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ABSTRACT  

This thesis reports on the results of a general investigation 

into the depolarization statistics of a microwave signal after propagation 

through a rain medium, and their application to the design of a microwave 

communication system. 

Prediction of the long-term statistics for rain depolarization 

is presented for both spatially uniform and non-uniform rain and for any 

type of linear polarization (horizontal, vertical and at 45°  inclination 

to the horizontal). Assuming a log-normal form for the rainrate 

statistics an approximate Gaussian model is deduced for the final cross-

polarization isolation (XPI) or discrimination (XPD) distribution in 

decibels. The parameters of this normal distribution are related to 

the parameters of the radio link and the rainrate distributions. 

Applications of this conclusion to the estimation of radio outage time 

due to co-channel interference are also presented for various cross-

polarization levels. 

A theoretical formula is then derived for the joint statistics 

of cross-polarization discrimination (XPD) or isolation (XPI) and rain 

attenuation for a microwave link. This formula is then applied to the 

prediction of the distribution of XPD conditional on the co-polar rain 

attenuation, and also to the prediction of the distribution of XPD 

during a rain fade. Application is also made to the estimation of 

outage time of a dual-polarization communication system. Theoretical 

results are compared with experimental data from the Eastern USA and 

Southern England, and the agreement is found to be good. 
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CHAPTER 1 

INTRODUCTION 

The problem of the depolarization of electromagnetic waves 

passing through a rain medium is of crucial importance for the design 

of the new dual-polarization microwave communication systems, for 

frequency "re-use". A number of models has been proposed for 

predicting the cross-polarization of the received signal in terms of 

the parameters of the link and the rain medium. But, in general, 

these models are deterministic and predict only mean levels of 

depolarization. In this thesis, the problem is considered from a 

stochastic point of view. The results of the analysis give a complete 

description of the cross-polarization in terms of its probability 

density and also in terms of its joint density with the co-polar 

attenuation, both in the short and long term. Application of these 

results to experimental situations demonstrate their validity. 

1.1 	General Considerations  

The need to make the most effective use of the limited radio 

spectrum allocated for microwave communication systems has already led 

to dual polarization transmission. This enables adjacent channels of 

opposite polarization to be positioned closer together by utilising 

the inherent polarization isolation of the system. The continuing 

pressure on bandwidth may force future terrestrial and satellite 

systems into a modification of the latter technique called "frequency 

re-use" in which information is transmitted on orthogonal polarizations 

at the same frequency. The implementation of these new systems depends 

entirely on the amount of isolation obtainable, which in turn depends 

on the amount of cross-coupling (or cross-polarization discrimination) 
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likely to occur between the orthogonal polarizations. Cross-polarization 

discrimination (XPD) is the noise in the horizontal polarised channels 

caused by signals in the vertical polarised channels and vice versa. 

However, cross-coupling between orthogonal polarizations of the 

propagating wave can occur in the transmitter or in the receiver, or in 

the medium in between. Many causes of depolarization exist, including 

misalignment of antennas or waveguides, twisting of antenna towers 

(causing misalignment) atmospheric turbulence and rain. At frequencies 

above 10 GHz, the principal agent causing cross-polarization in the 

medium is rain. At these frequencies, when attenuation due to rain 

becomes significant, cross-polarization effects due to the non-spherical 

nature of the raindrops also become important. 

A general consideration of the influence of precipitation on 

the propagation of microwaves through it, reveals the following. 

Precipitation scatters radiation in all directions from a passing wave; 

and if the particle size and concentration are sufficiently large, this 

scattering results in an appreciable rate of attenuation of the primary 

wave. In addition, as the precipitation particles comprise a lossy 

dielectric, they absorb energy from the wave and convert it into heat. 

Both phenomena are entirely negligible at wavelengths greater than 

about 10 cm; but as the wavelength decreases, the scattering and 

absorption become important, until at wavelengths around 1 cm they 

place a limitation on transmission over appreciable distances through 

rain. 

Theoretical predictions of rain attenuation can be traced 

back to Ryde and Ryde (Ryde and Ryde, 1941; 1944; 1945). They 

carried out calculations of microwave rain attenuation, based on single 

scattering and Mie's (1909) scattering solution of a plane wave incident 

on a dielectric sphere. These calculations have since been extended by 
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others (Medhurst, 1965) with the aid of modern computers. Recently both 

attenuation and phase shift through rain have been calculated for 

centimetre and millimetre wavelengths (Setzer, 1970) as a function of 

rainfall rate. 

But the assumption of spherical raindrop shape used in the 

Mie calculation is only true to a first order of approximation. Close 

examination by photography reveals that many of the larger drops are 

better represented by oblate spheroids. The ratio of minor to major 

axes, of the oblate spheroidal raindrop, as determined from the 

experimental data (Pruppacher and Pitter, 1971), is approximately 

a/b = 1 - ā where ā is the radius (in centimetres) of an equi-volumic 

spherical drop. Oguchi (1960; 1964) first investigated the effect 

of oblate raindrops on microwave propagation using perturbation 

calculations. Point matching procedures (Oguchi, 1973; Morrison, Cross 

and Chu, 1973; Morrison and Cross, 1974) and improved perturbation 

techniques (Morrison and Cross, 1974) now provide extensive numerical 

results for the scattering of plane electromagnetic waves by oblate 

spheroidal raindrops. The differential rain-induced attenuation and 

phase shift have also been derived for vertical and horizontal incident 

polarization as a function of the rainfall rate. 

Calculations of cross-polarization effects have also been 

made (Thomas, 1971; Saunders, 1976; Watson and Arbabi, 1973; Evans and 

Troughton, 1973a; Chu, 1974) using the previous differential attenuation 

and phase shift results. Due to the fact that raindrops usually have 

a finite canting angle, or departure from strictly vertical or 

horizontal alignment, the differential attenuation and phase shift 

lead to a rotation of the plane of polarization of the initially 

horizontally or vertically polarised radiation, thus producing unwanted 

signals in the cross-polar channel. A simplified analysis is adopted 
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in all the previous calculations, that all raindrops (a) fall at the 

same canting angle and (b) that drops are tilted in a plane perpendicular 

to the direction of propagation. These assumptions correspond to the 

worst case of depolarization. Evans and Troughton (1973a) have 

calculated a more general case of depolarization and more recently, 

Attisani et al (1974) have discussed the problem of scatterers with 

arbitrary orientations using the Van de Hulst (1957) method of single 

scattering. Finally, Oguchi (1977) has put the whole problem of 

depolarization in a-more concise form. 

All these rain depolarization models are deterministic and 

predict mean levels of the cross-polarization discrimination on a short-

term basis, that is, at a constant rainfall rate in time. From the 

statistical point of view, Hogler et al (1975) discuss the problem of 

statistical variations of XPD due to fluctuations in rain medium 

parameters (more specifically to drop-size fluctuations). Similarly, 

Evans and Troughton (1973b) give some statistical parameters (mean and 

variance) of the XPD concerning a medium which consists of aligned 

raindrops with random cosine-square distributed canting angle in time. 

These previous studies are concerned with the analysis of short-term 

statistics of XPD. Recent studies of polarization effects have been 

directed towards providing long-term distribution functions for 

predicting the occurrence of cross-polarised signals. Nowland et al 

(1977) have presented an approximate method to predict the rain 

depolarization statistics from attenuation statistics available for 

other frequencies, polarizations and elevation angles. This method can 

also predict the depolarization statistics from point rainrate 

statistics available for the location of the path. But, this model is 

more appropriate for earth space paths and uses the empirical meaning 

of equivalent path length through rain to take into account the effect 
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of observed spatial non-uniformity of rainrate. The influence of the 

short-term statistics of XPO on its long-term statistical behaviour 

is not included. So, the general problem of predicting the depolarization 

statistics for a specific terrestrial microwave link is still a problem 

worthy of investigation. The purpose of this thesis is to propose a 

model for the solution of this problem using the statistics of point 

rainfall rate. This model will be quite general, and will include 

the effects of spatial non-uniformity of rain and short-term behaviour 

of XPD. Another aim of the thesis, will be the investigation of the 

joint statistics of the two propagation phenomena (XPD and attenuation) 

on a long-term basis. This problem is of crucial importance to the 

system planners and for this reason a theoretical analysis of the joint 

statistics of these two random processes, with applications to radio 

link performance, will also be given. 

1.2 	Outline of the Thesis  

The following chapter is an introductory one for the whole 

work, where some generalities of radio wave propagation through rain, 

which are useful for the following analysis, are presented. More 

analytically, a configuration of the radio path and the elements of 

the rain medium are given. Special attention is drawn to the rainrate 

statistics and a log-normal model for it, as has been suggested by Lin 

(1975). The statistics of the rainfall rate is of crucial importance 

for the later analysis and dominates the long-term behaviour of 

the rain depolarization. In the last part of Chapter 2, a brief 

description of the propagation characteristics of a rain filled 

medium is given and a list of formulae for-the calculation of 

the short-term mean levels of cross-polarization discrimination and 

attenuation. 
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Chapter 3 is devoted to a consideration of the long-term 

statistics of rain cross-polarization discrimination for spatially 

uniform rain. This assumption for rain is a sufficient approximation 

for path lengths up to 4 km. The technique adopted here is to find 

first the short-term statistics of XPD and then the long-term one using 

the theorem of total probability. A normal model for the XPD statistics 

in db is derived, based upon the observed log-normality of the rainrate 

statistics. Hence, this work,can be considered as an extension to Lin's 

(1975) calculations of rain attenuation statistics. Numerical results 

for the cumulative depolarization statistics and the outage time due to 

co-channel interference are given for microwave links located in the 

USA and in Southern England. Comparison with experimental results from 

Martlesham Heath (Ipswich) is also included. 

The more general case for a spatially non-uniform rain is 

given in Chapter 4. This is, in other words, an extension of the 

previous one, using the idea of spatially averaged rainfall rate. The 

non-uniform medium can be simulated by a uniform medium with an 

equivalent rainrate equal to the space-averaged rainrate. Hence, the 

statistics of XPD can be calculated, using the previous results and 

evaluating the statistics of space-averaged rainrate in terms of the 

parameters of the point rainrate. A normal model is thereby concluded 

with different statistical parameters (mean and variance). The two 

methods are compared and the conditions in which they are identical 

are also investigated. Similar results, as in the previous chapter, 

are given for the cumulative statistics and outage time of microwave 

links but without any restriction on the length of the path. 

A study of the joint statistics of rain depolarization and 

attenuation is considered in Chapter 5 based on the previous statistical 

model for the XPD, and the one proposed by Lin (1975) for rain 
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attenuation statistics. In the first instance, a theoretical formula 

for the joint statistics of these two random variables is derived, 

using the properties of the Jacobian transformation, and then applied 

to a number of practical cases such as (a) the prediction of the 

distribution of XPD conditional on a co-polar rain attenuation, (b) the 

prediction of the distribution of depolarization conditional on a rain 

fade, and finally (c) the estimation of the total outage time of a dual 

polarization communication system, taking into account the co-channel 

interference as well. For most of these applications a comparison is 

made with experimental results obtained in the USA and Southern England. 
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CHAPTER 2  

GENERAL ASPECTS OF RADIO WAVE  

PROPAGATION THROUGH RAIN  

Introduction  

In this chapter some generalities concerning the propagation 

of microwaves through rain are discussed. First, the meaning of radio 

path between the transmitter and receiver stations is established using 

Ruthroff's definition (1970). Then, a more analytic configuration of 

the rain medium is given. The constituent elements of this medium such 

as the raindrops have a specific shape and size. The oblate spheroidal 

model proposed by Pruppacher and Pitter (1971) for the shape of raindrops 

is presented here and also the Laws-Parsons (1943) and Marshall-Palmer 

(1948) drop size distribution. The canting angle of falling raindrops 

is another important problem for depolarization studies. The distribution 

of canting angle especially under high wind conditions has not yet been 

completely investigated, so many authors propose different simulation 

models for it. In this thesis, the most recent one, proposed by Oguchi 

(1977) and Nowland et al (1977) is presented. 

As will be shown in the later chapters, the dominant factor 

influencing the long-term behaviour of cross-polarization discrimination 

and attenuation statistics of a microwave link is the rainfall rate of 

the rain medium. Lin (1973; 1975; 1976; 1978), taking into account many 

sets of experimental data from all over the world, has proposed a log 

normal model for the long-term statistics of point rainfall rate. An 

analytical method has also been proposed by him (1976; 1978) for the 

evaluation of the parameters of this distribution in terms of existing 

experimental meteorological data for an arbitrary place. A brief review 

of this important theory is presented here, with a view to its application 
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in the analysis of depolarization statistics. 

The next step is the evaluation of the scattering of a plane 

electromagnetic wave by an oblate spheroidal raindrop. A description 

of this theory is presented in this chapter, for different frequencies 

from 4 - 50 GHz, raindrop sizes and elevation angles, so the results 

are applicable to both terrestrial and earth-space communication links. 

These basic results are summed over the drop size distribution to 

calculate the differential attenuation and differential phase shift 

caused by rain, which are of importance in the investigation of cross-

polarization in radio communication systems. 

Finally, taking into account the previous results, a list of 

formulae for the mean value of cross-polarization discrimination and 

attenuation at a constant rainfall rate, is given and is valid for 

both terrestrial and earth-space links. 

2.1 	Definition of the Radio Path  

The radio link consists of two narrow-beam antennas pointing 

directly at each other over a distance of a few hundred to a few 

thousand metres. The space, or volume, of the path is taken to be the 

first Fresnel zone (Slater and Frank, 1933). This means that only the 

energy confined to that volume contributes significantly to the total 

energy collected by the receiving aperture. The first Fresnel zone is 

a long, thin, prolate ellipsoid of revolution. For a path of length L 

at wavelength X, it has a major axis L and equal minor axes (XL)1/2  and 

is terminated at the ends by the antennas. The radius h(z) and the 

circular cross section Q(z) (see Fig. 2.1) of the radio beam at a 

distance z from the transmitter are:- 

—1/2 
X . z(L - z)  

L 
(2.1.1) h(z) _ 
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and:- 

Q(z) = 1h2(z) 	 (2.1.2) 

The radio path is defined as the volume enclosed by the first Fresnel 

zone and the two antennas. When we speak of rain falling on the path 

we mean rain falling through this volume. 

2.2 	Description of the Rain Medium  

2.2.1 	Shape and Permittivity of the Raindrops  

The rain medium will be assumed to consist of a large number 

of raindrops whose positions, sizes and orientations are random and 

independent of each other. The particles are also sufficiently far from 

each other (greater than three times the radius). The last property, 

combined with the fact that the wavelength of the incident wave is of 

the same order as their size, ensures that we will be concerned only with 

independent scattering. 

It is well known that raindrops are usually non-spherical 

(Magono, 1954; Jones, 1959; Pruppacher and Pitter, 1971). The most 

commonly accepted model for a falling raindrop is that of a flattened 

spheroid which may present a canting angle to the horizontal at any 

instant. An instantaneous sample of falling raindrops (Jones, 1959) has 

shown that oblate and prolate spheroids can occur with almost equal 

probability. This might suggest that, in certain circumstances rain-

drops will vibrate. However, other authors have suggested that there 

is a predominance of oblate spheroids. Although drop shapes other than 

flattened spheroids are known to occur, which may lead to drop 

instability and break-up, the slightly flattened oblate spheroid model 

28 
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would seem to apply for the majority of drops and we will, therefore, 

use it in this study. The relation between the deformation (from a 

sphere) and the drop size is approximated by a linear relation. Recent 

investigations (Pruppacher and Pitter, 1972) give a physical model which 

predicts the shape of water drops falling at terminal velocity in air. 

The model is based on a balance of the forces which act on a drop 

falling under gravity in a viscous medium. The model was evaluated by 

numerical techniques and the shape of waterdrops of radii between 170 

and 4000 pm (equivalent to Reynolds numbers between 30 and 4900) was 

determined. The results of these investigations show that the drop 

shapes predicted by the model agree well with those experimentally 

observed in the wind tunnel (Beard and Pruppacher, 1969; Pruppacher and 

Beard, 1970). Both theory and experiment demonstrate that (1) drops 

with radii = 170 p are very slightly deformed and can be considered 

spherical, (2) the shape of drops between about 170 and 500 p can be 

closely approximated by an oblate spheroid, (3) drops between about 500 

and 2000 p are deformed into an asymmetric oblate spheroid with an 

increasingly pronounced flat base, and, (4) drops 	2000 p develop a 

concave depression in the base which is more pronounced for larger drop 

sizes. The polar equation describing such a shape is (see Fig. 2.2):- 

r = rm sin (e
-b cos e, 	

(2.2.1) 

where rm  is the radius of the enscribing sphere of the shape described 

by the above equation, b is a parameter depending on the drop size. 

For b = 0 the raindrop is a sphere; for small b's the shape described 

by Equation (2.2.1) is nearly an oblate spheroid. For large b's, 

Equation (2.2.1) describes a kidney shape. 

The complex permittivity of raindrops is assumed to be 
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constant throughout the raindrop volume and values for it can be found 

in Ray (1972) for various temperatures. Ray (1972) sets an empirical 

model of the complex refractive index for liquid water. This model is 

applicable from - 20°C to 50°C. The spectral interval for which the 

model applies extends from 2 um to several hundred metres in wavelength. 

2.2.2 	Drop Size Distribution  

The knowledge of the drop size distribution in rain of given 

intensity is of major importance in the evaluation of attenuation and 

cross-polarization of a microwave signal due to an actual rainstorm. 

This distribution will vary according to wind temperature, and other 

conditions (Grunow, 1961). Representative distributions have been 

obtained by Laws and Parsons (1943), Marshall and Palmer (1948), and 

most recently by Joss et al (1968). 

Laws and Parsons (1943) derived their distribution from a 

series of measurements during 1938 and 1939 in Washington DC. Table 

2.1 is abridged from their Table 3, with the addition of a distribution 

for a precipitation rate of 5 mm/hr, which has been derived from their 

Fig. 1. 

On the other hand, measurements of raindrop records on dyed 

filter papers were made (Marshall and Palmer, 1948) and have been 

analysed to give the distribution of drops with size. The distribution 

is in fair agreement with those of Laws and Parsons (1943). Except at 

small diameters, the experimental observations can be fitted by a 

general relation:- 

n(D) = No e-
AD 

(2.2.2) 

where D is the diameter of the equivolumic sphere, n(D) SD is the number 



TABLE 2.1 DROP SIZE DISTRIBUTIONS FOR VARIOUS PRECIPITATION RATES 

Precipitation 
rate (mm/hour) 

Percentage of Total Volume 

Drop size 	(cm) 
(mean interval) 

Diameters 

0.25 1.25 2.5 5 12.5 25 50 100 150 

0.05 28.0 10.9 7.3 4.7 2.6 1.7 1.2 1.0 1.0 

0.1 50.1 37.1 27.8 20.3 11.5 7.6 5.4 4.6 4.1 

0.15 18.2 31.3 32.8 31.0 24.5 18.4 12.5 8.8 7.6 

0.2 3.0 13.5 19.0 22.2 25.4 23.9 19.9 13.9 11.7 

0.25 0.7 4.9 7.9 11.8 17.3 19.9 20.9 17.1 13.9 

0.3 1.5 3.3 5.7 10.1 12.8 15.6 18.4 17.7 

0.35 0.6 1.1 2.5 4.3 8.2 10.9 15.0 16.1 

0.4 0.2 0.6 1.0 2.3 3.5 6.7 9.0 11.9 

0.45 0.2 0.5 1.2 2.1 3.3 5.8 7.7 

0.5 0.3 0.6 1.1 1.8 3.0 3.6 

0.55 0.2 0.5 1.1 1.7 2.2 

0.6 0.3 0.5 1.0 1.2 

0.65 0.2 0.7 1.0 

0.7 0.3 
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of drops of diameter between D and D + SD in unit volume of space, and 

No  is the value of n(D) for D = 0. It is found that:- 

N
o 

= 0.08 cm-4 

A = 41.R
-0.21 cm-1  

(2.2.3) 

  

where R is the rate of rainfall in mm hr-1 . 

Finally, Joss et al (1968) for a place at Lucarno, Switzerland, 

give three raindrop size-distributions referring to a drizzle-rain 

(Joss-drizzle distribution), wide-spread rain (Joss-wide-spread 

distribution) and a thunderstorm (Joss-thunderstorm distribution). 

2.2.3 	Canting Angle Distribution  

As noted previously, the most commonly accepted model for a 

falling raindrop is that of an oblate flattened spheroid which may 

present a canting angle to the horizontal. The analysis of this canting 

angle is of great importance in the study of rain induced cross-

polarization. Saunders (1971) has shown from measurements the form of 

the distribution of raindrop canting angles and Brussaard (1976) has 

presented a meteorological model which relates the canting angles to 

wind conditions. But the influence of wind velocity and direction on 

the distribution of canting angles is not yet clear. In the absence of 

other information it has been usual to adopt a deterministic model in 

which the raindrops are all aligned, usually at a mean-path canting 

angle which has been determined from experimental measurements (Watson 

and Arbabi, 1975). 

In this thesis, the most recent model proposed by Oguchi (1977) 

and Nowland et al (1977) will be presented for this distribution, which 

is valid for both terrestrial and earth-space communication links. So, 



R = 15.1 j n(r) v(r) r3  dr 

0 

CO 

(2.3.1) 
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let us consider a raindrop whose symmetry axis OA is in the YZ plane 

making an angle y with an axis Oy, Oy being the projection of the symmetry 

axis on the HV plane and inclined at an angle e from the vertical axis 

OV (see Fig. 2.3). We consider the case in which the raindrop-canting-

angle is independent of the drop size. Furthermore, it is assumed that 

the two canting-angle distributions for e and y respectively are 

independent of each other. In particular, the transverse component e 

and the longitudinal component y of the canting angle are Gaussian 

distributed with parameters <e> = eo  and 6e = a, <y> = yo  and ay  = 6'. 

For all practical calculations of the cross-polarization discrimination 

it is assumed that the axes of all drops are in the plane normal to the 

propagation direction. Consequently, we set yo  = 6' = 0. This means, 

in other words, that the effect of the canting angle y on cross-

polarization is less significant than the canting angle 6. 

2.3 	Analysis of Long-Term Point Rainfall Rate Statistics  

2.3.1 	Generalities  

One factor which is dominant for the evaluation of cross-

polarization discrimination and attenuation of the microwave signal 

propagated through a rain medium, is the rainfall rate, that is the 

volume of water reaching the ground per unit time. So, if R represents 

the rainfall rate in mm/hr, then:- 

where r is the equivolumic radius of the raindrop, and v(r) is the 

terminal velocity of the drops in metres per second (Kerr, 1964). 
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Fig. 2.3 Canting angles of falling raindrop 
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During rainfall, the rainfall rate R fluctuates in space and 

time. Most available data on rainrate statistics are measured by a 

single raingauge at a given geographic location. The results of rain-

gauge network measurements indicate, however, that the measured short-

term distributions of point rainrate vary significantly from gauge to 

gauge. For example, at Holmdel, New Jersey, there was considerable 

variation among the measured point rainrate distributions obtained from 

96 raingauges located in a grid with 1.3 km spacing over a six-month 

period. Among these 96 distributions, the incidence of 100 mm/hr rains 

is higher by a factor of 5 for the upper quartile gauges than for the 

lowest quartile. Data from a raingauge network in England indicate that 

even with a four-year time base and averaging over observations by four 

gauges with 1 km gauge spacing, the four-gauge average rainrate 

incidence can differ by a factor of 3 for rainrates above 80 mm/hr 

depending on which four gauges are chosen for averaging. This means 

that knowledge of the long-term statistical behaviour of point rainrate 

is essential for radio path design. 

The available experimental rainrate data (Lin, 1973; Lin, 1975) 

indicate that the long-term distribution of point rainrate R is 

approximately log-normal within the range of interest to designers of 

radio paths using frequencies above 10 GHz. It can be seen from these 

distributions that these are very close to the log-normal approximation 

in the range below 100 mm/hr. The rainrates beyond 100 mm/hr are 

generally separated more than 3 sigma from the median and constitute 

the tail of the log-normal distribution. A very long observation time 

(e.g. more than twenty years) is necessary to obtain stable statistics 

of extreme rainrates beyond 100 mm/hr (Seamon and Bartlett, 1956; Cole 

et al, 1969). Since the time bases of the data in these references are 

much less than twenty years, the departure of the data from the log- 
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normal distribution in the tails is not unexpected. Lin (1978) taking 

into account rainrate data measured in Illinois (Mueller and Sims, 1966), 

New Jersey, Canada (Drufuca and Zawadzki, 1973) and Palmetto, Georgia 

has concluded that the rainfall process must be log-normal, by the 

following argument. He proved that the environmental parameters that 

influence the rainfall process affect the rainrate in a proportional 

fashion, so as it is known (Lin, 1973; Aitchison and Brown, 1957; Hald, 

1952) the proportionality leads to a log-normal distribution whereas an 

additive fashion leads to a normal distribution. This is a strong 

theoretical argument completely supporting the log-normal hypothesis for 

the long-term statistics of rainfall rate. 

Another important problem is the effect on the rainrate 

distribution of the raingauge integration time (Lin, 1976). When we 

refer to a "T-minute" rainrate this corresponds to the average value of 

the randomly varying rainrate in a T-minute interval. This is calculated 

as AH/T where AH is the T-minute accumulated depth of rainfall and T is 

the raingauge integration time. The most appropriate raingauge 

integration time which can be used in the following analysis may be 

calculated as follows. The division of the radio path into incremental 

slabs has been adopted for the analysis as will be seen in the following 

chapters. So if AV is the volume of each slab, Ag  is the area of the 

collecting aperture of a raingauge and VR  the average descent velocity 

of rainfall, then the appropriate raingauge integration time will be:- 

AV 
T = 

9 
(2.3.2) 

For example, representative values for these parameters are AV = 1 m3, 

Ag  A = 0.073 m3  and VR  = 7 m/s, so T is about 2 s. The integration times 

of most available point rainfall rate data are longer than the T = 2 s 
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required by this formulation. The dependence of point rainrate 

distribution on the raingauge integration time in the range 1.5 s < 

T < 120 s has been determined by Bodtmann and Ruthroff (1974) for a two 

year (1971 - 1972) measurement at Holmdel, New Jersey. By using this 

experimental result and interpolation, we convert the available point 

rainrate distribution with T in the above range into a 2 s point rainrate 

distribution. 

In this way the representation of point rainrate distribution is:- 

P[R > 
L 

= Po(0) . 2 erfc 

 

lnr-1nRm  

 

(2.3.3) 

 

A SR  

 

    

    

where erfc ( ) denotes the complementary error function, SR  the standard 

deviation of In R during the raining time, Rm  the median value of R, 

during the raining time. P0(0) is the probability that rain will fall 

at the point where the rainrate is measured. 

In principle, the probability of raining, P0(0) is obtained:- 

PER > rm.1 = Po(0) (2.3.4) 

An instant t is considered to be during the raining time if the condition 

R(t) > rmin is satisfied. The lower cutoff threshold in most presently 

available rainrate data is about 0.25 mm/hr. Therefore, in practice, we 

approximate rmin  in previous definitions by 0.25 mm/hr. The rationale 

for this approximation is twofold:- 

(a) Rainrates below 0.25 mm/hr have practically no significant 

effects on radio communication links at frequencies below 

60 GHz. 
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(b) 
	

Rainrates below 0.25 mm/hr cannot be measured accurately 

by most existing raingauges with standard recording strip 

charts. At the present time, the probability PLR > 0.25 mm/hrl 

T < 1 min is available at only a few locations. For most 

locations, we can obtain P[ > 0.25 mm/h1 with 1 hour 

integration time from the Weather Station hourly precipitation 

data. The experimental results on the effect of raingauge 

integration time T on Po(0) in Florida (Jones and Sims, 1971; 

Sims and Jones, 1973) and Japan (Funakawa and Kato, 1962) 

indicate that:- 

PCR > 0.25 mm/hrIT < 1 mini = 0.5 PLR > 0.25 mm/hrIT = 1 h 	(2.3.5) 

Therefore, we can use Weather Station data and this 

approximation to estimate P0(0) at several locations of 

interest where direct measurement of Po(0) with 1 min 

integration time is not available. 

The log-normal parameters Rm  and SR  of the 2 s point rainrate 

distribution (Equation (2.3.3)) are estimated by a least-squares 

approximation. This step is carried out by a computer iteration process 

to obtain the (Rm,  SR) pair that minimises the differences (i.e. the sum 

of squares of errors), between the data points and the log-normal 

approximation (Lin, 1975). Table 2.2 is abridged from his Table III and 

gives some experimental data on point rainrate distribution at different 

locations in the USA and in Southern England. 

The main problem in the estimation of these parameters is 

that many point rainrate measurements report only the heavy rain (e.g. 

> 30 mm/hr) portion of the distribution, neglecting the light rain 



TABLE 2.2 EXPERIMENTAL DATA ON POINT RAINRATE DISTRIBUTION 

No. Authors Location Time Base 
Rain Gauge 
Integration 

Time 

Estimated Log-normal 
Parameters 

Rain Gauge 

Rm 

mm/hr 

SR  Po(0) 

1 Ruthroff, Bodtmann Miami, 	Fla. 1966 - 1970 1 	min 
Weughing 

2.48 1.54 0.026 

2 Jones, 	Sims Miami, 	Fla. 8/57 - 8/58 1 	min 
Weih 
gaugeing 

2.48 1.54 0.026 

3 Jones, Sims Urbana, 	Ill. 5/69 - 4/72 1 	min 
Weughing 

1.10 1.47 0.033 

4  
Ruthroff, Bodtmann 
Osborne 

Atlanta, Ga. 
1966 - 1970, 
1973 

1 	min 
Weighing 
gauge 

3.23 1.15 0.026 

5 Lin Palmetto, Ga. 
11/70 - 	10/71 
8/73 - 7/74 

1 	min 
Tipping 
bucket 

3.10 1.18 0.031 

.... Continued 



TABLE 2.2 (CONTINUED)  

No. Authors Location Time Base 
Rain Gauge 
Integration 

Time 

Estimated Log-normal 
Parameters 

Rain Gauge 

Rm 
mm/hr 

SR  Po(0) 

6 Lin Palmetto, Ga. 8/73 - 7/74 1 min 
Tipping 

3.85 1.11 0.030 

7 Lentz 
Merrimack 
Valley, Mass. 

1971 	- 1973 10 - 90 s - 1.23 1.34 0.033 

Flow- 
8 - Holmdel, 	NJ 1968 - 1969 2 s capacitance 

gauge 
1.53 1.38 0.026 

Special 
9 Norbury, White Slough, England 1970 - 1971 10 s to 1 	h dropper 

gauge 
0.42 1.40 0.044 

10 
Easterbrook, 
Turner 

Southern 
England 

5/61 	- 5/62, 
1963 

2 - 60 min - 0.42 1.40 0.044 
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statistics completely. Table 2.2 indicates that the median rainrates 

Rm  at many locations are less than 4 mm/hr. In other words, the major 

portion (= 98%) of the distribution is missing, and accurate estimation 

of the statistical parameters Rm  and SR  from the tail region (= 2%) is 

difficult. Furthermore, high rain rates (e.g. > 140 mm/h) require a 

long observation time to yield representative long-term statistics. 

The time bases of most available data may not be sufficient to yield 

stable statistics for these extreme rainrates. The omission of light-

rain statistics together with the inherent instability of the extreme 

rainrate statistics causes considerable uncertainty in the estimation 

of Po, Rm  and SR. 

An alternative analytic method to obtain these parameters in 

terms of known meteorological long-term quantities such as the yearly 

T-minute maximum rain rate data and yearly accumulated rainfall data, 

is presented in the next section. 

2.3.2 	A Method for Evaluation of the Parameters of the  

Rainrate Distribution  

The three parameters characterizing the log-normal distribution 

can be calculated by application of the theory of extreme value 

statistics (Gumbel, 1954; Gumbel, 1958). This work has been done by 

Lin (1978) and we now present briefly the results. 

Let W denote the long-term average value of the yearly 

accumulated depth of rain 	I. The relationship between W and the 

parameters in Equation (2.3.3) is:- 

W = <R> x total raining time/year 

_ <R> x P0(0) x (8760 hours/year) 

S2/2 
= Rm  x e R 	x Po(0) x (8760 hours/year) (2.3.6) 



where:- 

SR/2 
<R> = R

m 
x e (2.3.7) 

is the mean value of rainfall rate R during the raining time (see 

Appendix A, Equation (A-2)). Long-term (> 30 years) data on W for US 

locations can be found in Conway, May and Armstrong (1963). 

Let R denote the yearly maximum T-minute rainrate which varies 

from year to year. The distribution of R is (Lin, 1976):- 
1 

P[{R~ > r)] = 1 - e-(e-y) 	 (2.3.8) 
L  

where:- 

y = aL(ln r - U) 	 (2.3.9) 

is called the reduced variate, aL and U are scale and position parameters 

respectively. Notice that the log-normal rainrate distribution 

(Equation (2.3.3)) is uniquely determined by the three parameters P0(0), 

Rm and SR, whereas the distribution (Equation (2.3.8)) of the yearly 

maximum T-minute rainrate R is uniquely determined by the two parameters 

aL and U. Gumbel (1954; 1958) has given the following approximate 

aL 

relationships 

U - lnRm 

between 

ti 
- 	1 

N 

	

aL, 	U and the distribution 	(Equation 	(2.3.3)):- 

	

1 	 (2.3.10) 
SR 

Po(0)• 

Po(0) 	. 

U-1nRm' 

N 

(2.3.11) - S 
R 

SR 
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where:- 
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U-inRm1 	'U-1nRm' 
	 = 1 - 	erfc 	 

SR 	
2 	

v2 SR  

 

4) (2.3.12) 

  

is the standard unit normal distribution function, 

cp(x) = -ac— ix 	 (2.3.13) 

is the normal probability density function, and:- 

N = total number of T-minute intervals per year 	(2.3.14) 

The meaning of parameters aL  and U is determined as follows. From 

Equations (2.3.8) and (2.3.9), it is easily shown (Gumbel, 1954; 1958) 

that U is the most probable value of In R where R is the randomly 
1 	1 

varying yearly maximum T-minute rainrate. Let us define:- 

Ru=eU  (2.3.15) 

Equation (2.3.10) states on long-term average, the randomly varying 

rainrate R will exceed Ru  by approximately T minutes per year. Equation 

(2.3.11) further specifies the slope (i.e. the derivative or probability 

density) of the rainrate distribution at R = Ru. Solving Equations 

(2.3.10) and (2.3.11) yields:- 

  

1 	I  
1 - 
 Po(0) . N 

 

   

Po(0) . N 
SR  = 	aL  (I)

-1  (2.3.16) 

    

    



and:- 

   

i 	I 
P0(0) . NI 

 

R
m 

= exp U - SR . (1)
-1  

1 (2.3.17) 

     

     

where -1 ( ) denotes the inverse normal probability function. Lin (1976) 

has given a set of formulae for calculating the parameters aL  and U from 

the yearly maximum T-minute rainrate data. Alternatively, the same 

author (Lin, 1976) has given another set of formulae relating these aL  

and U with rainfall-intensity-duration-frequency curves where these long-

term data (> 50 years) are available. Knowing the values W, aL  and U 

allows us to solve numerically by a computer iteration process, the 

three Equations (2.3.6), (2.3.16) and (2.3.17) for the three unknowns 

Po(0), Rm  and SR. Substituting these three parameters into Equation 

(2.3.3) then yields the entire rainrate distribution. 

2.4 	Scattering Properties of Raindrops at Microwave Frequencies  

The scattering of electromagnetic waves by spheroidal 

dielectric raindrops has been the subject of much theoretical study 

because of its importance in the theory of radio wave propagation. For 

frequencies above 10 GHz, accurate scattering amplitudes are required 

to enable reliable estimates of attenuation and cross-polarization to 

be made. In this section, the available theory for the evaluation of 

these scattering amplitudes is summarised and also, the propagation 

characteristics of a rain-filled medium are given in terms of the 

scattering properties of the individual raindrop. 

2.4.1 	Scattering of a Plane Wave by a Single Raindrop  

We now consider the problem of scattering of a plane electro- 

44 
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magnetic wave by a single raindrop. Suppressing the factor e-iwt, where  

w is the angular frequency, the divergenceless electric and magnetic 

fields t and H satisfy Maxwell' s equations (Stratton, 1941):-  

vxt =iwu0 H 

V x H= (cc  - iwc)t 
(2.4.1) 

  

where pc)  is the constant permeability, ac  is the conductivity, and c is 

the dielectric constant. Exterior to the raindrop ac  = 0 and c = co, 

while interior to it aC  = a and c =cl. The appropriate boundary 

conditions (Stratton, 1941) are that the tangential components of the 

total electric and magnetic fields be continuous across the surface of 

the raindrop. Let:-  

k'2  = wpo(we + ia) 	 (2.4.2) 

with Re(k') > 0. Then the free space wave number'is ko  = 03470-7;   and 

the wave number in the raindrop is:- 

kl  = N'  ko  (2.4.3) 

where N' is the complex index of refraction of water. We consider two 

polarizations of the incident wave depicted in Fig. 2.4. We choose 

Cartesian coordinates (x', y', z') with origin interior to the raindrop 

and z'-axis coinciding with the axis of symmetry of the raindrop. The 

direction of propagation of the incident wave is perpendicular to the 

y'-axis and inclined at an angle ac  to the z'-axis. In the first 

polarization, the magnetic field is assumed parallel to the y'-axis and 



X' 

SI(0)Er  

Fig. 2.4 Plane wave incident on a spheroidal raindrop 

I 	polarization in the direction of minor axis 
II 	polarization in the direction of major axis 
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the incident fields are given by:- 

ĒĪ = EI(cos ac  i - sin ac  k) expiko(x' sin ac  + z' cos ac) 

(2.4.4) 

P

o 
 EI  j exp[iko(x' sin ac + z' cos ac)} 

w
o  

where i, j, k denote unit vectors parallel to the coordinate axes. In 

the second polarization, the electric field is assumed parallel_to the 

y'-axis and the incident fields are given by:- 

kII = E11 j expliko(x' sin ac  + z' cos ac)] 

(2.4.5) and:- 

k  

HII = 	
wuo E

II 
(cos ac1 - sin a

c
t) expl

r  
iko(x' sin ac  + z'cos ac)) 

We now consider the problem of representing the scattered and 

transmitted fields induced by the incident wave. It is convenient to 

introduce spherical coordinates (r', a', cp') with corresponding unit 

vectors i , i , i as depicted in Fig. 2.5. Then the equations:-  
1 	2 	3 

v xM = k' N 

Vx N=k'M}  
(2.4.6) 

  

are satisfied by the spherical vector wave functions (Stratton, 1941):- 
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mn(k~) 	
zn(k'r') elm`~- 

sin 
im-  a. P1m I (cos a' i2 - 

dP1m1 (cos a') + 1 

da' 	' 3 j 

and:- 

\mn(k') 	= eim4) n(n + 	1) 

„ 

zn(k r P 1m" 	(cos a') 1 
n 	1 

+ 
k r' 

(2.4.7) 

Ízn + 	 k'r. 	+ zn (k'r') 

.dP
1
n

m1 
(cos a') } 

x da' 	1 2 + 

+ 
iM 

	
PIm I (cos a') 1 

3 
(2.4.8) 

  

Here zn denotes a spherical Bessel function (Stratton, 1941) of order n 

and P1ml denotes the associated Legendre function (Magnus et al, 1954) 

(of the first kind) of degree n and order Ami, where m is a positive or 

negative integer, and n is an integer with n > Imi and n A 0. The 

prime denotes derivative with respect to the argument. As a matter of 

convenience, we have chosen to use complex linear combinations of the 

even and odd spherical vector wave functions (Stratton, 1941). 

Outside the raindrop, the total electromagnetic field is the 

sum of the incident field of the plane wave and the scattered field. 

The scattered field must satisfy the radiation condition and, 

consequently, in view of Equations (2.4.1), (2.4.2) and (2.4.6), we 

assume expansions of the form:- 
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_ - 	//. 	(amn g(n3) (ko) + bmn Nmn) (ko)] m._.  n> m l 
nP0 

(2.4.9) 

and:- 

ik 	co 
Hs 

	m 09 n> m 
[amn Nmn) (ko

) + b
mn 

A(
n
3) (ko )j 	(2.4 .10) 

nA0 

where the superscript 3 denotes that spherical Bessel functions of the 

third kind, i.e. spherical Hankel functions of the first kind, are used. 

Thus in Equations (2.4.7) and (2.4.8), zn(ko r') = hr(11) (ko r'). 	For 

ko r'»1:- 

hnl ) (k r')r, ti (k i )r+1 eiko r' 

0 
(2.4.11) 

so that the expressions in Equations (2.4.9) and (2.4.10) involve out-

going waves. 

Analogous expansions are assumed for the transmitted field 

inside the raindrop except that, since the origin of the coordinate 

system is interior to the raindrop, spherical Bessel functions of the 

first kind must be used so that the field remains finite at r' = 0. 

Also, the wave number inside the raindrop is k , as given by Equation 
1 

(2.4.3). Thus, we assume expansions of the form:- 

Et 	
m 
F ~ n> m [cmn Mmn) (kl) + dmn Nmn) (k ~ )/ 

nA0 

(2.4.12) 

and:- 
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Ht 
= cau 1 r 	[cmn Nmn )  (k 1 ) + dmn dmn) 

(kA 
)) 

	

o m= 	n> m 
nA0 

(2.4.13) 

where the superscript 1 indicates that zn(kr) = jn(kr) in Equations 

(2.4.7) and (2.4.8). 

The unknown (complex) coefficients a
mn, bmn' cmn,  dmn in 

Equations (2.4.9), (2.4.10), (2.4.12) and (2.4.13) must be determined 

from the boundary conditions. The surface of the raindrop is given by:- 

r' = R'(9') 	, 	0 < a-  < mr 	, 	0 < cp' < 27 (2.4.14) 

where it is assumed that R'(a') is a single-valued, continuously 

differentiable function of a' (see Equation (2.1.1)). The continuity 

of the tangential components of the total electric and magnetic field, 

across the surface of the raindrop, implies that for r' =  

E1  + Es  = Et  
3 	3 	3 

Hi  + Hs  = Ht  
3 	3 	3 

	

Ei  + Es  + 1 	(E1  + Es) = Et 
 + 1 dRT Et 

z 	2 	R' 	da 	1 	1 	2 	da 	1 

H2  + Hs  + 1 dR  (H1  + Hs) = Ht  + 1 dR  Ht 
2 	2 R da 	1 	1 	2 R da 1  

(2.4.15) 

(2.4.16) 

(2.4.17) 

(2.4.18) 

where Ei  = 	. Ti  and Hj  = H . ij  and the incident fields ti  and Hi  are 

given by Equations (2.4.4) and (2.4.5). 

Because of the axial symmetry of the raindrop, the following 

relationships between the coefficients, 
amn, bmn' c

mn' dmn are derived. 

For the first polarization of the incident wave:- 
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I 	I 	bI 	=  bI 
a-mn = - amn 	-mn 	mn  

I _ I 	dI 	= dI 
c
-mn = 	cmn 	-mn 	mn 

(2.4.19) 

  

and for the second polarization:- 

II 	II 	bII =  _ bII 

	

a
-mn - amn 	-mn 	mn 

II 	II 	dII = _ dII 

	

c-mn = cmn 	-mn 	mn 

 

(2.4.20) 

  

Thus, it is sufficient to consider only non-negative values of m. 

The calculation of the aforementioned coefficients from the 

set of boundary conditions (2.4.15) - (2.4.18) follows two different 

approaches. Oguchi (1960) considered spheroidal raindrops with small 

eccentricity and carried out a perturbation expansion originally 

determining the first-order approximation and later the second-order one 

(Oguchi, 1964). He described the surface of the raindrop as:- 

R'(9) = ā(1 + vR;(9') + 	) , Ivl « 1 (2.4.21) 

where -a- is  the radius of the equivolumic sphere. Corresponding to 

Equation (2.4.21) the coefficients in the expansions (2.4.9), (2.4.10), 

(2.4.12), (2.4.13) are expanded in the form:- 

amn = amn(0) + v  a(1) 	 (2.4.22) 

bmn = bm0)  + v bmn) 	 (2.4.23) 

cmn = c
(0)  + v cmn) 	 (2.4.24) 
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_ (0) 	(1) 
d 	d mn 	mn + v dmn 

(2.4.25) 

The zero-order approximation, with v = 0 in Equation (2.4.21) corresponds 

to a spherical raindrop of radius T. Thus the coefficients amo ), bm~), 

cmn), dmn) are determined from the well-known Mie solution (Mie, 1909). 

The first-order approximation 
a(mn), bmn)' cmn)' dm

n) are very complicated 

functions and are tabulated in Oguchi's paper (Oguchi, 1960). 

An alternative non-perturbation solution of the scattering 

problem is also presented here. As mentioned previously, it is 

sufficient to determine the unknown coefficients for non-negative values 

of m and then to use the relationships in Equations (2.4.19) or (2.4.20). 

The boundary conditions in Equations (2.4.15) - (2.4.18) take the form:- 

~nq(a') 	
n>m 

[amn Amnq(9') + 
b
mn Bmnq(a') + 

n0 

+ c
mn Cmnq(a') + 

d
mn Dmnq(a')] = 

0 	 (2.4.26) 

for q = 1, 2, 3, 4 and 0 < a' < r, where the functions Kmq(a'), 

Amnq(a-)' Bmnq(a')' Cmnq(a'), Dmnq(9") involve the spherical Bessel 

functions of the first and third kind and the associated Legendre 

functions, and the derivatives of each of these functions (Morrison and 

Cross, 1974). In view of Equation (2.4.3), the argument of the 

spherical Bessel function of the first kind is complex. 

For each m there are infinitely many unknown coefficients amn' 

bmn' cmn' dmn' To obtain an approximate solution, only a finite number 

of coefficients is considered. One procedure is to truncate the sum in 

Equation (2.4.26) at n = No, say, and then to satisfy the boundary 

conditions at the points a' = aim, 2 = 1, .... , (No - m + 1 - dmo)' 
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which are appropriately selected, e.g. uniformly spaced in the interval 

0 to 7. This was the procedure adopted by Oguchi (1973) and it leads 

to a system of simultaneous linear equations for the coefficients. We 

refer to this procedure, in which the total number of fitting points is 

equal to the number of unknown coefficients, as collocation. 

Another more effective method adopted by Mullin et al (1965) for 

the scalar scattering problem by a perfectly conducting cylinder of 

smooth contour, and Morrison and Cross (1974) for the raindrop problem, 

is the least-squares fitting procedure. According to this, the 

boundary conditions (Equation (2.4.26)) are satisfied in a least-squares 

sense at a larger number of points than the number of unknown 

coefficients in the truncated expansion of the scattered field. 

Morrison and Cross (1974) have found a significant improvement in the 

overall fit of the boundary conditions, although the far field quantities 

were not affected as significantly. This is because the higher-order 

coefficients are more significant at the boundary than in the far 

field. However, the accuracy of the lower-order coefficients is 

affected by the goodness of fit of the boundary condition. With 

collocation, there were much larger errors in the boundary condition 

(in between the fitting points) than with least-squares fitting with a 

sufficiently large number of points. 

After this brief description of the methodology for the 

evaluation of the coefficients a
mn' bmn' cmn' dmn 

we now turn to the 

quantities of physical interest. 

2.4.2 	Evaluation of the Far-Field Quantities  

We consider only the far scattered field, so that ko  r-  » 1. 

Thus, we restrict our attention to the leading term in the asymptotic 

expansion of the spherical Bessel function of the third kind, as given 
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by Equation (2.4.11). Also, it follows that:- 

h(1)-(k r') ~' (- i 
)n ikor' 

n 	o 	kor' e 
(2.4.27) 

Then, from Equations (2.4.7) to (2.4.10), it is found that:- 

-ik r' 
k r' eos 

ti 	(- i)n+1 
o 	m=-o 

n~ m 
nA0 

	

a
mn 	

a') 
i 

-  

	

mn 	da' 	3 

 

'dP 1m1 (cos a') 

	

im 	
Plml 
	-~ 1 	

n 8~ n 	(cos a ) '2j - ibmn 	da' 	i2 + si  

    

+ si— n a P.m' (cos a') i3 

 

e (2.4.28) 

    

    

and:- 

wi Hs =ko il x ks. 
(2.4.29) 

Of particular interest are the scattered fields in the forward 

direction, corresponding to a' = ac, cp' = 0. The unit vectors in 

Cartesian coordinates are given in terms of those in spherical 

coordinates by:- 

1 = sin a' cos cp' 1 + cos a' cos cp' i - sin cp' i 
1 	 2 	 3 

j = sin a' sin cp' i + cos a' cos cp' i + cos cp' i 
1 	 2 	 3 

II- = cos a' i - sin a' i 
1 	 2 

(2.4.30) 
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Applying the forward condition to the Equations (2.4.30), we have that:- 

(cos ac 1 - sin ac k) = 1 
2 

(2.4.31) 

J = 1 
3 

From Equations (2.4.4), (2.4.5), (2.4.19), (2.4.20), (2.4.28), (2.4.29) 

and (2.4.30), it follows that the far scattered field in the forward 

direction has the same polarization as the incident wave for either 

polarization. The forward scattering amplitudes are (Van de Hulst, 

1957):- 

SI(ac, ā) = - (cos ac i - sin ac k) lim f- ikor' e 	° 	EĪ/a' = a
c] I 	r 	Q'=0 J 

and:- 

E1 	
. 

-ik r' 
lim 	[- ikor' e 	° 
r - 	l ' 

ll 
EĪI/a' = ac l

J cp' = 0 

(2.4.32) 

(2.4.33) SII(ac, ā) = 	j 
II 

Thus, for the first polarization of the incident wave:- 

EISI(ac,ā) _ 	(- i)n-1 x 
m=-0. n>l m l 

n0 

I 	m m 	I dP1m1 (cos ac ) 
x a

mn sin ac 
P~ ~ (cos ac) + b

mn 	d
ac 

(2.4.34) 

and for the second polarization:- 



W 
=2 W

s 	
Re IES (H3) * - (HS) * E3] r'2 sin a' da' dcp' 

2 
(2.4.36) 

^27 j7r 

0 0 
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EIISII(ac' a) _ mL 
(- i)n+2 x 

n>~ 
n10 

x 
dPlml (cos a

c
) 

 n 	c 	II 	m 	P ~m~ [all 
mn 	da 	

+ 
bmn sin āc 

n (cos ac) 

c 

 

(2.4.35) 

 

The energy scattered by the raindrop is (Stratton, 1941):- 

where the asterisk denotes complex conjugate. The calculation of Ws 

using the asymptotic form of the scattered fields given by Equations 

(2.4.28) and (2.4.29) and letting r' 	co is found in Morrison and Cross 

(1974) and the final result is:- 

Ws _ ~u21r 	(n  + 1}(n + 	2 	z 
0 

k 

o m=-~ n>~ m I n + 1)(n - m )~ ( ~ amn~ 	+ 
lb (2.4.37) 

The scattering cross section Qs is defined as the ratio of the 

scattered energy flow to the mean energy flow of the incident wave per 

unit area. Thus (Stratton, 1941):- 

I _ 2wuo Ws I I _  2w 	Ws  
Qs 	ko EI EI 	Qs 	

ko EII EII 

(2.4.38) 

The total extinction cross section is the sum of the scattering and 

absorption cross sections, so that:- 

I 	I 	I 	II 	II 	II 

	

Qt = Qs 	Qa 	' 	Qt = Qs 	Qa (2.4.39) 
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It is known that (Van de Hulst, 1957):- 

Qt = 
k2 

Re SI(ac, a) 	Q, =— 
k2 

Re Sii(ac, a) 

0 	 0 

(2.4.40) 

so that (2.4.39) may be used to determine the absorption cross-sections 

Qa  and Q.  The relations (2.4.40) which are consistent with the optical 

theorem may be verified directly from the relations:- 

I 

	

241 W
I

Wt 	II 
- 

2tuo W11  

	

Qt = ko  ĒIEĪ 	Qt 	k0EIIEĪI 
(2.4.41) 

and the expression for the total energy (Stratton, 1941):- 

2-
u IT  

W = 2 Re 	IE3(H2 )* + E3(H2 )* - E2 (H3 )* - E2(H3)*l r'2  sin 3' de' dcp' 

0 	0 	 (2.4.42) 

2.4.3 	Propagation Characteristics of a Rain-Filled Medium  

The propagation of electromagnetic waves through a rain-filled 

medium consisting of an assemblage of scatterers will necessarily entail 

multiple-scattering considerations between the raindrops. However, to 

obtain results simply for a physical rain model using the discrete scatterer 

results, conventional analyses have assumed only single scattering with all 

drops to be aligned with their semimin or axis parallel to the z'-axis' The 

propagation constants associated with the waves polarised in the directions 

of the raindrop minor (I) and major (II) axes are (Van de Hulst, 1957):- 

KI(ac) = ko  + k: 	
fI(a-, a ) n(a) da 	 (2.4.43) 

0 0  

Co 

KII(ac)  = ko + k
27 
	fII(ac, 	n 	cia- 

o 0  
(2.4.44) 

where n(ā) dā is the number of drops per unit volume (cm') having radius 
* This is because multiple-scattering is not important in the frequency 

range of interest (Olsen, 1978) 
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in the region a, ā + da. The complex quantities fI,II 
are given in 

terms of 
SI,II 

as:- 

fi~ II(ac, ā) _ - iko SI , II (ac , a) (2.4.45) 

Thus, using Equations (2.4.45), (2.4.34) and (2.4.35) for the SI,II 

and either the Laws-Parsons (1943) or Marshall and Palmer (1948) drop-

size distribution the specific attenuation and phase rotation of the 

electromagnetic wave after passing through the medium may be calculated 

as:- 

AI(ac) = 8.686 Im(K I(ac)) x 105 db/km 

AII(ac) = 8.686 ImiKII(ac)} x 105 db/km 

 

(2.4.46) 

  

and correspondingly the phase rotation:- 

()I(ac) - 180 Re(KI(ac)1 x 105 deg/km 

(DII(ac) - 
180 

Re[KII(ac)] x 105 deg/km 

 

(2.4.47) 

  

These formulae will be used in the next section. 

2.5 	Cross-Polarization Discrimination and Attenuation at a  

Constant Rainrate  

The rain medium produces attenuation and cross-polarization 

for a microwave signal propagating through it. The cross-polarization 

effect is a direct consequence of the oblate shape and the canting 

angle of falling raindrops. So, this depolarization in general must be 

calculated in terms of canting angle parameters, specific attenuation and 
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phase shift of the rain medium, as they have been evaluated in the 

previous section. There are two terms used to describe the depolarization 

for a received signal, which are defined as follows:- 

Cross-polarization discrimination (XPD) - 20 log10 
 

 

ECX 

 

(2.5.1) 

 

ECC 

 

     

and:- 

    

Cross-polarization isolation (XPI) - 20 log 
io 

 

EXC 

 

(2.5.2) 

 

ECC 

 

     

where EXC  is the received field in the cross-polar direction to that 

transmitted, ECX  is the received field in the transmitted direction 

from interference caused by the cross-polar channel, where in both 

cases, ECC  is the co-polar received field to that transmitted. On the 

other hand, the attenuation of the co-polar received signal is 

defined as:- 

Co-polar attenuation (CPA) - 20 log 
io 

 

EO  

 

(2.5.3) 

 

ECC 

 

     

where IE01  is the amplitude of the incident field. 

For independent canting-angle and drop-size distribution and 

for raindrops which are axi-symmetric in shape, the XPD and XPI can be 

shown to be identical (Watson and Arbabi, 1973). So, in this thesis 

the whole analysis is made in terms of XPD, but the results will be 

the same for XPI. Many authors have reported on the approximate or 

exact expressions giving the cross-polarization discrimination for a 
• 

rain medium with drop canting angle distribution (Attisani et al, 1974; 

Chu, 1974; McGormick, 1975; Brussaard, 1976; Ostberg, 1976). Most 
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recently Oguchi (1977) showed that all the calculations can be put in 

a concise form. The definitions and equations given here with slight 

changes of notation follow from there (Oguchi, 1977). In this way, the 

mean value of the XPD and CPA due to rain at a constant rainfall rate, 

are calculated. The following analysis is divided into two parts 

corresponding to terrestrial and earth-space links. 

2.5.1 	Terrestrial Links  

In this case, we have:- 

   

<XPD>s  = - 20 log io  
rl  (a

c 
 ) cos' if,+ r2(aC) sine  cp 

f
rl  (a

c 
 ) - r2(ac)1 sin cb cos (15 

(2.5.4) 

  

and:- 

  

 

rl  (a
c 
 ) cos' cp + r2(ac) sin' H 

 

<CPA>s  = - 20 log lo  (2.5.5) 

   

where the symbol < >s  means the short-term mean value (or equivalently, 

at a constant rainfall rate) for the XPD or CPA. In these equations, 

is the "effective canting angle" of the randomly oriented raindrops 

(Oguchi, 1977). As was mentioned previously (Section 2.2.3), we will 

consider the case in which the raindrop-canting angle is independent of 

the drop size. Also, it is assumed that the two canting angle 

distributions for the transverse component 8 and the longitudinal 

component y are independent of each other (Fig. 2.3), so the angle 

takes the simple form (Oguchi, 1977):- 

(2.5.6) = (1/2) tan-1 <sin 20>  
<cos 20> 
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For a Gaussian distribution of e with <0> = 8o  and a
e = 

o, we have 

finally (Oguchi, 1977):- 

(2.5.7) 

Also, r (a ) and r (a) are the average transmission coefficients of 
c 	2 c  

the characteristic polarizations for a medium of path length L (Oguchi, 

1977), where these two characteristic polarizations are propagated 

without depolarization through a rain-filled medium. The transmission 

coefficients t , F are defined as:- 
1 	2 

a)= e - J K 
1 (a c) L 

F' 
( c 

r (a  ) = e  - jK2(ac ) L 

z c  

(2.5.8) 

 

where the propagation constants K (ac) and K2(ac) for an angle of 
1 

incidence ac  = Tr/2 (terrestrial path) are related to the constants 

KI.  and KII  along the minor and major raindrop axes for an "equi-oriented 

raindrop model" at 7/2 angle of incidence by:- 

K1 ( 7/2) _ y7/2) - iA1 (7/2) = (l+memy) KII(Tr/2)/2 + (1-memy) KI(7/2)/2 I 

K2(7/2) = 1)2(7/2) - iA2(7/2) _ (1-memy) KII(Tr/2)/2 + (l+memy) KI(Tr/2)/2 

(2.5.9) 

where A 	and cD, 	are the specific attenuations (in neper/unit 
1, 2 	1, 2 

distance) and phase shifts (in radian/unit distance) correspondingly, 

for propagation along these characteristic polarizations, and:- 

1/2 

me  = 
l
<cos 20>2  + <sin 20>21 (2.5.10) 
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and:- 

m = <cos2  y> (2.5.11) 

The < > brackets indicate the ensemble average over the appropriate 

canting angle distribution. For terrestrial paths, the angle y, that 

is the component of canting angle in the plane containing the propagation 

path and the raindrop axis of symmetry, can be neglected, so we can put:- 

<y> = yo  = 0 

and: - 

6 =6' =0 

so:- 

(2.5.12) 

 

(2.5.13) 

For a Gaussian distribution of 0, Oguchi (1977) has shown that:- 

-2a2 
me  = e (2.5.14) 

The first step in simplifying the relations (2.5.4) and 

(2.5.5) for XPD and CPA is to make the small argument approximation 

(Nowland, 1977). From knowledge that K 
ti 

K , the CPA in Equation (2.5.5) 
1 	2 

can be accurately approximated as:- 
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I -i(K cost 	+ K sing 0L 
<CPA>s = - 20 

log10 
+e 	1 	2 	I 

20 L  
ln(10) 

Im(K1 cos2 CO + K2 	0sin2  (2.5.15) 

Rewriting Equation (2.5.15) in terms of the specific attenuations AI and 

A11 (in db/unit distance) corresponding to KII and KI, as given in 

Equation (2.4.46), we have:- 

<CPA>s +AII(1 + me cos 20/2 + AI(1 	- me cos 4)/2 L (2.5.16) 

Similarly, using the small 	argument approximation:- 

-1 (K - K 	)L 
e 	1 2 	= 	1 - 	i (K 	- 	K 	)L (2.5.17) 

1 	2 

and the fact that the differential propagation constant 

AKW2) = K (7/2) - K (11/2) is related as follows to the differential 
1 	2 

specific attenuation Aa = aII - aI (in neper/unit distance) and the 

differential phase shift oa = aII - aI (in radians/unit distance) for 

"equi-oriented" raindrops with 7/2 angle of incidence:- 

AK(7/2) = m6~KII(~/2) - K I (lr/2)J = me lAa(lr/2) - iAa(lr/2 )Ī (2.5.18) 

it follows that:- 

 

 

4{1 + 2me Aa.L sin2 qb, + [m0(Aa2 + pa2 )l/2.L sin2 d2) 

m2(Aa2 + A 2) . L2 sin2 4 
<XPD>s = - 10 log 

  

(2.5.19) 
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For frequencies in the 4 to 50 GHz range and for rainrates less than 

about 150 mm/hr, the expression in { } in the numerator of Equation 

(2.5.19) can be approximated with little error to unity. This yields 

a simplifed relation for XPD:- 

<XPD>s  = 20 
login 

(-2- m
0 
 L(Aa2+ A82 )1/2  sin 4} 

	
(2.5.20) 

Equations (2.5.16) and (2.5.20) provide a basis for readily relating 

both XPD and CPA to each other as well as to rainrate and path length. 

Moreover, the manner in which me  and q  appear in these equations 

indicates the simplicity with which the canting angle distribution and 

the incident polarization can be handled when the small argument 

approximations are applied. On the other hand, these equations are 

appropriate for horizontal incident polarization. In the case of 

vertical polarization the equations which are used are the same with 

the substitution of (Tr/2 - cp) as the new canting angle. 

The second step in simplifying the problem is to approximate 

the specific attenuations and the magnitude of the differential 

propagation constant 
IKII

(7/2) 	KI(7/2)1 = (La' + U2)1/2 by power law 

relations in terms of point rainrate (Olsen, Rogers and Hodge, 1978), i.e.:- 

b 
AI =aI R I  

AII  = aII  R 
bII  

(La' + A82 )l/2  = cRd  

 

(2.5.21) 

  

Using Equations (2.5.16), (2.5.21) and the fact that bI  = bII, it 

follows that:- 



<CPA> 	= a Rb  

where:- 

a = a 	J c 	a  

b = bc  Jb  

- 
aI + aII 

L 

m 
e 

- 

cos 2 
 

aIbI 

24) 

L 

(2.5.20) 
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me  cos 

and 

sin 	2c5 

24) 

(2.5.21):- 

(2.5.22) 

(2.5.23) 

(2.5.24) 

(2.5.25) 

(2.5.26) 

ac 	2  

aIbl + aIIbII 

b 
	- 
c 

and:- 

J a  = 1 + 

1 
Jb _ Ja  

Similarly, 

<XPD>s  = 

+ 
 + aII 

all aI 

aI + 

1 	+ 

from 

20 log 

aII 

aIIbII 
ajbl  

lo  

Equations 

+ aIIbII 

2 me  C Rd 

The parameters AI, AII  and (pat + 
A62)1/2 

have been obtained 

for the drop-size distribution of Laws and Parsons (1943) using Oguchi's 

tabulations of forward-scattering amplitudes for oblate spheroidal 

(Oguchi and Hosoya, 1974) and Pruppacher-Pitter form raindrops (Oguchi;  

* Experimental verification of this functiona] relationship would be 
desirable 
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1977). This work has been done by Nowland et al (1977) and regression 

coefficients for aI
, all' b

I, b11, c, d are given in Table 2.3. These 

were obtained from regressions at the Laws-Parsons rainrates of 1.27, 

2.54, 5.08, 12.7, 25.4 and 50.8 mm/hr, but are also valid for higher 

rainrates. 

2.5.2 	Earth-Space Links  

For such links, the relations (2.5.4) and (2.5.5) for XPD and 

CPA, are modified as follows:- 

     

<XPD>s  = - 20 log 
lo  

 

r (a
c 
 ) cos2(q - T) + r2(ac) sin2(q - T) 

 

(2.5.27) 

 

I
F (ac) - r2(ac) sin( - T) cos(4) - T) 

 

    

     

and:- 

 

 

r1 (ac) cos2() - T) + r2(ac) sin2(q) - T)I 	(2.5.28) <CPA>s  = - 20 log10  

  

In these equations, T is the polarization tilt angle relative to the 

horizontal (Shkarofsky, 1977). The elevation angle c which is defined as:- 

E=Tr/2-ac 	 (2.5.29) 

is always different from zero, so in this case, the component of the 

raindrop canting angle in the plane containing the propagation path and 

the raindrop axis of symmetry y cannot be neglected. For earth-space 

paths, this y is dependent on elevation angle and we can put (Nowland 

et al, 1977):- 

ti 
<y>=yo =e (2.5.30) 



TABLE 2.3 REGRESSION COEFFICIENTS FOR PRUPPACHER-PITTER-FORM RAINDROPS WITH  

LAWS-PARSONS DROPSIZE DISTRIBUTION; RAIN TEMPERATURE = 20°C  

Frequency aI  x 102  bI 
 

ail  x 102  bII  c x 1O' d 

GHz db/km db/km km-1  

11.0 1.245 1.241 1.344 1.267 7.366 1.235 

13.0 2.113 1.195 2.256 1.223 8.723 1.237 

19.3 6.090 1.094 6.400 1.134 13.390 1.234 

34.8 22.350 0.994 23.880 1.017 25.740 1.133 
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Following the same steps as in the previous case, we derive 

the following expressions for XPD and CPA:- 

   

<XPD>s  = 20 log 
io 

1 
memy  c Rd  Q sin 2 (2.5.31) 

   

    

and:- 

<CPA>s  = a Rb  (2.5.32) 

where (Nowland et al, 1977):- 

 

-202  
1 + e 	y  cos 2<y> 	 (2.5.33) my = 1 

  

and a, b are now given as:- 

a = ac Ja(ac) 

(2.5.34) 

b = bc  Jb(ac) 

and ac, be are the same as in Equation (2.5.24), but the Ja(ac), Jb(ac )  

are given as:- 

Ja(ac) = 1 + 
āII+  aaI 

 memy  cos 2(q 	T) 
I 	II 

(a 	b 	- a b 

Jb(ac) = J 	a 	1 + aIIb  I+ 
a 

Ib  I  mem 	c os 2(4) - T) 
a (  c) 	I I 	II II , 	y 

(2.5.35) 
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In Equations (2.5.31) and (2.5.32) the Q is the effective 

path length through rain as it is defined by Nowland et al (1977). This 

Q is a function of point rainfall rate R and the elevation angle E. 

Experience has showed that this function can be approximated as (Nowland 

et al, 1977):- 

9.(R, E) = {7.41 x 10-3 
R0.766 + 

(0.232 - 1.80 x 10-4  R) sin Er 	(2.5.36) 

This result is applicable to at least north-western Europe and the north-

eastern part of the USA. Making a regression analysis, we can obtain:- 

2(R, e) = u(E) Rv(E) 	 (2.5.37) 

Values of u and v as a function of elevation angle a have been tabulated 

by Nowland et al (1977) and are given in Table 2.4. 

In conclusion, the results of this section will be used as 

an estimation of the short-term mean value of XPD or rain co-polar 

attenuation in the following stochastic analysis. 



TABLE 2.4 u AND v IN k = uRv  AS FUNCTIONS OF ELEVATION ANGLE e  

1 - 50 mm/h RAINRATE RANGE  

E, 	deg. 10 20 30 40 50 60 70 

u, 	km 24.9 13.3 9.11 7.06 5.91 5.21 4.79 

v - 0.364 - 0.252 - 0.196 - 0.164 - 0.143 - 0.129 - 	0.121 
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CHAPTER 3 

ANALYSIS OF THE LONG-TERM STATISTICS  

OF RAIN CROSS-POLARIZATION DISCRIMINATION  

FOR SPATIALLY UNIFORM RAIN  

Introduction  

In this chapter, calculations of the long-term statistics of 

the cross-polarised part of millimetric waves propagating through rain 

are considered. The work can be considered as an extension to Lin's 

(1975) calculations of rain attenuation statistics with a view to their 

application to radio path design. The analysis is limited to the case 

of propagation through regions in which the rainfall rate is uniform 

in space, but not necessarily uniform in time. The assumption of 

uniform rain throughout the entire length is a rather poor approximation 

for long paths, as it is well-known that rain cell sizes for heavy rains 

(> 100 mm/hr) rarely exceed 3 or 4 km (Freeny and Gabbe, 1969). This 

restricts applications of the results to path lengths of 2 km or so. 

For the higher frequencies of the microwave band (> 20 GHz) where the 

repeater spacing is usually designed to be less than 4 km, this 

assumption well approximates the real situation. However, this method 

can be developed into a long-path model, as will be shown in the next 

chapter, by dividing the propagation medium into a series of statistically 

uniform segments. 

The technique adopted here is to divide the uniform region 

into thin slabs, each treated by the single-scatter method of Van de 

Hulst (1957). For these individual slabs the emerging waves have cross-

polar components which are Rayleigh distributed, assuming temporal 

stationarity. The amplitude of the cross-polar signal that finally 

emerges from the spatially uniform region can then be shown using 

Nakagami's m-variable theory (1960), to be a Rayleigh distributed random 
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variable. This is true for a rainfall rate R that is constant in time 

or, in other words, is the short-term distribution of the random variable. 

Over a long period, when the whole region remains spatially 

uniform but the rainfall rate R is a random time process, the short-term 

mean square value of the fluctuating cross-polar received signal is shown 

to have a log-normal distribution. This is an exact result, assuming 

that the rainrate has a log-normal distribution (Section 2.3). Using 

the theorem of total probability, a numerical technique is used to show 

that the cross-polar signal itself is approximately log-normal. 

An important application of this statistical distribution to 

the design of a radio communication path is also given in this chapter. 

This is the evaluation of radio outage time due to cross-channel inter-

ference. Tolerable interference levels of - 20 db, - 25 db and - 30 db 

are employed for the purposes of illustration. 

3.1 	General Theory of Depolarization  

We will now present the idea of complex polarization factor and 

polarization coefficients which will be useful for our analysis (Beckmann, 

1968). 

Consider a plane electromagnetic wave propagating in the 

direction of the unit vector t. Let ē and ē be mutually perpendicular 

unit vectors in the plane perpendicular to k. These two unit vectors 

are usually oriented in privileged directions, e.g. vertical and 

horizontal, if the surface of the earth is relevant, or parallel and 

perpendicular to the plane of incidence in scattering problems. The 

superscripts + and - have been chosen with reference to vertical and 

horizontal polarizations since the corresponding reflection coefficients 

for a perfectly conducting plane are + 1 and - 1, respectively (Fig. 3.1). 

Resolving the electric field strength t into its space components:- 



Fig. 3.1 General theory of 
depolarization 

\K 



(3.1.1) 

we can write the vector-phasor -t as:- 

t- = El-  Z+  +E Z-  E ē +E ē 
E 	J 

(3.1.2) 

or introducing the complex polarization factor p = El./E-, we have:- 

Ē = E (e + pe ) 	 (3.1.3) 

In other words:- 

p = Ipi exp (iarg p) = 107E -I exp (iarg E+  - iarg E-) 	(3.1.4) 

It follows that 1p1  is the ratio of the amplitudes of, and arg p the phase 

difference between, the two components of the wave. The complex 

polarization factor p uniquely describes the polarization of an electro-

magnetic wave. In particular, we have the following polarizations 

described by the corresponding values of p:- 

	

Imp = 0 	Linear 

	

p = 0 	Horizontal 

	

p = o 	Vertical 

	

Imp > 0 	Right elliptical 

	

Imp < 0 	Left elliptical 

	

p = i 	Right circular 

	

p = - 	i 	Left circular 

(3.1.5) 
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The complex polarization factor is particularly convenient 

for depolarization investigations. For example, if an incident wave 

with polarization factor p is scattered, diffracted or otherwise 

subjected to an electromagnetic process so that it emerges with 

polarization p , the transformation may simply be described by:-
2 

	

p
2 

	qp 

	

2 	1  
(3.1.6) 

where q is a depolarization factor, which, in many cases, is a constant 

determined only by the properties of the depolarizer, though in general 

it is a function of pl. 

We will now find the general solution of this problem in terms 

of four coefficients which have to be calculated (or measured) for each 

specific case for they depend on the input-output geometry and on the 

shape and electrical properties of the scatterer or other depolarizer. 

However, they do not depend (in linear media) on the input polarization 

p . If the incident (input field) is plus polarised, the scattered 
1 

(output) field will generally be depolarised and will have both a plus 

and minus component. A similar statement holds if the incident field is 

minus polarised. Conversely, the plus component of the scattered field 

will consist of two terms - one due to the similarly polarised component 

of the incident field and one due to the cross-polarised component of 

the incident field. Thus:- 

+ + + 
E2 - E2s + E2x  

(3.1.7) 

E2  = 
E2s + E2x 

where the subscripts s and x indicate whether the field is produced, 



(3.1.11) P2 	r-- + r-+  p  

r++  p + r
+-

1 
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respectively, by the similarly polarised, or the cross-polarised, 

component of the input field. 

Let us now introduce the "polarization coefficients":- 

r++ _  E+ /E+ 2s   

r 	= E
s  /E 

r
+-

= E2x /E1  

r-+  = E2x
/Ei 

(3.1.8) 

   

These four coefficients are easiest to calculate when one of the incident 

components vanishes. We then have:- 

r++ = E+/E+ 
2 1 

r 	= E/E 
2 1 

	

r-+  = E /E+ 	for E = 0 
2 	1 	1 

r
+-

= E+/E 	for E+  = 0 
2 	1 	1 

(3.1.9) 

   

Substituting in the above equations, we have:- 

 

E+  = r++ E
• + + r+- E

--

- 
2 	1 	1 

E = r E• + r-+ E

• + 

 
2 	1 	1 

 

(3.1.10) 

   

Dividing the first of Equation (3.1.10) by the second and using the 

definition of the complex polarization factor, we find the basic 

general solution of the depolarization problem in the form:- 

From the above formula, it is obvious that we are able to find the 

polarization factor p for any input polarization p in terms of the 
2 	 1 
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polarization coefficients r 	r+ 	r-+, F 	as defined in Equation (3.1.9). 

3.2 	Short-Term Statistics of the Cross-Polarised Signal  

In this section, an analysis of the statistics of the XPD at 

a constant rainfall rate of the medium will be made. This is the first 

step for the evaluation of the total statistics for it. 

3.2.1 	Incident Linear, Horizontal or Vertical Polarization  

The starting point of the method is to divide the radio path 

into successive incremental slabs in each of which we can use single 

scattering considerations (Van de Hulst, 1957). So, if for the j-slab 

(see Fig. 3.2) the components of the input field will be E~ and E-J. and 

the corresponding output are E~
+1 

and E~+l (+ and - referred to 

specified directions, usually vertical and horizontal), then using 

Equation (3.1.10), we have:- 

+ 
Ej+1 = 

rj 
E. JJJ  + 

r. 	
E. 

['TT E~+rT+
EJ 

1 

 

  

(3.2.1) 

    

The polarization coefficients, r~+, F~ , F~+, r~ can be evaluated from 

the above system by putting E+j = 1, E,-i = 0 (incident linear vertical 

polarization) and E~ = 1, E~ = 0 (incident linear horizontal polarization). 

Generally (Beckmann, 1968; Van de Hulst, 1957) the cross-polar components 

r~ and 
rj+ 

consist of the sum of many independent scattered waves 

(y~ , 
yJ+ 

from the ith raindrop) so that for the jth slab:- 

n 	 n 
r. = L y. 	

and 	
F4 = 1 y-+ 

J 1=1 	3 i=1 i 
(3.2.2) 



-1 
Plane of 
Receiving 
Antenna 

Radio Path Plane of 
Transmitting 
Antenna 
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Fig. 3.2 Configuration of the radio path 
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assuming that single scattering has occurred. The assumption that the 

scattering from each raindrop is physically independent means that the 

yi are randomly phased uniformly throughout 0 to 2Tr and statistically 

independent. So, the terms in the sums (3.2.2) have phases which are 

independent and uniformly distributed and the lyil are all distributed 

identically. On the other hand, the number n of scattered waves is 

very large and approximately constant in time at a specified rainfall 

rate, depending only on the geographic location (Lin, 1975). In 

Appendix C, it is proved that these sums give Rayleigh phasors, or in 

other words, phasors whose amplitudes are Rayleigh distributed and whose 

phases are uniformly distributed. For the co-polar terms, rt.'. and r-  

we have in a similar manner:- 

I' 	= 1 + 
n 	

++ 
X Y

~ i=1 

n 
r.- =1+ X y_ 

i=1 

(3.2.3) 

where the scattered waves yi+ and y. have similar properties to Yi 

and y.71
+
. According to Beckmann (1967), Norton and Vogler (1955) (see 

Appendix C) the F+j+, rT must be Rice-Nakagami phasors. 

After the general theory, we will now analyse the case of 

horizontal incident linear polarization. The procedure for vertical 

polarization will be exactly the same. 

The components of the incident wave will be:- 

E
0 
=0 

(3.2.4) 
E = 1 
0 

(normalized wave) 

Using Van de Hulst's (1957) approximation, the components at 
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the output of the first slab will be:- 

V 
a0 60 

6o a
H 
o 

E+  
1 

E1  

0 

1 
(3.2.5) 

where:- 

 

(3.2.6) 

 

for j = 0, 1,   Ns  where Ns  is the total number of slabs, so:- 

E+  = 60  
1 

E1  = aH o  
(3.2.7) 

  

These E+, E are the input components of the second slab, so the output 

components will be:- 

  

aV  6 

— 	
E+  = aV 

o 
+ a H  6 

1 	0 	2 1 	0 1 

 

E+  
2 

E2  

  

 

	

H 	H } - 	H H 

	

61 a l 
	

a
H 
	E2  = a

o 
a l  +61 60 

(3.2.8) 

    

    

For the third slab, we will have similarly:- 

E3 	a2 62 	ai 60 + 	ao sl  

E3 	6 
2. aH 	ao 

aH
1 + 

6 1 60 

(3.2.9) 



or:- 

El- =aV aV ( +aV aH 13 + 	aH aH +1 (3 g 
3 2 1 0 2 0 1 2 0 1 2 1 0 

E =S (3 aV + 13 a aH +aH aH a_+aH S S 
3 2 0 1 2 1 0 2 1 	2 1 0 

(3.2.10) 

  

Considering the rain medium as a moderately depolarizing medium 

(Attisani et al, 1974), we can easily conclude that:- 

E- r aH aH aH 

3 0 1 2 

+- ti
_ (s 	

H 	H 	V H 	H 	V H 	V H 
(E/E) 	/a) 	+ (S /a) (a /a2 ) + (~o/ao) 

(a 2
/a2 ) 

(a1 1 
/a) 

3 
3 	2 2 	

1 1 2  
(3.2.11) 

When now we continue the process, the final result is:- 

CR = (ENS/ENs) = (~N-1/aNsl) + (aNs2/aNs2) (aNs1/aNs1 ) + 

+ (aNS3/aNs3) (aNs2/aNs2) (aNsi/aNsl) + 

+ (So/aō) (aNsl/41) (aNs2/42) 	 (aV/aH) (aV/aH) 
2 2 1 1 

(3.2.12) 

where CR is the complex polarization factor at the output of the rain 

medium (as it is defined in Section 3.1). 

If we define:- 
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+ 

p~ - a~/a~ (3.2.13) 
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then this complex random variable will have a negligible (almost zero) 

phase and amplitude (ratio of two correlated Rice-Nakagami variables) 

which will have a fluctuation with very small variance compared to the 

variance of the amplitude of 8j (Rayleigh variable). After that, it is 

reasonable to accept pi as a constant term p, so the final result is:- 

	

C
H 

	(s/aN + p(S /aN ) + p2(~
/aNR 	N-1 -1 ) 	 N-3-3) + S 	s  

N
s + Ns-1 ( ~o/ao) = 	pNs p 	

°j-1/aj-1) j =1 
(3.2.14) 

Again, the A are almost constant terms nearly equal to 1, compared 

to the 18j1 and we can put:- 

< laōI>s = <laH1>s = 	 = <Ia~d >S = as (3.2.15) 

where the vertical bars mean taking the modulus and the sharp brackets 

the expectation of the quantities within. So, CR from Equation (3.2.14) 

is a complex variable which is the sum of many independent Rayleigh 

phasors (Beckmann, 1967). As explained analytically in Appendix C, we 

have that in this case the ICRC must follow a Rayleigh distribution 

with mean square value (m.s.):- 

Ns 

SZ = 	SZ j 
j =1 

(3.2.16) 

where:- 

2N -2j 
Q. = <SJ>s p 	/as 

(3.2.17) 



and:- 

	

Ns 	2N,-2j  	Ns 2N,-2j   
S2 = y <8?> p 

	
/a2  = (1/a2) y  p 

	
<8?> 	(3.2 .18) 

	

j=1 	s 	s j=1 	J s 

The problem is now, to calculate the 2 in terms of the known 

parameters of the rain medium (such as the canting angle distribution, 

drop-size distribution, etc.). This is a very complicated task, but 

we can simplify it if we accept the following results. In the general 

theory of radio wave propagation through rain (Section 2.5), the short-

term mean value of the amplitude of the complex cross-polarization 

factor, is given by (Expressions (2.5.4) and (2.5.20)):- 

<I41>s  = me  L(Aa2  + A82)1/2  sin 4/2 
	

(3.2.19) 

where L is the effective path length through rain, p  is the mean value 

of the canting angle distribution (Expression (2.5.7)) and me  the 

canting angle distribution factor (Expression (2.5.14)). (Aa2  + A8
2)1/2 

represents for an equioriented raindrop model the magnitude of the 

differential propagation constant for waves polarised in the directions 

of the raindrop major and minor axes. Using Expression (2.5.21), we 

have finally:- 

<141>s = me  L cRd  sin 4/2 	 (3.2.20) 

R is the rainfall rate in mm/hr. The regression coefficients c and d 

for Pruppacher-Pitter raindrops having a Laws-Parsons drop-size 

distribution are given in Table 2.3 for various frequencies. 

At this point, we need a general expression for the mean-square 

83 
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value of a Rayleigh variable R and its mean value <R >. This 
1 	 1 

expression is derived analytically in Appendix B for an m-distributed 

variable (Nakagami, 1960) and has the form of:- 

<R 1 > _ {rim + 
2] / 

Ir(m) . m1/91 ✓  S2m  (3.2.21) 

where r( ) is the gamma function (Abramovitz and Stegun, 1965). In our 

case, m = 1 (Rayleigh distribution) and so:- 

SZ = {r2(1)/r2(1 + 2,} <R 1>2  = (4/n) <R1 >2 	 (3.2.22) 

Combination of formulae (3.2.20) and (3.2.22) gives us:- 

S2 = (111 1;L2  c 2  sin2 (20/TrJ R2d  = ARB 	 (3.2.23) 

with:- 

A = m2  L2  c2  sin2(24)/7 

B = 2d 

1 

 

  

(3.2.24) 

    

These constants must be functions of the wave-length X, and the path 

length L. This is the situation for a constant rainfall rate R mm/hr 

at each time (short-term distribution). 

3.2.2 	Incident Linear 45°  Polarization  

The 45°  linear polarization case can be considered approximately 

similar to circular polarization (Bostian, 1973). This can be done by 

rotating the principal axes of polarization (Beckmann, 1968) 45°  relative 
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to the vertical direction so the + and - directions are not now 

identical with the vertical and horizontal (see Fig. 3.3). The new 

canting angle 8' in this case will be:- 

8' = e + (7/4) (3.2.25) 

The components of the incident wave will be:- 

 

Eō = 1 

Eo = 0 

 

(3.2.26) 

   

The complex polarization factor CR will again be:- 

CR 	(E out/Eout) - ( 
sl
/aN.1 ) +(3R1_2/4_2) (aNsl/aNsl) + 

+ (3NS3/aN-3) (a- 	(a- 	+ 	 

+ (3A/a+) (a l/ai) (a2/a2) 	 (aN-1/aN-1) 	(3.2.27) 
5 	S 

where:- 

(3.2.28) 

 

and r~++, r
J 
, F. ,

-+ 
are the new polarization coefficients for the 
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j-slab of the medium. Defining:- 

p~ - a~/a~ (3.2.29) 

then, again p:i may be considered as a constant term p- and the final 

result is:- 

Ns 

CR 
= 2l p.N-j O. /a. 
j 

(3.2.30) 

We have also that:- 

< laō I > = <laiI> = 	 = <Ia~I> = as (3.2.31) 

The distribution for the variable IC
R
I will be Rayleigh with mean square 

value:- 

N 

S2' _ 1 <
.2> (p.2N-2j/a-2

) 

j=1 
s (3.2.32) 

A simplified result for SZ' is derived, if we will consider that this 

case is equivalent to the previous one with new canting angle e' given 

by Equation (3.2.25). So, using again the expressions of Nowland (1977), 

we have finally:- 

Q' = A' R (3.2.33) 

with:- 
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A' = m2 L2 c2 sine 2( + (7/4)I /Tr 

(3.2.34) 

= 2d 

3.3 	Long-Term Statistics  

For a long-term period, we must consider the fluctuations of 

the random variable R (rainfall rate). So, in this case we will use 

the log-normal model for the point rainrate statistics (Section 2.3):- 

PER > r] = P0(0) . [-2- 1) erfc ~(ln r - 1n Rm)/(A SR)I (3.3.1) 

The three parameters Po(0), Rm and SR characterizing the log-normal 

distribution can be calculated by application of the theory of extreme 

value statistics, as explained analytically in Section 2.3.2. 

3.3.1 	Incident Linear Horizontal or Vertical Polarization  

It then follows that the mean-square value 2 of the complex 

cross-polarization factor CR, given by the formula (3.2.23) must follow 

a log-normal distribution (Aitchison and Brown, 1957; Lin, 1975):- 

Pr>wJ =Po(0) . P2-1 erfc 	 ,nw-lnS2m)/(,/T5s..2)1 (3.3.2) 

where S2 is the standard deviation of In S2 and 2m the median value of S 

during rain. The parameters So and 2m of the 2-distribution are 

analytically related to the corresponding SR and Rm of the R-distribution, 

by the following formulae:- 

0 = A Rm 

(3.3.3) 
S2 =BSR 
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These formulae have been derived by combining the relations (3.2.23), 

(3.3.1) and (3.3.2) and the well-known properties of the log-normal 

distribution (Aitchison and Brown, 1957). The density distribution 

function for the SZ-variable will be:- 

PQ(w) = (1/1/2T) [l/(Sn  . w) 

If we define:- 

X =10log 
io 
 SZ=10M1n c 

(M a log 	e) 

exp I- (ln w - ln Qm)2/(2S2)} 	(3.3.4) 

(3.3.5) 

then its density function will be (Papoulis, 1965):- 

PX(x) = (1/1/77) [i/(sQ  10 M)1 exp [- (x - 10 M in Qm)2/(V SQ  10 M)2] 

 (3.3.6) 

This is a normal variable with parameters:- 

<X>=10Min SZm  

(3.3.7) 

aX  = 10 M S 

The main point of this chapter is to find the statistics of 

the cross-polarization isolation (XPI) or discrimination (XPD) of the 

received signal after propagation through rain, which is defined as:- 

Y = 20 loglo  ICR (3.3.8) 
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where CR  is now the long-term complex polarization factor. From 

Papoulis (1965), we have that:- 

Py(Y) = 
	

(y, x) dx 	 (3.3.9) 

The function Py>(y, x) is the joint probability density function of 

the two variables Y and X and:- 

Pyx(Y, x) = Py(yIX = x) PX(x) 	 (3.3.10) 

where Py(y1X = x) is the probability density function of the variable Y 

under the condition that the variable X has the value x. Hence:- 

Py(y) = 

J . 

 Py(yIX = x) PX(x) dx 	 (3.3.11) 

The relation (3.3.11) is the theorem of "total probability". The Py(yIX = x) 

is the short-term distribution of the random variable Y or equivalently 

the distribution at a constant rainfall rate R. At this point, the 

following fundamental theorem for the evaluation of the statistics of 

Y = g(Z) in terms of the statistics of Z can be used (Papoulis, 1965). 

If z , z , z .... z are all the real roots of the equation:-  
1 	2 	3 	n 

y = g(z) 	 (3.3.12) 

for a given y, then the density probability function Py(y) can be 

expressed as:- 



90 

PZ  (zl) 	 PZ 
(Z11)

p (y ) - 	 + 	 + 

Y 	ig'(z1 )1 	I9.(zn)I 

(3.3.13) 

where:- 

g
-(z) - dg(z)  

dz 
(3.3.14) 

In our case, we have the following relation:- 

Y = 20 loglo  41 	 (3.3.15) 

and because we are referring to a constant rainfall rate, the random 

variable ICR1 has a Rayleigh distribution with mean square value SZ given 

by Equation (3.2.23). Hence:- 

PY(y1X = x) = (2/M') exp [[2(Y - x)/M1 - exp [2(y - x)/M1 

 

(3.3.16) 

 

where:- 

M' = 20 M 
(3.3.17) 

x = 10 log Q 

The integral (3.3.11) can now be evaluated using Equations (3.3.6) and 

(3.3.16) as:- 

PY(Y) = j (2/M') exp 2(y - x)/M' - exp [2(y - x)/Mj]  . 

J 

(1/(i2-7 ax )] exp (- (x - <X>)2/(21)] dx 	(3.3.18) 
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If we now put:- 

w 	=2(y-x)/M' 

then the integral 	becomes:- 

(3.3.19) 

= Py(y) = l/( 	aX) exp - 	[1/(2)} 	(y - <X>)2 

exp - M2 w1/(8a)] 	exp w 	- e 1 + 	- <X>)/(2a)J 
w 

	
[
M(y

ll 
w dw (3.3.20) 

With the new substitution:- 

w2 = M' wl/(2A aX) (3.3.21) 

after an algebraic manipulation, we have:- 

2/(5: M')J exp - 

	

[l/(2a)J 	(y - <X>)
2 exp 	(- w2) 

exp (2~ aX/M") + 	(/-2. (y - <X>)/axl w2 - exp (2/Z aX w2/M} dw2 (3.3.22) 

This integral can be evaluated numerically by using Gauss-Hermite 

quadratures, as explained analytically in the following Section 3.4 of 

numerical analysis and results. It can be shown that it tends to follow 

a normal form more and more closely with increasing fluctuations in X. 

Nakagami (1960) has also been concerned with the calculation of the 
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integral (3.3.18) and has established some approximate analytic formulae 

for the distribution of the variable Y. He also claims that with a root 

variance fluctuation of X greater than 7 db (ax > 7 db) then the 

distribution of Y may be taken as a normal. We believe that this limit 

for 	should be lower, based on the numerical integration of the 

distribution. A comparison of the two methods is given in Appendix B. 

Equation (3.3.18) is the probability density function of cross-

polarization isolation or discrimination during rain. The probability 

that cross-polarization isolation or discrimination exceeds a specified 

level y (in db) is given by:- 

P [ > 

 

YI = P0(0) j PY(Y) dY 	 (3.3.23) 

3.3.2 	Incident Linear 45° Polarization  

The long-term statistics for the cross-polarization isolation 

or discrimination for incident linear 45° polarization can be predicted 

as follows. Defining:- 

Y' = 20 log10 ICRI 

X' = 10 log 	Q' 
io 

(3.3.24) 

(3.3.25) 

where CR is now the long-term complex polarization factor, and the X'-

variable is normal with parameters:- 

<X'> = 10 M ln Qm 

(3.3.26) 
aX, = 10 M S~_ 



where:- 

n-  = A' RmB'  m 

Sn. = B' SR  

 

(3.3.27) 

  

and the constants A' and B' are given by formula (3.2.34). 

The long-term distribution of the Y'-variable is again given 

by the theorem of total probability as:- 

PY.(y') =  PY.(y''X' = x') PX.(x') dx' = 
J 

CO 

-o 

CO 

(2/M') exp [[2(Y' - x')/M'} - exp [2(y - x')/Mi 

-CO 
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Il/(v ax.)] exp (x- - <X'>)2/(2ap dx' 	(3.3.28) 

    

Numerical integration of Equation (3.3.28) reveals to us that the 

density PY.(y') is an approximately normal one. The tendency to the 

normal form depends entirely upon the value of the standard deviation 

ax. (Section 3.5). 

The probability that cross-polarization isolation or 

discrimination will exceed a specified level y' (in db) will again be:- 

00 

PF' > y] = P0(0) 	Pr.(y') dy' 
L 	

y- 

(3.3.29) 
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3.3.3 	Procedure for Calculating the Rain Cross-Polarization  

Isolation or Discrimination Distribution  

A numerical method is developed in this chapter to calculate 

the cross-polarization isolation or discrimination distribution for a 

microwave link at each frequency (from 10 to 100 GHz) length, type of 

polarization and location. Note that the uniform rain condition 

restricts the method to short radio paths, less than 4 km. The following 

steps must be followed:- 

(a) Evaluation of the parameters c and d for expression (2.5.21) 

by a regression analysis, at each frequency. These coefficients 

for Pruppacher-Pitter form raindrops having a Laws-Parsons 

drop-size distribution, have been tabulated for four frequencies 

and are presented in Table 2.3. A method of interpolation, as 

will be explained analytically in the following Section 3.4, 

will be used for the evaluation of parameters c and d for an 

intermediate frequency. 

(b) Estimation of the log-normal parameters Po(0), Rm,  SR  of the 

point rainrate distribution by a least squares approximation, 

or alternatively, using the Weather Bureau long term 

precipitation data, by application of the theory of extreme 

value statistics (Section 2.3.2). 

(c) The parameters of the X or X' distribution are evaluated by 

using formula (3.3.7) or (3.3.26). 

(d) Evaluation of the density distribution function for Y or Y' 

by performing the numerical integration (3.3.18) or (3.3.28) 
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and finally estimation of the probabilities (3.3.23) or 

(3.3.29). 

3.4 	Numerical Analysis and Results  

All the numerical techniques which are used for the evaluation 

of the rain cross-polarization discrimination or isolation distribution 

are described here. More analytically a method of interpolation, to 

find the parameters c and d at each frequency is analysed first, and 

then the Gauss-Hermite quadrature formula for the calculation of 

integrals of the same type as those in expressions (3.3.22) and (3.3.28). 

Finally, a brief presentation of the Chebyshev expansion method for the 

approximation of some special functions such as the complement of the 

cumulative normal distribution function and the error function complement, 

is given. These functions are used for the evaluation of the excess 

probabilities of cross-polarization discrimination or isolation and 

rainfall rate. 

Numerical results for the two types of linear polarization at 

34.8 GHz are presented in Figs. 3.4 - 3.15* The rain parameters (Rm, 

SR,  Po(0)) are taken from Lin (1975) and are suitable for a location in 

New Jersey (Figs. 3.3 - 3.8) and Southern England (Figs. 3.9 - 3.14). 

In Figs. 3.3, 3.4 and 3.9, 3.10, the active density function for the 

cross-polarization discrimination or isolation during rain and the best 

fitting approximate normal are shown for comparison. The excess 

probabilities for the rain cross-polarization isolation or discrimination 

at 34.8 GHz are also presented in Figs. 3.5 and 3.11. The differences 

between the two types of linear polarization are also shown and similarly 

the fact that the worst case for the XPD or XPI is the Tr/4 incident 

linear polarization which is similar to circular polarization (Bostian, 

1973). 

* These results are given in Sections 3.4.4 and 3.4.5. 
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An important application for radio designers is the estimation 

of radio outage time due to co-channel interference which is defined as 

the annual average time in which the radio system operates with a value 

of cross-polarization isolation greater than a specified level. In 

present 4 and 6 GHz radio relay systems, the minimum acceptable level is 

- 20 db. Future systems with increased numbers of circuits per channel 

will require less than - 30 db XPI. An increase in XPI levels results 

in increased crosstalk and noise levels and reduces the number of 

circuits per channel. Also, an increase in repeater station spacing 

will increase XPI levels. Hence, a trade-off exists between repeater 

station spacing and expected XPI levels and the optimal cost per circuit 

km must be chosen. Figs. 3.6, 3.7, 3.8 and 3.12, 3.13, 3.14 show the 

annual outage time per hop as a function of repeater spacing for a 

system operating at 34.8 GHz. 

3.4.1 	Analysis of Interpolation Technique  

Given a set of function values f(Xo), f(X ), ...., f(Xn) the 

section is concerned with the estimation of f(X) for some value X. When 

f is a function of one variable only (Xi  scalar) and Xo  < X < . 	 < Xn  
1 

the problem is one of interpolation if XE(X0, Xn) and extrapolation if 

q(XO, Xn). In general interpolation is more accurate than extrapolation. 

Indeed, it is desirable to have an equal amount of information about f 

either side of X. One basic idea employed in this section for the 

solution of this problem is to find a polynomial of degree n which takes 

the values f(X0), f(X 1 ), ...., f(Xn). This polynomial, the Lagrange  

interpolating polynomial is unique. By evaluation the polynomial at X 

an approximate value of f(X) may be obtained. There are many different 

ways of calculating the Lagrange interpolating polynomial evaluated at X. 

The two main methods are Aitken's successive linear approximation and 
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I 1  = j exp ( - X2 ) f(X) dX (3.4.1 ) 
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Everett's formula (Froberg, C. E., 1965). This latter technique assumes 

that the Xi  are equally spaced, with Xe(Xm_i, Xm) or (Xm' Xm+1) where X
m  

is either the mid-point of the range, 
2 
 (Xo  + Xn ), if n is even, or one 

of the two tabular points either side if n is odd. Another idea is to 

pass piecewise cubic polynomials (cubic splines) through known data 

points. The first derivatives of the cubits are continuous at the 

matching points. The splines are then evaluated at the appropriate 

point to obtain an approximation to f(X). When f is a function of two 

variables the cubic spline technique is adopted. 

In our case, the parameters c and d are given for four 

frequencies (Table 3.1). Aitken's method is adopted, and the subroutine 

E01AAF from the NAG (National Algorithmic Group) Library has been used. 

This routine interpolates at a given point X from a table of values Xi  

and Y. (i = 1, 2, ...., N + 1) using Aitken's method. The intermediate 

values of linear interpolation are stored to enable an estimate of the 

accuracy of the result to be made. A full description of this routine 

can be found in Appendix F. 

3.4.2 	Analysis of Gauss-Hermite Quadrature Formula  

This procedure estimates the value of an integral of the 

form:- 

CO 

The integral is approximated by the formula:- 

I 	A f(X ) 	 (3.4.2) 

1  k=1 k k 
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where Ak  are the weights and Xk  the pivots. The pivots are the zeros 

of the Hermite polynomials. This quadrature formula is exact if the 

function f(X) is a polynomial of degree not exceeding 2n - 1, where n 

is the number of pivots used. In the estimation of our integral, we 

use 48 points. The name of the subroutine which is taken from the NAG 

Library is DO1AFF. 

3.4.3 	Analysis of Special Functions  

The routines in this section have all been based on truncated 

Chebyshev expansions. This method of approximation was adopted as a 

compromise between the conflicting requirements of efficiency and ease 

of implementation on the many different machine ranges that are involved 

in the NAG Library project. For details of the reasons behind this 

choice and the production and testing procedures followed in constructing 

this section see (Schonfelder, 1976). 

Basically, if the function to be approximated is f(X), then for 

Xe(a, b) an approximation of the form:- 

f(X) = g(X) 	Cr  Tr  (t) 
r=0 

(3.4.3) 

is used, where g(X) is some suitable function which extracts any 

singularities, asymptotes and, if possible, zeros of the function in the 

range in question and t = t(X) is a mapping of the general range (a, b) 

to the specific range (- 1, + 1) required by the Chebyshev polynomials, 

Tr  (t). For a detailed description of the properties of the Chebyshev 

polynomials see (Clenshaw, 1962; Fox and Parker, 1968). 

The essential property of these polynomials for the purposes 

of function approximation is that Tn(t) oscillates between ± 1 and it 

takes its extreme values n + 1 times in the interval (- 1, + 1). 
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Therefore, provided the coefficients Cr  decrease in magnitude 

sufficiently rapidly the error made by truncating the Chebyshev 

expansion after N terms is approximately given by:- 

E(t) 	CN  TN(t) 	 (3.4.4) 

That is the error oscillates between ± CN  and takes its extreme values 

N + 1 times in the interval in question. Now this is just the condition 

that the approximation be a minimax representation, one which minimises 

the maximum error. By suitable choice of the interval (a, b), the 

auxiliary function, g(X), and the mapping of the independent variable, 

t(X), it is almost always possible to obtain a Chebyshev expansion with 

rapid convergence and hence truncations that provide near minimax poly-

nomial approximations to the required function. The difference between 

the true minimax polynomial and the truncated Chebyshev expansion is 

seldom sufficiently great to be of significance. 

The routine S15ADF is called from NAG Library and calculates 

an approximate value for the complement of the error function:- 

z 
erfc (X) = ? 	e-u  du = 1 - erf(X) 	 (3.4.5) 

'r  X 

For X > 0, it is based on the Chebyshev expansion:- 

erfc (X) = e
-X2 

 . y(X) 	 (3.4.6) 

where:- 

y(X) = X ar  Tr(t) 	 (3.4.7) 
r=0 



and:- 

t = (X - 3.75)/(X + 3.75) 	, - 1 < + < + 1 	(3.4.8) 

For X > Xhi, where there is a danger of setting underflow, the result 

is returned as zero. 

For X < 0:- 

erfc(X) = 2 - e
-X2 

 y(IXI) 	 (3.4.9) 

For X < Xlow< 0, the result is returned as 2 which is correct to 

within the rounding errors of the machine. The values of Xhi  and )(low  

are given in the appropriate machine implementation document. 

The routine S15ACF is called from the NAG Library and 

calculates an approximate value for the complement of the cumulative 

normal distribution function:- 

CO 

0 (X) = 1  
E-  

e-u2/2  du 

X 

(3.4.10) 

  

This routine is based on the fact that (Abramovitz and Stegun, 1965):- 

0 (X) = 	erfc (X/✓T) 	 (3.4.11) 

and it calls the NAG routine S15ADF to obtain the necessary value of 

erfc, the complementary error function. 

100 
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3.4.4 	Numerical Results for the USA  



Fig. 3.3 Probability density function of the 
long-term rain cross-polarization for 
a link in New Jersey (horizontal 
polarization, uniform case) 

A Actual distribution 
B Best-fit normal distribution 

0.030 

0.020 

z 
0 
F- 

U 
7 
ID 
LL 

0.010 

z 
w 
0 

CO 
0 
D_ 

0.000 
-110 -100 -90 -80 -70 -60 

X PD IN DB 
-50 -40 



FU
N

C
T

IO
N

 

0030 Fig. 3.4 Probability density function of 
the long-term rain cross-
polarizatign for a link in New 
Jersey (45 polarization, uniform 
case) 

A Actual distribution 
B Best-fit normal distribution 

0.020 

0010 

z 
w 

m 
0 
L. 

0.000 	 I 	I 	I 
1110 -100 - 90 - BO 	-70 - GO 	-50 

XPD IN DB 
-40 -30 20 



< 1d - 
v) 
U 
U) 
m< 

0 
W 
W 
x 101 ' w 
0 	 •\ 

w 10— 

w 
<103-  F--  
z 
w 
U 
cc 
a_ 10~' 

Fig. 3.5 Excess probability for the rain cross-
polarization isolation or discrimination 
for a link in New Jersey (uniform case) 
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3.4.5 	Numerical Results for Southern England  
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Fig. 3.10 Probability density function of the 
long-term rain cross-polarization 
for a link in Southern England (45°  
polarization, uniform case) 
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Fig. 3.11 Excess probability for the rain cross-
polarization isolation or discrimination 
for a link in Southern England (uniform 
case) 
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3.4.6 	Comparison with Experimental Results from Martlesham  

Heath (Ipswich)  

In order to compare the predictions with experimental results, 

propagation data have been used from a 22 GHz, 4 km link at Martlesham 

Heath (Ipswich), operated jointly by the Post Office Research Department 

and the Appleton Laboratory. This communication system has been 

described elsewhere (Turner and Tattersall, 1977). Generally, the 

propagation data taken from this link are classified into four categories 

depending on which effect was dominant-in the medium (rain, multipath, 

snow and fog), and are tabulated into attenuation and cross-polarization 

data. Four channels (two in the receiver station and the other two in 

the transmitter) have been used, in order to have results for the 

horizontal/vertical attenuation and horizontal/vertical cross-polarization 

discrimination. More specifically, rain cross-polarization data cover 

only the period of approximately twelve months (1974) and are given in 

terms of excess probability for each rain event. For all the rain 

events of the year (' 80), a cumulative probability at each specified 

level of XPD has been constructed (see Table 3.1). It is worthwhile 

mentioning that this probability is under the condition that the XPD 

always exceeds the - 40 db level, where this value is estimated to be 

the clear-air weather XPD of the system (taking into account antennas 

imperfection, etc.). In mathematical terms, this distribution is the 

conditional probability:- 

where the two probabilities P C > y~ and P L > - 40 db] are calculated 

by means of formula (3.3.29). L 	

l 
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The rainrate parameters used in the theoretical prediction 

model are those which are calculated by a least-squares fitting 

procedure from an experimental rainrate distribution appropriate for 

Slough, Southern England (Norbury and White, 1973). Comparison of the 

theoretical curves with the experimental points reveals that the 

agreement is fairly good, especially for the model with standard 

deviation of the canting angle equal to zero (that is the "equi- 

oriented" one). For all the theoretical curves of Fig. 3.15 a mean 

value em = 10o  has been used. A possible reason for the discrepancy of 

the theoretical and experimental results, particularly in the region of 

the higher values of XPD (- 20 db and higher), may be the shortness of 

the period over which the data was taken. The period, which was the 

year 1974, was also unusually dry. For both these reasons the experimental 

data are not too reliable, and the comparison, therefore, somewhat 

inconclusive. The ideal would be to have at least three years of data 

taken under "normal" conditions. 
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TABLE 3.1  

EXPERIMENTAL RESULTS FROM  

MARTLESHAM HEATH (IPSWICH)  

REFERENCE LEVEL OF XPD 
(in db) 

probability that XPD is 
greater than ordinate value 
under the condition that 

XPD is greater than - 40 db 

- 	2 0 

- 	4 0 

- 	6 8.523 x 10-4  

- 	8 2.73 x 10-1  

- 10 4.6 x 10-1  

- 12 2 

- 	14 3 

- 	16 4 

- 18 5 

- 20 6 

- 22 9 

- 24 13 

- 26 14 

- 28 14 

- 30 18 

- 32 28 

- 34 45 

- 36 65 

- 38 85 

- 40 100 
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3.4.7 	Concluding Remarks  

A numerical method for estimating the long-term first order 

statistics of cross-polarization isolation or discrimination of a 

signal after propagating through a rain medium has been presented here. 

The case of uniform rain has been considered and this restricts the 

method to short radio paths, less than 4 km. 

A normal form for the long-term distribution function of XPI 

or XPD in db has been concluded after assuming a log-normal form for 

the rainrate statistics. The parameters of this distribution (mean and 

variance) are functionally related to the parameters of the rainrate 

statistics and those of the radio link (length, frequency, type of 

incident polarization). 

This conclusion is then applied to the estimation of radio 

link reliability such as the evaluation of annual radio outage time 

because of channel interference. Various cross-polarization levels 

(- 20 db, - 25 db or - 30 db) are considered. 
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CHAPTER 4 

ANALYSIS OF THE LONG-TERM STATISTICS OF  

RAIN CROSS-POLARIZATION FOR SPATIALLY  

NON-UNIFORM RAIN 

Introduction  

In this chapter, the long-term statistics of rain cross-

polarization discrimination or isolation for an actual rain medium are 

considered. Actual rainfalls are usually not uniform over an entire 

radio path. The observations by a capacitor flow raingauge (Semplak 

and Turrin, 1969) and by a raindrop photographic method (Mueller and 

Sims, 1966) indicate that heavy rain has fine scale structure of the 

order of 1 m. So, we will consider that the rainfall rate is randomly 

varying over the path as well as in time: in other words, the rainfall 

rate is a random process in both space and time. 

The radio path is again divided into successive incremental 

slabs in which the approximation of Van de Huist (1957) for single 

scattering can be made and also the rainrate can be considered to be 

approximately uniform. For short-term statistics, the complex 

polarization factor at the output can be proved to be a Rayleigh phasor. 

By analogy with Bodtmann and Ruthroff's (1974) analysis for attenuation, 

we propose that the mean square value of the amplitude of this factor 

can be expressed in terms of the space-averaged rainfall rate R, in the 

form Q = A(R)B. 

In order to determine the long-term statistics of cross-

polarization discrimination or isolation, the rainfall rates in each 

slab (RI, R2, 	 ) must be treated as correlated random variables, 

their individual distributions being log-normal. First, it is shown 

that R is itself log-normal, and the dependence of the mean and standard 
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deviation on the link parameters is derived. (The link parameters 

include the probabilities of rainfall along that particular path, the 

median and standard deviation of the point rainfall rate, the spatial 

correlation coefficient of the rainfall rate between slabs, radio 

frequency, path length and type of polarization). Then, as noted in 

the previous chapter, once the statistics of SZ are known, the long-term 

statistics of the cross-polarization discrimination or isolation are 

established, and being very closely a log-normal process (variable). 

Results are given for path lengths up to 4 km, the results being 

compared with calculations assuming spatially uniform rainfall rates. 

4.1 	Short-Term Statistics  

4.1.1 	General Considerations  

We will examine in this chapter the case for a horizontally 

incident polarised wave. The procedure for obtaining the XPD or XPI 

distribution for a vertical polarization or a 45°  one is exactly 

similar. A configuration of the radio path is shown in Fig. 4.1. The 

division of the path into successive incremental slabs of width Az is 

adopted here within which the rainfall rate (Rj  for the jth  slab, 

j = 1, .... Ns) is assumed to be uniform. In the short-term, these 

R. can be considered as constants. Hence, for the first slab, the 

components of the incident wave will be:- 

Eo =0 
0  

E = 1 

(4.1.1) 

  

Then, the output components of the first slab will be:- 



-1 
Plane of 
Receiving 
Antenna 

Radio Path Plane of 
Transmitting 
Antenna 
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Fig. 4.1 Configuration of the radio path 



123 

     

E+ 
1 

E- 
1 

 

0 

1 
(4.1.2) 

      

      

      

where:- 

 

aV _ 
F. 

J 	J 

a. = F. 

s 	
+- _ r-+ 

J = 
r j 
	j 

(4.1.3) 

 

for the jth slab. 

The polarization coefficients r
++, 

r~ 	r
-
+, r: are defined 

by Beckmann (1968). The cross-polar coefficients r+ , 
rj+ 

can be found 

to behave as Rayleigh phasors; on the other hand the amplitudes of the 

co-polar terms r , rJ obey a Rice-Nakagami distribution (Chapter 3). 

The input components of the second slab will, therefore, be:- 

E+ = 
1 	1 

E = aH
- 

1 	1 

(4.1.4) 

  

and the output components of the second slab will be:- 

   

E+ = a
V 	+ 

S a
H 

2 2 1 2 1 

} E = aH aH + S 
2 1 2 1 2 

 

	

E+ 	aV P, 

	

2 	2 2 

E 	6 aH 

	

2 	2 2 

 

f3 1 

aH 
(4.1 .5) 

     

     

     

This process can be continued throughout the entire region to yield, 

finally, the complex cross-polarization factor CR at the output of the 



CR 	(EN 	/ EN ) = ( ~N /aN ) + ON-1 /4-1 ) (aN /aN ) + ON-2/4-2) 
S s 	s s 	s s S S 	S S 

Nth slab, viz:- 
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. 
 (4

V 	H 	H 
i1 /aNl) (aNs

V
/aNs)

. . (aN /a N ) 
s s 

•. • . 	+ 	03
1
/a

1
) 

 /a1 ) (a2/a2) 
2 	2 

(a3/a3) 	• 
3 	3 

(4.1.6) 

Considering the complex random variable p. = a~/a~, this will have a 

negligible (almost zero) phase and amplitude which will have a fluctuation 

with very small variance compared to the variance of the amplitude of 

8j. So, it is reasonable to take pj as a constant term, whose value 

depends on the value of the corresponding Rj. So, we have:- 

CR = {SNs/aNs ) + (PNsl/aNsl) PN + (~NS2/aNs2) PN-1 PN 
s 

	. . ..+ 

+ (6 /a 	p p 	. . . 1 	2 3
• PN 

s 
(4.1 .7) 

Again, the a. are almost constant terms nearly equal to 1, so the CR is 

a complex variable which is the sum of many independent Rayleigh phasors. 

As it is analytically explained in Appendix C, in this case, we have 

that the distribution of the amplitude of CR will have a Rayleigh form, 

with:- 

Ns 

SZ _ 7 (<p~> /a?) Pj+1 Pj+2 . . 
j=1 

. . pN 	(with pi = 1, for i > Ns)(4.1.8) 
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where 2 is the mean square value of the amplitude of C. The following 

analysis for the evaluation of the S2 can be simplified if we will 

adopt the concept of space-averaged rainfall rate R throughout the 

path (Bodtmann and Ruthroff, 1974). This theory is explained analytically 

in the following section. 

4.1.2 	The Concept of the Space-Averaged Rainfall Rate for  

a Spatially Non-Uniform Rain Medium  

Ruthroff (1970), considering the problem of rain attenuation 

through a non-uniform rain medium, has made the following assumptions. 

The attenuation in a radio path depends upon the number and 

size of the raindrops and not explicitly upon their speed or direction. 

But the quantity usually measured is rainrate and it does depend on 

the speed and direction of the raindrops. Since rainrate is the product 

of a density and a velocity, it can be interpreted as a vector. 

Let there be a uniform distribution of ND  drops of water per 

cubic centimetre in the space between two antennas. The drops have 

equivolumic diameter D and velocity VD. The fraction of volume 

occupied by water is defined as the density:- 

pp = (Tr/6) ND  D3 	 (4.1.9) 

Rain density is a dimensionless, real, non-negative quantity. The 

rainrate for drops with diameter D and velocity vD  is:- 

RD =pD vD 
	 (4.1.10) 

The direction of the rainrate is the direction of the travel of the 

drops. The vector expression for rainrate is, therefore:- 



(4.1 .11 ) 

In general, a rain storm has drops of many diameters and the total 

rainrate is a summation over the drop diameters present:- 

=/pD v0  

D 
(4.1 .12) 

On the other hand, for a rain consisting of uniformly 

distributed drops with diameter D the attenuation of radio waves with 

wavelength X is (Medhurst, 1965):- 

2 

Attenuation = 4.343 
N 	

AD  x 1 05 	db/km 	(4.1.13) 

where AD  is a function of the drop diameter, the wavelength X and the 

dielectric constant of water. Substituting from Equation (4.1.9), the 

attenuation is:- 

aD  = k(X, D) LpD 
	

in db 	 (4.1.14) 

where:- 

x2  

A  k(X, D) = 3 x 4.343 x 	D  x 105  
Ti 2  D' 

(4.1.15) 

The result in Equation (4.1.14) is extended to the case of non-uniform 

spatial distribution of raindrops by replacing the uniform rain density 

in Equation (4.1.14) with the average rain density in the radio path. 

The path attenuation is, therefore, assumed to be:- 
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aD(t) = k(X, D) 
V 	

p0(x, y, z, t) dV 	 (4.1.16) 

V 

The expression reduces to Equation (4.1.14) for uniform rain density. 

The optimum direction for rainfall rate is expected to be vertically 

downward in many regions, and if we will assume that the speed of rain-

drops does not change while in the radio path, the attenuation can be 

written in terms of rainrate. From Equation (4.1.16):- 

 jjjaD(t) - 
k(XV D D) 	RD(x, y, z, t) dV 

V 

(4.1 .17) 

Now let the radio path be divided into a large number Ns,  of volume 

elements such that the rainrate is uniform in each element. The 

average rainrate on the path is:- 

N 
s  

R(t) = N 	R(xi, yi, zi, t) 
s i=1 

(4.1.18) 

In integral form, this is written:- 

R(t) _ 	R(x, y, z, t) dV 

V 

(4.1.19) 

Let also the rain have a Laws and Parsons distribution of diameters. Then:- 

RD(x,  y, z, t) = R(x, y, z, t) PD (4.1.20) 
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where pp  is the fraction of water in the rain consisting of drops of 

diameter D. Substituting into Equation (4.1.17) and using the 

definition (4.1.19), the expression for attenuation becomes:- 

aD(t) = 	VD 
 

k(X, D)  LpD R  (t) (4.1.21) 

The total attenuation is:- 

a(t) = LR(t) D  k(),  D) pD 
 vD 

(4.1.22) 

The quantity represented by the summation has been computed by Ryde and 

Ryde (1941) and by Medhurst (1965) for the Laws-Parsons drop diameter 

distribution and for the terminal velocities of waterdrops in still air. 

On the other hand, the path attenuation for a uniform rainrate 

Ro  is from Medhurst (1965):- 

ao(t) = LR0 	k(Av D) 
 pp 

D 	D 
(4.1.23) 

As can be verified analytically, the expressions for ao  and <CPA>s  in 

Equations (4.1.23) and (2.5.5) must be equivalent. A comparison of 

Equations (4.1.22) and (4.1.23) shows that the attenuation for a non- 

uniform rain medium can be calculated as the corresponding one for a 

uniform path with the equivalent space-averaged rainrate R(t). 

This concept can be extended in the case of cross-polarization 

discrimination to yield the mean square value Q of the expression (4.1.8) as:- 

0 = ARB  (4.1.24) 



with:- 

A = m2  L2  c2  sin2(24)/7 

(4.1.25) 

B = 2d 

The definition of parameters me, c, d and 	has been established in the 

previous Chapters 2 and 3: 

Finally, this space-averaged rainfall rate can be considered 

to be equivalent to the line rainfall rate (Bodtmann and Ruthroff, 1974; 

Harden, Norbury and White, 1977) throughout the path, or:- 

Rti RL  1  = 	R. Az  
j=1 

(4.1 .26) 

That is the situation which completes our consideration of the short-

term statistics. 

4.2 	Long-Term Statistics  

4.2.1 	Analysis of Rain Probabilities  

At this point, we will discuss two statistical parameters which 

are needed for the complete definition of raining time. 

(a) Po(0): This is the probability that rain will fall at a 

specific location (point rain probability). This probability, P0(0), 

will be the same for all the points of the microwave path, and has been 

established in Chapter 2 (see expression (2.3.4) for the definition). 

(b) Po(L): This is the probability that rain is falling somewhere 

129 



1 - Po(0) 
Po(L) % 1 	

0 014 ( 	L2 
1 + 21.5j 

(4.2.1) 
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on the path of length L (path-rain probability). This probability has 

been analysed both theoretically and experimentally by Bodtmann and 

Ruthroff (1974) and Lin (1975). Intuitively, it is expected that the 

probability Po(L) of rainfall on a radio path of length L is increased 

with L, since a longer path has a higher chance of intercepting rain of 

limited extent. An empirical formulation has been proposed which 

correlates the rain-path probability Po(L) with the point rain probability 

P0(0) (Lin, 1975):- 

where the path length L is in units of kilometres. As can be seen from 

this formula:- 

Po(L) -+ Po(0) (L } 0) 

(4.2.2) 

Po(L) } 1(L -). o) 

This formulation is satisfactory for the USA, as has been verified with 

an experiment using a multiple raingauge network at Atlanta, Georgia 

(Lin, 1975). But further experimental work is needed before this 

formula can be considered as applicable everywhere. 

4.2.2 	Analysis of Space-Averaged Rainfall Rate Statistics  

On a long-term basis, the point rainfall rates Rj  (j = 1, 2, .... 

Ns ) can be considered as correlated random variables with the same log-

normal distribution during rain:- 
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PR (r) = PR (r) = PR (r) = .•= PR (r) = A 	
(4.2.3) 

1 	2 	3 	Ns 

The space-averaged rainfall rate R can be shown to be a log-

normal variable during rain, for the following reasons. Combining the 

results of Section 4.1.2 and the formula (2.5.22), the following 

expression for the attenuation of a non-uniform rain medium is obtained:- 

Attenuation = aRb  L 
	

(4.2.4) 

From this formula, it is obvious that the space-averaged R can be 

expressed as:- 

ln R = C + 
b 
 ln (Attenuation) (4.2.5) 

But Lin (1973), analysing many sets of data from all over the world, has 

concluded that the long-term distribution for the rain attenuation must 

be log-normal. Hence, expression (4.2.5) shows that the 7 is also a 

log-normal variable during rain. 

We turn now to the evaluation of the statistical parameters of 

the space-averaged rainrate R in terms of the corresponding ones of the 

point rainfall rate R. We have that:- 

N s  
R = t 
	

Rj  Az = Ī 	R(z) dz 

J=1 	0 

where now R(z) is a random variable which has the same statistical 

parameters as R. So:- 

(4.2.6) 



<R(z)> = <Re = <R> = E[-!(z1 

(4.2.7) 

var [R(z 	= var 
Ld

~ = var [Rj - E (R
J 
- EL1)2 

and:- 

<R(z)>u = <R.>u = <R>u = Eu [R(z)J 

(4.2.8) 

vara [R(z)J = var C,1 =vara LRJ = Eu (R~ - Eu
CJ1

)2 

Generally speaking, all probabilities and consequent expectations in this 

chapter are conditional on there being rain at some point on the path for 

variables which are referred to the total path such as R or S, and there 

being rain at a specific point of the radio path for variables such as 

the point rainfall rate R. Unconditional probabilities and derived 

quantities are indicated by the suffix u. 

From the formulae (4.2.6) and (4.2.8), we have that:- 

<R>u = 
L 

<R>uL = <R>u (4.2.9) 

and:- 

 

 

L 	L 

(R - Eu[Ri)2 = Eu 12 	R(z) dz j R(z') dz' 

0 	0 

vara SRI = Eu 
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- <R>2 = - <11>2 = Eu 

L L 

R(z) R(z') dz dz' 
L 2 
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L L 

1 	Eu[R(z) R(z') - <R>u 	dz dz' 
L2  

0 0 

(4.2.10) 

where in the last relation, we have used expression (4.2.9) for the 

<R>u. By definition:- 

CR(z,  z') = EujR(z) R(z') - <R>U (4.2.11) 

is the spatial co-variance function for the correlated random variables 

R(z) and R(z') (point rainfall rates at the points z and z'). In other 

words:- 

CR(z, z') 
i'R(z, z') _  	 (4.2.12) 

varu[R] 

is the spatial correlation coefficient between R(z) and R(z') (Papoulis, 

1965), so:- 

rr 
	L L 

varu[RJ = L 1
2 
varuER1 	IpR(z, z') dz dz' 

0 0 

(4.2.13) 

At this point, a general formula for the correlation coefficient 

4)R(z, z') is needed, as a function of the distance d between the two 

points z and z'. The following postulation can be used, as analogously 

Lin (1975) did for the evaluation of the correlation coefficient 

4 (z, z') of the attenuation gradients 6(z) and 6(z') between two points 

z and z' of the path:- 
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1/2 
t,R(z, z') = G/[-G2  + (z - z')2] 	 (4.2.14) 

where G is the characteristic distance in km at which I,R  becomes 1/72- . 

Lin (1975), for many parts of the US, Harden, Norbury and White (1974) 

for Southern England have suggested that this characteristic distance 

must be about 1.5 km. Substituting back to formula (4.2.13) for varu 
C  R 

 ] , 

we will have:- 

varu[RJ = 
12 [var[ jj  H(L) 	 (4.2.15) 

LL_  

where:- 

L L — 	1/2 
H(L) = j j G/[ 2 + (z 	z')1

0 0 — L 

dz dz' 	(4.2.16) 

This double integral is derived analytically in Appendix D and the final 

result is:- 

    

    

H(L) = 2G2  L/G Binh
-1  (L/G) - sinh-1 (- L/G)  

2 
(4.2.17) 

     

     

Plots of H'(L) = H(L)/L2, for various values of the parameter G, are 

shown in Fig. 4.2. 

We are now interested in the evaluation of the median value 

Rill  and standard deviation SR  of the space-averaged R, during rain. 

From Appendix A, the following relation is valid (the second of formulae 

A-7):- 
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varu 
 L 
 R J 2  

<R> 
u 

 

    

    

SR = in Po(L) 1+ (4.2.18) 

    

     

     

Using expressions (4.2.9), (4.2.15) and the first from relations (A-7) 

for the ratio (varu 
C  R 

 J / <R>u), we have finally:- 

   

SR = ln 

S2  

Po(L) 1 + [e/P0(o)J - 1 N'(L) (4.2.19) 

   

   

Using also the first of formulas (A-2) from Appendix A, we have for the 

median value Rm:- 

Rm  = <R> exp 
C 
 S*/2j 	 (4.2.20) 

Using successively the second of formulas (A-6), (4.2.9) the first of 

(A-6), and finally the second of (A-2), the relation (4.2.20) becomes:- 

Po(0) 
Rm 

 
R
m 	

exp 
0 

S2  - S? 
RR 2  

(4.2.21) 

The relations (4.2.19) and (4.2.21) evaluate the parameters Rm  and SR-

for the log-normal distribution of R during rain, in terms of rain 

probabilities Po(0),  Po(L),  the statistical parameters Rm,  SR  of the 

point rainfall distribution, the path length L and the characteristic 

distance G. 

4.2.3 	Analysis of Cross-Polarization Discrimination Statistics  

The short-term mean square value of the amplitude of the complex 

cross-polarization factor S2, as given by formula (4.1.24), is a random 
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variable on a long-term basis, which has a log-normal distribution 

during rain and is identically zero during non-rain (other atmospheric 

effects causing cross-polarization such as multipath are not treated 

here). At this point, the median value Om  and standard deviation S2  

of the log-normal distribution of S2 during rain can be evaluated in 

terms of Rm and SR  as (Aitchison and Brown, 1965):- 

 

(4.2.22) 

  

The distribution density function for the 0-variable during rain will 

be (Papoulis, 1965):- 

-- 2 
lnw-1n SZm  

A S 
1 	1 	e pQ(w ) = S  
27 

0  . w 

Defining:- 

X = 10 log 0 = 10 M in c 

then (Papoulis, 1965):- 

(4.2.23) 

(4.2.24) 

1 	1  
PX(x)  = 
	

S 2  10 M e  

_ 	 --22 

x-10M1n S2  
IT S1  10 M 

(4.2.25) 

This is a normal distribution with parameters:- 



<X> = 10 M 1n 2m  

(4.2.26) 
aX  = 10 M S2  

The last step is the analysis of the long-term statistics of XPI or XPD 

which is defined as:- 

Y = 20 log 
CHER 

(4.2.27) 

  

The analysis follows the same steps as in the case of spatially uniform 

rainfall rate (Chapter 3) and the total probability of XPD or XPI is now 

given as:- 
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co 

Py(Y) = j n2-,- exp 

-00 

  

[2 (y - x)/M" - e2(Y - x)/M1 1 	• 
✓2 aX  

 

2 
- (1/21) [(x - <X>) 

. e 	 dx 	 (4.2.28) 

with M' = 20 M = 20 log10  e 	 (4.2.29) 

This integral is again calculated numerically by means of Gauss-Hermite 

quadratures (Chapter 3), and it can be shown that it is a very close 

approximation to a normal form. Hence for engineering applications, the 

density py(y) can be taken as normal. 

The excess probability for XPD or XPI will be:- 

00 

P[Y > Y.1 = Po(b) 	Py(Y) dy 
L 	

Y 

(4.2.30) 
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where y is a specified level of XPI or XPD in db. 

4.3 	Numerical Analysis and Results  

All the numerical techniques which are used for the 

evaluation of the rain cross-polarization discrimination or isolation 

distribution are the same as those described in Chapter 3. A special 

routine which calculates the value of the inverse hyperbolic sine, is 

described here analytically. This routine is used for the evaluation 

of the factor H(L) (expression (4.2.17)). 

Numerical results are given for a microwave link on 34.8 GHz 

cited at a location in New Jersey and for another one working on 22 GHz 

cited at a location in Southern England (Figs. 4.3 - 4.26)* In Figs. 

4.3, 4.4 and 4.15, 4.16, the actual density function for the cross-

polarization discrimination or isolation during rain and the best 

fitting approximate normal are shown for comparison. The excess 

probabilities for the rain cross-polarization discrimination have been 

calculated by the two methods (uniform and non-uniform one) for path 

lengths up to 4 km. The results for the USA are shown in Figs. 4.5 to 

4.11 and the corresponding ones for Southern England in Figs. 4.17 to 

4.23, From these figures, it is obvious that up to 2 km at least, the 

approximation of the spatially uniform rainfall rate gives an almost 

identical distribution to the actual non-uniform one. For longer 

paths, the discrepancy between the two curves becomes progressively 

greater. The approximate upper limit of 4 km across which it was 

assumed in previous chapters that the rainfall rate was uniform, is 

thereby confirmed. 

Finally, the outage time, caused by co-channel interference, 

is shown as a function of hop length for the two locations for three 

different threshold levels of XPD (- 20 db, - 25 db and - 30 db) in 

* These results are given in Sections 4.3.2 and 4.3.3. 
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Figs. 4.12 to 4.14 and 4.24 to 4.26. Two types of linear polarization 

are used (horizontal and 45°  inclination to horizontal) and the latter 

is shown to be the worst case for linear incident polarization. 

4.3.1 	Analysis of Special Function  

The routine for the evaluation of inverse hyperbolic sine has 

been based on truncated Chebyshev expansions. This method of approximation 

has been explained analytically in the previous chapter (Section 3.4.3). 

- The routine S11ABF is called from NAG Library and calculates 

an approximate value for the aresinh(x). For IxI < 1, it is based on 

the Chebyshev expansion:- 

aresinh(x) = x , y(t) = x 1  C T(t) 
r=0 

r r  (4.3.1) 

where t = 2x2  - 1 	 (4.3.2) 

For IxI > 1, it uses the fact that:- 

aresinh(x) = sign (x) . ln 'XI + ✓ x2  + 1 (4.3.3) 

   

This form is used directly for 1 < Ix' < 10k, where k is related to the 

number of figures of precision of the machine representation as follows. 

If the machine works to n decimal figures then k = n/2 + 1. For IxI > 10k, 

✓ x2  + 1 is equal to IxI to within the accuracy of the machine and hence 

we can guard against premature overflow and, without loss of accuracy, 

calculate:- 

arcsinh (h) = sign (x) [in (2) + ln (IxI)] (4.3.4) 
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4.3.2 	Numerical Results for the USA  
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Fig. 4.9 Comparison of the uniform and non-
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Fig. 4.10 Comparison of the uniform and non-
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4.3.3 	Numerical Results for Southern England  
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Fig. 4.16 Probability density function of the long-

term rain cross-polarization for a link 
in Southern England (45 polarization, 
non-uniform case) 

A Actual distribution 
B Best-fit normal distribution 

0.020 

z 
0 
F-
U 
z 
I 
w 
> 0.010 

z 
w 

m 
0 
w 

0.000 
-110 -100 -90 -80 -70 -GO -50 -10 -30 

XfD IN DB 
-20 -10 



A
B

SC
I  S

S
A
  

102—  

0 
B- 
x 

N\ 	
Fig. Fig. 4.17 Comparison of the uniform and non- 

uniform model for a communication 
link in Southern England (path length: 

\\ 	1 km) 

A Uniform model 
\ 	B Non-uniform model 

I 1 

-45 	-40 	-35 	-30 	-25 	-20 
X P D IN DB 



N 
Fig. 4.18 Comparison of the uniform and non- 

0r) 
	

- 	 \ 	uniform model for a communication 
link in Southern England (path 

(5 	 length: 1.5 km) 
0 	

A Uniform model 
B Non-uniform model 

(f)  
C) 	

N 

W 
U 
x 	 \ 
UJ \ 

0103  

X 	 \ 
LLI 	 \ A 
S

Q  
H 
z 
w 
U 
GC 
LA 
IL  

104 	i 	I 	I 	I 	J 
-45 	-40 	-35 	-30 	-25 	-20 

X PD IN DB 



103 	 

-45 

P
E

R
C
E
N

T
A
G

E
  

U 

X  10̀   
w 

F- 

Fig. 4.19 Comparison of the uniform and non-
uniform model for a communication 
link in Southern England (path 
length: 2 km) 

A Uniform model 
B Non-uniform model 

-20 -40 -35 	-30 
XPD IN DB 

-25 



-20 -25 -30 -10 	-35 
XPD IN DB 

P
E

R
C

E
N

T
A

G
E

 

Comparison of the uniform and non-
uniform model for a communication 
link in Southern England (path 
length: 2.5 km) 

A Uniform model 
B Non-uniform model 

Fig. 4.20 



101 

Fig. 4.21 Comparison of the uniform and non- 
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4.3.4 	Concluding Remarks  

A numerical method for estimating the long-term first-order 

statistics of cross-polarization isolation or discrimination of a 

signal after propagation through a rain medium has been presented here. 

This method uses a spatially non-uniform model for the rainfall rate 

and so it has applicability for all lengths of microwave links. 

For reasons of comparison, the two methods (uniform and non-

uniform) are used for the evaluation of the excess probability of XPI or 

XPD for a microwave link, and it is obvious that the results are almost 

identical for at least a path length up to 2 km, or with a small 

discrepancy, up to 4 km. 

Estimations of annual radio outage time because of channel 

interference are also shown for various acceptable cross-polarization 

levels (- 20 db, - 25 db and - 30 db) as a function of path length in km. 
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CHAPTER 5  

ANALYSIS OF THE JOINT STATISTICS OF  

RAIN DEPOLARIZATION AND ATTENUATION,  

APPLIED TO THE PREDICTION OF  

RADIO LINK PERFORMANCE  

Introduction  

In the previous chapters, a normal form for the long-term 

distribution of cross-polarization discrimination (XPD) or isolation 

(XPI) during rain has been established and methods to evaluate the 

parameters of this distribution have been considered. In the present 

chapter, an analysis of the joint statistics of rain depolarization 

and attenuation is derived, based on the previous results for the XPD 

and known results for the attenuation distribution. In the first 

section, a method of estimating the statistical parameters of the 

long-term rain attenuation distribution is described, which is 

equivalent to the one proposed by Lin (1975). A theoretical formula 

for the joint density function is then established, using the properties 

of Jacobian transformation of two-dimensional statistical distributions 

(Papoulis, 1965). 

An important application of this formula is in the evaluation 

of the distribution of XPD conditional on the co-polar rain attenuation. 

Using Bayes' theorem, this distribution is shown to be normal. The mean 

value of this distribution gives us a best estimate of XPD at a given 

rain attenuation. 	Comparison of these results with data from Atlanta, 

Georgia and Southern England shows very good agreement. 

Another important application is in the prediction of the 

distribution of XPD during a rain fade. By periods of rain fade, we 

mean that in all this time the XPD must be worse than the clear-air 

XPD of the system C and the rain attenuation less than the fade margin D. 
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This probability can be evaluated by calculating a double integral of 

the joint density function. This integration, which involves the 

treatment of some singularities, is calculated using Gauss-Laguerre 

polynomials. Experimental verification is also provided by data from 

a microwave link in Atlanta, Georgia. 

Finally, the third application of this joint statistics 

analysis is in the precise prediction of the outage time of a microwave 

communication system for a location where the effects of rain are 

dominant. Lin (1975) has established a method of finding the outage 

time for a single polarization microwave system considering only the 

rain attenuation. In this chapter, the case of a dual-polarization 

system is analysed and the interference caused by the orthogonal channel 

is taken into account. The exact calculation requires the evaluation of 

a double integral of the joint density function of the same type as 

above, so we can use the previous results for this numerical integration. 

Curves of outage time as a function of path length are plotted for 

different minimum acceptable XPD thresholds (- 30, - 25 and - 20 db). 

5.1 	Calculation of Statistical Parameters of Rain Attenuation  

Distribution  

We will consider here that the rain attenuation is a random 

process in time, which has not appreciable fluctuations on a short-term 

basis (in other words, at a constant space-averaged rainfall rate R) 

(Oguchi, 1961). So, if a(L) is the path attenuation for a microwave 

link of length L, then we define:- 

X 2  = a(L) ti <CPA>s  = ce L (5.1.1) 

where the short-term mean value of the co-polar attenuation can be 
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taken as given by expression (2.5.22). 

The long-term statistics of X
2 
 can now be predicted from the 

statistics of the variable 	as (Aitchison and Brown, 1965):- 

am =amL 
(5.1.2) 

S = bSR  a   

where am  is the median value of the log-normal distribution of X2  during 

rain and Sa  the standard deviation of In X. The parameters Rm  and SR  

can be taken from expressions (4.2.19) and (4.2.21) and the final 

result is:- 

am  = aRm  L 
,P0(0) b 

717  
exp 

bS2R  - bS2R- 

2 

(5.1.3) 

S = bSR  a   

where the standard deviation SR  is given by:- 

S2  
SR = in Po(L) 1 + re R/Po(0)1 - 1 

1 

   

H'(L) 

 

(5.1.4) 

    

    

    

The density distribution function for the variable X
2 
 will be:-  

 

(in x - ln a )2  
x 	1 

 
exp 

m  

Px2  ( 2  ) = 2Tr Sa  x2 	
p 	

2S2 

  

 

(5.1.5) 

  

Lin (1975) has proposed for the evaluation of the same parameters am  

and Sa  the following formulas:- 



171 

Sā(L) = ln Po(L) 

exp(Sb) 
1 + H(L) 	

P„(0) 	1  
1 
  

 

    

    

Po(0 ) 
am(L) = bmL P0(L)  exp 

S2  - S2  
b 	a  
2 

(5.1.6) 

where H (L) is a function of path length L and is related to the spatial 
1 

correlation coefficient between the rainfall rates at two points across 

the path (Lin, 1975). For radio links using frequencies above 10 GHz, 

the following approximate formula applies:- 

Hi(L) 'L (2G2/L2) [(L/G) in 

   

- ✓ 1+(L2/G2)+ 1 }  

(5.1 .7) 

   

(L/G) + /1 + (L2/G2 ) 

   

where G is a characteristic distance for the spatial correlation 

coefficient and empirically has the value G = 1.5 km (Chapter 4). 

Coming back again to formula (5.1.6), the parameters bm  and 

Sb  are expressed as follows:- 

b = aRm 

Sb  = bSR  

(5.1.8) 

 

where the regression coefficients a and b are the same as those 

encountered in formulas (5.1.1) and (5.1.2). 

A direct comparison of Equations (5.1.3) and (5.1.6) shows 

that these formulas are almost identical, because the regression 

parameter b in all cases takes values approximately equal to 1 

(Chapter 2). 
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5.2 	Theoretical Analysis of the Joint Statistics of XPD and Rain  

Attenuation  

The cross-polarization discrimination (XPD) and attenuation 

due to rain for a microwave radio link are correlated random processes. 

In the previous section, the formulas for calculating the parameters 

of the rainfall rate (R) statistics, have been presented. In addition, 

a normal form for the distribution of XPD has been proposed and a 

numerical method to evaluate the parameters (mean and variance) of this 

distribution for any microwave link has been developed (Chapters 3 and 

4). A theoretical formula is now proposed for the evaluation of the 

joint statistics of XPD and attenuation during rain. Defining:- 

X = XPD(L) 
1 

X2  = a(L) 

X = ln a(L) 
3 

(5.2.1) 

 

then the density distribution functions for the random variables X 
1 

and X will be:-
2 

pX  (x.) = (1/ /2 al) exp 
(x - <X >)21 

2a2  

(5.2.2) 

exp 
1  

PX2(x2) _ 	Sa  x2 
 IF 

(ln x - ln am)2  

2 

2S2  

I 

where <X > is the mean value of XPD during rain, a is the standard 
1 1 

deviation of this distribution. 

The density function for the variable X will now be:- 
3 
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pX  (x3 ) = 
3 

1  	exp 
2ir a 

3 

(x - <X >) 2  
3 	 3  

2a2  
3 

(5.2.3) 

  

   

This is a normal form with parameters:- 

<X > = 1 n am  
3 

a = Sa  
3 

1 
(5.2.4) 

Hence, the random variables X and X will be marginally normal. A 
1 	3 

reasonable assumption for their joint density function is that this 

must be a two-dimensional normal (Papoulis, 1965) and will have the 

form of:- 

pX  X  (xl, x 3 ) _ 
1 3 

1 

 

exp -1/2 (1 - 
rXX ), . (- 

 1 3 

   

27aa /1 - 
rXX 1 3 1 3 

   

(x - <X >)2 	2rX X 
(X1 

- 
<X 1

>)  (x3 - 
<X 3> ) 	( X  - <X >)2  

1 	1 	 1 3 	+ 	3 	3  

a2 	 Q1 
03 

1 

(5.2.5) 
a2  

3 

with rXX  the correlation coefficient between the two random variables 

1 3 
X and X . A method for estimating this coefficient for any microwave 

1 	3 

link will be presented in the following section of this chapter. 

Intuitively, we believe that this coefficient must be related to the 

parameters of the radio link such as frequency, type of polarization, 

characteristics of rainfall rate (Rm,  SR) in the specified location of 

the radio link. 

Our purpose is the calculation of the joint statistics of the 

variables X and X , so at this point the following important theorem 
1 	2 
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from statistics can be used (Papoulis, 1965). If the joint statistics 

of the random variables X and Y is known, and the variables Z and W are 

analytic functions of X and Y, such as:- 

Z = g(X, Y) 

W = h(X, Y) 1 
(5.2.6) 

then the joint density function pZW(z, w) can be evaluated in terms of 

the known joint density function pxy(x, y) as follows:- 

PZW(z, w) 

where:- 

PXY(x , Y 	) 	PXY(xn' Yn) 
- 	1 	1 	+ . 	. (5.2.7) 

IJ(xl, 	Y1 )I 	IJ(xn, 	Yn)I 

Dg(x, Y)/8x 	Dg(x, Y)/ay 

J(x, 	y) 	E.  

ah(x, y)/ax 	ah(x, y)/ 3y 

(5.2.8) 

is the Jacobian of the transformation and 	(x 1,  y1 ), 	(x2,  y z ) 	.... (xn' yn )  

are all the pairs of real solutions of the equations:- 

g(x, y) = z 

h(x, y) = w 
(5.2.9) 

 

In our case, the transformation is the following:- 

X = X 
1 	1 

X2  = exp(X3) 
(5.2.10) 
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and the joint density function of variables X and X is given by 
1 	3 

Equation (5.2.5). Applying relation (5.2.7), then the joint density 

function pX X ( xl, x2) will be:-  
A I 

 A
2 

 

PX X (x1,  x3  

1 2 	

) 

PX X  (x1, x2) 	
IJ(x', X11 

1 	3 

(5.2.11) 

where (x', x') is the only real solution of the System:- 
1 	3 

x = x 
1 	1 

x 
e 3=x 

2 

or: - 

x' = x 
1 	1 

x' = ln x 
3 	2 

so: - 

1J(x', X-. )1 = x 
1 	3 	2 

(5.2.12) 

(5.2.13) 

(5.2.14) 

After that, 	substituting relations 

(5.2.11), 	we will 	have:- 

- 1 

(5.2.5), (5.2.13), 	(5.2.14) 

1 

to 

• pX 	X 	(x1 , 	x2 ) 
1 	2 27 a 	6 1 	3 

exp 
2(1 	-r X 	) 

1 	3 
✓ 1 - rX X x2 

1 3 
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(x - <X >)2 	2rX X (x - <X1>) On x - <X 3>) 	
On x - <X >)2 . 

1 	1 	 1 3   	2 	3  

1 

	

a2 	
a63 	 62  

	

1 	 3 

(5.2.15) 

This theoretical formula has many applications in the prediction of the 

performance of a radio link as it will be shown in the next section. 

5.3 	Applications of the Analysis  

5.3.1 	Prediction of the Distribution of XPO Conditional  

on the Co-Polar Rain Attenuation  

An important application of the formula (5.2.15) is in the 

precise prediction of cross-polarization discrimination XPD at a given 

rain attenuation. This factor must be kept in mind when median values 

of cross-polarization discrimination at given rain fades are used for 

the design of a dual-polarization radio communication system (Chu, 1974). 

This can be done by using the conditional density distribution function 

pX  (x1 IX2  = D) where D is a specified rain fade level in db. By Bayes' 

theorem in statistics (Papoulis, 1965), this conditional function can be 

evaluated as follows:- 

pX 
(x  1)(2= D) = pX X 

1 	1 2 
D)/PX (D) 

2 

(5.3.1) 

By substituting pX X  and 	fromm relations (5.2.2) and (5.2.15) we have 

1 2 	2 
that: - 

pX  (x1 IX2  = D) _ 
1 

1 
exp -1/2(1 - rXX )) . (- 

 1 3 27a a /1 - rX X  D 
1 3 
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(x - <X >)2 	2rX 
 x (xl 

- <X >) (ln D - 
<X 3

>) 	(ln D - <X >)2  
1 	1 	1 	3 	 3  

	

a2 	
a1 63 
	a2  

	

1 	 3 

         

1  	exp 
2W a 

3 
 D 

 

(in D - <X >)2  
3 

    

1 

 

        

 

2a2  
3 

   

277 a /1 - r 
1 	X X 

1 3 

    

      

2 

(ln D - <X >) 
3 

- i/12a2(1 - rX X  )] 	xl  - <X 1 > - r
X X 	a 

`` 	 1 3 	 1 3 , 3, 

(5.3.2) 

This is a normal distribution with mean and variance given by:- 

E X I X = D = <X >+ rX  X 	Q  1 1 (ln D - <X >) 	1 

.1 	2 	 1 
 13 
	3 	3  J 

(5.3.3) 

var [x ix 2  = D = a2(1 - rX X ) 
1 3 

At this point, we turn to the estimation of the correlation 

coefficient rX X  . If we consider that the rain attenuation is a 

1 3 
random process in time which has no appreciable fluctuations in the 

short-term (as in Section 5.1), then:- 

X ' aRb  L 
2 = 

and, for a constant value D of the variable X , we will have:- 
2 

(5.3.4) 

. exp 



exp 

Hence, from 

X = 10 log 

So: - 

pX 	(x 	IX 

ln 
I- 1 - 
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= constant = C 
1 

(4.1.24), 	(4.2.24):- 

log (ARB) = C
2 

= constant 

pX 	(x 	IX = C2 ) 

(5.3.5) 

(5.3.6) 

(5.3.7) 

b 

formulas 

0 = 10 

= D) 	ti 

But the conditional density pX (x1 IX = C2) is the log of a Rayleigh 

1 

variable (expressions (4.2.30) and (4.2.31)). From Nakagami (1960), we 

have that such a distribution for x < M; approaches the form of a 

normal distribution:- 

pX (x IX= C2 ) 

with parameters:- 

- 2(C
2 

- x1 )2/11-2 
(5.3.8) 

E[ 
1 
IX = C 	= C 

2 	2 

M-2 
var X 1 IX = C2~ = 4 

  

 

(5.3.9) 

A direct comparison of formulas (5.3.3) and (5.3.9) gives us the 

correlation coefficient rX X as:- 

1 3 

 

     

I 	M-2 

rX 1 X 	

1 

3 	4a2 
1 

(5.3.10) 
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where the standard deviation a can be calculated theoretically by 

means of the method which is presented analytically in the previous 

Chapters 3 and 4. From up-to-date results from the USA and Southern 

England, the range of values of r has been found to lie between 0.96 -

0.98. In other words, this result shows that there is strong correlation 

between the two random processes of cross-polarization and co-polar 

attenuation during rain. 

The function g(D) = E C IX = DI is known as the regression 
L 1 2 

curve and serves as a mean-square estimation of the random variable Xi 
 

in terms of variable X . From Papoulis (1965), we have that this 
2 

estimation of the random variable X by a suitable function g(X ) of the 
2 

variable X is such that the mean-square estimation error:- 
2 

cc' E (X 1  - g(X2 )} 2  = 	[x - g(x2
)J

2  pX 
1 X 2

(x1, x2 ) dx1  dx2  
l 	l 	J  

-co -co 

(5.3.11) 

is minimum. Regression curves of XPD against co-polar rain attenuation 

are drawn in the thesis for different paths in Southern England and the 

USA. A more analytic configuration of the results will be presented in 

the later Section 5.4. 

5.3.2 	Prediction of the Distribution of XPD During a Rain Fade  

Another important application of the formula (5.2.15) is in the 

precise prediction of total XPD distribution during periods of rain fades. 

By this term "periods of rain fade", we mean that in all this time the 

XPD of the received signal is greater than a specified level C (this is 

approximately the clear air XPD of the system) and the path rain 

attenuation is always less than another specified level D. This level 

is approximately:- 
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D = Fade Margin - Loss due to radomes 	 (5.3.12) 

where the loss caused by radomes can be taken to be <a few'. db as Lin 

(1975) and many other authors have predicted it to be. This XPD can be 

expressed in mathematical terms as:- 

PL
{X > x }/{X > C, X < D}~ 	 (5.3.13) 
L 1 - 1 	1 - 	2 - 

By Bayes' theorem (Papoulis, 1965), this probability can be expressed as:- 

PFX >x}/{X > C, X <D}I =P[{X > x , X <D}~ / 
1 - 1 	1 - 	2 - 	 1 - 1 	2 - 

/ PLX1 > C, X 2 < D}1 	 (5.3.14) 

where x > C and common values for C are - 40 db or - 35 db depending on 
- 

the system design. 

The crucial point at this moment is the calculation of the 

joint probabilities Pr{X > x , X < D}]
LL 

and P ~{X > C, X < D}~ . We 
LL 1 - 1 2 - 	 1 - 	2 - 

have that:- 

.D 
P[X > C, X 2 

< D}] = 
	pX 1X 2(x, x 

2 
) dx l dx2 

C 0 

(5.3.15) 

The integral (5.3.15) can be evaluated as follows, using (5.2.15) as:- 

D 

I(C, D) E j j PX X (xl, x2 ) dxl dx2 = 
1 2 



3 
+ 	1 3  

rX  X  (Y+<X>) 

■ 

         

         

D 

       

(ln x - <X >)2  
2 	3  

a2  
3 

       

  

1 

 

exp 

 

1  

2(1 - 
rX X ) 

1 3 

 

      

D 	1 3  27ra a/1 - rX X 
x2  

1 3 
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1  

2(1 -rXX ) 
1 3 

(x - <X >) 2  
1  

a2  
1 

exp 

2rX  X  (x1  - <X 1 >) (ln x2  - <X 3>j- 

1 3  
a a 

1 	3 

   

dx 
1 

dx 
2  

(5.3.16) 

   

   

The two parts of the integral (5.3.16) are treated analytically in 

Appendix E and the final result is (expression E-8):- 

I(C, D) = j 	e-Y  f(Y) dY 

-1nD 

(5.3.17) 

where the function f(Y) is given by (expression E-9):- 

■ 

f(Y) = 	1 	exp 
22Ta 

3 

(Y + <X >)2  
3 	 + Y 

2a2  
3 

(C - <X>) 

✓L ✓  1 - r2  X 1  a 	A /1 - rX X a
3 

1 3 	 1 3 - 

(5.3.18) 

The other joint density function:- 

. erfc 
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D 

I(xl, 	D) 	= pX X 	(x 1 , 	x2 ) dxl  dx2  (5.3.19) 

is again given 

x 
1 	2 

0 

by:- 

I(x 
1
, 	D) 	_ e

-Y 
f (Y) dY (5.3.20) 

with:- 

f(y) = 	1  	exp 
1 	2 ✓2 6 

3 

(Y +<X>)2  
3 	 + Y 	. 

2a2  
3 

 

 

. erfc 
(x - <X >) 	rX X 

(Y + <X 3>) 
1 	 1 + 	1 3  

/2-  /1 - rX X  a 	J2-  /1 - rXX 6 3 
1 3 	 1 3 - 

(5.3.21) 

  

The two integrals (5.3.17) and (5.3.20) are evaluated numerically by 

using Gauss-Laguerre polynomials, as explained analytically in Appendix 

E. A presentation of the numerical results is given in the later 

Section 5.4. 

5.3.3 	Estimation of the Outage Time of a Dual-Polarization  

Microwave Communication System  

For a working microwave communication system, various factors 

can generally cause outage such as rain, multipath interference, etc. 

In general, for the systems with frequency less than 10 GHz, the multi-

path interference is the most important factor for its design and 

performance. On the other hand, systems with f > 10 GHz are influenced 

- ln D 
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mainly by the effects of the rain. For such systems, radio outage 

occurs when the path rain attenuation exceeds the clear day fade 

margin Fo. For a constant transmitter power, the dependence of fade 

margin Fo(L) in db on the path length L is:- 

Fo(L) = Fo(Lo) - 20 loglo(L/L0) in db 	 (5.3.22) 

where Lo  is a reference repeater spacing and F0(L0) is the corresponding 

reference fade margin. For 11 and 18 GHz radio systems, reasonable 

clear-day reference fade margins are:- 

Fo  = 40 db for 18 GHz at Lo  = 4 km 

(5.3.23) 
Fo  = 40 db for 11 GHz at Lo  = 40 km 

Lin (1975) has calculated the probability of radio outage 

time per hop as a function of repeater spacing L by substituting the 

fade margin Fo(L) into the rain attenuation distribution as:- 

P[2 > Fo(L) = Po(L) . P[X2  > Fo(L)}J 

where:- 

(ln Fo(L) - <X >) 
2  P[{X > Fo(L)il_ 	erfc 	 

3  

LL 	 /a 6 
3 

(5.3.24) 

(5.3.25) 

is the complementary of the distribution function of random variable X 2. 

This is the situation for a single-polarization communication 

system. But for a dual-polarization system, we must consider the 

interference caused by the orthogonal channel too. So, the most 
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convenient method is to use the joint distribution function of XPD 

and rain attenuation as given by formula (5.2.15). We can now evaluate 

the probability of radio outage by means of this joint distribution 

function. This probability can be given as:- 

P routage of the system] = Po(L) P[X2 > F0(L)}l + 

 

+ P~{X > C , X < F (L)}] 
L 	2 	0 

   

  

(5.3.26) 

    

where PFX
1 

> C1, X 2 < Fo (L)}1J is the joint probability during rain 

that the XPD will exceed a specified threshold C
1 
in db and concurrently 

the rain attenuation is less than the fade margin Fo(L). In present 4 

and 6 GHz radio relay systems, the maximum acceptable XPD level C is 

- 20 db. However, future systems with an increased number of circuits 

per channel will require C to be less than - 30 db XPD. 

Coming back to the formula for the outage probability of the 

system, we have that P 
C 
X > F0(L)}] is given by formula (5.3.25) and:-  
 2 

Fo(L) 

pX 
X 

1 	2 

(x, 	x 
2 
) 	dx1 dx2 	= 	IIC 1, 

l 
l Fo(L)
] 

C 0  
1 	 (5.3.27) 

P~{X > C 	X < Fo(L)}~ = 
LL - 1 2 

This integral is of the same type as those in Equations (5.3.15) and 

(5.3.20), so using the results of Appendix E, we have that:- 

II
r 
C, F0(L)} = 	e

-Y 
f2(Y) dY 

- ln Fo(L) 

(5.3.28) 

with:- 
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f (Y) = 	1 	exp 
2 	2 2Tr a 

3 

 

(Y + <X >)2 
3 	 + Y 

2a2  
3 

 

(C - <X >) 	rX X (Y + <X3>)  

1 	1 	+, 	1 3  

iZ 1 -rX X  a 	✓Z ✓l -rX X  a 
1 3 	 1 3 

. erfc (5.3.29) 

3 

and again integral (5.3.28) is evaluated numerically using Gauss- 

Laguerre polynomials. A presentation of the numerical results is given 

in the following Section 5.4. 

5.4 	Numerical Analysis and Results  

All the numerical techniques which are used in this chapter 

are the same as those described in previous chapters. A special routine 

which computes a definite integral over a semi-infinite range, using 

the Gauss-Laguerre quadrature formula, is described here analytically. 

This routine is used for the evaluation of the integrals (5.3.17), 

(5.3.19) and (5.3.28). 

Numerical results are given for a microwave link on 18 GHz 

sited at a location in Palmetto, Georgia, USA and for another one 

working on 11 GHz sited at a location in Southern England (Figs. 5.1 to 

5.19)* In Figs. 5.1 and 5.2 plots of the profile of the joint density 

function as given by Equation (5.2.15), are shown for 1.5 km, 18 GHz 

terrestrial link with horizontal incident polarization, at Palmetto, 

Georgia. Regression curves of XPD against co-polar rain attenuation 

are drawn for different paths in Figs. 5.3 and 5.13. In Fig. 5.3, 

cross-polarization discrimination against attenuation is shown for a 

8 km, 18 GHz terrestrial link situated at Palmetto, Georgia. In Fig. 

5.13, calculations of the theoretical model for an 11 GHz, 18 km link 

* These results are given in Sections 5.4.2 and 5.4.3. 
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situated in Southern England are compared with experimental measurements 

from an 11.6 GHz link at the University of Essex (Table 5.1). These 

curves have been calculated with an approximate correlation coefficient 

which is estimated by means of the formula (5.3.10). The values of the 

other parameters correspond to a Laws-Parsons drop-size distribution 

(Laws-Parsons, 1943), Pruppacher-Pitter size of raindrops (Pruppacher-

Pitter, 1971) and for a Gaussian model of canting angle with a mean 

value (p  and standard deviation a (Oguchi, 1977; Nowland et al, 1977). 

Different values for the standard deviation a are considered in Figs. 

5.3 and 5.15 from 0°  - 40°  with a mean value (1) = 10°, as has been 

proposed by many authors such as Watson and Arbabi (1973), Chu (1974) 

and recently by Nowland et al (1977). From Fig. 5.13, it is obvious 

that the most appropriate model of canting angle distribution for this 

particular link, is the equi-oriented one with a
() 
 = 0°, where good 

agreement between theoretical and experimental points has been found.4L  

This is because the situation of the link is such that the wind 

direction is 90°  with respect to the propagation axis and so this 

effect produces the worst case of depolarization (Uzunoglu et al, 1977). 

Distributions of XPD conditional on co-polar rain attenuation 

are drawn for linear horizontal polarization. Specified levels of 20, 

25, 30, 35 db are selected for a 5 km link operating at 18 GHz and 

situated at a location in Palmetto, Georgia where the rain parameters 

are Rm  = 3.10 mm/hr, SR  = 1.18 (Lin, 1975). Theoretical curves are 

compared with experimental ones for the same link taken from Barnett 

(1972). The results are shown in Figs. 5.4, 5.5, 5.6 and 5.7 and the 

agreement is fairly good, especially with the theoretical curve, 

using the canting angle model ae  = 45°. The slight deviations mainly 

in the case of Fig. 5.5, can be explained by the short-term statistics 

of the received data (they cover only a period of 10 months). Similar 

* It must be emphasised here that this argument should be weakened because 
the data points cover only one single event. 
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results for an 18 km link operating at 11 GHz situated in Southern 

England are shown in Figs. 5.14, 5.15, 5.16 and 5.17. 

Theoretical probability distributions of XPD during a rain 

fade, are produced for the same 5 km link at Palmetto, Georgia operating 

at 18 GHz with horizontal polarization. A value of - 35 db for the 

clear-air XPD threshold C of the system is selected, but with different 

values for the rain attenuation margin D, of 35 db and 42 db. These 

theoretical predictions are compared with experimental results for the 

same link taken by Barnett (1972) from November, 1970 to June, 1971 and 

are shown in Figs. 5.8 and 5.9. As can be seen, there is good agreement 

with the theoretical curve using the canting angle o = 45°  model. The 

slight deviation in the region of small values of XPD (- 35 to - 40 db) 

are mainly due to antenna effects. On the other hand, a possible 

explanation for the deviations in the region of higher values of XPD, 

can be found in the short-term statistics of the data. Similar results 

for an 18 km link operating at 11 GHz in Southern England are shown in 

Figs. 5.18 and 5.19. 

Finally, for an 18 GHz system with horizontal polarization 

situated in Palmetto, Georgia, we plot curves of outage time as a 

function of repeater spacing L for three different acceptable threshold 

levels (- 20 db, - 25 db and - 30 db). The results are shown in Figs. 

5.10, 5.11 and 5.12 where in each of which, the corresponding outage 

time due to rain attenuation is also drawn. The difference between the 

two outage times for the - 30 db threshold becomes appreciable. 

5.4.1 	Analysis of the Gauss-Laguerre Quadrature  

The routine DO1AEF is called from the NAG Library and computes 

a definite integral of the form:- 



e-x  f(x) dx  

a 

using Gauss-Laguerre polynomials. If the lower limit is not zero, then 

the integral is written in the form:- 

I = e 
2 	

-a 	
e 

	
f(x + a) dx 

0 

(5.4.1) 

This is approximated by the Gauss-Laguerre quadrature formula:- 

n 
I = 	A f(X) 	 (5.4.2) 

2  k=1 k k 

where Ak  are the weights and Xk  the abscissae. The abscissae are the 

zeros of the Laguerre polynomials (Froberg, 1965; Ralston, 1965). This 

quadrature formula is exact if the function f(x) is a polynomial of 

degree not exceeding 2n - 1, where n is the number of abscissae used. 

In this routine, we may use 4, 8, 12, 16, 20, 32 and 48 

points. If a different value of n is supplied to the routine, then 

the formula of next highest order is used unless n > 48 in which case, 

the 48-point formula is used. 
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5.4.2 	Numerical Results for the USA  
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TABLE 5.1  

EXPERIMENTAL RESULTS FROM 

PALMETTO, GEORGIA, USA  

Fade Depth 20 db 

Cross-Polarization Discrimination 
(in 	db) 

Excess Probability 

- 22.75 1.5 	x 10-2  

- 23.87 2.2 	x 	10-2  

- 25.00 2.62 x 10-2  

- 25.94 1.24 	x 10-1  

- 26.89 2.40 x 10-1  

- 28.02 3.12 	x 	10-1  

- 28.77 4.14 	x 	10-1  

- 29.91 4.42 x 10-1  

- 	31.04 5.04 x 10-1  

- 	31.98 5.75 x 10-1  

- 32.92 8.16 	x 10-1. 

- 33.87 9.30 x 10-1  

Fade Depth 25 db 

Cross-Polarization Discrimination 
(in 	db) 

Excess Probability 

- 	21.60 

- 22.74 

- 23.68 

- 24.81 

- 25.75 

- 26.89 

- 28.02 

- 28.77 

4.23 x 10-3  

	

8.16 	x 10-3  

	

2.13 	x 	10-2  

5.04 x 10-2  

	

1.09 	x 	10-1  

	

3.55 	x 	10-1  

5.50 x 10-1  

	

6.85 	x 10-i  

.... 	Continued 
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TABLE 5.1 (CONTINUED)  

Fade Depth 30 db 

Cross-Polarization Discrimination 
(in 	db) 

Excess Probability 

- 18.58 

- 	19.91 

- 20.85 

- 	21.79 

- 22.74 

- 23.87 

	

6.01 	x 10-3  

1.42 x 10-2  

3.12 x 10-2  

8.16 x 10-2  

	

1.93 	x 10-1  

4.42 x 10-1  

Fade Depth 35 db 

Cross-Polarization Discrimination 
(in 	db) 

Excess Probability 

- 	17.83 

- 	18.96 

4.83 x 10-2  

-1  2.98 x 10 
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TABLE 5.2 

EXPERIMENTAL RESULTS FROM  

PALMETTO, GEORGIA, USA  

Fade Depth < 42 db 

Cross-Polarization Discrimination 
(in 	db) 

Excess Probability 

- 	15.21 3.5 	x 10-5  

- 	16.27 7.44 x 10-5  

- 	17.33 1.75 x 10-4  

- 	18.18 3.61 	x 10-4  

- 19.03 7.81 	x 10-4  

- 20.30 1.74 x 10-3  

- 	21.14 3.08 x 10-3  

- 22.00 4.82 x 10-3  

- 23.00 5.85 x 10-3  

- 	24.11 1.78 x 	10-3  

- 	25.11 1.34 x 	10-2  

- 25.81 1.62 	x 	10-2  

- 27.08 2.16 	x 10-2  

- 27.92 3.33 x 10-2  

- 28.98 2.06 x 	10-1  

- 29.83 4.98 x 10-1  

- 30.89 7.44 	x 	10-1  

- 	32.16 9.17 	x 	10-1  

.... Continued 
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TABLE 5.2 (CONTINUED)  

Fade Depth < 35 db 

Cross-Polarization Discrimination 
(in 	db) 

Excess Probability 

- 	18.39 5.85 x 10-5  

- 	19.24 .4.98 x 10-4  

- 20.30 1.45 x 10-3  

- 	21.14 2.23 x 10-3  

- 22.00 4.24 x 10-3  

- 23.00 5.85 x 10-3  

- 	24.11 9.78 x 10-3  

- 	25.11 1.34 x 10-2  

- 	25.81 1.62 	x 	10-2  

- 27.08 2.16 	x 	10-2  

- 27.92 3.33 x 10-2  

- 28.98 2.06 x 10-1  

- 29.83 4.98 x 10-1  

- 30.89 7.44 x 10-1  

- 	32.16 9.17 	x 	10-1  
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5.4.3 	Numerical Results for Southern England  
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TABLE 5.3  

EXPERIMENTAL RESULTS FROM 

SOUTHERN ENGLAND  

Cross-Polarization 
Discrimination 

(in db) 

Attenuation 
(in db) 

14.87 23.02 

- 	18.59 19.30 

- 	19.98 18.14 

- 20.91 17.21 

- 	20.91 16.05 

22.30 16.05 

- 	24.16 14.28 

- 	24.16 13.02 

26.02 10.23 

- 29.28 9.07 

26.95 8.37 

- 26.95 6.98 

- 32.06 5.12 

- 27.88 3.95 

29.28 3.02 

- 27.88 3.02 

- 34.39 2.09 
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5.4.4 	Concluding Remarks  

A theoretical formula has been derived in this chapter for 

the joint statistics of XPD and rain attenuation for a microwave link, 

using Jacobian transformations (Papoulis, 1965) and assuming a log-

normal and normal form for the individual rain attenuation and XPD 

distribution respectively. 

This formula is then applied to the prediction of the 

distribution of XPD conditional on the co-polar rain attenuation and 

also the distribution of XPD during a rain fade. Experimental results 

from Palmetto, Georgia (Barnett, 1972) are compared with theoretical 

curves and the agreement has been found to be fairly good, as in the 

case also of scatter-grams taken in Southern England which are compared 

with regression curves of XPD in terms of the co-polar rain attenuation. 

Finally, a new formula for the total outage time of a dual-

polarization communication system is derived as an extension of a 

previous one, proposed by Lin (1975), which is appropriate for single-

polarization systems. In the newly proposed formula, the interference 

caused by the orthogonal channel is also taken into account. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS  

In this chapter, the work reported in the thesis is summarised 

and the conclusions which can be drawn from the results are described 

in detail. Also, some suggestions are made relating to further research. 

	

6.1 	General Summary  

Although recent studies of polarization effects have been 

directed towards providing long-term distribution functions for 

predicting the occurrence of cross-polarised signals, propagating through 

rain, there are many aspects that have not yet been investigated. The 

aim of the work reported in this thesis was to propose a theoretical 

prediction model of general applicability for the long-term statistics 

of cross-polarization discrimination (XPD) of a microwave communication 

system, and to compare it with experimental results. 

General expressions and aspects of radio wave propagation 

through rain, which were used for the development of the prediction 

model, are described in Chapter 2. An analysis of long-term statistics 

of XPD for a spatially uniform rain medium (or equivalently inside a 

uniform rain cell) is given in Chapter 3. In Chapter 4, the same 

analysis for the more general case of a non-uniform medium is studied. 

Finally, in Chapter 5, an analysis of the joint statistics of XPD and 

rain attenuation is given, and the applications of this study in the 

prediction of the performance of radio links. 

	

6.2 	Summary of the Results  

In Chapter 3, a Gaussian model for the long-term distribution 

of XPD in db, has been derived. This model is based upon the theoretically 
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calculated log of a Rayleigh distribution for the short-term statistics 

of XPD in db and the observed log normality of the point rainfall rate 

distribution An approximate value of the short-term average of the XPD 

(or in other words, at a constant rainfall rate) has been used as a 

first estimation, in our stochastic calculations. This value is a 

function of the drop-size distribution, polarization, frequency, length 

of path, rainfall rate and canting angle distribution, and it has been 

proposed by many authors so far, such as Oguchi (1977), Nowland et al 

(1977), etc. For a specific link (frequency, polarization, length) the 

main uncertainty for the evaluation of this short-term average of XPD 

as a function of rainfall rate, lies in the prediction of the canting 

angle distribution model and secondly, the drop size distribution. 

Accepting, for the latter, the well known Laws-Parsons distribution and 

for the canting angle a Gaussian model, with mean value me  = 10°, then 

upper and lower bounds of this <XPD>s for each rainfall rate, can be 

found by taking an equiorientated model with standard deviation of e, 

oe  = 0°, and another one with oe  = 40
0  - 45°, respectively. In the 

same way, upper and lower bounds on the long-term excess probability 

of XPD and outage time of a system due to co-channel interference can 

be found, corresponding to these values of the oe. Direct comparison 

with experimental results from a specific link in Ipswich, Southern 

England shows that the most preferred model in this case, is rather 

the equiorientated one (Fig. 3.15). 

On the other hand, a more general model for the long-term 

statistics of XPD, has been constructed in Chapter 4, taking into 

account the spatial non-uniformity of rainfall rate. A normal model 

has again been derived but with different statistical parameters. A 

direct, comparison of the two models (the uniform and non-uniform one) 

reveals that these are almost identical for path lengths up to 4 km. 

* It must be noted here that the lognormal model for the point rainfall 
statistics is not too reliable in the UK. 
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In both the models the linear incident 45°  polarization has been 

identified as the one suffering most depolarization. 

Finally, taking into account the log normal model for long-

term rain attenuation statistics as has been proposed by Lin (1975), 

the joint statistics of XPD and attenuation is studied in Chapter 5. 

A theoretical formula is derived for this joint density function and 

this is then applied in several practical situations. These are the 

prediction of the mean value of XPD or its distribution conditional on 

a copolar rain attenuation, the prediction of the distribution of XPD 

conditional on a rain fade and the estimation of the outage time of a 

dual-polarization system. These theoretical results are compared with 

experimental ones from specific links in Palmetto, Georgia and Southern 

England. These comparisons show that the most preferred model of 

canting angle for the link in Palmetto is that with 6e = 40°  - 45°, but 

for the link in Southern England, it is the equiorientated one (ce  = 0°) 

As a general conclusion, it may be claimed thatmany aspects of 

any significance concerning rain depolarization statistics have been 

analysed, and 	i practical applications relevant to the design of 

microwave communication systems have been made**The model which has 

been constructed is based upon the observed log normality of point 

rainfall rate but takes into account the short-term statistical 

behaviour of XPD and the observed spatial non-uniformity of rain medium. 

The main advantage of this model is the resulting simple form for the 

long-term statistics of XPD, thus producing another simple model for 

the prediction of the joint statistics of XPD and attenuation. 

6.3 	Suggestions for Future Research  

Although the work reported in this thesis has provided some 

valuable new information relating to the prediction of the long-term 

* See .page 217 
** But in rder to have a universal acceptance for the method which is 

analysed in the thesis, real long term data are needed. 
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distribution of XPD during rain, much remains to be done. In this 

concluding section of the thesis, several additional areas of 

investigation are suggested and briefly discussed. 

First, for this particular model, a more detailed description 

of the canting angle distribution, and its relation to several 

meteorological factors (direction and velocity of wind, etc.) is needed. 

This distribution, as has been shown in the thesis, is of great 

importance in the prediction of the long-term statistics of XPD for a 

communication link. With the information presently available on this 

subject, this theoretical model can only predict upper and lower bounds 

of the XPD distribution. This work will be very difficult involving the 

collection of data on a long-term basis from all over the world. 

Another important problem lies in the uncertainty of the 

available information concerning the spatial correlation 11)
R 
 for the rain 

model. At some geographic locations, the squall lines of heavy rain may 

have a predominant orientation related to the predominant orientation of 

weather fronts. This means the spatial correlation 11)
R 
 may depend not 

only on the spacing but also on the orientation. However, the information 

presently available is not sufficient to yield a quantitative description 

of such an anisotropic correlation. Therefore, we use the isotropic 

correlation coefficient (4.2.12) throughout our theoretical calculations. 

Further the empirical formula (4.2.1) for the dependence of 

path rain probability on path length L is obtained from the rain gauge 

network data in Florida. The test of the applicability of this empirical 

formula to other locations and the improvement of this approximation 

will require further multiple rain gauge experiments at other locations. 

The XPD prediction technique presented here has used a specific 

model for the statistics of rain, namely, that proposed by Lin (1975). 

Other authors have proposed different rain models which may be more 
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appropriate to other parts of the world (e.g. Moritta and Higuti, 1974; 

Harden, Norbury and White, 1974). A formulation of the same problem 

(prediction of the long-term statistics of XPD) based upon these models, 

is also needed. The statistics of rain, as has been explained previously, 

mainly influence the long-term statistical behaviour of the short-term 

average of XPD, which has been found theoretically, in this thesis, to 

be the log of a Rayleigh variable. The difficulty with the analysis 

using other rain models, is that we cannot immediately find a simple 

analytic form for the long-term distribution of the short-term average 

XPD. On the other hand, Nakagami has claimed that if a Rayleigh 

variable has a fluctuating mean value then, under certain conditions, 

the overall distribution of this variable becomes successively a log 

normal one. But, so far, this conjecture has not been theoretically 

proved, unless the mean value itself obeys a log normal law. It is of 

vital importance that this problem be solved because if this conjecture 

is true for our case, then it is true for all the rain models. The 

overall distribution of XPD will be normal, which would be a physically 

reasonable result. In our opinion, advanced numerical techniques may 

well be needed for the investigation of this important problem. 

This XPD prediction method is also more appropriate for 

terrestrial links, because for earth-space paths the uncertainty in 

the estimation of the length of path through the rain medium, arises. 

This length is, of course, a function of elevation angle and the rainfall 

rate, because rains with low rainfall rate are very extensive in the 

horizontal direction; on the other hand, thunderstorms have the form 

of a narrow localised vertical column. Nowland et al (1977) considering 

data from Canada and the northern USA, have proposed a formula to 

predict the effective rain path length as a function of elevation angle 

and point rainfall rate (see Chapter 2). But their formula is 
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completely empirical and, so far, has not yet won universal acceptance. 

Hence, further work is needed on this line. 

Finally, an extension of this work must be attempted in the 

case when snow or ice particles are present in the medium of propagation, 

as it is well known that such precipitation particles are an important 

factor for the depolarization of microwave signals. But in order to 

attempt such an analysis, information on the shape, distribution size, 

canting angle distribution of falling snow particles, and the long-term 

distribution of the fluctuating snowfall rate will be needed. 
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APPENDIX A  

THEORETICAL RELATIONSHIPS BETWEEN 

THE PARAMETERS OF A LOG-NORMAL VARIABLE  

If a random variable X follows a log-normal distribution, 

then the following relationships are valid between the Xm (median 

value), SX (standard deviation of In X), <X> (mean value) and var [ X ] 

(Aitchison and Brown, 1965):- 

Xm = <X> exp(- SX/2) 

(A-1)  

SX =1n 1 + (var[X]/<X>)2 

  

  

As a- direct consequence, we apply these formulas to the log-normal 

variables R (space-averaged rainfall rate), Rj (point rainfall rate) 

and Q (short-term mean square value of the complex cross-polarization 

factor). Hence, we have:- 

Rm = <R> exp(- 4/2) 

R
M 

= <R~> exp(- S22 /2) 

Om 
= <c> exp(- Sy2) 

 

(A-2)  

 

and:- 



223 

  

1 + (var[RJ/<R>)2 

1 + (var[
J
J/<R~>) 2 

1 + (var[ c2]/<S2>)2 

 

   

  

(A-3) 

   

S = ln 

  

    

    

On the other hand, if a random variable Y is identically zero 

during non-raining time and has a log-normal distribution during rain, 

then the following relationships between its unconditional and conditional 

parameters apply (Lin, 1975):- 

<Y>u = <Y> Po(0) 

(A-4) 

} SY = ln {Po(0 ) 

or:- 

<Y>u = <Y> Po(L) 

SY = ln {Po(L) 1 + 

~varu rY J' 

<Y>
u 

varu[Y J' 2 

<Y>u 

1+ 

(A-5) 

} 

The formulas (A-4) are valid when the random variable Y refers to a 

specific point on the radio path (such as the point rainfall rate Rfi, 

where the appropriate rain probability is the point one, P0(0) and the 

formulas (A-5) are valid, when the variable Y refers to the total path 
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(such as the space-averaged rainfall rate R or the mean square value 0 

of the complex cross-polarization factor, where the appropriate rain 

probability is the Po(L)). Application of these results to the random 

variables Rfi, R, c gives:- 

<R.>u 	<R~> Po(0) 

<R>u = <R> Po(L) 

<Q>u = <c;> Po(L) 

(A-6)  

 

and:- 

SR = ln {Po( 0) 

SR = ln {Po(L) 

S2 = in {Po(L) 

  

varu 
C1' 

2 

<R
i
>u 

'varu [R 1 2 

    

      

 

1+ } 

  

      

      

 

1+ 

  

} (A-7)  

       

  

<R>u 

    

          

          

  

tvaru 
C2 :I

' 2 

<Q> 
u 

    

 

1+ 

  

} 
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APPENDIX B 

THE m-DISTRIBUTION  

B.1 	Brief Description of the Distribution  

This distribution was first derived by Nakagami in 1954 from 

his large-scale experiments on rapid fading in h.f. long distance 

propagation (Nakagami, 1960). The theoretical derivation of the m-

distribution is briefly the following. 

Regardless of the modes of propagation, i.e. whether 

ionospheric or tropospheric, it is reasonably supposed that the signal 

amplitude at an observing point is composed of some component signals 

d1)i 
Ai e 	(i = 1, 2, .... n) which have travelled on different paths and 

whose amplitudes and phases vary according to certain statistical laws. 
n 	j4i 

So, the amplitude is the sum of independent random phasors ( F A. e 	) 
1=1 

subject only to the condition that the X and Y components 
n 	 n 

(X = F Ai cos yhi), (Y 
i=1 

Central Limit Theorem). 

_ 7 Ai sin ~) of the sum are normal (use of 
i=1 

After a very complicated computation, the 

following formula for the distribution density of amplitude 
n 	jcpil 

R = 	Ai e 	+ is derived:-  
i=1 

-D 

pR(r) = re 	 1 (- 1)k ekIk(P)I2k(✓  Q2 + 7'2 ) cos [2k arctan(r/Q)l(B-1) 
S S k=0 
1 2 

where Ik( ) is the modified Bessel function of order k, S and S are 

the variances of the variables X and Y respectively. The symbols D, P, 

Q, Fare defined by Nakagami as:- 



226 

_ <x>2 	<y>2 
+  r2 	S2 - S

i  r2 D 	
2S 	+ 	2S 	+ 4S S 	r  

1 	2 	1 2 

S - S 
P _ 2 	1  r2 

4S S 
1 2 

(B-2) 

Q = <X> r  
S1 

 

<Y> r  
r _ 
	

S 

2 

This lengthy formula is not used in practical engineering applications. 

Nakagami defines the distribution by means of the parameters m and S.  

(as M(R, m, SZ)) where:- 

m= 	 
<R2>2 	> 1 

<(R2  - <R2>)2 > - 
2 

always and, 

(B-3) 0 = <R2> = <X> + <Y> + S +S 
1 	2 

PR(r) = Nr, m, Q) - 2m 	m r2mml  e-(m/Q)  r2  
F(m) 2Z 

This formula defining the "m-distribution" includes both the Rayleigh 

distribution and the one-sided Gaussian distribution as special cases 

for m = 1 and m = 1/2, respectively. 

B.2 	Relationship Between the Mean Value and the Mean Square Value  

of an m-Distributed Variable  

By definition, we have:- 
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.00 
r 

<R> = rpR(r) dr = j r2mm 
r2m-1/ 

(r(m) SZmI
l 

exp 	I - 	(m/SZ) 	r2] 	dr = 

0 _00 
l — 	

J- t 	J 

	

l
~ m 	

r 	l 
= 2mm/ 

l
r(m) SZm

] 	
r2m exp I - WO) r2

) dr 
	(B-4) 

	

0 	t 

The integral:- 

I = j r2m exp (- (m/Q) 
r2J 

dr 

can be evaluated from Abramowitz and Stegun (1965) and its value is:- 

1 

I = m + 2 r m + 21 / (2m
m + ~) 

J 

(B-5)  

Then:- 

  

1 

[r(m) / 	m21 

 

 

rm+2 

 

<R> = (B-6)  

    

    

where r( ) is the gamma function. This formula has been used in 

Chapter 3. 

B.3 	Effects of the Parameter Variations on the m-Distribution  

In this section, we present Nakagami's conjecture for the 

final distribution of a general m-variable when its parameters 

fluctuate. These effects are of considerable importance in the 

estimation of the distribution over a long-term where the parameters 

can no longer be considered as constants. 

0 
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If we start with an m-distributed variable R, then its 

probability density function is given by (B-3) and defining T, To  as 

db intensities of R and iff above unit intensity, we have that:- 

   

2mm  
pT(T) 	Mr(m) exp 

m 
2(T - T0) 	2(T - TO )/M 

M 	e 	= MT(T,  m,  To) 	(B-7) 

   

   

M=1n10 

Now let P(TO, m) be the joint distribution function of the 

parameters To  and m, then the distribution of T can be written as:- 

co 	m 

pT(T) = j dm j MT(T, m, To) p(TO, m) dTo  

1 
	—°c' 

(B-8)  

Nakagami's observations and some calculations seem to support strongly that:- 

P(TO , m) 	= PT 
0 

1 

(To ) 	p(m) 	 1 

-(1/2 A2 ) 	f(1/m - 	1/m0)}2  

e (B-9)  P(1 /m) 	= 
A 

PT 	(TO) - 

1 
-(l/2a) 	

{(TO  - To)}2 

e 
o 

Qo  

These relations, with the exception of the last, are not yet 

established. Therefore, only the effect of To  will be considered. 

This is also the case for the rain depolarization problem, because the 

distribution of the amplitude of complex polarization factor CR  is a 

Rayleigh variable (m = 1), with its mean value fluctuating in a long- 
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term period with a log-normal law. 

After some calculations, we get a final expression:- 

PT(T) 
ti C MT (T, m, To ) S(T, m, To ) (B-10)  

where:- 

     

  

20-2 m2  (1 - Q)21 

 

S(T, m, To) = 	
M 	

exp 

JM2 +4a2 mn 

 

(B-11)  

    

 

M2 	4a2 m Q1 

  

    

(2/M) (T - To) 
Q = e 	, C = normalizing factor nearly equal to 1. 
1 

Numerical calculations (Nakagami, Tanaka and Kanehisa, 1957) 

clearly indicate the remarkable tendency that, with the increase in 

fluctuations of To  or c, pT(T) gradually approaches a normal type of 

distribution. For example, even in the extreme case of m equal to 1/2, 

pT(T) may be taken as normal form for larger values of ao  than 10 db, 

and the same will hold for the Rayleigh distribution for values of ao  

beyond 7 db. As mentioned in Section 3.3, we have calculated the 

integral (8-8) for m = 1, by using numerical techniques. A comparison 

of the two methods is shown in Figs. B-1, B-2, B-3 for different 

parameters To  = 0 and ao  = 5, 6, 7 db. It is clear that with the 

numerical integration, the tendency to the normal distribution is more 

rapid than using Nakagami's formulas. 
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Fig. B.1 Lognormal approximation of a Rayleigh variable 
with its short-term mean value fluctuating. 
Parameters of the short-term: 
Expectation value 0; Standard deviation 5 

A Numerical method 
B Nakagami's method 



0060 

0.050 

Z 
0 
H 
U 
Z 0.040 
D 
LL 

>-
H 
7 
Z 0.030 LU 
0 
>-H 
J_ 
m 0020 
Q c0 
0 
3-  

0.010 

0 

231 

- 30 -24 -18 
VALUES OF VARIABLE 

Fig. B.2 Lognormal approximation of a Rayleigh variable 

with its short-term mean value fluctuating. 
Parameters of the short-term: 
Expectation value 0; Standard deviation 6 

A Numerical method 
B Nakagami's method 
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Fig. B.3 Lognormal approximation of a Rayleigh variable 
with its short-term mean value fluctuating. 
Parameters of the short-term: 
Expectation value 0; Standard deviation 7 

A Numerical method 
B Nakagami's method 
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APPENDIX C  

RAYLEIGH AND RICE-NAKAGAMI PHASORS  

C.1 	Brief Description of Random Phasors  

A signal of almost any kind can be represented by the real 

or imaginary part of:- 

S(t) = A(t) exp {i [(t) t + (D0(t)1} 	 (C-1) 

where the amplitude A., frequency w and phase (Do  can be functions of 

time. The vector notation indicates that S can be a space vector, as in 

the case of the electric or magnetic field of a radio wave. However, 

if we limit ourselves to the scalar-component of such a space vector, 

we can write (C-1) as a phasor:- 

S = Ae
i(I)  (C-2)  

where A is the amplitude and ' = wt + (Do  is the phase of the signal at 

time t. Both A and 	can be random - in the case of noise evidently 

always, and in the case of a message because the exact nature of the 

message is unknown (or else there would be no point in transmitting it). 

The phase of a phasor Aei'D  is very often uniformly distributed between 

0 and 27: - 

Pc1)(49) = FT (0  < cp  < 21T) (C-3)  

A phasor with uniformly distributed phase, is very common in practical 

applications and deserves a shorter name: we shall call it a "UDP 



phasor" (Beckmann, 1967). 

C.2 	Rayleigh Phasors  

Consider the sum:- 

n 
S = Re

i6 = 	AJ ei1j 

j=1 

(C-4) 

where the terms are independent UDP phasors and the Ai  are all 

distributed identically. It can easily be verified that the 

resulting phase distribution is again uniform. We wish now to find 

the amplitude distribution pR(r). Resolving S into its real and 

imaginary parts, we have:- 

n 	 n 
X = Re S = R cos 6 = 	A. cos (D • = 	X. 

j=1 	J  j=1 J  

(C-5) 
n 	 n 

Y = Im S = R sin e = E A. sin (D. = 	Y. 

j=1 J 	J  j=1 J  

If n is large, then using Central Limit Theorem (Papoulis, 1965) (the 

A. being all identically distributed), both X and Y will be distributed 

normally with mean values:- 

n 	 n 
<X> = 	<A cos (D .> , <Y> = 1 <A. sin 	•> j=1 	J 	J 	j=1 	J 

(C-6) 

In particular, if Aj  are not correlated with the 0j, then:- 
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C +27 

<X> = j <A.> <cos (1)j> = j <A.> 	1 	cos cP dw. = 0 

C 

(C-7) 



and similarly:- 

n 
<Y> _ 1 <A.> <sin 0j> = 0 

j=1 
(C-8) 

The variances of X and Y are (since <X> _ <Y> = 0):- 

n 
var 

LX] 
 = <X2> = 1 <A~> <cos2 0j> = 	n <A~> 

j=l 

n 
var Dil  _ <Y2> _ 1 <A~> <sin2 0j> = 1 n <A~> 

j=1 

(C-9)  

(C-10)  

Setting:- 

2 
n 

<AJ 
> = 62 (C-11)  

we find the distributions of X and Y as:- 

P (x) = 	1 	e- x2/202 	P (Y ) = 	
1 	e- y2/2a2 

X 	o 	Y 	a 
(C-12)  

Next, we check whether X and Y are correlated:- 

n n 
<XY> = 1 	1 <A. Ak> <cos 0j sin 0k> = 0 

j=1 k=1 
(C-13)  

since <cos 0j sin 0k> = 0 for all j and k. Thus X and Y are uncorrelated, 

which in the case of the normal distribution implies that they are 

independent. Hence, from (C-12) their two-dimensional distribution is:- 
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pXY(x, Y) - 	1 	e (x2 + y2)/262 
27 62  

(C-14) 

Transforming back to polar coordinates, we obtain:- 

P (r, a ) = 	r 	e- r2/2a2 	(0 < 9 < 27, 0 < r < o) 	(C-15) 
R8 	

27 cr2 

where a2 is by (C-9), (C-10) the variance of X and Y, which may easily 

be expressed in terms of the mean-square value of R:- 

<R2> = <X2> + <Y2> = 262 (C-15)  

Setting <R2> = 2a2 = S2, we, therefore, obtain:- 

PRE Jr' a) = ~rS2 e 	r2/S2 (C-16)  

The distribution of a is, as expected, 	uniform:- 

CO 	 CO 

p6(a) 
1 

pRe(r, 	
2) dr = j_ 

	2 
re 	r /2 dr = 2~ (0 < 	a < 2.7) (C-17)  

0 0 

and the required distribution of R is:- 

2Tr 

PR(r) - 	
zrS2 e-r2/~ dB = 2 

e- r2/52 	(r > 0) 

0 

(C-18)  

i.e. the Rayleigh distribution. The parameter S2 is its mean-square 

value, and by (C-15) and (C-11), it is given by:- 
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S2 =n<g> (C-19) 

Looking over this derivation from (C-12) onward, we see that the 

Rayleigh distribution is the solution of a more general problem than 

the one we originally set out to investigate - the distribution of R 

when allAj  •are distributed identically and the (I). are all uniform over 

a basic phase cycle. It follows from (C-12) that the Rayleigh 

distribution will be obtained for any quantity R given by:- 

R2  = X2  + Y2 	 (C-20) 

if X and Y are independent and both normal with the same variance and 

zero mean. Conversely, it is evident that any Rayleigh-distributed 

quantity may always be decomposed into two components X and Y as in 

(C-20), where both X and Y are normal with zero mean and the same 

variance. 

Thus, (C-12) may be obtained from (C-4) under more general 

conditions. Although the terms in (C-4) must be UDP phasors, since 

otherwise the conditions of zero mean and equal variances for X and Y 

could not be satisfied (except by artificially constructed exceptions), 

we need not require that the Aj  be distributed identically: it is 

enough that their distributions be such that the Central Limit Theorem 

is satisfied for X and Y. Referring to Beckmann (1967), we find that 

in practice this means:- 

(1) n must be large 
n 

(2) <A?> « X <Ag> for all j 
j=1 

(C-21) 
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i.e. in the sum there must be no predominant term, which by its large 

mean-square value would violate (C-21). 

A phasor with the distribution (C-16), i.e. with the amplitude 

distribution (C-18) and the phase distribution (C-17) will be called a 

Rayleigh phasor. It follows that a Rayleigh phasor is always a UDP phasor. 

Finally, a direct corollary of all the above theory is that 

the sum of any (not necessarily identical) Rayleigh phasors is itself 

a Rayleigh phasor. This important conclusion is used in Chapters 3 and 4. 

C.3 	Constant Plus Rayleigh Phasors  

Consider the sum:- 

Reie  = C + 
n

1 A. ei(l'3  
j=1 

(C-22)  

where C is a real constant and the second term adds up to a Rayleigh 

phasor. 

Let the Rayleigh phasor equal pe"). Its X and Y components 

are (from the preceding section) both normal with zero mean and 

variance c2/2, where 2 = <p2>. Therefore, the X component of (C-22) 

is given by the sum of C and the X component of p (i.e. p cos (D) and 

is thus distributed normally with mean C and variance 2/2. The Y 

component of (C-22) is equal to the Y component of the Rayleigh phasor 

(p sin cD). 	Hence:- 

PXY(X, y) = TiT exp _ (X - C)2  _ y2  
2 	2 

(C-23)  

and transforming to polar coordinates as in the preceding section, we 

now have:- 
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PRe (r , a) = TrSZ 
exp 

(r cos a - C)2 	r2 sin2 a  

(r > 0, 0<a <27r) 

(C-24) 

or, after elementary manipulations:- 

r - (r2 + C2 )/0 	2rC cos a/S2 
pRe(r, a) = ~~ e 	e 	(r > 0, 0 < a < 2Tr) (C-25) 

Therefore, the required distribution of R is:- 

P (r) 	

27

p (r, a) da = r e- (r2 + C
2)/2 

27 e
(2rC/St) cos a 

da (C-26) 
R 	Re 	TrSZ 

0 	 0 

The integral can be expressed by means of a Bessel function:- 

27 

1 	
ex cos 

a da = Io(x) = Jo(ix) 

0 

(C-27)  

where Io(x) is the modified Bessel function of order zero. Using (C-27), 

we finally find from (C-26):- 

PR 	S2 (r) = 
2r e- (r2 + C2)/2 

I()  
2 	

' 	(r > 0) (C-28)  

This is known as the "Rice-Nakagami distribution" (Beckmann, 1967). 

The phase distribution of (C-22) is no longer uniform. After a 

straightforward, though cumbersome, integration of (C-25), we find:- 

W 

pe(a) = 	pRe(r, a) dr = 	e C2/2 
C 

+ G 	eG2 (1 + erf Gil 
	

(C-29) 

1.0 



where:- 

G = C cos a  

Vff 
(0 < a < 27) 	 (C-30) 

240 



L L 

H(L) _ Gdz dz'  

0 JO  C2 + (z - z') 2J1/2 

- z' [Ga + x2J1/2 

JL-z" 
I(L) = 	dx 

(D-3) 
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APPENDIX D 

EVALUATION OF THE FACTOR H(L)  

The integral:- 

which is encountered in formula (4.2.16), is calculated as follows. 

We put:- 

x = z - z' (D-1)  

as a new variable and the result is:- 

L 	L - z' 

H(L) = j Gdz' 	dx  

0 	-z' p 4. xT/2 
(D-2)  

The single integral:- 

can be evaluated from Abramovitz and Stegun (1965) as:- 

I(L) = sinh-1  FL - z')/GJ - sinh-1  [--_ z'/G7 	 (D-4) 

so the integral (D-2) can now be written:- 
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•L 	 L 

H(L) = 	G sinh-1 	 dz' - 	G sinh-1  [1_  z'/G1 dz' 	(D-5) 

	

0 	 0 

The two partial integrations which are indicated in expression (D-5) 

can be taken again from Abramovitz and Stegun (1975) and the final 

result is:- 

sinh-1  (L/G) - sinh-1  (- L/G)  
2 

1 + z+ 
✓ G2  

H(L) = 2G2  (D-6) L 
G 
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APPENDIX E 

  

  

EVALUATION OF THE DOUBLE INTEGRAL  

(5.3.15) or (5.3.27)  

 

 

The integral:- 

   

  

,y 

   

I(x, y) 

 

pX 
X 
 (xl, x2 ) dx dx 2  

0 ,x 	1 2 

(E-1) 

   

can be calculated, substituting the joint density function from formula 

(5.2.15), as:- 

O  27 a1a3  ✓  1 - r2  x2  

y 

I(x,  y) = 
_ 	1 	1 

2(1 - r2 )) 

(ln x - <X >)2  
2 	3  

a2  
3 

1 
exp 

              

              

              

              

 

00 

    

( x - <X >)2 	2r(x - <X >)(ln x - <X >) 
1 	1 	1 	1 	2 	3  

    

 

exp 

 

1  

2(1-r2), 

   

dx 
1 
dx 

2 

 

x 

   

Q2 	 a1 a3 
1 

  

         

         

           

              

              

              

              

(E-2) 

We treat separately the integral:- 

          

          

          

00 

I 1(x) = j exp 

x 

   

(x - <X >)2 	2r(x - <X >)(1n x - <X >) 
1 	1 	1 	1 	2 	3 

   

1  

2(1-r2 ) 

    

dx 
1 

  

a2 	 a1 63 
1 

  

     

          

          

          

(E-3) 

Putting z = x - x, we have that:-
1 



f 
2 
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I 1 (x) = 	exp 

0 

 

z2 

 

2z 
(x - <X >) 	r(lnx - <X >) 

2 	3  

2(1 - r2) a2 	2(1 - r2) a a 
1 3 

 

2(1 - r2) a2 

1 

 

      

      

(x - <X >)2 	2r(x - <X >) (ln x - <X >) 
1 	 1 	 2 	3 

	

2(1 - r2 ) a2 	2(1 - r2) a a 

	

1 	1 	3 

dz 	(E-4) 

The integral (E-4) can be calculated from Abramovitz and Stegun (1965) 

as a special error integral and the result is that:- 

I 1 (x) = [J i/f 	l exp [(f2/f2) - fil erfc (f2/~) 

where the parameters f , f , f are given by:-  
1 	2 	3 

f - 	1  

1 	2(1 - r2 ) 02* 
1 

(x - <X >) 	r(lnx - <X >) 
2 	3  

	

2(1 - r2) a2 	2(1 - r2) a a 
1 3 

	

(x - <X >)2 	2r(x - <X >) (ln x - <X >) 
1 	 1 	 2 	3 

2(1 - r2) a2 	2(1 - r2 ) a a 
1 	3 

(E-5) 

(E-6) 

Substituting relations (E-5), (E-6) into the double integral (E-2), 

we have:- 
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T

Y 
1  

I(x, y) = 	 exp 
0 	 3 2 IF a x2  

(ln x - <X >)2 
2 	 3  

2a2 
3 

(E-7) 

(x - <X >) 	r(lnx - <X >) 
1 	2 	3  

✓T ✓1- r2 a / ✓1-r2 a 
. erfc dx 

2 
1 	 3, 

If we now put Y = - In x , then the integral (E-7) becomes:-
2 

I(x, y) = e-Y f(Y) dY 

- ln y 

(E-8) 

with:- 

  

f(Y) = 	1 	exp 
2 va 

3 

 

(Y + <x >)2 
3 	 + Y 

2a2 
3 

 

. erfc 
(x - <X >) 	r(Y + <X >) 

1 	+ 	 3  

1/Z1/1 -r2 a 	112. 1/4 1 - r2 a 
1 	3 

(E-9)  

   

   

The integral (E-8) can be evaluated numerically using Gauss-Laguerre 

polynomials. This procedure estimates the value of an integral of 

the form:- 

I = 	e-Y f(Y) dY 
z 

a 

(E-10)  

This integral is approximated by the formula:- 

I 2 = k~1 Ak f(Yk) 	 (E-11) 
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where Ak  are the weights and Yk  the pivots. The pivots are the zeros 

of the Laguerre polynomials. This quadrature formula is exact if the 

function f(Y) is a polynomial of degree not exceeding 2n - 1, where n 

is the number of pivots used. In the estimation of our integral, we 

use 48 pivots. 
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APPENDIX F 

DESCRIPTION OF COMPUTER PROGRAM  

In this appendix, a description of the computer programs 

which are used in the thesis, is given. The first program evaluates 

the density distribution function and its best-fit normal approximation 

for the long-term rain cross-polarization statistics (Figs. 3.3, 3.4, . 

3.9, 3.10 and 4.3, 4.4, 4.15, 4.16). The second program calculates 

the cumulative distribution of the XPD for any microwave link (Figs. 

3.5, 3.11, 4.5 to 4.11 and 4.17 to 4.23). The third program gives the 

outage time due to co-channel interference as a function of path length 

(Figs. 3.6 to 3.9, 3.12 to 3.14, 4.12 to 4.14 and 4.24 to 4.26). The 

fourth program evaluates the conditional distribution of XPD on a co-

polar rain attenuation (Figs. 5.4 to 5.7 and 5.14 to 5.17), while the 

fifth gives the distribution of XPD under the condition of rain fade 

(Figs. 5.8, 5.9 and 5.18, 5.19). Finally, the sixth program calculates 

the total outage time for a dual-polarization communication system 

(Figs. 5.10 to 5.12). 
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LIST OF PROGRAMS 

PROGRAM JOHN (INPUT,OUTPUT,TAPE 62, TAPE 6 = OUTPUT) 

THIS PROGRAM EVALUATES THE DENSITY DISTRIBUTION FUNCTION 

COMMON/GUC1/RM1,SR1 

DIMENSION AMEAN(11),DEVIAT(11),ERR(15,15),X(102),X1(102), 

X2(204),X3(204),X4(302),Y3(302),Y4(302),X5(70),X6(210), 

Y5(210),A50(4),B50(4),C50(6),A51(4),B51(4),C51(6) 

CALL START (2) 

CALL SCALEZ (1.) 

RM = 0.64 

SR = 1.52 

P11 = 3.14159265 

THM = 10. * P11/180. 

STH = 40. * P11/180. 

AL = 10. 

D08I=1,4 

READ 9, B50(I), A50(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

DO 18 I = 1, 4 

READ 19, B51(I), A51(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL E01AAF(A50, 850, C50, 4, 6, 3, 22.) 

CALL E01AAF(A51, B51, C51, 4, 6, 3, 22.) 

C = C50(6) * 0.0001 

D = C51(6) 

1 

2 

9 

8 

19 

18 
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1 

800 
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AM = EXP(- 2. * STH * STH) 

AO = AM*AM*AL*AL*C*C*SIN(2. * THM) * SIN(2. * THM) / 

P11 

BO = 2. * D 

PO = 0.033 

DEN = (1. + AL * AL/21.5) * * 0.014 

PL = 1. - (1. - P0)/DEN 

G = 1.5 

ARG = AL/G 

ARG1 = 1./ARG 

IFAIL = 0 

P = S11ABF(ARG, IFAIL) 

IFAIL = 0 

P1 = S11ABF(- ARG, IFAIL) 

H = 2.*ARG1*ARG1*(ARG*(P-P1)/2. - SQRT(1. + ARG * 

ARG) + 1.) 

FAC = 1. + (EXP(SR * SR)/P0 - 1.) * H 

SR1 = ALOG(PL * FAC) 

RM1 = RM*P0*EXP(SR*SR/2. - SR1/2.)/PL 

X4(1) = 10.*ALOG10(A0) + 10.*B0*ALOG10(RM1) - 3. 

DO 800 I = 1,300 

A5 = X4(I) 

CALL DISTR3(A0, BO, A5, DIS) 

Y4(I) = DIS 

X4(I + 1) = X4(I) + 0.007 

AMAX = 1.0 E-99 

DO 801 I = 1,300 

T1 = Y4(I) 



250 

IF(T1 . GE . AMAX) GO TO 803 

GO TO 801 

AMAX = T1 

L1 = I 

A2 = X4(L1) 

B2 = 0.399/T1 

CONTINUE 

WRITE (6,450) A2, B2 

FORMAT(1H,50X,6HMEAN =, E16.7,4X,13HSTAND.DEV. =,E 

16.7) 

X(1) _ - 110. 

DO 105 I = 1,100 

A3 = X(I) 

CALL DISTR3(AO, BO, A3, DIS) 

CALL GAUSS(A2, B2, A3, GAS) 

X1(I) = DIS 

X2(I) = GAS 

X(I + 1) = X(I) + 1. 

DO 106 I = 1,100 

X3(I) = X(I) 

CALL 	LINAX 	(1.2, 	1.2, 1, 1.58, 11, - 	110., 	10., 5, 1, 1, - 	1, 

CALL LINAX 	(1.2, 	1,2, 2, 0.9, 15, 0., 	0.002, 	1, 2, 2,  3,  1) 

CALL POINTS 	(X3, X2, 100) 

CALL POINTS (X3, X1, 100) 

CALL ENPLOT 

STOP 

803 

801 

450 

1 

105 

106 

END 
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PROGRAM JOHN (INPUT,OUTPUT,TAPE 62,TAPE 6 = OUTPUT) 

THIS PROGRAM EVALUATES THE CUMULATIVE DISTRIBU 

TION FOR XPD 

COMMON/GUCI/RM1,SR1 

DIMENSION AMEAN(11),DEVIAT(11),ERR(15, 15),X(102),X1 

(102),X2(204),X3(204),X4(302),Y4(302),X5(70),X6(210), 

Y5(210),A50(4),B50(4),C50(6),A51(4),B51(4),C51(6) 

CALL START (2) 

CALL SCALEZ (1.) 

RM = 0.64 

SR = 1.52 

AL = 4 

P11 = 3.14159265 

THM = 10. * P11/180 

STH = 40. * P11/180 

DO 8 I = 1,4 

READ 9, B50(I), A50(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

DO 18 I =1,4 

READ 19, B51(I), A51(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL EO1AAF (A50, 850, C50, 4, 6, 3, 22.) 

CALL EO1AAF (A51, B51, C51, 4, 6, 3, 22.) 

C = C50(6). * 0.0001 

D = C51(6) 

AM = EXP (- 2. * STH * STH) 

1 

1 

2 

9 

8 

19 

18 
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AO = AM*AM*AL*AL*C*C*SIN(2. * THM)*SIN(2. * THM)/P11 

BO = 2. * D 

PO = 0.033 

DEN = (1. + AL * AL/21.5) * * 0.014 

PL = 1. - (1. - P0)/DEN 

G = 1.5 

ARG = AL/G 

ARG1 = 1./ARG 

IFAIL = 0 

P = S11ABF(ARG, IFAIL) 

IFAIL = 0 

P1 = S11ABF(- ARG, IFAIL) 

H = 2.*ARG1*ARG1*(ARG*(P-P1)/2. - SQRT(1. + ARG * 

ARG) + 1.) 

FAC = 1. + (EXP(SR * SR)/P0 - 1.) * H 

SR1 = ALOG(PL * FAC) 

RM1 = RM * PO * EXP(SR * SR/2. - SR1/2.)/PL 

X4(1) = 10.*ALOG10(A0)+10.*B0*ALOG10(RM) - 3. 

DO 800 I = 1,300 

A5 = X4(I) 

CALL DISTR3(RM, SR, AO, BO, A5, DIS) 

Y4(I) = DIS 

X4(I + 1) = X4(I) + 0.007 

AMAX = 1.) E-99 

DO 8P1 I = 1,300 

T1 = Y4(I) 

IF (T1 . GE . AMAX) GO TO 803 

GO TO 801 

1 

800 



803 

801 

450 

1 

200 

201 

700 
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AMAX = T1 

L1 = I 

A2 = X4(L1) 

B2 = 0.399/T1 

CONTINUE 

WRITE (6, 450) A2, B2 

FORMAT (1H,50X,6HMEAN=,E16.7,4X,13HSTAND.DEV.= 

,E16.7) 

X5(1) = - 40. 

DO 200 I = 1,70 

PRM = (X5(I) - A2)/B2 

IFAIL = 0 

P2 = S15ACF (PRM, IFAIL) 

Y5(I) = P2 * 3.3 

X5(I + 1) = X5(I) + 0.3 

DO 201 I = 1,70 

X6(I) = X5(I) 

CALL LOGAX(1.2, 1.2, 2, 7., 2, - 3, 2, 2, 1) 

CALL LINAX(1.2, 1.2, 1, 3.2, 5, - 45., 5., 5, 1, 1, - 1, 1) 

CALL POINTS(X6, Y5, 70) 

X4(1) = 1O.*ALOG1O(AO) + 1O.*BO*ALOG1O(RM1) - 3. 

DO 700 I = 1,300 

A5 = X4(I) 

CALL DISTR2(A0, BO, A5, DIS) 

Y4(I) = DIS 

X4(I + 1) = X4(I) + 0.007 

AMAX = 1.0 E-99 

DO 701 I = 1,300 
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1 
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Ti = Y4(I) 

IF (T1 . GE . AMAX) GO TO 703 

GO TO 701 

MAX = T1 

L 1 = I 

A21 = X4(L1) 

B21 = 0.399/T1 

CONTINUE 

WRITE (6,750) A21, B21 

FORMAT(1H,50X,6HMEAN = ,E16.7,4X,13HSTAND.DEV. _ 

,E16.7) 

DO 300 I = 1,70 

PRM = (X5(I) - A21)/B21 

IFAIL = 0 

P3 = S15ACF(PRM, IFAIL) 

Y5(I) = P3 * 100. * PL 

X5(I + 1) = X5(I) + 0.3 

DO 301 I = 1,70 

X6(I) = X5(I) 

CALL POINTS (X6, Y5, 70) 

CALL ENPLOT 

STOP 

END 
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PROGRAM JOHN (INPUT,OUTPUT,TAPE 62,TAPE 6 = OUTPUT) 

THIS PROGRAM EVALUATES THE OUTAGE TIME DUE TO 

CHANNEL INTERFERENCE 

COMMON/GUC1/RM1, SR1 

DIMENSION R(40),X(40),Y5(40),X6(40),X4(302),Y4(302) 

,XP(40),YP(40),A50(4),B50(4),C50(6),A51(4),B51(4),C51(6) 

CALL START (2) 

CALL SCALEZ (1.) 

RM = 1.52 

SR = 1.38 

P11 = 3.14159265 

THM = 10. * P11/180 

STH = 40. * P11/180 

DO 8 I = 1,4% 

READ 9, B50(I), A50(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

DO 18 I = 1,4 

READ 19, B51(I), A51(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL EO1AAF (A50, 850, C50, 4, 6, 3, 30.) 

CALL EO1AAF (A51, B51, C51, 4, 6, 3, 30.) 

C = C50(6) * 0.0001 

D = C51(6) 

PO = 0.026 

G = 1.5 

AM = EXP (- 2. * STH * STH) 
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X(1) = 1. 

DO 5 I = 1,30 

AL = X(I) 

AO '= AM*AM*AL*AL*C*C*SIN(2. * THM)*SIN(2. * THM)/P11 

BO = 2. * D 

DEN = (1. + AL * AL/21.5) * * 0.014 

PL = 1. - (1. - P0)/DEN 

ARG = AL/G 

ARG1 = 1./ARG - 

IFAIL = 0 

P = S11ABF(ARG, IFAIL) 

IFAIL = 0 

P1 = S11ABF(- ARG, IFAIL) 

H = 2.*ARG1*ARG1*(ARG*(P-P1)/2.-SQRT(1.+ARG*ARG)+1.) 

FAC = 1. + (EXP(SR * SR)/P0 - 1.) * H 

SR1 = ALOG(PL * FAC) 

RM1 = RM * PO * EXP(SR * SR/2. - SR1/2.)/PL 

HINT = 10. * ALOG1O(AO) + 10. * BO * ALOG1O(RM1) 

X4(1) = HINT - 3. 

DO 800 J = 1,300 

A5 = X4(J) 

CALL DISTR2(A0, BO, A5, DIS) 

Y4(J) = DIS 

X4(J + 1) = X4(J) + 0.8 

AMAX = 1.0 E-99 

DO 801 L = 1,300 

T1 = Y4(L) 

IF (T1 . GE . AMAX) GO TO 803 

  

800 
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GO TO 801 

AMAX = T1 

L1 = L 

A2 = X4(L1) 

B2 = 0.399/T1 

CONTINUE 

WRITE(6,450) A2, B2 

FORMAT(1H,50X,6HMEAN =,E16.7,4X,13HSTAND.DEV. = 

E16.7) 

ALEV = - 20. 

PRM = (ALEV - A2)/B2 

IFAIL = 0 

P2 = S15ACF(PRM, IFAIL) 

Y5(I) = P2 * 8760. * 60. * PL 

X(I + 1) = X(I) + 0.3 

CONTINUE 

D06 I = 1,30 

X6(I) = X(I) 

CALL LOGAX(1.2, 1.2, 2, 6.5, 4, 0, 2, 2, 1) 

CALL LINAX(1.2, 1.2, 1, 1.5, 10, 0., 1., 1, 1, 1, - 1, 1) 

DO 1005 I = 1,30 

CALL LOCATE(X6(I), Y5(I), XP(I), YP(I), N5) 

CONTINUE 

CALL ARKIST(XP, YP, 1, 30, 10, 1., 1., 0., 0., 2, 1) 

WRITE (6,551) 

FORMAT(1H, 50X, 1HC) 

THM = THM + P11/4. 

DO 15 I = 1,30 
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AL1 = X(I) 

AO = AM*AM*AL*AL*C*C*SIN(2. * THM)*SIN(2. *THM)/P11 

BO = 2. * D 

DEN = (1. + AL1 * AL1/21.5) * * 0.014 

PL = 1. - (1. - P0)/DEN 

ARG = AL1/G 

ARG1 = 1./ARG 

IFAIL = 0 

P = S11ABF(ARG, IFAIL) 

IFAIL = 0 

P1 = S11ABF(- ARG, IFAIL) 

H = 2.*ARG1*ARG1*(ARG*(P-P1)/2.-SQRT(1.+ARG*ARG)+1.) 

FAC = 1. + (EXP(SR * SR)/P0 - 1.) * H 

SR1 = ALOG(PL * FAC) 

RM1 = RM * PO * EXP(SR * SR/2. - SR1/2.)/PL 

HINT = 10. * ALOG10(A0) + 10. * BO * ALOG10(RM1) 

X4(1) = HINT - 3. 

DO 900 J = 1,300 

A5 = X4(J) 

CALL DISTR2(A0, BO, A5, DIS) 

Y4(J) = DIS 

X4(J + 1) = X4(J) + 0.03 

AMAX = 1.0 E-99 

DO 901 L = 1,300 

T1 = Y4(L) 

IF(T1 . GE . AMAX) GO TO 903 

GO TO 901 

AMAX = T1 

900 

903 
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L1 = L 

A2 = X4(L1) 

B2 = 0.399/T1 

CONTINUE 

WRITE(6,550) A2, B2 

FORMAT(1H,5OX,6HMEAN = ,E16.7,4X,13HSTAND.DEV. = 

E16.7) 

PRM = (ALEV - A2)/B2 

IFAIL = 0 

P3 = S15ACF(PRM, IFAIL) 

Y5(I) = P3 * 8760. * 60. * PL 

CONTINUE 

DO 1006 I = 1,30 

CALL LOCATE(X6(I), Y5(I), XP(I), YP(I), N5) 

CONTINUE 

CALL ARKIST(XP, YP, 1, 30, 10, 1., 1., 0., 2, 1) 

CALL ENPLOT 

STOP 

END 
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PROGRAM JOHN(INPUT,OUTPUT,TAPE 62,TAPE 6 = OUTPUT) 

THIS PROGRAM EVALUATES THE CONDITIONAL DISTRIBUTION 

1 OF XPD AT A COPOLAR RAIN ATTENUATION 

COMMON/GUC1/RM1, SR1 

DIMENSION X4(302),Y4(302),X5(41),Y6(41),X6(41),A50(4),B 

1 50(4),C5 (6),A51(4),B51(4),C51(6),A52(4),B52(4),C52(6),A53 

2 (4),C53(6),A54(4),B54(4),C54(6),A55(4),B55(4),C55(6),X(12), 

3 Y(12),XP(12),YP(12),Y5(40,5),Y7(40),Y8(40),Y9(40),Y10(40), 

4 SER(5) 

CALL START (2) 

CALL SCALEZ (1.) 

DO 8 I = 1,4 

READ 9, B50(I), A50(I) 

	

9 	FORMAT (F5.3, F4.2) 

	

8 	CONTINUE 

DO 18 I = 1,4 

READ 19, B51(I), A51(I) 

	

19 	FORMAT (F5.3, F4.2) 

	

18 	CONTINUE 

CALL E01AAF(AS0, B50, C50, 

CALL E01AAF(A51, B51, C51, 

C = C50(6) * 0.0001 

D = C51(6) 

DO 28 I = 1,4 

READ 29, B52(I), A52(I) 

	

29 	FORMAT (F5.3, F4.2) 

	

28 	CONTINUE 

1 
	

CALL E01AAF(A52, B52, C52, 4, 6, 3, 11.) 

4, 6, 3, 11.) 

4, 6, 3, 11.) 



  

261 

AX = C52(6) * 0.01 

DO 38 I = 1,4 

READ 39, B53(I), A53(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL E01AAF(A53, B53, C53, 4, 6, 3, 11.) 

AY = C53(6) * 0.01 

DO 48 I = 1,4 

READ 49, B54(I), A54(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL E01AAF(A54, B54, C54, 4, 6, 3, 11.) 

BX = C54(6) 

DO 58 I = 1,4  

READ 59, B55(I), A55(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL E01AAF(A55, B55, C55, 4, 6, 3, 11.) 

BY = C55(6) 

PO = 0.033 

G = 1.5 

AL = 11. 

RM = 0.64 

SR = 1.52 

P11 = 3.14159265 

DEN = (1. + AL * AL/21.5) ** 0.014 

PL = 1. - (1. - PO)/DEN 

ARG = AL/G 

39 

38 

49 

48 

59 

58 
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ARG1 = 1./ARG 

IFAIL = 0 

P = S11ABF(ARG, IFAIL) 

IFAIL = 0 

P1 = S11ABF(- ARG, IFAIL) 

H = 2.*ARG1*ARG1*(ARG*(P-P1)/2.-SQRT(1.+ARG*ARG)+1.) 

H1 = 2.*ARG1*ARG1*(ARG*ALOG(ARG+SQRT(1.+ARG*ARG)) 

-SQRT(1.+ARG*ARG)+1.) 

FAC = 1. + (EXP(SR * SR)/PO - 1.) * H 

SRl = ALOG(PL * FAC) 

RM1 = RM * PO * EXP(SR * SR/2. - SR1/2.)/PL 

Al = AX + AY 

B1 = AX - AY 

A2 = AX * BX + AY * BY 

B2 = AX * BX - AY * BY 

THM = 10. * P11/180 

DO 807 K = 1,5 

READ 808, SER(K) 

FORMAT (F4.2) 

STH = SER(K) * P11/180 

AM = EXP(- 2. * STH * STH) 

AO = AM*AM*AL*AL*C*C*SIN(2.*THM)*SIN(2.*THM)/P11 

B0 =2. * D 

A = (Al + AM * B1 * COS(2. * THM))/2. 

B = (A2 + AM * B2 * COS(2. * THM))/2./A 

HINT = 10. * ALOG1O(A0) + 10. * BO * ALOG1O(RM1) 

X4(1) = HINT - 3. 

DO 800 J = 1,300 

A5 = X4(J) 

1 

808 
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CALL DISTR2 (AU, BO, A5, DIS) 

Y4(J) = DIS 

800 	X4(J + 1) = X4(J) + 0.08 

AMAX = 1.0 E-99 

DO 801 L = 1,300 

T1 = Y4(L) 

IF (T1 . GE . AMAX) GO TO 803 

GO TO 801 

803 	AMAX = T1 

L1 = L 

A21 = X4(L1) 

B21 = 0.399/T1 

801 	CONTINUE 

WRITE (6,450) A21, B21 

450 	FORMAT(1H,50X,6HMEAN = ,E16.7,4X,13HSTAND.DEV. = 

1 	,E16.7) 

BM = A * RM * * B 

SB = B * SR 

FAC1 = 1. + (EXP(SB * SB)/PO - 1.) * H1 

SA = ALOG(PL * FAC1) 

AMM = BM * AL * PO * EXP(SB * SB/2. - SA/2.)/PL 

S3 = SQRT(SA) 

X3 = ALOG(AMM) 

WRITE (6,451) X3, S3 

451 	FORMAT(1H,50X,6HMEAN = ,E16.7,4X,13HSTAND.DEV. = 

1 E16.7) 

WRITE (6,400) 

400 	FORMAT (1H, 50X, 1HC) 

ATT = 16. 
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AM1 = 20. * 0.4342944819 

AR = SQRT(1. - AM1 * AM1/4./B21/B21) 

ARG2 = A21 + AR * B21 *(ALOG(ATT) - X3)/S3 

ST = B21 * SQRT(1. - AR * AR) 

X5(1) = - 40. 

DO 200 I = 1, 40 

PRM = (X5(I) - ARG2)/ST 

IFAIL = 0 

P4 = S15ACF(PRM, IFAIL) 

Y5(I, K) = P4 * 100. 

X5 (I + 1) = X5(I) + 1. 

CONTINUE 

DO 201 I = 1,40 

X6(I) = X5(I) 

CALL LOGAX(1.2, 1.2, 2, 3.5, 4, - 2, 2, 2, 1) 

CALL LINAX(1.2, 1.2, 1, 1.6, 10, - 40., 4., 1, 1, 1, - 1, 1) 

DO 812 I = 1,40 

Y6(I) = Y5(I, 1) 

Y7(I) = Y5(I, 2) 

Y8(I) = Y5(I, 3) 

Y9(I) = Y5(I, 4) 

Y10(I) = Y5(I, 5) 

CONTINUE 

CALL POINTS (X6, Y6, 40) 

CALL POINTS (X6, Y7, 40) 

CALL POINTS (X6, Y8, 40) 

CALL POINTS (X6, Y9, 40) 

CALL POINTS (X6, Y10, 40) 

CALL ENPLOT 

STOP 

4 END 

200 

807 

201 

812 
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PROGRAM JOHN (INPUT,OUTPUT,TAPE 62,TAPE 6 = OUTPUT) 

THIS PROGRAM EVALUATES THE DISTRIBUTION OF XPD 

UNDER THE CONDITION OF A RAIN FADE 

COMMON/GUC1/RM1, SR1 

COMMON/GUC2/P11, A21, B21, X3, S3, AR, ALEV 

EXTERNAL FUN16 

DIMENSION X(40),Y7(40),Y6(40),X6(40),X4(302),Y4(302) 

A50(4),B50(4),C50(6),A51(4),B51(4),C51(6),A52(4),B52 

(4),C52(6),A53(4),B53(4),C53(6),A54(4),B54(4),C54(6),A55 

(4),B55(4),C55(6),X1(18),Y1(18),XP(18),YP(18),Y5(40,5), 

Y8(40),Y9(40),Y10(40),Y11(40),SER(5) 

CALL START (2) 

CALL SCALEZ (1.) 

DO 8 I = 1,4 

READ 9, B50(I), A50(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

DO 18 I = 1,4 

READ 19, B51(I), A51(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL EO1AAF(A50, 850, C50, 4, 6, 3, 11.) 

CALL EO1AAF(A51, B51, C51, 4, 6, 3, 11.) 

C = C50(6) * 0.0001 

D = C51(6) 

DO 28 I = 1,4 

READ 29, B52(I), A52(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 
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CALL E01AAF(A52, B52, C52, 4, 6, 3, 11.) 

AX = C52(6) * 0.01 

DO 38 I = 1,4 

READ 39, B53(I), A53(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL E01AAF(A53, B53, C53, 4, 6, 3, 11.) 

AY = C53(6) * 0.01 

DO 48 I = 1,4 

READ 49, B54(I), A54(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL E01AAF(A54, B54, C54, 4, 6, 3, 11.) 

BX = C54(6) 

DO 58 I = 1 ,4 

READ 59, B55(I), A55(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL E01AAF(A55, B55, C55, 4, 6, 3, 11.) 

BY = C55(6) 

RM = 0.64 

SR = 1.52 

P11 = 3.14159265 

AL = 11. 

PO = 0.033 

G = 1.5 

Al = AX + AY 

Bl = AX - AY 

A2 = AX * BX + AY * BY 

39 

38 

49 

48 

59 

58 
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B2 = AX * BX - AY * BY 

DEN = (1. + AL * AL/21.5) * * 0.014 

PL = 1. - (1. - PO)/DEN 

ARG = AL/G 

ARG1 = 1./ARG 

IFAIL = 0 

P = S11ABF(ARG, IFAIL) 

IFAIL = 0 

P1 = S11ABF(- ARG, IFAIL) 

H = 2.*ARG1*ARG1*(ARG*(P-P1)/2.-SQRT(1.+ARG*ARG) 

+1 ) 

FAC = 1. + (EXP(SR * SR)/P0 - 1.) * H 

SR1 = ALOG(PL * FAC) 

RM1 = RM * PO * EXP(SR * SR/2. - SR1/2.)/PL 

H1 = 2.*ARG1*ARGI*(ARG*ALOG(ARG+SQRT(1.+ARG 

*ARG)) - SQRT(1.+ARG*ARG)+1.) 

THM = 10. * P11/180 

DO 808 K = 1,5 

READ 809, SER(K) 

FORMAT (F4.2) 

STH = SER(K) * P11/180 

AM = EXP(- 2. * STH * STH) 

AO = AM*AM*AL*AL*C*C*SIN(2.*THM)*SIN(2.*THM)/P11 

BO=2. * D 

A = (Al + AM * B1 * COS(2. * THM))/2. 

B = (A2 + AM * B2 * COS(2. * THM))/2./A 

HINT = 10. * ALOG1O(AO) + 10. * ALOG1O(RM1) 

X4(1) = HINT - 3. 

DO 800 J = 1,300 

1 

1 

809 
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A5 = X4(J) 

CALL DISTR2 (AU, BO, A5, DIS) 

Y4(J) = DIS 

X4(J + 1) = X4(J) + 0.08 

AMAX = 1.0 E-99 

DO 801 L = 1,300 

T1 = Y4(L) 

IF (T1 . GE . AMAX) GO TO 803 

GO TO 801 

AMAX = T1 

L1 = L 

A21 = X4(L1) 

B21 = 0.399/T1 

CONTINUE 

WRITE (6,450) A21, B21 

FORMAT (1H,50X,6HMEAN = ,E16.7,4X,13HSTAND.DEV 

. = ,E16.7) 

BM = A * RM * * B 

SB = B * SR 

FAC1 = 1. + (EXP(SB * SB)/P0 - 1.) * H1 

SA = ALOG(PL * FAC1) 

AMM = BM * AL * PO * EXP(SB * SB/2. - SA/2.)/PL 

S3 = SQRT(SA) 

X3 = ALOG(AMM) 

WRITE (6,451) X3, S3 

FORMAT (1H,50X,6HMEAN = ,E16.7,4X,13HSTAND.DEV = , 

E16.7) 

WRITE (6,555) 

FORMAT (1H, 50X, 1HC) 

800 

803 

801 
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1 
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555 
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AM1 = 20. * 0.4352944819 

AR = SQRT(1. - AM1 * AM1/4./B21/B21) 

F0.= 31. 

ALHT = - ALOG(FO) 

ALEV = - 45. 

CALL DO1AEF(ALHT, FUN16, 48, ANSI) 

X(1) = - 35. 

DO 200 I = 1,40 

ALEV = X(I) 

CALL DO1AEF(ALHT, FUN16, 48, ANS) 

P5 = ANS/ANS1 

Y5(I, K) = P5 * 100 

X(I + 1) = X(I) + 1. 

CONTINUE 

CONTINUE 

DO 201 I = 1,40 

X6(I) = X(I) 

DO 812 I = 1,40 

Y7(I) = Y5(I, 1) 

Y8(I) = Y5(I, 2) 

Y9(I) = Y5(I, 3) 

Y10(I) = Y5(I, 4) 

Yll(I) = Y5(I, 5) 

CONTINUE 

CALL LOGAX(1.2, 1.2, 2, 2., 6, - 4, 2, 2, 1) 

CALL LINAX(1.2, 1.2, 1, 1.6, 10, - 40., 4., 1, 1, 1, - 1, 1) 

CALL POINTS (X6, Y7, 40) 

CALL POINTS (X6, Y8, 40) 

CALL POINTS (X6, Y9, 40) 

200 
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CALL POINTS (X6, Y10, 40) 

CALL POINTS (X6, Y11, 40) 

CALL ENPLOT 

STOP 

END 
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PROGRAM JOHN (INPUT,OUTPUT,TAPE 62,TAPE 6 = OUTPUT) 

THIS PROGRAM EVALUATES THE TOTAL OUTAGE TIME 

OF A DUAL-POLARIZATION COMMUNICATION SYSTEM 

COMMON/GUCI/RM1, SR1 

COMMON/GUC2/P11, A21, B21, X3, S3, AR, ALEV 

EXTERNAL FUN16 

DIMENSION X(40),Y7(40),Y6(40),X6(40),X4(302),Y4(302), 

A50(4),B50(4),C50(6),A51(4),B51(4),C51(6),A52(4),B52 

(4),C52(6),A53(4),B53(4),C53(6),A54(4),B54(4),C54(6), 

A55(4),B55(4),C55(6),Y8(40),Y9(40),Y5(40,3),AR1(3) 

CALL START (2) 

CALL SCALEZ (1.) 

RM = 1.52 

SR = 1.38 

Pll = 3.14159265 

THM = 10. * P11/180 

DO8I=1,4 

READ 9, B50(I), A50(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

DO 18 I = 1,4 

READ 19, B51(I), A51(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL E01AAF (A50, B50, C50, 4, 6, 3, 18.) 

CALL E01AAF (A51, B51, C51, 4, 6, 3, 18.) 

C = C50(6) * 0.0001 

D = C51(6) 

DO 28 I = 1,4 

1 

1 
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READ 29, 852(I), A52(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL E01AAF (A52, B52, C52, 4, 6, 3, 18.) 

AX = C52(6) * 0.01 

DO 38 I = 1,4 

READ 39, B53(I), A53(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL E01AAF (A53, B53, C53, 4, 6, 3, 18.) 

AY = C53(6) * 0.01 

DO 48 I = 1,4 

READ 49, B54(I), A54(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL E01AAF (A54, B54, C54, 4, 6, 3, 18.) 

BX = C54(6) 

DO 58 I = 1,4 

READ 59, B55(I), A55(I) 

FORMAT (F5.3, F4.2) 

CONTINUE 

CALL E01AAF (A55, B55, C55, 4, 6, 3, 18.) 

BY = C55(6) 

PO = 0.026 

G = 1.5 

Al = AX + AY 

B1 = AX - AY 

A2 = AX * BX + AY * BY 

B2 = AX * BX - AY * BY 

29 
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DO 266 K = 1,3 

READ 260, AR1(K) 

FORMAT (F4.2) 

STH = AR1(K) * P11/180. 

AM = EXP(- 2. * STH * STH) 

X(1) = 10. 

DO 5 I = 1,30  

AL = X(I) 

AO = AM*AM*AL*AL*C*C*SIN(2.*THM)*SIN(2.*THM) 

/P11 

BO 	2. * D 

DEN = (1. + AL * AL/21.5) * * 0.014 

PL = 1. - (1. - P0)/DEN 

ARG = AL/G 

ARG1 = 1./ARG 

IFAIL = 0 

P = S11ABF(ARG, IFAIL) 

IFAIL = 0 

P1 = S11ABF(- ARG, IFAIL) 

H = 2.*ARG1*ARG1*(ARG*(P-P1)/2.-SQRT(1.+ARG*ARG)+1.) 

FAC = 1. + (EXP(SR * SR)/P0 - 1.) * H 

SR1 = ALOG(PL * FAC) 

RM1 = RM * PO * EXP(SR * SR/2. - SR1/2.)/PL 

H1 = 2.*ARG1*ARG1*(ARG*ALOG(ARG+SQRT(1.+ARG 

*ARG)) - SQRT(1.+ARG*ARG) + 1.) 

A = (Al + AM * B1 * COS(2. *THM))/2. 

B = (A2 + AM * B2 * COS(2. * THM))/2./A 

HINT = 10. * ALOGIO(AO) + 10. * ALOG1O(RM1) 

X4(1)= HINT -3. 

260 

1 

1 
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DO 800 J = 1,300 

AS = X4(J) 

CALL DISTR2 (AO, BO, A5, DIS) 

Y4(J) = DIS 

800 	X4(J + 1) = X4(J) + 0.08 

AMAX = 1.0 E-99 

DO 801 L = 1,300 

T1 = Y4(L) 

IF (T1 . GE . AMAX) GO TO 803 

GO TO 801 

803 	AMAX = T1 

L1 = L 

A21 = X4(L1) 

B21 = 0.399/T1 

801 	CONTINUE 

WRITE (6,450) A21, B21 

450 	FORMAT (1H,50X,6HMEAN = ,E16.7,4X,13HSTAND.DEV 

1 . = ,E16.7) 

BM = A*RM **B 

SB = B * SR 

FAC1 = 1. + (EXP(SB * SB)/PO - 1.) * H1 

SA = ALOG(PL * FAC1) 

AMM = BM * AL * PO * EXP(SB * SB/2. - SA/2.)/PL 

S3 = SQRT(SA) 

X3 = ALOG(AMM) 

WRITE (6,451) X3, S3 

451 	FORMAT (1H,50X,6HMEAN = , E16.7,4X,13HSTAND.DEV = E16.7) 

WRITE (6,454) 

454 	FORMAT (1H, 50X, 1HC) 
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ALEV = - 30. 

FL = 40. 

FO = FL - 20. * ALOG10(AL/4.) - 4. 

ALHT = - ALOG(F0) 

AM1 = 20. * 0.4342944819 

AR = SQRT(1. - AM1 * AM1/4./B21/B21) 

CALL DO1AEF(ALHT, FUN16, 48, ANS) 

IFAIL = 0 

PRM = (ALOG(F0) - X3)/SQRT(2.)/S3 

P2 = S15ADF(PRM, IFAIL) 

P3 = P2/2. 

P5 = ANS 

P6 = P5 + P3 

Y5(I, K) = P6 * 8760. * 60. * PL 

Y6(I) = P3 * 8760. * 60. * PL 

X(I + 1) = X(I) + 0.8 

CONTINUE 

CONTINUE 

DO6I=1,30 

X6(I) = X(I) 

CALL LOGAX(1.2, 1.2, 2, 6.8, 2, 2, 2, 2, 1) 

CALL LINAX(1.2, 1.2, 1, 2., 9, 0., 5., 1, 1, 1, - 1, 1) 

DO 262 I = 1,30 

Y7(I) = Y5(I, 1) 

Y8(I) = Y5(I, 2) 

Y9(I) = Y5(I, 3) 

CONTINUE 

CALL POINTS (X6, Y6, 30) 

CALL POINTS (X6, Y7, 30) 
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CALL POINTS (X6, Y8, 30) 

CALL POINTS (X6, Y9, 30) 

CALL ENPLOT 

STOP 

END 
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SUBROUTINE GAUSS (A2, B2, A, GAS) 

P11 = 3.14159265 

ARG = (A - A2) * (A - A2)/(2. * B2 * B2) 

GAS = 1./(SQRT(2. * P11) * B2) * EXP(- ARG) 

RETURN 

END 

SUBROUTINE DISTR3 (AO, BO, A, DIS) 

EXTERNAL FUN15 

COMMON/GUC/ASM, AST 

COMMON/GUC1/RM1, SR1 

P11 = 3.14159265 

WM = A0 * RM1 * * BO 

SW = BO * SQRT(SR1) 

AM = 0.4342944819 

AM1 = 20. * AM 

TO = 10. * AM * ALOG(WM) 

SO = SW * 10. * AM 

AS1 = 1./(2. * SO * SO) 

ASO = 1./(SQRT(P11 * 2.) * SO) 

ASM = 2. * SQRT(2.) * SO/AM1 

AT1 = A - TO 

AST = SQRT(2.) * AT1/SO 

CALL DO1AFF (FUN15, 48, ANS) 

DIS = ASO * EXP(- AS1 * AT1 * AT1) * ASM * ANS 

RETURN 

END 

FUNCTION FUN15(X) 

COMMON/GUC/ASM, AST 

FUN = EXP((ASM + AST) * X - EXP(ASM * X)) 
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FUN15 = FUN 

RETURN 

END 

SUBROUTINE DISTR2 (A0, BO, A, DIS) 

EXTERNAL FUN15 

COMMON/GUC/ASM, AST 

COMMON/GUC1/RM1, SR1 

P11 = 3.14159265 

WM = AO * RM1 * * BO 

SW = BO * SQRT(SR1) 

AM = 0.4342944819 

AM1 = 20. * AM 

TO = 10. * AM * ALOG(WM) 

SO=SW*10. * AM 

AS1 = 1./(2. * SO * SO) 

ASO = 1./(SQRT(P11 * 2.) * SO) 

ASM = 2. * SQRT(2.) * SO/AM1 

AT1 = A - TO 

AST = SQRT(2.) * AT1/SO 

CALL DO1AFF (FUN15, 48, ANS) 

DIS = ASO * EXP(- AS1 * All * AT1) * ASM * ANS 

RETURN 

END 

SUBROUTINE DISTR3 (RM, SR, A0, BO, A, DIS) 

EXTERNAL FUN15 

COMMON/GUC/ASM, AST 

P11 = 3.14159265 

WM=AO*RM**BO 

SW = BO * SR 
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AM = 0.4342944819 

AM1 =20. *AM 

TO = 10. * AM * ALOG(WM) 

SO = SW * 10. * AM 

AS1 = 1./(2. * SO * SO) 

ASO = 1./(SQRT(P11 * 2.) * SO) 

ASM = 2. * SQRT(2.) * SO/AM1 

AT1 = A - TO 

AST = SQRT(2.) * AT1/SO 

CALL DO1AFF (FUN15, 48, ANS) 

DIS = ASO * EXP(- AS1 * AT1 * AT1) * ASM * ANS 

RETURN 

END 

FUNDTION FUN16(X) 

COMMON/GUC2/P11, A21, B21, X3, S3, AR, ALEV 

EXTERNAL S15ADF 

ST = 1./2./SQRT(2. * P11)/S3 

ARG = (X + X3) * (X + X3)/2./S3/S3 

Al = (ALEV - A21)/SQRT(2.)/SQRT(1. - AR * AR)/B21 

B1 = AR * (X + X3)/SQRT(2.)/SQRT(1. - AR * AR)/S3 

A = Al + Bl 

IFAIL = 0 

P = S15ADF(A, IFAIL) 

FUN16 = ST * P * EXP(- ARG + X) 

RETURN 

END 
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