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ABSTRACTj. 

Enploying the standing wave method, the attenuation coef-
ficient of the (0,0), (1,0), and (2,0) mode sound waves in two dif-
ferent rigid walled rectangular wave-guides filled with air have be„ 
en measured in the frequency range from 1.2 to 4.7 Kc/s. Experimen-
tal values of attenuation coefficient are in good agreement (about 
3jQ with the theoretical values. 

Measurements of the attenuation coefficient with a helium 
filled guide were also carried out and good agreement with theory 
was obtained. 

The specific acoustic impedance of a sample of'mineral wo. 
ol and absorption coefficients of the mineral wool and an artifical 
sample were measured at normal and oblique incidence. 

The variation of the reflection coefficient of some pres-
sure -release materials under high hydrostatic pressures at frequ-
encies up to 5.5 Kc/s has been measured. 

In these experiments a column of water contained in a 
cylindirical, vertical steel tube was excited into resonance by a 
sound source situated at the bottom of the tube, both with and wit-
hout the samples. Resistance and reactance ratios have been obtai-
ned for the samples at different frequencies and for hydrostatic 
pressures from zero to 25 atmospheres. 

Ihe theory of the pressure-release materials under high 



hydrostatic pressure indicates that it is possible to make good 
* 

pressure-release materials capable of operating in deep water. It 
appears that the materials should have adequate resistance to high 
hydrostatic pressure and must contain air-filled voids. 

The results indicate the reflecting properties of the 
samples and so can help in the design of efficent reflectors. 



-7-

CHAPTER I » 

GENERAL SURVEY 
Detail s of propagation of higher order mode sound waves 

in rigid walled, gas filled, rectangular wave-guides will be exp-
lained in chapter II. 

Two different rectangular wave-guides have been used 
for measurements of tube attenuation and the impedance and absorp-
tion coefficient of porous materials. The details of the apparatus 
will be given in chapter III. 

Theoretical values of the coefficients of (0,0),(m,0), 
(0,n) and (m,n) type modes will be given in chapter IV. It appears 
that for wave-guides with the transverse dimensions less than I5cm. 
sound attenuation in the body of the medium is small compared with 
the tube wall losses, (about 

Applying the boundary layer theory, the theoretical valu-
es of attenuation coefficients for air and helium are calculated. 
Experimental values of attenuation coefficient were determined by 
employing the standing wave method. 

Although, measurements with (0,0) and (1,0) modes were 
carried out by many authors, less attention was given for (2,0) 
mode .. 

The results of measurements with (2,0),(I,0) and(0,0) 
• modes for air filled waveguides have been given in chapter V. Re-



-41 

suits of measurements with helium filled guide are also included 
* 

in the same chapter. 
In chapter VI, the methods and determination of the spe-

cific acoustic impedance of porous materials at oblique incidence 
are explained and the specific acoustic impedance of a sample of 
mineral wool was measured at normal and oblique incidence. 

In chapter VII, the properties of sound absorbing mate-
rials will be explained. Absorption coefficients of mineral wool 
and an artific'al sample at normal and oblique incidence have been 
measured. * 

In underwater acoustics, at shallow depths, it is easy 
to make a good reflector using different materials which contain 
air. For deep watex;, however, there are other conditions which 
require to be fulfilled and these are dealt within chapter VIII. 

Very little attention has been paid to the construction 
of reflectors in water-borne sound, especially in deep water. 
Thus, one of the main aim of this work was to examine the acoustic 
properties of some available pressure-release materials in water 
at high hydrostatic pressures and at audiitble frequencies. Some 
forms of medium are proposed for testing and two artificial materi-
als were made for experiment. 

The measurements were carried out with a water filled 
steel tube and details are given in chapter IX. 
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Ihe method of resonance analysis 7/as applied for the men-
* 

surement of the specific acoustic impedance of the pressure-release 
materials. Ihis method is explained in chapter X. 

Apparatus which were used for .measurements and the expe-
rimental results for the two artifical samples, three different fo-
amed plastic and a sample of rubber with closed pores, are given 
in chapter XI. 

It was found that at zero hydrostatic pressure, all samp-
les have a reflection coefficient of about 90$ or above. However, 
at high hydrostatic pressures the reflection coefficieht of the 
samples are reduced. Ihis reduction is depends on the type of mate-
rial. 
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CHAFTER II 

PROPAGATION OF SOUND IN RECTANGULAR FLUID WAVE-GUIDES. CASE OF 
RIGID WALLS AND WITHOUT ENERGY DISSIPATION. 
2.1. INTRODUCTION. 

The phenomenon of wave propagation within wave-guides has 
been known for more than 9o years. Lord Rayleigh, has given a theore-
tical account of the higher order acoustic waves which are possible 
within rigid-walled tubes of rectangular and circular cross-section. 
Morsel Rogers, and more recently Redwood, Budden̂  Rscheveirf and 
Bate and Stephens also dealt with this subject in more detail.' 

In wave-guide propagation the boundaries of the guide 
have a considerable influence on the types of wave that may be 
propagated. If the boundaries are rigid and impervious, plane wa-
ves are possible within the guide as well as higher order modes. 
This may be achieved by enclosing the fluid between solid plates 
made of an extremely rigid material, which prevents any appreci-
able displacement at the boundaries. 

If the guide has zero pressure at' the boundary, however, 
plane wave propagation is not possible. For most purposes a water-
air surface can be regarded as a zero pressure boundary. 

In rigid circular tubes, if the radius of the tube is 
sufficiently small, only plane sound waves can propagate for a 
given frequency. 
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This condition is given by, 

3-w o 

where D: Internal radius of the tube, 
c» velocity of sound in free gas, 
fi the frequency. 

In rectangular tubes it is possible to excite plane wa-
ves alone by using frequencies less than the cut-off frequency of 
the (1,0) mode. (See equation Z.ZJ) • 

Therefore it is easy to propagate plane waves alone, but . 
excitation of a particular higher order mode in the absence of all 
other modes is more complicated. 

The analysis of circular tubes involves fiessel functions 
and for rectangular tubes sine and cosine functions. 

t 8 

In 1938, Hartig and Swanaon, realized that a sound so-
urce having a pressure distribution corresponding to a particular 
mode could be used to excite that mode alone. 

In this work, rigid and impervious walled rectangular 
wave-guides, filled with gas were used. In order to make measu-
rements of attenuation of transmitted waves and in particular to 
know how the transmitted mode affects the wave attenuation, it will 
be necessary to know the acoustic charac teristics of higher order 
modes in rectangular wave-guides. This will also be useful in mea-
suring the absorption coefficient of materials at oblique angles of 
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incidence. 
In this chapter, energy losses within the guide for the 

higher order modes will be considered to be zero. 
2.2 RECTANGULAR WAVE-GUIDES WITHOUT LOSSES: (m,n) MODES. 

Consider a rectangular wave-guide with transverse dimen-
sions (2a) and (2b) iny- and z- directions, respectively. Ihe axis 
is located centrally, as shown in figure 2.1 • 

fr 2 

Figure 2.1 
Introducing the time factor exp(jivt) , the wave equation . 

where, ji): velocity potential, 
\xf i angular frequency (w>r2Tif). 

Ihe solution of this equation gives the velocity potential for pro-
pagation in x direction, 

where, m,n: integers, f% \ 
A : the amplitude constant, 
Mil £ : wavelength constant of the (m,n) th mode. 

'M* 
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p is given by, 

It can be seen that, there are serious restrictions on 
the forms of wave which may propagate. Each value of m and n des-
cribes a "mode" of propagation. The important features of these mo-
des may be listed as below, 

a) Each mode can be considered as four plane waves, 6ach of 
which is obliquely incident with respect to all the four containing 
walls and travelling along the guide in a zig-zag path. Each mode 
is distinguished by a variation of pressure across a transverse-sec-
tion. The nodal lines of pressure inside the guide should be noted; 
the number and nature of such lines provide a basis for distinguis- , 
hing between modes. Position of nodal lines of pressure in a trans-
verse-section for a few of the higher order modes of acoustic waves 
in rectangular tubes are shown in figure 2.2. 

t 
. . A 

• ! i — > 
; i ; ^ 

(m* l,n,0-) (m , 2, n•=. 0) (r-0,a:l) ' (m - I,n = l) " 
b) Ihe selection of sine or cosine is dependent upon whether m 

and n are odd or even numbers. If, for example, m is even and n is 
odd number, the mode is symmetrical in y but is antisymmetrical in 
z direction. 

Ihe h] and ̂ (̂HHLiA terras correspond to the varia-Sifi \ 2* *) Sm ̂ b ) 
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tion in the y- and 2- axis, respectively. 
c) The acoustic pressure (p) and particle velocities in parti-

cular directions ( u ,u ,u ) determined for a single mode d) are, 

where,/§: undisturbed density of the gas in the wave-guide, 
Y : propagation constant of the (m,n) th mode*. 

In the loss free case, the propagation constant is given 
by, 

y f 
V a 0 ' v 

d) At any given frequency only those modes, for which 0 is re-
al are propagated. Vihen ft is imaginary for any frequency, corres-

.the 

ponding mode attenuate rapidly in'x direction according to the term 
(If̂ ifLĵ * node is than described as "evanescent" and there is no 
transmission of energy along the guide for such modes. The frequency 
for which j! is zero, is called the cut-off frequency of that mode. 

"A 
The cut-off frequency of the (ra,n) th mode can be determined from 
equation(2.3), and is given by, I 

Using the equations (2.3) and (2.6), ̂  may be written in terms of 
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cut-off frequency, 

e) When mrnso, the velocity potential equation reduces to, 

This represents a plane wave. In rigid walled wave-guides, the fo-
ur oblique plane waves are now equivalent to a single plane wave 
travelling in the direction of the x axis. From equation (2.3), the. 
wavelength constant for plane waves, 

The cut-off frequency of plane waves, from equation(2.6) 
is now, . 

0 . '(*•"> 
Therefore, plane waves can be propagated at all frequencies. 

t 

f) The charajteristic impedance of the (m,n) th mode is defined 

NX/ (z.n) 
W , is real for a propagating mode(Y is imaginary); and 

W , is imaginary for an evanescent mode. 
MA 

In the case of plane waves, for example,. 

V - U . : ^ ' a n d W . 0 = /.C. 

g) The value of wavelength constant, in terras of wavelength is 
given by, ^ 

L a (2.12.) M ft 
where,\ : the wavelength of propagation in the tube in the absence 
of attenuation. 
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Angular frequency, 
2,JT C0 f . 

• ( 2 . l l ) 

where, X s the wavelength of the plane wave in the tube in the ab-
sence of attenuation* 

Substituting the equations (2.12) and (2.13) into the equ . 
ation (2.3) gives, 

Ihis equation gives the relation between^ 9 \ , mode num.; 
Nft 09 

bers end the transverse dimensions of the tube and called as the 
" wave-guide equation". 
2.3. RECTANGULAR WAVE-GUIDES WITHOUT LOSSES: (ra,o) MODES. 

In this present work plane waves, (\,o) mode and (2,o) mo-
de have been excited and measurements have been carried out by usin<j 
the appropriate sound sources. 

In the case of (m,o) modes the velocity potential reduces 
to, <j>-_ ± t o - a . . 
where, : £ ( ' 

Equation (2.15) may be considered to be a superposition 
of two travelling waves along the guide obliquely incident with res. 
pect tothe side walls (ŷ â), and making the angled with the axis x 

For a propagating mode B is real number, therefore 9 is a 
1 
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real angle. At high frequencies i.e. 9 0 has lower values,but 
at a cut-off frequency of a mode,0 9o and the weves do not prog-
ress in x direction but reflect between the boundaries striking 
them at normal incidence. Variation of 0 with the frequency is shown 

(2.3), in figure 
Q 9o* 

*i0 

zo 

9 
0 

Figure 2.3 

- M 
Each mode has a characteristic phase velocity ĉ  . ĉ is 

the rote at which a point of constant phase travels along the boun-
dary of the guide and is given by, 

— - r U -
ft V 

1m • 

(a. is) 
— ' •— "V 

ĉ  , is always greater than co , except whenOsO* For a propagating m®. 
de, the relationship between , cp , (ft\, and f is," 

//iv t \l , * 

- (2..1*) 
Energy propagates at a group velocity ĉ  , which is given 

bys ( y c# cps. o - -
From, equations (2.18) and (2.2o),. 

c; r c r ^ (l.2l) 

For a propagating mode ĉ is real and always less than 
so, cA c \c • For an evanescent mode c is imaginary, but this re-• / * 1 
suit has no useful physical interpretation. Variations of ĉ and ĉ  
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with the frequency is shown in figure ( 2.4), 
velocity 

Figure 2.4 

Ihe acoustic pressure and particle velocities for (m,o) 
modes becomes, 

V ^ 
- - W a / ̂ n. \ 1 

Co{ v, z<\ 

û -.o , (i.e. all functions are independent of z). 
Ihe cut-off frequency of (m,o)) modes are, 

V C;C*m) it « 
From this equation, the cut-off wavelength of (m,o) mo-

des are given by»('Xc) * ̂  ' ("4.24) 
Ihe pressure distribution in the xy plane corresponding 

to some lower modes are illustrated in figure (2,5). 
'J.-1 n/ ' ' ' ' '

 7
 " ' ' ^ / it { ( ( I (.i-i ( /t i 

} X I Y^" V V 1 V V \ \ \ \ \V 
(m-jO, n-iO) (symmetrical mode) (m — I, n-0) (antisymmetrical 

s Ss /v mode) 
Figure2.5 

i p — : >? 

\ v v \ V \ \ 
(m~2, n-0),( symmetrical mode) (me3, ri =0) (antisymmetrical 

mQdft) 
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For a propagated node u and p are in phase and u is in 
phase quadrattirewith them. Particle displacements in x and y direc-
tions are in quadrature. Ihus, particles of fluid traverse ellipses 
in the xy plane as shown in figure (2.6), for (i,o) mode. 

V { i < t i f a^ 

G-

A 
% Figure 2.6 

I1'0 \* v v,—x s v x—vc . 
For an evanescent mode, however, u and u are in phase and 

p is inphase quadratttfdwith them. Particle displacements in x and y • 
directions are in phase now and both are antiphase with the pressu-
re. Ihus, the particles of fluid traverse straight lines, as shown 
in figure (2.7) for (l,o) mode. 

f S s S—£—£—f, — ^ 

» >x Figure 2.7 

V'-^vvn \ "V \ \ \ \ v v 
The wave-guide equation for (ra,o) modes becomes(from equ-

ation 2.1 4), 

2.4. CONDITIONS FOR THE EXCITATION OF A GIVEN MODE. 
In order to excite a pure mode it is necessary to satisfy 

two conditions, 
a) The guide should be excited by a sound source configuration 

producing a pressure distribution identical with that corresponding 
to the particular mode. If, this condition is not precisely satis-
fied several modes may be excited simultaneously. 
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b) The frequency of excitation, must be greater than the cut-
off frequency of that particular mode. 

By choosing a wave-guide which has a sufficiently large 
ratio of major to minor transverse dimensions; (i.e. â b ), the cut-
off frequencies of the modes can be put in the order of, 

meg 

where, mro,|,2,3 in this experiment. 
Therefore, if the frequencies less than the cut-off frequ _ 

ency of the (0,1) mode are used, only (m,o) modes can be excited. 
The amplitude constants A , are determined by the charac-

ter of the sound source. If the source gives a known velocity dist-
ribution in the plane x=o, Amocan be obtained. If, in the plane x-o 
there is a sinusoidal source of velocity in x direction, 

i 
v e n f > ( v t ) ( 2 . 1 7 ) 

Particle velocity at xro for (m,o) mode is, 

This may be equated to equation (2.27), and, 
V - 1 if»«. K. i k ^ k . 

In order to find A both sides of this equation are multip. A 0 lied by Cos^JI^, (m is an integer) and integrate between yr-a and 

The right-hand side of this equation is zero, except when 
m-ral Hence, 

— a 
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wheye, Bz) if m^o 5 B=2 if n=o. 
By means of this equation it is possible to determine the 

condition for elimination of any higher order mode in the wave-gui-
de. (i.e. A=o). 

A symmetrical source, for which V(y)- V(-y) will excite 
onlymodes of -zero or even order, while an antisymmetrical source 
for which V(y) r -V(-y) will excite only odd nnders. 

Thus, it is possible to eliminate one set of modes by the 
choice of symmetrical or antisymmetricel source configuration. Disc, 
rimination between odd or between even modes requires greater comp-
lexity of source and frequency limits. 

Using frequencies f such that, 

then only (0,0) mode and (l,0) mode may be propagated. Elimination 
of one of these modes is possible by using a symmetrical or anti-
symmetrical source. A symmetrical source has a pair of symmetrically 
located pistons of equal amplitude and in phase synchronism, while 
an antisymmetrical source has a pair of symmetrically located pis-
tons of equal amplitude but in phase opposition. An antisymmetrical 
source may be described as a dipole. 

In order to excite the (2,0) mode alone, two conditions 
must be satisfied: 

a)The frequencies which satisfies the equation 

t b (du„.> <4 < ( U , o ) must be used. 
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b) A symmetrical sound source must be used, but plane weves 
can also be propagated at the same time with the (2,0) modes, so, 
a further condition hes to be satisfied. 

From equation (2.£4>), the condition for elimination of 
plane wave is, ft9 

I V . ( 2 . z i ) 

This equation requires a minimum of three pistons, a pair 
of equal amplitude located at equal distances y=:j.a, and a third of 
double amplitude operating in antipjfcse at y- o. Such a source is 
described as a quadripole. 

i 
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• CHAPTER III 
APPARATUS FOR FLUID WAVEGUIDE MEASUREMENTS. 
3.1. INTRODUCTION. Scott9 (1946), has given six conditions, and Be-

10 
ranek (1949), has added a seventh which must be fulfilled for accu-
rate plane wave impedance tube measurements. 

Corresponding conditions which must be satisfied for mea-
surements with higher order modes may be given as follows: 

(i) The cross-sectional area of the tube must be constant and 
the walls should be rigid, 

(ii) Only the desired mode of sound v/aves should be propaga-
ted free from the others, • • 

(iii) The microphone orifice must be accurately located to a-
bout 0.1 ram. 

(iv) The face of the sample must be plane end mounted accura-
tely perpendicular to the central axis of the tube, 

(v) The microphone used for exploration of the sound field 
must not appreciably effect the field and must be sensitive and 
stable, 

(vi) A single frequency must be used for each measurement, 
(vii) The temperature in the tube must not alter. 

In order to satisfy these conditions the following appa-
ratus has been designed. 
3.2. DESCRIPTION OF APPARATUS. The degree to 7/hich the above seven 
conditions have been satisfied by the present apparatus can be best 
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understood by examining them one by one as follows! 
(i) The Rectangular Wave-Guides: Two rectangular guides have 

been used, which arei 
The Large Wave-Guide: The internal dimensions of this guide 

are 14.36 cm. and 4.8 cm. By substituting in equation (2.23) the 
cut-off frequencies of the (1,0), (2,0) , (3,0) and (0,1) modes 
are found. 

Thus, at the frequencies less than 3583 c/s, condition 
(2.26) is satisfied for the values of m-1,2,3 and (0,n) type mo-
des cannot be propagated. In fact, the (2,0) mode is the highest or. 
der in this experiment and when frequencies less than 36I2c/s, are 
used, discrimination between the modes depend only on the source 
configuration. 

The length of the guide is 210 cm. and it was made from 
tufnol plates. The rigidity of tufnol plates are poor and it was 
surrounded with sand and put in a strong wooden box. 

The Small Wave-Guide. The small waveguide has a wall thickness 
of 0.22cm. and internal transverse dimensions of 7.2cm. and 3.4cm. 
The length of the guide is IlOcrn. and it was made from brass. 

The cut-off frequencies of the (1,0), (2,0) and (0,1) mo-
des are: 
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( i \ z , 0 ) = c / s -

(•U)(0fl)
 s 5-060 c/s-

Thus, at frequencies less than 4780c/s, only (0,0) and 
(It0) modes can be propagated in the tube. This tube was also surro 
unded with sand constrained in a wooden box. 

After these preparations the two wave-guides satisfied 
condition (i), with no indications of wall vibration as explained 
in chapter five. 

One end of both guides is fitted to a heavy brass specime 
holder, the other end being connected to the loudspeaker units by 
means of two rubber tubes. 

From the cut-off frequencies of the (1,0) and (2,0) modes 
it can be seen that the.oblique incidence measurements are limited 
to about one octave, within which the angle of incidence varies fro 
3(f to 90#as the frequency decreases, (see equation 2.17) 

(ii) Excitation of a particular mode free from the others requ 
ires a particular sound generator system. The systems were used are 

(0,0) and (1,0) System: Two identical loudspeaker units,, each 
of resistance 15 ohms, are coupled by tv/o rubber tubes to about 1.5 
cm. diameter orifices in the end plate of the wave-guide. The units 
are fed via a balance network which in conjunction with a variable 
length device in one dlriving tube, permits the adjustment of the 



two acoustic source current to equal strengths with a phase diffe-
rence of zero orTT. Ihese two conditions of deriving the wave-guide 
produce pure (0,0) and pure (1,0) waveb,respectively, provided that 
the cut-off frequencies of higher order modes are not exceeded as 
explained before in this section. 

Ihe acoustic pressure distribution in the wave-guide is 
detected by a multiple probe system. Three stainless steel probe 
tubes, one against each narrow wall of the wave-guide and a thirtfc 
mid-way between these two. Ihey are fixed at one end to the movable 
stage carrflying si so a Rochelle Salt microphone.The microphone may 
be connected by a small rubber connection to any of the probe tubes 
and the pressure variation along the guide observed by moving the 
optical slide.The probes serve both for the initial generator ad-
justment and for the subsequent standing wave measurements. When the 
microphone is connected to the centre probe, which lies in the (l»o) 

nodal plane, it responds only to plane waves which may be eliminated 
by adjustment of the sound source. YJhen a condition of balance has 
been attained (i.e. zero pressure at the centre probe), the microp-
hone is transferred to the outer probe which then may be used to ex _ 
plore the standing wave pattern of the (l,0) mode. For (0,0) waves 
the input to one of the speaker units is reversed and standing wave 
measurements are made with the centre probe. This is important, be-
cause, although the (1,0) mode could be eliminated by operating the 
sound source system in perfectly symmetrical manner, it is difficult" 



to satisfy this condition and centre probe does not respond to the 
(1,0) mode. 

(0,0) and (2,0) System: For an available wave-guide due to the 
limitation on frequency for the (l,o) mode, the possibility of mea-
surements of acoustic impedances at normal incidence is also limi-
ted. Using a sound source as will be described later in this secti-
on pure (0,0) and pure (2#o) modes can be propagated. Therefore, nor. 
mal incidence measurements at higher frequencies become possible 
for that particular wave-guide. In this experiment (2,0) sound sour-
ce system has been used for the large wave-guide only. 

It has been shown in chapter two that, the (2,0) mode may 
be generated by a symmetrical source (to eliminate the antisymmetri-
cal (1,0) mode) which satisfies the equation (2.33). Three pistons 
the outside pair operating with equal amplitude and phase and the 
centre piston with double amplitude and in antiphase. The device has 
been designed by Shaw! 

The two outer orifices are fed from one of the units thro-
ugh one of the rubber tubes, a concealed semicircular channel ensu-
ring that the sound energy divides equally.The centre orifice is fed 
from the second unit through the other rubber tube. If the units 
are fed in phase, which may be adjusted by the balance network, pure 
plane waves in the wave-guide propagated. The acoustic pressure dist-
ribution in the wave-guide is now detected by using four probe tu-
bes. Outer pair which fit into the lower corners of the guide and 
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an inner pair located at the positions ofwhich are the two no-
dal planes. 

Adjustment of th e sound source is carried out by connec-
ting one of the inner probes to the microphone and adjusting for 
zero pressure. Thus the (1,0) waves are eliminated. Measurements 
of pressure in the tube for the (2,0) mode may be obtained using 
one of the outside probes (i.e. near the tube wall). Plane wave me-
asurements are carried out with an inner probe when all three ori-
fices are adjusted to operate in phase since any residual (2,0) mo-
de will have no effect at the nodal plane. 

(iii) Spacers: In order to keep the orifices of the probe tu-
bes in their proper places, spacers which are of 0.75mm. diameter 
steel- pivot wire have been used. They have been punched in the pro-
be tube walls and so orifices of the probe tubes have been kept in 
their proper places with an-accuracy of about 0.2mm. 

(iv) Specimen Holders: For attenuation measurements a brass 
plate 1.2 cm. thick for the small wave-guide and 1.9 cm. for the 
large, with a plane face has been used. For impedance measurements, 
however, specimen holders which provide a rectangular cavity for the 
specimens and of transverse dimensions equal to' those of the wave-
guide have been used. The end of the guide may be closed, either by 
the plate or the specimen holder. The face of the specimens were 
smooth and plane. In order to mount the specimens perpendicular to 
the axis of the tube, the distance between the specimen face and 
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th e rim of tho specimen holder have been read using a ruler end a 
hand lens to about 0.1 mm. When same readings have been obtained 
for about eight different ruler positions, this condition may assu-
med to be fulfilled. 

(v) Reference Microphone* For the large wave-guide, probe tubes, 
250 cm. in length, of inside diameter 2.3 mm. and outside diameter 
3.0 mm. are used while for the small wave-guide the respective dimeo-
sions are 150 cm, 1.8 mm. and 2.3 mm. The guides are supported by 
resting on the lower wall of the wave-guide. Presence of probe tu-
bes cause a slight increase in the mode wave-length, and change the 
balance conditions at the sound source end. The absorption by the 
probe orifices is less important. 

The reference microphone is used to correct for variations 
in the incident sound amplitude reaching the reflecting surface, 
when the probe tubes are moved. The reference microphone is coupled 
to a very small orifice in the wave-guide wall, near the specimen 
face. Three such orifices are provided at different transverse po-
sitions ^S SO that the microphone may read sound 
pressure at desired positions. 

In all standing wave measurements in this work, each rea-
ding on the travelling microphone was followed by one on the refe-
rence microphone, and the ratio of the two was used in the subse-
quent analysis. 

(vi) Frequency Stability* The angle of incidence is a function 
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of frequency. Therefore, the frequency of excitation must be held 
constant within one .part in several thousand if an accuracy of 2y£ 
is required. 

The frequency stability of the Signal Generator, which 
was used in this work (see section 3.3), maintained a constancy bet. 
ter than one part in a thousand for an hour. At a given frequency 
the observation of the standing wave pattern in the tube takes a-
bout 15 minutes, furthermore, the frequency of the generator was 
checked continuously on the frequency counter, and only the obser-
vations for which the frequency kept constant were accepted. As a 
result it is assumed that this condition has also been fulfilled. 

(vii) The Stability of Temperature: The discussion with re-
gard to frequency stability applies equally to the temperature of 
the gas inside the wave-guide. During the measurements, the tempe-
rature of the gas should be constant to within (f.I CJ If the gas 
temperature is changing, the standing wave pattern will also shift. 

However, The laboratory air temperature did not change « 
more than 0.1 C per half hour ana the large thermal capacity of the 
wave-guide also assisted in maintaining stability the 15 minute pe-
riod required for a standing wave measurement. Furthermore, the po-
sitions of minima of the standing wave pattern were read in the po3 
sible shortest time which is only about two minutes. This considera 
tion is important because the mode wave-length is directly obtained 
from the positions of the pressure minima. 
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3.3. GENERAL ARRAGEMENT OF THE APPARATUS. Ihe apparatus which have 
N 

been used in this experiment are shown in figure 3.1. Ihe details 
of some individual components having been dealt with in section 3.2 
( i.e. the two microphones, loudspeaker units, wave-guides and pro-
be tubes.). 

The Advance Audio Frequency Signal Generator J2C has an 
output impedance of 600 ohm with a frequency range of I5c/s to 50kc 
It provides an output into 600 ohm, 0.1 mV/. to I I, ( 0.25V to 25V) 
with a low distortion level. Overall distortion at full output is 
less than 2$ (34 dB down on fundamental). If the output is kept be-
low 0.1 7J distortion is less than 1$ ( 40 d3 down on fundemental). 
Normally a power of about 0.15 W required to drive the loudspeaker 
units. Ihe signal generator has been used at a low output level and 
a power amplifier which has an output impedance of 16 ohm$was emplo^ 
yed to couple the Signal Generator with the loudspeaker units. 

Ihe AF Spectrometer Type 2III has a frequency range of 35 
c/s to 35 Kc/s and consist basically of an input amplifier, a fil-
ter system and an output amplifier. It..has l/3 and i/l octave fil-
ters. Ihe indicating instrument is equipped with rectifier circuits 
so enabling the true r.m.s. value of the signal to be measured. The 
input impedance of the instrument is 2.2 megjohms. which allows di-
rect connection to the microphone. Ihe standing wave pattern can be 
plotted directly from the meter. Microphone amplifier is also used 
when balancing the sound source and when measuring the reference 
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microphone voltage. The maximum voltage gain of the amplifier is 
100 dB. The balanging of sound source requires a filter whi«h has 
a narrow bandwith in order to avoid the influence of noise and har-
monic distortion and therefore a 1/3 octave filter has been used 
in this experiment. 

The direct measurement of the absorption coefficient of 
the test material with the aid of this AF Spectrometer is also 

ScaleS 

possible. The indicating meter"of the Spectrometer containŝ  in 
addition to the normal calibrations. This permit direct reading of 
the absorption coefficient in percent. • 

A Cathode Ray Oscilloscope (CRO) has been used to detect 
the microphone signal. The input signal from the Signal Generator 
was also displayed on the screen of the oscilloscope to ascertain 
the wave form. 

An Advange Frequency Counter has been used to read the 
frequency of the Signal Generator more precisely, which was neces-
sary in order to determine accurately the angle of incidence and 
to be sure that the frequency of the Generator did not change during 
the readings. 

The movable probe microphone which can be seen in figure 
(3.2) has a massive brass housing set in rubber. This was remounted 
more flexibly with pieces of rubber tube and enclosed in a hard bo-
ard box filled with sound absorbing materials. Such preparations we-
re necessary to reduce the stray signal level of the travelling mic-
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rophono., duo to unwanted sound penetrating the microphone housing 
and to isolate the mechanical vibration entering via the optical 
bench. The stray level was about 80 dB below the signal level of a 
pressure maxima and was not important even when measuring the pres-
sure minima. There was no need to cover the reference microphone 
which was always actuated v/ith a large signal. 
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CHAPTER IV 
THE ATTENUATION OF THE HIGHER ORDER MODES OF ACOUSTIC WAVES IN GAS-
FILLED RECTANGULAR TUBES. 
4.1. INTRODUCTION. 

In chapter two no consideration has been given to the at-
tenuation of the sound waves during propagation in the tube. The so. 
urce of dissipation in tubes may be divided into three general cate 
gories which are: body losses; boundary layer losses; and losses 
due to tube wall vibrations. 

a) Body Losses: This type of loss comprises four basic types, 
(i) Viscosity losses, 
(ii) Thermal conductivity losses, 
(iii) Losses due to molecular exchanges of energy, 
(iv) Losses due to turbulence and inhomogeneity of the fluid 

medium. 
(i) Viscosity Losses. This type of loss results from relative 

motion occurring between various portions of the medium durinjthe 
compressions and expansions that accompany a sound wave. 

Stokes (1845), has theoretically developed a mechanism 
for sound attenuation by using the property of viscosity of the me-
dium. 

For plane waves, he has modified the wave equation to inc 
lude viscosity as below, 

= c.v ^ M i + JUL iiii. („.,) 



where,^ is the shear coefficient of viscosity. 

The attenuation coefficient due to viscosity in the me-
dium is then given by, 

Vfs 3 /„ C.1 

where, ĉ is the velocity of sound in the medium. 
It appears that for all normal frequencies the velocity 

of propagation is unaffected by the viscosity, 
(ii) Thermal Conductivity Losses. For acoustic waves, the pres 

sure fluctiations in the body of the gas are accompanied by density 
fluctuations slightly out of phase, due to the low thermal conduc-
tivity of the gas. Consequently, there is an energy loss in the gas 
thus reducing the amplitude of the wave. 

13 
Kirchhoff (1868), utilized the property of thermal conduc. 

tivity of the medium and developed a theory for this type of loss 
in fluids. The theoretical equation associated with the thermal con, 
duction is given by, 

where,K sthermal conductivity of the gas, 
"Xpj specific heat of the fluid at constant pressure, 

the ratio of principal specific heats. 
Attenuation due to viscosity end to thermal conductivity 

act independently, when the attenuation is small. Thus equations 
(4.2) and (4,3) may be added to give the theoretical " classical 
coefficient of attenuation" for acoustic waves in a medium, i.e. 
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(iii) Losses Due To Molecular Exchanges of Energy. The dissi-
pation of acoustic energy that is associated with changes in the mo, 
lecular structure of the medium results in a finite time being re-
quired for these changes to take place. 

Y/hen a mon*atomic gas, such as argon and helium, is comp, 
ressed adiabatically, all the work done in compressing the gas goes 
into increasing the temperature of the gas. Since, this take place 
almost instantaneously, changes in temperature, pressure and density 
are all in phase, consequently, when sound waves are propagated in 
such gases no excess absorption is present apart from the losses 
due to viscosity and -thermal conductivity. 

For polyatomic gases the internal energies of rotation 
and vibration of the molecules must also be considered as well as 
the energy of translation. During the propagation of sound waves, a 
characteristic time or relaxation time is required for molecular en„ 
ergy changes to occur. This finite time causes density changes in 
a fluid to lag behind pressure changes. Ihus, molecular relaxation 
tends to attenuate the sound wave. When the frequency of sound wa-
ve is so low that the relaxation time is'much smaller than a pe-
riod of the acoustic cycle, equilibrium among the various states 
exist virtually at all times and the attendant difference in pha-
se between pressure and temperature changes is small. Similarly, 



when the frequency of sound wave is so high, the relaxation time is 
much larger than a period of the acoustic cycle. Almost no intercha 
ge of energy takes place between external translational states and 
the internal states. Therefore, this typ'e of loss will produce a 
maximum excess attenuation when the period of the acoustic cycle is 
equal to the relaxation time. 

Affect of Relative Humidity! Attenuation of sound is also de-
llf 

pends on the relative humidity. Sivian (1947), has measured the att 
enuation coefficient for dry air and for air with 37^ relative humi 
dity, as a function of frequency. Results showed that there is some 
excess attenuation of sound in humid air at the frequencies up to 
100 kc/s. This excess absorption is temperature dependent and cau-
sed by the presence o'f a small percentage of water-vapor molecules. 
In dry air the relaxation time for oxygen molecules is several 
seconds and therefore the vibrational mode is not excited by sound 
waves. However, the presence of water-vapor reduces the relaxation 

U -3 -5" 

time Am«i 10 to 10 seconds and so causes excess attenuation at fre-
quencies from one to hundred kc/s. The vibrational energy of nit-
rogen molecules is very small at room temperatures and does not 
contribute to the anomalous absorption. 

(iv) losses Due to Turbulence and Inhomogeneity of The Fluid 
Medium. '.Then the fluid contains inhomogeneities, such as suspended 
particles or regions of turbulence, an additional attenuation ta-
kes place apart from that occuring in an isotropic medium. In tube 
measurements, these types of loss can be neglected. 
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b) Boundary Layer Losses: During the propagation of sound wa-
ves in tubes there is a loss of energy arising from heat conduction 
and viscosity at the tube walls. These losses occur in a thin layer 
of gas at the wall, which is known as the "Boundary Layer". This 
type of loss will be explained in more detail later in this chapter. 
In this section and only the historical introduction will be given 
here. 

The influence of viscosity on the propagation of plane 
waves has been studied by Helmholtz (1863), in cylindrical tubes. 
The more general problem including thermel conductivity effects 

13 
was solved by Kirchhoff (1868), He has given the value fpr the 
coefficient of attenuation of plane waves in a tube, which is in-
versely proportional -to the radius of the tube. The attenuation of 
plane waves in rigid cylindrical tubes have been measured by seve-

n 1-7 it 
•ral writers, such as, Mason (1928), Beranek (1940), and Fay (1940), 
but they found the value 10-15 $ above that predicted by the theory 
of Kirchhoff. Scott (1946), used a standing wave tube and found the 
value only 3$ above the theory. 

Attenuation of higher order modes in tubes has been investi 
20 

gated theoretically by Morse, considering the admittance of the wall 
to be small. 

Cremer (1948), used the boundary layer acoustic impedance 
method. He pointed out that the reflection of a plane wave striking 
a rigid impervious plane surface and making an angled with the sur-



face of the v/ells, may be treated by the acoustic impedance concept 
where the wall impedance Z has the value, 

Nielsen (1949), has given expressions for the viscous 
and thermal conduction losses at the walls of the acoustic resona-
tors of circular cross-section. 

Attenuation of (1,0) modes in rigid rectangular tubes has 
13 

been investigated experimentally by Hartig and Lambert (1950) for 
the first time. Their analysis led them to an expression for the 
attenuation due to thermal conductivity and viscosity at the tube 
walls v/hich was equivalent to Kirchhoff's result, multiplied by a 
factor v/hich was a function of the cut-off frequency of the (1,0) 
mode. Shaw (1950), commenting on the work of Hartig and "Lambert, 
has given a theoretical formula v/hich was different. 

Bogert (1950), has applied electromagnetic wave-guide 
techniques to the calculation of the attenuation of the (1,0) mode 
in a rectangular tube but included viscous losses only. 

Beatty (1950), calculated the boundary layer attenuation 
caused by viscous and thermal affects of all higher order modes of 
propagation in both rigid walled rectangular and circular tubes, u-
sing Morse's duct formulas and the concept of boundary layer admit-
tance introduced by Cremer. He has obtained the same result as ob-
tained by Shaw. 

1% , 23 Lambert(I95I), has found a solution by applying Slater's 



energy relations. His results were similar to Beatty and Shav;. 
go 

Shaw (1953), has found a theoretical solution for the at, 
tenuation of the (m,0) modes between two parellel plates, using the 
fundemental equations given by Kirchhoff' for plane waves. His expe-
rimental results for the (1,0) modes v/ere in good agreement with 
theory. 

l\ 

Campbell (1953), has given more information about boun-
dary layer phenomenna. 

Ghabrial (1955), has measured the attenuation coefficient 
of the (2,0) mode. His results agree to 1$ with the theory given by 
Beatty, Lambert and Shaw. 

Lambert (1953) and Weston (1953), have given more detail 
about attenuation in tubes; and Lamb(1957), has made further in-
vestigation about sound attenuation in rigid tubes near cut-off 
frequency. 

c) Losses Due to Tube Wall Vifeationsi A third loss mechanism 
is by coupling of the fluid vibrations with the walls of the tube. 
If the walls of the tube are rigid this type of loss could be neg-
lected. However, the character of the antisymmetrical mode can ca-
use some excess attenuation if the walls of the tube are not infi-
nitely rigid. This will be explained in more detail in the next 
chapter. 

Comparison of the Body Losses under the defining conditions 
of the present experiment! 



In this experiment, the experimental conditions were as 
follows: 

a) The walls of the tube are rigid, 
b) The relative humidity was always- above 40$, 
c) The transverse dimensions of the tubes are less than 15 cm. 

The measurements have been carried out at the frequencies 
from I to 4.6 kc/s at laborqtory temperatures, and the tubes were 
filled with air and helium. 

The body losses are of particular significance when the 
volume of the fluid is large in comparison with the area of its bo-
undaries. . 

31 

Knudsen's measurements indicates that, as the relative hu 
midity increases, the-frequency of the maximum attenuation is inc-
reased. At the normal relative humidities of 40$ or more, this fre-
quency is in the lower ultrasonic range and consequently, the atta-

ch 
nuation due to water-vapor in air at normal laboratory temperatures 
is very small for frequencies between I to 5 kc/s. 

0 Body losses, for dry air in 20 C is given by, 

W , , + 4 . --2.OY.O-" V 
^ bo*^ v»s. t w « r . m « \ . h CvV» 

where, f is the frequency in c/s. 
Thus << is proportional to ( frequencŷ  and its value is b./t, 

more significant at ultrasonic frequencies and in large volumes. 
Boundary layer losses ( see equation^.are proportio-

nal to the square root of the frequency and inversely proportional 
to the transverse dimensions of the tube. Therefore, at low frequ-
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encies and with the present dimensions, the body losses become neg-
ligible being about Ij' less than the total attenuation. 

On the other hand, to apply the boundary layer approach, 
the thickness of the boundary layer (see equation/y.9) should be 
small compared with the transverse dimensions of the tube, as is the cqje 
with the present apparatus. 

Hence, only the boundary layer losses will be taken into 
account which is the usual procedure when using small tubes. 
4.2. ATTENUATION OF HIGHER ORDER MODES IN RIGID,RECTANGULAR1UBES; 

It is assumed that the effects of viscosity and thermal 
conduction at the walls of a tube may be considered independently, 
the two contribution may than be superposed. 

Viscous Losses: The effect of viscosity in modifying- the moti-
12 

on of a gas in contact with the walls has been treated by Stokes. 
Consider an alternating gas current of velocity 

U „ t x p f a u j i ) ( i . o 

and moving parallel to an infinite rigid plane located at hr 0, 
where, the axis of h is normal to the plane (see figure 4.1).This 

u 
Vv 
nro TT1 j t j j j' ) r } > / / > ; 

velocity of gas will be influenced by friction near the wall. If,Û  
is defined as the tangential particle velocity at the wall,Stokes 
has shown that the velocity must satisfy the viscous wave equation: 
i.e, 

-j cr (h.i) 

' t 
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The solution of the viscous wave equation is given by: 

In this equation, 

Vis. \j u / / a 

has the dimensions of length and is known as " The viscous boundary 
37 

layer thickness", û  reduces to zero at the wall (Lamb). The tangen-
tial velocity is built up in the distance of^ from the wall. For 

vis. 20# C and I atmosphere pressure in air, 
v.s m r p 

where, f is the frequency in cycle per second. So, at f- 1600 c/s, 
£ 0.0055 cm. After several multiples of £ the motion of gas is un-
influenced by the wall. 

The energy dissipation per second within an elemental vo-
lume of the boundary layer of area (dA) and thickness dh due to vis 
cosity is: 

s t m f b i - t 4 \ (k.«>) 
\ jft«\ 

Substituting from equation (4.8) into the above equation 
and integrating between h - 0 and 5 gives the mean power loss 
J W , associated with an area dA of the boundary layer, due to vis-

vis. cosity, i.e. 
d w u - _L. / W £ ( u„/. Jfi t w 

Therefore, the viscous loss at the walls is proportional 
to the square of thetangential particle velocity amplitude. Thus, 
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the power loss in a length of the tube qx due to viscosity is: 

,JX -L y> - ^ . . ( u . J c l x cu fo.a; 
where, the integration is to be performed around the perimeter of 
the cross-section of the tube. ( see figure 4.2). 

* F xô rck-l. 
Thermal Conduction Losses. The presence of a solid wall modi-

fies the thermal flucwtiiations caused by an acoustic disturbance in 
the layer of gas nearest the wall. When the pressure rises to a max. 
imura, heat is generated and the density of the gas increases. But, 
because of the infinite thermal capacity of the wall compared to that 
of the gas, heat generated in the gas absorbed by the wall causing 
a cooling of the gas, In the succeeding half cycle, acoustic pres-
sure falls to a minimum value and the heat previously absorbed is 
given back. Thus, approximately an isothermal condition is maintain**/ 
On the other hand, the flov/ of heat is not quite in phase with 
pressure fluctuations and the gasdensity lags behind the pressure. 

As a consequence of the phase difference in density and 
pressure there is a net heating of layer of gas at the wall which 
is subsequently communicated to the body of the gas. This layer of 
gas is known as "The thermal boundary layer". 



The energy loss, which occurs when a wall is subjected to 
a periodic pressure variation: 

P= ft ' (4.13) 
can be calculated. Since the boundary layer is thin the pressure 
may be consideredtthroughout. Outside the boundary layer there is a 

t / temperature variation 0 , but in the proximity of the well 0rO. Thus 
the solution of the thermal wave equation must satisfy the boundary 

' ' ' 

conditions, (i.e. at h :0, 0 and at h a n d it is given bj 
eV 6,' - ei(> M ) k / j wt) (k. \k) 

where, K s Thermal conductivity of gas, • . 
: specific heatof the gas at constant pressure, 

h, is measured along the axis normal to the surface of the wall, 
and 0, is given by: 

J2L. P. X. fj' 
where, X : the ratio of principal specific heats (X/jQ of the gas, 

n' ^ 
f̂  : the static pressure, 
""J® : the ambient absolute temperature, 
P : amplitude of the acoustic periodic pressure. In equation ( 4.14) the quantity, 

2 k (q.ii) 
/.^Xf 

has the dimensions of length and is known as " the thermal boundary 
® 0 layer thickness". For 20 C and I atmosohere pressure in air, £ ' -Cm. 

twr r r 
where, f is the frequency in cycles per second. Hence for fiI600c/^ 



£ - 0.0065 cm. 
th-

The quantities $ end excess pressure p are small, so the 
equation of state may be written in the form of: 

where, dv* is the change in the volume element of VJ. 
Writing V̂ - dA,dh , equation (4.17) may be rewritten, 

d v - - ( 1 L - J - ) ( J f l . d k (4.1?) 
\ t , 1 

Substituting from equation (4.14) and remembering that 

0 V p 
t (4.18) becomes: / Decoraes: » 

The product of the real part of the rate of reduction in 
f ivk 

volume - r - 1 and the real part of the pressure gives the rate of 
energy loss: where, 

r -» A i , J \ Act / 
l/J - t i c r t w l -^.21). 

taking 
the mean value with respect to time and integra-

ting the result between h-0 and hn» -ogives the mean power loss, 
associated with the area dA of the boundary layer, i.e. 

dw,, = j - i ± u, i,L p; do 
Therefore, this type of loss is proportional to the 

square of the pressure amplitude. 
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It is evident from equations (4.9) ond (4.16) that the 
two boundary layer thicknesses are nearly equal, i.e.£-£ • 

vis. ~ tl\. 

Thus it may be considered that the thermal and viscous processes 
occur in a single boundary layer. Also is negligible compared 
with the transverse dimensions of the tube. 

The power loss in a length of tube dx, due to thermal 
conductivity is (of.4.12), (see figure 4.2). 

Determination of The Attenuation Coefficient; In the case of 
acoustic wave propagation in a rectangular tube without attenua-
tion, the velocity potential (Cp ) and the propagation constant 

c i ) 
• MR 

of any mode, are given by the equations (2.2) and (2.5), respecti-
vely. 

The effect of viscosity and thermal conduction losses is 
assumed to add a small real part to the propagation constant, so 
that, 

Y = * A + 5 f 
TA A TWA M » M A 

where,o( : the attenuation coefficient of the (ra,n) th mode. MA 
Velocity potential is now multiplied by but is 

otherwise unchanged from equation (2.2), i.e. 

For a particular mode the rate at which the acoustic enerĵ  
crossing the section at x- 0 is, 
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/ / p U y a^ h. At (Lj.zt) 

-c* -lo o 

v/here, Z is the period of the acoustic cycle ( 3 - 2^/va;) , 

^ f - f e £ s,.u,t 27) 
and: 
u = - li--- - e ft <*) uut Uzs) 

The total power loss is: 

The attenuation coefficient ̂  , is related to dVI/ and W by 
the equation: o(, A-* - Ju • • 

~ ^ \A/ 
or: 

^ * ~ 1 ^ a, At 
The values of p, P9 and û are given by the equations (4.27) 

and (4.28). The value of the amplitude of the tangential velocity is*. 

At the walls y- p - e and 2 - t (u») = 0 • 
v * 

w h e r e , i u . v - a . . c
s;> ( - a •*) 

Therefore, all values are known in the equation (4.J0) 

and evaluating the integrals of this equation the value of attenu-
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ation coefficient can be found. 
Nov/, for perfectly rigid walls, 

aw 
V? 5 

ax 

The result of this integration depends on the values of 
m and n and may be written for convenience as four different con-
ditions, (i) m-0 , n = 0 

(ii) mfi 0, n- 0 • 

(iii) m r 0, n $ o 

and (iv) m^O, 0, r ~ t! "A 

[ i f i ^ - * 
h 

and the results for four different cases are set below, (i) m=0, 
. \ X-

n̂ O 

ax i(c,0) cj 
(ii) . m £ 0, n = 0, 

(iii) msO, n̂ O 
[ 

a*. 

c *t 0) 2C 
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(iv) m^ 0, n 

Finally, 

^ ** 
4 s / 

A ^ A 

and the four resulting cases are: (i) m,0, n = 0, 

(ii) m 0, n - 0, 
W ' , r W / P CX V> 

Cwi.o) / J ' vhc * ex 
(iii) nitO, n^O, 

(iv) m-̂ O, n + 0, 

Substitution of the equations, (4.35), ( 4.3 9) and (4.4:3) 
into equation (4. 30) gives the attenuation coefficient for plane 
ves in the tube "viz. 

o( .J. p ( a 
(C,0) «* * \ c _ 
Substitution of equations, (4.36), (4.40) and (4.44) 

to equation (4.30) leads to, 

( k - k i ) 

•(k- kk) 

Ci.iis; 

( k - k t ) 

CN b 
in-

p L (mn..Y"[ 
Ira. TV, J G O a & i o ' U r 

' ' > 

I 
fA CA 

1 

' i c G \ * ; * V, tw 1 



Tho case corresponds to propagation between parallel 
?e 

pltnes at y=q. a, which was considered by Shaw, who derived an iden-
tical expression for c< applying Kirchhoff's method. He has also fo-

Mf * 
und that, the wave-length constantis increased by the magnitude of 
the attenuation coefficient which is due to the attenuation of the 
sound waves. 

Pyett, using the perturbed mode numbers where dissipati-
on exists, derived the same expression for a rectangular tube. i.e. 

a y * a a a 

where,is the wavelength of the (m,n) th mode in the'tube. 
Substitution of the equations (4.37) , (4.4l) and (4.45) 

into equation (4.30) gives: 

ĉo.a) ~ [ t \ + 1 f . * + ^rt) ] 4 r ] 

\ » A 
Finally, substitution of the equations (4.38) » (4.42) 

and (4.46)into'aquation (4.30) gives: 



CHAPTER V 

MEASUREMENT OF THE ATTENUATION COEFFICIENT FOR PLANE WAVES, (l,0) 
AND (2,0) MODES IN GAS FILLED,RECTANGULAR TUBES. 
5.1. INTRODUCTION. In chepterlV, theoretical expressions of attenu-
ation coefficients for any type of mode have been given. In these 
expressions, a, b, are all constants which depend 

on the tube dimensions and the properties of the gas filling the 
tube. Therefore, for a given frequency, theoretical values of the 
attenuation coefficient for plane waves in the tube can be obtai-
ned from equation (44"7). For (m,0) type modes, however, it is ne-
cessary to find the value of £ which thus requires the. determina-

o 'me 
tion of X • 

m o 
rived from experiment. ( see section 5.2), 

Therefore, fc can be obtained and substituting its value 
into equation gives the theoretical value of attenuation coef-
ficient for (ra,0) type modes. 
5.2. STANDING WAVE ANALYSIS. The theory of the exploration of the 
standing wave pattern along a tube was initiated by Scot"?(l946) and 
since considered by many others. In this method, the positions and 
the values of the pressure amplitudes at maxima and minima of the 
standing wave pattern along the tube are determined. 



In making attenuation measurements, a smooth metal pla-
te is used as the reflector at one end of the tube.This reflector 
may be assumed to be rigid so that there is no change in the value 
of the v/ave amplitude on reflection. 

Now assumeC is the ratio of the amplitudes of reflected 
and incident waves at the reflecting surface and n)is the phâ . 
se change accompanfying reflection. Thus, for a rigid reflector, 
andgrlL. 

Scott has shown that, with a standing wave pattern in the 
tube, pressure minima occur at distances from the reflector given 

h y ' tc - J f j L L - - Sink x 

where, N =1,2,3,.... 
Correspondingly, pressure maxima occur at distances from 

the reflector given by, 
a - I & y + O n L . 4- + 

where, M = 0,1,2,3,.... ^ M 

For a rigid reflector, (i.e.^ Ss J "the above expressions 
reduce to, 

i - Z M J - t A i . S . ^ u ^ % (s\ si 
M afi. 
Considering now negligible energy dissipation in the tube 

(i.e.o< = o) i then: 
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' m J 

Therefore, the effect of dissipation in the tube, is to decrease 
the distence between a pressure minimum and rigid reflector and to 
increase the distence between a pressure maximum and the rigid ref-
lector by an amount 

z f * 
« MO The validity of above expressions depend on the condition 

• This condition is always fulfilled in this work for the' 
values of were less than 0.1. 

The amplitudes of pressure minima and maxima are given by 

P M a x = C \ c + ^ ^ ^ ( ' ( . . v f 
where, C is constant. " 

In the present case, c< is very small (less than 0.003) 
and the second terras in the above equations may be neglected. 
Furthermore,^^ Of or a rigid reflector, thus equations (5.8) and (5.9) 

may be reduced respectively to 
L ^ S i A ^ x 

P X (S--10 
Generally,o( x is less than 0.2, so,G?*W xdoes not consi_ 

m* M* 

derablVf differ from unity and the (sinh) function is nearly equal 
to its argument. Therefore, equations (5.10) and (5.II) show that, 



-57-

all pressure maxima become nearly equal and the pressure minima are 

a linear function of distance, in the case of the rigid reflcctor. 

The standing wave ratio S is given by: 

be obtained, whose slope gives the attenuation coefficient. 

5.3. NON RIGIDITY OF WAVE-GUIDE WALLS — EXISTENCE OF TRANSVERSE VIB-

RATIONS. At a pressure antinode, the (1,0) mode exerts A positive 

force on one of the minor sides of a transverse section of the tube 

rical character of the. (1,0) mode tends to cause lateral displace-

ment of the section in the same direction if the walls of the tube 

are not sufficiently rigid. However, such displacement also occurs 

when the whole tube vibrates transversly as a bar, so that, there 

may be coupling between the bar-type flexural resonances of the tube, 

and the (1,0) mode. In such case, acoustic energy would be expected 

to pass most readely from gas to tube when the phase velocity (cp 

of the (1,0) mode coincides with that of a flexural wave in the tube. 
39 

Morse, gives the expression of the velocity of flexural 

wave in a bar, i.e. 

If,(tanh'S ) is plotted against x, a straighfcline should 

and a negative force on the other opposite side. Thus the antisyiamet 



where, 

E^: Young modulus of the material of the wave-guide wall, 

f : density of the material, 
b 

R : radius of gyration of the cross- section. 
7 
R For a rectangular, thin walled tube of transverse dimen-

• , , o„ • ^ 
8ions 2a and 2b/is, 

V - W ( ^ r ) " ft-'" 
The allowed frequencies of the flexural vibration of an 

(16? unsupported bar of length (l) vibrating freely are, 

( U < * » > 
where, N r 1,2,3,. •• 

Therefore, from equation (5.16),^|may be found and subs-

tituting these values .into equation (5.14) gives the approximate va 

lues of , at resonance. When one of the values of Cj, coincides 

with the phase velocity of the (1,0) mode, some excess attenuation 

of sound may be expected for non-rigid tube walls. In section (5.^) 

this possibility will be investigated by inserting numerical values 
in the analytical expressions. 
5.4. EXPERIMENTAL V70RX. 

ai^cyfacifi'on 
In order to find the theoretical values of coeffici-

ents, the values of gas coefficients C9, f t y a„<i K oust 

be known. (See references 41, 42, 43, 44,45). 

Gas constants for air: 

The density of air(f ) at an absolute temperature T (degK) 



-59-

and pressure P(cm. Hg.): 

1 = o ( ~ j t ) ( j 1 ) v ^ M • 

hence, at 22* C and I atraosphere,/9= 0.001293 gm/cm. 

The velocity of sound in air (ĉ  at any ordinary tempe-

rature in degC, can be calculated from the formulas 

C t - 33 + 6o- l ( t c m f e r c U r e ) 
« . So, at 22 C, 34480 cm/sec. 

Specific heat at constant pressure fjCp and the ratio of 

the principal specific heats (%) of air, at I atmosphere and 22' C 
c \ are respectively 0.2// and l,l{0 3 • 

The shear viscosity coefficient of air (fJ) at 22 C is 
» ' 

yz\%\ yf. • If the-viscosity of a gasp at the temperature T is 
n tt 

known, the viscosityy^ at T is given by: 

where C is Sutherland constant and equal to 117 for air. 

The thermal conductivity of a gas at normal pressures is 

independent of pressure and may be given by: 

At 22 C, I atmosphere, the thermal conductivity of air 

Attenuation of (0,0) and (1,0) Modes: Measurements with 

(0,0) and (1,0) modes were carried out in the small wave-guide. The 

experimental values of attenuation coefficients were found about 

lojz above the theoretical values. The sand which covers the guide 
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caused this high values of attenuation coefficients because of its 

high internal firiction. On the other hand no wall vibration occur-

The sand which covers the guide was then removed and the 

measurements were carried out with the tube free from sand but still 

contained within the covered box. 

The results of plane wave measurements have been given in 

table 5.1. The theoretical values of attenuation coefficients have 

also been included for comparison. An agreement 7/ithin is found 

which should be within experimental error. 

The values of attenuation coefficients obtained in (1,0) 

mode experiments have been given in table5.2. together with theore-

tical values ofo^ .In figure 5.1 and figure 5.2 tanh*S have been 

plotted against x. The results as expected were straight lines 

which ensures that the standing wave patterns follow the theoretical 

forms very closely. 

The attenuation coefficient of the (1,0) mode against the 

it can be seen thato^ has large values near the cut-off frequency 

of the (1,0) mode. This is because the wavelength of the (1,0) mode 

is very large ?/hen the excitation frequency approaches the cut-off 

frequency of the (1,0) mode. 

red, which moans that the walls were effectively.rigid 

has been plotted in figure5.3. From this figure 

During the standing wave measurements all pressure maxima 





-Gu-

v/ere found to bo approximately equal and the pressure minima incre-
Irorv) 

ased with the distance measured'the face of the rigid reflector. 

This can be seen in figure 5.4 which shows the variation of pressu-

re along the large wave-guide for the (1,0) mode at the frequency 

of 1603 c/s. 

The possibility of tube wall vibrations when the sand is 

removed should be considered. For brass tube, £^ = 3.11 tio'^m.cnyscc^/^ . 

and Thus the values of allowed frequencies of the'flexural 

vibration of the tube may be found from equation (5.16). When N-4 

in equation (5.16),i is equal to 2427 c/s. Substituting this value 

into equation (5.14) gives the velocity of flexural wave which is a 

bout 119*10 cm/sec. On the other hand the phase velocity of the 

(1,0) mode in the tube is given by Ĉ r C.̂ CosG (see equation 2.18). 

WhenCp£Cj the value of cos0 is 0.30. The value of cosGwas also 

given in terms of the frequency (see equation 2.17), i.e. 
cos J ^ y f 

Substituting the value of cos9 and 
into this equation gives the 

approximate frequency 2563 c/s. Therefore, at this frequency the 

two velocities ĉ  andc^ are coincide and this may cause some excess 

attenuation. 

Experiments with f-= 2563 c/s showed that observed value 

of ck is about 13 $ above the theoretical value which was caused by 

the tube wall vibrations. 
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Attenuation of The .(2,0) Mode: Experiments .with Tho (2,0) mode were 

carried out with the large wave-guide. Observed and calculated va-

lues of are given in table 5.3. The plot of tanh S against x 

are also shovm in figure 5.5 and 5.6. The results are about 6-7/ 

above the theoretical values which was again caused by the high in-

ternal firiction in the sand which covers this guide. 

The variation of ot as a function of the ratio of 
J 

shown in figure 5.7. o( has large values near the cut-off frequency 

of the (2,0) mode where wavelength of the (2,0) mode is very large. 

Attenuation of Sound in Helium Filled TTave-guide: Measurements with 

the small wave-guide filled with helium was also done. Helium is a 

monoatomic gas so the non-classical attenuation is avoided. Helium 

has .also a high value of thermal conductivity with a high sound ve-

locity compared with that of air. Gas coefficients for helium (see 

references 41, 42, 43, 44 and 45) are:(co)=97970 cm/sec, (%JrI.60, 

x 1.25 cal/ gm degC, (/aVtO.I7«IO gm/cm ,^J-I94 micropoise 
—h I), and (Rj^ 14.61<10 cal/cm sec degC. 

From a helium cylinder the gas admitted into the guide 

through a 0.08cm. orifice near the reflector plate. At the loudspea-

ker end a special glass tap system and a vacuum pump have been used 

to flush out the gas from the inside of the guide and from the rub-

ber tubes which connects the loudspeaker units and the source end 

• of the wave-guide. Apart from the probe tubes, the guide was well 



sealed. Hence, the end of the probe tubes near the travelling mic-

rophone were also closed. 

For about 15 minutes the gas inside the guide were flus-

hed out for several times and helium was maintained in the guide. 

Ihe gas pressure inside the guide v/as read by using U-tube gauge 

which was connected to an orifice in the tube wall. 

Experiments were carried out for plane waves and for fre-

quencies from 6889 to 7512 c/s. Results were about 3-6/ above the 

theoretical values which are given table 5.4. Tanh S against x is 

also plotted in figure 5.8 for the frequency of 7003 c/s. 

The classical attenuation in the body of the gas has be-

en calculated by using the equation (4.). It wass found that at 

7 Kc/s,*< has the value of about 3.4/ of the total boundary layer 
ClA9. 

attenuation. Tnerefore, theoretical values should be somewhat hig-

her than given in table 5.4 and experimental values of attenuation 

coefficients should be accepted as close to its theoretical values. 
The value of the boundary layer thickness for helium can 

also be determined from the equations ft.9) and At a frequ-

ency of 7 Kc/s%t - 0.007 cm and^= 0.0073 cm which are very small 
' IM'* th. 

compared v/ith tube dimensions and therefore the boundary layer 

theory can be applied. 





CHAPTER VI 

THE MEASUREMENT OF. THE SPECIFIC ACOUSTIC IMPEDANCE OF POffOUS J1ATE. 

RIALS AT OBLIQUE INCIDENCE. 

6.1. INTRODUCTION. Measurement at oblique incidence implies the 

use of a parallel beam of radiation incident at one definite angle 

to the surface normal so that randomly incident sound v/aves are ex-

cluded in the present discussion. 

Various experimental methods have been employed but before 

describing these the conditions to be fulfilled by the "ideal met-

hod"' v/ill be defined. 

a) Any desired frequency can be used, 

b) The measurements can be carried out at any desired angle 

of incidence, 

c) Any size of material can be used for the measurements, 

d) A good experimental accuracy is attainable. 

Condition (d) is, of course, the most important one. The 

several methods which are used in practice may be divided into thretf 

groups: 

Free Wave Method. This type is the earliest method which has 

been used to measure the absorption coefficient of materials at ob-

lique incidence. It is similar to the optical reflection and absorp. 

tion measurement method. Conditions (b), (c) and part of (a) is ful_ 

filled by this method but the results are not accurate for these 

reasons: 



(i) At audible frequencies the wavelength of sound wave is lar-

ge and ray optics formulas are not strictly applicable with an ap-

paratus of feasible dimensions. So, lower frequencies cannot be used. 

(ii) Diffraction effects. 

Chamber Methods. In one procedure a small rectangular chamber 

has been used with one wall covered with a sound absorbing materi-
47 

al. Bhatt(I939) and Harris(I945) have used such chambers and made 

observations on a single mode enabling the impedance to be evalu-

ated. The incidence angles depend on the modes which are excited, 

and so frequencies and angle of incidences cannot be chosen at 

will* The results here are not expected to be accurate. Ihis may be 

due to ambient temperature changes which are very difficult to cont-

rol. Ihe chamber method is advantageous if a large surface is re-

quired as often e.g. in panel resonators, the materials do not res-

pond uniformly all over their surface. Ihis method can also be used 

at frequencies as low as 100 c/s, where the other two methods beco-

me impracticable. 

Acoustic Wave-Guide Method. This method was first suggested by a 
Hartig and Swanson (1938). In this method three techniques are pos-

sible: 
(i) Study of the resonance curves obtained when the frequency 

of the source is varied. Ihis technique is unlikely to allow accu-dtsorWrft 
rate measurements in the case of highly^surfaces, since the reso-

nance curves of individual modes then tend to merge making discri-



mination difficult. 

(ii) Study of the resonance curves obtained when the tube 
10 

length is varied. (Beranek). This technique leads to mechanical dif-

ficulties. 

• (iii) Exploration of the standing wave pattern in a tube. Pa-

ris(l927), Scot"?(l946), Sictw(l953) and others used this method. 

This technique does not have any serious disadvantage if 

the sound generator system ensures the excitation of the desired 

mode only, as explained in chapter III. 

The second and third techniques are termed acoustic trans-

mission techniques. 

The standing wave method has been applied in the present 

work. This method of'impedance measurement consist simply of deter-

mining the pressure amplitudes at a maximum and minimum of the stan-

ding wave pattern, together with the distance from the specimen sur-

face to the first minimum. 

The specific acoustic impedance of the specimen can than 

be found from charts as will be explained in the next section. 

The advantages and disadvantages of the acoustic wave-

guide method may best be understood by comparison with the " ide-

al method". 

a) In order to excite a propagated mode, the frequencies which are 

above the cut-off frequency of that mode must be used as explained 

in chapter II. Therefore, only a limited frequency range can be used. 
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for a particular propagated mode in the tube. If the transverse di-

mensions of the tube is small, higher frequencies can be used for 

that mode but it is also necassary to choose a tube which has trans 

verse dimensions large enough to accommodate a suitable test mate-

rial. If one uses several tubes with different transverse dimensi-

ons a large frequency range can be used but this is, of course, rat 

her Jte impractible. On the other hand, the dimensions of the guide 

become rather large for frequencies less than about 300 c/s. 

b) Ihe angle of incidence depends on frequency and the dimen-

sions of the wave-guide section. Therefore, it can be continuously 

varied by altering the frequency of excitation, but it is.not pos-

sible to measure over a range of incident angles at one frequency 

with one tube. From th-e observed values of mode wave-lengths the 

angle of incidences can.be determined accurately. V/hen the frequ-

ency is increased, this angle gets less but at the same time the 

possibility of excitation of other modes in the tube, which are 

unwanted, put a lower limit on the value of the angle of incidence. 
* » 49 

This lower value for normal-sized tubes is about 25 - 30. Beranek 

(1942), derived an approximate formula for the acoustic impedan-

ce of thin porous layers. He showed that, important change, with 

increasing the angle of incidence is an increa se in the resistive 

part of the impedance, the reactance remaining unchanged. Later ex-

periments have confirmed these results. Therefore, the value of im-

pedance does not change very much at lower values of the angle of 



incidence, (i.e. between 0*- 25). In fact, the wave-guide apparatus 

can be used for normal incidence (i.e.fliO), measurements employing 

the (0,0) mode. These considerations indicate condition (b) can as-

sumed to be fulfilled, 

c) WavQ-guides are not suitable for large-scale acoustic mate-

rials, unless corridors are used as sound-channels, 

d) The wave-guide has the great advantage that it is capable 

of the high accuracy of the normal incidence tube methods. It can 

become a precision method and was used in the present experiment, 
io 

Normal incidence tube methods have been described by Beranek, 

in full detail, 

6.2. DETERMINATION OF SPECIFIC ACOUSTIC IMPEDANCES OF MATERI-

ALS AT OBLIQUE INCIDENCE, USING THE STANDING-WAVE METHOD. 

In this experiment, impedance measurements have been car-

ried out using the (I,0) mode. The impedance formula , therefore, 

will be evaulated here, for this particular mode. 

7/h«n the tube is terminated by a test material a standing 

wave pattern developed along the tube. The complex reflection co-

efficient at the surface of the material is given by: 

where t : the ratio of the amplitudes of the reflected to incident 

wave, and A-2<S —Tt : the phase angle, ( 

From equations (6.1) and (6.2) : 



The specific acoustic impedance of the material, 2 , de-I ,o 

pends on the reflection coefficient and the characteristic mode im-

pedance of the medium. This relationship is given by: 

Z».„ -v 1 

Substituting equation (6.3) into equation (6.4) gives, 

t « A ( r + | s ) = p + ̂  as) 

Therefore, in'order to find the value of 2 of a material, first 
i, a 

^ and S must be determined. This can be done by observing the stan. 

dincj v/ave pattern in the tube as rill be explained later in this 

section. However, at the cut-off frequency of the (1,0) raodeW is 
i, si 

infinite and equation (6.5) becomes zero. Therefore, this equation 

does not give directly required impedance ratio. 

Thus the ratio, 

has to be determined. The value of W is given in equation (2. II. a) 
0,0 

which is: W C„ • By defination 
oto

 0 

V - - _ (f-7) 

A|<5 Substituting this value into equation (6.5) gives: 

/, 0 

-- f + i h 
So, from this equation, the resistance and reactance ratios are gi-



-60-

? - <\ 
ZT] 

I r - y ( v p y - ) U A o ) 

)) „Gnc* measured with high accuracy from observa-
tion of the standing v/ave pattern. and -ilfare the distance bet-^ and 
ween two successive pressure minima points. 

When the values of Y , o( and the distance betv/een the 
' 1,0 

position of first pressure minimum and the material (x,) ' are found 
iHin 

the values of p andc^are obtained using a Smith chart, described 
SO 

by Willis, Jackson and Huxley ( 1 9 4 4 ) . Values of \ y are defined bj 

concentric circles intersecting the radial lines of constant I 

The values of p andĉ  may than be found drectly which are important 

'for the equations . ( 6 . 9 ) and ( 6 . 1 0 ) . 

In the presence of appreciable tube attenuation the in-

terpretation of the standing v/ave pattern becomes more difficult. 

The expressions derived by Scott, for the maximum and mi-

nimum pressure amplitudes and their positions along the tube have 

been given in chapterV, by equations (S 2 ), (f. 3) > (£ $ ) and (5*.̂ ). 

It can be seen that, the effect of attenuation is to shift each 

minimum towards the reflecting surface by an amount 

The standing wave ratio can be given by the modified for-



mula, which is from chapter V, 
P 

S ^ I^VL. ~ \\ x + i f " ) 

i T' ' 
Plot of*Uinh5 against x is a straight line and the slope of this li-
ne gives cf\ • The intercept of thê anli 5 * line at gives the 
value of Y . 

In experiment, the distancê *,) can easly be measured but 

effect of tube attenuation should also be considered. So,£ must be 
D0,P) 

added as a correction term io(xt) • i.e. 

Corrected value of (%,) is used in impedance formulas. 

After these measurements and calculations all terms in e-

quations (6.9) ana (6.10) become known and results can be obtained. 

6.3. EXPERIMENTAL WORK: 

The specific acoustic impedance of a specimen of mineral 

wool with 2.45 cm thickness and 0.12 gm/cm density has been measu-

red at oblique and normal incidence in the large wave-guide. 

The observed values of and}0^Co for this specimen 

are given in figure (6.1). The angle of incidence is a function of 

^ ^ va^ues of | are sd-so included in this figure 

where (4 \ = 1204 c/s. 
Vl.o 

If the velocity of sound in a porous medium is very low 

the impedance of the medium does not change considerably with the 
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angle of incidence. This condition is fulfilled at very low fre-

quencies or in a medium with very fine pores. In this condition 

viscous forces are large compared inertial forces. 

In mineral 7/00I, at high frequencies the velocity of so-

und is nearly equal to its free value. Therefore, the impedance 

of this material gives an angle of incidence dependent impedance 

values. From figure (6.1) it can be seen that the impedance of the 

specimen at oblique incidence is different from the normal inci-

dence impedance. The resistance ratio shows the greater divergence 

which was pointed out by Beranek. 
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CHAPTER VII 

SOUND ABSORPTION BY POROUS MATERIALS. 

7-1. INTRODUCTION. Sound absorption by porous materials is always a 

question of conversation of incident sound energy into heat. Lord 

Rayleigh showed that in porous materials sound was absorbed through 

the viscous and thermal conduction effects occuring in pores. 

For plane waves, the mode impedance in the loss free case 

is W,„=/. C. (Tl) 
vVhen acoustic absorption takes place in a material a pa-

rameter termed the absorption coefficient is used to define this a-

coustic property. It is defined as the ratio of the absorbed acous., 

tic energy to the total acoustic energy incident on the given mate-

rial. 

For normal incidence the absorption coefficient of the 
specimen is given by: 

fl(o) . i- 1 • : ? « > ) -
I -z(o) + A C0 

Z(O) is the impedance of the specimen measured at normal incidence. 

(7.2; 

If the measurements are carried out with a higher order 

modeat an angle of incidence 0, in the loss-free case, the mode im-

pedance becomes: 
\j\f - ( i . i ) 

W Cose-

Paris (1927), has obtained an expression for the absorption coeffi-

cient as a function of angle of incidence© , i.e. 
^(6L) Cos. & - A 

A c * ) - * 1 -



whore 2(0) is the impedance of the specimen measured at an angle of 
incidenceB • 

Sometimes the value of the absorption coefficient is wan-
ted for random angles of incidence. This value can be measured di-
rectly by the reverberation methocU^In a reverberant test room, the 
time of reverberation decreases when the absorbing sample is inser- . 
ted. From the-times of reverberation before and after the applicati-
on ..of the sample, its coefficient of absorption for random angles of 

be 

incidence" The various absorption mechanisms can be divided into fo-

ur main groups. These are: 

a) Porous materils with rigid frame, 

b) Porous materils with flexible frame, 

c) Panel absorbers, and 

d) Resonators. 

Only rigid porous materials will be considered in this 

thesis, but a brief mention will be made about others. 

The skeleton of a flexible material vibrates with the air 

borne sound and a separate elastic wave propagates in the skeleton. 

Therefore, the compression modulus of the frame is an important 

constant for such materials, apart from other parameters which will 

be given in the next section. The surfaces of these skeletons may be 

coated by a light and thin damping material, so the physical proper, 

ties of the surface coatings are also important for their behaviour. 

Light panel absorbers are usually mounted at some distan-



ce in front of a rigid wall and they will possess a resonance fre-

quency at which the absorption has the highest value. 

Perforated panels are also used and the main variables 

are the perforation and the thickness of-the air layer. Perforati-

ons may be filled by another suitable absorbing material. 

For further details about sound absorbing materials see 
5 1 b st x Zwikker and Kosten and Ricardson. 

7.2. GENERAL EQUATIONS GOVERNING THE WAVE PROPAGATION IN A POROUS 

MATERIAL WITH A RIGID FRAME. 

The acoustic parameters of rigid porous materials are: 

a) Porosity 

b) Flow resistance (XT') 9 

c) Structure factor (k.)* 

a)Porosity is given by the ratio of the volume of accessible 

pores to the volume of the specimen. The porosity is independent of 

frequency and always less than unity. It can be measured directly 

by non-acoustic methods. 

b) Flow resistance is the ratio of the pressure gradient, in 

the direction being considered, to the volume velocity in that di-

rection where the volume velocity (U ) is defined as the volume, 

crossing unit area perpendicular to surface per unit time. The flow 

resistance varies with frequency and can be measured by non-acous-

tic methods. 

c) Structure factor depends on various parameters and is rela-



ted to the microscopic structure of the material. The factor varies 

with frequency, is always equal or greater than unity and is depen-

dent on: 

(i) The direction of the pores, 

(ii) Exfistance of some closed pores, 

(iii) Vibration of skeleton. This is small for rigid materials 

but can cause high values of k, 

(iv) The influence of velocity distribution. 

For many porous materials k has a value between one and 

two but is sometimes higher. 

In the earlier papers various authors used a porosity and 

a flow resistance to specify the acoustic propertes of material. 

Zwikker and Kosten, have introduced a structure factor. Then a mic-

roscopic volume of air in the material is subjected to an accelera-

ting force, it may be constrained by the solid skeleton, to move in 

directions other than that of the force, so that the component of 

acceleration in that direction is less than if the air were unconst_ 

rained. Thus, air in the pores appear to have an increased inertial 

density. This increase is expressed in terms of a structure factor. 

Zwikker and Kosten (1948) have introduced effective den-». 

sity (f ) and effective bulk modulus (K) to replace all the other 

parameters of the porous materials. 

In free air, in the loss free case/ and K are real. 

In a medium with internal damping, density variation is 



no longer in phase with the pressure variation. This means cl 

is complex. 

Equation of continuity is given by: 

V u ^ - J L J ^ p 
A • A? 

The effective bulk modulus may be introduced by: 

k - a - j l frt) 

f I X 
The equation of continuity may now be written in the simple form, 

i-e- V u r . - L f (7.7J 
K C5* 

The equation of motion in an isotropic medium is given by 

- V P - u + v - u (-).%) 
The effective density may be introduced by: 

/ = - J r ^ + t ^ r 
so, the equation of motion can be written in its simple form, i.e. 

- V P = / f t (7.io) 

and, j> becomes frequency-dependent. 

The. effective bulk modulus and the effective density have 

limiting values. Assume a medium, composed of cylindirical capil-
laries. If p and L are defined as: 

' ulAJL)*' 1 O H ] 
D = ( A 

where, f^: the pore diameter, and 

L ' - l / T ^ - f (7.11) 
Limiting values of K are found as follows: 

v j r f X p . y 1 (7.13) 
k 



then at. very low frequencies or^fc^ijCp^ large compared with the 

pore diameter, K has the limiting value: 
i d Y . . • x - i 

rjl^ I o , i.e. 

p ' 

then at very high frequencies, or^yU/^j is small compared with 

the pore diameter, K has the limiting value: 

(7. 11 

K = = x p ; / f ( 7 . a ) 
J - • - l 

At intermediate frequencies, the value of K can only be determined 

by measurement. 

The variation of K with frequency is shown in figure 

ALv\a<yf\Af ̂  

K - ' - f U r t 

if. 

p ; R ' / f 
Limiting values of/ are found as follows: 

i.e. 
(7-16) 



This means that at very lov/ frequencies, or i f ^ / l a r g e com-

pared with pore diameter, f has the limiting value: 

' • T ' - t - H - V l u ' s > 

This equation shows that,at very lov/ frequencies, / is 

preeminently imaginary. 

If, , i.e. 

This means that at very high frequencies, or (/J/wf J 

small compared with pore diameter,/ has the limiting value: 

/ - - j r / . t ' + f - i ) ^ V y - / , 

Therefore, at very high frequencies/ is real and motion 

is inertia controlled. Since, andj:^\ the values of/at very 

high frequencies is greater than/.. 

The nature of the frequency dependence of/ is shown in 

figure (7.2). 
d ftdj 

I taô X r\c*r ̂  



The above values of/ and K have been derived for a raedi-
5*4 ura composed of cylindirical capillaries. Campbell, has done the cal, 

culations for a medium composed of parallel plates. 

/ and K in fact depend on various properties of practical 

materials so that mathematical analysis can only be qualitative. 

,7.3. PROPAGATION CONSTANT AND '//AVE IMPEDANCE OF A MEDIUM IN TERMS 

OF EFFECTIVE DENSITY AND EFFECTIVE BULK MODULUS. The impedance of a 

layer of a specimen, backed by a rigid material may be written in 

terras of its wave impedance (V7) , propagation constant (Y) and its 

thickness. Hence, \7 B.nd% determine acoustical behaviour of a medi-

um alternatively/ and K. Regarding / and K as fundamental material 

constants and applying the equation of motion and equation of con-

tinuity for the vibrating air, one can find values of TiT andY in 

terms off and K. 

These values are given by: 

and, 

The velocity of acoustic waves in the medium is: 

From these three equations j5, and c can be found. Since/ and K 

are complex, c is also complex. 



7.4. EXPERIMENTAL '.YORK: 

Tho absorption coefficients of the mineral wool and an 

artific'al sample have been measured at normal and oblique angles 

of incidence. The results of measurements with mineral wool are 

shown in figure 7.3. At angles of incidence near to the normal 

only a small divergence from the normal value is found for the ab-

sorption coefficient which was expected. At higher angles (above 

SO*), because of the cos 9 term in equation (7.4), the absorption 

coefficient has small values. 

An artifical sample v/as made from perforated zinc metal. 

30 plates were held together by four rods with a distance of abo-

ut 0.2 mm. The measured absorption coefficient at normal and oblique 

incidence is shown in figure 7.4. Because of the high anisotropy 

of this medium, its absorbing properties was different from the 

normal incidence value. 
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CHAPTER VIII 

PRESSURE-RELEASE MATERIALS UNDER HIGH HYDROSTATIC PRESSURES: 

Elementary consideration of impedance tells us that ref-

lection will occur if sound waves in one -medium strike the boundary 

with another medium if there is a difference of characteristic im-

pedance. 

Therefore, to obtain a good reflector the first condition 

to be fulfilled is a large difference of characteristic wave impe-

dances of the two adjoining media, i.e. water and reflector. 

In the case of water/water or water/solid insulation, in-

sulators which have a sufficiently high impedance are not available 

and a reflector which has a low impedance is needed. These low impe-

dance materials are the so-called "pressure-release materials". 

The amplitude reflection coefficient Rj for sound waves 
5*5* 

in water incident normally on a reflecting layer, 

where O : thickness of the layer, 

Cyu: velocity of sound waves in water, 

f : the frequency of the sound waves, and 

f^t the dynamic elastic modulus of the layer. 

It follows from equation (8.1) that, 

r , _ _ l i j ( t . i ) 

* j r t f T C n d ^ r 
The medium is pure water, therefore,is constant and 



independent of frequency. Frequencies up to 6 Kc/s were used. 

Therefore, the dynamic elastic modulus and the thickness 

of the layer are the most important parameters concerned in the 

achievement of good reflection. The thickness of the reflector is . 

limited by practical considerations. 

It follows, therefore, that a good reflector should pos-

sess a low dynamic elastic modulus. 

The dynamic elastic modulus of the materials are given by 

a) For solid medium 

where K : the dynamic bulk modulus of the material, . M 
fJ : the rigidity coefficient of the material. 

• 1 1 

The lowest value of My for solids is not less than some 10 dyn/cm. 
b) For liquid medium: Liquids do not have value of My less 

than some 10 dyn/cm. 

c) For gas medium: The value of M^ increases with pressure 

and is given by: 

whereX-i ratio of principal specific heats, 

P: pressure. 

For airX-1.4 and when the pressure is equal to 20 atms., 

which corresponds to 200 m. of water, the value of M becomes: 
Q 

In order to obtain a reflection coefficient of 97/ or more in wa-
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ter at a frequency of 3 Kc/s and a pressure of P-20 atms.(F<*0R\ ê u.8.l) 

^/crS . {1.5) 

where d is in cm. 

From the above relation, it may be deduced that to use 

a metal or liquid as en officent reflector requires a very thick la-

yer of about ICOcm. which is not a reasonable value in practice. 

It is,therefore,necessary to use a layer which contains 

gas. 

In the case of air-filled sponge with negligible skeletal 

stiffness at a pressure of 20 aims, and at a frequency of 3 Kc/s, 
M-2.8*10 dyn/cm. for air, thus, equation (8.J) can be fulfilled <t 
for layer thicknesses down to about 0.1 cm. 

The range of-critical thickness for different pressures 

and frequencies is illustrated in the table (8.1). The large varia-

tion of critical thicknesses with pressure is inconvenient in prac-

tice and alternative means must be adopted. 

One procedure which can be adopted is to use a solid ref-

lector which has pores .filled with air. The stiffness of the ref-

lector will no longer be small and the dynamic elastic modulus is 

necessarily greater than that for the air itself. This increase in 
M will involve slightly)layer thickness to maintain a constant value o 
of the reflection coefficient but the layer will have adequate re-

sistance to high hydrostatic pressures. 

A suitable material to satisfy the above conditions is 



_ no. 

f e e CM Pre 5 5 * r e 
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foamed rubber or stiff plastic containing air and will therefore, 

be suitable as reflector material in deep water. 

However, the escape of air from the reflector and penet-

ration of water into the reflector under high hydrostatic pressures 

has to be avoided. Hence the reflecting materials should possess Cr. 

losed pores. 

Bocker (1961), has done work on pressure-release reflec-

tors and found that among the tested samples, cellular rubber with 

closed . . pores had the best reflecting, properties at the pressu_ 

reis from zero to 20 atmospheres. 

Another important application of equation (8.2) .relates 

to the reflection, in water, of sound waves from a thin film of 

air. If the thickness bf this air film is 0.1 cm. and it is enclo-

sed between thin metal plates, from equation (8.2) it is found 

that the air film reflects at 20 atms. pressure above 95/ of the 

incident energy at low frequencies. A possible pressure-release 

medium can be formed, therefore, from ribbed metal sheet(figure8.I) 

As a result of the flexibility of the sheets between ribs, the 

sample can be used at high hydrostatic pressure in the water. 
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CHAPTER IX 

LIQUIDS IN CYLINDRICAL TUBES 7/1TH HARD Y/ALLS. 

In order to investigate the reflecting properties of ma-

terials under high hydrostatic pressures, it is necessary to use a 

measurement chamber and this may be conveniently provided by a clo-

sed rigid steel tube containing a v/ater column, at one end of which 

is situated the test specimen. 

The agreement between the analytical and experimental re-
ar? 

suits of Fay, Brown and Fortier indicates that a water filled tube 

is practicable for use in measuring the impedance of underwater a-

coustic materials. 

In air acoustics, it is relatively easy to obtain an enc-

losure with rigid walls, that is, with walls whose specific acoustic 

impedance is large compared with that of air and, therefore, it can 

be that no energy is transferred from the sound field to the solid 

enclosure. For sound propagation in water, in fact, no practical 

boundary can be assumed to be completely rigid, since the specific 

acoustic impedance of the walls of the tube cannot be assumed very 

large compared with that of water. 

Therefore, relatively thick walls are necessary to provi-

de sufficiently rigid boundaries for the water column in the tube. 

It has been shown that for the case of forced vibrations 

of a fluid, contained in a cylindiricsl tube, the waves become pla-

ne if: 
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where D : internal radius of the tube, 

c 1 velocity of sound in the fluid and 

f : the frequency. 

Below this frequency, the sound waves in the tube are 

plane. 

The yielding of the tube near the liquid nodes results in 

a lowering of the wave-velocity in the liquid. H. Lamb has shown 

that the relationship between velocity of sound in the tube, thick-
5* j 

ness of the tube walls and inside diameter of the tube is given by: 

V s c m { i + K J A E j i l . ( s . o 

where E: Young's modulus for the material of the tube, 

K : volume elasticity of the liquid, 

: the velocity of sound in the free liquid, 
C , »: actual velocity of sound in the tube, 

d : thickness of the tube walls* 

At frequencies within the audible range, the resonance 

within the liquid can be heard by ear. Figure (9.1) shows the reduc 

tion of sound velocity in a steel tube filled with water. It can be 

seen that (as Helmnoltz had predicted and from equation (9.2)), the 

actual velocity of sound in the tube increases -with increase in the 

thickness of the tube walls and 7/ith decrease in the diameter of the 

tube. 

In order to make measurements in liquid filled tubes it 
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/ 

is osoential to remove any dissolved air from the water in the 

tube, so that when the temperature or pressure changes, no air 

bubbles are released. The presence of air bubbles.can modify app-

reciably the velocity of sound v/aves in water. 

The dissolved air can be removed by heating the water or 

by pumping out the air from the space between the water and the 

top plate of the tube using a vacuum pump. 
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CHAPTER X 

CHOICE OF METHOD OF MEASUREMENT AND DETERMINATION OF THE SPECIFIC 

ACOUSTIC IMPEDANCES USING THE METHOD OF THE RESONANCE ANALYSIS. 

10.1. CHOICE OF METHOD OF MEASUREMENT: 

To investigate the reflecting properties of materials un-

der hydrostatic pressures necessitates a measurement chamber v/hich 

is closed and of moderate size. Because of this, the method of mea-

surement must be chosen from the standard impedance tube techniqu-

es i.e. 

a) Progressive wave or pulse, 

b) standing ?/ave, . -

c} Resonance analysis. 

The pulse technique, which requires several wavelengths 

within the tube, is not applicable to this experiment. The reasons 

are: 

(i) Limited length of the impedance tube, 

(ii) Low audible frequencies will be used. 

A standing wave pattern requires a moving sound probe or 

a telescopic tube which may lead to measuring difficulties especi-

ally at high hydrostatic pressures. 

Therefore, the resonance method was adopted in this expe-

riment. This method has also the advantage of causing the least mec-

hanical troubles. 

In the case of resonance analysis method, the resonance 
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frequencies of the water column, contained in the tube, and the 

bandwidihs are measured for each of the modes in the desired frequ-

ency range. From these readings, the real and imaginary parts of the 

terminating impedance can be derived (see the next section). 
io 

Pooler's work indicated that the resonance curves are 

very sharp when there is a free water surface to air at the top of 

the tube. 

10.2. DETERMINATION OF THE SPECIFIC ACOUSTIC IMPEDANCES USING THE 

METHOD OF THE RESONANCE AljLYSIS. 

Y/hen the source of sound is at one end of the impedan-

ce tube and the sample under test is located at the opposite end, 

if the lateral dimensions are sufficiently small, the sound field 

can be represented by two plane waves travelling in opposite di-

rections in the tube. 

It has been shown that the dissipation constant k^is ma-

de up of two comoonents k and k where k is the damping constant 

of the sample under test and k is the damping due to the tube-

wall losses e . t . c / * ' ' 

i.e. * K « (lO.i) 
„ , k - n (/"-{). 

where f and f are the frequencies on either side of the resonance 

at which the sound pressure is 3 dB. down from the resonance value. 

Hence, measurements of the bandwidths of resonance peaks, with and 

without sample in position give values of k and k respectively and 
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hence km. Therofore, the specific acoustic impedance of the terrains., 

tion may be determined by obtaining two resonance curves, one with 

th e material in place and another without the material. 

The specific acoustic impedance at the surface of the 

sample under test is given by: 

AA/^IV J w 

where Z : specific acoustic impedance of the sample, 

characteristic impedance of the medium, 

Pyf^C^: resistance ratio for the sample, 

reactance ratio for the sample. 

Then, . 

and » 

For high values of impedance and y^less than 0.1, the follo-

wing relations may be used: 

. sr. ( ' + < ! ) _ (\c.t) 

J U . l l L i i ^ 
A c w " + ^ 

U J ( itf.sj 
where 

i - i 

where f : the resonance frequency, 
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Ĉ i velocity of sound in the water in the impedance tube, 

VV\: an integer, equal to the number of one-half wave-lengths in 

the tube, 

{ : the length of the tube ( measured from the sample to the sound 

source). 

In order to determine the impedance of sample in the tu-

be, we must first find the values of^and^ • 
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CHAPTER XI 

EXPERIMENTAL WORK. 

II. I. THE APPARATUS OF THE WATER FILLED CYLINDRICAL TUBE EXPERI-

MENTS! 

The apparatus which has been used in this experiment is 

shown in figure (II.I) and figure (II.2). Impedance tube should ha-

ye a ratio of wall thickness to inside diameter as large as possib-

le. It is also necassary to choose a tube which has an inside dia-

meter large enough to accommodate a suitable test material. 

An impedance tube v/hich has a length of 305 cm.has been 

used for this experiments. It is a cadmium plated steel tube of 

wall thickness 1.6 cm. and 10.8 cm. internal diameter. From equati-

on (6.1 ), the frequencies up to 7 Kc/s can be used to produce plane 

sound waves in this tube. 

Equation (9.2,) and figure (9-1 ) shows that the velocity 

of sound in the contained water is constant under same conditions 

but less Tthan the velocity of sound in the free water. The sound 

velocity in the tube, therefore, is about 95/ of the free velocity. 

There is an extra 30.5 cm. tubing and it may be bolted to 

the main tube, if wanted, In this experiment, the main tube has be-

en used only, and from the length of the tube, it appears that the 

fundamental quarter-wavelength resonance should occur at the frequ-

ency about 120 c/s and the higher order resonances should.be sepor 
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rated by about 240 c/s. 

A permanent fixture to support the tube was built and it 

was fixed in a vertical position, (see figure II.3). There are two 

steel end plates which are 5 cm. thick and they can be bolted to 

flanges screwed on to the bottom and the top ends of the tube, (see 

figure II.4 and figure II.5 ). Each of the end plates has two taps. 

(A) is used to de-gas the water using a vacuum pump and (B) is used 

to apply pressure to the water column. (E), when open, is employed 

to apply a balancing pressure to the water column at atmospheric 

pressure, (D) is opened when it is required to apply a balancing 

pressure when the water column is itself subjected to an additional 

external pressure (via B). 

The hydrophone is put on the internal rubber diaphragm 

which is at the bottom of the water column. This diaphragm prevents 

coupling of the tube walls and the transducers and there is an air 

cavity under' this diaphragm. 

The sound source is not rigidly connected to the tube 

walls or end plate, in order to keep the direct excitation of the 

tube walls to a minimum. 

The joints are sealed with 0-rubber-rings, therefore, the 

water and pressurized air cannot come out from the tube. 

By using a hand operated water-pump, the air space below 

the diaphragm could be compressed. A pressure equivalent to the 
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contained water column pressure could be obtained to balance the 

downward pressure on the upper side of the diaphragm. The value of 

this balancing pressure is measured by a glass-steel mercury mano-

meter. 

A vacuum-pump was used to de-gas the contained water. 

The pressure on the top of the water column which now fil-

led the tube could be increased by opening (B) to connect with a 

gas cylinder under pressure; at the same time, the (D) was also o-

pened so as to maintain the pressure balance on the diaphragm. In 

this operation, (A) and (E) are closed and (C) is opened. 

The electronic equipment consists of a AF Signal Genera-

tor and power amplifier to drive the sound source and an AF Spectro-

meter with a Cathode Ray Oscilloscope to detect the hydrophone sig-

nal. The input signal from the generator was also displayed on the 

screen of the Oscilloscope .to ascertain the waveform. 

The sound source was a barium titanate sphere, 2.5 cm. in 

diameter. The hydrophone was consWcted by using lithium sulphate 
* 

crystals 2.5 cm. in diameter by 0.9 cm. thickness. They were lightly 

clamped inside a cylindrical brass case 5.6 cm. in diameter by 3.7 

cm. deep. This was then filled with castor oil and sealed with a 

stout rubber diaphragm. A length of co-axial out-pttt cable was sea-

led through the case. 

Details about the AF Signal Generator and the AF Spectro-

meter have been given in chapter III. 
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A Vennor counter has been used to. read the frequency more 

accurately v/hich was necassary because of the sharpness of the reso-

nances. 

II.2. MEASUREMENTS AND RESULTS: 

In the first instance, The hydrophone end the sound gene-

rator were mounted in the bottom of the tube with both end plates 

closed. The manometer and water pump were connected to the tube by 

the copper tubing. With tap (A) open, the tube was filled by water. 

With only tap (A) open, using the vacuum pump, the water column in 

the tube was de-gassed. Tap (A) was then maintained closed for the 

rest of the experiment. 

Then, tap (E) and tap (D) were opened and tap (C) was clo_ 

sed. Using the v/ater-pump,an excess air pressure was produced under 

the rubber diaphragm. This pressure was increased until it became 

equal to the water column pressure and the value of this pressure 

was read by the manometer. By this means, the rubber diaphragm was 

maintained horizontal. 

The electronic circuit was connected as shown in figure(l\>Z) . 

To minimise background noise, the cables used were made as short as 

possible. 

The system was left undisturbed for a day , for each measu-

rement to ensure that thermal equilibrium was established. With the 

upper water surface free, measurements were made to find the water 

column resonance frequency and bandwidth for every mode. 
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As expected, sharp water column resonances ?/ith frequ-

ency intervals of about 240 c/s have been obtained. The frequency 

of resonances were very close to their theoretical values with a 

Q ( i.e. quality factor) of about 300. 

The Q of resonances have been calculated and a plot of Q 

against frequency is given in figure (II.6) 

One particular resonance curve has been plotted in figure 

(II.7). 

It is most desirable to minimise coupling between tube 

ends and the water column and, hence, a brass cylinder was suspen-

ded from the upper end plate of the tube. The test specimens were . 

mounted on this brass-cylinder which was 5 cm. thick and 10.2 cm. 

diameter. 

The measurements then ire re made using brass-cylinder 

with attached samples, in terms of the change in resonance frequ-

ency and bandwidth caused by the presence of samples. 

It was shown in chapter X that the specific acoustic im-

pedance of the sample can be determined by obtaining two resonance 

curves, one with the sample in place and another without the sample., 

Therefore, resonance curves have been obtained for the samples to 

determine their specific acoustic impedances at the frequencies 

from 3.5 Kc/s to 5.5 Kc/s and at hydrostatic pressures from zero 

•to 25 atmospheres. 

Using the equations (IM ), (l<U), (|0.3), (ftfJf), ([0.5"), (lO-t ) 
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and (1^9), the resistance and reactance ratios of the materials., 

X 

have been calculated. 

From the values of resistance and reactance ratios of 

the materials, the reflection coefficient of the materials can be 

found from the equation: 

The Samples: 

(a) Closed Rubber Tubes (Thick 7/alled): Five rubber tubes of 

1.25 cm. in outside diameter were sealed on a circular rubber sheet 

which was 0.1 cm. in thickness and had the same value of diameter 

as brass-cylinder, (see figure II.8). The 7/a}l thickness of the rub-

ber tubes was 0.47 cm. and they were clamped at both ends to pre-

vent the escape of air and the penetration of water into the tubes. 

in the water. From the readings, two resonance curves have been ob-

tained at atmospheric pressure and 10 atmospheres. By the aid of 

these two curves.and the water column resonance curve 7/ith free sur-

face to air, the resistance and reactance ratios against frequency 

for this sample have been calculated and plotted in figure (II.9). 

Variation of reflection coefficient against hydrostatic pressure 

has also been calculated for this material and plotted in figure 

(II.IO)o Reflection coefficient against frequency of this sample 

Z 

The sample v/as backed by the brass-cylinder and immersed 
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at zero and 10 atmospheres hydrostatic pressures have been plotted 

in figure (II. II), 

(b) Closed Rubber Tubes (Thin 77alled): A similar sample as 

with the thick walled rubber tubes were used, the tubes having 0.24 

cm. wall thickness. 

Similar measurements were made on this sample and resis-

tance and reactance ratios against frequency for this sample have 

been plotted in figure(II.12). Variation of reflection coefficient 

agains hydrostatic pressure is shown in figure (II.13), Reflection 

coefficient against frequency for this sample was plotted in figu-

re (Jl.14). 

(c) Rubber Slab 7/ith Closed Pores: A circular disc of 1.0 cm. 

thick rubber having cylindirical pores set perpendicular to the end 

faces, and 0.2 cm. diameter was used as a test samle. 

To prevent the penetration of water in the pores and the 

escape of air from the pores, the samle v/as covered v/ith 0.1 cm. 

rubber sheet. 

The variation of reflection coefficient against hydrosta-

tic pressure at a frequency of 4 Kc/s has been measures and plotted 

in figure (II.15). 

(d)Foamed Plastic(I): A circular disc of 2.4 cm. thick foamed 

plastic was used. Density of this sample is 0.32 gm/cm. The reflec-

tion coefficient of this sample is plotted as a function of hydros-



rostatic pressure in figure (II.16). 

(e) Foamed Plastic(II): A similar ssmple with (d) was used, 

Ihe density of this material is O.I7 gm/cra. The reflection coeffi-

cient of this sample is plotted as a function of pressure in figu-

re (II.17). 

(f) Foamed Plastic (ill): The density of this material is 

0.06 gm/cm. Tests showed that this material was inadequate to the 

pressures above 15 atmospheres. Therefore, measurements were carri-

ed out at the pressures from zero to 10 atmospheres. Hie reflec-

tion coefficient of this sample as a function of pressure is shown 

in figure (II.18). 

As a result of these measurements, it is evident that 

the reflection coefficient decreases with rising pressure. This dec., 

rease in reflection coefficient is caused by the high static load 

on the solid structure' containing air. Under high pressure, comp-

ression of the solid structure of the foamed material leads to the 

formation of increasing numbers of sound bridges allowing for bet-

ter transmission of sound. 
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SYMBOLS. 

A : Hie amplitude constant of the (m,n)th mode, A(0) : Absorpti-

on coefficient at normal incidence, A(0): Absorption coefficient 

at oblique incidence,dA: An elemental area, C: A constant^: Dia-

meter, K: Bulk modulus, K: effective bulk modulus, L: See equ.7.II, o 
II:Hie dynamic elastic modulus, P: Pressure, P: Amplitude of the so-

und pressure,R: Reflection coefficient, * resistance ratio, 

S: Hie standing wave ratio, '.T: Hie rate at which the acoustic energy 

crossing the section at x=.0, and wave impedance of a medium, '7:Cha. 

racteristic impedance of the (m,n) th mode, d?7: See equ.4.12, d77: 
V.'5 . 11, . 

See equ.4.23, X/f c+i Reactance ratio, Z: Specific acoustic irapedanc 

Z|o):Spe. aco. imp. at normal incidence, Z(0): Spe. aco. imp. at ob-

lique incidence, 

2a,2b: Transverse dimensions of the wave-guide(see fig.2.I), c: Ve-
0 

locity of sound in air, c: Vel. of sound in a medium with internal 

damping, ĉ . Phase vel., c: Group vel., c: Vel. of sound in water, 

c: Vel. of flexural wave in a bar, d: Thickness of the material, 
/ n 

d: Thickness of the tube walls, f: Frequency, f,f :See chapter X, 

fc : The cut-off frequency, ft Resonance frequency, h: An axis(see 

fig.4.1), jsj-l, k: Structure factor, k ,k ,k : Tne damping, const an if 
V t M A cm 

(see section 10.2), 1: The length of the tube, m,n« Mode numbers, 

p: Sound pressure, r: The reflection coefficient of the (1,0) mode, 

. t: Time, u: Particle vel., u ,u ,u : The components of the particle 
x 3 i vel., v" : A volume element,x : The distance between the N th minimu 



and the face of the reflector, x : The distance between theMth M 
maximum and the face of the reflector. 

(b iThe velocity potential, ̂  : Hie propagation constant,A : Wave-
• tV>.A M. O 

length of the (m,n)th mode in the loss free case, A : 7»'avelength 

of tho (m,n)th mode in the case of energy dissipation, ̂  : Cut-off 

frequency, * Phase change accompanlying reflection, Z * 

Period of the acoustic cycle, ^ : Thermal conductivity, * 

T k 
Ratio of specific heat s, ")C ̂  Specific heat of the gas at constant 

pressure,Y r fti/f^ x = 0,^/and See equations 10.8 

and 10.9, t) : See equ. 7.12, W s Angular frequency, Wave-

length constant of the (m,n)th mode,/ : Density of air,^: Density of water, / : effective density, $ : angle of incidence,^ * Atte-* • nuation coefficient of the (m,n)th mode,f : Shear coefficient of 
viscosity, / ; The viscous boundary layer thickness(see equ,4.9), VI3-
£ i The thermal boundary layer thickness(see equ. 4.16),^ :The tK. 
shift of pressure minima towards the reflecting surface, J : Poro-

sity, Flow resistance..-̂  


