = ^ > 1 < i < m. 
Yi m 1 Let B. = -n n— > 1 < l < m and a = E . Then 

^ II r.||T - - I M L .I II 2 
i T 

(a) M Y = 77- g S , where S = Span (C). c l+a 

(b) sup R [M ,y] = I yf-
y6C Q ° 1 + a 

PROOF. From (a)(ii) in the theorem we have 5=5^, l £ i £ r . 

Since 

r 6. - jt r i 
Z I — = Z 1 
i-1 ^ II Y iH T^ ^ i = 1 H Y i l l T 2 

can be made equal to 1, by appropriate choice of 6 for an arbitrary 

r } we have that r = m and 

* = x 
1-6 A „ „ 2 1 ' i-1 II Till T 

or 

l + a 
m 

6i = J T J ^ • Span{6i}i=l = 
Then M Y = <5 Z B.B.'X'vA. Since 

i-1 1 1 

m _-, 
Span (C) = S and from Theorem 2.2, (i), we know that Z B.B.'X'V Y = §s 

i=l 1 1 
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that 

This proves (a). A simple calculation shows that (b) follows when 
6 and 6. are substituted in Theorem 4.1, (c) by • n i J 1+a 

We will now study some particular examples where the previous 

results are applied. 

EXAMPLE 4.1. 

Let Q = I, {8.}?_1 a set of T-eigenvectors of I, y. = t.B., l i - i l l 2 
|| yjl x = t, 1 < i < p and C = L e t f i r s t notice 

II Y-J| T 2 = || Y^H2 = X^t, where the XX s are the eigenvalues of T, 

Then from the corollary we have 
P 1 P 1 1 -1 a = E y = Z — - = - . Tr [T ]. 
i-1 H y x I I x 2 i - l U i 

Then 

6 = £ 
t + Tr[T 1] 

And 

M.Y = t 

And 

c -1 t + Tr[T ] 

D ru , „ a t.Tr[T"1] sup Rq[Mc,y] - t ^ - -±5-
yec * t + Tr[T ] 

EXAMPLE 4.2. 
2 

Let C as in Example 4.1, but Q = a T (the Q-risk corresponding to 2 
Q = a T is usually called the prediction mean square error, see 

Brown et al. (1978)). In this example if T is very ill conditioned 

it can happen that r < p and then the method described at the end of 

Theorem 4.1 should be applied to find McY. 
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EXAMPLE 4.3. 
,2m fo ,p _£ m . £ T . _ A Let Q = a T, a s e t o f T-eigenvectors of I and y = t 

1 £ i £ p. Let C = As in Example 4.1 we must have 5 = 
rt n 

1 < i < p. Since || y. || T = t | | B.|| T = t we have 

P 1 P a = Z r = f . 
i-1 II vjl / 6 

From this 

6 3 

t + p * 

M.Y = t 
c t + p 

t 
Q 

2 2 2 2 and since II yll = a II yll T = a t for y-ec 

supRQ[Mc,Y] . 

The next theorem extends the results of Theorem 4.1 to limits of 

T-orthogonal sets. 

THEOREM 4.2. 
m 

Let C = {y.}T . U ( U S.) = C- U C„ such that C, is a set of 1 1=1 . . . I 1 2 1 i=r+l 
T-orthogonal vectors of ]RP , S. is a subspace of dimension 1 for 

r < l £ m, S£ J. T S y r < i, j £ m and Ĉ J. TC2. Let B£ 3 j| || , 

1 £ i £ r and 8X 6 S^, || B̂ JI T = 1, r < i £ m. 

Let S = Span(C2) and 8S the S-BLUE. Then 

(a) There exists a unique Q-minimax estimator M£Y for C given by 

MCY = MXY + g S , 

where M^Y is the Q-minimax estimator for C^. 
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(b) (i) sup Rn[M .Yl 3 sup Rn [M ,Y] . 
Y0C ^ C Y E C ! 

(ii) sup Rq[Mc, y] 3 sup R QtM x , Y ] + VarQ[03]. 
yGC yGC F 

PROOF. Proposition 4.2 can easily be extended to sets C of the form 

given in this theorem and then there is no loss of generality in 
r -1 m -1 considering M Y as M Y = E 6.0.0.'X'V Y + E 6.0.0.'X'V Y = M. Y+MJf. 

C i=l 1 1 1 i-r+1 1 1 1 ^ 2 

Now if 6. 4 1 for some r < i < m we have that sup Rq[M >y] 3 00 but 
/ Y6C * C 

sup Rn[0,Y] =» Tr [QT ] < °° and therefore M Y is not the Q-m.e. for C. 
Y6C C 

We then have r<i<m. Theorem 2.2, (i) implies that M2Y = 0s. 

Then for any y. 6 C- we have 

and then 

sup R [M ,Y] = sup R [M ,Y] 
Yec

 q c yec q c 

This proves (b) (i). Since 

R q [ M c , Y ] - B q [ M c , y] + VarQ[M^] + Var Q [ 0 3 ] , 

and Bq[Mc,y] = 0, for y e C2> we have that 

sup R [M ,Y] = sup R [M ,Yl + Var [ 0 s ] . 
y6C y€C1 ^ ^ 

This proves (b) (ii). This also implies that M£Y is Q-m.e. over C 

if and only if M^Y is the Q-m.e. over C^. This proves (a) and the 

theorem is proved. As a consequence we have 

COROLLARY 4.2.1. 

Let C = IY£}£_.£ U S = ̂  U S, such that C^ is a set of T-orthogonal 

vectors of TSP . S is a subspace of 1R and S L T C. . Then the 



87 

Q-minimax estimator McY is given by 

M Y = M-Y + 3S, c 1 ' 

where M^Y is the Q-minimax estimator for C^. 
m 

PROOF. Let C« 3 U S. as defined in the theorem, then Span(C„) = S 
i-r+1 1 

and M£Y is the Q-m.e. for C^ U C2> The result of the corollary follows 
from the fact that 

sup. R [M ,y] = sup R [M ,y] 
y6C^JC2 * y8C 

From Proposition 4.6 and the last theorem it can be seen that to 
P -i 

any estimator of the form MY = E 6.3.8.'X'V Y\0 <6. <1. l < i < p 
i-1 1 1 1 ' - 1 " - -

and {3.}? •, a set of T-orthonormal vectors of H P ; a set C is l i=l M 

associated for which MY is the unique Q-minimax estimator. We will 

use this fact to give an important property of the set of ALE's in the 

next proposition. 

PROPOSITION 4.8. 

Let Q a p.d. symmetric matrix. Let MY 6 L be of the form 
p -1 n MY = E 6.3.8.'X'V Y where 0 < 6. < 1 for 1 < i < p and {3.}K , is a i l l — i — — — l i=l 1=1 

T-orthonormal set of vectors of ]RP . Then MY is an ALE under the risk 
defined by Q. 

PROOF. It is enough to prove that there does not exist an M^Y 6 L and 

a YQ 6 H P such that 

R Q [ V Y ] £ RQ[M,Y3 , V y 6 ]RP , 
and 

R q t V V < V M l V -
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Let C^ the set of Proposition 4.6 or Theorem 4.2 for which MY is the 

unique Q-m.e. From the unicity of MY, the first inequality implies 

that MQY = MY but then the second inequality is not true. This proves 

the proposition. 

If MY is the unique Q-m.e. for a set C and sup Rn[M,y] = K , 
yec ^ c 

then MY is the unique Q-m.e. for any set C^ which contains C and such 
that sup R-[M,y] = K . In this way using Theorem 4.2 and Proposition 4.6 

Y6C1 ^ C 

for each estimator MY of the form given in the last proposition a unique 

ellipsoid { y | R 0 [ M , y ] < sup R q [ M , Y]} can be associated. This suggests 
Y S C M the next definition and Proposition 4.9. 

DEFINITION 4.3. 

The Q-bias matrix B?, of the estimator MY is 
M 

B2 = (X'M'-I)Q(MX-I). M 

The Q-bias ellipsoid of radius R, a n estimator MY will be 

(R) = { y| y' B£ Y <R2}. 

Using this definition we have that 

BQ[M,y] = y'B^ y 

PROPOSITION 4.9. 

Let MY be an ALE. Then there exist at least one value R for which MY 

is the unique Q-minimax estimator for • 

PROOF. From Theorem 2.2 if MY is an ALE it has the form given in 

Proposition 4.8. Then from Theorem 4.2 and Proposition 4.6 there exists 

a set C^ for which MY is the unique Q-m.e. Let R = sup B [M,y] then 
Y6CM the proposition follows from the fact that 
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B ^ ( R ) ' = (Y|RQ[M,Y] < sup R Q [ M , Y]> and that B^(R) contains CM. 
Y 6 C M 

Proposition 3.10 essentially says that if we are looking for Q-minimax 
estimators we need only to consider ALE's. Prop. 4.5 Theorem 4.2 a 
"reverse''to this statement. The next theorem, which is a new 
characterization for ALE s, summarizes those results. 

THEOREM 4.3. 
Let MY 8 L. The following statements are equivalent. 

(i) There exists a subset C of 1RP for which MY is the unique 
Q - minimax estimator . 

(ii) MY is an ALE. 

PROOF. The theorem is a direct consequence of Proposition 3.10, 
Proposition4.6 ; Theorem 4.2 and Theorem 2.3. 
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4.2. Q-MINIMAX ESTIMATORS OVER ELLIPSOIDS CENTRED AT THE ORIGIN 

The problem of finding Q-minimax estimators for ellipsoids centred 

at the origin is not new. Lauter in 1975 gave a representation for 

those estimators. The approach of this thesis allows clarification of 
\ 

a number of points arising from Lauter's work: 

(i) The expression given by Lauter is not very tractable when an 

actual Q-minimax estimator MY has to be calculated. 

(ii) Given an estimator MY it would be convenient to be able to discover 

on what ellipsoids this estimator is Q-minimax (we know from Proposition 

4.9 that if MY is an ALE there exist at least one). This "reverse" 

problem has not been treated by Lauter. 

Whenever the word ellipsoid will be used in the section it will mean 

ellipsoid centred at the origin. 

The section will be organized as follows: 

Proposition 4.10 shows that a linear estimator cannot be a Q-minimax 

estimator over two ellipsoids with constant Q-risk on their border. 

The ellipsoid over which an ALE is Q-minimax estimator and has constant 

Q-risk on its border is characterized in Theorem 4.4 and Theorem 4.5. 

Corollary 4.4.1 is a characterization of the ellipsoid when the ALE is 

represented in its usual form; it is useful because in many 

situations ALE's are given in such representation. Theorem 4.6 

characterizes the ALE's which are Q-minimax estimators over only one 

ellipsoid. Lemma 4.1 plays an important part to obtain this result 

and Theorem 4.7. Corollary 4.6.1 translates Theorem 4.6 in terms of 

the usual representation of ALE's. Then some examples are studied 

where those results are applied, those examples include ridge estimators, 

generalized ridge estimators and estimators of the form t3. A small 
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digression is made just to show possible connections of this work 

with the "Empirical Bayes Rules". Finally Theorem 4.7 gives an explicit 

procedure to calculate Q-minimax estimators over a wide class of 

ellipsoids. The section is closed with some examples where Theorem 4.7 

is applied. The next proposition is just the completion of 

Proposition 4.9 and will play an essential part in obtaining the main 

results of the section. 

PROPOSITION 4.10. 

Let MY = AX'V ^Y an ALE. Then there exists a unique value R, 

which depends on M and Q, such that MY is the (unique) Q-minimax 
Q / x estimator for B.ARJ. M 

PROOF. From Proposition 4.9 we only need to prove the unicity of R. 

Suppose that there exist R ^ R such that MY is also Q-m.e. for 
P P 

b2(r). If A » Z 6.0.0.' let A = Z d.0.0.' with y(l-6.) = (1-d.) M 0 i l l y i l l i i 

and M = AX'V \ We then have 
y y 

sup B [M ,Y] = y2 sup B [M,Y] 3 y2.X2, 
Y6BQ (X) Q y yQT& (X) Q 

M M 
and 

VarQ[Mv] = I (1 - U ( l - 6 . ) ) 2 || B.|| Q
2 . 

Therefore 

2,2 ? ,, ,, „ vy2„ „ „ 2 sup Rn[Mi(,Y] 3 y X + Z (1 - y(1-6.)) || 0. || * = f(y,X) 
YGBS (X) Q y i=l i i Q M 

Then a necessary condition for M Y to be Q-m.e. over B/, (X) is y M 
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This is equivalent to 

2 P . . .2 
y(A^ + E ( l - f i . r i l B . I I ^ ) - z (1-6 )|| 3 . I L L 

i=l 1 1 ^ i=l 1 x 

Then if MY is Q-m.e. for bQ(r) and bJ/r,.), since MY is M Y when M v M O y 
y 3 1, we must have that y satisfies simultaneously 

u(R2 + I (I-6.)2|| Bjl q 2) = J U-6.)|| 6.11 Q 2 , 

U(R0
2
 + j (1-6.)2|| 6.11 Q 2) = j (1-6.) II 6.11 Q 2 . 

and y = 1. But this is impossible if R f R ^ . This proves the 

proposition. The next theorem characterizes this unique ellipsoid for 

a wide class of ALE's and gives the Q-risk on its boundary. 

THEOREM 4.4. 
P - i 

Let MY = E 5.3.8.'X'V Y an ALE with 0 < 5 . <1, 1 < i < p. 
i=l 1 1 1 1 - -

then 

(a) MY is the unique Q-minimax estimator over the ellipsoid 

P 2A. = (( Z (1-6.)6. || 6. H-2)2). M M i i " i " Q 1=1 

(b) The value RQ [ M] of the Q-risk of MY on the boundary of C^ is 

v M i = j i 5 i W • 

P R O O F . The Q-bias matrix for MY is 

B^ = T( E B.'QB. (1-6.)(1-6. )8.8. ')T. M l k l k i k l<i,k<p 

R Let y. = yz—. v || .—n— . 8. . Then it is easy to check that l (1-6^ || BiH Q 1 
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B q [ M > Y . ] = Y . ' B Q Y i = R 2 . 

Now if the y.'s satisfy the additional condition 
1 

p A i 

i - 1 1 _ 6 i II T i l l / 

from Proposition 4.6, (a), we know that MY will be the Q-m.e. for 

Since from Proposition 4.10 there is only one R such that 
Q< 
W MY is the Q-m.e. for B^Cr), R must satisfy 

p 6 (1-6 )2 

From this (a) is readily obtained. From the above equality we have 

R2 « I (l-6.)6. || Bi|| 2 . 
1=1 X 

Then for any y belonging to the boundary of C^ we have 

B [M,y] = Z (1-6.)6.|| Bj| : 

i=l 

P 2 2 Since Varn[M] = E 5.|| 0. || , we have for any y in the boundary of 
i = 1 i i Q 

R q [ M , Y ] = I (l-6.)62i|| B.|| q2 + I 6.2|| B.|| Q
2 3 I 6 . | | B.|| Q

2 . 

This proves (b) and the theorem is proved. 

The next corollary translates the result of the theorem to the 

"non-shrinkage" representation of MY. 
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COROLLARY 4.4.1. 

Let G a p.d. symmetric pxp matrix. Let MY = (T+G) ̂ X'V 1Y. Then 

(a) MY is the unique Q-minimax estimator for 

iQ r-LA" CM " BM ((TrtB^G-1])2) . 

(b) The Q-risk RQ [M] at any point of the boundary of C^ is 

R q [ M] = Tr[(T+G)-1Q]. 

P -i 
PROOF. From Theorem 2.4 if MY = E 6. 0.0.'X'V Y we must have . . i l l i=L 

p 1-6. 1 p 6. 
G = T( E — 3 . 3 . 1 )T. Then from Lemma 2.1,(d) , G = E 7-7- 3.0.' 

. - 6 . 1 1 1 - 6 . 1 1 i=l 1 i=l 1 
Therefore 

0 - 1 p 5 4 \ G = T( E 3.'Q3, (1-6.)(l-6. )0.3, 1 )T( E t~-0.0.'). M . . ̂  1 k 1 k i k . , 1-6. 1 1 l£i,k<p i=l 1 

Using the T-orthonormality of w e bave 

B^ G"1 = T( E (1-6.)6.|| 3- II * 3.3.') . M .. 1 1" 1" Q 1 1 1=1 

Therefore 

Tr[B^ G"1] = I (1-6.)6.|| 0.|| 2 . M 1 1 1 Q 

Then (a) is implied from Theorem 4.4, (a). To see (b) notice first that 

-1 p 
(T+G) = E 6.0.0.' . 

i=l 1 1 1 

And then 

-1 p p 9 Tr[(T+G) Q] = Tr[ E 6.0.0.'Q]= E 6. || 0. j| = Rn [M] . i=l 1 1 1 1 1 Q ^ 

This proves (b). 
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The next theorem generalizes Theorem 4.4 to all the ALE's. 

THEOREM 4.5. 

r -I P -1 _ 
Let MY = E S.B.B.'X'V Y + E d.B.B.'X'V Y = M..Y+8 an ALE. • i i i i j.I i i i 1 

1=1 i=r+l 
with 0 < 6. <1, 1 < i < r (and S. = 1 for r<i < p). Then — l — — i — 

(a) MY is the unique Q-minimax estimator for the ellipsoid 

C M A ( L - V 5 I L L 6 I L L Q 2 ) % ) • 
1=1 

(b) The value Rq[M] of the Q-risk of MY on the boundary of C^ is 

R [M] = Z 8 || 3 || 2. 
1=1 

PROOF. The argument of Theorem 4.4 can be followed through to 
X* 

see that if R2 = ( E (1-<5.)S. || B. || A ) and y. = , - . A _ ., . 8. 
i = 1 i i" i" Q l (l-6i)|| 0i|| Q i 

1 < i < r , the estimator MY is the unique Q-m.e for (y^^-^ * 

If C = {y|Rq[M,y] £ Rq[M,yx]}, we also have that MY is the unique Q-m.e 

for C. Since 

Y 
£ (( z ( l - o s j l B.|| _

2
)*) = c , 

i=l 
r p 

(a) follows from the fact that E (1-6.)6.|| 8. II A = E (1-6.)6.|| B.|| l i' i" Q . . I i" i" i=l i=l 
To prove (b) we have that 

R [M] = R [M ] + E || 8. H 2 . 
x x i=r+l v 

Following similar steps as in Theorem 4.4 (b), it can be seen that 

V M 1 ] = M M Q2 * 

(b) follows from the fact that <5. =1, r < i < p . 
i — r 
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So far we have proved that for any ALE MY there is a unique 

ellipsoid C^ for which MY is Q-m.e. and R^[M,y] is constant for y on the 

boundary of C^. The question now arises if there is no other 

ellipsoid C where MY could be Q-m.e. (with, of course, non constant 

Q-risk of MY on the boundary of C) . To treat this question we will 

first prove a useful lemma. Given a n.n.d. pxp symmetric matrix it, 

the unit ball of it will be denoted by B^, that is B^ = {y I y H y £ !)• 
gQ M We have proved in Theorems 4.4 and 4.5 that if it = — t h e n MY is the 
R 

unique Q-m.e. for B^. We will see in the next lemma that for any tt 

there exist a unique estimator MY of the form M Y = AX'V ^Y, 
B^ M with A symmetric, such that ir = —y . 
R 

LEMMA 4.1. 

Let u a n.n.d. , symmetric pxp matrix. Then there exists a unique p 
symmetric matrix A = E 6.8.8.' ((8.}?, is a T-orthonormal set of . . l i i i i=l i=l 
R P) such that 6^ £ 1, l £ i £ P and 

B Q ' 
„ = iAT) . _M_ ( 4 2 1 ) 

j (1-6.)6.|| 6.11 2 R 

1 = 1 

(Here M = AX'V1'). Let H the unique n.n.d. symmetric matrix which 

satisfies T îrT * = HQH. Then we have 

R = , (4.2.2) 
1 + Tr[nT ] 

and 

A = T'1 - RH (4.2.3) 
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PROOF. We have 

(I-TA)Q(I-AT) = T(T"1-A)Q(T"1-A)T 

Then if (4.2.1) holds 

R ^ ' W " 1 = (T"1-A)Q(T"1-A). (4.2.4) 

Given a matrix H, we will call a Q-representation of H a set 
p 

{ (X .,q.)}? such that H = Z X.q.q.' and the set {q.}? , is a set l i i=l # I I I ni i=l 
of Q-orthonormal vectors. From Lemma 2.1 at least one of such 

representations exist if H is a symmetric matrix. If H is also n.n.d. 

then X^>_0, l ^ i < p . It is evident that H = K if and only if H 

and K have the same set of Q-representations. If T \rT ^ = HQH and 

it and Hare n.n.d. symmetric matrices then the equality 

P 2
 p p 

Z X. q.q.1 = ( Z X.q.q.f)Q( Z X.q.q. 1) .. l ni l . , l 1 1 . . i l l 1=1 1=1 i=l 

establishes in the obvious way a bijection between the Q-representations 

of T îrT 1 and those of H. Then if T \ t 1 = KQK and K is a n.n.d. 

symmetric matrix the set of Q-representations of K is the same as the 

one of H, hence K = H. Then there is a unique n.n.d. symmetric 

matrix H such that 

- 1 - 1 T ttT = HQH . 

Since S, < 1, 1 < i < p, we have. l-6^:>0, l £ i < P and therefore 

-1 p 
T - A = Z (1 - 6 . ) $ . 0 . ' 

i=l 1 1 1 

is a n.n.d. matrix. From this, the uniqueness of H and (4.2.4) we have 

RH = T 1-A. This proves (4.2.3). Now 
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9 P 9 P P 
R = E (1-6.)6.| 8.|| * 3 TrC( E (1-6. )8. 8. ' )T( E 6.8.8.') Q] , 

iol 1 l M Q i-1 1 1 1 i=l 1 1 1 

= Tr[(T"1-A)TAQ] = Tr[RHT(T~1-RH)Q], 

= R Tr [HQ] - R2 Tr [HTHQ] 

= R Tr [HQ] - R^rtTTT"1] 

From this we obtain 

d - Tr[HQ] 
1 + Tr[nT 1] 

This is (4.2.2) and the lemma is proved. It should be noticed that 

we do not have in general 0 < 6.. In fact for (4.2.3) to hold, 6. i l 
may sometimes have to be negative for certain 1 £ i £ p. Now we will 

characterize the ALE's which are Q-m.e. for only one ellipsoid. 

THEOREM 4.6. 
P _i 

Let MY = E 6.8.8.'X'V Y. Then the following statements are 
i-1 1 1 1 

equivalent: 
(a) There is only one ellipsoid (centred at the origin) for which MY 

is the Q-minimax estimator. 

(b) 0 < 6. £ 1 j 1 < i < p. 
1 Q B M 

PROOF. Let it = — and D a n.n.d. symmetric pxp matrix. Let Bp, 3B^ 

and 3Bn denote the unit ball of D, and the boundaries of B and Bp. 
L» IT D respectively. Suppose that MY is Q-m.e. for Bp. We have three 

possibilities: Bp. <2- B ; Bp.CZ B and 3Bp, PI 3B - <b and finally B n C B D / f f D i r D t t • ' D t t 
and 8Bp f) 3B^ ? <f>. Let a = sup Rg[M,y] and C the ellipsoid defined 

y6BD 
as C = {y|RQ [M,y] £ a}. Then if Bp B^, we will have that MY is 

Q-m.e. on B and C, the Q-risk of MY on 3B and on 3 r is constant and 
IT 7T 

B^ C. This contradicts Proposition 4.10. Similarly, if Bp CI B^ and 

3Bp fi SB^ = <j> we reach a contradiction with Proposition 4.10. The last 
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possibility we are left with is 3Bp. fl 8B <f> and Bp. CI b . Let 
d it d it 

i00 • • {it } - such that u is a n.n.d. symmetric matrix for n > 1, ir tends n n=l n — n 
to it when n tends to infinity and if B is the unit ball of ir we have n n 
Bp.CZ B C B , for n > 1. From Lemma 4.1, for each tt there exist a u n it 1 — n 
unique matrix A (defined by the Lemma) such that n 

n n, , „ n tends to tt, A = Z 6. 8. 8. and 6. < 1, 1 < l < p. Now since ir n . , i i i l — — — n i=l 
from the uniqueness of A^ and A we have that A^ tends to A. Since 

0 < 6. for 1 < i < p, there exist k such that if n > k, 6.n > 0 for l — — l 
1 < i < p; but then the estimator M Y = A X'V \ is an ALE (for n > k) — — n n 
and from Theorems 4.4 and 4.5 M Y is the Q-m.e. for B . Also n n 

sup R
n[M ,y] < sup R_[M ,y], because B C B . 

y6BD Q n ~y6Bn Q n D n 

sup Rn[M ,y] < sup R_[M,y] , because M Y is the unique Q-m.e. for B . 
yQB n y6B n n 1 n n 

sup RQ[M,y] = sup R q [ M , y], because 3 B d H 3B i <f>, 
y6Bn ^ y6BD g v 

BJJCZ B ^ C B^ and the Q-risk of MY on 3B^ is constant. Joining those 

inequalities we obtain 

sup R q [ M ,y] < sup R 0 [ M,y] 
yeBD ^ y6BD ^ 

Thus MY is not the Q-m.e. for B^. This proves (b) implies (a). 
r -i 

To see the other implication suppose MY = Z 6.8.8.'X'V Y be an ALE 
i-1 A 1 ^ 

with 0 < <5̂ , and r < p. Let S = Span^^K^. Then following 

the arguments given in Theorems 4.4 and 4.5 it can be seen that MY is 

the Q-m.e. for C^ and for C^ f) s. Then MY is the Q-m.e. for any 
Q n Q 

ellipsoid B such that C M '' S C B C C^ . This proves the second 

implication and completes the proof of the theorem. 
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COROLLARY 4.6.1. 

An ALE MY is the Q-minimax estimator for only one ellipsoid 

(centred at the origin) if and only if there exist a n.n.d. symmetric 
- 1 - 1 

matrix G such that MY = (T+G) X'V Y. 

PROOF. The corollary follows from Theorem 2.4 and the last theorem. 

COROLLARY 4.6.2 

(i) Each ridge estimator is Q-minimax for only one ellipsoid (centred 

at the origin). 

(ii) Each estimator of the form t0, with 0 < t < 1, is the Q-minimax 

estimator for only one ellipsoid (centred at the origin). 

PROOF, (i) is a consequence of Corollary 4.6.1 and the form of the 

ridge estimator, (ii) follows from Corollary 4.6.1 and that 
TS = ( T + ( I - M R V V ^ Y . 

The previous results will be applied to some particular estimators 

which are widely used in practice, 

EXAMPLE 4.4. 
M Y = (T+al) "Sc'V lY, a > 0. The risk is given by Q = I (mean 
a 

square error). Corollary 4.4.1 is useful in this case. We have 

G = al, G"1 = — I, ' a ' 
B1 = (Td+al)"1 - l)((T+al)"1 - I), a 

TrtB1 G"1] = - TrtB1 ] . a a a 
And 

R_[MJ = Tr[(T + al)"1] j. a » 
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2 2 
In most applications V has the form V = a T, where a is "unknown" 

and T is "known". Let Tn = X'r^X and G = I. Then 

(T+G)"1 = a2(T0+kl)"1 and M^Y = (T +kl)"1X'r"1Y , which is the usual 

form of ridge estimators. Then 
Bk = (TQCTQ+IcI)"1 - l)((T0+kl)"1T0-D. 

I 1 2 t Tr[Bk G" ] = Tr[Bk ] . 

And 

Rx [M̂ ] = a2 Tr[(TQ + kl)"1] . 

Some insight can be obtained if the last results are represented using 

a set {v.}? . of eigenvectors of T„ and their eigenvalues X.. We will have l 1=1 0 l 
I P k 2 

= ' i V • 

n. rt,1 o2 I , k N 2 2 I k Tr [B, G ] = T~ Z (rrr) = a E k k . t vX.+k' . x 2 9 
i=l i i=l (X.+k) 

i 
and 

2 p 1 
1=1 i 

EXAMPLE 4 . 5 . 
P 1 Using the same notation as in Example 4.4, let Mĵ Y = Z + k

 v£v£' 

~ i=l i i 
X'V Y, (estimators of this kind are often called generalised ridge 
estimators). The risk as above will be given by Q = I. It is easily 

realized that all the formulae obtained above in terms of eigenvectors 

and eigenvalues of TQ remain valid for M ^ if we replace in them k by 

k., that is l 
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and 

< • £ ( i ) 2 V i ' • 1=1 l 1 

I -1 2 p ki Tr [B G L] = a Z y , 
5 i=l (A.+k.A l l 

W • ° 2 x / k 7 1=1 1 1 

EXAMPLE 4 . 6 . 

We will study the estimators given in the two previous examples but 

with the risk given by Q = TQ (prediction risk). We again choose the 

representation of M^ and M^ in terms of eigenvectors and eigenvalues 

of T . We then have 

Bk° • < w k i r l - T
0
( ( T o + k l ) " 1 , r o " I), 

P k P k = ( £ 7-tt: v.v. ')t ( z t A j - v - v - 1 ) * . .. A.+k i i 0 . - A.+k 1 1 ' i=l l i=l i 

p k A. 
I ^ v. v. ' 
i=l (A.+k) i 

2 i i 

And 

T P RA. 
Tr[B,° .G"1] = a2 Z —9 

* i=l (A.+k) 
i 

^ [Mk] = Tr[(T+G)"^T ] = a2 Tr[(T +kI)"1T ] 

o P 
~ a .L rAk • 1=1 i 

Again as in the preceding example, the formulae for M^Y are obtained 

from the above ones simply by substitution of k by k. in the right hand 

side of the formulae and k by k in the left hand side of the formulae, 
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EXAMPLE 4.7. 

Another very widely used ALE is MfcY = t8» where 0 < t < 1. We 

will study first this estimator for the risk given by Q = I. We have 

that MfcY = tg = (T + (i - D D ' V v " ^ and then G = (•£ - 1)T is a p.d. 

matrix because 0 < t < 1. We can apply Corollary 4.4.1. Since 

(T+G) 1 = tT 1 we have 

B* = (TT"1t-l)(tT"*1T-l) = (1-t)2 I. 

Tr[B* G""1] = (1-t)2 TrtT-1] = (l-t)t Tr[T_1] . 

And 
-1 -1 2 -1 R][[Mt] = Tr [(T+G) ] = t.Tr[T ] = o .t.Tr[TQ ] . 

EXAMPLE 4.7.' 

The same estimator as in Example 4.7 but with the risk given by 

Q = Tq. We have 

B̂ O = (1-t)2 TQ . 

Tr[B^0 g ~ 1 } = (l-t)t TrH^T""1] = a2(l-t)tp. 

And 

R t [M ] = Tr[(T+G)"XT ] = a2tp . 
0 

(p is the number of dimensions of the parameter 8). 

EXAMPLE 4.8. 
The example we are going to consider is a particular case of all 

the previous examples of this section. We will suppose that T = I. 
a 

Then we have T = I and then there is no difference between the mean 

square error risk and the prediction risk. Also in this case 
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M^Y = MfcY if i - 1 = k. For this case we have 

B* = (l-t)2I . 

Tr[Bp G"1] = cr2(l-t)tp. 

Rx[Mt] = a2 tp. 

A case where Example 4.8 applies is when the mean 0 of a vector Y 
2 is to be estimated and Y is assumed to be distributed as N(0.o I ) P 

(N accounts for normal and I is the identity in 1RP ) . In this case P 

we have 

Y = 0 + e , (i.e. X = I). 

VarCe] = c r2I = V . 

T = X'V-1X = \ , TQ = I. 
a 

And the GLSE 0 is 0 = Y. 

Although it is not in the scope of this thesis to treat this kind 

of problems we will make a small digression just to point to some 

connections between this work and Empirical Bayes Rules. With this 

purpose we will enounce a theorem from Baranchik (1964) in our 

terminology. 

BARANCHIK THEOREM. 

Let Y = 0 + E , e ̂  N(0,C J 2 I ) , 0 G ]RP , p > 3. Let || Y | | 2 = S . 

Let f(s) a function of s with values in ]R . If f(s) is a nondecreasing 

function of s, lim f(s) = a and 0 < a 2 the estimator 

MY = (1 - o2(p-2) ) Y, 
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satisfies 

RICM,0] < Var [0] , for all 0 6 1RP . 

Since in this case 0 = Y, MY can be put in the form 

MY = t(0)0 , 

where t(0) is a shrinkage factor which depends on 0. 

When in estimation problems there is available .a good global 

estimator and a set of estimators which locally are better than the 

global estimator, one is tempted, instead of using only the global 

estimator to estimate the value of the unknown parameter, to refine 

the inference procedure as follows: 

(i) First obtain, using the global estimator, an estimate of the 
region where the unknown value of the parameter lies. 

(ii) Then use to estimate the unknown value of the parameter an . 

estimator which is better than the global estimator in the region 

estimated (by the global estimator) . 

In our context this procedure would correspond to 

(i) Estimate a region where 0 lies using the GLSE 0. 

(ii) Estimate 0 with the Q-minimax estimator corresponding to the 

region estimated by 0. 

It is reasonable to think that in those circumstances the region 

estimated by 0 should contain 0. This it will be seen does not necessarily 

hold. From Example 4.8 the ellipsoid where t0 is I-minimax is given by 

Ct - {0 (l-t)28'I0 < a2(l-t)tp}, 
or 

c t = (8 II II (4.2.5) 
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. t N% 
Therefore it is a sphere of radius ^yZj; P' anc* center the origin 

In the Baranchik's Theorem we have 

t(s) = (1 - a2(p-2) ) • 

Hence 

2 t(s) • , 2, f(sk p /, n 
a TGG) p = 3 ( 1 " a (P"2) — ) f(s)FP-2) • (4'2-6) 

Then t(s)8 is the I-minimax estimator for the sphere 

{6 3 | | 2 < 3 ( l - a 2 ( p - 2 ) . 

Therefore the "Baranchik rule" could be interpreted as follows: 

(i) The estimated region where 8 lies is the sphere centred in the 

origin and of radius given by (4.2.6). 

(ii) Use as estimator the I-minimax estimator corresponding to this 

sphere. Baranchik's Theorem says that (under the hypothesis of the 

theorem) this procedure is better in the mean square error sense 

(1-risk) than only to estimate 8 using the GLSE 

Now we will use Baranchik's Theorem to see what estimates of the region 

where 8 lies will give us a better procedure than the GLSE 8 (under 

the assumptions of the theorem) . 

Let C(0,a|| B|| ) denote the sphere of center zero and radius 

a|| §|| . Then from (4.2.5) and (4.2.6) we have 

a 2 = ( 1 - a 2 ( p - 2 ) " f (s ) (p—2) 

A few calculations show that 

f ( s ) • • 2 3 2 • (4-2-7) r a s + a p 
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Then for a fixed a, this function is nondecreasing in s and 

lim f(s) - -E- -L . p—z z s-*» r a 

Then f defined as above satisfies Baranchik's Theorem if and only if 

a 

Then Baranchik's Theorem implies (under the hypothesis of the theorem) 

that the two step procedure proposed will be better than the GLSE if 
one takes as..the estimate of the region where 0 lies any sphere 

A p 2 C(0, a|| 3J| ) with 2(p-2) — a * l n Partfcu^ar w e bave that any sphere 
centred at the origin which contains Y is a good estimate. We also have 

that to be a good estimate it does not need to contain Y, because a can be 

less than 1. If f(s) is substituted in (4.2.6) by the expression in 

(4.2.7) a simple calculation shows that the shrinkage factor corres-

ponding to a particular value a is 

2 
\ -

 a s t(s) = 2 2 a s + <y p 

We will end the section by giving a theorem which provides the 

tools to calculate the Q-minimax estimators for a wide class of 

ellipsoids and some examples where it can be applied. 

THEOREM 4.7. 

Let it a n.n.d. symmetric matrix and B^ its unit ball. Let 

T îrT 1 = HQH, where H is a n.n.d. symmetric matrix. Then if 

A = T*"1 Tr^HQ]____ h ̂  0, (4.2.8) 
1 + Tr [TTT' ] 

the Q-minimax estimator of B is given by 
7T 

MY = AX'V~1Y . 
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PROOF. From Lemma 4.1 we know that if (4.2.8) holds, MY is an ALE. 

The Q-bias matrix of MY is 

& = T(A-T"1)Q(A-T-1)T -( Tr[HQ] , )2« . 
1 + Tr[irT ] 

Now following the steps of Lemma 4.1 backwards we see that 

( T r [ H ( V ) 2 - I u - V M q2 > 

1 + Tr[7rT L] i=l i i i W 

P 
where A = E 6.0.0.Theo'rem 4.5 allows us to conclude that MY is 

i-i 1 1 1 
the Q-m.e. for B . 

7T 
The theorem is useful in the sense that it reduces the problem 

of finding Q-m.e.'s for a wide class of ellipsoids to one of finding 

Q-eigenvectors and Q-eigenvalues of a matrix; this is because H can 

easily be obtained from the representation of Tn T̂ in terra of 

Q-eigenvectors. It seems difficult to reduce the problem to a 

Q-eigenvector problem when the ellipsoid does not satisfy (4.2.8). 

The next examples are an application of the theorem. 
EXAMPLE 4.9. 

Let ir s i I and the risk given by Q = I. Then 

-1 -1 1 -2 „ 1 -1 T ttT = r T , H = -r T , 
' t* 

and 

V = — 

t + TrCT ] 

(This result has already been obtained by Lauter, 1975). This estimator 

is the same as the one in Example 4.1. 



EXAMPLE 4.10. 

Let it = i I and the risk given by Q = T . Then 

-1 -I 1 -2 u 1 _-3/2 T irT = — T , H = — r T 
at2 

and 
. 

M^Y = [I - a T r [ T . T ] 8 . 
t + Tr[T ] 

EXAMPLE 4.11. 

Let 7T = i T and the risk given by Q = I. Then 

-1 -1 1 -3 TT 1 -3/2 T TT T = 7 T , H = -r T , 
11 t* 

and 

Tr -% -
V = [ I " t + P • T 1 6 

EXAMPLE 4.12. 

and 

Let IT = T and the risk given by Q = TQ. Then 

T"1,!"1 = i f 1 , H = A * " 1 > > 
at 

M Y = [1 - ] 3 = [-L-] B . 
TT t+p t+p 
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CHAPTER 5 

This chapter studies different properties of ALE's. It has 

three sections: 

The first section extends results from Hoerl and Kennard (1970), 

Farebrother (1975) and Obenchain (1978) among others. The region 

where an ALE MY has a lower matrix quadratic risk than the GLSE 8 is 

given; this region is an ellipsoid. In Theorem 5.1 and Corollary 5.1.1 

different representations and properties of this ellipsoid are given. 

Theorem 5.2 extends the results of Theorem 5.1 to the non full 

rank case. 

The second section generalizes an optimal property of principal 

component estimators proved by Fomby et al (1978). It is seen that 

any S-BLUE enjoys this optimal property if the appropriate Q-quadratic 

risk is used (Theorem 5.3). This leads to a generalization of 

the idea of the Marquardt's estimators. 

The third section studies a property, proved by Kuks et al (1972) 

for some ALE's. Theorem 5.4 shows that this property characterizes 

ALE's. Theorem 5.5 explores further in some aspects of this property. 
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5.1 WHERE IS AN ALE BETTER THAN THE GLSE? 

The section is divided in two parts. The first part concentrates 

on the study of the problem for the case when X is a full rank matrix; 

the main result is given in Theorem 5.1 and then it is shown how 

this result is connected to previous work. The second part generalizes 

Theorem 5.1 to the case when X is not full rank. We will, start giving 

some definitions. 

DEFINITION 5.1. 

Let MY SL. The matrix quadratic risk of MY at 0, R[M,0] is 

given by 

R[M,0] = Eg[(M -0)(M -0)'] . 

DEFINITION 5.2. 

Let M^Y, M2Y 6 L . We will say that M^Y is better than M2Y at 3 

if and only if R[M^ ,0] < R[M2,0] . 

When for all 0 e W C l p , M^Y is better than M2Y at 0 we will 

say that M^Y is better than MqY for the region W. 

When R[M1}0] £ R[M2,0] we will say that M^Y is as good as M9Y at 0. 

MjY is as good as M^Y for the region W will have the obvious meaning. 

Since the work of Hoerl and Kennard (1970) conditions which 

define the region where a ridge estimator is better than the G L S E 
TfceoUU CWM) 

have been studied. For the estimator M ^ = (X'X + kl) X'Y gave 
2a2 the following condition: if k < then M^Y is better than the GLSE 

2 
at 0. (Here V = a I). In 1976, Farebrother characterized the region W^ 

where the estimator M^Y is better than the GLSE as follows 

Wk = {0|3'U[| I + A"1]"1 U'0 < a2} , 

where X'X = U' A u ? A is diagonal and U orthogonal. 



1X2 

P 
Let the generalized ridge estimator M-Y - Z r— v.v.'X'Y 

§ i=i xi 1 1 

(where X̂  are the eigenvalues of X'X and v^ are "their" corresponding 

eigenvectors). In 1978, Obenchain defined the ridge function of M-Y o— 
P ~ 

RF(6) = Z —i , 
i=l 1 1+6i 

2 a.2X. p 
where 6 = (6.,...5), cb. = — — - and 8 = £ a. v. 1 p l 2 . - i i r a i=l 
His main result could be read as follows: 

Let 5 = (5. ,... ,6 ) such that 0 < 6. <1, i = l ... p. Then 1 p — i r 

(i) M^Y is better than the GLSE at 8 if and only if RF(6) <1. 

(ii) M^ is as good as the GLSE at 8 if and only if RF(5) < 1. Kawai 

and Okamoto (1979) extended those results to the case 0 < 6. < 1, — l — 
1 < i < p. 

We have then that n toba id Obenchain, Kawai and Okamoto 

have answered the following question: given a value 8 of the parameter 

what are the conditions on the shrinkage factors of a ridge estimator 

or a generalized ridge estimator under which the estimator is better 

than the GLSE at 8? Farebrother instead has answered the question: 

given a ridge estimator M^Y what are the conditions on 8 under which 

M^Y is better than the GLSE at 8? The first point is that those two 

questions have the same answer, in the sense that the expressions given 

as answers can be interpreted in two ways: (i) if one considers 8 fixed 

then they are conditions on k or 6. (ii) if one considers k or 6 fixed 

then they are conditions on 8. We will choose, to express our results, 

to define conditions on 8 given MY. The next definition will be useful. 
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DEFINITION 5.3. 

Let MY 8 L, the good region w,, of MY will be M 

WM = {0|R[M,0] < R[0] }. 

Here R[0] is the matrix quadratic risk of the GLSE and it does not 

depend on 0. 

The second point is that ridge or generalized ridge estimators are 

ALE. It is then natural to ask what is the good region for an 

arbitrary ALE MY? The next theorem and corollaries will give an 

answer to this question. A generalization of the expression obtained 

by Farebrother (1976) and its equivalence to a generalization of the 

ridge function of Obenchain (1978) is given. 

THEOREM 5.1. 
p -1 Let X be full rank and MY = Z 6.0.0.'X'V Y an ALE. 
i=l 1 1 1 

(a) The good region of MY is 

p 1-6. WM = (81 8 1 T( Z 0.0. ')TB < 1} . M ' 1 + 6 . 1 1 — 1=1 l 

(b) If 0 < 5. < 1, i = l,...,p; let G such that MY = (T+gA^X'V^Y, 

then 

WM = {8|8,(2G"1+T"1)"18 < 1}. 

PROOF. We first will consider that 0 < 6 . <1, 1 < i < p. From l — — —1 i x g. Theorem 2.4 we have MY = (T+G) X'V Y with G = TO—-3- 8.8.')T a p.d. 6X i i -I 

matrix. Let A = (T+G) , we have that 

R[M,0] = (AT-I)B8'(TA-l) + ATA, 



114 

and 

R [3,3] = T"1. 

Therefore 

R[M,0] < R[3,3] , (5.1.1) 

if and only if 

(AT-I)33f(TA-I) + ATA < T"1. 

Let D = T ^-ATA; since 0 < < 1, 1 £ i £ P» D is ap.d. matrix. 

Then (5.1.1) is equivalent to 

ct,D~1(AT-l)33,(TA-l)D"1a £ a,D~1DD~1a , V a 6 ]RP . 

Let y = (AT-I)3, then the last condition is equivalent to asking 

( Y l D " 1 A ) 2 £ 1, V a 6 1RP such that a'D^a = 1. 

This happens if and only if 

, -1 Y D Y £ 1 . 

Now if we notice that D 1 = A 1(A 1T 1A ^-T) 1 and (TA-I) = (T-A 

the last condition can be written as 

3'(T-A"1)(A"1T"1A"1-T)"1(T-A~1)3 £ 1. 

Since A ^ = T+G we obtain that (5.1.1) if and only if 

0,(2G""1+T~1)~18 <1. (5.1.2) 
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This proves (b). Now using Lemma 2.1 an alternative form for (5.1.2) 
can be obtained; we have 

-1 P 6i 
i=l 1 6i 1 1 . 

-1 -1 p 5i p 5i+1 
2G + T = E (2 + 1)8.6.' = E 

i=l 1_6i 1 1 i=l ^ i 1 1 

And 

-1 -1 -1 P 4 
(2G +T ) = T( E — r 8.3.')T. 

i=l 1+6i 1 1 

Then (5.1.1) is equivalent to 

p 1-6. 
6'T( E TTT^ 3.3.')To < 1. (5.1.3) . , 1+6. 1 1 w — 1=1 l 

By continuity this last inequality remains true even if the restriction 

on 6^ is dropped and we allow 0 < 6. < 1, i = l,...,p. This proves 

(a) and the theorem is proved. 

The result in (a) tells us that the good region for an ALE 

P - 1 
MY = Z 6 . 3 . 3 . ' X ' V Y 

i=l 1 1 1 

th 
is an ellipsoid whose i T-main axis is in the direction of 8. and 

1+6. ± 1 

has T-length equal to 2(, /) 2 (if 6. = 1, this implies that the ellipsoid i 1 
th 

is in fact a cylinder; the main i T-axes is the subspace spanned 

by 6J. 
2 2 

In most practical situations V = a T (where a is "unknown" and 

T "known") we will take this into account to change the expressions 

given in (a) and (b) of the theorem and relate them to previous results 

and notation. 
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(T+G)"1 = (X'r^X + <32G)~lo2 . 

k 
Making G = — I we obtain 

a 

(T+G)~1X'V"" 1Y = (XT^X + kD^x'r"^. 

And (b) becomes 

2 
0 ' ( 2 t - I + ( X f r " " 1 X ) ~ 1 a 2 ) ~ 1 8 < 1 . k — 

Or 

8'(f I + ( X , r " 1 X)" 1)" 18 £ a 2. 

Let U, A, y such that X ' A x =U' A D and y = U'8 then the last 

inequality becomes 

•<£ I + a'VL < a 2 Y -k 

which is the condition (14) of Farebrother (1976). 

We will see how (a) implies the main result of Obenchain (1978) 
P 

and Kawai et al (1979). Let 0 = Z b.0., that is: the components 
i-i 1 1 

of 0 in the T-orthonormal basis 

{8.}? - are {b.}? -i=l I i=l 

We have: 

P 1-6. 
8'T( Z 8.8. ')T8 

i=l 1+6 i 1 1 

P P 1-6. p 
= ( Z b. 8 . 1 )T( Z —r^" 8.8.' )l( Z b. 8 .), i i . , 1+6- 1 1 I l i=l i i=. i=l i=l * ui x * i=l 
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The last equality follows from the T-orthonormality of 

The last expression is the generalization of the Obenchain's ridge 

function. To see this we have that 

P <5. -1 P -i 
M.Y = Z rv.v.'X'r Y = Z 6.8.3. 'X'V Y 
5 i-1 Xi 1 1 i-i 1 1 1 

and then 0. =» — v . and so we have 
1 / n 1 

l 
P P P 

0 = Z b.0. = Z b. v. = E a.v. 

i-i 1 1 i-i 1 A T 1 i-i 1 1 

•xT 
Therefore b. = a. and 1 0 1 

p 9 1-6. p A. 1-6. p „ 1-6. 
E b. — ± = E a. — A = E <f, / — - i = RF(6 ) 
i-1 1 1+6i i-1 1 o 2 1+6i i-1 1 1+6i 

Part (i) of the next corollary was stated by Farebrother (1976). 

COROLLARY 5.1.1. 

Let MY = (T+G)~1X'V~1Y an ALE and WM its good region. Let B^ 

and B_ the unit balls of T and G . Then 
I 2 

(i) B T C W M . 

(ii) B £ C I W M . 
2 

PROOF. The contentions follow immediately from the inequalities: 

(2G"1+T~1)"1 < (0 + T"1)"1 - T, 
and 

(2G_1 + t"1)"1 < (2G_1 + O)"1 = | . 



118 

We will now discuss the case when X is not full rank. In this 

case T is not invertible and there does not exist a GLSE unbiased 

over 1RP . From Theorem 3.3, the only restricted GLSE or S-BLUE which 

exist are those for which S fl N(X) = {0}. Among them there are those 

which are maximal in the sense that Span(S U N(X)) = 1RP . The variance-

covariance matrices associated with different maximal S-BLUE's are in 

general different, then the problem as it was stated in the first part 

of the section does not make sense. We are compelled to make the 

following definition. 

DEFINITION 5.4. 

Let MY 6 L. Let S such that S fl N(X) = {0} and Span(S U N(X)) = TR . 

The S-good region of MY will be: 

W^ = {6|R(M,31 < RC3Sn . 

From Theorem 3.5 we know that associated to each subspace S which 

satisfy the conditions of Definition 5.4, there is a set A g of admissible 

linear estimators. We will compare the elements of A g with the S-BLUE. 

THEOREM 5.2. 

Let SCZ TRP a subspace such that S fl N(X) = {0} and Span(S U N(X)) = 
n r - 1 r ]RP . Let MY = Z 6.8.3. 'X'V Y and ALE such that (S-K , is a . , i i l l 1=1 1=1 

T-orthonormal basis of S. Then o 
s r 1"5-W = ( M s| 3'T( Z r - y 3.3.')T8 < 1). 
M i=l 1+6i 1 1 

PROOF. Let T^ a linear transformation from 1RP to 1RP such that the 

restrictions of and T to S are equal and NCT^) = S*̂  . Let T^ 
- Ŝ Ŝ the g-inverse of Tx such that Tl = Var[3 ] = R[3 ]. Let P the 

J L E 1 orthogonal projection onto S and T X = T X + — P , e > 0 . Since 
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r » £ {6.}. , is a T^-orthonormal basis of S it is also a T-orthonormal i=l s 1 

basis of S. Then from Theorem 5.1 we have 

W^ = (e|R[M,8] < [T̂ ]""1} , 

p 1-6. 
= {8|8'Ta ( Z -rrr- 3.8.^T^B <1} . 1 .=1 l+6£ i i 1 ~ 

Here {04 is a T. - orthonormal basis obtained by completing {8.K. 1 I-x x i 1—1 

r 1-6. r 1-6. 
B'Ti ( E B.8.')TaB = 8'Tn( Z ttt^ 8.8.')T B, if 0 e s . 1 . , 1+6. 1 1 I 1 '-1 1+6. 1 1 1 1=1 l 1=1 l 

Therefore 

r 1-6. 
wf, H S = (8 6 sl&'T-C Z 7 - — 8.8.')T 8 < 1} , V e > 0. M 1 1 1+6^ 1 1 1 — 

e -1 — Since (T^) tends to T^ as e tends to zero, this implies that 

q r 1-6. 
W„ fl S = { M s|3 fT- C E ttt- B.S.'JT.B < 1} M 1 1+6. l l 1 — i=l l 

Also since 

Eg [(M-8)(M-8) '] = (MX-I)88'(X'M'-I) + MTM' , 

if 8 = v+u, with v 6 S and u 6 S"1 we have that 

E g [ ( M - 8 ) ( M - 8 ) ' ] = ( M X - l ) w ' ( X ' M ' - l ) + MTM' 

-(MX-l)vu'(X'M'-l) - ( M X - I ) U V ' ( X ' M ' - I ) + ( M X-l)uu' ( X ' M ' - I ) 
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Therefore 

u 'Eg [(M-0) (M-0) ' ] u = || u 11 4, 

and 

u'T1~u = 0. 

Then the only way that 

Eg[(M-0)(M-0)1] 

' S a S 
is that u = 0 or equivalently 0 6 S. This proves that WM II S = W^ 

By definition of T^ we have that for any 8 6 S, T^0 = T0 and then 

. r 1-5. W* = (0 6 s|$'T ( E -r-ir G.3. ')T& < 1). M 1 . . 1 + 5 . i i — 

This proves the theorem. 
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5.2 AN OPTIMAL PROPERTY OF S-BLUE's AND GENERALIZED MARQUARDT's 

ESTIMATORS 

The aim of this section is to prove an optimal property of 

S-BLUE's. This property is related to some ideas behind Marquardt 

estimators and it will provide us with a way of generalizing them. 

The property in question is a generalization of one proved by Fomby 

et al in 1978. The proof we will give here besides being general 

will be more transparent. We will first state their result. Let 

Ar = {MY | MY is an S-BLUE and dim S = r}. 

Let X^ _> . . . £ Xp > 0 the eigenvalues of T. Let 

r 1 -1 M Y = Z y v.v. 'X'V Y, 
r i-1 Xi 1 1 

the estimator obtained by deleting the p-r components . 

associated with the smallest eigenvalues of T. Then Fomby et al 

proved that 

Varx [Mr3 < Var̂ . [M] , V MY e Af. 

The next propositions will be necessary to prove the generalization 

of the above property. 

PROPOSITION 5.1. 

Let Q and T be two p.d. symmetric pxp matrices. Let 
r 

1/ = {rlr = Z Y. Y • 1, {y-}^ 1 is a T-orthonormal set} . r ' . , i i i i=l i=l 
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Let A, > A„ .. . > A > 0 and {$.}?, a T-orthonormal set of vectors 1 — 2 — p i i=l p * r 
such that Q = T( Z A.0.0.')T. Let r = Z 8.0.'. Then 

i-1 1 1 1 ° i-1 1 1 

Tr[QrQ] > Tr[QT] , V T 6 T 

PROOF. We have 

P 
Tr[QH = Tr[T( Z A .0 .0 . f )T r ] , 

i-1 1 1 1 

P 
= Z A-.0. 'TrT0. = v'a 

i=l 1 1 

where v' = (A,,...,A ), a' = (a,,...,a ) and a. = 3 . 'TrT0. , 1 < i < p, 1 p 1 p i i i — — 
Since TrT £ T and || 0J) = 1, 1 £ i £ p, we have that 0 £ a^ £ 1, 

1 £ i £ p. Also for any r 6 1/ 

P P P 
Z a. = Z 8 . f T r T 0 . = Tr[T( I 0.0.1 )Tr] . , l . . l l l l i=l 1=1 1=1 

r 9 
= Tr [Tr] = Z || y || / = r. 

i=l 1 L 

Then our problem can be seen as the one of maximizing the linear 

functional v'a, with a restricted by the following constraints 

0 £ a. £ 1, 1 £ i £ p, 

and 

P 
Z a. = r. 
i=l 1 

It is easily seen that those restrictions define a convex set whose 

extreme points are the vectors of ]RP with entries 0 or 1 and with r 

of the entries equal to 1. It is a well known fact that a linear 

functional attains its maximum in a convex set at one or more of the 
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extreme points of the convex. Since X^ £ X2 .. . £ X > 0 it then 

becomes clear that if « is such that 0 

a^ = 1, 1 < i < r a^=0, r < i < p, (5.2.1) 

v'a attains its maximum value at aQ (in the convex set defined by the 
r 

constraints). For any r 6 1/ , such that Y - E Y.Y. ' let r i i 
m i=l r T 

Sp = SpaniY^}^^^ and Pp the T-projection onto Sp. Since 

T r T a T F T r x a (pP)'T(Pp), we have 
8.'TrT8. = H P*<0.)|| 2 , 1 < i < p. 

Therefore 

a. = 8.'TrT8. = 1 if and only if 0. 6 S, 

The last condition implies that the matrices T 6 1/ which satisfy (5.2.1) r r 
only those for which Sr = Span{0.}. r = Z 3.3.' satisfies this 

r i i=i o i=1 I I 

condition and this proves the proposition. 

PROPOSITION 5.2. 
P 

With the notation of the previous proposition, let T, = E 3.8-1 
1 i=p+l-r 1 1 

Then 
Tr [Qiy £ Tr [QT] , ¥ T 6 Vr> 

PROOF. Let (/ defined in the obvious way and A G (/ . From p-r y p-r 
Lemma 2.1, (f), for any TGI/ there exist at least one A 6 1/ such that r p-r 

T + A = T"1 . 

p-r 
For the same reason, if A_ = E 3.3.' we have 

0 i=i 1 a 

ri + A0 • T _ 1 • 
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Then from the previous proposition we have 

Tr[Q(T~1-r )] = Tr[QAQ] > Tr [QA] = Tr [Q(T~1-r)] , V T 6 T 

This implies the proposition. 

PROPOSITION 5.3. 
Let A1 >_ ... > A > 0 the T-eigenvalues of Q and suppose that m of j. 1 p 

them are distinct. Let n, ,...,n their multiplicities and vf = (A,,...A ) 1 m 1 p Then 
(i) There exists a unique rQ 6 such that 

Tr[Qr ] > Tr[QT] , V T G V v 
k 

if and only if r = E n. for some k. 
i-i 1 

(ii) There exist* a unique r G (/̂  such that 

Tr[Qri] < Tr [QT] , V V G l/r, 

k 
if and only if r = E n. for some k. 

i-1 1 

PROOF. Let J1 = {ill < i < r}, J° = {ill < i < r, or i = r+1} r 1 — — r ' — 
and J any subset of {l,...,p} with r elements. Let a' 58 (a,,... a ) r J

r 1 P 
such that a. = 1 if i 6 J and a. = 0 if i fc J . Then v'a = E A. 

k 1 r r iej 1 

If for all k, r f E n^, we will have that there exists a 
k-1 1=1 k k-1 k 

k such that E n. < r < E n. and then E n. < r < r+1 < E n., 
i=l i=l i=l i=l 

therefore A = A , and r r+1 

V'°jl = 1 Xi = . L 0 X i = V ' ° j 0 • 
r i6J iGJ r r r 

It is obvious that r and T^q t k e matrices of (/̂  corresponding to 
1 0 . r r J and J are different. Hence there are at least two matrices in 1/ r r . r k 

which maximize Tr[Qri . Suppose now that r = E n., then A. < A . , l l r i=l 
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for all i > r; this implies that E A. > £ A. for all 
jej1 J jejr J 

J / J . This implies that there is a unique matrix in I/ which r r r 

maximizes Tr[QT]. This proves (i) . The proof of (ii) is similar. 

THEOREM 5.3. 
P 

Let X be a full rank matrix. Let Q = T( Z A.8.B.')T be a 
i-1 1 1 1 

matrix such that a T-orthonormal basis of ]RP and 
A- > . .. > A >0. Let 1 - - p 

Ar = {MY|MY is an S-BLUE and dim S = r} , 

P -i M Y = Z B.B.'X'V Y, r , ii i=p+l-r 

and 

r r -1 M Y = Z B.B.'X'V Y . 1 1 

Then we have 

(i) VarQ[Mr] < VarQ[M] < VarQ[Mr] , V MY 6 Ar . 

(ii) VarQ[Mr] < VarQ[M] , V MY 6 Ar, MY y4 M^Y 
Ic 

if and only if r = Z n. for some k. 
i-1 1 

(iii) VarQ[M] < VarQ[Mr] , V MY 6 Ar, MY $ MrY 
k 

if and only if r = Z n. for some k. 
i-i 1 

(Here the n^ denote the multiplicities of the different T-eigenvalues 

of Q). 
PROOF. From Corollary 2.2.4 we have that 

Var [M] 6 1/, V MY 6 A . r r 
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P 
Var[M ] = Z 0.0.' = r r i 1 1 i=*p+l-r 

And 

r 
Var[Mr] = E 0.0.' = T . 

i=l 1 1 0 

The results of the theorem follow now from Propositions 5.1, 5.2 and 
5.3. 

The result of Fomby et al, follows from the first inequality of (i) 

in the theorem, making Q = I and noticing that "smallest eigenvalues 

of T" means "largest T-eigenvalues of I" and so to delete the components 

associated with the smallest eigenvalues of T is equivalent to 

deleting the components associated with the largest T-eigenvalues of I. 

The previous results put in a general context the main idea 

involved in the "Marquardt estimators". Marquardt suggested the use 

of estimators obtained by deleting principal components associated 

with the smallest eigenvalues when T = X'V 4 is ill conditioned. 

This was proved by Fomby et al to be an optimal choice among the 

restricted least square estimators with a fixed number of independent 

restrictions for the minimization of Var^[M] . When Varp[M] is to be 

minimized the above results show that the estimators obtained by 

deleting "Q-principal components" associated with the smallest 

Q-eigenvalues of T are the best choice. 
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5.3. THE KUKS-OLMAN PROPERTY 

This section will deal with the study of a particular property 

of ALE's. Kuks and Olman (1972) gave the following property for 

the estimators Mg = (T+G) ̂ X'V \ with G a p.d. symmetric matrix. 

Min sup R ,[M,0] = sup R ,[Mpl0] , V a G ]RP . 
MY6L 06Bg aCt 06Bg aCt ** 

Here Bg is the unit ball of G. 

Since MgY is an ALE, one question which arises is if this property 

can be extended to all the ALE's and how far it can be. This will be 

the subject of the section. We will introduce some definitions and 

notation necessary for the discussion. X will be assumed to be 

full rank. 

DEFINITION 5.5. 

hn estimator MY e L has the property for C if and only if 

Min sup R , [N,0] >sup R , [M,0] , V a 6 ]RP . (5.3.1) 
NY6L 06C a0t 0GC a a 

l\n estimator MY 6 L has the KG property if there exist at least 

one set C for which MY has the KO property. 

The result of Kuks and Olman says that the estimator MY = (T+G) ̂ X'V 

has the KO property for Bg. 

Given a subset Z of 1RP , Sym(Z) and cc(Z) are defined in 

Definition 4.2. Also Z will denote the closure of Z in the usual 

euclidean topology of H P . Since Raai[M,0] is a continuous convex 

function of 0 and R ,[M,0] = R .[M,-0] we have that 
aa aa 

sup R , [M,0] = sup R ,[M,3], ¥ Z C 1RP . (5.3.2) 
06Z 06 cc(Sym(z) ) 
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Given a convex set C, the recession cone of C, Rec (C) is defined as 

Rec(C) = {8 | 8 +y6 C, V y 6 C > . 

The recession cone of a convex set C is intuitively the set of 

unbounded directions of C. If C is bounded Rec(C) = {0}. For more 

information see Rockafellar (1970), page 60. If C^ and C2 are two 

subsets of 1RP , C^ + C2 will be defined as 

C1 + C2 = + yl6 6 Cl» Y 6 C2} • 

The next lemma will give two useful properties for the recession 

cones of some convex subsets of 1RP . 

LEMMA 5.1. 

Let Z be a non empty subset of H P such that 

Z = cc (Sym (Z) ). (5.3.3) 

(i) The recession cone of Z is a subspace S contained in Z. 
z 

(ii) There exists a set C such that z 

Z = C + S . z z 

PROOF. Since Z satisfies (5.3.3), 0 6 Z. Then if a 6 Rec(Z), a 6 Z 

and na 6 Z for all n 6 N, Again from (5.3.3) we have that [-not, na] 

is contained in Z and so is Span {a}. This proves (i). To see (ii) 

let C = {ylyl T S , y 6 Z}. For any 3 6 1RP we have B = v+u, Z 1 z 
J . T u 6 S , v 6 S . To prove (ii) we only need to see that v 6 C. z 2 z 

if and only if 8 6 Z. It is evident from (i) and the definition of 

Rec(Z) that if v 6 C , 8 = v+u 6 Z for all u 6 S . Let us now suppose z z 
that 8 6 Z, then from the definition of Rec(Z), 8 - u 6 Z, and so 

v = 8 - u belongs to C . 
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The next proposition gives for any ALE MY a set BM for which 

MY has the KO property. 

PROPOSITION 5.4. 
P 1-5. 

Let MY - E 6.8.0. 'X'V Y and ALE. Let G = T( E — ^ 0.8.')T, 
i=l 1 1 1 6.*) 6i 1 x 

B„ = (8I3'G0 < 1}, S = Span{0.I6. ^ 0>. Then MY has the KO o ' — n 1 1 
property for BM = BG fl SM . 

PROOF. From the result of Kuks et al and Theorem 2.4 the proposition 

is true for the estimators MY with 0 < 6 . <1, l < i < p ; because in l — — 
this case G is p.d.^S^ = 1RP and so B^ = B^. We will suppose now that 

0 < 6, < 1, 1 < i < p. Let, for n 6 W 

G = T( E 6.8.3•')T + T( E n8.6.')T+T( E .-g.g.1)! 
n 0<6.<1 1 1 1 5. =0 1 6.-1 n 1 1 

i l l 

B = {3|3'G 8 < 1}. n ' n -

And 

M = (T+G )~l X'v"1 . n n 

It is immediate that 

And 

Lim M = M. 
n-x» n 

Lim B = B„. n M n-*» 
We will prove, for a 6 1RP , that as n tends to infinity 

sup R , [M ,8] sup R ,[M,8] . (5.3.4) aa n « aa' 8GB 6GB.. n M 
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The first point to notice is that since B^ is a compact set, for 

any a 6 ® P there exist (which depends on a) such that 

sup R , [M ,B] = R , [M ,B ] aa' n aa' n nJ 
n 

It is not hard to see that 

sup Inf || B - y|| 0, as n «> . (5.3.5) 
6 0 V b m y6BM 

f 

Then for all z > 0 there exist n and y 6 B„ such that if n > n e n M e 

|R , [M ,8 ] - R ,[M,y ]| 1 aa n n aa n 1 

= |R , [M ,B ] - R , [M,B ] + R , [M,8 ] - R , [M,Y ] | < e. 
1 aa1 n nJ aa1 n aa' n aa? nJ 1 

This implies that 
Lim sup R , [M ,8] < sup R ,[M,8] . (5.3.6) r aa n — aa' n+« 3eBn 86BM 

Now suppose that there exist v 6 Blf, u > 0, n 6 M such that for all 
R M U) 

n > n 0) 

sup R ,[M,8] = R,[M,y] > sup R [M ,8] + u> . 
8eB„ a a0t 86B a a n 

M n 

But since M is the limit of M and B.. is the limit of B , there exist n M n 
00 a sequence {8 } •, , B 6 B , such that x n n=l n n 

R » [M ,8 ] + R , [M,y] , as n oo. aa n n aa 

This implies 

Lim sup R , [M ,B] > sup R , [M,B] . (5.3.7) aa n — ___ aa n-H» 3GBn B6Bm 
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Then (5.3.4) follows from (5.3.6) and (5.3.7). Now we will prove 

that MY has the KO property for B ^ . Suppose the contrary and let 

M q Y 4 MY such that 

sup R , [M,3] > sup R , [M ,3] , for some a 8 R p . _ __ aa . __ act o 
b 6 bm b s b M 

Then from (5.3.4), for n big enough and some 0 < e < 1, we will have 

sup R ,[M ,6] > sup R ,[M ,3] + e . (5.3.8) 
06Bn a a n 06BM a a 0 

Also, for n big enough, from (5.3.5) we have that for all 3 6 B^, there 

exist u 6 B^-B^ a n d v 6 ^ au°b that 3 = v+u and 

||u'(X'M̂ -l)a|| = ||u'a0|| < \ min(f-. e) ' 

Where 

k = sup 11 a' (X'M'~~X)v|| = sup ||a'v| 
v6Bm V6Bm 

Then for any 3 6 B^ 

Raa' [V e ] = Raa'CM0'Vl + 2 ^ V o ' v ) + (u'a0)2 

< R , [Mn, v] + e aa 0 

Therefore, from (5.3.8) 

sup R ,[M ,3] > sup R . [M ,v] + s > sup R , [Mrt,3] 
36BP a a n vG^ a a ° 06BP a a 0 

This contradicts the fact that M^Y has the KO property for B̂ , 

The proposition is proved. 
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THEOREM 5.4. 

Let MY 6 L. Let X be a full rank matrix. Then the following 

statements are equivalent. 

(a) MY is an ALE 

(b) MY has the KO property. 

PROOF, (a) implies (b) is essentially Proposition 5.4, From (5.3.2) 

there is no loss of generality considering that Z = cc(Sym(Z)) . 

To see the other implication let us first assume that Z is bounded. 

Let y 6 Z such that 

sup || 3 || m = || Y. || . 
36Z 1 1 

From Proposition 2.6, the MMSELE for y , M Y is 
1 Y1 

\ Y = W l ' * ' 7 " 1 * ' W i t h 31 51 JT\r ' 
1 I T 

If a^ = we have 

\ a ,[Mv ,3] = V ( 3 i ' t ( m y -e))2], alal Y1 Y1 

= (81'T(613131'T8 -8))2 + 6 X
2 =( ( e ^ K S ^ D ) 2 + <5^. 

From the definition of y^ we have 

sup (6 'T3)2 = (3/Ty )2 . 
8ez i 

Therefore 

sup E [(8 'T(M -8))2] = (3/Ty )2(6 -l)2 + 5 2 
8GZ P 1 Y1 1 1 i 

= E [3*T(M -y )]" . 
1 T1 1 
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From Proposition 2.7, (i) 

E [(0 'T(M -Y ))2] <E [(B ,T(M-Y1))2], V MY 6 L 
Y1 1 T1 1 Y1 

Therefore for any MY 6 L, we have 

sup Eft[($-'T(M -B))2] < sup Er [(B-'T(M-B))2] 
Bez 0 1 Y1 " B6Z 3 1 

From this we see that a necessary condition for MY to satisfy the KO 

property in the direction a, is that M = M + M. with 3„'TM, = 0 
1 Y p l l l 

(it is necessary by the unicity of M ). Let now S the subspace 
Y1 1 

T-orthogonal to Yp- The same argument as above can be restricted to 

Z A S, to prove that M must be of the form M = M +M +M0 with 1 Y1 Y2 
Bx'TM2 = 32'TM2 = 0 and Yp J. TY2* After p of those steps we conclude 

P 
that M = E M . Theorem 2.3 implies that MY is an ALE. We will 

i=l Yi 
now suppose that Z is not bounded, since Z = cc(Sym(Z)) from Lemma 5.1, 

(i), Rec(Z) 53 S . If MY is not unbiased on S , there exist a 6 1RP z» z 
and 6 e S, such that a'(MX-l)B 4 0, this implies that R ,[M,B] z act 
is not bounded on Z, but since R .[3,3] is bounded, MY has not the KO aa 
property on Z. This implies that MY = MQY + 0Z where BZ is the 

S-BLUE. By similar arguments to the case where Z is bounded, applied z 
X T to S fl Z, it can be seen that M Y is an ALE and the axis of M Y 
z 0 0 

X T are in S . Then again from Theorem 2.3 we can conclude that MY is z 
an ALE. This proves the theorem. The next theorem will characterize 

the subsets of ]RP for which an ALE MY has the KO property. 

THEOREM 5.5. 

Let X be a full rank matrix and MY an ALE. Then MY has the KO 

property for Z if and only if cc(Sym(Z)) = B^ (B^ is defined in 

Proposition 5.4). 
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PROOF. From (5.3.2) on Proposition 5.4 if cc(Sym(Z)) = BM MY has 

the KO property for Z. This proves the sufficient condition. To 
P -i 

see the necessary condition, let MY = E 6.3.8.'X'V Y and suppose 
i-i 1 1 1 

first that 0 < 6^ < 1, 1 £ i £ p. Let G the p.d. symmetric matrix 

such that M = (T+G) ̂ 'V From (5.3.2) there is no loss of 
generality in assuming cc(Sym(Z)) = Z. Suppose that Z y4 B„, then M 
there exist y on the boundary of B = B such that sup l l p ( B ) | | = M L Y | | • 

G 8ez Y 

and A y4 1. Here P^ denotes the G-projection onto Span{y} or 

equivalently the projection onto Span{y} along the hyperplane tangent iny 
P P 

to B^. If y = Z b.8. and a = Z a.T$. we have 
M i=i 1 1 i=i 1 1 

P P 
R .[M>Yl = ( Z a.b.(l-6.))2 + Z a.2 6.2 . aa .sl i i .=1 i i 

If a is chosen such that a'(MX-l) = y'P we have Y 

sup R ,[M,8] 3 sup (a'(MX-I)8)2 + Z a.26.2 , 
86Z aot 8SZ i=l 1 L 

= (a'(MX-l)Ay)2 + Z a.25.2, 
i-1 1 1 ' 

o P 2 P 2 2 
= \ { Z a.b. (1-5.)) + Z a. 6. = R , [M,Ay] . (5.3.9) l i i . , 1 1 aa i=l i=l 

P -1 Let now M = Z y.8.8.'X'V and y( 1-6 . )=l-y. , 1 < i < p. We have that y i i i i i — — r 

a'(M^X-l) = ya'(MX-l). 

Hence as in (5.3.9) it can be seen that 

^PRaa'tMu'6] = R c a , [ V X Y l ' (5'3-10) 
p6Z 

9 P 2 P 2 2 3 y ( Z Aa.b.(1-6.)) + Z a. (1- y(l-6.)) . H . , ii l . - l v H l 1=1 i=l 
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Let 

= R
a « W Y l ' 

then the minimum of f̂ CvO is attained at 

p 2 E a. (1-6.) 
i-1 1 

y w -X 2 P 2 P 2 2 
AZ( E a.b. ( 1 -6 . ) ) + E a. (1-6. ) • 1 1 1 • 1 1 1=1 1=1 

Now since M^ = M for y = 1 and MY has the KO property for B^ we have 

that y = 1. We also have 

(a) If A > 1, there exist e > 0 such that f,(y) < f,(1) if y 0 (1-e, 1). A A 

(b) If A < 1, there exist e > 0 such that f^(y) < fj^D if y 6 (1, 1+e). 

Using (5.3.10) this can be rewritten as: 

If A > 1, sup R ,[M ,3] < sup R ,[M,0] for y 6 (1-e, 1). 
36Z act y 36Z a a 

If A < 1, sup R ,[M 3] < sup R , [M,3] for y 0 (1, 1+e). 
36 Z acc y 36Z a a 

This proves that if A f 1, MY has not the KO property for Z. We then 

have proved the case 0 < < 1, 1 £ i £ P» 

Let us suppose now that 0 < 6 . <1, 1 < i < p. Let S„ = Span{3.}„ x̂  — i — — M I 6 ,r0 i 
and suppose that Z C tben a similar argument to the one given 

for the previous case, but restricted to Sw, shows that Z = Bw. Then M M 
to prove this case we only need to prove that Z C S . Suppose the 

3* T T contrary, then there exist 3. 6 S such that sup || P.(3)|| ^ 0 
rj, 3 36Z J 

(Pj is the T-projection onto Ŝ  = Span{3j}). We will show that there 
exists an estimator M^Y which is better than MY in the direction 

a1 = 3• 'T. M,Y will be defined as J 1 
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(a) the MMSELE M Y of v if sup || P T ( S) || = || v|| , v 6 S . . (5.3.11) 
B6Z 3 3 

(b) gJ, the S.-BLUE if sup || P?(B)|| = « . (5.3.12) 
3 06Z J 

We then have 

sup R , [M ,0] = sup R ,[M ,B] 
B6Z a0t 1 $6PT(Z) a a 1 

J 
2 vu T 

1 + l|v||2 
if (5.3.11) 

= 1 if (5.3,12), 

Since a'M = 0, we also have 

sup R__,[M,e] = sup (a'0)2 = sup ||pT(3)|| 2 , 
B6Z B6Z B6Z J 1 

= || v|| 2 , if (5.3,11), 

if (5.3.12). 

Then for any of the possibilities (5.3.11) and (5.3.12) we have 

sup R ,[M,,0] < sup R ,[M,B] 
06Z • 1 86Z a a 

But then MY does not satisfy the KO property for Z. This implies 

Z C S „ and proves that Z = B w i f 0 < 5 . <1, 1 < i < p. We are left M M — i — — 
finally with the general case 0 £ £ 1, l £ i £ p . Since 

BM = cc(Sym(B^)) , Lemma 5.1 implies that there exist a set C and a 

subspace S such that B„ = C+S. It is easy to see that S = Span(3.K , 
M i 0£=1 

Since for Z we have assumed (5.3.3), we have also from Lemma 5.1 

that Z = C +S . A similar argument to the one given for the case z z 
1 £ <$£ < 0, 1 £ i £ p restricted to C shows that if MY has the KO 
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property for Z, then C = C . Then to prove the third case we only 

need to prove that S = S . Suppose first that S -S T4 $. Let z z 
Y 6 S-S, then since MY is biased for y (MY is only unbiased on S), z 
and ny 6 Z, n 6 N, there exist*a 6 1RP for which R , [M, •] is aa 
unbounded on Z. But then MY has not the KO property for Z because 
A A 
3 is better than MY in the direction a (in fact R .[3, • ] is bounded 

aa 

on ]RP ). Then S -S = <p. Suppose now that S-S $ (j) and let y 6 S-S z z z m 
such that y l T S , then sup|| P (0)|| = || v|| < with v 6 Span{y}. 

36Z Y 

Y ' 
Let a' = — 1 — T and M Y the MMSELE of v, then 

I N I t 

sup R . [M,3] = sup R ,[M,33 = a' Var[M]a = 1. 
36Z a a 36PT(Z) a a 

(Because MY is unbiased on S and y e S). We also have 

II v|| I 
sup R [M ,01 = sup R [M 61 p — T < 1. 
66Z 0 0 V 66PT(Z) a Q V 1 + | | v|| 2 

(See Proposition 2.8, (iii)). This contradicts the fact that MY has 

the KO property for Z. Then S-Sz = <j>. And we have proved that 

S = Sz. This proves the third case and the theorem. 
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