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ABSTRACT

The research reported in this thesis is concerned with
algorithms for designing for statistical variations in

the performance of manufactured circuits. The variation

in performance is a consequence of variations 1in component
parameter values which in turn result from uncertainties

in the process of manufacture of these components or to
their dependence on environmental effects such as
temperature.

The research contribution can be seen to comprise three
distinct elements: (a) A review of the general field of
statistical design (chapter 1) and an assessment of
existing techniques and algorithms, including a clear
problem formulation and classification (chapter 2).

(b) A practical investigation of some of the techniques
reviewed and the proposal, implementation and general
investigation of new algorithms to extend the range of
problems addressed (chapter 3,4 and 5) and (c) the
identification of areas of further research (chapters 2
and 6).

The thesis commences with an overview of the general

field of statistical design, followed by a critical

review of existing algorithms and techniques addressed

to some particular statistical design problems (namely
tolerance assignment and design centering). The next

three chapters present contributions of new algorithms

and techniques. In chapter three we discuss branch

and bound methods of discrete optimization, applied to

the tolerance assignment and design centering problems.

A geometrically based feasibility testing procedure,
INDENTATION, is described and demonstrated for a particular
circuit example. In chapter four iterative Monte Carlo
based design centering methods are described and
demonstrated for circuit examples involving up to 43
variable components. Special sampling schemes for reducing
overall computational effort are discussed and compared.

In chapter five, iterative Monte Carlo based tolerance
assignment methods are considered. Results of a practical
investigation of an existing method, TOLERATE, are presented
and its shortcomings are demonstrated. A new method,
PERTOL, which overcomes some of these shortcomings 1is
proposed and demonstrated for practical circuit examples.
Finally, in chapter six an assessment of existing techniques
(including those reported in this thesis) is made and areas
of further research identified.
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STATEMENT OF ORIGINALITY

As far as the author is aware, the opinions and techniques
presented in this thesis are his own unless otherwise
acknowledged by making specific reference. The main

contributions are deemed to be the following:

-

1. The proposal and implementation of an iterative, small
sample, Monte Carlo based, statistical method (called MYOSE)
for design centering, and its verification for practical |
circuilt examples (chapter 4). This includes the proposal
of specific criteria for choosing a direction of search

and step size (to move the design centre to improve yield)

based on results obtained in Monte Carlo analysis.

In addition, in the case where only certain discrete values
for the design centers may be available, the demonstration
of the efficacy of a procedure for rounding of the optimum

continuous solution to the nearest discrete solutions.

2. The proposal and incorporation in MYOSE (chapter 4)

of a special sampling scheme (called the common points scheme)
to reduce computational cost by re-employing both for

design centering and yield estimation; at current iteratioms,
circuit analyses performed at previous iterations. In
addition the demonstration of the added efficiency of this
sampling scheme for purposes of ranking yield estimates when
their confidence. intervals overlap; and a practical comparison
of the common points scheme with a standard sampling scheme;

called correlated sampling /1/.



3. A practical assessment of an existing Monte Carlo based,
statistical method of tolefance assignment, TOLERATE /2/
(chapter 5). The proposal and implementation of a more
effective technique, called PERTOL. This includes the
proposal of specific critefia_for choosing nominals and
tolerances on the basis of }esults obtained in Monte Carlo
analysis. In addition a practical comparison of the two

methods when applied to particular circuit examples.

4. The proposal and implementation of a geometrical technique
(called INDENTATION) for testing the worst case feasibility
(i.e. 100% yield) of tolerance solutions; as part of a
general branch and bound method /4/ for tolerance assignment
and design centering for the situations where only discrete
values of tolerances and nominals may be available (chapter 3)
This includes a demonstration of the applicability of the

method for a particular circuit example.

5. A critical review and classification of existing methods

for tolerance assignment and design centering. (chapter 2).

18

6. A review of specific problems and techniques in the general

field of statistical circuit design. (chapter 1).

7. An identification of the outstanding problems in the field

of statistical design of electrical circuits, and proposals for

future research in this area in the light of the contributions

in this thesis. (chapter 6).
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CHAPTER 1

STATISTICAL CIRCUIT DESIGN - THE SCENARIO

1.1 INTRODUCTION

The increasing degree of reliance placed on computer aids

by circuit and systems designers may be traced to two

broad tfends. Firstly, the availability in increasing volume
of progressively cheaper and more powerful computing |
facilities. Concomitant with this trend has been the discovery
and development of numerous algorithms and programs /5/7%
addressed to the solution of various problems in the design
and manufacture of electrical circuits and systems. Secondly,
there has been a proliferation in the range and compf?ity

of available devices and circuits, such as integrated circuits.
For these, some of thé traditional methods of approximate
modelling and laboratory simulation and experimentation (e.g.

breadboarding) are inadequate.

Three broad areas of engineering activity for which computer

aids are aﬁailable may be discerned. Firstly, in circuit design,
where the principal aids are circuit simulators. These comprise
facilities for describing to the computer prOgram; the topology
of the circuit; the‘component types and their parameter values.
The program employs appropriate mathematical models of the
electrical behaviour of the relevant components, and

facilitates numerical simulation to study and change the circuit

%An extensive review of available circuit analysis packages
is reported by Bowers and Zobriest et al /6/.



to improve its performance. Secondly, computer aids are
essential in the arca of component layout, the routing of
interconnections, the drafting of artwork for photo-
lithographic proéésses etc, in the manufacture of many types
of electrical circuits, especially integrated circuits /7/.
Thirdly, with the increased complexity of performance of
circuits and systems, and for greater cost effectiveness,
computer aids are increasingly being brought to the factory
floor to aid activities such as testing, verifying performance

and detecting faults in manufactured circuits and systems /8/.

Therefore in some specific areas of application, computers
help perform traditional design tasks more efficiently, and

in others design activities are introduced which could only be
performed crudely and with a large degree of approximation

if at all by non computer aided methods. One such area

of application in the field of circuit design, is statistical
design. The most common application of computers in circuit
design is in performing analyses of circuit behaviour to
compute various respoﬁses such as voltages, currents, power
gains, time delays, sensitivities etc. This information

is then used either manually by the designer, or aufomatically
by the computer program, to make adjustments to the

proposed circuit, to improve its performance with respect to
appropriate criteria. Here the designer is experimenting

with the nominal circuit. However, when a circuit is to be
manufactured in large numbers;the designer must analyse

and design for statistical spreads in the performance of

nominally identical circuits, arising from statistical

21



spreads encountered in values of the parameters of their
constituent components. This latter design activity is

called statistical design.

For illustration consider the representation of figure 1.1,
For a particular set of stimuli S = Sl cerees Sr; the circuit

are functions of the component

responses flfz R

parameters P = pip, ...« Py, i.e. fj = £f5(pp .- Pyl

j=1 .... m. For example, for a frequency selective circuit,
the parameters may be values of the resistances, capacitances
and inductances, while the‘fj (.) may be responses such as
insertion loss, group delay etc, at a number of frequencies.
Uncertainty is associated with the values of the component
parameters and thus the values of the response functions, in
the following sense. if a number of nominally identical
circuits are to be manufactured (assembled or fabricated) from
their constituent components, then variations in the processes
of manufacture of the components cause the values of their
parameters to be statistically distributed. Consequently,

the response values of the manufactured circuits also display
variation from one circuit sample to another. In addition the
response of a particular circuit whose component parameters
have particular values pl*pz* oo pk* at the time of

manufacture, will experience a non-deterministic drift in

response, as a result of drift in the values of these component

parameters due to factors such as fluctuations in the
environmental conditions of service (e.g. temperature or

humidity) or component ageing.

22
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The spread in performance may be such that some of the
manufactured circuits fail to meet the required limits

on response values specified by the customer. Therefore,
yield®>® will be less than 1 (100%). The failing circuits
need then be discarded or repaired, hence incurring additional
cost. The extent of spread of response may be reduced and
hence the yield increased by employing more precise (i.e.
subJect to a smaller extent of spread) components., However,
precise components are more expensive. Therefore, the circuit
designer may seek a compromise between yield énd precision
(generally called tolefance) of component paraméfers to
minimize overall cost. This particular design problem 1is
called tolerance assignment. On the other hand yield may

be increased by re-assigning the nominal values of the component

parameters, while their tolerances remain fixed. This

latter procedufe is called desigh centering."Ih the géneral
case a combined procedure for reassigning both tolerances

and nominals will lead to the design of the most cost effective

circuits.

NumeTous algorithms have been proposed for various formulations
of the design centering and tolerance assignment problems.

The work reported in this thesis is addressed to a critical

OYjeld is that proportion of manufactured circuits whose
response - meets the limits Spec1f1ed by the customer.
Yield will be formally defined in section 1. 2

BFrom the point of view of yield, we shall only consider
circuits which are assumed to be free from gross errors,
such as wiring faulfs, mask misalignment, crystal defects etc.:
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survey of the nature and limitations of existing methods, and
the proposal and investigation of new and improved methods.
In chapter two several formulations of these design problems
are presented, together with a classification and critical
review of proposed solution techniques. The nextlthree
chapters then report the proposal, implementation and general
investigation of a number of new algorithms. Finally, in

chapter six, we outline areas of future research in this field.

The aims of this chapter are two fold. Firstly, we intro-
duce a consistent terminology and notation to be then used
throughout this thesis. In addition the expected parameter
distributions and methods of sfatistical analysis are briefly
reviewed. Secondly, we note that tolerance assignment and
design centering are particular instances of statistical
design problems. Therefore the latter half of this chapter
discusses various scenarios to illustrate the wider scope

of statistical design.

1.2 NOTATION AND TERMINOLOGY

Let p A PPy ++e¢ Py be a general set of values for the
component parameters of the circuit in question. P can be
thought of as a point in a K-dimensional space (called the
input space). The variability of P can be represented by

a K-dimensional probability density function (p.d.f.), denoted

by #(P). Therefore the following equatioh holds:
w

'j...:i @(P) dpj.....dpg = 1 1.1

—m‘

In practice the range of variation of the individual parameters
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will be truncated i.e.

@(P) = 0 for 5 < P; ;_ﬁj j=1 .... K 1.2
Where P; and ﬁj are constants, respectively termed the

lower limit and the upper limit of variation of the jth

parameter. Also consider the vector of tolerances

i

TAtt .... tK where ti = (pi-Bi)/z i=l ... K
and the vector of nominal vélues:

0 o o 0 _ .
P é=p1 ~vese Py where, P, = (pifRi)/Z

Equation 1.1 may then be rewritten as

P * P;th ' '
Ji vessesesns ] g(P) dp; dp, dpg =1 1.3
o _ 0
P = P, Y

Relation (1.2) defines a region in the input space, called

the tolerance region, and denoted Ry such that
Pe R, if B(P) >0 1.4

Clearly RT is a hyper rectangle; with center P° and sides
of length Zt,, 1i=1 ;..;; K; A geometrical representation

is given in figure 1;2; Also we denote by fi(P); i=l .... m
the response functions of the circuit. The'variability of
these responses may be modelled in terms of another joint
probability density function; which is denoteé as

Q(flfz -++s £5). In addition we denote by Qi(fi) the

particular p.d.f; of the ith performance function. The
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problems of statistical analysis involve computation of
various parameters of the function Q(.). For example the
customer for whom the circuit is manufactured may require its

response to be constrained such that

£, 26 (P <f isl....om | 1.5

where f£. and f£; are constants. The proportion of
manufactured circuits which meet condition 1.5 is termed the

production yield, and may be written as the multi-dimensional

integral
fm f1
Yield = é ---£ R(fy oo £) dF, ... AF, 1.6
-]l =)

Alternately we may define a testing function g(P) reflecting
the acceptance PTr rejection of a circuit,'such that
g(P) = 1 if -:-E'i i f'l (P) i fi i = 1 essase ‘MM 1.7

and = 0 otherwise.

Yield is then the following expectation.

. Pp * t POt ty
Yield = <g(P)> = f N i g(PYB(P) dpl cees dpp 1.8
(o] (o] '
Py = Py T Y

Relation (1.7) allows definition of another region in the input

space; the region of acceptability, R,, such that

PeR, if g(P) =1 1.9

Clearly RA

values which result in acceptable circuits. With the

represents all those combinations of component

definition of the tolerance region R, and the region of



acceptability Ry it is useful to consider a geometrical
interpretation of yield, as represented in figure 1.2.

Here we consider a 2 dimensional example (K=2), with
nominal P° = pi, pg and tolerances T = ts tZ' Initially
we assume that the p.d.f. @#(P) is bivariate uniform and

the parameters are statistically independ@nt /9,\chapter 5/,

i.e. @) = 8,(py)-9,(p,)
(.1 o °
and = -2—1; for (Pl N tl)_<_P1=§ Cpl * 1;1)
1
2, (@) 1 .
L= 0 otherwise ' - 1.0
and
1
= 9t o - °
Zt, for () - t)Sp(Py * 1))
?,(py)
= 0 otherwise

Then, yield is the ratio of the areas (in the general case

volumes) of the regions (RTnRA) ‘and RT' That is;

Yield = V(RpNR\)/V(R.). 1.11.

Where V(.) indicates volume. For the more general case the
parameter values may be statistically dependent (correlated)
and the individual probability density functions may be
other than uniform. In that case the function @(.) may be
taken to represent a weighting of the points of Ry. Hence
the volumes in eipression 1.11 should now be interpreted

as weighted volumes.

1.3 STATISTICAL ANALYSIS

Statistical analysis involves computation of wvarious

parameters of the output probability density function Q(.).

27
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For example, for a particular set of nominal valuves, tolerances
and input p.d.f., it ie very important to estimate the

expected production yield. For the present discussion, it is
assumed; (i) that for a set of values P* for the K
parameters of the circuit in question, it is possible to
evaluate the m response functions, and (ii) the form of

the input probability density function is'known. In practice
the first assumption is true for most circuits of interest,
although evaluation of circuilt responses may involve conside;able
computational expense. However, the statistical distribution
of component parameters is not generally known. In some
situations, namely discrete components, a simple choice (such
as Uniform or Gaussian p.d.f.) may suffice. However, for
integrated circuits, the function ¢#(.) may be very complex.

The question of suitable choice for @#(.) is discussed later.

A thorough review of different methods of statistical
analysis is reported by Tahim /10/. We shall re-iterate
the main features of two methods, namely, Monte Carlo
analysis and the method of moments. These are emphasised
here because of their importance as integral parts of certain
statistical design methods; to be discussed in this thesis.
Monte Carlo analysis is a direct and general method,
applicable to all circuit problems. However, it is
computationally very expensive and may be prohibitively so
in many cases. On the other hand the method of moments,
although computationally cheaper; involves considerable
approximation. However; the approximations may not hold
in all situations. Nevertheless; the method of moments

is useful in several statistical design methods.
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1.3.1 MONTE CARLO ANALYSIS

In this method, illustrated in figure 1.3, a number

N; P1 P2 ceses PN’ of sets of sample circuit values are
generated. These values are obtained by suitably trans-
forming pseudo random numbers, so that they are distributed
according to the relevant p.d.f. @(.). This is illustrated
for a two dimensional example in figure 1.4. The sample
circuits are analysed and a representation of the performance
distribution is obtained. To illustrete its salient
features, the use of the method for estimating yield is

discussed here.

The Monte Carlo method simulates the process which takes place
in a circuit production run. Circuits are assembled using
components randomly picked from particular bins%®. In the
equivalent computer exercise,; random numbers are generated
with a uniform distribution, in the interval O to 1 and

are then transformed (this is illustrated for one component

in figure 1.5) to satisfy the required p.d.f. Each set of
component parameter values, representing a manufactured circuitl
is analysed and the corresponding values of the performance
functions are obtained. Each analysed circuit is assigned to

one of two mutually exclusive classes namely acceptable and
reject.- An acceptable circuit is one which meets all performance
requirements such as relation 1.5. A reject circuit is one
which fails at least one requirement. The process is repeated

a number of times and yield is estimated as follows.

®Although for integrated circuits, individual components may
not be handled, the analogy still holds.
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If, of N analysed circuits NA are found to be acceptable
then Y = NA/N is an unbiased estimate® of the true yield

Y. Y is a random variable, since if the experiment were

to be repeated with a different set of N sample circuits,

a different value would be obtained for Y. It is appropriate
to consider the accuracy of the estimate ?, and its
dependence on the number of circuits analysed. Specifically,
it is required to construct confidence intervals, so that

we can make statements like

(Y-C) < Y < (F+0O) 1.12
with a particular degree of confidence., Here, C denotes

some constant called the confidence interval.

Each circuit analysis and test for compliance with performance
requirements may be taken to be a BernoulliB trial. If the
probability that a circuit with iandomly selected component
values is acceptable, is Y, then the probability of exactly

NA acceptable circuits in N trials is

N-NA 1.13

N!
(N-NA)! NA!

F(NA) = YN 1-v)

The function F(NA) 1is a Binomial probability density function

(p.d.f.) with mean and variance given by:
u = NY | 1.14

%In statistics an unbiased estimator is a random variable,
whose expected value is the parameter being estimated. An
unbiased estimate is an estimate provided by such an
estimator. /9, chapter 7, page 230).

BA Bernoulli trial is a random experiment which can only
have one of two outcomes, e.g. the tossing of a coin.



and o? = NY(1-Y) 1.15

When N is reasonably 1large, the Binomial distribution may

be approximated by a Gaussian distribution. Therefore, the

L d

p.d.f. of the random variable Y may be written as

5 2
~ 1 (Y'NY) _
F(Y) = So/im.  ©XP -1 —_— 1.16
Y oy
where the mean :uY and variance 0§ are given by:
uy =Y - 1.17
and Sy
0% = Y_Q_i)_ 1.18

N
Thence the confidence interval for the Yield estimate Y can
be constructed as follows. The probability of Y falling

in the interval (?-eqY) to CY+eoY) is the integral

Y +
EO’Y‘
L F(Y)ay 1.19
Y - Ec?f
2
1 | = 3 1.20
7L e exp 5, . & ’
Y-y ’
where x = — and e 1is a constant.
Oﬂ‘
Y

The function F(.) is now Gaussian. The most commonly used
value for € 1is 2; leading to a probability of 0.95 that the

true value of yield is between the limits (?-ZGﬁ and (?+2%J-

Clearly Monte Carlo analysis is a very general procedure and
can accomodate any type of circuit (linear, non-linear etc)

and any number and type of circuit response. However, the
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repetitive analysis of sample circuits is computationally
expensive. The total cost of a Monte Carlo analysis is
roughly proportional to N; the number of sample circuits
analysed. However, as embodied in equation 1.18 the accuracy
of the resulting estimates is proportional to

the inverse of the square root (i.e. 1//N) of the number

of analyses. Therefore to double.the accuracy, N has

to be increased four fold. For different values of yield,

the dependence of the confidence interval on the sample

size, is depiéted in figure 1.6. The corresponding confidence
level is 95% i.e. the probability of bracketing the true yieid,

in the appropriate confidence intervals is 0.95.

1.3.2 THE METHOD OF MOMENTS

Whereas in the Monte Carlo method an empirical characterization
of the output p.d.f. €(.) 1is constructed, here we consider
approximation to Q(.) constructed from a knowledge of the
moments of the input p.d.f. @(.) and an approximation of

the performance function in terms of the input parameters.

Each of the performance functions fi(pi); i=1 .... m, may be

expanded in Taylor series /11, Sec.4.10 / to give analytic
expressions for these functions in the vicinity of the

. . (o] .
nominal point P~. 1.e.

3%f.

Bf, i

K .
- o} 1 .
£,(py ovve pg) = £5(PO)+] AP *}

r=1 Bp.ro

where the Ap, are deviations from the nominal values,

L e

K
1 Ap,
s:

=1 s=1 3P, 9P,

(o}

ice- Api = pi - pio

32
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Neglecting second and higher order terms in 1.21, we get 1.22

of
—= Ap, 1.22

£:(pp ++- D) = £5(p°) + ;=1 -~

We may then easily obtain the following expression relating
the variances o¢? ; i=1 ,.. K, of the input parameters to
P.
1

the variances 0;. ; j=1 ... m of the performance functions,as:

J
. § afj . § K afj ij
(o} . = ’ — (o} . + 2 ——  S—— COV (p p ) L) 1.23
f ’
jooi=19p, Pi =1 §=1 3p_ 3pg s

Where COV(pr,pS) is the covariance between parameters
P, and P, - Further the mean value of fj, will clearly
be fi(po). Expressions equivalent to 1.23 may be obtained

for all m performance function /3, chapter 3/.

According to the central limit theorem /9, chapter 5/,

joint probability density function of the performance
functions will be approximately m-variate Gaussian 1if several
conditions are met /13, chapter 2-3/. These are;

(a) the number of component parameters are 1erge, (b) the
variances of a few parameters are not much greater than those
of all the others; (¢) the individual parameter p.d.f.'s

are symmetrical about the nominal values. The diagonal
elements of the variance-covariance® matrix of Q(.) are

given by expressions such as 1.20. Similar expressions may

“For an m dimensional random variable, the variance-
covariance matrlx is an (m by m) symmetrical matrix.
The elements sj3 - i =1 .... m, j =1....m5 are the
covariances between component i and j of the random variable.



be obtained relating the covariances of different performance
functions to the variances and covariances of the input
p.-d.fs, These form the non-diagonal elements of the

variance covariance matrix of Q(.)

Even such an approximafion to Q(.) as a multivariate
Gaussian p.d.f., presents formidable computational problems
for obtaining yield, since it involves the evaluation of an

m dimensional integral, where m may be large.

However, the Normal (Gaussian) approximation can effectively
be used to derive bounds on the true value of yield. We
first consider the notion of "partial yield". In all there

i=1l ... m, where Y. 1is

will be m partial yields, Y i

is

the probability that a correctly manufactured circuit will

meet the ith, performance requirement, i.e.

Y.
i

Probability (£1_< fi(P) < £3)

or the integral

,.<
1]
I =

9 (£,)df, 1.24

If all the performance functions were independent, i.e.

Q(.) was the product

m
Q = TT Qi 1.25
1= 4

m
Yy =TT Y. 1.26
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In practice 1.25 does not often hold, and 1.26 is replaced
by the inequality 1.27.
m
Yy >TT v, 1.27
1=1 1 P .

Hence, 1.27 provides a lower bound on the yield.

Evaluation of the Yi’ involves single dimensional integrations
(expression 1.24). These may be easily performed, since the

Q; are assumed Gaussian with means and variances calculated
from expressions such as 1.23. Tighter bounds on yield may

be obtained as follows. Now the probability of occurrence of

a reject circuit is the joint probability of occurrence of
failure to meet at least one of the m performance
requirements. Consider the following additional notation:

Let xj denote the cohdition that the jth performance
requirements is met, i.e.

£ < £(P) < £ | 1.28

and ﬁj that the condition is not met. Then clearly

Y; = Pr(x;), where Pr(') denotes probability.
Therefore we may write:
(1"Y) = Pr(il + >_(2 + oL S-CHI) 1.29

From elementary probability theory /9, chapter 2/, 1.29 may
be rewritten as:

(1-Y) = {P, (’—(1) + Pr(z'c'z) + veeee P (X)) } #

r m
{Pr(iliz) + Pr(ilis) * oieees Pr(i&ij) + Pr(X > Xp) P+ ...,
i#j

+ (-1) Pr(¥ %, eeer. X)) | 1,30



If we replace Pr(ii), Pr(?ii) etc as follows.

W. = Pr(X.
3 r(xJ)

Wij = Pr[xixj)
and Wijk = Pr(xixjxk)

Then (1.30) may be rewritten as

) b T
(1-Y) = W~ + ' ‘ W. - . w‘ + oo 00
F=1 3 f=1 Kejel IK 0 fo1 Kejel g=ke1l K

Returning to equation 1.30, we note that the right hand side"
is the sum of (Zm-l) braéketed addends of non increasing
numerical value with alternating signs. According to the
Benferoni inequality procedure /3, chapter 3/, if we truncate
the right hand side of‘1.30, and use only the first K
bracketed addends, then the value of the left hand side will
be bounded by the first (K-1) and the first K addends. We
may use this to obtain closer bounds on yield than 1.27.
Equation 1.3l shows three addends. Thus the following bound

on yield is obtained:

h T TETOY
1 - W. + W., =- ) <Y <
f=1 3 4=l K=j+1 3K §=1 Keje1 p=k+l ke T 7

m m-1 m
1 -3 w. + ) ) W. 1.32

j=1 3 j=1 k=j+1 Ik
Clearly,'Yi = 1-W, etc.
Hence evaluation of the W., the Wij and the wijk’ involve

the integration of univariate, multivariate and trivariate

36
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Gaussian probability density functions respectively e.g.

£. f.

W... = (+
g O f
1 7

£
F(k Q. 9. O
i

k

The procedure for obtaining yield bounds, outlined above is
computationally cheaper than Monte Cario analysis. However,
it relies on several series of approximations and

assumptions and is therefore less general and less reliable.

1.4  PARAMETER VALUE DISTRIBUTIONS

To perform effective statistical analysis, it is ﬁecessary

to have knowledge of the statistical distributions of the
component parameter values. Distinct differences exist

in the distributions encountered in the parameters of components

in discrete circuits and those in integrated circuits.

1.4,1 DISCRETE COMPONENTS

For discrete passive elements, i.e.resistors, capacitors,
and inductors, it is adequate to determine-the nominal
values and form of the individual parémeter p.d.f. The
parameters of the various components in a circuit will be
statistically independent. Therefore, the K dimensional
joint p.d.f. ¢(.), may be written as the product of the

individual parameter p.d.fs. i.e.
K . .
e() = T 8.(p;) 1.33
i=1 -

The compohent manufacturer may impose tolerance limits on
a batch of components by removing out of tolerance components.

It is therefore convenient to write 1.33 as

K :
0 -
@(p,P°,T) —1;T=1 8 (09t ,p) 1,34
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where as before P° and T are respectively, the nominal

value and tolerance vectors. Further we expect
) - o_ .
¢l(pi’p1’ti) —’0 for (pj tl) > pl ] 1.35

or (pf+t.) < p;
The form of the p.d.f. for most manufactured components is
found to Be Gaussian (figure 1.7a), when they leave the
production line /12, chapter 6/. This is especially the case
if a manufacturer miies nominally identical components from
batches produced at different times. Manufacturers often
select components from the middle of the distribution to sell
as precision components. Therefore for particulr nominals and
tolerances, the distributions encountered by the component
purchaser may be of the form shown in figure 1.7b, and
1.7c. For some types of componeﬁts, e.g. thin film
resistors, the probability densify function is often found

to be markedly skewed, as shown in figure 1.8.

For purposes of circuit analysis discrete active circuits are
represented by equivalent circuits. For example, the hybrid

I model, which is applicable when the transistor is used

in linear a.c. applications. The different parameters of

the equivalent circuit will then be inter-related and their
statistical distributions correlated. The interrelations and
correlations may be characterized from a knowledge of the
physics of the device or more commonly from measurements made

on a representative number of sample components.
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1.4.2 INTEGRATED CIRCUIT COMPONENTS

The values of the parameters of the components of an integrated
circuit are determined by the physical properties (e.g.
material properties such as mobility, doping levels, diffusion
constants etc) of the material of which the component is

made and the geometrical dimensions of its layers. In general
ﬁarameter tolerances in integrated circuits are larger than
those encountered in discrete components, and there are
distinct differences in the forms of the distributions
encountered. For example, the values of the resistances

depend upon sheet resistivity. Uncertainty in the manufacturing
processes results in a tolerance of a few percent, on the

value of the sheet resistivity from slice to slice. However,
the variation of resistivity in circuits on one slice will

be very small., Further this variation will be very gradual
over the slice. Therefore althoﬁgh large tolerances may be
associatéd with individual resistors, the statistical
distribution of values of resistors in close proximity on
single chips, will be correlated, thus reducing the overall
tolerance effect. Therefore the designer of integrated
circuits may exploit this fact by designing circuits whose
performance depends upon ratios of resistances. Similarly

the parameters of other components, such as the B8 values

of transistors, will be correlated, especially when they are

in close proximity. Such correlations must be characterized
and taken into account when performing statistical analysis

of integrated circuits.



Tolerances in the lateral dimensions of integrated components
also cause considerable variation in parameter values.
Inaccuracies may result from errors in layout or cutting of
master drawings and in the photographic reduction processes.
Further, inaccuracies may occur in positioning masks with
‘respect to previous patterns. In general, such surface
dimension tolerances will tend to increase towards the edge
of a circuit. The uncertainty in the definition of the edges

may be reduced by making the sizes of the components larger.

Generally the p.&.fs_gncountered in integrated circuits
will be con;inuous and for many parameters will approach a
Gaussian form. However, for several important situations,
the distributions will be skewed. For example a major
source of error in a resistor will be its path width, and
the chance of it being too narrow would be about twice the
chance of it being too wide. Also the value of resistance
for a particular length and depth is inversely proportional
to the width. Therefore a * 50% tolerance in width would
result in a tolerance on resistance values from +100% to

-33% with a marked skew towards the higher resistance values.

To summarize this discussion, typical tolerances of
integrated circuit components are given in table 1.1

/12, chapter 6/.

1.5 STATISTICAL DESIGN - SOME SCENARIOS

Although in this thesis we are largely concerned with

algorithms for tolerance assignment and design centering, many
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other instances of statistical design problems may be
identified. Therefore in this section we briefly examine

some design scenarios. We commence however, with some comments
on our specific problem (i.e. tolerance assignment) and
introduce geometricél interpretations which will be useful

for further exposition.

1.5.1 TOLERANCE ASSIGNMENT AND DESIGN CENTERING

For discrete compohents, the parameter p.d.fs will be
centered about the nominal value and be truncated at the
tolerance limits. The region of variation in the input

space may then be represented by a rectangle centered®

about the nominal value (design center) with sides of length
Zti, where ﬁhe ti are the relevant tolerances. We illustrate
this for a 2-dimensional case (K=2) in figure 1.9. Also
shown are the two p.d.fs which in this case are taken to

be, truncated Gaussian and uniform, for parameters p; and

p; respectively. The region of acceptability, (defined

in equation 1.9) is a mapping in the input space of the
performance specifications defined in the output space.
Consider figure1l.10(a) where both the tolerance region RT

and the region of acceptability Ry are represented.
Initially, assume both parameters to be uniformly distributed.
Then yield will be the ratio of the volume (area for K=2)

of region (RpMRy) to the volume of region Rr. In the

illustration of figure 1.,10(a) this ratio is less than unity.

“In the case of skewed p.d.f., the nominal value may by
definition be taken to be the mid point between the tolerance
limits.



To increase the yield the designer may keep the size of the
tolerance region fixed and increase the overlap between
the two regions. This may be achieved by choosing the
nominal values such that the tolerance region is more
centrally placed inside the région of acceptability as
illustrated in figurel.10(b). "Hence, this process is called
design centering. Alternately the designer may accept the
nominal value and decrease tolerances, and therefore reduce
the size of the tolerance region. This latter procedure is
called tolerance assignment. Figures1l.10(b) and 1.10(c)
illustrate application of these two alternatives to the
situation of figure 1.10(a). Tiénter tolerances imply
better grade and therefore more expensive components.
Therefore, the designer may invoke a combination of both
procedures to obtain a suitable trade-off between component

costs and the cost of discarding or repairing failed circuits.

For the situation where all the parameters are not independent
and uniformly distributed, the relevant p.d.f. @(P) will

define a weighting of every point in Rg. The yield
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will then be a ratio of weighted volumes. A similar geometrical

interpretation of tolerance assignment and design centering may

also be considered in this situation.

In the manufacture of integrated circuits, individual components

cannot be sorted and therefore tolerances cannot be placed
upon individual parameters. For many parameters, tolerances.
determined by the manufacturing process have to be accepted
and the designer may then attempt to maximize yield by

re-assigning nominal values. However, for other components,
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for example resistors, tolerances on parameter values are
determined by the chip area occupied by the component. The
larger the area, the smaller the tolerance. However, larger
component sizes increase the overall area occupied by the
circuit. This increases the cost of processing the circuit
and may result in a greater incidence of catastrophic faults.
Here again a higher cost is associated with tighter tolerances.
Therefore both tolerance assignment and design centering

procedures are of relevance to integrated circuits.

1.5.2 CHOICE OF PERFORMANCE SPECIFICATIONS
(a) Specification Sensitivity

Iﬁ the discussion so far it has been assumed that the
specifications on perfbrmance (expression 1.7) are

invariant and the engineer has to design for component value
statistical spreads with respect‘to these spécifications.
However, the designer may find response spreads are such

that even after tolerance assignment and design centering,

the resulting circuits are still too expensive to manufacture.
The designer may then éxplore the effect on yield of altering
various specifications to consider possible trade-offs
between different specifications. It may be possible to offer
to the customer, circuits which are appreciably cheaper, but
have specifications more commensurate with performance
spreads achi&vable with available component spreads. The
performance requirements are often somewhat arbitrary and

there is usually ‘the possibility of suitable trade-off of

different spetifications{‘
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The sensitivity of yield to different performance speci-
fications may be explored using Monte Carlo analysis.
Associated with each of the N sample circuits is a number
m of values for the performance functions. Overall yield is
estimated as the proportion of the N analysed circuits
which simultaneously meet all performance specif%cations.
Similarly the partial yields (introduced in section 1.3.2)
for each performance may be estimated as the fraction which
meets that particular performance specification. The effect
of relaxing or tightening specifications may then be
explored by changing performance speéifications‘and Te-

calculating overall and partial yields.

(b) System Specification

The discussion so far has been concerned with the problems
of designing circuits in the presence of uncertainty in
component paraméter values. However, the concepts and
methods (specifically Monte Carlo analysis) may be extended
to certain aspects of systema specification. System
specification consists firstly of a functional specification,
i.e. a specification of the functions to be performed by
each of the subsystems, and the nominal values éxpected

of their response.

Secondly, it involves a specification of the allowed range
of variation of response in each subsystem. The specification

of allowed variations in subsystem response calls for a

ol

Although a circuit may always be considered a system, here
we take system to be, entities such as F.D.M. communication
systems, digital transmission systems etc.
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knowledge of the effects on the overall system performance

of deviation ffbm nominal of each of the subsystem
performances. Computing the effects on the overall system
pérfofmance deviations, taking the system responses one

at a time would not be valid in the presence of non-
linearities. Monte Carlo analysis can be very effective in
studying overall system behaviour when the performance of

the subsystems deviates from nominal. An initial study would
assume a hypothetical p.d.f., for example multivariate
uniform, to represent variation of subsystem response.

Monte Carlo analysis could then be performed és summarized in
the block diagram in figure 1.3, where the block labelled

circuit simulator may now be replaced by a system simulator.

Such a study would provide the designer with information as

to how subsystem performancesAcombine and what maximum and
minimum system degradation may be expected from subsystem
degradation. The designer would be interested in specifying
the largest allowable subsystem degradation such that

overall system performance were still acceptable. More
generally, a trade-off between different subsystem performance
specifications may be considered. An example of such a study
for a waveguide transmission system is reported in reference
/14/, where the subsystems may comprise equalizers, detectors,
regenerators etc. The system designer would be required to
specify aliowable deviations such as delay, amplitude

distortion, error rate etc, in the subsystems.
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1.5.3. SPECIFICATION OF MANUFACTURING TESTS

The engineer may study a wide variety of circuit properties
for evaluation and improvement during the design stage.
ﬁowever, it is desirable forveconomic reasons, to keep the
number of tests performed on manufactured circuits to a
minimum. In addition certain test may be substantially
more expensive than others. For example, forvlinear
integrated circuits, testing for d.c. properties is much
cheaper than a.c. testing /15/. Therefore the specification
of manufacturing tests is an important part of design. The
methods of statistical analysis are Very useful to study
circuit behaviour from the point of view of specifying a
suitable testing strategy while minimizing cost. 1In this

section we describe a number of scenarios from this area.

(a) Go-No Go Testing

This represents the simplest case where statistical analysis
may be employed to specify testing procedures. Consider

the situation where the manufactured circuit is required
‘to'meet a certain number of performance specifications.
Every manufactured circuit is to be tested sequentially

for compliance with each performance specification. A
circuit failing any one test is to be discarded or repaired.
A Monte Carlo analysis performed with the expected input
p.d.f.s would then give an indication of the performance
functions where circuits are most likely to fail and of

the likely correlations between failures at different
specifications. An order of testing could then be estabilished

to minimize overall cost of testing.
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(b) Accounting For Environmental Effects In Factory Testing

Manufactured circuits have to function in environmental
conditions (e.g. temperature, humidity etc) subject to
ﬁncertainty. These factors, in addition to component ageing,
cause input parameters to drift from their values at the

time of manufacture. Fﬁrther, this drift is reflected

in circuit performance while in service. Generally it is

not feasible to physically simulate these effects upon
manufactured circuits while testing in the factory. Therefore,
to allow for degradation of behaviour while in service,
circuits have to be tested to specifications more stringent
than required for acceptability. A Monte Carlo analysis

may easily be modified to simulate such environmental effects.
This would require knowledge of the dependence of component
parameter values upon environmental parameters.‘ The additional
performance degradation due to environmental effects could be

estimated and the factory test limits set accordingly.

(c) Selection Of Testing Accuracy

In most situations testing procedures with greater attendant
accuracy will incur a greater cost. A Monte Carlo analysis
may be employed to select test accuracy and strategy to

' reduce overall testing costs. For illustration consider

the hypothetical example of figure 1.11., A Monte Carlo
‘analysis is employed to obtain a histogram (not depicted in
the diagrém) of the expeéted distribution of a particular
performance function fi' The accuracy of a particular test

may be repfesented by an interval of uncertainty and a

hypothetical distribution of errors. We may consider a
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strategy where two test procedures are to be employed. This
may comprise a crude test for performance values in the middle
of the allowed range, and a more precise test for values

near the limits of the allowed range. For pafticular choices
of accuracy of the two tests, the results of the Monte Carlo
analysis may be employed to estimate the proportion of

. manufactured circuits for which either test will be required.
Hence, overall testing costs may be estimated. Indeed the
results of the Monte Carlo analysis may be used to specify

thé accuracy of the two tests, such that overall testing

costs are minimized.

1.6 SUMMARY

This chapter is a general review of the field of statistical
design. Some useful notation and terminology is introduced
and explained. The two most widely used methods of statistixel
analysis, viz. Monte Carlo analysis and the Method of Moments
are briefly described. Brief comments on the type of
distributions encountered in discrete and integrated circuit

components are given.

In addition to tolerance assignment and design centering some
other problems in the field of statistical design are described.
These include the specification of performance conétraints in
manufactured circuits; the specification of sub-system
performance constraints in system design; and various problems
related to the specification of performance tests on manufactured

circuits. The possible use of Monte Carlo analysis for such

problems is emphasised.
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rypical Tolerance
Element Symbol | value |normal/ Temperature
narrow Coefficient
linewidth

General

Sheet resistance of R 1509/ +10% +0.2% /°C
base diffusion S

Sheet resistance of R 2.59/ +30% +0.01%/°C
emitter diffusion s

Sheet resistance of R 2009/ +15% +0.2% /°C

epitaxial layer S o

Sheet resistance of R 50- *54 0.01%/ C

deposited resist- 1000
ance layer o/

Transistors

Current amplifica- 3] +50% o
tion factor 50 -30% +0.5%/ C

Matching of B bet- :
ween identical A8 - 0
transistors in £10% +0.0005% / C
close proximity

Resistors o]

Resistance of dif R - +100%] +0.2% / C
fused resistors £25% - 50% o}

Resistance of dep- R - +30%'{ +0.01%/ C
osited resistors 8% -20%

Matching between o :
identical resis- AR - +3% +8% | +0.0005%/ C j
tors in close
proximity

Capacitors ‘

Capacitance of di- C - +100% - ,
ffused capacitors +25%  -50% j

Capacitance of dep- C - +80% -
osited capacitors +20% = 40% ?

Matching of identi- '
cal capacitors in AC - +3% +8% - 1
close proximity '

Junction FET 0

Transconductance g - +50% -0.2%/ C

m "0

Pinch-off voltage Vo - +30% -0.5%/ C

"|IGFET °
Transconductance - +50% +0.1%/ C
m
Threshold voltage VT - +50% -

Table 1.1

Typical Tolerances And Temperature

Coefficients Of Component Parameters In
Integrated Circuits.
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»~ oet Counter

Designer inputs:

1.

Component

J=1

- —

Random generator

Statistics.
Nominals.
Tolerances.
Component

.-

1. Generatée pseudo-random
numbers.

2. Transform numbers to
represent component
parameter values, using

correlations
etc.

Designer inputs:

1.

Circuit data e.g.
circuit topology,
component types

information about tolerances,
nominals etc. input by the

etc.
Information about

required analyses |

e.g. frequency
points.

Required data.

designer.
r
Circuit Simulator Output data,
Results of
Analyses

Input by the
designer.

[N N SR S o

Analyse circuit,.

- Has sufficient Advance
information Counter
been collected, J=J+1 -
is number of

analyses equa

Stop

Figure 1.3 . Monte Carlo Analysis - A General Flow .
Chart,
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Figure 1.4 Typical set of Monte Carlo samples
(points) generated by a pseudo
random process.
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Probability
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distribution. Tolerance
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t
t

p-t T u+t Component
Value
: Figure 1.7(a)
Probability
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The components from

the middle of the Gaussian
distribution have been
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precision 5% tolerance
components,

}
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Probability Figure i.7(b)
Density

The remaining components
are offered as 10%
tolerance components,

’ » - component
(u-t) - H (u+t) Value

Figure 1.7(c)

Figure 1.7 Typical Probability Density Functions
Encountered with discrete components.
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Figure 1.9 Illustration Of The Terms Design
Center And Tolerance.
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Figure 1.10 Geometrical Interpretation of
Design Centering And Tolerance
Assignment.
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CHAPTER 2
ALOGRITHMS FOR TOLERANCE ASSIGNMENT AND

DESfGN CENTERING - A CRITICAL REVIEW

2.1 INTRODUCTION

As discussed in the previous chapter, statistical
distribution of component parameter values may cause some
of the manufactured circuits to fail to meet performance
requirements at the time of manufacture. That ié, the
manufacturing yield may be less than 100%. Clearly there
is an interédependence between component tolerances and
manufacturing yield. In general tightening tolerances
will lead to higher yields. However, tighter tolerance
components are more expensive and increase the overall
cost of pfoducing the circuit. On the other hand for
yield less than 100% failed circuits have to be discarded
or repaired, and this too leads to increased costs., Hence
a compromiée between tighter tolerance and higher yield
may be sought. A’'procedure for effecting such a compromise

is termed tolerance assignment.

In the manufacture of some types of circuits, expecially
integrated circuits; it may not be possible to impose
tolerances on the component parameters. This is unlike the
case for discrete circuits, where a stipulated tolerance may
be imposed on a particular batch of a component. To do
this, the component manufacturer simply removes from the

\/

batch those components whose value falls outside the
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tolerance limits he wishes to choose. For integrated
circuits, the designer usually has to accept parameter
tolerances determined by the physical process employed

to fabricate the components, and to try and increase

yield by changing the nominal values of the component
parameters. This latter procedure is called design
centering, and a particular set of nominal parameter

values is called a design center. 1In the case of discrete
circuits, design centering and tolerance assignment
procedures may be combined to give even more cost effective

circuit solutions.

In both design centering and tolerance assignment, the
designer seeks to minimize those circuit costs which depend
upon component tolerances and circuit yield. We therefore
commence this chapter with a discussion of appropriate
cost models. This is then followed by various problem
formulations which may be appropriate in different

circuit applications. In the latter part of this chapter,
various proposed solution techniques are reviewed. This
review is by intention not exhaustive; nevertheless,
different general strategies are identified and their
attributes illustrated by a discussion of one or two
representative alogrithms. Thus the advantages and
shortcomings of each category 6f solution technique are
highlighted. Finally, conclusions are drawn as to the

best area for the development of more effective methods.
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2.2 COST MODELS

The total cost of manufacturing an electrical circuit will
depend upon a large variety of factors. Of concern to

the engineer are costs of purchase of components, the cost
of circuit assembly or fabrication and of testing, repairing
or tuning. The cost models discussed here will be derived
by considering (a) tolerance dependent component costs

and (b) the cost of repairing or discarding correctly -
assembled or fabricated circuits, whose performance fails

to meet requirements as a result of variation of parameter

values within allowed tolerances.

2.2.1 COMPONENT COST FUNCTIONS

These relate specifically to circuits employing discrete

components. Let Ci(ti) denote the cost function of

the ith component whose fractional tolerance is t;. Then
if CC represents the total component cost of the
circuit, we may write:
K
Cc = fZL=1 c; (t.) 2.1

In every case the function C (+) will be a monotonically
i

decreasing function of tolerance t;. The individual

Ci(-) may take on various forms, typically:

i
C(t) = a +Db/t 2.2
i i i i i
and
C’(t ) = £ +d 1logt 2.3
i 1 i i i

The constants a and f represent the fixed costs i.e.
i i

the basic material and labour cost of making the component,
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The constants b and d  reflect the weighting,
relative to othe; compon;nts in the circuit, of that
component, The constant £i in 2.2 is a measure of
the rate at which the cost approaches a minimum

(typically ¢, is unity) /17/. A typical cost versus

tolerance curve is depicted in.figure 2.1.

2.2.2 THE UNIT COST FUNCTION

The unit cost function expresses the average cost of

producing one acceptable circuit. Two functions will

be derived. Firstly, we wili assume a strategy where correctly
assembled circuits which fail ﬁo meet performance |
requirements are discarded, and secondly a strategy where
failing circuits are repaired by replacement of all the
components. Obviously, the latter strategy can only

be applied to the manufacture of discrete component circuits.

Assuming that a total number N of circuits is to be
manufactured then a yield Y implies that NY of the N
circuits will on average be acceptable. Therefore, the
total cost of producing N circuits is

K
C = N(C + }
A 1=

C(t)) 2.4
T i1

1
C embodies the fixed; tolerance independant costs of

pﬁoducingveach circuit. For example the cost of printed
circuit boards, labour cost,‘c05ts of testing, etc. Now

if failing circuits are to be discarded, then the average

cost per acceptable circuit is:
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X
e S N Ly oty 2.5
Uy Y

In an alternative strategy each of the failing circuits

is repaired by replacing all the components with a

different set, selected at random as before. Let.us assume
that this is continued until practically all the circuits have
been made to meet the performance requirements. If we

1ef C represent'the cost of repairing each failing

circui%, then the total cost of ensuring that practically

all the circuits are acceptable will be the following sum

N(C +C )+N(1-Y)C +N(1-Y)2C +.........
A ¢ R R

C =
T
X :
= N{c +cCc+C (Y @-miy
A C R i=1
2.6
= N{Cc +C +c_ (1Y)}
A C R Y

As before C 1s the fixed cost and C¢g the sum of the
tolerance degendent component costs. Therefore, the cost per
acceptable circuit for this second strategy will be:

c = Cc+C +C (1Y) 2.7

UR A C R Y .
The relative merits of the two strategies may now be
compared. Clearly, the throwaway strategy is less expensive
if: C +C_ <C | 2.8

A C R

That is to say it .is cheaper to discard failing circuits

if the cost of repairing a circuit, exceeds the sum of the

fixed and component costs.
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2.3 PROBLEM FORMULATIONS

This section presents various problem formulations of
design centering and tolerance aésignment, based on the
cost functions discussed previously. Only the throw away
strategy will be considered, although similar formulations
may be obtained for the repair sfratégy.

2.3.1. PROBLEM P1l: COMPOSITE TOLERANCE ASSIGNMENT AND
DESTIGN CENTERING

K
Pl: Minimize CA + Z

1 Gty

Y(PO,T)

)
by appropriate choice of P and T. Reiterating,

PO = pO oo p% is the vector of nominal component

1
values and T=1t ... t the vector of relative

tolerances. The yield Y(F). depends upon the joint
probability density function @#(-) of the component
parameters. In practice a particular form of p.d.f. is
assumed for @(-) and the parameter P° and T regarded
as indices for @(*). For example @(.) may be multi-
variate Gaussian, truncated at the 3¢ points. So that
p? would be the mean of the ith component and t , its
télerance would be related to the standard deviation as

t. = 3°i‘ Therefore in this notation yield may be written

i
as a function of P° and T for stipulated form of p.d.f.

Pl as stated in 2.9 is an unconstrained optimization
‘problem. This formulation will only be relevant to
discrete component circuits. However, in such circumstances,

the designer may only be allowed tolerance values
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from a discrete set, i.e.
£ et t aeeiee.. t , je1 N T L) K 2.10
i i1 12 ij

Where zi is the number of available discrete tolerance values
for the ith component. 1In addition the parameter nominals
may also only be allowed a discrete set of values. For
example the jth component may be a resistor whose
nominal value would have to be from a preferred range, i.e.

) ) ) . 0

PEP P eeesesee P 3 j=1 .c..n 3 i=1 .,.. K 2.11

j il iz ij i
Further the denominator in 2.9, the yield, is a multi-
dimensional integral. Therefore, it is impractical to
analytically compute either the cost function (2.9), or its
gradients with respect to the design parameters Poand T.
Hence, standard methods of non-linear programming cannot
easily be applied to (2.9). To make the problem more tractable,

various authors have considered alternative formulation by

modifying the cost function as follows.

2.3.2 PROBLEM P2: WORST CASE TOLERANCE ASSIGNMENT AND

- DESIGN CENTERING.

K
P2. Minimize C = C + ] C(t) 2.12

by appropriate choice of pg, ti; i=1 .... K
Under the constraint that yield is unity i.e.

y(p°,T) =1 2.13
The geometrical interpretation of 2.12 and 2.13 is given in
figure 2.2. Basically, the tolerance rectangle RT(PO,T)

is to be placed inside the region of acceptability R
A
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o ‘
by choosing P and T, such that R (P°,T) is wholly
T

contained in R ; i.e. R (P°,T)CR and cost is
A T - A
minimized.

2.3.3 DPROBLEM P3: " WORST CASE TOLERANCE ASSIGNMENT

K
P3: Minimize C=C + ] C_(t) 2.14
A 5 i

by appropriate choice of t_ ; i=1 .... K, for design
center PS and subject to the constfaint that yield is
unity. This formulation is more restrictive than P2, as
it assumes a fixed nominal point. Geometrically it may be
interpreted as: with tolerance rectangle centered about
PO, discover the largest tolerances t; , for which the cost
function (2.14 )is minimized and the tolerance rectangle is

wholly contained in R (see figure 2.2)
A

2.3.4 PROBLEM P4: STATISTICAL TOLERANCE ASSIGNMENT
AND DESIGN CENTERING

In the formulations P4 and P5, we relax the constraint
on yield, which is now required to be greater than a certain

value YL.

K
P4: Minimize C + J§ C(t) 2.15
A i=l i i
by appropriate choice of P® and T, subject to the constraint
that Y(PO,T)> Y 2.16
L
The constant Y is a lower bound on the yield. This
L

problem formulation is of importance, because in a particular
class of solution technique the constraint on yield 1is first

. o
transformed to constraints on the design parameters P and T,
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standard methods are then used to solve the resulting

constrained non-linear programming problem.

2.3.5. PROBLEM P5: STATISTICAL TOLERANCE ASSIGNMENT

This may be defined as a variant of P4 when the design
center is assumed fixed.

P5: Minimize C= C +

C (t) 2.17
A Lt

=] 1 1

o DT

by appropriate choice of t , i=1 ... K, for a fixed design
i
center P? subject to the constraint that:

Y(T) > Y 2.18
L

2.3.6. PROBLEM 6: DESIGN CENTERING (YIELD MAXIMIZATION)

P6: Maximize Y(@(PO) ) o 2.19

by appropriate choice of design center PO°.

This particular formulation is of especial interest in

the design of integrated circuits. Here, the'designer

has to accept tolerances determined by the uncertainties

of the manufacturing process and to try and maximize yield

by changing nominal component values. The procedure ‘is

also useful as a prelude to tolerance assignment for discrete
circuits. For fixed tolerances, cost is a monotonically
decreasing function of yield, therefore no cost function |

need be formulated explicitly in terms of the yield.

2.3.7 PROBLEM P7{"TOLERANCE'ASSIGNMEN?SDESIGN‘CENTERING
" 'AND TUNING

In many circuits of high complexity, it may not be possible
to obtain satisfactory performance of manufactured circuits,

using components with available tolerances. It may then
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be necessary to tune (adjust) some of the component
parameters after circuit manufacture, until performance
requirements are met. Two examples of tuning are the
adjustment of a slug in a pot core inductor and the laser
triming of thin film resistors. In general we require a
procedure for selecting a subset (of size K' say) of
the K relevant component parameters, such that by
adjustment of components from this subset, the deviation
of performance beyond specified limits may be compensated
for in some or all of the manufactured circuits. It may
not be possible to formulate a suitable cost function which
satisfactorily reflects the costs of making adjustments
and the added costs of tunable components. We may however,
consider simpler problem formulations, such as the worst-
case design centering, tolerance assignment and tuning
problem. The circuit is designed such that performance
deviation in the manufactured circuits can always be
compensated by adjusting the tunable components. The problem
then reduces ‘to ;
K-K") :

P7: Minimize C=C + § C (t) 2.20

A i=1 i i
by appropriate choice of nominals and tolerances for the (K-K')
non tunaBle components; subject to the constraint that
yield is unity, after adjustment of the X' tunable components.
The formulation is investigated by Bandler et al /17/. The
additional problem of selecting the most effective
component parameters as candidates for tuning is investigated

by Glesner /18/ and will not be treated in this thesis.
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2.4 THE REVIEW

The numerous proposed schemes addressed to the design
centering and tolerance assigment problems may be classified
according to various criteria. For the purpose of this
review, the classification employed is based on the type of
solution technique used. Four classes are identified, viz.
geometrical characterization, standard non-linear programming,

iterative Monte Carlo and discrete methods.

Algorithms are often divided into worst case, i.e. those

that require yield to be constrained to unity,and statistical
i.e. those that allow yield to take on a value less than
unity. This latter classification relates to the problem
formulation and not the solution technique. For instance
standard non linear programming techniques have been reported

/19,20/ for both worst case and statistical formulationms.

2.4.1. METHODS BASED ON GEOMETRICAL CHARACTERIZATION

Geometrical interpretations may be associated with the

. various problem formulations. However, it is prohibitively
expensive to compute the boundary 8RA of the region of
acceptability RA for circuit examples involving more than

a few variables.

Director and Hachtel /21/ have demdnstrated a scheme, where
3R is approximated by a simplex/zz,chapter 6/ of bounding
hypér planes. For a K-dimensional example, the process
commences with (K+1) hyper-planes, each of dimension (K-1).
The planes are constructed by forming the convex hull of a

number M >K+l of points on aRA. These initial points are
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obtained by performing a series of unidimensional line
searches parallel to the co-ordinate axes, emanating from
the initial nominal point (design center). The simplicial
approximation is improved iteratively. A new point on
aRA is obtained by searching along the outward normal
from the center of the largest bounding hyper-plane of
the current approximating simplex. The approximation is
then improved by forming the convex hull of all previous points

and the newly discovered boundary point. The process is

illustrated for a two dimensional example in figure 2.3.

Such a characterization of 3R considerably simplifies

the design centering and toleiance assignment problems. For
example,in one version of this method, the design centre

is computed as the centre of the largest inscribable
hypersphere (of dimension X) in the simplicial approximation.
The computational effort is largely made up of circuit
evaluations to determine points on the boundary BRA. ~The
procedures for determining the largest hyper-planes, for
inscribing hyperspheres etc. may be formulated as standard
problem in linear programming. However, the process can only
work well for problems of small dimension, as the number

of faces (bounding hyperplanes) required for a good
approximation of R  becomes very large with increasing
dimensionality /53/? ‘The procedure is largely addressed to the
design centering problem (P7) applicable in the design of
integrated circuits, where the design variables are process
parameters such as sheet resistivities and specific

capacitances. These parameters are normally fewer in number

(typically less than 10) than the design variables
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(resistances capacitances and inductances etc.) encountered

in practical discrete component circuits.

Some of the dimensional dependence of the above method

of simplicial approximation is reduced in the point basis
approach /23/ where the approximating simplex is character-
ized in terms of the co-ordinates of a number N > K+1 points
on 3R,. For a particular dimensionality, the point basis
method, iliustrated in figure 2.4 is reported to require

a smaller number of circuit analyses than the face based
method. Nevertheless, the effectiveness of such schemes

has only been demonstrated for circuit examples involving

a maximum of four toleranced components /24/.

An additional difficulty arises, since the approximating
simplex will only be interior to RA if Rp 1s convex.
This assumption may not hold in general and hence can

cause difficulty.

2.4,2 METHODS BASED ON NON-LINEAR PROGRAMMING

The methods considered in this section minimize cost
functions which depend explicitly on component toleranceés.
Whereas both the design center and associated tolerances may
be taken as design variables, yield is only introduced
implicitly. Constraints are placed on yield, which are then
transformed to constraints on the tolerances. Both worst

case and statistical formulations are considered.
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(a) WORST CASE FORMULATION

The problem formulation is as in P2 or P3. Re-iterating

P3: Minimize

K 0
1 C(t ,p) 2.21
i=1 i i i
0
by appropriate choice of p and t ; i=1] ... K, subject
i i
to the constraint
Yield = Unity 2.22

This formulation has been treated by Pinel and
Roberts /25/, Sud and Spence /26/ and more extensively

by Bandler et al /19,27/.

A yield of unity requires that the tolerance hyper-
rectangle RT(PO,T), (centered about P® and of sides

of length 2t;, T=ty ool ty) be wholly contained in RA;
i.e. :
R.(P°,T) & R 2.23
The condition 2.23 is given geometrical interpretation

in figure 2.2. This condition entails an infinite number
of constraints, since the infinity of points comprising

£T is required to belong to Rp. The problem is made more

tractable by adopting either of two approaches.

(1) It is assumed that the worst value of a performance

functibn occurs at one of the vertices of R rather than
T

at a point interior to it. The unity yield condition

then requires that all 2K vertices of RT belong

to RA ioeo

SV e Ry implies RpC Ry 2.24
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Where S is the set of the ZK vertices of RT. The
number o¥ constraints can be reduced further by performing
sensitivity analyses at the centre of R and for each
performance functioﬁ, identifying the worst vertex from
the signs of the first order sensitivities of that
performance with respect to the component parameters /28/.
This reduces the number of constraints from ZK, to

m, where m is the number of requirements on the

performance of a circuit for it to be deemed acceptable.

(ii) In an alternative strategy, it is assumed that the
region of acceptability R is one dimensioﬁally

convex / 27/, as illustrated in figure 2.5. A closed

region R 1s one dimensionally convex, if for any two points
in R, which are the end points of a line parallel to

any one of the co-ordinate axes all the points on the line
also belong to R. Now we recall that each side of the
tolerance rectangle R is parallel to one of the co-ordinate
axes. Therefore for a one-dimensionally convex R , if the
vertices of R are contained in R , then so is the

entire region TRT (condition 2.24).A However, unlike the
first approach above; with the one-dimensional convexity

assumption, the worst value of the performance functions

need not occur at the vertices of RT, for 2.24 to hold.

This second approach is treated by Bandler et al /17,19,27/.
For each performance constraint, a combination of sensitivity
analyses and tests for monotonicity.of the performance functions

are employed to identify the critical vertices. For a particular
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tolerance region, a vertex will be designated critical if
it touches the boundary of the region of acceptability. Thus
the number of constraints to be considered is usually much

less than ZK.

For either approach, the minimization is performed by
standard non-linear programming methods, for example,
the sequential unconstrained optimization technique of
Fiacco and McCormick /29/. For the discrete tolerance
problem (2.10 and 2.11) a continuous solution is first
obtained and is followed by a tree search method to

discretize the continuous solution /19,30/.

In many practical examples, these methods and the assumptions
upon which they are based are found to be acceptable.
However, the worst case formulation leads to excessively -
narrow tolerances. It is often the case that tdlerances

can be relaxed appreciably for a very small dimunition in
yield in the vicinity of 100%. This is illustrated in

figure 2.6, The worst case methods do not provide information
about, or exploit such yield tolerance trade-offs. Further,
the methods are inapplicable where a unity yield is not
achievable with available tolerahces; such as in the

design of integrated circuits.

(b) STATISTICAL FORMULATION

A general statistical formulation such as problem P1,
comprising an unconstrained minimization and incorporating

yield in the objective function, poses problems due to
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the difficulty of computing yield. Methods addressed

to problem Pl and which employ Monte Carlo analysis to
estimate yield are discussed in the next section. Here we
consider methods addressed to formulations P4 and P5. Tﬁe
cost functions depend explicitly upon tolerances, whereas
yield'is introduced implicitly via constraints. Unlike

the worst case formulation, yield is required to be greater
than a certain minimum value YL’ say, where YL is

less than unity.

Seth and Roe /31/ and later Thorbjorensen and Director /20/
have reported alogrithms based on the method of moments
approximation, discussed in section 1.3. Essentially,

the moments of the performance p.d.f. are written in

terms of the moments of the component parameter p.d.f. by
invoking - Taylor series representations of the response
functions. If the performance p.d.f. is assumed multi-
variate Gaussian, then bounds on the yield may be obtained
via the Bonferoni inequality procedure. Alternately if no
assumption is made about the form of the performance p.d.f.,
then a generalization of the Chebychev inequalities® will
allow suitable estimates of the yield to be made. In either
approach; constraints on the response moments may be

obtained from constraints on the yield. The relationship

o The Chebychev inequality allows statements of the spread
of a p.d.f, in terms of its wvariance,.and mean. For
example for a univariate p.d.f. P(x), with mean u and
variance o?

{P(u-Ko¢ x <ﬁ +Ko)}>1/K2, where K is a constant.



between the response moments and the component parameter
moments may then be used to derive constraints on the
tolerances. Thence the tolerance dependent cost function can
be minimized subject to these constraints. The whole process
may be iterated to explore the yield tolerance trade_off.

The series of steps is symbolically expressed in figure 2.7,
The main shortcomings of this approach arise from the fact
that the inherent approximations and assumptions do not

hold in practical cases. Pinel and Singhal /32/ report that
the output p.d.f. canndot be assumed to be multivariate
Gaussian in préctical examples. In addition the low order
Tayior series upon which the Transmission of variances
equation is based may poorly approximate the response

functions over the tolerance intervals considered.

Bandler et al /33/ employ a modified worst case method. A
worst case solution is first obtained. The tolerance
rectangle is then expanded and yield estimated by calculating
the volume of the "infeasible region", i.e. RTﬂﬁA, as shown
in figure 2.8. The boundaries of the region where individual
performance constraints are viblated; are approximated as
planes; The planes are obtained by linearizing quadratic
approximations to the performance constraint boundaries.
Among the main limitations of this approach are that it is
only suitable where each reject circuit is expected to

fail only one performance constraint. Further, the general
validity of the quadratic approximation still remains

unresolved.

78
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2.4.3. METHODS BASED ON MONTE CARLO ANALYSIS

Elias /2/ has introduced a method (called TOLERATE)

fdr tolerance assignment and design centering, where the
yield versus tolerance trade-off is explored. The method
is summarized in flow chart in figure 2.9. For a parti-
cular set of nominals and tolerances and for particular

_ forms of input parameter p.d.fs Monte Carlo ana1y$is

is performed and yield is estimated. Information about

the distribution in the input space, of passing and failing
sample circuits, obtained from the Monte Carlo analysis 1is
then used to re—assign‘nominals and tolerances. The process
is iterated and the yield tolerance trade-off is explored.
The method commences with wide tolerances and low
corresponding yields, and progressively tightens tolerances

to increase yield.

A method employing a similar approach has been introduced
by Becker and Jensen /12 , chapter 9 /. For particular
input parameter p.d.fs ~ and fixed absolute tolerances, a
standard direct search optimization method, pattern search
/34/, 1is used to choose suitable nominal values. The
objective function to be maximized, the yield, is estimated

via Monte Carlo analysis.

The main shortcomings of these methods arise from the
computational expense of performing Monte Carlo analyses
iteratively; However; the number of sample circuits
required to be analysed is independent of the number of

toleranced components. Therefore, these methods can
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deal with larger circuit examples than other techniques.

In chapter 4, we describe a novel Monte Carlo based desfgn
centering method and illustrate its effectiveness for
circuit examples involving up to 43 toleranced components,
Unlike the pattern search method, the new technique uses
information about the position in the tolerance region of
pass and fail sample circuits to choose a design center

to improve yield. The computational expense is moderated by
efficient sampling schemes which re-use sample circuits
betwegn iterations. Further, practical shortcomings of

the TOLERATE method are discussed in chapter 5. A more
effective tolerance assignment method, PERTOL is introduced

and a comparison with TOLERATE is presented.

In contrast to the above methods, which use standard Monte
Carlo analysis, Tahim/10, chapter 5/ has introduced a

radial exploration method for design centering. Essentially,
an indicator approximating the yield is computed as detailed

on figure 2.10. The value of the indicator is used to control
the design centering process. The design centering procedure
itéelf is based upon achieving a reduction in the assymetry

of the feasibility region, i.e. RTffRA, as shown in figure 2.11.
The radial exploration employs a particular lgrge change
sensitivity algorithm /35/ to reduce computational effort.
However, this sensitivity algorithm is only applicable to

linear circuits and over a restricted tolerance range.
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2.4.4 DISCRETE METHODS

In many practical situations values for nominals and
tolerances must be chosen from discrete sets of

éllowable values. For example for discrete capacitors the
designer may only be allowed choices from the E24 series
/36/. Although there may be greater freedom of choice of
nominél values (within an achievable range) for integrated
circuit components, the finite resolution of the mask making
process and other processes will ensure that the choices

are ultimately quantized., Therefore all proposed algorithms
have eventually to consider methods.for arriving at choices

of nominals and tolerances from allowable discrete sets.

Two distinct approaches for the discretization problem have
been reported. In the first approach a continuous solution
is first sought. A discrete solution is then obtained by
rounding off to the nearest discrete values, or by invoking
a standard tree search method, e.g. Dakin's tree search
technique /30/. In an alternative approach continuous
solutions are not sought and the methods work with discrete
solutions throughout. An algorithm from the class of
techniques called the branch and bound methods is

generally employed.

Karafin /3/ has described branch and bound methods
addressed to both worst case and statistical tolerance
assignment problems. In the worst case algorithm the main

computational cost accrues from the process of testing
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particular tolerance solution for the 100% yield condition.
In chapter three; we describe the general structure of

the algorithm together with a discussion of some worst

case testing methods. 1In addition we report a cheap and
efficient worst case testing method based on a regional-
ization/ 37/ of the input parameter space. However, as with

other worst case methods, the branch and bound method offers

tolerance solutions which are too pessimistic.

In contrast the branch and bound algorithm for the statistical
formulation employs the-method of moments to estimate

yield. The assumﬁtions and approximations involved in

the method of moments, render the statistical branch and

bound algorithm unreliable for many circuit applications.
Nevertheless, the use of Monte Carlo analysis in place

of the method of moments is not to be recommended as the
number of yield estimations'required would incur a prohibitive

computational cost.

2,5 SUMMARY AND CONCLUSIONS

This chapter comprises a critical assessment of reported

methods of tolerance assignment and design centering. Initially
we discuss relevant cost functions and various problem
formulations which fall under the general headings of tolerance
assignment and design centering. The methods reviewed are
considered under four categories; These are Geometrical
characterization, Standard non-linear programming iterative

Monte Carlo based methods and Discrete methods.
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Of the Geometrical methods, simplicial approximation is briefly.
described. Geometrical methods in general become prohibitively
expensive as the number of toleranced components increases
beyond about ten /53/. To date simplicial approximation has
been reported for a largest circuit example involving only

four tolerance&components.

"The methods based on standard non-linear programming are
further subdivided into worst case and statistical. ' Both
groups avoid the évaluation of yield. The worst case methods
coﬁstrain yield to be equal to 100%. On the other hand the
statistical methods require yield tokgreater than a certain
minimum value Y, Where Yp is less than 100%. The worst case
methods reguire procedures for testing the 100% yield conditica, -
while the statistical methods approximate yield via procedures

based on the method of moments.

The main shortcoming of the worst case methods is that of
over-design. In general it is possible to trade-off yield
against tolerances. The worst case methods do not explore

this trade-off and hence provide expensive tolerance solutions.
Additionally the worst case methods are inapplicable for
situations where 100% yield is not achievable with available

tolerance such as in the manufacture of integrated circuits.

In contrast the statistical non-linear programming based
methods allow yield to be less than 100%, and do not produce

as tight tolerances as the worst case methods. Nevertheless,
statistical non-linear programming methods maximizes tolerances
for a particular choice of yield and do not explore the yield

tolerance trade-off. To explore this trade-off the optimization



84

could be repeated for different choices of yield. However, the
inherent unreliability of a yield estimation procedure
based on the method of moments makes this approach

unattractive.

The methods based on Monte Carlo analysis have important
advantages over both the geometrical and non-linear programming
based methods. Firstly, in estimating yield the number of
circuit analyses required in Monte Carlo analysis ié independent
of the number of toleranced components. Therefore such methods
may be considered for large circuits. Secondly, the Monte

Carlo yield estimation procedure is more general and more
reliable than the method of moments. The main contributions

of new techniques in this thesis falls in the area of Monte
Carlo based methods. These are fully discussed in chapters

four and five and only brief mention is made in this chapter.

The three categories discussed above provide continuous solutions.
In practice however, only discrete choices may be available
for tolerances and nominal values. The expedient of rounding
off the best continuous soclution to the nearest allowable
discrete solution does not always provide the best available
discrete solution. On the other hand Discrete methods work in
terms of the discrete choices without first seeking continudﬁs
solutions. The main shortcomings of such an approach arise L
from the fact that the numbeér of available discrete solutions
becomes very large for the size of most circuit examples of
interest. Therefore; the computational effort is often

" prohibitive.



The applicability of the main contributions in the field of
tolerance assignment and design centering , appearing in the

recent literature is summarised in table 2.1.
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Variable

nominals

Less than 100% vield

100% vield

P5:
Seth and Roe /31/

Karafin /3, chapter 3/

P3:
Pinel and Roberts /25/
Sud and Spence /26/

Karafin /38; 3,
chapter 3/

P1 ; P4
Elias /2/ |

Thorbjorensen and
Director /20/

Li, Hammond and Su /39/
Bandler et al /33/

Soin /This thesis,
chapter 5/

P2
Bandler et al /27/

P6

Director and Hachtel
721,23/

Becker and Jensen /12;
chapter 6/

Tahim and Spence /40/
Soin and Spence /41;42/

Soin /this thesis
chapter 4/

May not be possible
with available
tolerances

Variable

Table 2.1:

A summary of the main contributions in

the field of tolerance assignment and
design centering (P1l, P2 etc. refer
to the problem formulations of section

2.3)

tolerances



Cost

Figure 2.1

Tolerance

: A Typical Cost-Versus-Tolerance Relationship

For A Single Component.
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g3

'R, Tolerance rectangle for
Tl 3 tolerance seWwdion.not
satisfying the worst case
condition

“%

«

~

Ry The Region
of accepta-
bility

R Tolerance recta-

T2 ngle for a tol-
erance solution
satisfying the
worst case con-
dition

Figure 2.2 : An Illustrating Of The Geometrical Interpretation
' Of The Worst Case Constraint.



89

SR, The (unknown) true boun-

é{//// A'dary of the region of

acceptability Ry

P, SR, (in bold) Bounding
A
hyperplanes, con-
stituting the curr-
ent approximation to

GRA

New planes to
update the approx-
A imation GRA

Direction of\\\ /
. search -

" New point on GRA
. discovered to
update S8Ry

Note : Points Pi P, P, are used for the current simplicial
approximation , which is constituted by the lines (planes
in higher dimensions) A,B, and C, indicated in bold line.
Point P, is discovered by searching along the outward
normal %rom the center of the largest plane (i.e C) to the
boundary 6R,. The Simplicial Approximation is updated by
eliminating® plane C and including the new planes D and E.
The center of the largest inscribable circle (hyper-sphere)
in the approximation is taken to be the best design center.

Figure 2.3 : An‘Illustration Of The(Face Based) Simplicial
- Approximation Method Of Design Centering.
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GRA

GRA (approx-
imation to
6R,)

Figure 2.4(a)

Note : The point basis simplicial approximation method of design

- centering is described with the aid of figures 2.4(a),(b),
(¢),(d), and (e). Points P, P, Py P, P Pg are predetermined
points on the boundary &R 'of R, the region
of acceptability,flnitialéy the center Cq of the circle
circumscribing points P, P, Pg is determined. The three
lines (faces)of triangleée P1 P2 P6 are tested one by
one to see if a larger circle can be found which
circumscribes two points from the set P; P, P, and another
point on the boundary 6R,. The search consists
of examining trial centers which lie on the line from C

)
normal to the line of the triangle, being tested. Such 1
a center is is discovered as C, which lies on the line
from C, normal to the line P2 P.. The circle centered
about "C, now circumscribes points P, P, Pg. The
lines of” triangle P, P; Pg are now tested as were
the lines of trianglé Py P, Pg. A new center Cz is
now discovered for a circle circumscribing © points

P P_P_.The procedure is terminated at C; because a larger
6 3 circle cannot be found which will“circumscribe
two points from the set Pz P, P. and P,. The next step in
the overall procedure is %o isCover T'new points on the
boundary 6R,.The procedure for finding design centers can
then be reptated as described above.The three stages of
design centering for this example are illustrated in sequence
in figures 2.4(b),(c) and (d). For clarity éR, is not
shown . Figure 2.4(e) shows the procedure for determining
new points on &R,.(Further notes are provided in the next
two pages). A

Figure 2.4 ': The Point Basis Method Of Design Centering



Figure 2.4(b)

Figure 2.4(c)

Figure 2.4(d)
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Py . P
Figure 2.4(e)

In figure 2.4(e) we show how new points on SR, are located
in this procedure.The point Py on the A approximating
plane nearest the current design center Cz, is located.

The line joining this point to the design center is

searched until a new point (P;) on SR, is located.The
procedure described in figure 2.4(a) "is then repeated to
obtain the best design center.For this example this is shown
as C4.The corresponding circle now circumscribes points

The point basis method has been described with reference to
a two dimensional parameter space. In the general case of
an n dimensional space we must consider n dimensional

spheres circumscribing n+l points on SRA.A rigorous
description is given in /23/.

The point basis method has the advantage over the face based
methods that all the planes constituting the simplicial
approximation do not have to be stored.Since the number

of planes is much greater than the number of points this
results in a considerable saving in computational effort.

In addition the point basis method is not as prone to
failure as the face based method when the region of
acceptability is not convex. '
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o
ot

Note

P
Figure 2.5(a) : A Convex region in two dimensions

In figures 2.5(a) and 2.5(b) we give a simple geom-
etrical illustration of the terms convexity and one
dimensional convexity. Figure 2.5(a) illustrates a
convex region in two dimensions and figure 2.5(b)

a one dimensionaly convex region in two dimensions.

A region is said to be convex if for any two points
belonging to the region all the points on the line
joining the two points also belong to the region.

On the other hand a region is said to be one dim-
ensionally convex if for any two points which are

the end points of a line parrallel to any one of

the co-ordinate axes,and belonging to the region,

all the points on the line joining the two points
also belong to the region.

Clearly if the vertices of a rectangle (hyper-rectangle)
belong to a convex or one dimensionally convéx region
then the entire rectangle will be contained inside
the region.

Symbolically a two dimensional region R is convex if
For A=aj,a, B=b;,b; and AeR ; BeR implies PeR,

where
P=A+ (B - A) 0<a<1

Figure 2.5 : An Illustration Of One dimensional Convexity



Py

Figure 2.5(b) : Illustrating A One Dimensionally
Convex Region In Two Dimensions..

Symbolically, a region R is one dimensionally
convex if:

For A=a,,a and B=b1,b2 and AeR and BeR and

2

b1=a1 .and P = al,x(az-bz) O0<i<l implies PeR
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‘ Tolerance region of
tolerance solution
satisfying the worst
case condition

'r-—-.—— ot s o B w et e an - a W e - - - . -

¢ Tolerance region of
! tolerance solution
not satisfying the
the worst case cond-
ition.

- w e s e B NeEmE e

- et o em em w w em ™ wm e el oeccsnsa 4

Py

Note : The diagram shows that a small diminution of
yield (Iess than 100%) allows an appreciable
relaxation of tolerances.

Figure 2.6 : Illustrating The Overdesign Inherent In The
Worst Case Tolerance Solution.
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—————— < Constraints on yield

Via the normal approximation
or the generalized Chebychev
inequality.

Y
Constraints on response moments

Via approximations, such as

the transmission of variances
equation (itself based on the
Taylor series approximation).

\

Constraints on moments of component
parameter spreads

Relationship between input moments
and tolerances -e.g. for Gaussian
distribution nominal p® = mean u
and tolerance t = 30 where o is
the standard deviation.

M

Constraints on tolerances

A
Minimizé tolerance dependent
cost function subject to above
constraints - using standard
non-linear programming methods.

e |

i S

Change constraints
on yield and repeat
process.

Figure 2.7 An illustration of the structure of
statistical non-linear programming
based methods for tolerance assignment.
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___.RT The tolerance
region

Note : Here we give a simple illustration of the deterministic
yield estimation method by Bandler et al. Essentially
the method consists of locating points such as ojjaj,
and oz which are the intersection of the regiom
of acCeptability and the tolerance region. For a
three dimensional region such as the one illustrated
above the three points ajajoz define a plane, which
is used as a linear approximation to the intersection
of the tolerance region and the boundary of the region
of acceptability.

With the additional notation : Rp = RN\RT , where Rg
is called the feasible region,
then yield is the ratio of the volume of the
feasible region to the volume of the tolerance region.
For this example the volume of the infeasible region R
is:

VF— %' (oq o, as)

Such analytic formulae allow us to estimate yield and
since the a; 0, o0z are functions of the coordinates of
p? p% of the design center P° we can also
obtain formulae for the gradients of the yield
with respect to p9 and p®. Therefore design centering
(yield maximizati%n)may 2 pe performed using standard
gradient based methods of optimization.We envisage the
main difficulty with such a method will be that the
approximations will be poor for more complicated regions
of acceptability and when the dimensionality is high.

Figure 2.8 : A Yield Estimation Procedure Based On Linear approximation

Of The boundary Of The int ion i
And Ry y e intersection Of The Regions Ry
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Nominal values
and associated
component tolerances

Component p.d.f. Monte Carlo Analysis p——= (Circuit Yield
Circuit descriptions

Performance A ] Pass/fail
Requirements. ' statistics.

More iterations?
Decided by human
designer.

Interpreter generétes
— new tolerances and @——Information

nominal values.,

STOP

Figure 2.9 : The TOLERATE Method Of Tolerance
Assignment.
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Rp The feasible region

RA The Region of
Acceptability

Ry The tol-
erance -—»
region !

B

Random difgg::

ctions

B,

Note : A number of lines are generated at randomly
chosen angles , emanating from the de51gn center.
For each line the ratios r*= OA and r~= QA' are
OB 4 0B!

. computed. OB and OB' are the distances to the
boundary of.the tolerarce region and OA and OA' are
are distances to the boundary of the feasible region
(The feasible region Ry is the intersection of
the region of acceptability, and the tolerance region

i.e Rg = RAF\RT )
An indication of yield is obtained as
N .
1/N ';lr;j + raj

Where N is the number of lines.

Figure 2.10 : The Radial Exploration Method Of Obtaining
An | Indication Of Yield



-
Tolerance . ] '
- . R P t—— .
n
regio T,n |
J

Tolerance
region R ‘
g T,n+1

Note

Region of
acceptability

N 1

-Indiqidual

assynmetry

vectars
]

~— Diﬂection of
moqement

: Pg corresponds to the current design center. Pg+1

corresponds to the new design center,

An indication of yield is first obtained as summarised
in figure 2.10. For design centering , the assymetry
vector for each line is computed. The assymetry vector
of the jth., line, is a line parallel to the jth. line,
and of length rgi- rj . The assymetry vectors are
vectorially summdd afid a direction of movement for the
design center is obtained.

Figure 2.11 : The Radial Exploration Method Of Design

Centering.
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CHAPTER 3 - DISCRETE OPTIMIZATION METHODS FOR WORST
CASE TOLERANCE ASSIGNMENT AND. DESIGN
CENTERING.

3.1 Introduction.

3.2 Notation.

3.3 Branch and bound methods.

3.3.1 General 'structure.

3.3.2 Procedures for selecting tolerance
solutions for feasibility testing.

3.3.3 Considerations for eliminating non-
feasible and non-optimal solutions.

3.3.4 Feasibility testing procedure.

(a)
(b)
(<)
(d)

Monte Carlo analysis.
Vertex analysis.
Pairwise constraints.

Indentation.

3.4 Circuit example and results.

- 3.5 Summary.
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CHAPTER 3

DISCRETE OPTIMIZATION METHODS FOR WORST CASE

TOLERANCE ASSIGNMENT AND DESIGN CENTERING

3.1 INTRODUCTION

This chapter deals with the problem of tolerance assignment
and design centering for the special case in which nominalé
and tolerances are to be selected from discrete sets of
allowable values. A number of alogrithms have been
developed /20,25/ where nominals and tolerances are

first chosen from contiﬁ%us ranges and the discrete solutions
are then obtained by rounding off to the nearest allowable
discrete values. However, in general rounding off the
continuous solution will not produce the best available
discrete solution. This is illustrated for a hypothetiéal
case in figure 3.1. 1In this chapter attention is confined

to an alternative class of methods, where the optimization is
performed with discrete values without first seeking
continuous solutions. Such methods fall in the realm

of discrete optimization methods (sometimes called integer
programming). Specifically, we address the discrete worst

case tolerance assignment and design centering problem.

Karafin / 3/ has investigated the application of a branch
and bound strategy, which comprises a tree search
algorithm'and various worst case testing techniques. We make
brief comments on the general structure of this type of

strategy, together with a review of some worst case testing
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methods. The main orignal contribution reported in this
chapter is a geometrically based technique, called
"Indentation".® Indentation was developed as a complement
to the regionalization method /37/ of statistical analysis.
For application to linear circuits, the efficiency of
regionalization and therefore indentation is enhanced by
application of the systematic exploration method /44/

of large change sensitivity computation.

3.2 NOTATION

Initially consider the case where nominal component values

aré fixed as some constants; PQ = pI p; cees p;. For

each component a number of tolerance values are available.

Let t , j=1 .... n represent the n available
tolera;ies for the ith component. Toie;ances need to be
selected for each of the K componeht parameters. We
denote by T =t t .... t (tolerance vector) any such
choice of toleraicgs and b§ S the set of allipossible
tolerance vectors. Then the tgtél numbef of elements

of S is the product.
T

K
N =1 n 3.1
T i=1l 1

Associated with each tolerance vector T 1is a cost denoted

by C(T). C(T) is the sum of the tolerance dependent

@A similar approach to Indentation, called the method of
orthogonal silhouettes was suggested by Leung / 43, chapter 7/.
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cost of each of the components i.e.

C(T) = f C (t) 3.2

i=1 1 1
Also associated with any tolerance vector T 1is a tolerance

region R . R 1is a K-dimensional hyper-rectangle centered
T T o)
about the nominal point P and of sides of length

2t ; i=1 .... K. Of the set S of all possible tolerance
i T
vectors, we are interested in a subset Sw of vectors which

result in 100% yield. Therefore the tolerance region associated
with any tolerance vector belonging to Sw will be wholly

contained in the region of acceptability R,. That is

TeSw implies’ Rf;'RA' The optimization problem is then

stated as:

Miriimize C(T) = C (t) 3.3

=] 1 i

DT

by choice of T=t.t2 chee tK from the discrete set S
subject to the co;straint that TeSy .

Task 3.3 is therefbre a discrete constrained optimization
problem. For most circuits of interest, the total number
of possible tolerance solutions will be very large. For
example; for a circuit with eight toleranced components with
each component allowed five values of tolerance, the total
number of possible tolerance vectors will be 8°. Therefore,
an exhaustive procedure which checked the feasibility

(i.e. membership of Sw) of all possible tolerance solutions
and amongst the feasible solutions identified the one with

the smallest associated cost, would incur a prohibitive

computational cost.
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Consider mow the case where nominal values are also variable.
We denote by pij’ j=1 ... Ei, the choices for the ith
component and hence by K -
: N =7 2. 3.4

N J=1 J
the total number of possible choices. The obtimization
problem 3.3 can be extended to include the nominal values
as design variables. The total number of possible solutions
is now the product

N=N xN 3.5

N T ‘

For suitable choices of nominal values it will generally

be possible to select larger values of tolerance which

still satisfy the worst case constraint.

3.3 BRANCH AND BOUND METHODS

Branch and bound /4 / is a generic name for a family of
discrete optimization methods. For example for the discrete
worst case tolerance assignment problem the strategy entails
selecting test solutions from the current set of

possible solutions. The set of possible solutions initially
comprises all NT available solutions (equation 3.1). If the
test solution meets the feasibility condition then its
associéted cost forms a lower bound. All solutions with a
higher cost are eliminated. Thus the size of the current set
of possible solutions is reduced. On the other hand if the
test solution is infeasible then all solutions with larger
tolerances will be guaranteed to be infeasible and can
therefore be eliminated. The process of selecting test
solutions, testing for feasibility and eliminating more
expensive or infeasible solutions is continued until the
cheapest feasible tolerance solution is obtained. So that

although the total number of possible solutions is very large,
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only a small number are tested. The vast majority of
infeasible and non-optimal solutions are systematically

eliminated.

3.3.1 GENERAL STRUCTURE

Figure 3.2 summarizes the essential features of one method

/ 3/ which ié a variant of the general strategy outlined above,
The two main computational tasks are a tree search for selecting
tolerance solutions (box B) and procedures for testing their
feasibility (boxes A, C and E). Preliminary feésibility tests
are first performed (box A). The results of these computatibns
help eliminate a large number of tolerance solutions from the
total number of possible solutions. The amended set of tolerance

vectors is referred to as the "current set of possible solutions".

A tree search alogrithm (box B) is then invoked to determine

the optimum solution from the current set of possible solutions.
The optimum solution so obtained is checked for feasibility

(box C) through an initial, computationally cheap feasibility
test. If it fails this feasibility test then the current set
of possible solutions is amended (box D) by eliminating a
number of possibilities and the tree search procedure is
repeated. On the other hand, if the solution passes the initial
feasibility test, it is subjected to a second more stringent
and computationally more expehsive feasibilty test (box E).
Again failure to meet the feasibility test results in the
current set of possible solutions being amended and the tree
search being re-entered. Otherwise the solution is

accepted as the optimum feasible solution.
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3.3.2 PROCEDURES FOR SELECTING TOLERANCE SOLUTIONS FOR

FEASIBILITY TESTING

Various tree search methods can be used to obtain the
solution with the least asso;iated cost from the current
set of possible solutions. We note that the current set
of possible solutions contains both feasible and in-
feasible tolerance vectors. A full description of one
particular tree search alogrithm is given in reference
/3, chapter 2/. However, this technique is too complex

to be briefly summarized in this chapter.

Nevertheless the general ideas will become apparent from
the following description of a very simple tree search
alogrithm called the bisectional search. This method has
been incorporated iﬁ a general optimization strategy,
(see section 3.,4), which differs a little from the

structure shown in figure 3.2.

Consider an example involving three toleranced components.
Let the number of allowed tolerance values for each
component be five, and let these be 1% 2% ..... 5%.
Therefore there are initially a total of 125 possible
tolerance solutions. Firstly, the cost associated with
each solution is computed and the tolerance vectors are
ordered in descending order of cost. A typical ordering

will be the following.
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Now the current set of possible solutions contains 125
elements. To choose a candidate for feasibility testing

the ordered set is bisécted. That is the tolerance solution
half way between the most and least expensive is selected.
In the first case this will be solution number 63, which

will correspond to tolerances of 3% on each component.

Now if this solution passes the feasibility tests then the
solutions numbered 64 to 125 are eliminated from consideration,
since they are more expensive than 63. Altérnately, if the test
solution is infeasible, then among solutions 1 to 62, the
tolerance vectors with corresponding tolerances equal to

or larger than those of the test solution are eliminated.

For example if the test vector 3 3 3 is found to be
infeasible, then 3 4 3, 3 3 4, 4 4 4 etc. will also be

infeasible. This will be further clarified in the next section.
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The remaining solutions are now re-numbered. The next

trial solution is then chosen as before by bisecting the
current set of possible solutions. The process is

continued as before, until only one tolerance vector

remains and all the others have been eliminated as described
above. The remaining tolerance solution will then be the

optimum feasible solution.

3.3.3. CONSIDERATIONS FOR ELIMINATING NON-FEASIBLE

AND NON-OPTIMAL SOLUTIONS

If a particular tolerance solution is found to be feasible,
then all other tolerance solutions with greater associated
cost are eliminated from consideration. On the other hand
if the tolerance solution is found to be infeasible, then
all other solutions with tolerances equal to or larger than
this trial solution will also be infeasible. These in turn
can be eliminated from consideration. The basis for this

is explained below.

Now the cost associated with a particular tolerance vector
is the sum of the costs of the individual component
tolerances: i.e. equation 3.3
. K
c(T) = ) C; (t3)
1=1

The individual cost functions Ci(.) are discontinuous functions

defined for discrete values of t. (see figure 3.3).

Typically:
..ai
i
hd = . e o0 ¢ o s e .=1 0080 n'
for tl til t12 tij J i



The Ci(ti) are monotonically decreasing functions. That

is, they have the following property.
C; (t3) < C;(t¥)

for t* > prd
i i

We consider two tolerance vectors T' = t' t' .... t!

1 2 K
and T'" = t" t" ... t" , such that
1l 2 K
t" < t' for all t., i=1 ... K ' 3.8
i i 1
K
Then for overall costs C(T') = E Ci(t!) and
1=1 1
K
c(T") = J C,(tY), we may say:
i=1 11
C(T") > C(T') 3.9

In other words the cost of a particular tolerance solution

T' is less than or equal to the cost of any other tolerance

solution T", if the elements of T' are greater than or

equal to corresponding elements of T".
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Secondly, if a vector T' is found to be infeasible, then any

other vector T" will also be infeasible if T' and T"

satisfy condition (3.8). This is so, because if T' and

T'' obey condition (3.8), then the dimensions of the sides

of the tolerance rectangle RT' will be greater than the

dimensions of the corresponding sides of tolerance rectangle

R'" . Therefore, if R} cannot be wholly contained in R,

T
then neither can R". SymboltcmM%5 if T' and T" obey
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condition (3.8), then
1 3 3 "
RiGE R, implies ROER, 3.10
This is shown in figure 3.4.

3.3.4 FEASIBILITY TESTING PROCEDURES

In general no computational procedure will allow us to

say with absolute certainty that a particular tolerance
solution is feasible, ‘Nevertheless, in the method outlined
in figure 3.2, the feasibility tests are used to detect
infeasible tolerance solutions. Now the passing of a
feasibility test by a. tolerance solution does not guarantee
its feasibility. However, failure to do so does guarantee
infeasibility. That is,in addition to passing all

feasible solutions, the tests will also pass some infeasible.
solutions. The tendency of a test to pass infeasible
solution is referred to as its étringency. The greater

the stringency of a test, the less likely it is to pass
infeasible solutions. Also invpractice it is found that

the more stringent feasibility tests tend to be compu-
tationally more expensive. Therefore, in the discrete
optimization strategy, the tests are used in ascending order
of computational cost (hence stringency); In the next
section we examine the cost and efficiency of different

feasibility tests.

(a) MONTE CARLO ANALYSIS
For the general case, Monte Carlo analysis provides the
most stringent feasibility test. However, it is also computa-

tionally the slowest and most expensive method. Therefore
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in a discrete optimization scheme such as the one outlined
in figure 3.2, Monte Carlo analysis is only employed
after a tolerance solution has passed the computationally

cheaper and less stringent tests.

In this procedure a random sample circuit is generated in
the tolerance region and is analysed and tested against
performance requirements. If the cifcuit fails to meet
any one of the performance requirements, the tolerance
solution under test is deemed to be infeasible and the
test is terminated. Otherwise a new random sample circuit
is generated and the analysis is repeated. The proéedure
is continued for several hundred sample circuits
(typically 300) and if all circuits are found té meet
performance requirements then the tolerance vector is
accepted. This will still not guarantee feasibility because
the Monte Carlo analysis does not exhaustively explore

the entire tolerance region.

With the expectation that worse values of performance
occur at the periphery of the tolerance region, the
fandom component values are often generated to have a
bimodal distributibn (figure 3.5j. However, with such
distributions the random circuits always tend to be adjacent
to the vertices. The regions adjacent to the sides of
the -tolerance rectangle tend not to be tested. Therefore,
it is considered preferable / 3/ to employ p.d.f's of

the form shown in figure 3.6. These distributions ensure
that points not adjacent to the vertices are also tested.
Although a bias towards the periphery of the tolerance
region is maintained; some points from the middle are

also tested. This makes the feasibility test more stringent.
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(b) VERTEX ANALYSIS

For a tolerance solution T to be feasible, the associated

tolerance region Ry has to satisfy the condition.

R C R 3.11
T — A

If it is assumed that the extreme values of each performance

function occurs at one of the vertices of R then a

T
suitable feasibility test consists of circuit analyses
at all vertices of RT' However, Ry has 2K vertices

-(where as before K 1is the number of toleranced components).
Therefore such a procedure is prohibitively expensive for most
circuit examples. The problem becomes more tractable if
certain sensitivity analyses are emplo&ed to give an
indication of the worst vertex for each performance
constraint. This reduces the number of vertices to be

tested to be less than or "equal to m, where m is the
number of performance constraints. A fuller discussion of
this method is provided in chapter 2, Section 2.4.2

and in references /16,19,28/. Failure of a tolerance solution |
to satisfy such a vertex test.guarantees infeasibilitys
however, success does not ensure feasibility., This is so
because it cannot be ensured that the assumptions of

worst behaviour at vertices, and the method of identifying
the worst vertices are always ;alid. Nevertheless, in

3
practice this method has been found to give satisfactory

results for a large number of circuit examples.
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}

(c) PAIRWISE CONSTRAINTS

The feasibility testing procedures discussed above check
feasibility of one particular tolerance vector at a time.

In contrast the pairwise constraint method provides
information on combinations of individual component tolerances
which will fesult in feasible and infeasible tolerance
solutions. The technique is invoked prior to commencing

with the tree search routine (figure 3.1). This routine

uses the pairwisé information to eliminate infeasible
solutions from consideration while searching for an optimal

feasible solution.

The pairwise constraint method is essentially a‘geometrical
technique. Component parameters are selected two at a time.
Thus for K parameters (:} selections are made. Consider
the ith and jth parameters pi and pj respectively. The
values of the other (K-2) parameters are held at their
nominal values and the two dimensional space of variation
of P and pj is explored. That is,circuit analyses are
performed for various pairs of parameter values chosen

by some search alogrithm, and an approximation to the
boundary of the region of acceptability RAij in this

space is obtained.

Now let the allowable tolerances of the parameters P; and

. be:
pJ

ir’ 1 (3.12)
and t. , s=1 ..... n,

Then pairs of tolerance values, with each pair comprising

a member from tir and a member from tjs are tested
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for feasibility inside RAij’ as shown in figure 3.7.

The set Sij of pairs of tolerances of components 1 and
j which meet the feasibility condition is identified. The
process is repeated for all possible combinations of

components taken two at a time.

To test the feasiBiiity of a particular tolerance solution
T* =t t§ «ve.. tg, these specific tolerance values are
taken two at a time and checked for membership of the
appropriate set Sij' If any one of the pairs of

tolerance values does not belong to the relevant set, then
the entire folerance solution is guaranteed to be infeasible.
However, the converse does not hold. Compliance with pair-
wise constraints does not guarantee feasibility. This

is further explained in reference / 3/.

Most of the computational cost associated with this method
is incurred in performing circuit analyses to obtain
approximations to the 2-dimensional regions of acceptability

Raij

. This cost can be reduced by use of a large change
sensitivity alogrithm, such as systematic exploration /43/.
Nevertheless, the computational cost of this method is
much greater than other feasibility tests. In addition

it is found to pass too many infeasible solutions and

hence is not to be generally recommended.
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(d) INDENTATION

Indentation is a geometrically based feasibility test

which is applicable when the component pafameter space 1is
regionalized /37/. Regionalization is demonstrated for

a two dimensional example in figure 3.8. An initial
tolerance region, the region of exploration RE is divided
into a number of sub-regions by partitioning along each of
the comﬁonent parameter directions. The circuit is énalysed
at the center point of each sub region. Accordingly the
point and corresponding region are identified as pass or
fail. In this way a discrefe representation R' of the

A

region of acceptability RA is obtained (see figure 3.9).

Initially assume that both nominals and tolerances are
variable. Then the set of points to be analysed is determined
by the available choices of nominal values. On the other
hand the available choices of tolerance values determine
the lateral dimensions of the sub regions. For a particular
tolerance solution T* and tolerance hyper-rectangle
R; , the procedure to be described checks whether one of the
analysed points can be chosen as the center of Rgs, such that
Rps is wholly contained in Rp'. That isbindentation tests
whether

R C R (3.13)

The indentation procedure also identifies the points
(if any) about which RT* may be centered for 3.13 to hold.

The basis of the method is illustrated in fig. 3.10. RE and RA'

are the regions of exploration and acceptability as before.
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The computational procedure identifies '"indented regions"
such as R%’l and R%Js. Region R%’s for example

is the region containing all those points about which

a tolerance rectangle of lateral dimensions 4Ap1 and

6P, may be centered and yet be wholly contained in

RA. Similarly, R%sl corresponds to the centers of a .
tolerance rectangle of dimensions 24p; and 24p,. For
this two dimensional example, these regions can be obtained

by a very simple geomefrical procedure involving an

indentation of the boundary of the region RA.

The computational procedure for the general case 1is

described with reference to figures 3.11 and 3.12 and 3.13.
The region of exploration RE is represented as an

array of logical elements as shown in figure 3.11. A logical
1 implies membership of R, for the correSponding sub—région
and logical O implies membership of ﬁA' For the components

'pl and Py, let the number of quantized intervals be ny and n,

respectively., Any allowable choice for tolerances t, and t,
will be some multiple of the respective lateral dimensions
Ap; and Ap2 of the sub regions. Let us further assume
that the feasibility of the solution t; = 2Ap1 and

t2 = 3Ap2 is to be tested. Then for a two dimensional
example a maximum of four sets of logical operations called

"partial indentations'" will need to be performed.

Figures 3.12 (a) to 3.12 (d) represent the partial indentations.
Matrix A 1is the original RE matrix. Matrices B;C,D and

E are obtained by indenting matrix A by appropriate amounts.
For example B 1is obtained from A by offsetting the elements

by +2 and +3 along dimensions one and two respectively.
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Symbolically the elements bij: i=1 ... n,

of B are related to the elements a..: i=1l ... n

j=1 ... n2 of A as:

.. a, .
ij 1+2,j+3 i=l .... (n,-3)

0O otherwise.

Similarly, the elements of C are obtained by offsetting
the elements of A by +3 and -2 along dimension one and two
respectively. So that

i=3’4 LI S nl

C.. = a.,_,
1J 1 2,J+3 j=4’2 e o 00 0 (nz-S)

and so on for matrices D and E.

To completé the process logical AND operations are performed On

corresponding elements of B,C,D and E. That is, we get

matrix F as: F = B.C.D.E
or : N i= 1 ... ny
f = b... Co:s di:y €1 .
SIS S RS e T R 315
2
where b, , ¢c.., d.., e.., f.. are elements of matrices
1j 1) 1) 1) 1)

B,C,D,E and F respectively. For this example (figure 3.11
and 3.12) the matrix F is shown in figure 3.12 (e). Every
element of F with a value of 1, represents a point about
which a tolerance rectangle of size 6 by 4 can be centered

and be wholly contained in R'A.

In practice it is inadvisable to perform all the partial

indentations before performing the AND operations; i.e. 3.15.
For a K dimensional example ZK partial indentations
would be required; Now the storage requirements for 2K

matrices would be prohibitive for most examples. Therefore
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the AND operations are performed after each partial
indentation. So that for the two dimensional example above,

after obtaining matrix C we would obtain matrix F as:
F = B.C 3.19

Matrices B and C would no longer be required and hence
would be discarded. Matrix D would be obtained from
matrix A as described before. This would be followed by
matrix F being updated as

F =F.D 3.20

Then after obtaining matrix E by the appropriate partial
indentation, we would get the final F matrix as:

F = F.E 3.21
In general the process need not always be performed for
a11 2K partial indentations. We recall that if every
element of the final F matrix, i.e. 3.21 is a logical O
then the tolerance solution under test in infeasible.
Clearly, this will also be the case if all the elements of
the F matrix after an intermediate stage (i.e. 3.19 and 3.20
etc) are zero.‘ Therefore, in a practical implementation
of this method the matrix F is checked for non-zero
elements after each partial indentation and logical AND
operation. If at any stage the elements of F are all
zero, then the test is terminated and the tolerance solution

declared infeasible. Otherwise, at the end of 2K

partial
indentations, the tolerance solution is taken to have passed
the feasibility test. The component values corresponding .to

logical 1's are then identified as suitable design centers

for the tolerance solution under test.
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In the situation where the nominal point is to remain fixed,
the procedure is modified slightly. After each partial
indentation and logical AND operation, the resulting

F matrix 1is checked'to see if the particular element
corresponding.to the fixed nominal point is a logical 1.
The test is terminated and the tolerance solution declared

infeasible if this element is a logical O.

In the next section the effectiveness of the indentation
procedure will be demonstrated by application to a particular
circuit example involving three toleranced components.

We note that in common with other geometrically based

methods, the computational cost increases very sharply with
dimensionality. The greater proportion of the computational
cost will be incurred in performing circuit analyses following
regionalization. For example, for a circuit with K

toleranced components and with q intervals for each component,
a total of qK circuit analyses will be required.: On the other
hand the computational cost of each partial indentation
will largely be incurred in performing qK logical AND
operations. In addition the maximur number of partial indenta-
tion required (ZK) will double with dimensionality. Again

the comnutational effort incurred in the circuit analyses

may be considerably moderated by employing the large change
sensitivity method called systematic exploration /43/.

However; this method is only applicable to the frequency

domain behaviour of linear circuits.
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3.4 CIRCUIT EXAMPLE AND RESULTS

|

The indentation procedure was incorporated in a.discrete
optimization strategy comprising the bisectional_éearch
described in section 3.3.2. Tolerance assignment and
design centering were performed on the circuit shown in
figure 3.13. The circuit was subject to the perférmance
requirements detailed in figure 3.14. The three éomponents
marked with arrows were taken to be toleranced. For
performing the regionalization, the nominal tompo#ent values
shown in figure 3.14 (i.e. p9, pg, pg) ‘were usedr For each
component a range of +10% of this nominal value was divided
into 10 intervals. The resulting 113 points® were then
analysed and tested for compliance with the performance
requirements. The logical matrix so obtained is illustrated

in figure 3.15. R is a three dimensional logical array

E’
of size 11 x 11 x 11. To represent RE' in two
dimensions, eleven 11 x 11 matrices are shown, Each

matrix corresponds to one of the eleven allowable values

of component X The 11 x 11 points of each matrix

1.
correspond to the eleven choices for each of the other two

components.

In total four tolerance solutions were tested for feasibility.
The final solution comprised tolerances of 4, 6 and 6 percent
respectively of pi, pg and pg (see figure 3,13) for
components Xj, X2 and X;. The corresponding design center

*These points could have been analysed cheaply with the
systematic exploration technique. Howeyer, in the absence
of an implementation of this method, 113 analyses were
performed.
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is indicated in figure 3,15. Finally, for these
tolerances and nominals a 500 sample Monte Carlo analysis
-was performed using uniform distributions for each

component. No failures were encountered.

3.5 SUMMARY

In this chapter discrete optimization methods for the worst
éase tolerance assignmeht and design centering problems

have been considered. The general branch and bound strategy
has been outlined. The main computational aspects of

this strategy have been identified firstly as a discrete
search method for sélecting suitable tolerance solutions and
secondly various methods for testing tolerance solutions

for their compliance with the worst case condition. A simple
search strategy called the bisectional search and various
worst case testing methods have been described. In particular
a novel geometrically based worst case testing method called
indentation has been presented. The effectiveness of this
method hés been demonstrated by application to a circuit

involving three toleranced components.
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Figure 3.4

RT' RA implies RT"¢RA
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Methods For Worst Case Tolerance
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Figure 3.6 Double Triangular Distribution
Used In Monte Carlo Feasibility
Testing.
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Point i.e.

o .0

-

L)

Two pairs of tolerances t;,, tjx and t;

are considered. Clearly.tjy, tjx is fea51%le
while tiY’.tiz is infeasible.

Ry;; 1s the region of acceptability computed
after setting the other (K-2) parameters at their

i.e. p. = pg for r i, v # J.

Figure 3.7: An illustration of pairwise feasibility

Fixed Nominal



129

RE the region of exploration

API Individual sub-regions

Py

Figure 3.8 Illustrating Regiomnalization For
A Two-dimensional Example.
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Figure 3.9 A Discrete Representation Of The
Region Of Acceptability
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0 otherwise.

otherwise,

0
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CHAPTER 4 - ITERATIVE MONTE CARLO BASED METHODS FOR
DESIGN CENTERING.

4.1 Introduction.

4.2 Problem formulation and geometrical
interpretation.

4.3 Optimization methods for yield maximization -
some general comments.

4.4 Direcf search methods.

4.4.1 The
4,4.2 The

(a)

)

(c)
; (d)
(e)

(g)

pattern search method.
statistical exploration method.
Choice of searqh direction.
Choice of step size.
Choicé of sample size.
The correlated sampling scheme
Some algorithms,
(i) Algorithms 4.1 - correlated sampling
‘ scheme.
(ii) Algorithm 4.2 - common points scheme.
Circuit examples and.results.:
(i) Passive high pass filter;

(ii) A high frequency amplifier.

(iii) A transversal filter. {
: i

4.5 Summary and conclusions.
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CHAPTER 4

" ‘ITERATIVE MONTE CARLO BASED METHODS
FOR DESIGN CENTERING '

4.1 INTRODUCT ION

" In chapters four and five we consider technidues where an
objective functién involving yieid is optimized by
methods based on Monte Carlo analysis. Specifically, we
discuss design centering (yield maximization ) in chapter
four while tolerance assignment is(considered in chapter

five.

As discussed in chapters one and two, Monte Carlo analysis

is a general procedure which can deal with any number of
component parameters and performance reduirements. Unlike
the method of moments; the Monte Carlo ﬁethod is not based on
approximations of the circuit response or on assumptions

of Normality (Gaussian) about the response probability
density functions. In addition the number of sample circuits
required to be analysed is independent of the dimensionality
(number of component parameters) of the circuit. This is
unlike the situation with deterministic‘methods such as
simplicial approximation (see chapter 2), where the number
of sample circuits required to be analysed increases rapidly

with dimensionality.

Therefore, design methods based on Monte Carlo analysis are
preferred over other methods, especially for application
to circuit examples involving a large number of toleranced

components.
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Gradient based optimization methods /45/ are inappropriate

for the design centering problem since the Monte Carlo yield
estimation procedure does not evaluate the gradients of
’yield with respect to the nominal parameter values (design
center). Therefore, attention is confined to direct search
methods /45/ which do not require gradient information.
However, in addition to an estimate of yield the Monte

Carlo method does provide information about the distribution
of passing and failing circuits in the inpuf space. Therefore
in addition to investigating the applicability of conventional
direct search methods, we propose novel schemes which make

use of the spatial information obtained from the Monte

Carlo procedure,

4.2 PROBLEM FORMULATION AND GEOMETRICAL INTERPRETATION

The problem addressed is that of maximizing yield for fixed
absolute tolerances and a particular form of component
parameter p.d.f. Notationally the following unconstrained

optimization problem is considered:

Maximize Y(¢ (P°,T) ) 4.1

by appropriate choice of design center p° = pg pg cese PO,

o
K
for constant tolerances T = t;ty; .... tye

The vectors P° and T are considered to be parameters of
the component probability density function $(.). For
example if the component parameters are statistically

independent with Gaussian distributions, then @ (.) is
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the product;

K
@(.) = T]'1¢(pi,pg,di) 4.2
1=

o}
p_1 and o

i are respectively the mean and standard deviation

of the ith probability density function @;(.). For all
practical purposes we may take @#(.) to be zero for
Ipi-p2|'>36i. Therefore we can say that t; = 30; i=1 ... K.

Similar relationships can be defined for other forms of p.d.f.

The geometrical intérpretation of design centering briefly
discussed in chapter one is now expanded. Initialiy we
reconsider cértain definitions. For example the vectors

P° and T define a region in the input space, the tolerance

region RT(PO,T), such that for

P = pyPy +eeee Py
PeRy if (ﬁa—ti)<pi<(ﬁi+ti) i=l .... K 4.3

The function ¢(P,ﬁ>,T) is defined over the tolerance region

and is zero otherwise. Further since @¢(.) is a p.d.f.,

we have
PRt ty P+t
f I ¢(P,PO’T) dpldpz .o 80 d.pK = 1 4.4
PR-tx P-t

We re-iterate the definitions of yield and region of

acceptability.

P*tk - Pty |
Yield & [ [ g(®)@(P,P°,T)dpy dpy +»s dpg 4.5
PRtK PI-ty
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As before g(P) denotes a testlng function whose value is
unlty if the circuit with component values P satisfies all
performance requirements, and is zero otherwise. 'The

rrégion‘of acceptability Rp is then defined as:

R, & {Plg(P) =1} 4.6
It is profitable to reconsider the geometrical interpretation
of yield. Figure 4.1 illustrates the definitions for the
case where the dimensionality K, is two. Initially, we

take ¢(P,P°,T) to be a multivariate uniform p.d.f: i.e.

K 1 A
@(P,P%°,T) = —  for PeR; 4.7
i=1 2t

0 otherwise.

Then with notation V{Ri} meaning volume of region Rys yield
is the following ratio of volumes:

V{Rp(PONR,}
Y(¢(0)) = N 4-8
V{R;(P9)}

Foi fhe situation where the p.d.f. @(.) is other than
uniform, the function @(P,P°,T) may be taken to define a
weighting of every point in Rp. Therefore notation

V{Rx} in equation 4.8 should ﬁow be taken to mean the volume
of region R, weighted according to the function $(.). As

a conseduence of definition 4.3 and equation 4.4, the value
of the denominator in equation 4.8 will have‘é constant
value irrespective of the design center P°. Therefore a
geometrical interpretation of design centering is to find a
center P for the tolerance region RT; such that the

volume V{RT(pSyﬁRA} is maximized.
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In practice design centering can be treated as an un-
constrained optimization problem. The most commonly
occurring constraints on parameter values will be box
constraints /46/. One example of a box consfraint is the
non-negativity condition,: p§>0; i=1 .... K. Other common
examples are the constraints imposed by the limits of the
technological processes used to make the components. For
example if may be required that the resistors in planar
integrated circuits be less than a certain maximum value
(typically 20KQ). Nevertheless, in almost 511 practical
problems these constraints arevnever encounteredlin the

search for an optimal design center.

4.3 OPTIMIZATION METHODS FOR YIELD MAXIMIZATION - SOME
GENERAL COMMENTS |

Yield as defined in equation 4.5 is a multidimensional
integrai, where the dimensionality is equal to the number of
component parameters subject to variation. For circuits

of realistic size and complexity, the integral cannot be

- computed by a deterministic numerical method such as
quadrature. This difficulty is unresolved with a geometrical
approach, as the computational effort required to characterize
the regions Ry or RpNRy is prohibitive for most circuit

examples.

In chapter one we have described a computationally cheap
statistical method, namely the method of moments. However,
we re-iterate that the approximations inherent in this

method make it unsuitable for most applications.
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In practice Monte Carlo amnalysis has to be employed to
estimate yield. However, Monte Carlo analysis is compu-
tétionally expensive and it is therefore unattractive to use
it prodigioﬁsly in anyladaptation of conventional iterative
optimization methods. Nevertheless, Monte Carlo.analysis can
deal with circuit examples comprising any number of components
and performance requirements. Further, it does not require

" simplifying approximations and assumptions. Therefore, we
consider methods which' make prudent use of all the information
generated in the Monte Carlo analysis and which moderate the

computational effort by employing efficient sampling schemes.

A confidence interval 1is associated with each;Mbnte Carlo
estimate of yield. The true yield is expected!to occur
inside this interval with a certain degree of4c6nfidence.
When the Monte Carlo method is used iteratively, the confi-
dence interval associated with the yield estimates at
different iterates may overlap. Therefore a sifuation could
arise where the estimated yield for a particular iterate was
greater than that of another iterate, when the true yield
was not so. Therefore it is important to consider the
confidence of correctly ranking iterates. That ‘is, the
degree of confidence in asserting that the true yield
associated with one iterate is greater than that associated

with the other.

The extent of the confidence intervals associated with the
yieid estimates and the confidence of correctly ranking
iteratés depend upon the number of sample circuits analysed

in the Monte Carlo analyses. In general it requires a smaller

number of samples to have a high confidence of correct
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+ ranking than to attain small confidence intervals. Also,
in the intermediate stages of the optimization, it is
sufficient to correctly rank iterates, whereas the accuracy

| 1

of the yield estimate becomes important for the final

‘iterate.

Later in this chapter the basis for computing‘fhe confidence
of correct ranking will be discussed. We shall also comsider
special sampling scbéﬁes, which while giving .sufficient
confidence of correct ranking, reduce considérébly the

sémﬁle sizes below those required for a direét'iferative~

applicétion of Monte Carlo analyéis.

In considering the applicability of standard aptimization
methods to ihe maximizafion‘of yield, it is ﬁoted that

Monte Carlo analysis does not provide gradienté of the
yield;with respect to the design variables, i.e.

pg pg;.... p%. Purther, no tractable numeriéalfhethods are
available for the computation or estimation of such gradients.
Hence gradient based methods are inappfopriafe. Therefore we
consider direct search methods, which in confrast do not

require gradient information.

4,4 DIRECT SEARCH METHODS
All numerical optimization methods involve itérdtive
procedures where the objective function is evaluated at
difference poinfs (trial solutions) in the input Space,
until a maximum (or minimum) is obtained. Diréct search
methods are a class of optimization method where a trial

solution is determined by a strategy which considers the
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. position of a number of previous trial solutions and the
values of the objective function at these points. The
gradients of the objective function with respect to the
design!variébles are not required to determine the next

trial solution.

Two specific direct search methods are considered for the
problem of ﬁaximizing yield. Firstly, we discuss a
standafd method, n@mely Pattern search /34/. Secondly, we
propose a novélvtechﬁique‘callea "statistical exploration".
‘In"choosing trial solutions, the latter method uses info-

rmation about the position of pass and fail circuits generated

|
|

|

The optimization process involves a number M of trial

by Mbnte Carlo analysis.

solutions, P%, Pg .... PO, with associated tolerance regions
Rt1, RT2 ees Rrye As before, region RTj is a hyper-

rectangle centered about the point P?., The sides of Rrj

J
are of lengths 2t;, i=1 .... K. 1In addition we let ?j denote
an estimate of the true yield Y5 associéted with the design

cehter P?. The estimate ?j is obtained via a Monte

Carlo analysis with a sample size of Nj.

In the initial discussion, it is assumed that the sample sizes
provide adequate confidence of correct ranking. The
o !

question of sample size is relevant to all Monte Carlo based

methods and is taken up in section 4.4.2.

4.4,1 THE PATTERN SEARCH METHOD

Becker and Jensen /12/ report thedapplication of the pattern

search method to the yield maximizatiPn problem. The method



. takes the form of alternative application of "exploratory"

and "pattern' moves as summarized in figure 4.2.

© . 40 0 o . . .
Let P1 = p11 P, +++ PiK belthe starting point with
associated yield estimate Y;. We refer to Pg as the

first base point and additionally denote it as PBl' To
commence the procedure, the value pry; is incremented by.

a gpecific amount Ap; and yield is re-estimated. If the
yigld increases theﬁ p?l + Ap; is accgpted as the new value
of pg; otherwise‘p‘i1 is decremented by Apl and yield is
re-estimated. If yield is now found to increase, then

pY1 - Ap; is accepted as the new value of pg. If neither
perturbation resglts in an increase of yield over Yl’
then the value of pg.is left unchanged.

Let us assume that an increment of the value of p? resulted
in an increase in yield. Then in our notation, we have

P§= (p?l + Apy) P1y P13 -+ PIK- We.npw begin to explore
the effect‘on yield of changes to the value of the second
component pg. We increment the value p$, by Ap, and
.re-estimate yield 3 éo that we are now estimating yield

for design center»P3 = (p$1 + Apl)(plé + Apz)p$3 e pgK .

The yield Yz is now compared with yield Y,. If no increase

0
2

and yield is re-evaluated. If neither perturbation results

in yield is obtained then the value of P is decremented
in an increase in yield, then the value of pg is left
unchanged at sz' ‘These perturbations and yield estimations
" are carried out for each parameter in turn, and constitute
the exploratory moves. At the end of the exploratory moves

we get a new point Pp,, i.e. the second base point.

146
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The line joining the new base point PBZ with the initial
base point Ppgj forms the direction of movement. A pattern
move 1is made by extending this line from the first base
point to the second base point by doubling its length. The
end of this line forms the third base point from which the

. A . i
exploratory moves are restarted.

If the exploratory moves do not produce an increase in yield,
then the sizes of the perturbations Ap;y, i=1 ... K, are

reduced and the process is restarted from the previous base,

The procedure ihvolving alternative application of exploratory
moves and pattern moves is continued until no further

increase in yield are obtained.

A hypothefical trajectory for a two dimensioﬁal example is
Eillustrated in figure 4.3. The trial solutions are

numbered 1 to 27. The thin lines dépict exploratory moves,
while the thick lines indicate pattern moves. Among the
thin lines, the broken ones indicate exploratory moves

which did not lead to an increase in yield. The exploratory
moves around base point Pg, do not lead to an increase

in yield. Therefore the procedure réverts to the previous
base point and re-commences the exploratory ﬁoves, but with

smaller perturbations.

Application of the paltern search method has been reported for
the three transistor amplifier circuit shown in figure 4.4.
The design variables are the nominal valués of the resistors
R, to Rs. Each resistance has an associated tolerance of 10%
of the initial values. The pfobability density function for

each ﬂarémeter is taken to be unform. The circuit performance
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. constraints are shown in .table 4.1, Table 4.2 shows the
results obtained for one of the yield maximization runms.
This example is reproduced here for comparison with the

‘results of the statistical exploration method_described'below.

4.4.2 THE STATISTICAL EXPLORATION METHOD

This method takes advantage of the exploratory spatial
information generated by the Monte Carlo yield estimation
précedure. To appreciate this, we recall the geometrical
interpretation ofadesign centering as maximizing the volume

of the region of intersection RyNR,.

In the Monte Carlo estimation of yield, circuits (points

in Ry) are randomly generated, analysed, and‘tested against
performance requirements. For each analysed circuit, we
know its position in the tolerance region, and whether or
not it bélongs to the fegion of acceptability. Therefore,
Monte Carlo analysis identifies points generated‘in regions

RTI'\RA and RTnﬁA. This informatibn can .be used efficiently

for design centering.

A general flow chart of the method is shown in figure 4.5.

The procedure is iterative. From a particular trial solution

~

Pg with associated yield estimate Yj, a new trial solution

P?+1 is sought such that

VORT, 341

The new trial solution Pg+1 may be written.a$:

o = pQ . : .
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Clearly every point in Ry~ is moved in a direction parallel
]

to AP; by an amount Aj'APﬂ to form RT,j+1' This is

illustrated in figure 4.6.

‘(a) Choice Of Search Direction j

From geometrical considerations, e.é. figure 4.6ﬁ

we surmise that an effective seérch digection wiil be the
direction parallel to the 1ine‘joining‘thé centers of gravity
of the acceptable and reject regioms. ! That is, the search
direction APj givén‘by: |

More précisely, GAj and GRj are the centers of gravity
of regions (RTjnRA) and (RTjnﬁﬁ) which have been weighted

according to the relevant p.d.f. ().

After performing Monte Carlo analysis, the centers of

gravity are estimated as follows.

Let N be the total number of sample)circuits analysed. Let
Np be the number which pass all performaﬂce requirements.
Then yield is estimated as ¥ = %A. Clearly the number of
circuits which fail at least one performance requirement

will be (N-Nu). Further; let P = p% p% oo p%

represent the component values of the '2th analysed circuit.
In addition let the Na acéeptable circuits be numbered

from 1 to Ny and the (N-Nj) reject circuits from (Na+D)

to N. Then the co-ordinates gij and gij ; 1=1 .... K,
of GAj and GRj’ are estimated as:

ot S A i=l .v.. K 4.13

[



and N

i 1 ) 2 .

i o= _

grJ ~ (N-N,) N,+1 pi 1=l .... K 4.14

For the sake of rugour, definitions of the cente#s of
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gravity Gaj and G,. are-given in equations 4115 and 4.16.

RJ i

f piQ)(P%’)dpl eeees dpy

; Rr:sNR
ol o T 'HA
gAj ‘[ 4,15
¢(P9)dp1 s 0000 de
; A
Rp iR,
A (o]
nd J{_ p;®; (PY)dpy ... dpy
RrsAR
Oz A - , 4.16
S
Jf ¢(Pj)dp1 I
RTjn_R'A

Clearly the quantities defined in 4.13 and 4.14 are estimates

of the quantities defined in 4.15 and 4.16.
(b) Choice Of Step Size

In view of the computational cost of Monte Carlo analysis,

it is inadvisable to perform a unidirectional search for

maximum yield along the search direction AP.. We are content

J

with any value of Aj (and hence P?+1 through equation
4.11) such that the resulting yield Yj+1 is greater than

the current yield Yj'

Since little is known‘about the shape of typical regions

of acceptability; very precise rules for the choice of

A cannot be obtained: However; prudent constraints on the
choice of A may be derived from the following qualitative

development. Consider figure 4.6 depicting the tolerance
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|
)

regions for successive design centers P? and P?+1. The

following additional notation is introduced.

ne>

Region A RT(P?)F\ET(P?+1) ‘ That part of

RTj not overlapped
b}’ RT,j+1

ne>

Region B RT(Pg)r\RT(P§+1) : The overlap region.

Region C

R, 0 0 |
RT(Pj)f\RT(Pj+ ) : That part of Ry 1

1 not overlapped ’’

For convenience, this notation is illustrated:in figure 4.7.

Initially, all the component parameters are assumed to be
independent and uniformly distributed. Notation V, denotes
the volume of region X. Then the two yields of interest

may be written as:

| V.
g v, - (AU\E)”RA 4.18
| ' Rp
and
V(BUC)NR, ‘
Y = —g 4.19
j+1 R
T
Also let AYj denote the difference between yields Yj+1‘
That is, |
AIYj = Yj+1 - Yj
\ ~ -V
- (BUCINR, . (AVB)NR,
Vv
RT
V, \
CAR .. — "AARA
- —A A 4.20
VR

T
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Consider now a limit case in whick (a) 100% yield can be
achieved with the given tolerances and (b) one step in the
itération causes 100% yield to be obtained. These conditions
iﬁ ly that Y ='1 and hence V =y and

j+l ,
AYj = i-Yj. Equation 4.20 may be re-written as

V. -V
C AR, _ 11, | | 4.21

However; V.=V ='VR - V, and hence (4.21) may be

C ™ A r  'B
revlaced by:
(v -V A%
Rp B ARy Ly 4.22
J
VR
T

In practice the maximum obtainable yield is often less
than 100% and cannot be achieved in one iteration. Therefore
the equality in 4.22 is replaced by an inequality. Further,

for any particular Vg, the left hand side of 4.22

is maximized if V = 0. Therefore we obtain:
AnRA
\Y -V
R 'R
T "< 1-v, - 4.23
v ]
R
T
K l .
Also Vg = Ell (Zji - Ay Ap;), where Ap; is the ith
co-ordinate of AP, and V_ = 1% - 2t:. Therefore
' Ry i=1 t

substituting for Vpy and VB in 4.23, we get:

gt 2t =l (2t TR . Apy
I T o S < (1-Y;) 4.24



Alternately, this may be written as:

k
M e - A Ap;)
i=1 1 > Y. 4.25

mr
: i;thi
The tolerances t. are given constants and the. Ap. are
co-ordinates of APj, the search direction. Therefore
inqquality (4.25) constitutes a constraint on the value of
Aj. Although kj cannot be explicitly Written in terms
of the other guantities, relationship (4.25) is essentially

an upper bound on the value of ;. This is so because the

j
value of the expression on the left hand side of 4.25

monotonically decreases with increasing value of kj.

Inequality 4.25 is also of importance in the common points
sampling scheme to be discussed later. We note that

region B is the region common to succéssive tolerance
regions, Moreover the left hand side of 4.25 is §imp1y the
ratio of the volume of the common region to the volume of
the entire tolerance region, i.e. VB/VT. Therefore, the
above quélitative argument has shown that for 5 particular
choice of search direction AP, the step size A should

be chosen such that the common volume ratio ié greater than

the yield for the current iterate.

So far the arguments fbr choice of step size have assumed
uniform distributions. A parallel development is not
providad for non-uniform distributions. However, in practice
and especially for the choice of Gaussian distributions,
choices of X\ based on 4.25 have been found to be very

effective for design centering.
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The statistical exploration algorithm has been implemented
as a part of an interactive statistical design facility, where
the choice of step size is made by the human designer.
Further discussion of criteria for choice of step size will be
preséntea in the respective sections deéling with algorithm

implementation and with specific circuit examples.

(c) Choice of Sample Size

Computational cost is largely dependent on the total number
.of sample circuits tésted in the Monte Carlo analyses. The
sample siies also determine the extent of the confidence
intervals associated with individualiyield'estimates and
the confidence of correctly ranking iterates. 1In the
intermediate stages of the optimization, the correct ranking
of iterates is of greater importance while the accuracy

of the yield estimate becomes’significént for the- final
design center. We first discuss the dependence on sample
size both of correctly ranking estimates and of the extent
of the confidence intervals. Then two sampling schemes are

introduced, which for a particular sample size increase the

confidence of correct ranking.

From chapter one, we récall that for an N sample Monte

Carlo analysis; where NA circuits are found to be

acceptable, yield is estimated as Y = NA/N. The sampling
distribution of Y is Binomial, which for reasonably

large N can be approximated by a Gaussian disfribution with
mean U = Y and variance o? = ?(1-?)/N; The sampling distribution
is sketched in figure 4.5. Confidence statements may then

be made about Y. For example 95% of the total area under



the Gaussian curve is within u ¥ 20, which is hence the

95% confidence interval.

Now consider yield estimates ?j and ?j+l for successive

© and P?+1 respectively. As before AYj

iterates Pj

denotes the difference between the two yields, 1i.e.

AYj = Yj+1 - Yj. Having performed two Monte Carlo
analyses, we can estimate A?j as the difference between
the two yield estimates, i.e.

~

0, =¥, - Y 4.26

The sampling distribution of ATj is also Gaussian because

A?j is the difference between two Gaussian distributed

random variables. In addition, the variance UiY- of the
J

sampling distribution of A§j is related to the variances

2 2 . S < : .
on and on+1 of estimates Yj and Yj+1 according
to 4.27.
2. o 42 2 - y
CAYj on + on+1 2 CoV (Yj, Yj+1) 4,27

cov (?j’?j+1) is the covariance between the two yield

estlmatgs Yj and Yj+1’

The sémpling distribution of AYj is sketched in figure
4.9(a), where the estimated yield difference is assumed
positive. The degree of confidence in the aésertion that
the true yield difference AYj is positive when the
estimated yield difference ,ATj is positive? is the area
under the curve to the right of the abscissa, i.e. the'

shaded area. This area is equal to 1§ + erf (A?/GAY),

155§
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where erf(.) is the error function defined below.

1

2T

X 2
erf(x) = [ exp - t%/2 at.
)

The value of the error‘functibn and hence that of the confidence
of correct ranking increases monotonically with the value

of the argument A?/OﬁY. Therefore the confidence of

correct ranking is increased either if AY is large or if

Ogy is small. Qualitatively, the shaded area (in figure 4.9a)
will be increased either if the curve:is squeezed inwards,

i.e. there is a smaller Variance, or if the whole curve

is shifted to the right, i.e. there is a greater difference

in yield. The two sitﬁations are described in figure 4.9(b)

and 4.9(c) respectively.

We now describe two sampling schemes which, for a particular
sample sizegincrease confidence by attempting each of the
above two alternatives. One, correlated sampling, decreases

Opys the other’the common points scheme, increases AY.

(d) The Correlated Sampling Scheme

A sample circuit in Monte Carlo analysis comprises values for
each of the KX variable component parameters. The component
values are obtained by suitably transforming sets of values,
called raw random nuﬁbers. The raw random numbers are
pseudo-randomly generated to lie in the interval O to 1,

If in the estimation of ?j and ?j+1’ thg raw random
numbers were unrelated, the covariance term in équation 4,27

would tend to zero. For future reference this situation

is termed "independent sampling".
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It is however more satisfactory to employ the same stream of
raw random numbers for the jth and (j+1)th yield estimation.
This can easily be done since the raw random numbers are
obtained from a deterministic equation /28, chapter 6/

and hence may be repeated. This later strategy is termed

"correlated sampling", /1,12,13, chapter 4/.

In contrast to independent sampling, correlated sampling
introduces a pqsitive covariance between estimates ?j and
j+1 and hence redueeé the variance OzY (see equation 4.27)
of the estimated yield difference A?j.

Y

-The cause of the positive covariance will be examined
presently. Firstly, we note that ?j and ?j+1 will be

unbiased estimates of the true yields Yj and Yj+1
respectively. This is so, since although the same stream of
raw random numbers is employed for both estimations, the raw
random numbers are transformed according to different

p.d.f.'e i.e. ¢(P§) and ¢(P§+1). Therefore for either
iteration representative sets of sample circuits corresponding

to design centers P? and P§+ are generated and

. 1
analysed.

Secondly, it is noted that the difference between two unbiased
estimates is an unbiased estimate of the difference. In the
correlated sampling scheme the precision of the estimate of
the &ield difference»is enhanced because the dependence
between the two individual yield estimates is such that

when one result is overestimated (or underestimated) by
sampling variations; then so is the other one by roughly the

same amount /13, page 48/.
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A detailed comparison of independent and correlated sampling
is made by Jensen /1/. Here we briefly develop the formula

for computing the sampling variance defined in equation 4.27.

Let the number of sample circuits tested in each Monte Carlo

anélysis be N. Also let P; P? cens P? and
) J ’ ’
1 2 N : o
Pj+1 Pj+1 ceee Pj+1 denote the sample circuits of two

successive iterations. The result of each circuit analysis
and test can be represented as 1l or O, reflectipg the sample
circuit’s conformity 6r otherwise with the performance
requirements. The vector of outcomes (results) of a

Mbnte Carlo analysis is termed its yield trace. We let

X5 = x} x? cees x? and X, = x%+1 x§+1 ceee X§+1

denote the yield traces of the jth and (j+1)th Monte
Carlo analysis. The dependence in the two yield traces
introduced by the use.of the same raw random pumbers is
seen in the outcomes of éorresponding circuité, i.e.

x> and x}+1 etc., Also let n11' be the number of times

x% and x%+1 are both 1, o the number of times both
x§ and x%+1 are zero, njy the number of times x} is 1 while
x§+1 is O and so on for ngy.
Clearly Yo o= (mgy *my)/N
and ~
= +

It is shown in /1/ that

1 . .
COV(Yj, Yj+1) N Ccov (xj, xj+l)



159

and?further that

i i _ 2
cov(xj, xj+1) = (ny ngg - Mgy Pyl /N

leading to

The cause of this positive covariance may be aﬁpreciated by
reconsidering the geometrical interpretation. In figure 4.10
a two dimensional exémple is considered. The parémeters.pl
and P, are subject to a uniform and a Gaussian p.d.f.
respectively. The diagram iliustrates'the relationship

between the joint p.d.fs of successive iterates.

Figure 4.11 shows successive tolerance regions R; . and
s]
‘ . . . )
RT,j+1 associated with design centers Pj and
) : 0 0
Pj+l respectlve;y. Now we recall that Pj+l and Pj

are related as

o o
P. = PY + A.AP,
J+l j 373

The difference between the two design centers’aﬁd therefore
between.the two joint p.d.f.'s ¢(p§) and ¢(P?+l) is
simply one of translation by xjAPj. Similarly since

the same raw random numbers are employed for both iterationms,

the difference between corresponding sample points is

also AjAPj. Therefore we may write

i i | |
pl 4+ . AP, 4,29
Pis1 j Ay APy

for i=1..0000.0N

As before P§~and P;+ represent the ith samples of the jth

1
and (j+1)th iterations respectively.
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Figure 4.11 shows the two design centers and two pairs of
typical points; p§, p;+1 and p:, p§+1, say. In practice
Aj|APj| will be small. Therefore, corresponding points

will be in close proximity in the input parameter space.
Hence, there will be a small difference in perfqrmance

between corresponding circuits. So that if the outcome of

a particulaf sample circuit in iteration j is a pass, then the

corresponding sample circuit in iteration j+1 is also likely

to be so and, similarly for a fail,

(e) The Common Points Scheme
When itefatively performing Monte Carlo analysis, the common

points scheme makes computational savings by refeﬁploying,

for current iterations, circuit analyses performed at previous
iterations. However, unlike correlated sampling, the common
points scheme is only applicable when the component parameter
p.d.f. @(.) is multivariate uniform. For practical circuit
examples, the common points scheme uses émaller sample sizes
and is found to give levels of confidence of correct ranking
which are comparable to or greater than those obtained with
correlated sampling. Later in this section we shall present

a typical set of results demonstrating this. Initially,

we develop the basic ideas behind the common points scheme.

Again consider figure 4.7, and the definitions of regions A, B
and C. Let the relevant component parameter p.d.f. be
K-variate uniform. Let us say that a straightforward Monte

Carlo analysis is performed for design center P? and tolerance
region Ry . If the analysis comprises N sample circuits

J ,
randomly distributed with a uniform distribution and if NA

circuits are found to be acceptable, then yield can be
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estimated as:

Yj = NA/N 4.30

In view of the distribution of sample circuits éccording

to a uniform p.d.f., on average a number

NI

N x (VA/VT)

will fall in region A and
il Nl' ’

(N-N') = N x (V3/Vp)

will fall in region B. As before Va V3 and Vp denote

the volumes of regions A, B and Ry respectively.

The yields Y, and Y, in regions A and B are referred to

as partial yields, and can be estimated as:

Ya

NA'/N' 4.31

and.

Yy

NA"/N"

NA' and NA" are the numbers of acceptable circui%s in regions
A and B respectively (see figure 4.12). An alternative
estimate of the overall yield will then be the following:

Y, - (V, /Y)Y, + (Vy/Vp) Yy 4,32
Both expressions 4.30 and 4.32 are unbiased estimates of the
true yield Y, . If N' is.exactiy equal to (VA/VT) then the

J

two estimates are identical. The estimation of yield based
on 4.32 is an instance of a variance reduction techniqﬁe known

as stratified sampling. Specifically, it is an instance of



162

"stratification after sampling'". The general ideas involved

in stratified sampling are discussed by Kleijnen /47,chapter 3,

pp. 110-132/. At the end of this section we shall quote

the relevant expressions for estimating the variance associated

with a yield estimate based on stratified samplihg, (i.e.

estimate 4.32) and compare it with the variance of the

conventional Monte Carlo estimate, i.e. expression 4.30.

In practice the difference is too small to merit g fuller

exposition. o !
: ‘

Now for iteration j+1, the new design center P?+1  can be

chosen as described earlier. We now need to estimate the

new yield AYj+1' This can be written as:

Y41 = YV AVp) +¥ (Ve / V) 4.33
Hoﬁever, an estimate of the partial yield Yp is available
from the previous iteration, and hence this estimation need
not be repeated. Partial yield YC can then be éstimated
by randomly generating and analysing a number ofﬂsample
circuits distributed in the region C. In one practical
algorithm to be described later; the number of new circuits

generated in region C is chosen to be N', i.e. equal to the

number of circuits in region A. Therefore, the estimate

Yj+1

N; whereas only N' new circuit analyses are performed, and

(expression 4.33) is also based on a sample size of

N'" circuit analyses from the previous iteration are re-employed.

Now we consider the implications on confidence of correctly

ranking yield estimates, arising out of this scheme. Subtracting



equation 4.32 from 4.31, the difference between the two

yields Y. and Y. can be written as
i+l J

AY; = (Vo/V)Y o= (Va/Vp) Y,

[
i

However, V, = V.. Therefore (4.34) becomes:

C

AYj = (VA/VT) (YC - YA)

4,35

ﬁenoting (YC - YA) as AY'j, expression (4.3%5) may be

re-written as:

= 1
AYj (VA/VT)AYj

4.36

In other words the difference AYj between the yields

163

. . . .
¥j+l and Yj is (VA/Vf? times the difference AY j between the

partial yields Y. and Y,. However, (VC/VT) < 1, therefore

C A

AY'! >Y.

To estimate AYj, we subtract estimate

expression 4.31). The difference AYj

4,37

'.Y.A %md\, Y. (see

in the overall

yields can then be obtained from expression 4.36.

The sampling distribution of AY' will be Gaussian with

mean u =AY' and variance OiY' given by expression 4,38
J | .
below:
2 2 2 !
o = g + g ‘ 4,38
AY'?
‘ YC YA
The individual variances 03 and 0% will be given by
C H
the following expressions:
Y a-¥)
02 = A A 4,39

A N'
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' Y. 1-Y.)
' Q’2 = __C_.__C_ 4'40
N ’

In' comparing expression 4.38 with expression 4.27, we find
that the covariance term has been omitted. In practice we
expect the covariance to be approximately zero. This is
so since the raw random numbers emplqyed in the Monte
Carlo estimation of the partial yields YA and YC are

independent.

To rank overall yields Yj+1 and Yj’ we only need to

rank yields Y and Y.. That is because

A o
> ' - 3 —
YC YA implies ijl > Yj
or AY} > 0 implies AYj > 0 4.41 -

The confidence of correct ranking is now 3} + erf( AY%/oAY)
whefe erf(.) is the error function defined previously. This
compares with a confidence of 1 + erf( AY,

J
independent sampling. The confidence of correct ranking

/oAY) for

increases monotonically with the value of the argument of the
error function. In practice we have always found that due to

relationship 4.37,

1
CAY! LAY, ,
i R | 4042
Tay NS
i | J

Unfortunately, no simple relationship connecting the variances

o and o can be obtained. However, in practice

AY5 AY , |
we have found that the larger magnitude of AY3 over AYj



165

ensures that 4.42 holds. Therefore the confidence of

correct ranking is enhanced in the common points scheme. The
effect is illustrated in figure 4.9 (c) and can be contrasted
with the effect achieved by using correlated sampling as

illustrated in figure 4.9 (b).

The correlated sampling scheme described earlier is applicable
for Both non-uniform and uniform component p.d.f.'s, whereas
the common points scheme is only applicable for uniform .
distributions. However, in the latter case the common points
scheme is found to be more efficient. We demonstrate this

with a typical set of results.

Figure 4.13 shows the yield trajectory (i.e. curve of yield
against iteration) obtained by application of the statistical
exploration design centering algorithm to a particular
circuit example ¢ The applicable p.d.f. isvassﬁmed to be
uniform and the common pointé scheme is used. .The number of

" new circuit analyses performed at each iteration is indicated.
The algorithm maintains a constant number of circuit samples
(in this case 100) throughout the optimization; So that for
iteration two for example, 29 new circuit analyses were
performed; hence 71 analyses from the pfevioué iteration were

re-employed. !

1

The results are further summarized in Table 4.3 and a comparison

with correlated sampling is made. Column two of table 4.3,

o . .
The circuit in question is a seven component high pass filter
which will be more fully discussed in the next section.
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~shows the number of new circuit analysés performed at each
iteration while column three shows the overall estimate of
yield. Columns four and five show the partial yields Yo

and Y while column six indicates the difference in the

C’
partial yields. Column seven on the other hand is the
difference in the overall yields. For example the entry in row
two, column seven is the overall difference in yields between

iterations one and two.

The confidence of.cofrect ranking for the common points

and correlated sampling schemes is compared i# columns eight,
nine énd ten. We recall that the confidence of correct
ranking is a monotonically increasing function of the
co-efficient AY/o,y. Column eight shows the value of

this co-efficient at different iterations, for the common
p01nts scheme. Columns nine and ten show the value of

the same argument if the correlated sampling scheme had

been empiqyed. To appreciate the significance of this, we
re-iterate the equation (4.27) for the variance ch in

correlated sampling as:

2 |

- 2 2
Opy = OY,+ Oy, - 2 Ccov (Y. YJ+1) 4,27
J+1
j j ,
However, we can replace the covariance term as:
= . | 4,43
Here p 1s the correlation co-efficient. Therefore we
may re-write 4.27 as:
2 = 2 + 2 - 2
“ay T %" %, P 9. %. 4.44

i+l J 3+l
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Further from elementary probability theory / 9, chapter 5/, we
recdll that -1 £p £1. 1In column nine and ten we have

assumed particular positive values (0.5 and 0.8) for the
corfelation co~efficient and computed the variance O,y
using equation 4.44. |

In every case it can be seeﬁ that the vaiue of the co-
efficient in column eight (common points scheme) is larger
than that in columns nine or ten (correlated sampling).
These results are tyéiéal of those obtained with other

practical circuit examples.

Fihally to conclude this section we reconsider expressions
for the variance associated with an overall estimate of
yield based on equation 4.32, i.e stratified sampling.

We re-iterate equation 4.32, (also consider figure 4.12).
Yo T (VDY ¢ Yy 4.32
The variance associated with this estimate is derived by

Kleijnen /47 / as:

V. \2 V_\2
%, =(.é) oz +[.2) o (4.45)

The individual variances and G§B can be estimated as

2
Oy A
indicated by expressions 4,39 and 4.40 i.e.

Y, (1-Y,]
2 AC"'A) 4,39
GY =
A N?
and
2 -  ——— ‘
GYB = 4,40
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This compares with the conventional vield estimate as
| ! b

| Y = NA/N , (4.30)

and 'an associated variance

Y.Vl-? ' !
flen s ,

Y, N 3 O (4.46)

In general the variance (4.45) obtained with stratified
sampling is smaller than that (4.46) obtained with conventional
sampling. However, in our example, the region of interest

Rr has been divided into two strata, i.e. regions A and B.

It is shown in reference /47/, that the reduction in

variance obtained by stratified sampliﬁg depends upon the
number of strata and is very small for ohly two strafa.

In practice for yield estimation, we have found negligible
differences in the variances calculated from the two

expressions.

(f) Some Algorithms

Design centering algorithms based on the statistical
exploration approach discussed above are summarized in figure
4.14 and 4.15.

(i) Algorithm 4.1 - Correlated Sampling Scheme

The following notes are provided in addition to figure 4.14.

1. The raw random numbers are a pseudo random sequence of
values, uniformly distributed in the interval O to 1.
The sequence of values is obtained by a deterministic
equation and can be repeated exactly if the process commences

from a particular value. This value is called the
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random seed. Since we are employing the correlated
sampling scheme, we are interested in repeating the
sequence of raw random numbers. Therefore the initial

random link is stored. After each iteration the value

of the random 1link is re-set to this initial value.

\

Monte Carlo analysis is described in chaptef one.

The design center for the next iteration is selected as
described in section (b) and (c),'i.é,

P?+1 = P§ + A(Gp-Gp)
The centers of gravity G, and Gg can be computed as
described in section (&). 1In section (b), we have
developed constraints on the value of the step size 2.

In this practical algorithm, the constraint on the value

of A was of the form:

X

w {Ztl-Aj(gAl-gRl)}

1-1 <Y, 4.25
K J
i) 2t.
1 [

Here t, are the absolute tolerances of the X components,
|
gAs and gr; are the co-ordinatesiof the centers of

gravity G, and G, respectively an¢ Yi is the yield

R
for the current iteration. Also we note that 4.25 is an
implicit constraint on A, i.e. A cénnot be written
explicitly in terms of the other quantities. Therefore
in practice the left hand side of 4.25 is evaluated for
several discrete values of.X; Typically fifteen values

are considered from 0.1 to 1.5 in steps of 0.1. In the

initial stages of the optimization, the 1érgest value of A
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which satisfies inequality 4.25 is chosen. However, as the
optimization progresses and smaller yield increases per
iteration are encountered, even sma}ler values of X are
selected. Typiéal selections of vélue of X will be
indicated for several practicallexamples-in the next
section,.

Before every iteration the random link is reset to the
i

initial value. This ensures that the same seF of raw

\.

\

random numbers are used. ; \

The confidence of correct ranking is computed as

indicated in the formulae develdped in section (d) above.

This is a decision.made by the designer. If the
confidence of correct ranking is small, say less than

about 90%, then the designer may decide to perform more

‘circuit analyses. The designer may then re-assess the

difference in yield and the confidence of correct
|
ranking. He may continue performing more analyses until

the confidence is sufficiently high.

After each iteration the designer decides whether the
process is to be continued to another iteration. As is
indicated in the diagram, the designer normally terminates
the optimization if a decrease in yieldloccurs over

that for the previous iteration.

Algorithm 4.2 - Common Points Scheme

The following notes are provided in addition to figure 4.15.

1. The designer initially selects an "available sample size",



48&5

171

typically 100, This means that the method maintains

100 samples for each iteration. For example at a
particular iteration 60 samples from the previous iteration
may be found to be relevant to the current iteration.

Then the 60 relevant samples are re-used and the other

40 circuit samples are discarded. Forty new sample
circuits relevant to the current iteration ére then
generated and analysed. This is further explained in

notes 4 and 5.

A conventional Monte Carlo analysis is performed as

outlined in chapter one.

The design center is determined as explained in sections

(a) and (b). The step size A

in note 3, of algorithm 4.1 above.

is selected as outlined

The definitions of regions A, B and C are given in figure

4.6 and section (e). N is the available sample size. The

method éhecks the position of each sample point. All
sample circuits incident in the region A are discarded.
The sample circuits incident in'regidn B are re-employed.
If N; is the number of sample circuits incident in
region A, then ‘N; new samples afe generated in region C.
Therefore in total N samples are available for the

next iteration. The N; samples for region C are
generated by a rejection technique. Basicaily, samples
are generated with a uniform distribution over the

entire tolefance region RTj+1’ (i.e. region BNC). If

a sample belongs to region B it is discarded, while if it

belongs to region C, the sample is analysed. This
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. , . - ' A . .
is continued until Nj circuit samples have accrued in

region C.

The overall yield for the new tolerance region and the
confidence of correct ranking are computed as described

in section (e).

This represents one of the decisions made by the human
designer. If the confidence of correct ranking is low,
say less than about 90%, then the designer may decide to
perform more circuit analyses in régions A and C and re-

compute the confidence.

Circuits can be generated to fall in regions A and C,
by a method similar to the rejection technique mentioned

in notes 4 and 5.

After each iteration the designer may decide to terminate
the optimization. Usually, this is done if the yield
is found to have decreased over that for the previous

iteration.

(g) Circuit Examples And Results

The algorithms have been extensively tested for several

circuit examples. In this section the results pertaining to

three particular circuit examples are presented and discussed.

(i) Passive High Pass Filter /25/

The relevant circuit diagram is shown in figure 4.16.
The specifications on the insertion loss, together with a
sketch of the typical shape of thelresponse curve are

shown in figure 4.17. The circuit comprises seven
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toleranced components and a total of eleven frequency

points are tested.

In figures 4.18 and 4.19, we show typical yield-
trajectories obtained by the application of the design
centering algorithm. Uniform distributions are assumed
and tolerances are taken as 5% and 15% respectively of
the nominal component values of iteration No. i. The |
common points sampling scheme is employed, and the number
of fresh circuit‘sgmples analysed per iterate is
indicated. For example, for the 5% tolerance case
(figure 4.18), a total of 195 circuit analyses were
performed over six iteratiohs, forleach of which the
'""available sample size'" was 100. That is, the yield

\
|
estimate for each iteration was based on 100 samples,

although the number of circuit analyses performed was
smaller. For example for iteration No. 3, 29 new sample
circuits were analeed, whereas 71 samples from the

previous iterations were re-employed.

For both examples, substantial increases in yield

were obtained over five or six iterations. The confidence
of correctly ranking successive iterates, also indicated
in the diagrams, was high. In both cases, é confirmatory
500 sample Monte Carlo estimation was made at the initial
and final iterations. The fesults of these analyses

are also indicated in the diagrams.

The values of the step size A are shown in the
diagrams. These values were chosen by the experimenter
by the method outlined in note 3 on algorithm 4.1,in

Section (f).
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In figure 4L20, we present the results of the application
of the method when the component probability density
functions are Gaussian. Two curves are shown. Curve

A 1is the yield trajectory-Obtained when sample values
were generated assuming Gaussian diétributions. The
correlated sampling'scheme (described earlier) was
employed. The sample size for each iteration was 100.
Again substantial increases in yield were obtained and

the confidence of correct rankingﬂwas high.

Curve B shows the yield trajectory when uniform distributions
were assumed. As for curve A, toierances were 10% of

the nominals at iteration No. 1. Iaenticél values were
assumed for the design centers corresponding to iteration

No. 1, for both yield trajectories.

For strategy B, the common points scheme was employed.
The total number of circuit analyses performed over

five iterations was 217. Strategy A on the other hand
employed correlated sampling, whichvrequired a total

of 500 samples. We note however, that strétegy A

used Gaussian distributions, for which the common points

scheme was inapplicable.

At the termination of the design centering (strategy B),

a 500 sample Monte Carlo analysis was performed for
nominal values (design center) corresponding to iteration
No. 5 of strategy B, but with the sample values generated
assuming a Gaussian distribution. The resulting yield
estimate was within 5% of the yield estimate for iteration

No. 5 of strategy A. Now since strategy B is substantially
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cheaper, these results suggested an overall strategy where
uniform distributions and the common points scheme are
employed for several iterations until further increases
in yield appear unlikely. A switch is then made to the
Gaussian distribution and the correlated sampling scheme.
In the example shown here, no further increases in yield
were obtained when a switch to a Gaussian distribution was

made after iteration No. 5 of strategy B.

So far the resulfs of the design centering experiments
have been summarized in the form oflgraphs (yield
trajectories). .To give the reader an impression of thé
typical changes in component values, the component values
for the various iterations represented in figures 4.18,
4,19 and 4.20 are presented in tables 4.4, 4.5 and 4.6

respectively.

As discussed in chapters two and three, the circuit
designer may be constrained to select nominél values from
a discrete set. A common method of dealing with such

a constraint is to round off the continuous solution to
the nearest allowable discrete solution. Although such a
strategy can be shown to be non-optimal (see figure 3.1,
chapter 3), the other alternative commonly used, i.e. a
branch and bound method, would incur a prohibitive
computational cost due to the need to perform a large

number of yield estimations.

In figures 4.21 we present the results of a design centering

strategy, where the continuous solutions are rounded off
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to the nearest discrete solution. The results relate
to the high pass filter example (figurcs 4.16 and 4.17).
Tolerances were taken to be 5% of the nominal values
for iteration No. 1. That is if the design center for

. . . . o _ .0 e} o}
the first iteration is P p11 Pip +ev+ Piys then

1
the tolerances are T = tl ty) veenn tk’ where

t, = Py; X 0.05; fqr i=1 e K.

Eleven discrete choices of nominal values were assumed
available for each component parameter. These allowable

values were equally spaced in the intervals:
. -t.) <p° < (p.. +t.); i=l K
pli i pi pli i » 1= oo“o--

Symbolically the allowable values for the ith component

would be:

0
(pli-t.

. o . o o
1), (pli O.Sti), (pli O.6ti) veess Py

(py; *+ 0.2t;) +.oo (P9 *+ 0.8t;) (@95 * t;) (4.45)

The exact numerical values for this example are presented

in table 4.7.

In results shown in figure 4.21, continuous values
were first assumed available for iterations one to six.
The continuous values for iteration six were rounded
off to the nearest available discrete values for each
of the toleranced components. A Monte Carlo analysis
was then performed for the discrete design center, i.e.

iteration No. 7.
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On the other hand in figure 4.22, we illustrate a modified
‘method where the continuous solution at each iteration

was rounded off to the nearest allowable values before
performing the Monte Carlo analysis. The same’ tolerances,
‘allowable values and initial design center és for the
example in figure 4.21 were assumed. After“four
iterations, a result identical to the one obtained with
the previous strategy was obtained. That.is, iterates
four of figure 4,22 and seven of figure 4.23 were

identical.

Similar results were obtained when considering tolerances
of 10% of the initial nominal values. As before eleven
dis&rete allowable values distributed as indicated

| .

1 :
in expression 4.45 were assumed.

A sufficient number of circuits were not tested to come
to definite conclusions as to which of thegabove two
variations of the rounding off strategy was to be
preferred. Nevertheless, the results confirmed the
effectiveness of the rounding off procedure employed in
conjunction with the statistical exploration method

of design centering.

Finally we note that commercially available components
/36/ are not usually available in preferred values which
are equally spaced‘over an interval, as is assumed above.
Nevertheless, in principle the methods discussed above
couid deal with arbitrary distributions of discrete

values.



178

We acknowledge that a more thorough practical investi-

‘gation of the discrete value design centering problem

still remains to be made.

(ii) A High Frequency Amplifier
Design centering was performed for the high frequency
amplifier circuit shown in figures 4.23 and 4.24 /48/.
Figure 4.23 shows the full circuit diagram including the
‘resistors employed to bias the transistors. On the other
hand in figure 4.24 (a) we consider only that part
of the circuit which affects its a.c. behaviour. Figure
4.24(b) shows the a.c. small signal model employed for

the transistors. The nominal values of the parameters

of each of the transistors is also indicated.

The effectiveness of the statistical design centering
method can be demonstrated with the a.c. equivalent
circuit. 1In principle there is no limitation in
considering the d.c. behaviour as well. However, 1n

the absence of an implementation of a suitable d.c.
analysis facility, the d.c. behaviour was not considered.

Our purpose in including this example is to demonstrate

the application of the design centering method to different

types of circuits and to illustrate its independence of

dimensionality.
- adjustoble

The nominal values of thehcomponent parameters at the

start of the optimization are shown in figure 4.24 (a)

¢

and in table 4.8(b). The absolute tolerances of the component

are also shown. Uniform p.d.fs are assumed for each

component parameter. This example involves nineteen
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.toleranced components. The circuit is required to meet
a power gain specification at eleven frequencies

as is indicated in table 4.8.

The resuits of the design centering are shoﬁn in figure
4,25, Substantial increases in yield are obtained over
{ouf”iterations. The common points scheme was employed
and the confidence of correctly ranking Successive

iterates was high,

(iii) A Transversal Filter

Here we demonstrate the application of the étatistical
exploration method to a circuit example consisting of
43 toleranced components. The circuit belongs to a
famiiy of transversal filters /49/ to be manufactured
using charge-coupled devices. The basic structure of
a transversal filter is shown in figure 4.26. The
circuit operates on sampled values‘of an analogue sighal.
The input signa% is passed through a cascade of delay
elements. The output of each delay element is multi-
plied by a particular co-efficientkand the multiplied
outputs are summed to form the overall output of the

filter. The mode of operation of the circuit for both

frequency and time domains can be summarized as:

' : XK-1
Time domain: Uz(t) =) ale(t-vT)
v=0
: K-1 ol
Frequency Vv (jw)y=} a.Vy eIV
Domain: 2 =0 v
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Or The V2 K-1 )
Transfer o) o, e dveT :
Function: v, V=0 -

T is the time interval between samples, and is related to the

samp;ing'frequency f, as:
T = l/fS

Ul(t) is the stream of input pulses and U, the output

pulses, The «oa., i=0 ..... K-1, the filter:co-efficients

i’
are the parameters subject to variation. The values of
the a;- are determined by a capacitance which in turn is
proportional to the area of an electrode in the integrated
circuit. This is further explained in reference /49./.

Due to the uncertainties of~the manufactufing process,

the values of these co-efficients are subject to

statistical variation.

Design centering was performed on a filter involving 43
variable co-efficients, The applicable fteduency domain
speéifications are shown in figure 4,27 EThe nominal
values of the co-efficients were in the range -1 to 1,
and the largest value encountered was i. For design
centering, tolerances were taken to be ¥ 0.01 (i.e. 1%
of the largest co-efficient) for all the co-efficients.,
The applicable p.d.f. s were assumed to be ﬁniform

and independent. In the ébsence of accurate information
about the statistical distributions of cerfficient
values, the choice of uniform distributions was considered

prudent for an initial attempt at imprdving the design /50/.
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'The results obtained are shown in figure 4.28. As for

the examples discussed before, substantial increases in
yield were obtained. These results lend support to the
assertion that statistical Monte Carlo based methods are
relatively independeﬁt of dimensionality, since in most cases
a substantial fraction of the achieved yield increase 1is

obtained in six or seven iterations.
[

4.5 SUMMARY AND CONCLUSIONS

In this chapter we have investigated the application of direct
search optimization methods to the problem of maximizing
production yield for fixed absolute component tolerances.
We commenced the chapter with a brief description of a staundard
‘method, Pattern seafch, together with results for a particular

circuilt example.

The main éontribution of this chapter is the introduction and
development of a novel techﬁique called Statistical Exploration.
Both Pattern Search and Statistical Exploration employ Monte
Carlo analysis to estimate yield. However, in contrast to
Pattern Search, Stafistical Exploration makes use of the spatial
information generated by Monte Carlo analysis, to choose

suitable design centers. A direct comparison between the
two methods has not been made; Pattern search has been réported
for a 5 variable circuit, where the initial yield was 80%. Yield
increases of 9% to 10% were reported. On thetothe" hand
Statistical Exploration has been reported for various circuit
examples ranging from 7 to 4% toleranced components. In addition
while commencing with yields smaller than 80%, lafge overall

increases in yield have been achieved.
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It was concluded in the review in chapter two that statistical
methods which are independent of dimensionality (number of
toleranced components) were preferred over deterministic methods.
We note thatAboth Pattern search and Sfatistical Exploration
employ Monte Carlo analysis; for which the number of circuit
analyses required is independent of dimensionality. However,
Monte Carlo analysis is computationally very expensive. Therefore
we are interested in minimizing the number of iterations performed.
In the exampleé tested with Statistical Exploration, the number

of iterations performed to arrive at yield maxima ranges from

4 to about 8, and is found to be independent of dimensionality.
This is summarised in table 4.9, for the circuit examples

reported here and in references /51,52/. These results

contrast with those éxpected for the Pattern Search strategy,:
which is inherently dependent upon dimensionality. For

example, the minimum number of iterations required for one

set of exploratory moves will be K (the number of toleranced
components), while the maximum number will be 2K. 1In addition

the number of base points has been reported td be proportional

to Kz.

In order to reduce overall computational cost both the number of
iteratidns and the number of circuit analyses performed for the
individual iterations must be kept small. We have discussed

the dependence of the extent of the confidence intervals of
individual yield estimates, and the degree of confidence of

correctly ranking estimates (iterates), on sample size.
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1
i

Special sampling schemes which reduce the sample size

rquired for a particular degree of confidence gf correct
ranking have been discussed. A novel technique, the ommon
Pqints scheme, has been proposed and .compared with a standérd
scheme, Correlated Sampling. The Common Points Scheme is only
applicable for the case where the component parameter p.d.fs
are uniform, whereas the (orrelated Sampling Scheme is applicable
for all forms of p.d.f. Nevertheless, in practical circuit
examples, for the case where componenf p.d.fs were aSSuméd

to be uniform, the Common Points Scheme is expected to

require substantially smaller sample sizes thén those required
for the Correlated Sampling Scheme. A particular circuit
éxample comparing the two schemes has been presented in this

chapter (section 4).

In addition to the case of uniform component parameter p.d.f

only the case of independent Gaussian distributions has been
investigated. As regards the Statistical Exploration method there
is no difficulty in principle in extending it to the case

where arbitrary forms of p.d.f. are considered. For the case

of independent Gaussian distributions it ha; been shown that the
Statistical Exploration method employed in conjunction with

the Correlated Sampling scheme gives satisfactory results.
Nevertheless; it is found to be more satisfactory to assume
uniform distributions for the initial iterations and to switch

to Gaussian p;d.fs . when no more increases iﬁ yield are obtained
with the uniform distributions: The assumption of uniform p.d.f
allows the use of the Common Points scheme and results in a
considerable saving in computational effort over the alternative

scheme where Gaussian distributions are assumed throughout.
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‘?or the design of discrete component circuits design
centering may be used as a prelude to tolerance assignment.
In such a case the designer may only be allowed to choose
nominal component values from a discrete set of allowable
values. Therefore discretization may be considered as a
special type of constraint on the design vdriables. We have
investigated a strategy where the continuous design values
selected by the design centering algorithm are rounded off
to the nearest discrete allowable values. Two variants of
this strategy have been reported for applicationtto a
particular circuit example. Satisfactory results are obtained.
NeVertheless, it is concluded that further invesgigation of

}

this problem is desirable.

Design centering is of particular importance for integrated
circuits. The designer has less freedom in choosing component
tolerances than for discrete circuits., Thereforé he must increase
yield by choosing a more suitable set of nominal values. The
circuit examples reported in this chapter have been regarded

as discrete component circuits. Nevertheless, the main ideas
may easily be extended to the design of integrated circuits.

A far greater problem as regards the design of integrated
circuits will be that of obtaining accurate descriptions of the
component parameter p.d.f. s. We surmise that for many forms of
p.-d.f. it will be useful to commence the deéign céntering

by assuming uniform distributions; The applicable p.d.f. s

can then be considered when an approximate solution has been

so found.
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IFinally we note that a set of heuristic optimizétion techniques
has been presented and their efficacy demonstrated for
particular circuit examples. These methods have been found

to function satisfactorily for everyone of the circuit examples
considered so far. The methods have been demonstrated for
much larger circuit examples than those reported in the

literature so far (e.g. Director et al /21/).



PERFORMANCE FUNCTION

LOWER LIMIT

UPPER LIMIT

D.C. collector
current of transistor
Tr: 1.

D.C. collector current
transistor Tr 2.

D.C. emitter current
of Transistor Tr 3.

VCE of Tr 1
VCE of Tr 2
Veg of Tr 3

Mid band voltage
gain of the amplifier

Mid band input
impedence

Mid band output
impedence

0.2mA

0.5mA

10mA
1v
2V
2v

18
20KQ

-0

0.8mA
1.5mA

15mA
5V
8V
6V

24
50KQ

0.5KQ

Table 4.1: Performance constraints for
the wide~band amplifier

circuit example.
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COMPONENT INITIAL VALUE FINAL VALUE

K& KQ
i

R2 0.020 0.020

R3 45.75 48,75

R4 - 13.75 16.25

R 1.45 1.3

R6 3.875 3.625

R7 0.425 0.4

The number of base points was 9.
The initial yield was 84.2%.
The final yield was 90%.

Table 4.2: Summary of results of the application

of the Pattern search strategy for
the wide band amplifier circuit example.
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Table 4.3: A Summary Of A Set Of Results Demonstrating
The Efficacy Of The Common Points Scheme

And A com arison With The Correlated Sampling

Scheme
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Itérat}on No.j—— Component Values 1
j Py 15 P | Py P péél P, Yield

,pF nF - H nF nF H nF

1 [11.89]36.21(3.945 |11.35]95.95(2.91 |16.06 65

2 |11.79|36.14(3.92 |[11.31|95.64(2.879(16.03 76

3 111.72]36.12]3.908 |11.25|95.42(2.854{15.98 85

4 ]11.68{36.07|3.898 |11.22(95.52(2.896|15.93 90

5 |11.66|35.96|3.878 [11.20(95.46(2.832|15.89 | 96

6 |11.64{35.92|3.872|11.18{95.48/2.826{15.86 96

The Absolute Values Of The Tolerances Of The Vérious Components were:

ty ty t, ty tg tg |ty
nF nF Hi nF nF Hs. nF
.5945/1.811|,1973 |.5675[4.798|,1455[.803

Table 4.4: Component Values For The Various Iterations
Of The Statistical Exploration-Design Centering
Run Summarised In Figure 4.18.(Also See
Circuit Diagram Fig. 4.16)



Iterat19n No. g

Component

Values
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¥
j Py P, | Px Py Pe | Pg Py Yield
nF nF H nF nF H nF
1 |11.89 |36.21 |3.945 [11.35]95.95]2.91 | 16.06 22
2 |11.76 37.23 3.733 [ 10.51 | 96.89 | 2.73 | 15.94 28
3 111.57 |38.71 {3,722 |10.15 | 96.07 | 2.698| 15.84 32
4 ]11.8 (39.24 |3,703 |10.02 95.57 | 2.725 A15.72 33
5 (11.91 [39.3 |36.95 |10.05 | 95.02 | 2.736| 15.59 36
The Absolute Values Of The Tolerances Of The Various Components Were
ty ty ts ty te tg t,
nF nF H nF nF | H nF
1.783 ]5.432 [.5918 |1.703 |[14.39 | .4365| 2.409

Table 4.5: Component Values For The Various Iterations Of

The Statistical Explordation-Design Centering

Run Summarised In Figure 4.19.(Alsc See Circuit
Diagram Fig. 4.16)
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j P P2 P, Py Pc Pg P, Yield
nF nF - H nF nF H nF
1 | 11.89{36.21{3.945{11.35(95.95(2.91 |16.06 62
2 | 11.79(35.83|3.911{11.33|95.32(2.884|15.93 79
Al3 | 11.72|35.78|3.9 |11.34{95.23|2.863|15.82 86
4 ) 11.64)35.79|3.897|11.29(95.36|2.84 |15.76 91
5 | 11.62/35.79|3.898|11,27/95.51|2.834]15.76 94
IR _._,-.._.._q.'.._._._..._.__._.._._ﬁ _____ -‘_““ﬂ
1 | 11.89/36.21|3.945/11.35[95,95(2.91 |16.06 39
2 | 11.68|36.24}3.868[11.05(95.88}2.752|15.85 53
Bls | 11.71]35.51|3.832|11.08|06.29|2.684{15.64| 63
4 | 11.61(35.1 |3.85 [10.7 |96.13]|2.71 |15.73 65
S | 11.56(34.76(3.87 {10.58(95.85|2.716[15.56 66

The Absolute Values Of The Tolerances Of The Various Components Were

1.18913.621}1.394511.13519.595/.291 }1.606

Table 4.6 : Component Values For The Various Iterations Of
The Statistical Exploration Design Centering Run
Summarised In Figure 4.20 (Also See Circuit Diagram
fig. 4.16) ‘



Iterftion No
[}

Component Values

£ r .
j P, Py Py P, P Pg Py | Yield
nF nF H nF nF H nF
T 11.89 |36.21 | 3.945| 11.35| 95.95]| 2.91 16.06 65
11.89 | 36.21 | 3.945| 11.35| 95.95| 2.91 | 16.06
2 [11.79 | 36,153,919 | 11.31} 95.63| 2.874| 16.03 | 73
A 11.77 [ 36.21 { 3,906 { 11,35} 95,95 2.881 | 16,06
3 (11.7 |36.17 1} 3.898 | 11.31| 95.89| 2.858{ 15.99 | 85
11.65 { 36,21 | 3,906 | 11.35] 95.95{ 2.852| 16.06
4 |[11.62 {36.17 | 3.895( 11.31] 96.1 2.846) 16.02 87
D 11.65 | 36.21 | 3.906 | 11.35| 95,95} 2.852| 16.06 :

The Absolute Values Of The Tolerances Of The Various Components Were

ty t, tg t, tg tg tg
nF nF H nF nF H nF
.5945 1,811 .,1973} .5675| 4.798| .,1455| .803

Note A Refers To The Continous Values Indicated By The Design

Table 4,7:

Centering Algorithm And B

‘ ' Refers to the Corresponding Values
After Rounding Off To The Nearest Allowable Discrete Values.

Component Values For The Various Iterations Of The
Various Iterations Of The Statistical Exploration

Design Centering Run Summarised In Figure 4,22.(Both

Continous And Discretized Solutions Are Indicated)
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Frequency 10 40 " 70 1100 150 |} 200 }z240}270 300'320 350
In MHz.
Lower
Limit on
Gain in dB, -0.14(-0.12 {~-0.08;0.02{0.08{0.15{0.1}0.1}] O | -0.2]-0.4
Relative to
Gain at 50
Mhz.
Upper Limit 0 0.04 | 0.08(0.22|0.3 [0.75}0.8]0.8(0.8] 0.8] 0.8
On Gain.
Gain Specification
Table 4.8, (&)
/
Table 4.8 : Gain Specifications , Component Nominal Values,

And Tolerances For The High Frequency Amplifier
Circuit Example. (P.T.O For Table 4.7(b) )




Component Initial Absolute Tolerance
Parameter Nominal Value Of Expressed As
P
Value Tolerance % Of Initial
Nominal Value

Ry 11.1¢ 0.111
Rz 1500 30 2
Ry - 18- 0.09 0.5
Rg 83 0.415 0.5
Rg 417 2.085 0.5
R7 510 5.1 1
Rg 22 0.11 0.5
Rip 46.5 0.2325 0.5
Ryy 750 15 2
R12 430 8.6 2
R14 200 1 0.5
R15 50 0.25 0.5
R16 23.1 0.1155 0.5
Rp 210 69.3 33

1 .
Rp 114 37.62 33

2
Rp 123 40.59 33

3
Rp4 33 10.89 33
Cg 6.2 0.496 8

Note: Resistance

Table 4,8 (b): Component Nominal Values And Tolerances

values in © :

Capacitance values in pF
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CIRCUIT NO. OF | INITIAL | FINAL NO. OF
COMPONENTS | YIELD $ | YIELD 4 | ITERATIONS

High Pass.

Filter /42/ 7 40 65 5

Band Pass © 8 15 62 5

Filter /41/

Low Pass 11 22 92 5
Filter /51/ :

High
Frequency ‘ 19 22 83 4
Amplifier / '
/this chapter/

Transversal A
Filter (43 43 6 30 8
Coefficients)

/this chapter/

Transversa’ :
~Filter ' (5% 55 52 64 5
" Coefficient) : .

/52

Table 4.9: A summary of typical results for

six circuit examples showing that the number ’
of iterations performed (until no further

increases in yield accrue), using the statis-

tical exploration method is independent of

the dimensionality
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Py
|
, O
(p2+ t2)
R_(P°)
l—R,
(o]
p2 - -
I

(pg- t2) 1 v\\

o
g,(p))

= -+ : —
o_ o o4 :
(p.- t) P (p7t t5,) P,

vield A Volume of Rp(P°) NR

vVolume of RT(PO)

Figure 4.1: A Geometrical Interpretation Of Yield.
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Initial Base

Size Of Exploratory _
Moves Is Decided n ~
Upon {

Y No |

Increased?

Reduce Step
Size

o Set New Base Point
| I_
Pattern Move
Exploratory Moves Are ' .
- Performed Stop

g Is Step
Size Small
nough?

Yes

Y
Increased?

Yes

Return To Previous Base (e

Figure 4.2 : A General Flow Chart For The
Pattern Search Method /12, Chapter 8, Page 184/



o
P, !
2
!
9
0] 1 \
6 7, 8
3
o
Py
The base points are 1,3,4,6,7,10,11,

18,19,22,23,26 _
Thick lines denote pattern moves,thin lines
denote exploratory moves,broken thin lines
denote unsuccessful exploratory moves.

Figure 4.3 Hypothetical Trajectory For Application Of
The Pattern Search Method To A 2 Dimensional

Example
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Figure 4.4 Wide Band Amplifier- Circuit Example For

The Pattern Search Strategy
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INITIALISATION STATISTICAL TERMINATION

ANALYSIS

j=1 Iteration Monte Carlo YES
number analysis 0

'P? Nominal comp-| N. Sample :

1 j o8 NO
onent values size
_
N, Sample size

Determined
by designer

ADVANCE

COUNTER j=j+1

DESIGN CENTERING .

P® = P? + A(G,.-G
jer TPt M(Gay7GRy)

Figure 4.5: General flow chart for the statistical
exploration method of design centering.
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Figure 4.6: A Geometrical Representation 0f The Relationship

o

Between Successive Iterates In Design Centering.
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Figure 4.7: Illustrating Some Additional Notation.
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1 exp (¥-v)%/20°

oY2m
L —
(¥-20) u=Y (y+20) Y

Figure 4.8: Sampling Distribution Of The Yield

Estimate.
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0 ©AY

Figure 4.9(c)

Common Points Scheme

Figure 4.9: Sampling Distributions For Estimating Yield Difference.
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Figure 4.10: Illustrating The Relationship Between

p.d.f s Of Successive Iterates.
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Let j=1
r r N

P2 = Pl + AAP
s _ pS |

P2 P1 + AAP
o _ .0

P2 = P1 + AAP

Figure 4.11:

and j41=2, theﬁ:

Illustrating The Relationship Between

Corresponding Sample Points For Successive Tolerance

Regions When The Correlated Sampling Scheme Is Employed.
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Figure 4.12: Illustrating Notation For The Distribution

Of Sample Points In The Common Points Scheme.
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Figure 4.13: Yield Trajectory For A High Pas$ Filter Example:
Demonstrating The Effectiveness Of The Common

Points Scheme.
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Generate and
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In addition to
the number
already done.

» j=1?
Yes :
No
5 ) .
Estimate AYj_l = Yj'Yj-l B
Estimate confidence of
correct ranking.
6 No
Is confidence p————p
sufficient? "
Yes I
o 7 No
Is AYj_1
Yes - tye T

Examine parameter values of
samplé circuits of jth Monte
Carlo analysis. Determine
~—# new design center.

P® = P9 + 1. (G,.-G
P SV

je1 773 Rj)

4

— |
Reset random seed to RL.

Increment counter j=j+l.

STOP

Fig. 4.14:

Flow chart for a statistical
exploration - design centering
algorithm employing the
correlated sampling scheme.
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Perform more
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design centering algorithm employlng the
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Arrows indicate toleranced components.

Insertion Loss is 20Log|V2(jw)/Vl(jw)|

Figure 4.16: Circuit Diagram Of The Passive High Pass

Filter Example.
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Figur 4.17: Performance Requirements For The High Pass Filter.
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Figure 4.18: Yield Trajectory For The High Pass Filter Assuming

5% Tolerances and Uniform Distributions.
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Figure 4.19: Yield Trajectory For The High ?ass Filter
Assuming 15% Tolerances And Uniform Distributions.
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Figure 4.20 Yield Trajectories For The High Pass Filter

Assuming 10% Tolerances And Unifofm And

Gaussian Distributions.
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C

Small Signal A.C Model Of The Transistors Used In

The High Frequency Amplifier Circuit.

Q; Rbi Rpi cpi cb,ci csi GMi o

Q Q pk PF pF (4 pF
1 15 210 10 0.4 0.4 0.286 | 4.6
2 15 114 18.6 0.4 0.4 0.525 | 4.6
3 15 123 17 0.4 0.4 0.48 4.6
4 12 33 115 0.5 0.5 1.8 23

Nominal Values Of The Transistor .Parameters

Figure 4.24(b)
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CHAPTER 5

ITERATIVE MONTE CARLO BASED METHODS

FOR TOLERANCE ASSIGNMENT

5.1 INTRODUCTION

As discussed in chapters one and two certain algorithms are
addressed to the problem of returning tolerance solutions which
guarantee 100% yield, i.e. worst case solutions. However,

the avéragé cost of ﬁroducing an acceptable circuit may be

much reduced if a smaller yield is accepted. The latter
situation allows larger tolerances and hence ch?aper components
to be employed. This may offset the aaditional;éost

incurred in discarding or repairing circuits whpse performance

does not meet requirements. Therefore the to}efance/yield

trade-off may be explored to minimize overall cost.

In this chapter we examine a class of MonteICarlo based methods
of tolerance assignment, where less than 100%‘yie1d is
considered acceptable. The methods commence by perfbrming
Monte Carlo analysis while assuming large tolerances. In
addition to estimating yield the results of the Monte Carlo
analysis are employed to choose new tolerances. Another Monte
Carlo analysis is performed with this new set of tolerances

and the process is continued. At each iteration, tolerances
are reduced and yield increased over that for tﬂe previous
iteration. The particular c¢riterion employed to re-assign

tolerances distinguishes one method in this class from another. -
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5.2 PROBLEM FORMULATION

Yield estimation and tolerance assignment may be performed
over several iteration$ thus exploring the yield—tolerance'
trade-off. Alternatively a cost function involving yield
and tolerances may be formulated and minimized. For the
situation where failing circuits are to be discarded, a

suitable cost function is expression 2.5, which is repeated

here:

Y{@(P°,T)}

As before Cyy is the unit cost, i.e. the cost of producing
one acceptable circuit. C, represents the sum of the
tolerance independent or fixed Eosts, while C;(.) is
the tolerance dependent cost function of the ith component.
'The manufacturing yield Y(.) is defined in terms of the
component parameter p.d.f. @#(.) and the performance
requirements of the circuit, as detailed in chapter one.

-
For our present purpose we assume @(.) to have a particular
form e.g. multivariate uniform. The nominal values
PO = p?pg cevee p§ and associated tolerances T = t .t ....tg
are taken as parameters of the p.d.f. Therefore it is
sufficient to write yield as a function of P°: ?nd T

and to omit reference to @(.). We may formaliy{state

the relevant optimization problem as: a
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K
Minimize Z
CA + i=1 Ci(ti) ‘
CU = 5.2
Y(P°,T)

by.gppropriate choicevof design center P°=p$ cevs p%

and tolerances T = t] .... Ty

In view of the complexity of the denominator (the yield)

it is not possible in general to derive analytic properties
of the objective function. Nevertheless, it is useful to
'consider.a‘heuristic.argument; which indicates that cost
minima exist between the two extreme situations of high yield
and low tolerances on the one hand, and low yields and

large tolerances on the other.

The individual component cost functions are monotonically
decreasing functions of tolerance. Therefore for large
tolerances the functions C;(.) have small values and hence
the numerator of 5.1 is'approximately equal to the sum of
the fixed costs i.e. Cy- However, for large tolerances

the denominator (the yield) approaches zero. bTherefore, the
unit cost function has a large value. As the tolerances are
decreased, the component costs become significant and the
value of the numerator increases. If the rate of increase
of the denominator (the yield) is greater than the rate

of increase of the numerator (the sum of the fixed costs and
the tolerance dependent costs) then the overall value of

CU becomes smaller.

At the extreme as tolerances become very small, yield
approaches its maximum value of unity. The overall cost is

then largely dependent upon the sum of the tolerance
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dependent component costs, which are large wiih small
tolerances. Therefore an approximately paraboloidal shape is
envisaged for the function CU(.), with large values
accruing for the two extreme cases of wide tolerances with
low yields and narrow tolerances with high yield%, and

i

cost minima in between.

The methods discussed in this chapter commence w%th large
tolerances. Monte Carlo analysis is performed aﬁd yield is
estimated. Information about the distribution o% pass and
fail circuits provided by the Monte Carlo analysis is
employed by an algorithm to re-assign tolerances. The Monte
Carlo analysis is then repeated with thé new tolerance
values and yield is re-evaluated. The process is continued
over several iterations. At each iteration tolerances are
decreased in a way that increases yield. Therefore with
reference to the above discussion of the unit cost function,
the methods commence from one extreme situation, that is low
yield and high tolerance, and progressively tighten

tolerances and increase yield.

This chapter commences with thé critical assessment of a
previously reported‘algorithm called TOLERATE /Elias,2 /.

The results of a theorétical and practicai investigation

of TOLERATE are presented; A number of shortcomings of
this method are highlighted; ‘To improve upon the capabilities
of TOLERATE we introduce a novel technique called PERTOL
(PERcentile based TOLerance assignment). Practical\results

of a comparison of both methods when applied to the same
circuit examples are presented. These demonstrated the general
superiority of PERTOL'over TOLERATE.



Before embarking on further discussion, some additional

notation employed in this chapter is clarified, Previously

a nominal -value pg and corresponding absolute tolerance

ty implied component values p; distributed in the

range (p?-t) <'p; < (pg+t;) with p.d.f. @;(p;i,pi,ti).

In Monté Carlo based tolerance éssignment procedures it is

found more appropriate to consider limit values. These

are the extremes of the tolerance range of each component.
5 .

For example L; = (pj-t;) and Uj; = (pg+ti)_’are

respectively the lower and upper limit values of the ith

component. Clearly pg = (U;*L;)/2 and t; = (U;-Lj)/2.

The iterative algorithms to be described in this chapter

assign limit values to parameters from which the tolerances

and nominals are inferred.

5.3 THE TOLERATE METHOD

5.3.1 AN OVERVIEW

The general structure of the TOLERATE method is ullustrated
in figure 5.1. For the jth iteration, the INTERPRETER
examines the results of the Monte Carlo analysis and

re-assigns limit values as follows.

Let us say the Monte Carlo analysis comprised the testing of

a number Nj of random sample circuits with component

values distributed according to ¢(P9;Tj). The Nj sets of
component values are separated into a pass list and a fail list of
sizes NjP and NjF respectively. The pass list comprises

the circuits which meet all performance requirements and the

fail 1list those which fail to meet at least one performance

requirement. For each component, histograms representing
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the conditional probability density function /9, chapter 5/
Pr(pi/pass) and Pr(p;j/fail); i=1 ... K, are constructed
from these lists and the limit values and hence tolerances and

nominals are revised. This is illustrated in figure 5.2.

For the sth component new limit values Ls:j+1 and Us,j+1

are selected such that:

Pr(pg/pass) > Ag Pr(ps/fail)

5.3

for all LS’j+1 2pg 2 Us,j+1

where xs is a positive constant.

. The criterion 5.3 is illustrated in figure 5.2. To
demonstrate the main features of the TOLERATE method, we
introduce a band pass.filter example /38/ whose

circuit diagram, performance requirements énd fypical shape
of response are shown in figures 5.3 and 5.4. Figures

5.5 to 5.12 show a series of results obtained by application
of the TOLERATE method to this circuit example. Each of the
diagrams depicts yield-tolerance trajectories for one of
the eight toleranced components. The trajectories marked

A and B correspond to the TOLERATE method. Trajectory C

on the other hand is obtained by application of the PERTOL
method and should be ignored in the present discussion.
Trajectories A and B correspond to choices of 0.8 and 1

respectively for the constant g, s=1....8, in criterion 5.3.

The implications on yield of tolerance assignment according
to 5.3 are examined in the next section. In this method,

tolerance re-assignment is not necessarily performed for
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all components subject to variability. Instead a particular
type of sensitivity analysis based on a parameter termed
‘"yield sensitivity" is performed. Tolerance re-assignment
is then carried out for those components whose yield
sensitivity exceeds a particular value specified by the
designer. The definition of yield sensitivity and its

practical computation are discussed in section 5.3.3.

5.3.2 THE TOLERANCE ASSIGNMENT CRITERION

(a) Implication on Yield

To appreciate the rationale behind expression 5.3 we consider
initially the situation where the tolerance of only one
component parameter is to be revised. ?he yield for the

. jth iterate is: |

Yj = Pr(pass) 5.4

Also we assume that for iteration j+1, the new limit values

Ls,j+1 and Us,j+1 are chosen such that

Pr(pg/pass) > Ag Pr(pg/fail) ) 5.5
for all p, within the range Ls,j4+1 2 Pg _<_Us,j+1
and for Ag > 1.

Criterion 5.6 differs from criterion 5.3 because the value
of A, 1is required to be greater than zero in 5.3 and greater
than one in 5.5. Further, assuming that the parameter pg

is uniformly distributed, the new yield will be:

Yj+1 = Pr (pass/Ls,j+1 < Pg < Us,j+1) 5.6
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. To enhance clarity we introduce the following additional

notation:

A is the

event : Ls,j+1 2 Ppg < Us,j+1

B is the event : A random circuit is a pass at

iterate j.

C is the event : A random circuit is a fail at

'Then we can re-write

and
j+l

We wish to show that

iterate j.

(5.4) and (5.6) as:

[

Pr (B) . | 5.4

Pr (B/A) 5.6

a choice of Ls,j+1 and US,j+1

according to (5.5) results in an increase in yield, i.e.

Using Bayes rule /9,chapter 12/, (5.6) may be re-written as:

Pr (LS,j+1 < ps £ Us,j+1/Pass)

Pr (pass)

Y

j+l

or

substituting Y. for

]

j+

Pr (A/B)

Pr(L;,j+1 < ps £ Us,j+1)
Pr (B) 5.7

Pr(A)

Pr(B);

Yj 5.8
Pr(A)

Clearly Pr(A/B) > Pr(A) implies Y. > Yj 5.9

J+l
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Now from elementary probability theory, we may say:
Pr(A) = Pr(A/B)Pr(B)+Pr(A/C)Pr(C) 5.10

However, Pr(B) + Pr(C) = 1; i.e. Pr(Pass) + Pr(fail) = 1.

Therefore (5.10) may be re-written as:

Pr(A) = Pr(A/B)Pr(B) + Pr(A/C) {1-Pr(B)}
Or rearranging
Pr(A)-Pr(A/C) = P£(B){Pr(A/B) - Pr(A/C)} 5.11

Now our choice of Ls,j, and Us;j+l acc ding to (5.5)

ensures that:

. Us,.+l

{Pr(Ls,j+1 < P < Us,j41/Pass) = [ ] Pr(ps/pass)dpgt >
Ls,j+l
Us i+1 4 '

{Pr(Ls,;,1 < Pg < Us,j+1/fail) = >J Pr(ps/fail)dps} 5.12
Ls’j+l :

Relation (5.12) may be re-written as:
Pr(A/B) - Pr(A/C) > O : 5.13

The meaning of relation (5.12) or (5.13) is illustrated in

figure 5.13 (a).

We also know that 0 < {Pr(B) = Yj} <1 5.14

Therefore substituting (5.13) and (5.14) into (5.11), we
can say that:
Pr(A/B) - Pr(A/C) > Pr(A) - Pr(A/C)
i.e., Pf(A/B) > Pr(A) | - 5.15
Relation (5.15) is the desired result. Reconsidering (5.8),
it can be seen that (5.15) ensures that

Yj +l > Yj . 5.16
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The above development has shown that for the case of uniform
distributions, and where a single component is considered, a
choice of limit values according to (5.5) ensures that

yield is increased.

Now criterion (5.5) assumes that X, has a value greater
than unity. Such a choice of g ensures that (5.12)

I .
or (5.13) definitely hold. However, A, > 1 is not a

s
necessary precondition for (5.12) to hold. That is (5.12)
can also be satisfied by values of Ag less than unity. One

such case is illustrated in figure 5.13(b).

!The greater the value of 3, the greater is the tightening of
itolerances between iterates. Typically a choice of Ag 2 1
represents overdesign in practical cases. Figure 5.13(C)

fshows a choice of limit values for Aig > 1. The overdesign
can also be seen from the yield-tolerance trajectories

E(A and B) depicted in figures (5.5) to (5.12). For this
1example the choice of A=1 generally provides tighter tolerance

'solutions for similar values of yield than a choice of

A = 0.8.

The development of the tolerance assignment criterion assumed
that the tolerance of only one component was to be tightened.
A criterion parallel to 5.3, for the case where the tolerance
assignment of a number of components is considered, cannot
easily be derived. Nevertheless in practical cases (e.g.
figuresls.S to 5.12) a choice of limit values for each
jcomponent according to (5.3) is found to give satisfactory

"results.
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(b) Some Practical Considerations

We now discuss practical aspects of choosing limit values

according to the TOLERATE criterion.

The range Ls,j+1 2 Pg < Us,j+1 for wnhich criterion (5.3) 1is
satisfied is determined from histograms of the conditional
p.d.fs Pr(p./pass) and Pr(pg/fail). These histograms are
constructed from the results of the Monte Carlo analysis.

~ Ce;tain practical difficulties are encountered in identifying
the range of values of the parameter pg for Which (5.3)

holds. These necessitate a modification to 5.3 as discussed

below.

In figures (5.14) to (5.20), we show histogramé corresponding
to the pass and fail conditional p.d.f.s of each of the
toleranced components of the high pass filter example (chapter
4, figure 4.16 and 4.17). Each figure (figures 5.14 to 5.20)
shows two pairs of histogréms. The pairs labelled as A were
constructed using 10 class interVals, while the pairs labelled
B were ;onstructed using 15 class intervals. Thg Monte Carlo
analysis tested 500 sample circuits. The numbers of passing

and failing circuits was 286 and 214 reSpectiVely.

Initially consider component No. 2, for which results are

shown in figure 5.14. Consider the two histograms constructed
with 10 class intervals (i.e. pair A). Both histbgréms

employ an identical set of class intervals. Also since the
histograms are representations of probability density functions,
the total area represented by the bars in eithér histbgram

is unity. The sum of the heights of the bars in each histogram
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has been normalized to unity. Therefore to identify the range
over which 5.3 'holds for various values of X, we compare

the heights of the bars for corresponding class intervals of
the pass and fail conditional histograms. The logical vectors

RI(1), RI(0.8) and RI(0.5) summarize such a comparison.

Each of the vectors RI(.) has 10 elements, and each element
corresponds to one of the ten class intervals. For example
the first element of. RI(1) is 1 if the height of the first'
class interval of the pass histogram is greater than that

of the fail histogram and is O otherwise. Similarly,

the first element of RI(0.8) is 1 if the height of the

first class interval of the péss histogram is‘greater than 0.8
~multiplied by the height of the first class interval of the

fail histogram and is O otherwise.

To identify the range for which 5.3 holds we consider the

class intervals corresponding to logical 1's in the appropriate
RI(.) vector. In the case of component ﬁo. 2, for a choice

of A, equal to 1, this range will be disjoint. A similar
occurrence may be observed for the three choices of X for

the case of 15 class intervals and similarly for other compo-

nents (figures 5.14 to 5.20).

The disjoint tolerance ranges imply that the tolerance
solution indicated by the procedure is not unique. To
overcome this difficulty we have modified criterion 5.3 to

the following.

Choose Ls’j+1 and Us,j+1, such that for all pg < Ls,j+1
and pg > Us,j+1 the following holds
Pr(pg/pass) < A  Pr(pg/fail) | 5.17
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~Criterion 5.1% therefore means that the new tolerance range
is bracketed by the‘first and last occurrence of a 1 in

the appropriate RI(.) vector, for the particular value of

Ag chosen by the designer. This is indicated for component
No. 4 in fiéure 5.16. In fact, the yield tolerance traje-
ctories}(A and B) of the band pass filter example shown in
figures 5.5 to 5.12 were obtained by application of this

modified criterion, i.e. (5.17).

5.3.3 YIELD SENSITIVITY

The mathematical development from expression 5.7 to 5,16

has been based upon the tolerance assignment of a single
component per iteration. However, such a procedure would
require a large number of iterations and incur a prohibitive
computational cost for most circuit examples of interest.
Therefore in practice, tolerance assignment is performed
simultaheously for a number of toleranced components. On
the other hand it is desirable to choose new tolerances only

for those components which have a substantial effect on yield.

In the TOLERATE method, a parameter called "yield sensitivity"
is introduced. Between successive iterations, tolerances

are tightened only for those components whose yield sensitivity
exceeds a certain arbitrary level specified by the circuit

designer. Formally, the yield sensitivity for the ith



238

component is defined as:

M; = [__ |Pr(pj/pass) - Pr(p;/fail)|dp; 5.18

This definition is illustratéd in figure 5.21 (a). Clearly
M; is a measure of the amount of overlap between the pass
and fail conditional p.d.f.'s of the ith component. This
definifion assumes that if the‘overlap between the p.d.f.'s
is high then the parameter hés a small effect onh yield and
vice-versa. Figure 5.21 (B), (c) and (d) demonstrate the
situation corresponding to low, intermediate and high yield

sensitivities respectively. The actual numerical value of

M.

i can range from O to 2.

Commonly, sensitivity measures relate changes in the value

of particular performances to changes in component values.

By analogy, yield sensitivity of a component could have been
defined as the rate of change of yield with the tolerance of
the component? 5or gxample AY/Ati, where AY is the change
in yield due to a pamticular change At; in the tolerance of
the’ifh,component. However, such a sensitivity measure is
difficult to compute. If a perturbation methbd is employed
then a fresh Monte Carlo analysis is needed to compute the
yield sensifivity of each component. Thus the computational
effort required to compute yield sensitivity defined in this

way 1is prohibitive.

In contrast yield sensitivity as defined by Elias is an overall
sensitivity measure indicating the dependence of the occurrence
of passing and failing circuits on the values of particular

component parameters. In practice however yield sensitivity
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(as defined in 5.19) can be an ambigiuous measure of a compo-
nent's influence on yield. For a qualitative appreciation

one may consider the histograms shown in figures 5.14 to 5.20.
For every component the conditional p.d.f's overlap considerably
ahd the numerical values of the yield sensitivities are low

(see table 5.1). Typically, the histograms show heavy overlap.
This detracts from the heﬁristic support lent to the TOLERATE
method by the idealized situation depicted in sketches of

‘the form shown in figure 5.2.

1

Table 5.1 shows the value of the yield sensitivity for each
of the components and the variation of these values with
the number of class intervals employed to compute them.
Adjacent to each value of yield sensitivity wé indicate the
sensitivity ranking (highest sensitivity 1st) of the particular
component. It can be seen that the value of yield

sensitivity and the sensitivity ranking of a component vary
appreciably with the number of class intervals. Table 5.1

and figures 5.14 to '5.20 refer to the high pass filter example
(chapter 4, figure 4.16 and 4.17) and for the situation

where the yield is 42%. Tables 5.2 and 5.3 show the results
obtained for the band pass filter (figure 5.3 and 5.4). Both
tables correspond to Monte Carlo analyses with sample

sizes of 200. Table 5.2 refers to the situation where
tolerances were large?and the yield was only 18%. On the other
hand Table 5.3 corresponds to smaller tolerances and a yield

of 79%.

In tables 5.1 and 5.2 the values of the yield sensitivities

and the yield rankings of the various components vary
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appreciably with the number of class intervals. This variation is

smailer in table 5.3.

5.3.4 SUMMARY

The TOLERATE method is based on the pass and fail conditional
p.d:fs . of individual component parameters. The conditional
p.d.fs are approximated by histograms constructed ffom

the results of the Monte Carlo analysis of the previous
ite}ation. A particular criterion involving the conditional

p.&.fs are employed to select new limit values for the

component parameters.

The main practical difficluties of the TOLERATE method arise
out of the fact that the entire conditional p.d.fs

of individual component parameters have to be characterized
by histograms. A straightforward application of the TOLERATE
criterion (as reported in /2 /) leads to non-unique tolerance
solutions in practical cases. We have therefore introduced

a modification to the criterion to overcome this problem.

l
The rationale for the TOLERATE criterion for choosing limit

values is that it leads to increases in yield. We have
clarified the mathematical arguments in support of this and
have stated the assumptions required for it to hold. The
criterion involves the choice by the designer of values for
the factor . We have shown that a choice of X > 1 always
results in an increase in yield. However, this is not a
necessary condition. Certain choices of X < 1 will also
result in an increase in yield. However, no simple way of
choosing a suitable value for A has been found. The actual

choice of value of A is crucial in the practical application
!
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of this method. In general we find that the larger values of
X result in overdesign, i.e. too great a tightening of

tolerances for particular increases in yield.

To deal with the problem of overdesign, the yield sensitivity
analysis was introduced in the original method. However, we
have shown that in practice yield sensitivity is an ambiguous

measure.

Therefore the most sérious shortcoming of this method is
overdesign. The results presented so far have démonstrated
that smaller values of A usually provide better tolerance
solutions. However, if the value of X is taken too low, then
the method requires too many iferations; does not always

lead to increases in yield and can be wasteful of computer
effort. In the next section we introduce a method (PERTOL)
based on the cumulative distribution functions (9, chapter 12)
corresponding to the conditional p.d.fs. The overdesign
inherent in TOLERATE will be demonstrated by comparison with

results obtained by application of the PERTOL method.

5.4 THE PERTOL METHOD

The basic structure of the PERTOL method is similar to that
of TOLERATE as is illustrated in figu?e 5.1. That is, the
pfocedure commences with large tolerances. . Monte Carlo
analysis is performed and tolerances (more specifically limit
values) of component parameters are adjusted by an algorithm
which takes into account the distribution of passing and
failing circuits. After revising the limit values, the

Monte Carlo analysis is repeated and the process is continued

until a cost minimum is achieved or 100% yield is obtained.
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The essential difference between the PERTOL and TOLERATE
methods is in the actual algorithms employed to revise limit
values. Referring to figure 5.1, the difference in the two

methods is in the mode of operation of the INTERPRETER.

We briefly discribe the PERTOL procedure for revising limit
values and later develop its mathematical justification.
This is followed by discussion of practical results obtained

with this method.

5.4.1. THE PERTOL CRITERION

(a) The Practical Algorithm

As before we let tg = Us,j - Ls,j and té*l = Us,
2

j+l -~ Ls’j+1

2
be the tolerances for the sth component at the jth and (j+1)th
iteration respectively. The PERTOL method selects limit

values Ls,,,; and Us,j such that they are the (100 x r)th

+1
and {100 x (l-r)}th percentile of the pass conditional p.d.f.
Pr(ps/pass). The values of r, tg and tg+1 are required
to meet the following condition.

‘ tg+l

tJ
s

r<i (- ) 5.18

The relationship between r; Ls,j+1 and Us,j+l is illustrated

in figure 5.22.

In one implementation of the method, the following strategy

is followed.

The Nj sample circuits from the jth Monte Carlo analysis are

divided into a pass list and a fail list., Let ij and NjF

be the respective sizes of the pass and fail lists.
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As before, let sz and Usj represent the limit values of
the sth component for the jth iteration, and Ls,j+1 and Us,j+1,

the corresponding limit values for the (j+1)th iteration.
!

To.select 1imit values Ls, 541 and US,J.+l thé v%lues of the

sth component of the NjP pass circuits are sorted into an
ascending order. Then the first value in this ordered list

is an estimate of the (100 x I}ij)th percentile of the
conditional p.d.f. Pr(pg/pass). The second valug in the 1list

is an estimate of thé (100 x Z/ij)th percentile and so on.
Similarly the last value is an estimate of the 100 x (l—l/ij)th

percentile and the last but one value is an estimate of the

100 x (1 - 2/Njp)th percentile.

The algorithm commences by considering the first and last
values in the list. We denote these by a; and b; respectively.
The let r = l/ij and ¢ = by - al/ 2. The algorithm

tests if the follbwing condition is satisfied.

C '
r<i(1-%th : 5.19
"S

where tJ = (U - Ls,j)/Z

$?j

I'f condition (5.19) is satisfied, then a; and b; are
acéepted as the limit values Ls,j+1 and Us,j+l respectively.
Otherwise the second value in the ordered list designated és
a, and the last but one value designated b2 are selected.

We now let r = Z/NjP and ¢ = by - ap/2. Again condition
(5.18) is tested. If (5.18) is satisfied then aj and b; are
selected as the new limit values. On the other hand if

5.18 is still not satisfied, then the procedure isAcontinued

to the third and last but third values in the ordered list.
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The procedure is continued until a pair of values is found
which satisfied (5.18). 1If no such pair can be found, then
the new limit values of the sth component are left unchanged.

That is Ls,j+1 = Ls,j and Us,j+1 = Us,j.

To re-assign limit values for another component (the qth
component say), the NjP pass circuits now have to be

re-ordered according to ascending values of the qth component.
) ;

The process of finding a pair of values which meet condition

5.19 is carried out as for the sth component, as described

above. The procedure is carried out for all K components.

(b) Implications On Yield

We now discuss the implications on yields Yj‘ and Y1 of

choosing limit values according to the PERTOL method.
Specifically we will show that a choice of Ls,j+1, Us,j+1
which satisfies (5.18) ensures that Yj+1 >‘Yj'

As before let RT’j.and RT,j+1 represent the tolerance
regions for iterations j and j+1 respectively, and let
V(Rx) represent the volume of a region x. 'Then the yields

Yj and Yj+1 may be rg-written as: ‘

V(Rr_ +N Ry) ‘1
Y, - Ty3 A 5,20
V(Rr, ;)

and

Y. ='.'..'.'.,',  A 5.21
V(RT, 541)
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As previously in the developmeﬁt of the TOLERATE criterion

we initially consider only one}parameter at a time.
Definitions (5.20) and 5.21) for this case are illustrated in
figure 5.23. We aim to choose new limit values for the sth

component such that yield is increased. That is, we require

Y > Y. . 5.22

Jj+l J - .

or

V(Rp 5N Ry)  V(Tg 50Ry)

5.23
V(RT,j+1) V(RT,j)
Since we are only considering the sth component; we get:
. t J+l
Vlr54) o 5T 5.24
V(RT, ;) t2
If Ls?j+i and Us,j+1 are chosen as described previously
and illustrated in figure 5.22, then the following holds:
V(R : Ry)
I R UL LR 5,25

V(R jMRy)

To appreciate (5.25) we note that the ratio of the numbers
of passing circuifs.in regions R, 5+1 and Rp j 1s an
estimate of the ratio of the volumes of regions RT,j+1(\RA
: j+1 .
and Ry j+1MR,. We have chosen td such that the ratio

of passes in the two regions RT,j+1 and Ry is 1-27r,

)]
and therefore 5.25 holds®. ‘

*The right hand side of (5.25 is only an estimate of the ratio
of volumes. However, to avoid complicating the argument,
(5.25) shows an equality.
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Also shown in figure 5.22 is‘the corresponding situation for
the fail conditional p.d.f. of the sth component and the
associated cumulative distribution function. Let us say

that the (100 x r)th and {100 x (1-r)}th percentile of the
pass cumulative distribution function correspond to the

(100 i r')th and {100 x (1-r")}th percentile of the fail
cumulative distribution functibn of the sth component.

Then as:before it is required to choose limit values (hence
nominal and tolerance) for the sth component such that 5.23

is satisfied, i.e.

Yj+1 > Yj 5.26
]The yields Yj and Yj41 may also be written as:
I : .
i -
| Y; =1 - VR, ;0 Ra) 5.27
V(Rr, ;)
and
_ V(Ry 5410 R
Yiep =1 - (Rr,j+10 Ra) 5.28
V(RT,j+1)
Therefore to satisfy (5.22) we require
V(Rr, 541MRA) V(Ry, 5N Ry)) < 20
< .
V(RT,j+1) . V(RT,j)
Re-arranging (5.29), we get
V(Rp 541N Ry) ) V(RT, j+1) 5. 20
| V(Rp 50 Ry) V(Rp ;)
Then as before
j+l
— 5,31

tJ

M) s
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However, now by analogy with (5.25), we may say:
. f

V(RT 5+1MRp)

— = 1 -« (r'+r") 5.32
V(Rp M Rp)

Therefore substituting (5.32) into (5.31) we get:
i

tg ;

(rt+r") < (1 - =) | 5.33
tJ .
S ;
3Expression (5.33) corresponds .to the fail conditioﬁal p.d.f.
of the sth component and shouﬁd be compared to expression
(5.25) which refers to the pass conditional p.d.f. The
two conditions (5.2%) and (5.33) are in fact equivalent and

if one is satisfied then so is the other one.

5.4.2 RESULTS

Yield toierance trajectories dbtained by application of the
PERTOL method to the band pass filter (figure 5.3 and 5.4)

are shown in figure 5.5 to 5.12. The trajectories labelled

C refer to the PERTOL method, while those labelled A and B
refer to the TOLERATE method. It is evident that PERTOL gives
larger tolerance solutions for roughly the same values of

yield than TOLERATE.

The comparison between PERTOL and TOLERATE 1is also shown
in terms of unit costs, in figures 5.24 to 5.27. The unit cost
function is the following expression:
Ca + Cr
Cy = ————
Y
Ca is the fixed cost and Cr 1is the sum of the tolerance

dependent costs. We assume Cp = g Ci(ti)

=
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and Ci(ti) = gi , Where Bs is a constant reflecting the

cost of componeﬁt i with respect to the other components

in the circuit. The different graphs (figure 5.24 to 5.27)
refer to different relative values of fixed (CA) and tolerance
dependent (CT) costs, For example figure (5.24) refers to

the situation where the fixed and tolerancé dependent costs

are equal. On the other hand (5.25) refers to the case where
Cp is twice Cy. The unit cost function is normalized to

have a value of unity for the tolerances and yield at iteration

one.

A set of yield tolerance trajectories for the high pass
filter example (Chapter 4, figure 4.16 and 4.17) are shown
in figure 5.28 to 5.34. The curves labelled A refer to
the TOLERATE method and B refer to PERTOL. In figure
5.35 and 5.36 the variation of the unit cost with iteration
is shown for this example. For all six Qariations of cost
.funttion for the two circuit examples reported here, the
PERTOL method provides considerably smaller cost solutions

than TOLERATE.

5.5 SUMMARY AND CONCLUSIONS

In this, chapter, methods of tolerance assignment based on
Monte Cérlo analysis have beenireviewed. An existing method,
TOLERATE, has been briefly described. A TOLERATE belongs to

a class of iterative methods which differ in the criterion
employed to re-select component tolerances. We have clarified
the mathematical arguments in support of the TOLERATE
criterion. In addition the results of the practical

application of the TOLERATE method to particular circuit examples

have been presented. It has been shown that a direct
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application of the TOLERATE criterion as reported in /2 /
can lead to non-unique tolerance solutions. To deal with
this problem a modification of this criterion has been

introduced.

To overcome the disadvantages of overdesign, a sensitivity
measure called yield sensitivity was introduéed in the original
TOLERATE method. The purpose of yield sensitivity is to
pinpoint components which have substantial effect on yield.

We have presented practical results shgwing that yield
sensitivity calculating with practicalicircuit examples can

be an ambiguous measure of the relative effect on yield of
|

a particular component.

Overdesign remains the most serious shgrtcoming of the
TOLERATE method. To overcome the disadvantages associated
with overdesign we have introduced the PERTOL method.
PERTOL is based on the cumulative distribution functions
associated with the conditional p.d.f.s of individual
cdmﬁonent parameters. Generally, cumulative distribution
functions are found to be of value in fhe periphery of the
region 6f variation of‘statistical parameters. In the

class of methods considered in this chapter most interest is
directed at the behaviour of the tolerance region near its

periphery.

The PERTOL criterion requires estimates of percentiles of
the conditional distributions. Therefore the entire

conditional p.d.fs of individual component parameters need
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not be characterized by histograms. Thus most of the practical

ambiguities of the TOLERATE method are avoided.

We have provided a brief description of the PERTOL method
of choosing limit values. We have also discussed the

implications on yield of choosing limit values in this manner.

Finally we have presented comparitive results of applying

both PERTOL and TOLERATE to the same circuit examples.
Comparisons of the merits of the two methods can be made

either in terms of the yield versus tolerance trajectories,

or in terms of the trajectories of the unit cost with
iteration. From a comparison of yield trajectories it will

be seen that for particﬁlar values of yield, PERTOL generally
provides larger tolerances than TOLERATE. Similarly from

a comparison of the cost trajectories it will be seen that

PERTOL consistently provides lower cost solutions.



COMPONENT NUMBERS

No. of Class
intervals 2 3 4 6 / 8 10
0.248 0.119 0.461 | 0.5 0.07 0.316 0.465 (e
5
——————— 5 6 3 1 7 4 2
0.3 0.227 | .0.467 0.5 0.177 | 0.316 0.513
' 10 N Yield
o Sensitivity
- Yield
raekne|— - - 5 6 | 3 |2 |7 4 1
0.34 0.34 0.55 0.626| 0.354 | 0.434 0.527 e
20
———————— ~ 6 7 2 |1 |5 j 3
Table 5.1 Table Showing The Variation With Number Of Class Intervals,

Of The Estimated Yield Sensitivity And Sensitivity Ranking
0f Individual Components For An Intermediate Yield Case (42%)
(High Pass Filter Circuit Example)
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COMPONENT NUMBERS

No. of Class .
Intervals 2 L 5 7 8 10 11 ,13
0.27511 0.4636 |1.084 | 0.418 }0.2859 ] 0.9187 | p.4282 | 0.3496
8 .
Yield e —— a1 6 8 Y 2 7 5 3
Rankings '
Yield
0.4634] 0.5285 {1.084 | 0.5705/0.3821 | 0.9187 | 0.523 | 0.4743 [*Sensitivity
10 -
e » 2 5 8 6 1 7 4 3
0.4336) 0.668 11.175 | 0.4228|0.4607 ] 0.9228 | 0.5041 | 0.3916 f*—
12
e | e - 3 6 8 2 I 7 5 1

Table 5.2 : Table Showing The Variation With Number Of Class Intervals,
Of The Estimated Yield Sensitivity And Sensitivity
Ranking Of Individual Components For A Low Yield Case (18%)
(Band Pass Filter Circuit Example)
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COMPONENT NUMBERS

No. of Class
Intsrvals 2 4 5 7 8 10 11 13
0.6553 | 0.5136 | 0.2056 | 0.2071]0.5041 | 0.7857 | 0.4114 0.366 -
g .
--------- ~ 7 6 1 2 | 5 8 4| 3
0.7731] 0.622 0.3611| 0.3054]0.5516 | 0.8692 | 0.5338 | 0.4004
12 Yield
Yield : : Sensitivity
Rankings —f---=--=------ - 7 6 2 1 5 8 4 3 _J
0.883 | 0.7765}] 0.339 0.467 [0.5578 | 0.8692 | 0.637 |0.5372
16 | .
...... SR 7 6 1 2| 5 8 b | 3
Table 5.3 : Table Showing The Variation With Class Ihtervals,

Of The Estimated Yield Sensitivity And Sensitivity
Ranking Of Individual Components For A High Yield Case(79%)
(Band Pass Filter Circuit Example)
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Nominal values
and associated
component tolerances

Component p.d.f. onte Carlo Analysis = (Circuit Yield
Circuit description

Performance loeeen Pass/fail
requirements. statistics.

ore iterations?
Decided by human
designer.

NO

Interpreter generates

— new tolerances and —— Infoimation
nominal wvalues. ,

STOP

Figure 5.1 : A General Flow Chart For The TOLERATE
And PERTOL Methods Of Tolerance Assignment.



Pass Conditional p.d.f Fail Conditional p.d.f
Pr(p /pass) Pr(pg/fail)
Probability
Density
1
Y
(]
|
1
4
| Revised Range _— \
[]
1 i
- Orignal Range -:
. ]
Component Parameter Pg
Figure 5.2 : The TOLERATE Tolerance Assignment Criterion;

Showing The Originel And Revised Ranges;
Assuming A=1.
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2 3 4 11 12
5 8
6 9
7 1 10

13

Figure 5.3 : Circuit Diagram Of The Band Pass Filter

Example.

Note : Arrows Indicate Toleranced Components.
Insertion Loss Is 20Log|V2/V7| dB
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Insetion Loss.

dB

36.5 Y7777

2.5
b .
-2.5 | 240 V77747774 ;quuency Hz
360 490
420(Reference)

Figure 5.4 : Performance Constraints And Typical Shape
T Of Response For The Band Pass Filter
Example '
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: Yield-Tolerance Trajectories For The

Band Pass Filter Circuit Example
(component Number 2)



259

}
100 —L‘
$ Yield
90 T
- 80 +
70 1.
60 T
50 WL
40 |
30 T
1 1
20 4
10 |
i | | i [ i
; % F { { { ; { II L 1 | L . 1B 1
1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15
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" Figure 5.6 : Yield-Tolerance Trajectories For The
Band Pass Filter Circuit Example
(component Number 4)
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Band Pass Filter Circuit Example
(component Number 5)
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Y

Figure 5.8

: Yield-Tolerance Trajectories For The

Band Pass Filter Circuit Example
(Component Number 7)
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Figure 5.9 : Yield-Tolerance Trajectories For The
Band Pass Filter Circuit Example
(Component Number 8)
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Figure 5.10 : Yield-Tolerance Trajectories For The
Band Pass Filter Circuit Example,
(Component Number 10)
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Figure 5.11 : Yield-Tolerance Trajectories For The
Band Pass Filter Circuit Example.

(Component Number 11)
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Figure 5.12
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: Yield-Tolerance Trajectories For The

Band Pass Filter Circuit Example
(Component Number 13)
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Pr(bs/pass)‘ Pr(ps/failj
x 7

Probability
Density

b s e o o

r-f -—:,
! ]

' Orignal , Range :

: : ,

] : '

! : :

:‘ | '

: New Range -
LS j ‘ ‘ Us j
R ’
Ls,j+1 Us,j+1 -

Pg

Note : Expression 5.13 May Be Interpreted As . : The Area
Under Curve X Between The limits Lg j+1 And Ug ;41 Is
Always Greater Than The Area Under Clrve Y Betwden The
Same Limits, If we choose A ,>1 In Expression 5.6. In
The Diagram We show The Orignal And Revised Ranges,For
A Choice Of A =1.

Figure 5.13(a) : An Illustration Of Expression 5.13
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Note : Here We Show That Expression 5.13 Can Hold For A
Choice Ofii <1, The Diagram Shows The Orignal
(Ls*j ; Us,j) And Revised (Ls,j+l : Us,j+1) Limit Values

Assuming- A;< 1 .The Area Under Curves X And Y Is The
Same., Clearly It Is Possible For The Area Under Curve X
Between The Limits Lg j+1 And U_ 341 To Be. Greater

S s, , _

Than The Area Under Curve Y Between The Same Limits.

t

Figure 5.13(b)
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s

Note : In This Diagram We Show Limit Values For A
Choice 0f A,>1

Figure 5.13(c)



Pass -
Histogram —

\‘ —_ -

RI For A=l

Fail
Histogram

»=0.8: 0001111111

A=0.5:
Histograms employing 10 class intervals

Pass
Histogram

\ -

= /
—
0001010111}
0111111110
Fail .

—

//’Hist

ogram

-

269

RI For A=1:

A=0.8:

A=0.5:

Histograms employing 15 class intervals
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101111111111111

Figure 5.14 : Diagram Showing Pass And Fail Histograms
Of The High Pass Filter Circuit Example
(For Circuit Diagram And Response See
Figures 4.16 And 4.17). The Above Diagrams
Are For Component Number 2.
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Figure 5.15 Diagram Showing The Pass And Fail Histograms

For The High Pass Filter Circuit Example.
(Component Number 3)
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Figure 5.16 : Diagram Showing The Pass And Fail
Histograms For The High Pass Filter Circuit
Circuit Example. (component Number 4)
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Figure 5.17 : Diagram Showing The Pass And Fail
Histograms For The High Pass Filter
Circuit Example (Component Number 6)
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A=0.5: 111111111111111

Figure 5.18 : Diagram Showing The Pass And Fail
Histograms For The High Pass Filter
Circuit Example. (€omponent Number 7)
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Figure 5.19 : Diagram Showing The Pass And Fail

Histograms For The High Pass Filter
Circuit Example. (Component Number 8)
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Figur 5.20 : Diagram Showing The Pass And Fail

Histograms For The High Pass Filter Circuit
Circuit Example.'(Component Number 10)
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//Pr(ps/pass) ’/////—Pr(ps/fail)

Figure 5.21(a) Yield Sensitivity Is The Sum- Of The
Shaded Areas.

Pr(pg/pass) Pr(ps/fail)

Figure 5.21(b) Illustrating Low Yield Sensitivity.
Minimum Value Is O .

Pr(ps/pass) Pr(ps/fail)

\ /

g

Figure 5.21(c) Illustrating Intermediate Yield
Sensitivity.

Pr(ps/pass) Pr(ps/fail)

Figure 5.,21(d) Illustrating High Yield Sensitivity.
Maximum Value Is 2

= )

Figure 5.21 : Illustrating The Definition Of Yg
Yield Sensitivity,.
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Figure 5.22 : Illustrating The PERTOL Criterion
. : For Tolerance Assignment.
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Figure 5.23 : Illustrating Some Terminology
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1 At Iteration Number 1,
Cost
0.8 8=0.2813
0.61+ ’////’C
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Note : Cost Is Normalized
To Unity For Iteration One.
O.H—
! 1 | 1 l l l
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Figure 5.24 : Cost Trajectories For The Band Pass
Filter Circuit Example
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Figure 5.25 : Cost Trajectories For The Band Pass

Filter Circuit Example.
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0.4 At Iteration Number 1,
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Figure 5.26 : Cost Trajectories For The Band Pass
Filter Circuit Example
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Figure 5.27 : Cost Trajectories For The Band Pass Filter
Circuit Example
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Iteration Number

Figure 5.35 : Cost Trajectories For The High Pass
Filter Circuit Example
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Figure 5.36 : Cost Trajectories For The High Pass
Filter Circuit Example.
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CHAPTER 6 - SUMMARY AND SUGGESTIONS FOR FURTHER
RESEARCH.

6.1 Introduction.
6.2 Summary of the thesis and conclusions.

6.3 Suggestions for further research.

6.3.1 Extensions to technlques developed in
. the thesis.

6.3.2 Extension of the Monte Carlo based design
approach to other problems in the field
of statistical design.
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CHAPTER SIX

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

6.1 INTRODUCTION

Our main research contribution has been the introdﬁction and
development of a numbef of algofithms and techniques addressed
to the design centering and tolerance assignment problems.

The new algorithms are introducéd in the 1ight‘of a critical
assessment of existing techniques reported in the literature.
In this finzl chapter we summarize the contents of the thesis

and make suggestions for future research,

6.2 SUMMARY OF THE THESIS AND.CONCLUSIONS

Chapter one is a general review of the field of statistical
design. Some useful notation and terminology is introduced
and explained. The two most widely used methods of statistical
analfsis, viz. Monte Carlo analysis and the method of moments

are briefly described.

It is shown that Monte Carlo analysis is a general procedure
which is applicable for any form of component parametér p.d.f.
In addition it does not require assumptions about the form

of the p.d.f. of circuit responses. In particular the

procedure for estimating manufacturing yield is described. For
a specific circuit the cost of a Monte Carlo estimation of yield

is proportional to the number N, of sample circuits analysed.
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It is shown that the accuracy of the yield estimates 1is
proportional to 1/vN. Therefore, to achieve a certain accuracy

the number of sample circuits required to be analysed is
|

independent of the number of toleramnced components in .the

circuit.

The methoq of moments on the other hand although computationally
cheaper t%en Monte Carlo analysis, is less general. The
method apqroximates the moments of the response p.d.f.2(.)

as functiqns of the component parameter p.d.f. ¢#(.). The
approximafing‘functioqs are of limited validity as they are
based on Taylor series approximations of the circuif's
responses. The method is commonly employed to obtain
estimates of the second moments of 2(.). However, to estimate
parameterg such as yield, assumptions need to be.made about
the functional form of 9(.). A common assumption that Q(.)

is multidimensional Gaussian has been demonstrated to be
generally invalid /32/. Even if we makg‘a suitable assumption
the compufational procedure becoﬁes very complex‘as the

number of performance constraints becomes large. The use of

the method of moments in conjuction with the Bonferoni

inequalities procedure to estimate yield is described.

To perform effective statistical design, knowledge of the
form of statistical distributions of component parameters is
essential. The problem of characterizing the statistical
distributions of component parameters; also called statistical

modelling is still the subject of active research/54/.
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Statﬂstical modelling falls outside our immediate area of
reseérch. Therefore in chapter one we make only brief comments
_on the type of distributions encountered in discrete and
integfated circuit cémponénts. |
In addition to tolerance assignment and design centering,
some other problems in the field of statistical design are
briefly described. These include the specification of
performance constrainﬁs in manufactured-circuits; the
specification of sub-system performance constraints in system
design; and various problems related to the specification of
performance tests on manufactured circuits. The possible use

of Monte Carlo analysis to help solve such problems is emphasised.

In chapter two we make a critical assessment of reported
methods of tolerance assignment and design centering. The
chaﬁter commences with a discussion of relevent cost functions
and of different problem formulations which fall under the
general titles of tolerance assignment and design centering.
The methods reviewed are considered under four categories, viz.
geometrical characterization, standard non-linear programﬁing,

iterative Monte Carlo based methods, and discrete methbds.

As is discussed in chapter one; geometrical interpretations
may be given to the various problem formulations. The most
successful geometrical mefhod,so far, simplicial:approximation
/21/; approximates the region .of acceptability as a simplex
of bounding hyperplanes. The Procedure becomes prohibitively
expensive as.the number of statisticaliy‘vérying parameters

increases beyond about ten.
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The methods based on standard non-linear programming are
considered in two groups. Firstly worst case methods, which
seek minimum cost tolerance solutions constrained to return
100% (unity) }ield; gnd secondly statistical, which ailow
yields of less then 100%. It is shown that both groups

of method avoid the explicit evaluation of yieid. The worst
 case methods require tests to check the unity yield condition.
Some of the different worst case testing metho@s are discussed
in chapters two and three. The statistical meéhods on the
other hand constrain &ield to be greater than a certain lower
bound. The constraints on yield are then transformed to
constraints on tolerance via approximate relatQOnships such as
the transmission of variances equation /12/. (i.e. the method

of moments).

The main shortcoming of the worst case methods is overdesign.

In general it 1s possible to trade off yield against tolerances.
The worst case methods do not explore this trade-off and hence
provide expensive tolerance solutions. In addition the worst

case methods are inapplicable in situations where 1003 yield

is not achievable with available tolerances. The latter situation

commonly arises in the manufacture of. integrated circuits.

The statistical non-linear programming based methods allow

yield to be less than 100% and do not produce as tight tolerances
as the worst case methods. Nevertheless statistical methods
maximize tolerances for a particular choice of yield and still
do'not explore the yield-tolerance trade-off. To explore this
trade-off the optimization could be repeated for different choices

of yield. However, the unreliability of a yield estimation
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procedure based on the transmission of variances equation

renders this approach unattractive. 5

The ﬁéthods based on Monte Carlo analysis have important
advantages over both the geometrical and the non-linear
progfamming based methods. Firstly, in‘estimatiﬁg yield

" the number oficircuit analyses required in Monte Carlo ahalysis
is independent of the number of tbleranced components. This
implies that the methods may .be considered for large circuits.
Secondly the Monte Carlo yield éstimatiqn procedure is more
general and more reliable than the method of momén;s. Our
main contribution of new techniques falls in the afea of Monte
‘Carlo based methods, as is discussed in chapters four and five.

Therefore only brief mention is made of it in chapter two.

All three categorries of method discussed above provide
continuous solutions. In practice however, only discrete
choices may be available for tolerance and nominal values. The
expedient of rounding off the best continuous solution to the
nearest allowable discrete solution does not always provide

the best available discrete solution. Discrete methods work

iﬁ terms of the discrete choices Without firstvségking continuous
solutions. The main shortcomings of this approach arise from
the fact that the number of available discrete soiutions
becomes very large for the size of most circuit examples of
interest. Therefore the computational effort is often

prohibitive.
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¢

A number of new algorithms and techniques are introduced in
chapters three, four and five. Chapter three is concerned with
the discrete worst-case tolerance assignment problem, while
chapters four and five respectively consider désign centering

and tolerance assighment methods based on Monte Carlo‘analysis.

In chapter three we deal with a»cléss of method called the
branch and bound method. The two main computational tasks

in such a method are, firstly a strategy for sélecting tolerance
solutions and secondly suitable methods for testing these
sclutions for compliance with the worst case réquirement. The
results of such tests allow a number of the possible solutions
to be eliminated from consideration. By suitably selecting

test solutions, the methods effectivelyjeliminate most of

the non-feasible® solutions from consid%rétion. Thus the
optimum tolerance solution can be identified after evaluating

only a few of the many possible tolerance solutions.

In chapter three a brief summary of the structure of Branch

and Bound methods, together with a review of various worst case
testing methods is given. Our main contribution to this

group of techniques is the introduction of a geometrically
based worst case testing method called INDENTATION. The
INDENTATION method is based on a discrete representation of

the region of acceptability, obtained by a regionalization /37/

a
Solutions which fail to meet the 100% yield requirement.
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Of the input space. As with other geometrical methods
regionalization and therefore INDENTATION becomes prohibitively

expensive as the dimensionality becomes large.

In chapter three the results of the application of the
INDENTATION method in conjunction with a particular search
strategy called the bi$ectiona1 search, are presented for

a three variable circuit.

Chapter four deals with design centering methods based on

Monte Carlo anaiysis: IAs Monte Carlo analysis does not provide
gradients of the yield function, attention is confined to

direct search methods of optimization. Initially, a previously
reported method, Pattern search, is briefly reviewed. The main
original contribution is the introduction and development of

a novel technique, called the statistical exploration method
(abbreviated MYOSE).

For selecting new trial solutions, MYOSE uses information about
the position of passing and failing circuits, pfovided by Monte
Carlo analysis performed for the current iterate. The procedures
for selecting the direction of search and the size of the step

in this direction are described and discussed. The effectiveness
of the MYOSE method is demonstrated withiresults obtained for

a number of circuit examples. The largest circuit example

tested involves 43 variable components.

The dependence of the accuracy of a yield estimate on sample
size was discussed in chapter one. In chapter four it is

argued that in an iterative method of yield maximization
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(design centering) it is of greater importance to’correctly

rank yield estimates than to attain high accuracy for individual
yield estimates. The relationship between sample size and

degree of confidence of correct'fanking is discussed. Two
sampling schemes which for small sample sizes return .a high
degree of confidencé are described. The first scheme, correlated
sampling uses the same random numbers for successive iterates.
This decreases the variance of the estimate of the difference

in the yields of successive iterates. Thus for a particular

sample size the confidence of correct ranking is increased.

The second scheme, the Common Points scheme, reuses, for the
current iteration, some of the circuit analyses performed for
the Monte Carlo analysis of the previous itgrafions. The
tolerance regions of successive‘iteratiéns overlap considerably.
The scheme makes use of the fact that the contribution to

yield of the overlapping part of the to}erance regidn does

not need to be re-evaluated. Whereas the correlated sampling
scheme is useful for any form of component p.d.f., the common -
points scheme is only applicable for the case of uniform
p.d.fs. Later in the chapter we‘provide a comparison of the
two schemes for a particular circuit example, when component
p.d.fs  are assumed to be uniform. This particular examplé indi-
cates a greater éfficiency of the common points scheme over

the correlated sampling scheme.

As with other direct search methods /55/ no general results for
: g@dxgchl—E$?Uwut00n.
the convergence properties of the method are given. In
. e N
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addition we are unable to derive conditions for yield maxima. In
practice application of the algorithm to various circuit

examples leads to increases in yield for several iterations. The
numbér.of iterations required has been from about five to nine.
For the circqit examples tested, the number of iterations appears

to be independent of dimensionality (see table 4,9).

Chaptér five considers methods of tolerance assignment based

on Monte Carlo analysis. The group of methods considered
comnmences with wide tolerances and low associated yield.

Yield is estimated by Monte Carlo analysis. New tolerances

are selected via algorithms which use information about the
distributioﬁ of the component values of the pass and the fail
circuits. The particular algorithms for selecting new tolerances

distinguishes one method in this class from another.

Monte Carlo analysis is performed with the new set of tolerances
and the proceés is continued. At each iteration tolerances are
tighténéd over those of the previous iteration. The procedure
cén be continued over a number of iterations until 100% yield

is achieved. Alternately the procedure may be continued until

a cost function is minimized.

We commence the chapter with discussion of a felevant cost

function reflecting the trade-off between yield and tolerance.

The efficacy of the iterative scheme for minimizing such a function
is discussed. An existing method, TOLERATE is reviewed. The

mathematical arguments in support of the TOLERATE algorithm are
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are clarified. In particular the parameter, yield sensitivity
which is intended to be a measure of a component's effect

on yield, is shown to be unreliable. .

A serious shortcoming of the TOLERATE method is that of overdesign.
To overcome the practicél ambiguities and overd?sign, the

PERTOL method is introduced. The mathematical arguments for the
PERTOL tolerance assignment criterion are explained. Comp-

arative results of the application of both methods to specific
circuit éxamples are shown. PERTOL is found td provide lower

cost solutions than TOLERATE in every case.

6.3 SUGGESTIONS FOR FURTHER RESEARCH

Suggestiéns for future research are presented in fwo groups.
The first group relates to improvements and extensions to
algorithms and techniques discussed in this thesis. The
second group considers the extension of the concepts and ideas

developed, to other problems within the field 6f statistical

design.

6.3.1 EXTENSIONS TO TECHNIQUES DEVELOPED IN THE THESIS
' |
6.3.1(a) A technique for further increasing the computational

efficienty of Monte Carlo based design centering methods
(Chapter 4) is proposed. The method to be employed in
conjunction with the correlated sampling scheme is based on the

use of Taylor series approximation of the circuit response.
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We denote by f£f(P°) a particular circuit:response. Here

P° = pi p% cees p% represents a set of values for the K

component parameters. The vaiue of the respbnse for another set of
vaiues‘P' = P9+AP may be written in terms of a Taylor series

expansion /11/ as:

K A, 1 K K Ay, A
£(PO+aP) = £(P%)+) st Pi.3mr § st st Piopy

1=1 P1 Py i=1 j=1 i Pi 'pl j

b e, | . (6.1)

Where Si_ etc. aré the first, second and higher order
1

sensitivities of the response f(.).

A full circuit analysis and the required sensitivities are
computed at point P°. The response at any other point P'

can then be estimated using a suitably truncated version of
series (6.1). The advantage of this method is that the compu-
tatiénal cost of evaluating sensitivities and the Taylor
series approximation is in general far less than that of re-

evaluating the circuit response for P',

Expréssion (6.1) is an infinite series. However, in practice
it has to be truncated after a certain number of terms. The
conditions to be satisfied for (6.1) to converge and the
dependence of accuracy on the point of trundation are discussed
by Sud /56/. Sud has also described a scheme for using the

Taylor series to perform Monte Carlo anélysis /57/. In
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‘any investigation of our proposed scheme, the results obtained by
Sud are of interest. Therefore his scheme for performing

Monte Carlo analysis using Taylor series approximations is
sdmmarized hgre. |

Scheme 1 (Sud/57/).

1. Perform a full circuit analysis for the nominal point
(design center) P°. Calculate the sensitivities of the

circuit response with respect to the component parameters.‘
2, Set counter j=1. . ‘ ;

3. Generate random sample Pj.

to the relevant probability density function @(.).

Points are generated according

4, Estimate values for circuit responses at point P., by

use of the truncated Taylor series.
5. §Store results.

6. Increment counter j=j+l. Stop if j 1is greater than the
maximum number of sample circuits to be analysed. Otherwise

go to step 3.

The main shortcoming of this method of Monte Carlo analysis is
that of lack of accuracy. For a particﬁlar number of terms the
approximation becomes less accurate as the deviation from
nominal of individual parameter values increases. Therefore
the use of the Taylor series for Monté Carlo analysis is less
reliable wheﬁ the parameters are subject to large tolerances.

The limitations imposed by accuracy will be less stringent
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when the approximation is employed for correlated sampling.

This will be so because corresponding sample points of successive

iterates will be in close proximity in parameter space.

Consider figure 6.1 which illustrates the relationship between

the tolerance regions and sample points of successive iterates

in design centering. Initially let the iterates of interest

be 1 and 2, with design centers PY and Pg respeétively. The
sample points for the two iterations are denoted as

P11 P13 ceen Pyy and Py, PZZ «essss Pyy Tespectively.

The two design centers are related accdrding to (6.2):
P§ = P} + APy : 6.2,
where we denote APy = Apqgjg APy, «eees APyge

It is shown in section 4.4.2 that correlated sampling ensures

that sample points will be related in a similar manner i.e.

sz = Plj + Apl j=1'o.oN . 6.3

Our proposed scheme is as follows:
Scheme 2

1. Perform a full Monte Carlo analysis with design center PY.
That is, perform circuit analysis for the N random sample
points ?11 P1y +++. Pyy. In addition evaluate and store
relevant sensitivities of the various responses with
respect to the component values, for each of the N sample

circuits.
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-

3. Perform a modified Monte Carlo analysis:
(i) Generate the new sample points according to expression

6.3, i.e. perform correlated sampling.

(ii) Approximate circuit response for the new points

Pp= s+ PN, by use of the Taylor series,®

Implementation of steps 2 and 3 in the iterative scheme summarized
in section 4.4,2(f), will result in considerable computational

savings.

Scheme 2 as described here only extends to the second iteration.
When a new design center is chosen after iteration 2, i.e.

Pg = Pg + APé, then the response of the new sample points may still
be approximated in terms of the response and sensitivities

of the sample points of iteration number 1, Alternatively,

we may now perform full circuit analyses and sensitivity
calculations and use these to approximate the sample points

for the fourth iteration.

A general scheme is envisaged where, after each new choice of
design center, a decision is made as to whether full circuit
analyses are to be performed, or the approximation is to be
eﬁployed. The accuracy of the approximation bécomes poorer with
increasing deviation of component values; Howéver, the

deviations Apg Ap, «... Apyg will in general be much smaller

than the tolerances of the component parameters.

&
No specific suggestions are made about the point of truncation

of the Taylor series. This question has been investigated by
Sud /5¢/ and also by Karafin/ 3/. For certain tolerancing
algorithms Karafin has suggested the use of all first order
sensitivities and unmixed second order sensitivities.
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6.3.1 (b) The scheme proposed in 6.3.1 (a), improves
efficiency by approximating circuit responses for some of the
Monte Carlo iterations. However, for the situation where
full circuit analyses are to be ﬁerfdrmed, we suggest an

investigation of the following enhancements.

For acceptability, a circuit has to meet a number of performance

requirements,

Notationally: £; < £;(.) < f;
£y 2 Hi() < iy

As before £;(.) is the ith circuit response and fi ~and  fj

are the limits of acceptability of f£;(.).

Failure to comply with anyone of the M ‘performance requirements
renders the circuit to be a fail. While performing Monte Carlo
analysis the performance functions are evaluated sequentially

for each sample point. One enhancement already implemented

is to terminate performance evaluation when the first failure

to comply with a performance requirement occurs. Further
improvement will be effected if the order of evaiuafion of the
circuit responses is changed. The new order would be such

that the responses most likely to fail were evaluated first,

In one possible scheme an arbitfary testing order is assumed
for the first iteration of the Monte Carlo analysis. The

frequency of failure of each of the performance constraints is

evaluated by counting. The order of testing for the second
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iteration is selected such that the most frequently failing
performance is tested first and the least frequently failing

performance is tested last.

The 43 variable digital filter circuit (chapter 4) was subject
to 256 perfbrmance constraints (i.e. the insertion loss at 256
frequencies was tested). .For each analysis the computational
cost was proportional te the number of frequencies tested.
Whereas a passing circﬁit had to be tested for all 256
frequencies, a failing point only needed to be tested uptil the
first failing frequency. Typically the failure rate was 705%.
Therefore it is clear that considerable savings.in computational

effort could be effected by re-brdering the test frequencies.

6.3.1 (¢) For design centering, two sampling schemes, viz.
correlated sampling and the common points schemes were discussed.
For a particular sample size, correlated sampling reduces the
variance of the estimate of yield difference between different
iterates. The common points scheme on the other hand achieves
computational savings by re-using some of the circuit

analyses of the previous iterate. In chapter four the results
of a practical comparison of the appiicafion of the two

sampling schemes to a particular circuit eiample are discussed.
The results support the conjecture that the common points scheme

is more efficient.

We suggest that a more rigorous theoretical and experimental
comparison of the two schemes be made. Such a comparison would

be of particular value as the schemes have application beyond
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the problems of statistical circuit design. For example
correlated sampling is extensively used in simulation /47/,
particularily in the design and evaluation of systems subject

to statistical variations.

6.3.2 EXTENSION OF THE MONTE CARLO BASED DESIGN APPROACH TO

OTHER PROBLEMS IN THE FIELD OF STATISTICAL DESIGN

In this thesis methods of design centering and tolerance:
assignment based on Monte Carlo analysis have‘been introduced.
Prefiously Monte Carlo analysis has been used purely for analysis.
For particular nominals, tolerances and component parameter
distributions, the Monte Carlo method is used to estimate
parameters such as yield. The design methods discussed in
chapters four and five iterate the process. New nominals

and tolerances are selected via algorithms which mike use of

the spatial information provided by the Monte Carlo analysis.

Ourimethods have severél important advantages. Firstly, they
can deal with circuits involving a large number of toleranced
components. Secondly the methods are easy to implement using
existing circuit analysis routines. Finally they do not
requife simplifying éssumptions about the form of the component
or performance p.d.f.s or about the shape of.the region of
gcceptability (e.g. convexity). We therefore propose extension

of our approach to other design problems as discussed below.

Although the methods discussed are not limited by the nature of
the circuit being designed, only discrete component circuits

‘have been investigated. The extension of the approach to
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integrated circuits requires a consideration of other statistical

design problems which may be of relevance.

6.3.2 (a) In discrete circuits, tolerances can be iﬁposed on
any batch of a component by removing out of tolerance components.
In integréted circuits individual components cannot be softed.
Tolerance assignment is nevertheless of importance in integrated
circuit design. For example thé value of an integrated resistor
is determined by its‘a5pect ratio (length/width). 'The tolerance
on its resistance value depends on the width. If the width

is increased and the length is also increased to maintain a
certain aspect ratio, then the nominal value of the resistor

remains constant while its tolerance decreases.

In addition to tolerance assignment, it is of importance to
consider correlation between component spreads. For example
the detrimental effect of large resistor spreads may be reduced
by designing circuit performance to depend on ratio of
resistance values. The correlation between resistors can then

be increased by piacing them adjacently on the I.C. chip.

One particular design ﬁroblem is that of identifying the
desirability of tracking between component parameters: The
terms correlation assignment /15/ has been suggested for this
design problem. Consider the situation where an electrical
t6p010gy and nominal values have been suggested for a circuit
which is to be manufactured as an integrated circuit. Then

it is useful to identify desirable tracking between parameters.

Ohe possible method of doing this would be the following.
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Perform Monte Carlo analysis assuming uniform p.d.f. s for the
component parameters. Identify the random sample circuits as
pass or fail (according to performance requirements). Then
khowledge of desirable tracking may be dbtained by estiméting
the correlation between component vélues.for the pass circuits.
Similarily undesirable tracking may be identified by considering
the correlation of component values of the fail circuits. Such
analyses would give the designer information which would be
useful in the geometrical layout of the circuit, or in making

changes to the electrical specifications of the design.

The effectiveness of different layouté and electrical designs
could then be evaluated by performing further Monte Carlo analyses,

taking the correlations into account.

6.3.2(b) Monte Carlo based methods would be useful for
specifying tests on manufactured circuits. The Monte Carlo
analysis provides information about the correlation between
different asﬁects of a circuit's electrical characteristics.
This'may be used to simplify and reduce the cost of testing.

For example in the manufacture of lihear-integfated circuits,

it is more expensive to perform a.c. tests than d.c. tests.

For final acceptability‘a circuit has to meet certain a.c.
performance requirements. It is desirable to identify and remove

failing circuits after the d.c. tests.

Monte Carlo analysis can be used for evaluating the correlation
between d.c. and a.c. behaviour. On the basis of this, limits

may be imposed on acceptable d.c. behaviour. By imposing
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suitable limits the number of bad circuits passed on for a.c.
testing will be reduced. However, some good circuits will be
:ejected after d.c. testing. The designer méy estimate'the
ﬂroportion éf circuits which pass particular d.c. test limits
and fail a.c. tests or those which fail the d.c. test limits

but would have gone on to pass a.c. tests. The effect on these
proportioﬁs of different d.c. test limits may be investigated by

Monte Carlo analysis. Suitable test limits can then be chosen to

minimize overall costs of testing.

The particular problem can be seen to be ciosely related to
the tolerance assignment problem / 2/. Therefore some of the

techniques and ideas discussed in chapter five may be applied.



Note

Figure 6.1

e Represents Sample Points Associated With
Design Center P?. 4

X Represents Sample Points Assoc1ated With
Design Center P$.

Diagram Showing The Relationship Between
Corresponding Points Of Successive Iterates.
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