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ABSTRACT 

The thesis describes measurements of the thermal conductivi-

ty of the monatomic gases Helium,Neon,Argon,Krypton and Xenon 

and binary mixtures of Helium/Neon and Argon/Krypton. Measure-
ments are also reported for the polyatomic gases Hydrogen,Nitro-

gen,Carbon Monoxide and Methane as well as binary mixtures of Hy-

drogen with Neon,Argon,Krypton and Nitrogen. The measurements 

have been carried out in a transient hot wire apparatus designed 
and constructed especially for this work, at 35 'C in the pres-

sure range 0.5 to 10 MPa. The uncertainty in the reported data is 
estimated to be no more then +0.2% ; an estimate which is confir-

med by a comparison with low density viscosities for the. monato-
mic gases using an exact result of the kinetic theory. 

The new results for binary monatomic gas mixtures are so ac-
curate that higher order kinetic theory formulae had to be deve-

loped to provide a satisfactory description of them at low den-

sity. The high accuracy achieved at elevated densities is used to 

demonstrate the inadequacies of the present theories of the den-

sity dependence of the transport coefficients for gases and gas 

mixtures.A semi-empirical procedure for the density dependence 
of the thermal conductivity of gas mixtures is,however remarka-
bly succesful. 

For polyatomic gases and their mixtures the new results indi-

cate that existing kinetic theory formulae are again inadequate. 
It is shown how improved theoretical expressions would enable u-

seful molecular information to be obtained from the experimental 
data at low density.In the particular cases of Nitrogen and Car- 
bon Monoxide, despite the limitations of the theory, the present 
data strongly suggest that diffusion of internal energy in the 
gases is significantly slower then the transport of mass, in co-

ntrast to the prediction of the only available theoretical analy-
sis.The density dependence of the thermal conductivity of the po-

lyatomic mixtures is however well described by the same semi-em-

pirical scheme which is succesful for the monatomic mixtures. 
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INTRODUCTION 

The difficulty of performing accurate measurements of the 

thermal conductivity of fluids has been recognised for a conside-

rable time. As recently as 1977 a review of the available experi-

mental data for the most frequently studied systems, the monato-

mic gases, revealed that few of the results were consistent with 

accurate viscosities for the same gases. Furthermore, the discre-

pancies between various sets of experimental data were almost one 

order of magnitude larger than their claimed uncertainty. Because 

an accurate knowledge of the viscosity and thermal conductivity 

of a polyatomic gas provides information about inelastic proces-

ses it was evident that measurements of the thermal conductivity 

of a comparable accuracy to that achieved for viscosity (+0.2%) 

should be performed. 

In a paper presented in Chempor 1978 in Braga,Portugal, we 

have also shown that uncertainties in the transport coefficients 

have a significant effect upon the technical design of any heat 

process equipment and may result in unnecessary capital expendi-

ture. It was shown that uncertainties in the thermal conductivity 

of the fluids used, which can easily amount up to 20%, can have 

an almost proportional effect to the size of the particular e-

quipment. 

This thesis begins with a survey of the various techniques 

for fluid thermal conductivity measurements which establishes 

the need for more accurate measurements. In the second Chapter, 

the existing theories for the thermal conductivity of gases and 

gas mixtures at low and elevated densities are discussed and e-

xtended, so as to be of comparable accuracy with the experimental 

results obtained. This Chapter also illustrates how molecular i-

nformation can be derived from transport property measurements. 

In the subsequent Chapter the theory of a refined technique based 

on the transient hot wire is given. In Chapter four the apparatus 

itself and the experimental procedure are described. The entire 

body of experimental data obtained in this work for a number of 

monatomic and polyatomic gases and gas mixtures is given in 
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Chapter five, for a temperature of 35 'C. Chapter six then de-
tails the interpretation of the experimental data in terms of 
the kinetic theory of gases, and demonstrates that in order for 
the maximum molecular information to be derived from the accurate 
experimental data obtained, more accurate kinetic theory expres-
sions must be developed.Finally, in Chapter seven suggestions 
for future work involving the extenssion of the range of the pre-
sent equipment to temperatures as low as -200 'C and as high as 
+200 'C will be discussed. 
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• ONE 

METHODS OF MEASURING 
THE THERMAL CONDUCTIVITY 

1. 	INTRODUCTION 

The thermal conductivity coefficient 'X', is defined by the 

Fourier law as :- 

_ - A. A•V2T 

where, Q represents the conductive heat flow, A the area at right 

angle to the heat flow,and T the temperature in the medium. Heat 

transport by conduction in a medium is caused by the molecular 

exchange- of energy associated with the thermal random motion of 

the molecules. This must be clearly distinguished from convective 

heat transfer, in which heat is transferred by the translation 

of elements of fluids (large on a molecular scale) and from radi-

ative transfer which occurs by the emission and absorption of 

electromagnetic radiation by molecules in translucent substances. 

In order to perform accurate measurements of the thermal condu-

ctivity of fluids, the foregoing discussion shows that experi-

mental conditions must be arranged so that all energy is trans-

ported by conduction. At this point it should be noted that, as 

convection will always be present in fluids subject to a tempe-

rature gradient, conditions should be arranged such that its 

effect is insignificant. A suitable working equation for the 

equipment to measure the thermal conductivity of fluids can then 

be obtained from a solution of the Fourier law. 

Two different approaches have been generally adopted for 

thermal conductivity measurements, a steady state (stationary ) 

and a time dependent (transient) one. This distinction provides 

the basis for the classification of the techniques used in the 

determination of the thermal conductivity of fluids that is the 

subject of the next two Sections. In the last Section of this 
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Chapter, an evaluation of the various methods will be attempted, 

and their errors and disadvantages in relation to the transient 

hot wire technique will be shown. 

1.1. STATIONARY METHODS 

In the stationary methods the principle of measurements is 

relative straightforward. The medium to be investigated is placed 

in a vessel of known geometry and a heat flux is introduced. As 

a consequence of this, the temperature of the medium rises and 

after a certain time equilibrium is reached and a stationary 

temperature difference is established in the medium. The thermal 

conductivity is thus calculated as a function of the heat flux , 

the temperature gradient, the properties of the medium and the 

geometry of the vessel. 
There are three basic categories of stationary methods; the 

double plate methods, concentric spheres and concentric cylinders 

methods. 

1.1.1. DOUBLE PLATE METHODS 

The double plate technique is the oldest experimental method 

and was first used in the early 1800's by Nicholson [1], Murray[2] 

and Rumford [3] who used a vertical column of fluid contained 

between horizontal flat plates, heated from above so as to reduce 

convective effects. The thermal conductivity is obtained from 

the steady state solution of the Fourier law `as :- 

Q = - A.(A/d) • AT 	(1.2) 

where, Q is the heat transferred across plates of area A separa-

ted by a distance d and held in a constant temperature difference 

AT. Quantitative measurements were made following Biot's [4] for-

mulation of a law of conduction, by Depretz [5], Weber [6] and 

others. 

An important improvement to the original design was the addi-

tion of guard rings to ensure a one-dimensional heat flux and thus 

eliminate edge effects. These devices were probably first used by 

Berget [7]. In 1933, Bates [8]argued in favour of increasing the 

small separation between the plates which had formerly been used, 



Figure 1 . Michels et al. double plate. • 	
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as it was difficult to measure the gap to the required accuracy. 

Later Sokiades and Coates [9,10] also suggested an increase of 

the plate separation and attempted to show that radiation and 

convection were 

negligible. Subse-

quently, Michels 

and Botzen Ill],  

described a double 

plate method for 

F measuring thermal 

conductivity of 

gases up to 3000 

Atmospheres. This 

was improved by 

Michels, Sengers 

and Van der Gulick 

[ 12] in 1962, and 

used extensively 

for measurements on gases over a wide range of pressures and 

temperatures. Their apparatus, probably the best of its kind , 

consists of two plates (see Fig. 1 ), an upper U and a lower L 

kept apart 1.4mm, both containing a spiral winding used as a 

heater and a resistance thermometer for the temperature measure- 

ment. The upper plate being surrounded by a ring plate G, was 

kept at the same temperature with it and both were placed in an 

insulation cap C . Finally, an insulating film F was also used 

in an attempt to compensate for edge effects. 

A similar arrangement was also used by Fritz and Poltz [13] 

in an attempt to investigate the effects of convection and 

radiation. 

1.1.2. CONCENTRIC SPHERES METHODS 

In an attempt to avoid problems created by the edges of the 

plates, a concentric sphere arrangement was suggested. According 

to this technique, the medium to be investigated is placed between 

two concentric spheres of radii r1  and r2  .The inner sphere is 

heated while the outer is kept at a constant temperature. Thus, 

a temperature difference, AT, is established between the two 
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spheres. The thermal conductivity of the fluid can be calculated 

from the steady state solution of the Fourier law as :- 

Q = A( 4nr, r2)  AT 	(1.3) r _zf  

where Q is the heat loss from the inner sphere. 

In 1951, Riedel [14] constructed a succesful spherical cell 

by using a 28mm diameter copper sphere containing a heater supported 
in another vacuum tight sealed spherical cell. Centering was achi-

eved by various micrometer measurements and the results that he 

obtained seemed to agree to an accuracy of 1% with his results 

using both flat plates and concentric cylinders. 

Richter and Sage [15] used a similar arrangement for methane 

and nitrogen dioxide up to a pressure of 300 Atmospheres with a 

layer thickness of about 0.5mm. However, they observed that the 

temperature distribution over the outer sphere was not uniform 

indicating the presence of natural convective currents. 

1.1.3. CONCENTRIC CYLINDERS METHODS 

In an attempt to avoid the complications that arose in the 

double plate methods with the introduction of the guard rings and 

the magnitude of the plate separation, Bridgmann [16], in 1923, 

used a concentric cylinder arrangement. In his original design 

the inner cylinder which was partially immersed in the test fluid 

was heated, and the outer one was in good thermal contact with the 

pressure vessel in its oil bath. Convective effects were reduced 

by using a very small temperature difference AT across the liquid 

layer. The thermal conductivity was obtained from the steady state 

solution of the Fourier law as :- 

Q = X(2nln(rD  ))• AT 	(1.4) 
2 

where, Q is the heat dissipation per unit length of the inner 

cylinder and r1  and r2  are the radii of the cylinders. However, 

his results were considered to be rather high and Riedel [17] 

showed that this could be largely accounted for by the inadequate 

compensation of conduction through the ends of the cylinders. 

Bridgman's arrangement was improved later in 1932 by Schmidt 

and Seleshop [18], by surrounding the inner cylinder completely 
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by the fluid and compensating mathematically for convective flow 

patterns at the edges. Seleshop, later introduced guards on the 

inner cylinder in the form of heated end sections, to reduce 

heat loss by axial conduction. 

In 1935,  Schmidt and Milveston [19] published correlations 

for the convective heat transfer, in terms of the Rayleigh number 

but no definite absolute criteria for the detection of the pre-

sence of convection was suggested. 

More recently the concentric cylinder method was used by 

Misic and Thodos [20] in 1966. In an attempt to reduce convective 

effects the gap was kept to a minimum, while at the same time the 

length of the cylinders was greatly increased so as to produce 

an 'infinite' cylinder with a one-dimensional radial heat flux. 

A special case of the concentric cylinders method is the 

'hot-wire' in which the inner cylinder takes the form of a wire 

which is electrically heated, and acts also as a thermometer. 

This was probably first used by Schliermacher [21] in 1888, who 

sought to eliminate end effects by considering only the middle 

section of the wire. 

Recently Cecil and Munch [221 used a platinum wire of 58µm 

diameter held in tension by a small spring in a glass tube, with 

potential leads attached to its middle section so that only a 

segment of the wire (with no ends) is employed in the measure-

ments. A similar arrangement was also described by Taylor and 

Johnston [233 and Johnston and Grilly [24] in their measurements 

of the thermal conductivity of gases. Corrections for axial heat 

transfer were made and conduction losses along the potential 

leads were estimated. Radiation effects were also accounted for 

by measurements in vacuum. 

1.2. NON-STATIONARY METHODS 

The transient hot wire technique is the only non-stationary 

method which has been given serious consideration. It was intro-

duced in an attempt to eliminate convective currents which, are 

almost certainly, the basic source of errors in all stationary 

methods. In its ideal form this method employs a very thin wire 

'infinitely long', suspended in an 'infinite' medium. A heat 

flux ,q , is initiated electrically in the wire at time t=0,and 
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the temperature rise in the medium is measured at different times. 

The thermal conductivity is obtained from the time dependent so-

lution of the Fourier law as :- 

AT = 	4 	 In (A) 	(1.5) 

where, a is the wire radius, kd  the thermal diffusivity of the 

fluid and C a known constant. The thermal conductivity can thus 

be obtained from the measured temperature rise as a function of 

time. The advantage of this method is, that provided the times 

involved are very small (less than 2 sec approximately) convection 

does not significantly offset the measurements due to the inertia 

of the fluid. 

This method known as the transient hot wire method, was first 

used by Stahlane and Pyk [37] at 1930 to measure the thermal co-

nductivity of powders. After 1945 , 

the method was tested and used as a 

means of measuring the thermal condu-

ctivity of liquids by Van der Held 

and his coworkers (Van der Held and 

Van Drunen [25] , Van Drunen [26], 

Hardebal and Kalshoven 127] ). They 

used a 0.3 mm diameter Manganine wire 

W (see Fig. 2) as the heating wire 

placed together with a thermocouple 

T in a capillary tube dipped in a 

glass vessel filled with the liquid 

to be investigated L .This in turn 

was placed in a Dewar flask filled 

with water. Times of 5sec were used. 

A similar apparatus was used by de 

Vries [28] and Buettner [291 in investigating the influence of 

humidity in the thermal conductivity of granulated materials and 

by Gillan [301 and Grassman [31] . 

Weber [41] and later McLaughlin [32] used a platinum wire 

(see Fig. 3 ) and tried to correct for end effects due to axial 

conduction, by placing potential leads across a central section 

and thus actually using it as a four terminal resistance. Times 

of about 30sec were used. The same idea was adopted by Pittman[33] 
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and Mani [34] in measuring the thermal conductivity of liquids 

and Vos [35] for gases. 

In 1969, Haarman [36] introduced electronic counters and 

considerably improved the 

method. Instead of measu-

ring the temperature rise, 

he used an automatic bridge 

to measure the time taken 

	

li 	 
POTENTIOMETER I 	the temperature rise of the _4

medium is obtained and thus 
the thermal conductivity 

Figure 3 .  McLaughlin's apparatus 	derived as before. Following 

his work, Castro and Wakeham 

[38]applied the technique to liquids, while de Groot,Kestin and 

Sookiazian [39] applied it to gases. 

These preliminary investigations have shown that measurements 

of fluid thermal conductivity of high precision are possible with 

this technique, although some problems remain before high accuracy 

can be also achieved. 

This work will describe the final modifications to the hot 

wire technique that brought the absolute uncertainty of the measu-

rements to its expected value of 0.2%. 

1.3. EVALUATION OF THE ACCURACY AND ERRORS OF THE VARIOUS METHODS 

At this point it is necessary to make a digression and to di-

scuss the concepts of precision and accuracy as these are the 

criteria by which one can examine the various quoted results. Pre-

cision characterises the imperfections of the instrument, whereas 

accuracy characterises the imperfection of the resulting measure-

ment. Moreover, precision is a measure of the interval expected in 

a given instrument within which the result of a measurement must 

fall. Accuracy is a measure of the probable departure of the re-

sult obtained by the measurement in question from a hypothetical 

measurement free of all imperfections. 

for the resistance of the 
TIMER 	 wire to reach certain pre- 

determined values. From 
IRECORDER1  

the resistance of the wire, 
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The viscosity of the monatomic gases has been measured with 

an estimated accuracy of ±0.2% near room temperature. Therefore, 

the accuracy of thermal conductivity measurements can be examined 

with reference to the crrresponding viscosities with the aid of 

the well known Eucken factor relation for a monatomic gas 

defined as (§2.3.3.p.42) _-  

Eu = °(T)~ M 	= 2.5 (exact) 	(1.6) 
(T)-F(T) 

where, A°(T) is the zero density thermal conductivity, r1°(T) the 

zero density viscosity, C„ the molar heat capacity at constant 

volume, M the molecular weight and F(T) a known factor accou-

nting for the high order corrections to the Chapman-Enskog expre-

ssions(§2.3.3.p.42). 

Figure 4 displays Eucken factors deduced using the best visco-

sity data (60.) and the results of thermal conductivity measure-
ments by various techniques. Only selected results that do not 

differ by more than 4% from the expected value are displayed in 

the interest of clarity. Some values reported in literature de-

part by as much as 50% from the expected value of Eu=2.5, and in 

some extreme cases differ even by a factor of five as shown by 

Liley [59] . The advantages of the transient hot wire can easily 

be seen in relation to others as the results of the most recent 

measurements with this method [42] , lie within the mutual uncer-

tainty band of +0.4%. 

The wide range of variations in the absolute values of the 

thermal conductivity obtained from a variety of experimental me-

thods is primarely due to the inevitable presence of convective 

currents in almost all the steady state apparatii, arising either 

due to the earth's gravitational field or due to the pattern of 

heating. Furthermore, in the stationary methods it is very diffi-

cult to detect experimentally whether convection is taking place 

and to what extent. Even Michels' double plate apparatus (12] , 

produced results which now are known to be high - probably due 

to convection. This problem is not significant in the transient 

techniques as will be discussed in a later section (§3.2.1.p.61). 

In addition to the presence of convective heat transfer, the 

steady state methods described earlier have the advantage that it 

is difficult to secure the necessary one-dimensional heat flux. 

In such circumstances either the working equation does not refer 
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to the experimental arrangements and so systematic errors are 

introduced, or the working equations have not been modified to 

account for such effects in a proper manner. Most often attempts 

have be= mad t^ mnthfy the apparatus to ensure one-dimensional 

heat flow with a corresponding increase in its complexity. With 

the exception of the transient hot wire such modifications have 

not usually proved completely succesful. 

Heat losses due to radiation may also be significant and 

owing to an incomplete knowledge of the emmissivities of the sur-

faces involved and the interaction of the radiant heat flux with 

the conductive heat flux, may be difficult to estimate. In the 

hot wire as the emitting area is very small, radiation effects 

can be neglected, at least in the case of gases. 

All these considerations strongly suggest that the transient 

hot wire technique is the most suitable method for thermal con-

ductivity measurements. It will be shown in this thesis that the 

transient hot wire technique can be used to perform thermal co-

nductivity measurements on gases which have an associated uncer-

tainty of only ±0.2%. 
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• TWO 

THE KINETIC THEORY 
OF GASES 

2. 	HISTORICAL SUMMARY 

In 1859, in a paper presented at a Conference of the British 

Association for the Advancement of Science, Maxwell [61] intro-

duced the statistical approach to the molecular motion in gases 

that formed the, basis of the Kinetic Theory of gases as it is 

presently understood. In this paper, the assumption made by all 

previous workers, that all molecules of a gas move with the same 

speed, was abandoned and the random character of molecular motion 

was recognised. In subsequent papers Maxwell derived the law of 

molecular velocities for a uniform gas in equilibrium-so called 

Maxwellian velocity distribution - and the law of equipartition 

of the mean molecular energy in a mixture of gases. In an attempt 

to give rigorous justification of the Maxwell assumption of the 

random character of molecular motion, Boltzmann (62] in 1872 

established the H-Theorem, describing the irreversibility of 

physical processes. He then procceeded to derive an integro-dif-

ferential equation, known as the Boltzmann equation;  diseribirg 

the evolution of the distribution function for molecular veloci-

ties in space and time and demonstrated that in equilibrium the 

velocity distribution function was just that obtained by Maxwell. 

Thus, the formal framework of the Kinetic Theory was established. 

However, from the investigations of Maxwell, Boltzmann [62,63] , 

Stephan[64], Langevin [64], Lorentz [65] and others it became 

apparent that solving the Boltzmann equation for a non-uniform 

gas was very complicated. 

In 1910, the mathematician Hilbert [66] showed that for rigid 

spherical molecules Boltzmann's equation is equivalent to a linear 

integral equation of the second kind, for which a rigorous mathe-

matical theory was available. Shortly after publication of the 
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Hilbert results, Chapman [67,68] and Enskog [69,70] independently 

both presented a suitable formulation for solving Boltzmann's 

equation. Both approaches although slightly different lead to the 

same expressions for the transport coefficients for dilute mona-

tomic gases. 

The Boltzmann equation describes the evolution of the velocity 

distribution function only for structurless molecules i.e. those 

that possess no internal energy. Thus it can not be applied to 

polyatomic gases which possess internal energy. A means of dealing 

with such polyatomic molecules was provided by Wang Chang,de Boer 

and Uhlenbeck [77,78] who reformulated the Boltzmann equation by 

treating each different internal energy state of the molecule as 

an independent species. They then treated the internal energy 

quantum mechanically and the translational energy classically 

leading to the so-called Semi-Classical Theory. Taxman (132]on 

the other hand developed an equivalent but entirely classical 

theory using the same ideas. Formal expressions for the transport 

coefficients were derived by Wang Chang and Uhlenbeck using 

essentially the Chapman-Enskog method. 

The formal Uhlenbeck equations were put into a useful form by 

Mason and co-workers [79,80] yielding the thermal conductivity 

dilute polyatomic gases and gas mixtures in terms of their visco-

sity and other measurable properties. These expressions madc pc 

ssible the evaluation of an Eucken factor for polyatomic gases 

that later was improved by Viehland, Mason and Sandler [84] to 

include the spin polarisation effet=t which the Semi-Classical 

theory neglects. 

In relation to dense gases, Enskog [88] attempted to modify 

the Boltzmann equation to account for the finite volume of mole-

cules which becomes significant at high densities. Enskog carried 

out this analysis for a rigid sphere model and consequently the 

results obtained were in poor agreement with experimental thermal 

conductivities at high densities. Consequently, in order to de-

scribe the experimental results Mason [89] and Wakeham [90] pre-

sented a semi-empirical scheme for calculating the thermal condu-

ctivity of polyatomic gas mixtures at high densities from that 

of their constituent gases. 

In the following sections a more detailed examination of all 
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the various theories will be presented. On the one hand, these 

provide an introduction to the new extentions of the theory pre-

sented in this thesis, and on the other hand id provides a means 

whereby the limitations oflresent theories in some areas can be 

established and indicates the need for further developments. 

2.1. THE BOLTZMANN EQUATION 

Consider a gas mixture composed of structurless particles 

which interact through a spherically symmetric intermolecular 

pair potential Uu(r). Here ; and j label two molecules of possibly 

different species. It is supposed that the number density of mo-

lecules in the gas is low enough such that only two molecules 

collide simultaneously, but high enough so that each molecule 

collides more frequently with others than it does with the walls 

of the containing vessel. Since it is clearly impossible to des-

cribe in a deterministic manner the motion of 7:-11023  molecules in 

a gas by Classical Mechanics, we seek instead to describe the 

probable behaviour of a N molecule system. Because it has been 

assumed that only binary collisions occur, the position r and 

velocity c of a typical molecule arc independent of the position 

and velocity of the other (N-1) particles in the system. Further-

more one may write a similar statement for all other molecules, 

so that an adequate description of the behaviour of the N mole-

cules can be obtained (in this density range) by specifying the 

probable behaviour of a single molecule of each species in the 

gas mixture. Thus the analysis reduces to the search for a fun-

ction f;(r,c,t) which is defined such that f;dr do is the 

probable number of molecules of species i whose centres have at 

time t position coordinates in the range r + r+dr and velo-

cities in the range c -- c+dc . It follows that from this defi-

nition of f;  that the number density n , mean velocity v and 

thermal kinetic energy u for the gas mixture are given by :- 

n; 	= 	1r,0i,t)d3c, 	t=1,..,v 

P v_(r,t) =  
f.; 

P u(r,t) _ J2m;C?f(r,c4,t)•d 3c;  



Figure 5.  Direct Collision of two molecules. Molecule 
1 is at rest, angle x is the angle of deflection 
of the relative velocity of molecule 2, g and g' 

are in the plane defined by the angle W . 

where C ; is the peculiar velocity of species i , given by. C;  =c;  -v 

For a gas mixture whose molecules are not subjected to external 

forces, the only way in which a molecule can change its velocity is 

by collisions with other molecules.These changes in velocity on 

collision must influence the evolution of the function f(r,c,t) 

16 
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with time as the molecules change their velocities and molecules 

enter or leave a particular region of configuration and velocity 

space. It may easily be shown, following this argument, that the 

equation of change of f; can he written in the form [ 711 : - 

Zf i = 	+ Ci •Vrfi = (ELI (2.4) 

where (af; /at )Coll denotes the rate of change in the function f; 
by virtue of binary collisions with other molecules of its own 

and different kind. 
By considering a single binary collision between a molecule 

of species i initially with a velocity c ; and a molecule of 

species i with velocity ci (see Fig. 5 ) it may be shown that 

(af; /at)coll is equal to :-  „s
d2i

m m Zn

(āt ) 011= Ipdp~dW•g;iif(r,c;,t)f(r,c~,t)-f(r,ci,t)f(r,ci,t)] 
0 	 0 	0 

Y m 	 y

_ )  doi 
fao
pdp 

127r 
dW-gu{f; fi - f; f; I = 	J(f; f i ) 	(2.5) 

~.1 JO  	 til 

Here, p is the impact parameter for the collision, W specifies 

the orientation of the plane of collision in space and g;i is the 

relative velocity of the two molecules before collision. In 

addition c; and cl represents velocities after collision. 
In essence, the term (af; /at)t0i; introduces the effect of all 

possible binary collisions between a molecule of species i and 
all other molecules in the gas at all impact parameters and spa-

tial orientations upon the distribution function f; . It should 

be noted that in formulating the collision term it has been assu-

med that the probable number of molecules in dr with velocities 

near dc is independent of the position and velocities of all 

other molecules. This is the statistical assumption of Molecular 

Chaos which will be examined later in the contest of gases at mo-

derate densities. 
Combining equations (2.4) and (2.5), the equation of change 

for f; can be written in a compact form for a v-component mixture 

t3(fifj) 2)f; = 	 J 	(2.6) 

This equation is known as the Boltzmann equation. 

In order to obtain macroscopic equations of state for the number 

as:- 
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density of species i , the momentum and the energy of the gas, 

the definition of the function f indicates that one should 

merely multiply both sides of equation (2.6) by 1 , mc, and 

m; CZ and integrate over all velocities c; and sum over all 

components of the mixture to obtain the conservation equations:- 

7-1.7 	Ec°  v.,. 1 .0 	;1..V 	(2.7) 
P 

P 
i=o 	iso 	;  

_tp.P 	 (2.8) 

~=o 
- jt"'p• q -T P : V v 	 (2.9)

Jo 
where d /dt= 8 /`d t + v•0, and V i , P and a are the diffusion 

velocity vector of species I , the pressure tensor and the heat 

flux vector for the mixture respectively, defined by :- 

n; V; = 	 C; f; d3 c; 	 (2.10) 

P 	=Lim, C•Cifi d3 c; 	(2.11) 
,_, 

q 	= t'zm; C?O;f;d3 c, 	(2.12) 
,_, 

Here, the fact that the collusion term J(i;f;) automatically 

conserves molecules, momentum and energy, has been used. 

2.1.1. THE EQUILIBRIUM SOLUTION 

For a gas in equilibrium a solution to equation (2.6) is 

straightforward. Since the parameters of state for a gas do not 

change with position or time, the solution of the equation is not 

a function of r or t but only of c . In this case the equi-

librium solution for f; , fE , is obtained from the set of 

equations :- 

ES(f, f7) = 0 
,_i 

Examination of equations (2.13) show that a sufficientt 

condition for this equality is that g- 

fl•f7 	= f E'f (2.14) 

1 dp;  
p; dt 
du 

P āt = 

du _ 
P dt 

(2.13) 

tit may also be shown that this a necessary condition [71] . 
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In fE+ lnfE_ ln fE + lnff 	(2.15) 

Thus lnfr is conserved in a binary collision, it may there-

fore only be a function of quantities conserved in such a colli-

sion, the number density, momentum and mean kinetic energy, and 

thus the equilibrium solution for f7 reads :- 

fE = n; ' (27ikT)~ exp(-412L  2 (2.16) 

2.2. THE CHAPMAN - ENSKOG SOLUTION 

For a gas not in equilibrium, where the parameters of state 

maybe functions of position and time, no such simple solution of 

the Boltzmann equation is possible. However, Chapman and Enskog 

independently developed an iterative procedure whereby the solu-

tion for f; in a non-uniform gas could be obtained to any de-

sired order of accuracy. The starting point for the Chapman - 

Enskog solution is the recognition that in a non-equilibrium 

gas, the approach to equilibrium takes place via molecular col-

lisions. Furthermore on a macroscopic time scale > lŌ' sec, the 

details of individual collisions are not important Lo the solu-

tion for f; . Consequently, Chapman and Enskog sought a solu-

tion for f; in which its explicit dependence on r and t was 

replaced by an implicit dependence through the dependence of n, 

u and T on these quantities. That is, it was supposed that if 

collisions occurred sufficiently rapidly compared to a macrosco-

pic time scale the gas would be in 'local equilibrium' where 

f(r,c;,t) is characteristic of the local value of r , c and t 

over a small region of space. The approach to equilibrium is 

then obtained by the rate at which the local equilibrium relaxes 

to global equilibrium. The other postulate of the Chapman-Enskog 

method of solution is that the departures from local equilibrium 

can be characterised by a parameter E where 1/E measures the 

collision frequency in the gas mixture. With these assumptions 

they supposed that the non-equilibrium solution for f; could be 

written as :- 

f ; = f ir» + E f y> +  2 f. , (2 .17) 

or, 
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where it is anticipated that f1r will be the local equilibrium 

solution corresponding to an infinite collision frequency. The 

use of the parameter g to alter the collision frequency in the 

gas requires modification of the collision term in the Boltzmann 

equation so that it now reads [71] :- 

_ 
 1 i

v 
Tre.g.1 	(2.18) 

An expansion in powers of t is applied to the left hand side 

of the modified Boltzmann equation and the variables n(r,t), 

v(r,t) and u(r,t) are introduced in place of the explicit r 

and t dependencies. Then, the expansion of f;, equation (2.17) 

is substituted into the modified Boltzmann equation and a series 

expansion in E is obtained on both sides. Since, the parameter 

E was arbitrary chosen, both sides of the resulting equation 

must be equal for all powers of E , so that coefficients of di-
fferent powers of E can be equated to yield the following set 

of equations :- 

C1 b) for 	EJ(f • f.) = 0 	(2.19) 
j=1 

for E 	EJ(fo ~)) + EJ(f 1 `O )) _ Zfr) 	 (2.20) 
j=1  

where, 

C; I) : p v_} 

(2.21) 

= V (n ) + (n + 
P 

)•Q 1n (nkT) 	(2.22) 

It will be noted that once the set of equations (2.19) is 

solved for f;°) , equations (2.20) - (2.22) can be solved for fill 

which is the only unknown. 

Corresponding macroscopic conservation equations for each 

order of approximation to f; , can also be written by means of 

the process employed earlier to the full Boltzmann equation. 

2.2.1. THE ZERO ORDER SOLUTION 

The zeroth order solutions f;°' are obtained from equations 

(2.19) exactly as the equilibrium solution was obtained and 

and 

2fr= frtii0i.di +( mkT?-1-)C;•O1nT +kT( 



En; n~ I;~ (t111) = - fr n. C;'ai 
j=1 

they read :- 

4.11 = n; (r, t) (27rk
m ~
T~r, t 

MO..; C?  exp(-2kT(r,t)) 

1,...,v 
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(2.23) 

where, C; = c; - v- 

It is noted here, that the zeroth order solution (2.23) for f; 

does indeed correspond to that for local equilibrium and that the 

approach to this state is via collisions since the collision term 

J(f10l f °') is involved in its solution. 
Using now, ft01 to evaluate the diffusion velocity vector of 

species ; , V; , the pressure tensor P and the heat flux q via 

equations (2.10) - (2.12) , one obtains :- 

	

V U” = 0 	 (2.24) 

_ P to) 	= p I 	and p 	nkT 	(2.25) 

	

q °1 = 0 	 (2.26) 

With these results the macroscopic conservation equations (2.7)-  

(2.9) read :- 

1 del 
p. dt 	= - V.v 	i=1,..,v 	(2.27) 

P dt 	= - V p = - V nkT 	 (2.28) 

dt(pT ~2)= 0 	 (2.29) 

These are the Euler's equations of hydrodynamics for a perfect 

gas. 

2.2.2. THE FIRST ORDER SOLUTION 

In order to derive the first order solution f~ 1 we define 

f t~ = f (91 40P and use this together with the zeroth order solution 
f o1 in equations (2.20) - (2.22). This substitution leads to the 

set of integral equations for el:- 

s 	 1 
+ (mes T i)C;•V1nT kT (C Ci -~C? I):VvJ} 

(2.30) 
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The integral operator 

~D~ • 

I 	is defined as :- 

j~
n)_~r~ $i; t )giipdPdWd3 ci 
i 

 is of the form :- 

—d 	- 1 A 	1nT - 1 i 	n 	n 

(2 .31) 

(2.32) 

I„(40 t,)) nin.  , 

The solution for '01 

tit  = _ 1 
n 

Here, the quantities 	D! and 	A; are vector functions of C;and 

B; 	is a traceless tensor function of 	C; of the form :- 

D~ 	= 	D; 	(CO C; (2.33) 

A; = 	A; 	(C;) 	C; (2.34) 

B; = 	B; 	(C;) 	(C;C;- - C?I 	) (2.35) 

By, substituting the equation for (0t ,(2.32), in equation (2.30) 

and comparing the coefficients of corresponding macroscopic gra-

dients on both sides one obtains :- 

n 	 C 	i,k=l , ..,v 	(2.36) 

1 
n f i01 (2 T 2) C' i 	' =l, .. ,v 	

. 	
(2.37) 

T f~o~(C~C'
- 	C2I ) ; =1,..,v 	(2.3 is) 

where 6 k is the Kronecker delta. 

By multiplying the above equations by D¢ , A and B re-

spectively, integrating over all velocities c; and summing 

over all components 	one obtains the following results :- 

LDk' ] 

[A 	9 	A ] 
l 	J 

[B 	111 

- 	1 E m 	 DtC d3 c = 	•-kSfk t,D k•ck 
dick 	P 	~ j'f  	- 	; 

 A•C;d3 ci = 	
iLifT) (2kT2 

1 (CC~ 	C? I 	) 	B d3 c; : 
= nkT 	m; J

fO) 

(2.39) 

(2.40) 

(2.41) 

Here, we have introduced the so-called 'bracket integral' which 

represent the integral :- 
(2.42) 

[F,G] _ n Ef 11 fEf1 (F
; +Fi -F ~ -Fj) (G;+Gj -G; -G)gpdpdWd3 ci d3 c, 
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These, are in turn defined as :- 

[ F, G ] = L n2~' ( [F, GJ .. + [F, G1 ) 

[F,Gl
ij 
= 

D ,j = 3n [p• i ,i} 

DTP = 3n L D ' ,A 

[F,Gr. 	[G,F J
' 

By defining , 

[G,F J.; 

and 

(2.46) 

(2.47) 

(2.48) 
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For convenience it is useful to separate the bracket integral 

into two partial bracket integrals, one of the first kind 
[F,G]ili 

and one of the second kind [F,G]ii as :- 

(2.43) 

11'  _ 1 
17 - 2n; nj- 

and, 

If 	1 
[F,G iu = 2n1 ni 

G1 -Gi) (F; -F; )gC3dpdWd3c; d3c; 	(2.44) 

figf7 (G; -G; )(F, -Fi )gpdPdWd3c; d3c 	(2.45) 

and obey the symmetry relations 

and substituting the first order solution for el) = e1 (1+EfT) 

from equation (2.32), in the relation for the diffusion velocity 

V; (2.10), the diffusion velocity for the molecules of species 

may be written as :- 

V; = -EDIT di 
	

DT,V 1nT 	 (2.49) 

The coefficients D; and D
7i 
are thus identified with the 

multicomponent diffusion coefficients and the multicomponent 

thermal diffusion coefficients, respectively. 

At this stage it is convenient to introduce the thermal di-

ffusion ratio KT; as :- 

ED 
KT1 = D

T; 	; =1, .. ,1 	(2.50) 

with 

0 	 (2.51) 
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Using again the first order solution for f(l)= fT1  (l+Ee l ) the 
expression for the heat flux vector glf l , read :- 

gt11 - 
3 
k A,A1 VT - p :Dud;  + 12   k TEnt V; (2 .52) 

The first term in this expression represents the heat flux due 

to the temperature gradient directly. However in a gas mixture 

a temperature gradient leads to a concentration gradient via 

thermal diffusion. The flux of heat associated with the mainte-

nance of this partial separation is represented by the second 

term. The third term corresponds to the flux of enthalpy due to 

the diffusion of molecules in the coordinate system which moves 

with the hydrodynamic velocity v . Equation (2.52) can be 

rewritten as :- 

qil) = - )•VT - P E Du  di  - kTEn;V; 	(2.53) 

Here, A' is the partial thermal conductivity of the gas mixture 

-which is the thermal conductivity which would be measured in a 

hypothetical experiment with no concentration gradient (d;= 0 ). 

In practice a diffusion driving force will always exist in the 

mixture and the total thermal conductivity of the gas mixture is 

defined by the equation :- 

q(lJ = -X VT + p t (c,1+n ) Y, 	 (2.54 ) 

where 

A = Ā - n k EKT; DTP (2.55) 

In terms of bracket integrals one may write using equations (2.48) 

and (2.53) :- 

A = 	k{ A,A] - 3 k EKT;[D'  ,A] (2.56) 

with KT; given by the solution of the equations 

E[D''D1 K TJ =  {Di •A 1 	 (2.57) 

It can be seen therefore, that in order to obtain an expression 

for the thermal conductivity of a multicomponent gas mixture, 



CEAil = 
4 

f a 	5k n p1 
J=1 (1.0 

(2.61) 
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first one must evaluate the associated bracket integrals  

[12' ,A] , [D',21 and [Di,A] 	. 
Because in this thesis we are concerned with the thermal co-

nductivity of gases. we omit the corresponding expressions for 

the viscosity of a multicomponent mixture [71] . 

2.2.3. EVALUATION OF THE MULTICOMPONENT THERMAL CONDUCTIVITY 

In order to evaluate the bracket integrals which enter the 

expression for the multicomponent thermal conductivity it is 

necessary to seek a solution through successive approximations. 

For this purpose each of the coefficients A; and DI; is expa-

nded in an infinite series of polynomials called Sonine poly-

nomials as :- 

and 

A; (C) = Ai(Ci)Ci = - (2 T)4 Êa; S( ) j 
P=0 

(2.58) 

D;` 	= Dk(C; )C ; = 	( Tf-t dkp S%(*6?)L°i 	(2.59) 
p=o 

where the dimensionless velocity variable * is given by :- 

b° _ ( me ~Z 21 (2.60) 
2kT 

When the above equations are employed in equations (2.39) and 

(2.40) and the orthogonality properties of the Sonine polyno-

mials are used together with the solution for f 1°1 one obtains 
two infinite sets of algebraic equations for the coefficients 

a ip and dkp of the Sonine polynomials of the forms :- 

and 

E EA d J = 25k ( ai k - 	)5p0 p =0 , .. ,To 	 (2.62) 
j=1 4=0 

For p=0 both sets of equations (2.61) and (2.62) are linearly 

dependent and thus they must be supplemented by one more equation 

each, reading :- 

and 
= 

= 

0 

0 

(2.63) 

(2.64) 

(pi /p) 	a110 

(pi/p) 	dk,o 
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In these equations (2.61) and (2.62) the coefficients ,4 used 

are related to the partial bracket integrals as (71] :- 

	

_ 8m? 2T 	n•n 
[P)( e2) , S (6,2)~J' +n ii 

[P)(2 
 )~► /)(i2 ),I } 

	

75k2 T 	~ I3IL 	3h 	- ih 	 1 h 

From the symmetry properties (2.46) of the partial bracket 

integrals and from the principle of conservation of momentum one 

finds that :- 

	

AP-q= AcT 	 (2.66) j 	ji 
EAPO_ 0 	rAo',` 0 	 (2.67) 

Thus, if the bracket integrals are known,4 can be calculated 
..and used in equations (2.61) - (2.64) to obtain the coefficients 

all and d 	, Ai(C) and Di (2.58)-(2.59) and thus the thermal 

conductivity of a multicomponent mixture via equation (2.56). 

In order to obtain approximate solution to these infinite 

sets of equations, Chapman and Cowling [137] suggested that the 

Sonine polynomial expressions should be truncated after a finite 

number of terms and the resulting finite set of equations solved 

for the appropriate values of the coefficients. The solution of 

this truncated set of equations are supposed to be approximations 

to the exact values of the coefficients [71] . Here the convention 
of Ferziger and Kaper [71] is adopted that the first-order appro-

ximation to a given transport coefficient is the first non-vani-

shing approximation. Consequently we retain in the Sonine poly-

nomials expressions sufficient terms to ensure this. This conve-

ction differs from that of Muckenfuss and Curtis [121] who deno-

ted a nth approximation as that for which n terms were retai-

ned in the Sonine polynomials expansion. 

We denote a nth order approximation to any quantity by the 

symbol n which is to be distinguished from n which represents 

the number density. 

Thus to summarize, a nth order approximation to the thermal 

conductivity of a gas mixture is obtained from the equations:- 

[ A ]n = [ A' ] n — n kL [ Kri]n[ 
tel 

(2.68) 

Pq 

(2.65) 



where, 
r
~ 
E (n) a1,4 , 	) 

l +1 
I=1 

1 	(n. ) 

2n a 
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(2.69 ) 

(2 .70 ) 

and 
i(n+1) 

d• 	[ KTj] n 
j.1 

with 

n , ow"= - 4z (n ) 
j.1 

; =1, .. ,Y 	(2.71) 

( 2 .72 ) E [ K1]n = 0 
;.1 

MI 	Int  
Here, the coefficients a p , a 7,0 , dpo and dj,1 can be obtained 

from the following sets of equations :- 

w.,i th 

vr fin + Pq 	Inl 
L L, Aij a  j_1 q-o = 43TE (n 6P1 

i =1,..,v 	(2.73) 

( a(nl = 0 	for p=0 	(2.74) 

yr nnA 
Pq On) 
	 8 

L EA d j~9 	25k ( ~ik - P )5P° 
1 1̀ q'0 

k(n) 
(Pi/p) dio = 0 	for 	p=0 	(2.76) 

Equations (2.68) - (2.72) together with equations (2.73) - (2.76) 

provide a consistent scheme for calculating the thermal conducti-

vity of a multicomponent mixture provided the bracket integrals 

and thus the coefficients.4 are known. 
Muckenfuss and Curtis [121] have obtained an explicit solution 

to these equations for a first order approximation to the thermal 

conductivity of a multicomponent gas mixture. However the accuracy 

of the measurements described later in this thesis makes it nece-

ssary to obtain higher order approximations in order to secure 

sufficient accuracy in the theoretical expressions for a compari-

son with experimental results. Some of the partial bracket inte-

grals involving Sonine polynomials necessary for the evaluation 

of the thermal conductivity have been evaluated by Ferziger and 

Kaper [171] . However, it has been necessary to derive further 

bracket integrals in order to make possible the evaluation of hi-

gher order approximations. In the next Section a brief description 

and 

with 

i =1,..,v 	(2.75) 



j
~ 	m 

1exp(-g2 ) gr+3 j21r J' (l_coJx(p)c3dPd g 
0 	 0 

(2.79) 

(2 3T m; mm' ) )k (e,r) 
ti 
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of the method whereby the partial bracket integrals have been 

evaluated is given. Subsequently, the new results for higher 

order approximation to the thermal conductivity of a multico-

mponent mixture will he given in a form suitable for numerical 

evaluation. 

2.2.4. EVALUATION OF THE BRACKET INTEGRALS 

In this Section the method for the reduction of the partial 

bracket integrals of the previous section to combinations of the 

familiar collision integrals of Kinetic Theory will be presented. 

It can be shown [71] that the partial bracket integrals of the 

first and second kind can be evaluated from the following set 

of equations :- 

and 

where, 

11 	 p+1/2 9,112 ce,
[ r 1 

s(2
(e2 ye, S3Ilvo2 )° ]'f = 8u1 	u ~ 	Apgtrojj F= 

r s(
P 

2 )g, s; (e2 Ye ].. 
ii 

= 8 ([,r ) 
Apq(r 2 jj 

(2.77) 

(2.78) 

where the scattering angle X(13,g) , the collision parameter p 

and the relative velocity of the molecules g upon collision 

have been defined earlier (see Fig. 5 ,p.16 ). 
The coefficients Apq¢r themselves can-be obtained from the 

following set of equations [71] :- 

with 

and 

(F' µj )/2 (1-S) (1-t) Hi- (X) = exp(-g2 )'Apger (1js)p (frt)g gcosX 
pq r=o 

(2.80) 
3i 	1/2 Hu 

(X ) = Jr (la i rd exp(-yg2 ) a 2 [.+g2 (1 Y-cosX)) 	(2.81) 

= 1 + s + - t (2.82) 

Y 1 - 2p;µ;st(1 - cosX )  
1-pj s -p; t (2.83) 

and / (m; + m-) 
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and a corresponding set of equations for Ap* (71] . 

The coefficients Agger could be derived from equations (2.80) 

-(2.83) by expansion of the left hand side in powers of s and t 

and equating coefficients of various powers on both sides. However 

it is slightly simpler, althoughstill very complicated, to adopt 

a different method. In this method expressions (2.80)-(2.83) were 

differentiated p times with respect to s and q times with respect 

to t and subsequently s and t are set equal to zero.Finally by 

equating coefficients of equal powers of grcosex the required 

coefficients are obtained. 

At this point we should examine the expressions for the ther- 

mal conductivity of a multicomponent monatomic gas mixture (2.68) 

to (2.76). As these produce the thermal conductivity in the form 

of successive approximations the •correct' value will correspond 

to the infinite order approximation. For obvious reasons however, 

we can only have a finite order of approximation, the constraint 

being always the evaluation of the bracket integrals or equiva-

lently the coefficients Apger  and Agger in the previous expre-

ssions. The highest order of approximation for which explicit 

expressions have so far been given are those for the first order. 

Not only are higher order approximations unavailable, but the rate 

of convergence of the successive approximations is unknown, so 

that , the accuracy of the first order formulae is not known. 

Because the new experimental results described in this thesis 

have an uncertainty of only ±0.2% , it is essential to develop 

theoretical formulae which are at least that accurate. 

Equations (2.68) - (2.76) show that for a third order of appro- 

ximation to the thermal conductivity elements A71 need to be 

evaluated for p,q=0,.,3 . According to the previous discussion 

the evaluation of both partial bracket integrals, to calculate 

the coefficients A pger  and Agger 	for p,q = 0,1,2,3 , requires 

three successive differentiations with respect to s and three more 

times differentiation with respect to t. By inspection of the 

equations involved one may see that the final solution will be 

composed of about ten thousand terms ! Furthermore it is unfortu-

nate that no real check of the answer as such exists except 

the requirement that when i  =j the sums of the partial bracket 

integrals reduces to these for a pure gas which have been calcu-

lated to third order [71] . 
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Nevertheless the differentiation has been carried out and 

fortunately many terms cancel so that the sixth differentiation 

involves only nine hundred terms. The differentiations were re-

peated twice so that the results obtained could be confirmed. 

The results satisfied the symmetry requirements for the equations 

(2.66) and (2.67). 

In Tables 1 and 2 , only the extra expressions for p=3, 

q=0,1,2,3 are given since the lower order bracket integrals have 

been derived by Ferziger and Kaper [71] . For reasons of conve-

nience we have retained their nomenclature. 

In the following section we use these results to obtain 

expressions for the second and third approximations to the ther-

mal conductivity of a multicomponent monatomic gas mixture. 

2.3. EXPLICIT FORMULAE FOR THE MULTICOMPONENT THERMAL 

CONDUCTIVITY 

2.3.1. FIRST ORDER APPROXIMATION 

A first order approximation can be obtained by putting n=1 
in equations (2.72) - (2.76) , and solving for the coefficients 

all and dmN1  explicitly. Consequently the thermal conductivity 
of a v-component monatomic gas mixture may be written to first 

order as a ratio of determinents reading :- 

7» 	11 
I'll1 	.L1„ .1  
• • 
• • 	. 

L1,71 • .I, aY 

x1 • . •xy 0 

11 	11 
L11 • • . L1V 

(2.84) 

L.,1  . • •Lrv 

where x; is the mole fraction of component ; in the mixture and 

the elements L] are listed in Table 3 ,p.36-38. 

Equation (2.84) for a pure gas reduces to :- 

[ All = 	
3 

(/ 
	12 

m 7T ) 	. 2 Q(2,2)* (2.85) 
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A similar equation for the viscosity of the pure gas to a first 

order approximation [71] reads :- 

[ r7, = ( T) a2 1 S2 2M 
(2.86) 

In relation to binary mixtures, it is also convenient to de-

fine the so-called 'interaction' thermal conductivity and vi-

scosity as :- 

[ ~..] = 
75 k

3T(m;+m;)  t/ 	 

'1 1 	( 2m;min 	) Q JJ 

2m; mi k T  1/2 	 
( On; +mj ) i 	O [n-]1 

(2.87) 

(2.88) 

These, correspond to the thermal conductivity and viscosity of a 

twice the re-

intermolecular 

reduce to the 

hypothetical gas of molecules with a mass equal to 

duced mass of the two species in the mixture whose 

potential is U ii (r) . 

In the case of =j equations (2.87) - (2.88) 
ones for pure gases (2.85) - (2.86). 

2.3.2. nth ORDER APPROXIMATION 

We will now procceed to give explicit formulae to a nth order 

approximation for the individual contributions to the theythal 
conductivity. Thus solution of (2.68) - (2.76) in a determinent 

form produces the following results :- 

L00; L01; L02' 	.' Lon; o -- 
L10: 

L11 
L121. .1 z1n,

-X 

L20 L21 I,22; . . . L2n; 

	

. 	. 	 I 	. 

• I . 	 • — I---- '----I • 

[ A' ]n 

vo: L ' Ln2;! ,'t 	o 
o ; g : o :...1 0 ; 

D 

L00 i L°t' L°2 • • • i Lon 

L loi Lit 	L12~• • •1 L tn 

• • 	• 	I 	I . 
• . 	• 	1 	I • 

Ln° Znt ; Ln2i ...; Lnn 

where, 

  

D aim 

 

   

(2.89) 

(2.90) 

ow 



In these determinents LDq represent the array :— 
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P9 

D9 	D9 
L1 	 L 1 . .. • 	11-  • 
• 

• 

LA. .. •1 TTJYY 

(2.91) 

In addition X represents the array X = x, x2.... x,, of the 

mole fractions. The symbol 0 represents a horizontal or verti-

cal array of v zeros. 

The multicomponent diffusion coefficients [DT;]n,can be 

obtained by solving equations (2.73) and (2.74) for a7,10 and thus 

via equation (2.70) to be :- 

Loo Lo1 	02 ••••; L0R; 0 
LW L 11; L12;.•• . L 1R' X 

L2° L21' L221....~ L2n.' 0 • 
•i 	 i •i 

	• 
• 

LRo L11I : L112i . • • • = ~ O 

= 5kn 
	

D 	 (2.92) 

where Si denotes the horizontal array of Kronecker's delta 

6 ; 	= 6;1 6;2 60....6jv (2 .93) 

Finally, by solving equations (2.75) and (2.76) for the coeffici- 

ents d! ō +11 and d' }1 ' one obtains via equations (2.71) and (2.72) JJ 

the multicomponent diffusion ratios as :- 

6; 0 ; 0 • 	0 	o 

[ KT; 111 	= 6i1 	6;2 .'••6;v 0 

D ii•1J Dir t1. • ..D Yu 
D in+t) D In+1I 	.D" 

21 	22 	 2Y . 
 • 

'111;1t 	In.+11 	rn,+1 ) 
DY1 Dvz •D YY 

(2.94) 
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In+11 
D kk 

fR+11 
D k! 

0 

,k(n,11 	— ~k IR+1) 
eo 	eo- 

for 	k =1,2, ... ,v 

for 	and k,e=1,2, ...,v 

(2.95) 

(2.96) 

The quantities dkō.11 are given in turn, by the equations :- 

L°°' L°1 ' L°2' 	' Lon,' —k  

L10' L111 L121....! 

' 

L1n.~ 0 
_ 	~ 	_ 

L2° i L211 L22 	i L2ni 0 
• i • ' • 	I 	1 • 	• 

• 1 
• 

I • 	I. 

L"'0; Lrt1; 	 ~2'.._.~ Lnn; 0-  

bk '. 0 	: 0 	:••••: o 	: 0 k(n.+t1 
dko (2 .97) 8 

- 25k 	D 
k =1,2,.••,Y 

with p k defined as a vertical array of v elements as :- 

A k 	= 	(51k -- ) 	6 ,1‹ $1) 	 (5,, — 21 ) 

(2.98) 

Furthermore D is defined by (2.90) and 5k by (2.94). 
Finally the elements Sin+'1 of equation (2.90) are defined ass- 

( rt+1 
• 

L00 I L01 1 L02; 	. Len.; d 
L10 ! L11 1 L12 ~ 	L1n ~ 0 

L201 L211
1 

L221 - • •• L2111 0 

• I . 

Ln0 1 Lm t I Ln2;.... LnnI 0 

0 IX 10 1••••0 io 
5k 	D 
4 

Equations (2.89) - (2.99) provide the first explicit consistent 
calculation scheme for the thermal conductivity of a dilute multi-
component gas mixture of monatomic components for any order of 
approximation,provided the elements 1P9 are known. 

The elements LP9 can be defined in terms of the earlier 

(2.99) 
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Elements L49 & LPS . 

-522E*+500H*-240J*)A*1 
1 	 11 	1 

j,33 	x• x ) 	M3Mi 	2~ 
2A*(X..] (M. 

+M. )0 { 2 
+35127C*_102357B*_1214G*+90451*_189oK*+666F*-1o8oq*+49oV*+72ow.*.- 8 	,j 	6 	ij 	2 	~j 	2 	;j 	,j 	,j 	,1 	,J 	 ,1 

( 11 	-243oE*+313oH*-216oJ*-64U*)A*T 



LT = 	0.0 
_ 	x: XI. 	Mk  

L. 4A*[A;k]1 (M; +M) [5-6C:1 
Los 	

~ 4Att[Aik,1(MM+M.k)2 f4 _3B_6c }* 

01 

= 	xixk  
2A!k[Aik]1 

ik Nil 
= 1  X,Xk  

2A*[ Aik]1 

344+4C:-V131-10G:1 k-10G*1 i 

+ Mk _3MkBt+4M; I k All 

M2 (-- 2 C,)+M k ( l b } C{•( 

+ [A i ]1 

4?B*-30G*)+2MiMk (7-8E*)At] + x2
1+ 

(7-8E'4 )  

k ( -72E*+40Ht) .n} 

k 

	

(M +M )~ Mk( 	 495 $1.  21B1-160G*+60I*)+M2 ( +~ C1k-81B*)+M M 

((? (- -18E!!+1OH* ) 

	

22 	 L 1 	2 1?' 	 4 

	

I'ii 	 2Ak[~►ik`1(M + )Z ~ M ; ♦M 	(ii ♦ 2 G'7- 	F`~t•'21O(i?~+9OI!►)+M,Mk 

= C xx
(

x~ 
GG 

Aik`Aik]1 ik 	ik 	ik 	ik 	i 1 	ik 2 ik 	i k 

-180*-8z B*+24F*) +28N 3 M kA*+ 
2 

M ; bil  (49•-112E k+80H *) A*J + [ ] - (lō-7E*+5 HT ) 
1 

	

L23 	X' X lc Mk 	j M< (15 5 4 C!)+My (• ~i~,~ ,it
+28Nict_1.; 3B*_1 o5G*+6151*-210K*)+M?M2 (17:14-.  834 C*- 

	

ii 	L 2A1k(Aik I1 (M i +M k )S 	i 	1~ - 	ik 	k 12$ 	k3~i 	:k 	1 	ik 	ik 	ik 	ik 	i k 	16~ ik 

2025 	. M 3 (441_3 7i ~]:-1'5Q0H*-240J*) A!k+N.:3 M k( 126-144E19 A±~} t[A;li( 3 - E!+125H*-30J:) ik 	ik 	ik 	ik I k 

33 = 	x ; x,. 	r a 	22 25515c*  _ :'7 l * 	1 	5535 	 6 661 	2 ~  

	

Lii 	12Ai[Aik j1 (M i +M k )6 ( M k ( 	+ 2 	 ik ::..g =-B k- rGlik+  2  I±:-1890K±ik+560V.*)+Mi 144+MiMk
.1.73886405+ 

13851 *_:182L2~ *_ 	*+l 	*+ 	* }'''20W* +Ma M 2(14 _1350*_1485B*+180F.* +M3 M3 i; 567-1296E*+ 
4 Cik 16 B. 	+55G. 	7551. 486F*-1J$OQ , r 	) 	 ik —8~ ik 	ik ) i k 	 ik ik 	i k 	ik 	ik 	. ik 	ik 	i 	k 	32 

88011* +64J k A* +11884•Mi M k +Mi MS  ( 6 -1134E1 *2250]I*- 2160Ji* +8405* A*+ 180M  F! 1+ 40111N3-145E?!+  

1 65H*_135J*+IPS*+4U*) 



The following definitions of collision integral ratios have been employed 
in the elements L°11 and L?q 1- 
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In addition, the following definitions for the first approximation to the 

thermal conductivity of pure gas i and the so-called interaction conductivity, 

have been employed 1- 

E ~ ; ~1 = 	[EL.1.5214 n I ~z 1 zi* 
u 

Furthermore:- 

k=11 
k#i 

[ 	[ NAk'T( M ;+M j )14  1  
~l 1 	 2n -M;hI 	a?ft122J* 

il 	ij 



introduced quantities .A ij as :- 

L P9 = (1 - bij 6P06g0) (A
P9- 

6P069om x 
A 00 

 
) 
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(2.100) 

Thus, they themselves satisfy the symmetry relations :- 

and 

P9 	9P 
Lij = L- ;,j =1,2, .. ,v 

except P=9  =0, ; * i 	(2.101) 

PO 	v 	p q 	P,9 =0, 1, .. , 
0 	 (2.102) 

• = 	=1 2 	v ~L 	= 	0 	;=
1
L j 	, p.. EL.. 	 , 

The elements LP9 are presented in Table 3 , p.36-38. These have 

been obtained from the elements A PQ via equation (2.100) which 
in turn has been derived from the newly calculated partial bra-

cket integrals. Sufficient elements are presented for a third 

order (n=3) calculation of the thermal conductivity of a multi-

component dilute monatomic gas mixture. Inaddition we have formu-

lated in Table 3,p.36-38,the elements LP; in terms of the commonly 

employed reduced collision integrals Or for the interaction of 

species ; and j defined by Hirschfelder et al. [76] and Ferziger 

and Kaper [71] as :- 

o yes! ( irm 2 	2 	1, 	1+(-1` i 1 

	

k T 	s+ 1) ; l 1 — 2(e+l) I ro;i (2.103) 
_1 	-t 

with 	m U = m i + m 

and we have introduced a number of symbols for the commonly occu- 

ring combinations of reduced collision integrals. Thus expressions 

(2.89) - (2.99) together with Table 	3 	, provide a schemefor 

calculating the thermal conductivity to a third order approximation. 

We then proceed to define a function f°n' which relates the 
mix 

first order thermal conductivity of a mixture to the nth order 

approximation by the equation :- 

{ In 1 
[a]n=[' I mix (2.104) 

Due to the complexity of the equations used to derive the thermal 

conductivity of a mixture to a nth order approximation we are una- 

ble to derive an explicit formulation for fin). Nevertheless, for 
Jmix 

specific systems,ff can be calculated by computing the mixture 
m ix 

te,s, s-2  
r 

;j r.s. 
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Figure 7 . Higher order correction factor for the 

thermal conductivity of mixture of Argon 
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Figure 8 .  Higher order correction factor for the 
thermal conductivity of mixture of Xenon 

4, 
mix--- 	

m) and Helium  	mix • — 	f mix 

thermal conductivity in the first, second and third order appro-

ximation according to equations (2.89) - (2.99). In order to i-

llustrate the magnitude of the higher order approximations we 

have carried out such calculations for three binary mixtures 

of monatomic species. 
We have chosen the binary systems Neon-Argon, Helium-Argon 

and Helium-Xenon, as they have approximate mass ratios of the 

constituent species of two, ten and thirtythree respectively and 

thus we cover a wide range of mass ratios . In order to compute 

the reduced collision integrals for the various pair interactions 

we have employed a Universal potential obtained from 5212'21  ānd S2 "''1*  

determined from accurate viscosity and diffusion coefficient mea-

surements [58,60] by an inversion procedure outlined by Smith 

and co-workers [122,123,124] . The thermal conductivity of the 

three binary mixtures to a first, second and third order of appro- 

ximation was then computed and thus the functions f' 	and f131 ' 

mix 	mix 
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were calculated from equation (2.104) for different temperatures 

displayed in Figures 6 , 7 p.40 and 8 p.41 	From the three 

Figures it is clear that the magnitude of the correction factor 

for either order of approximation increases as the mass ratio 

of the two species is increased. In the extreme case of Xenon-

Helium the second order correction factor r contributes as 

much as 2.6% to the mixture thermal conductivity whereas the third 

order correction factor fm adds a further 0.7% in the worst case. 
A third order approximation is therefore essential for the descri-

ption of accurate thermal conductivity data for mixtures of high 

mass ratios. 

2.3.3. EUCKEN FACTOR - MONATOMIC GASES 

To a third order approximation the Chapman-Enskog theory pro-

duces the following result for the Eucken factor of pure dilute 

monatomic gases :- 

A°(T) 	M 	- 2.5 (exact) _ CY r,° (T) F (T) 

where l°(T) and ri°(T) are the 7Pro density thermal conductivity 

and viscosity of the pure gas , M the molecular weight and C: 

the molar heat capacity at constant volume. In this expression 

F(T) accounts for the higher order corrections and is given by :- 
r (31 

f (31 

ger and Kaper [711 in terms of the, collision integrals S21e's14". The 

results presented here for the third order mixture thermal condu-

ctivity reduce identically to those for the pure gases when either 

i=i or xi = 1 . 

The Eucken relationship provides an important criterion for 

establishing the thermodynamic consistency of viscosity and ther-

mal conductivity measurements for monatomic gases. 

In the cases of gas mixtures there is no equivalent relation-

ship between the mixture viscosity and thermal conductivity. How-

ever an analogous relationship does exist between the interaction 

viscosity and thermal conductivity (§23-1.p33) that reads:- 

Eu -  [ ;i],2 m•m 
1 	

- 2.5 (exact) 
ri  

Eu (2.105) 

a 
F(T) = 	 (2.106) 

for pure gases have been The factors f;,31 and f ~a1 	 given by Ferzi- 

(2.107) 
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2.4. 	DILUTE POLYATOAIC GASES 

The Chapman-Enskog theory presented in the previous section 

is remarkably succesful in providing a derivation of the equations 

of fluid mechanics and in relating the transport properties of ga-

ses to the forces betweenmolecules. It is unfortunate however, 

that the theory possesses important limitations that greatly re-

duce its usefulness. Most of these restrictions are actually in-

herent in the Boltzmann equation itself ; the most important one 

being that it is only applicable to monatomic molecules at low 

density. 
Polyatomic gases possess two features that do not appear in 

the treatment of monatomic gases . Firstly they have internal de-

grees of freedom with which energy may be associated. Secondly, 

they may have various shapes and consequently, the molecular i-

nteraction is, in general, not spherically symetric. It is clear 

that for polyatomic molecules even at low density a new theory 

is required having as its starting point an equivalent Boltzmann 

equation generalised to account for the internal states of the 

molecules. Because the internal energy of a molecule are quanti-

zed a quantum mechanical treatment is strictly necessary. However 

this is very complicated and does not exist in a form suitable 

for calculations. Consequently almost all work on transport co-

efficients of polyatomic gases has been carried out with other, 

less rigorous theories. Fortunately, the numerical consequences 

of using these less rigorous theories are not large although the 

present measurements are sufficiently accurate that some account 

of quantum effects must be taken. A discussion of these effects 

is postponned until a later section (§2.4.4.p50). 

2.4.1. WANG CHANG, DE BOER AND UHLENBECK 

The most frequently employed theory is the quasi-classical 

approach of Wang Chang, de Boer and Uhlenbeck [77] . For a pure 

polyatomic gas the basic assumption of this theory is that the 

molecules may have only certain 'discrete' internal energy states, 

labelled with an index. Essentially, in a similar way to Boltzmann 

a local distribution function f(c,i;r,t) is defined in such 

a way that f(c,i)d3c is the number density of molecules having 
velocity c in the element d3c about c in the velocity space 
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and having an internal state specified by the set of quantum nu-
mber i , while the variables r and t occur only as parameters . 
Each internal quantum state is treated as an independent chemical 
species, thus for a pure polyatomic gas, in parallel to the mona-
tomic mixture , equations (2.1) - (2.3), the following equations 
can be written, for the number density n , the mean velocity 1?' 
and the mean kinetic energy u as:- 

n 

P _v 

P u 

where C. is the peculiar velocity of a molecule defined as pre-

viously C; = c; - V , and E; is the energy associated with 

the internal state i .The derivation of the Boltzmann equation 
for these functions follows the derivation of the Boltzmann e-
quation for a mixture very closely. The essential difference 
arises from the existence of inelastic collisions i.e., colli-
sions in which the internal state of one or both molecules is 
changed. Thus generalised differential collision cross-sections 
are introduced o-i(g,X,W) for scattering molecules in internal 
states ; and j with relative velocity g , such that, after the 
encounter the molecules have internal states k and e respecti-
vely. Furthermore the relative velocity (whose magnitude is no 
longer constant) is rotated through a p9lar angle X and azimu-
thal angle W (see Fig. 5 ,p.16 ) ; the cross section depending 
on W as the molecules are no longer spherically symmetric.Follo- 
wing then a very similar analysis to that described for the mona-
tomic case we obtain the corresponding Boltzmann equation for a 
polyatomic gas as :- 

with 

Z f; = 	e(ff) 	 (2.111) 
jke 

J kj 	 (fk fe - f l f j )ge
e (g,X,W)d2c2d3cj (2.112) 

with ;Df; still defined by (2.4). 
This is known as the Wang Chang and Uhlenbeck equations and 

it was established in the 1940's independently by Wang Chang, de 

= 	tlf(c,i) d3 c; (2.108) 

= 	E(m;c;f(c,i) d3c; (2.109) 

= 	t~ (2mC ? + E;) f(c,i) d3c; (2.110) 
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Boer and Uhlenbeck. 

Applying now, the same analysis as for the monatomic case, we 

again obtain as in (2.13) for the zeroth order f.01 :- 

E J ,e 
(1431 fm) = 0 	 (2.113) 

jke 

and again as logf; must be a summational invariant it can be 

derived by analogy with equation (2.23) that :-  

fnI 	n ( m; ?14 
exp -(m;C?~2kT) - (E;/kT)) 	(2.114) 2 kT 	exp -E; /kT) 

The only difference is due to the energy E; associated with the 

internal energy in equation (2.110). The factor 

ZINT = EeXp(-Ei /kT) 
	 (2.115) 

can be recognised as the statistical mechanical partition function 

for the internal degrees of freedom. 

The analysis then procceeds in a similar way as before but 

is more complicated because the bracket integrals involved are 

now eightfold integrals as- well as sums over all internal states. 

The final results for the thermal conductivity of a polyatomic 

gas mixture derived by Wang Chang and Uhlenbeck produce time ther-

mal conductivity A as a summation of a translational contribution 

%tr and an internal contribution flint as 

A = Air + A;nt 	 (2.116) 

with 

1r = 5k2 T 	1- (3/5)(a17/a22) c.;nt /(3k/2m) 	(2.117) 
m als 	 1 - a12 a11 an 

X 	
k T 	q;nt 1- (5/3) Ca'//a„) (34/2m)/cv.;nt 	(2.118) t ^t - 	4 an 3k/2m 	1 - a12 /a11 a22 

where, 

kT'-h 2 	(B;+EjI 	g2  	2 1 	2 11 	2 Q 2= 4( m ) wr 	ÇÇ 3jgL ~ ) ~~ d S2 dg 
mike  

kT '~ -2 	-c>;;+ej) 1
i 3 (A6d2 

_g2 	 2 ke 	
(2.119) 

an =- (m)ZJNT Le 	 ~j f2 dg 	
(2.120) ijke 

a 22 - 	 g 	 2 	~ 	2k Z 	(ei+e ) ( g2 3  	dS2 dg(m INT e 	 — jk  

(2.121) 

a11 



and 

s i = E i /kT 

14.6 

, 	ds = sk+ge -Ei -ei = g - g' 	(2.122) 

If there is no internal energy then these reduce formally 

to the results for a monatomic gas to a first order approxima-

tion reading :- 

X tr = 75 k2 T / 32mQ2 12'2 

int = 0 

(2.123) 

(2.124) 

For pure polyatomic gases it has not yet been possible to evalu-

ate any of these expressions exactly for any intermolecular po-

tential because of the complicated collision dynamics concerned 

with inelastic collisions in a non-spherical symmetric intermo-

lecular potential, although work in this area is in progressll27]. 

However it has been possible to relate the thermal conductivity 

of a pure polyatomic gas to other measurable properties of the gas. 

Monchick, Pereira and Mason [79,80] have shown that without 

introducing any other approximations beyond those implicit in 

Wang Chang and Uhienbeck theory, the thermal conductivity and 

the viscosity of a pure polyatomic gas possessing only rotatio-

nal intermolecular energy, can be related by the equivalent of 

a first order Chapman-Cowling approximation exprearsion as t- 

m[X], = 5,C 	- A ) + 	D;nt (Ck + L1 ) 	 (2.125) 

where  
( vpk nt )( 

	
I- ']~) { 1 + 	( Ck 	+ 	 rnt }1 	(2.126) 

which contains only experimentally accessible quantities. 

In these expressions a denotes the mass of a molecule, Cv,v 

and L`y,int the translational and internal contributions to the 

molar heat capacity at constant volume, while Dint denotes the 

diffusion coefficient for internal energy in the pure gas. 

may be thought of as the number of collisions required for 

equilibrium of rotational and translational energy in the gas. 

No higher order approximations for this relationship are known. 

In the case of 	.+ oo, equations (2.125) and (2.126) 

reduce to the following result , known as the Modified Eucken 
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relation, reading :- 

JE J:29, _ 	Sitar 	,f PD;nt Cv.;nt  
rfi] k [ 	2 ( k 	) 	. [r], k (2.127) 

If the viscosity and the thermal conductivity are available from 

accurate measurements and the rotational collision number 	can 

be obtained from experiment or estimation procedures, equations 

(2.125) and (2.126) may be employed to determine Dint which is 

not available from any other source. In cases where one of the 

transport coefficients, viscosity or thermal conductivity, are 

not available, equations (2.125) and (2.126) may be used to esti-

mate the missing quantity. 

2.4.2. MASON - MONCHICK APPROXIMATION 

No exact calculations of individual transport coefficients 
according to Wang-Chang and Uhlenbeck theory for realistic inter-
molecular pair potentials have been carried out. However, Mason 
and Monchick [?9,80] have been able to derive approximate ex-

pressions from those of Wang Chang and Uhlenbeck which are a-
menable to direct evaluation. They have shown that to a high order 
of approximation the viscosity and diffusion coefficient of a 
polyatomic gas, or the interaction viscosity for two such gases, 
are independent of the occurence of inelastic collisions. Thus 

for polyatomic gases :- 

and 

5 	1/2
[ 11 ], = 56- <s(2 	T> (2.128) 

[ r ]t = 5 	~2mmmmkT) 
<S2 (?.2 	> 	 (2.129) 

These expressions are formally identical to those for a monato-
mic gas. However, the collision integrals which enter are diffe-

rent because of the non-spherical nature of the interaction po-

tential. The collision dynamics for non-spherical molecular in-
teractions are extremely complicated, and it is only recently 
that methods for treating them founded on well characterised ap-
proximations, have been developed (128] . These new methods turn 

out to be the quantum mechanical equivalent of a heuristic method 

of calculation proposed by Monchick and Mason [129] . According 

to their method the collision integral for a non-spherical inte-

raction is obtained from the formula :- 
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n(221_ 	1 	~
w 
(22)

I (2.130) 

where w defines the relative orientation of the two molecules 
c2,21 

andS2w is the collision integral for the molecules which inte- 

ract through the central potential specific to the orientation w. 

That is, the collision integrals are obtained as uniformly weighted 

averages of collision integrals evaluated at fixed relative o-

rientations. 
In a companion paper, Monchick, Yun and Mason [79] extended 

the Wang Chang and Uhlenbeck equations to polyatomic gas mixtures. 

Although they did not made any additional assumptions, the expre-
ssions derived were not amenable to calculations. Monchick, Perei-

ra and Mason subsequently introduced physically measurable appro-
ximations to the rigorous formulae in order to make calculations 
possible. In particular in addition to the collision integrals 
for non-spherical interaction obtained by Monchick and Mason [129]-, 
they assumed that 'complex collisions', involving jumps of more 

than one quantum of internal energy, were unimportant. Furthermore 
they assumed that there is no correlation between internal energy 

states and relative velocities, or in other words they assumed 

uncorrelated internal and translational motiona.Finally, they 

tried to account for inelastic collisions. 
Their results, which represc .t a first order approximation 

in the Chapman Cowling sense to the Wang Chang and Uhlenbeck e-

quations for polyatomic , v-component, gas mixture at low density 

can be written :- 

where 
X m 

XHE s Xmix,tr + 	(X ,- X, . )(1 +Exix~Dimti)t 

i 	 j#i  Di intj 

Here, AKE is the Hirschfelder-Eucken result [81] adjusted to re-

produce the experimentally obtained thermal conductivity of the 
pure ends and AX represents a correction term incorporating 
explisit effects due to inelastic collisions and is given by :- 

' A = 4E l x,VAia C( 	) ( „x,) — 2  

i

) C cM) & 
 

caxa) — 

(£°x
2
,)  (&1) e  ) + 2( 	 ) + (0)   	(2.133) 

 

2.133) 
 ii 



where 
e r s,r s 

= lim £ 
 

1  
x1~ 1 	

, 
• 

14.9 

(2.134) 

In these equations x1 represents the mole fraction of species 

; in the mixture. The symbol XmixxriS the translational contribu-

tion  to the thermal conductivity of the mixture, Xjtr is the tra-

nslational contribution to the thermal conductivity of the pure 

gas ; . The symbols D; ;nt,; and D; i nt.i represent the diffusion 

coefficients for internal energy of species ; through species ; 

and 	respectively. Finally the elements in the last term AN 

may be written as :- 

tom 
11 

• 

10,10  ~Y1 

• 10,10 

10,10 
1 

. 	~ 3 

• 

• 10 10 . • • L 1, 

...1 

10,10 
11  

. . . £ery° 
• 

10.10 . 	. 	vY 

...0 

0 
• 

0 

0 
Aap  10,10 £10,10 	_ 

(2.135) 
11  

• • 

10,10 	10,10 
2• Y1 	• 	• 	• K•vv 

where, 

(2.136) 
~,o ~,° 	_ _i~(n?k) - 

[~ 
~,ix~x~T~pD~J(m, +mJ lpie+A/-3Bf•)m~+4m;m~A*1 ` 
J*i 

10.10 s 16 x; xl T m; m1 -3B *-4A
'J
* 
i 15 p D;j 

z 
(m i +m)) 'J 

#j 	(2.137) 

In addition, the other elements can be written as 

,01 = - 	4kT 	i + '' 
iZ
01 	

x 	E x x 
P; ;"t.,  

p D; int ,i C i int 	 ; 	J D i int,j 

dE1o.10 - 32 xZ• m • C 	64 
L 

x; x i T A*, m .m,, C -~ 	n ;̀;~ 	
,  p D;, (m; +m j 52  { 	" 

A_1o,10- - 64 x ; x; T A m; m  [Cluj_ + C i.roe 	# 
ij 	 p Dij (m;+mj) 	k r;j 	k t;; 

+ C j.rsl_ 
k 

(2.138) 

(2.139). 

(2.140) 
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16  

15nc;;nt j*i C

5x2 
m; C;.rot 

k Y);.;; 
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(2.141) 

(2.142) 

(2.143) 

(2.144) 

1 

x;xj TA* m•C; at  
p Di (m; +mi ) 	;i J 

AE oP1 

AE to.ot 

AE. 

and 

In the above equations C ;,jnt 	and C ;,rot are the internal and 

rotational heat capacity of species ; , and dij is the colli-

sion number for equilibration of rotational energy of species ; 

by collisions with species 	. 

2.4.3. QUANTUM MECHANICAL EFFECTS 

All theories described so far were either Classical (Chapman-

Enskog) or Semi-Classical (Uhlenbeck, Mason-Monchick) and thus 

they are deficient in at least two respects. Firstly, they employ 

without justification, quantum mechanical cross sections in an 

essentially classical equation. Seconrily; in solving the Boltzmann 

equation the possibility that th' zero order approximation to the 

distribution furetion might depend on another summational inva-

rient - the molecular angular momentum - was overlooked. Further-

more, Waldman [87] pointed that strictly the Wang Chang and 

Uhienbeck equation should not be applicable to molecules with ro-

tational energies as such states are degenerate. Alternatively, 

a quantum mechanically correct equation analogous to the Boltzmann 

equation has been derived known as the Waldmann-Snider equation 

[86] , and expressions for some of the transport coefficients 

have been given. These expressions are. very complicated and no 

calculations have been performed using them as yet [127] . 

Failure of the semi-classical theory to account for angular 

momentum conservation his small but significant effect on the . 

transport coefficients for a polyatomic gas, which will be dis-

cussed in the next section. 

2.4.4. SPIN POLARISATION EFFECTS 

In 1930, Senftleben et al. [133] observed that the transport 
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properties of a paramagnetic gas were affected by the application 

of a magnetic field. However, no great significance was given to 

this effect until Beenakker and his collaborators [134,135] began 

a systematic study of it in the early 1960's. They noticed that 

the imposition of a velocity or temperature gradient in a gas 

produces a prefferential alignment of the angular momentum vectors 

of non-spherically symmetric molecules through binary collisions. 

If a molecule possesses a permanent magnetic dipole moment then 

application of a magnetic field to the gas causes the magnetic 

moment to precess about the field direction. This precession par-

tially destroys the preferential alignment of molecules establi-

shed by the coupling between the macroscopic gradients and mole-

cular collisions. The extent of this destruction of the polariza-

tion, depends upon how fast the molecule precesses relative to 

the time between collisions in the gas which tends to re-esta-

blish the alignment. For large values of the precession frequency 

and the time between collisions, the spin polarization is comple-

tely destroyed and further increase of the field produces no 

further effect. This represents a saturation and corresponds to 

compete splitting of the digenerate rotational energy states of 

the molecule by the applied field. A further point that ought to 

be made here, is that the orientation of the magnetic field re-

lative to the gradient of temperature or velocity, influences 

the value of the transport coefficients. 
According to the foregoing analysis, one would expect the 

Wang Chang and Uhlenbeck theory to be appropriate when saturation 

of the field effect is reached because of the destruction of the 

spin polarization for which it does not account. Thus qualitati-

vely at least, the magnitude of the magnitude of the magnetic 

field effect of saturation is a measure of the difference between 

the Wang Chang and Uhlenbeck result for the transport coefficients 

and the full quantum mechanical result. 
Viehland, Mason and Sandler [84] showed with the aid of the 

existing quantum mechanical kinetic theory for diatomic molecu-

les that an improved relation to equation (2.125), between the 

viscosity and thermal conductivity of such a gas reads s- 

m[a ], 	m[Xtr]t 	m [X;nt]l  
k [r]], 	k [ n], 	+ k [ ril, (2.145) 
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(2.146) 

(2.147) 

where A is given by equation (2.126) . Here, (Aait/N )Sat is the 

fractional change in the thermal conductivity measured parallel 
to a magnetic field at saturation, an experimentally accessible 

quantity. 
The correction is restricted in its validity to systems 

where the rotational energy level spacing is small compared 

to kT . 

2.5. DENSE GASES - THE ENSKOG THEORY 

A first attempt towards a kinetic theory of dense gases is 

due to Enskog [88] . It is an ad hoc extension of the kinetic 
theory of dilute monatomic gases for rigid spherical molecules 

only. The advantage of the rigid sphere model in this connection 

is that collisions are instantaneous and the probability of mul-
tiple simultaneous encounters is negligible. Enskog's extension 

involves the introduction of corrections that account for the 
fact that the molecular diameter is no longe: small ccmp :red with 
the average intermolecular distance. A major consequence of this 

is that a mechanism of momentum and energy transfer which is ne-
gligible at normal densities becomes important - i.e, during a 

collision momentum and energy are transferred over a distance 

equal to the separation of the molecules. 
Although Enskog's theory is valid for rigid spheres only, its 

results may be applied to real gases with considerable success if 

an appropriately chosen effective collision diameter is used. 

In a similar way to that employed for the dilute gas Boltzmann 

equation, Enskog derived an integro-differential equation for the 

velocity distribution function. In the case of a dense gas, the 
collision term is deficient firstly because of the finite size 

of the molecules, as the centres of two colliding molecules can 

not be at the same point and this ought to be taken into account 

in f(r,c,t) . Secondly, in a dense gas the volume in which any 

one of the molecules can lie (i.e.'free volume') is reduced and 

thus the probability of collision is increased. The latter effect 
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is accounted for by increasing the collision frequency by a factor 

x known as the pseudo-radial distribution function, which may be 

a function of the number density and therefore of position and 

time and evaluated at the point of contact of the two colliding 

molecules. 
An appropriate expression for the increase in the collision 

frequency can be obtained by the following argument. When two mo-

lecules collide, the distance between their centres is o-, thus 

the volume which cannot be occupied by the centre of a molecule 
is approximately the whole volume of the associated spheres, that 

is (4/3)rno-3  per unit volume. Hence the volume in which the cen-

tre of a molecule can lie is reduced to (1-2bn) where b is the 
Van der Waals co-volume for rigid spheres of diameter o . Thus, 
the probability of molecular collisions is increased by 1/(1-2bn). 
A second factor that ought to be taken into account is the shiel-

ding of one molecule by another. This has been found by Chapman 

and Cowling (Chapter 16, (?3]) to decrease the pseudo-radial di-

stribution function X by (1-(11/8)bn). Thus an approximate va- 
lue for x to a first order in bn 	reads :- 

JC 	( 1 -  bn ) / ( 1 - 2bn ) = l+ibn (2.148) 

An identical expression for the pseudo-radial distribution fun-

ction ,x  may be derived from the equation of bitte for rigid 

spheres [711 . 

By a similar method to that employed for the dilute gas case, 

it is possible to obtain an expression for the kinetic flux of 
any molecular property. Furthermore, by considering the transfer 
of this property upon collisions in the dense gas it is possible 
to evaluate the 'collisional' transport of,for example, energy in 
the gas. 

These two kinetic and 'collisional' contributions to the ene-
rgy flux are added to yield the total heat flux [71]  which to 

a first order of Chapman-Cowling approximation reads s- 

q 	- 1Fmnb31   + 5 3rncrX) 	+ cr,n2  rfi° b2XIVT 	(2.149) 

where ri°  and a°  are the zero density viscosity and thermal co-

nductivity of the gas. The thermal conductivity of the pure gas 

at elevated densities can thus be obtained as :- 



a;(n, T) = 
JC~ ( 1 + -ib; n;(; ) X 

	+ 6Y n2 r[ ; b2X; 

and if we define, 
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(2.150) 

(2,15)) 

expression (2.150) becomes :- 

a;(n, T) _ 1; ( 1 + +Y;XJI  )2 A` + 	' Y2, n l °, c,,,X; 

Note that for rigid sphere gases :- 

Ev; 

(2.152) 

(2.153) 

and 
c„; = 3 k (2.154) 

Thorne [95] generalised the Enskog theory to binary mixtures 

whereas Tham and Gubbins [96] completed the development for mu-

lticomponent mixtures. In the form in which these results were 

originally given, they were inconsistent with the Onsager[91,92,93] 

reciprocal relations of irreversible thermodynamics. This defect 

was subsequently corrected by Van Beijeren and Ernst [130] . 

Real molecules are not rigid spheres and so comparison of 

experimental results with the predictions of the Enskog theory 

are not entirely satisfactory. In an attempt to improve the a-

greement between the Enskog theory and experimental data for real 

gases, Enskog suggested that the intermolecular forces between 

real gases could be accounted for by using a suitable definition 

of an effective rigid sphere diameter for the molecules. He pro-

posed that the definition :- 

yt =5b ; = 5{ B;; + T( dT / (2.155) 

where B;; 	is the second virial coefficient of the pure gas, 

should be employed. This procedure has been demonstrated by Hanley 

[131] to result in substantially better agreement with experi-

mental data, although its basis is insecure [172] . 

2.5.1. MASON - WAKEHAM APPROXIMATION 

In the case of a pure polyatomic gas, account must also be 

taken of the internal energy transport. Mason et al. [89] presented 
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a method according to which the thermal conductivity of a pure 

dense polyatomic gas is taken to be composed of two distinct 
contributions, a translational and an internal, as can be done 

rigorously for the low density gas (§2.4.2.p•47) as :- 

~i = X i,tr 	+ 	;,int (2.156) 

The translational contribution can be obtained from equation 

(2.152) using the zero density viscosity r? , that is :- 

Xi,tr = 4( 	)rfi; (1 + 4-yixin4 + g(--)n2rji Y?X; (2.157) 

to calculate the internal contribution a;,;nt 	to the thermal 

conductivity of a pure dense polyatomic gas, Mason et al. postu-
lated that internal energy is transported by a diffusive mecha-

nism, with an associated diffusion coefficient Dint . However, 

for practical calculations, they proposed that it is sufficiently 

accurate to equate Din t to the self diffusion coefficient of the 

gas D;; . Thus, the expression for the internal contribution 

i, i nt 	reads : - 

- 
X i,int = n m; D;;6v,int = n m;Di; ev int ,X 

(2.158) 

where D° is the zero density self-diffusion coefficient, while, 

Cv,;nt = Cv (2.159) 

is the internal specific heat capacity per unit mass. 

Mason et al. then attempted to derive relations for polyato-

mic gas mixtures at elevated densities. Since a rigorous theory 

of polyatomic gas mixtures at elevated densities is not availa-

ble, they preferred to derive an interpolation formula according 
to which if the pure gas thermal conductivities are known the mi-
xture thermal conductivity at high density can be obtained using 
only information about the mixture thermal conductivity at low 

density. This interpolation formula is based on the Thorne-Enskog 

hard sphere theory extended to apply to any molecular interaction 
with the additional restriction that inelastic effects are negle-

cted. The expressions are written in such way that the pure gas 

thermal conductivities are exactly reproduced. As in the case of 
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the pure gas, the thermal conductivity of a 17-component  mixture 

is written as the summation of two contributions, the translati-

onal or monatomic and the internal parts. The final expressions 

read :- 

Xmix= 	Amix,tr 	+ 	)tm ix,int (2.160) 

where the translational contribution Xmix,tr 	is given by :- 

H11 . . .11w 

H11 • • . Hyr 

Xm;x,tr = - 
yl • • • Yv 

♦ Kmix 	 (2.161) 

Hy' . . 	Hyy 

E 2m;m • 	 1 + 1_~ (mi+mf )z xi Y;iy' ;;n j (2.162) 

H ;; 
	

~ 	x' • 	'; 	 12  	2 x
; 	/=1 2a;1  ! 	+m )2 ! 2 ID; 	 m

1 m1 
Bf +4m; m1 A*

; 	 'J  

(2.163) 

H ;; = 

Kmix = 

m - m;x;x; X;  - 2 V ; A* (mi +m;)2 
{ - - 3B* -4A* (2.164) 

(2.165) 10 nz 
Y  

X' X. m;mj  ~° z 
9 	~1=~ t m ; +m; z 	;; Y;; X;; 

while the internal contribution is given by :- 

Amix,int= Et xo 	Ao.tr 	)( 1 + E x~ 7t'.tr 	y 	} 	(2.166) 
1vĪ 	 X;; 	1.1 

 

	

X; A ;;r tr 	.i 
1#1 

here x; and x; are molefractions and X 	is the low density 

interaction thermal conductivity of the binary mixture, defined 

previously by equation (2.87). The Y;; are corrections for the 

free path shortening in an i-j collision in the dense gas given 

by [79] :- 

(2.16?) 
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where 	is the interaction second virial coefficient of the 

mixture. When values of B;j are not available, an empirical co-

mbination rule can be used, reading :- 

Y; 	8 ( Y J3+ Y;~ ) 
3 	

(2.168) 

The practical implemantation of the calculation scheme begins 

with the evaluation of the pseudo-radial distribution function 

for the pure gases ,X; . This is obtained from equation (2.157) 

so that automatic reproduction of the thermal conductivities of 

the pure components is ensurred :- 

X; (n,T) - 18 a;- n Y; X;,tr 	_ 4§{i X;- n Y; E tr  js l~~' 
z 2 	. 	z z 	119 	n ~' ~`; tr 	9 l 2n2 Y; ~ cir 	Yc Aor 

(2.169) 

The pseudo-radial distribution function in the mixture ,X;j , is 

obtained as suggested by Wakeham et al. [90] with the aid of a 

combination rule derivable from the Percus Yevick [97] integral 

equations for hard spheres as :- 

JC;j(n.T) 	a 1 2 	 6 0( + 	gixk(JCk _1-) + 

,1// 	1/3 
—11 (xi -1) ~X k (xk -1 ? 

(2.170) Tj () k —1)V3 ♦ 	(Xj -1)h/3 

These results together with equations (2.160) -•(2.168) and avai-

lable experimental data for the thermal conductivity of the pure 

ends and the interaction thermal conductivity provide a consistent 

scheme for the calculation of the thermal conductivity of a dense 

polyatomic gas mixture. In view of the semi-empirical nature of 

. the final equations, care must be taken in the selection of the 

molecular size parameters for the pure gases. This is because 

certain values can lead to physically unreasonable behaviour for 

the pseudo-radial distribution functions in the gas at high den-

sities. This limitation of the Modified Enskog theory has been 

discussed by Sandler and Fiszdon [98] who proposed a scheme, whe-

reby, the parameters yj and thus the pseudo-radial distribution 

functions can be calculated from experimental measurements of the 

viscosity and then used to evaluate the thermal conductivity. 

t 2 
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2.5.2. THE DENSITY EXPANSION 

A complete, rigorous kinetic theory of dense gases would re-

quire a new Boltzmann equation for dense gases, which does not 

make use of the restrictive Molecular Chaos assumption. Attempt 

at theories of this kind, have been reviewed by Dorfman and Bei-

jeren [136] . The principal conclusion of such work so far is 

that the transport coefficients of a dense gas are not simple 

polynomial expansions but rather of the form :- 

	 - 1 + c,(nd3) + cZ(nd3 )2•log(nd3 ) + cz(nd 3)2  +.. (2.171) 

with a similar expansion for the viscosity. The logarithmic term 
in this density expansion arises essentially from correlations 
in the velocities of colliding particles over the distance of 
a mean free path which are specifically not included in the Enskog 
theory, as these correlations correspond to a breakdown of the 

Molecular Chaos assumption. There is no convincing experimental 
evidence for the existence of the logarithmic term, although mo-
lecular dynamics calculations support its inclusion. 

The first correction to the low density thermal conductivity 

contains contributions from collisional momentum transfer in bi-

nary collisions and from the effects of three-body encounters in 

the gas which may include correlated binary collisions as well as 
genuine three-body collisions where three. molecules collide simu-

ltaneously. However the calculation of the coefficients of the 
density expansion have not yet been carried out for realistic 

intermolecular potentials. 

Olmsted and Curtiss have however, performed calculations [163] 
for a Lennard-Jones (12-6) potential, for the first density coe-
fficient of the thermal conductivity of the monatomic gases. A 
comparison oftheir results with the experimental values obtained 
here, is given in a later section (§6.1.2.,p.157). 
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•THREE 

THE THEORY OF THE 
TRANSIENT HOT WIRE METHOD 

3. 	INTRODUCTION 

In the previous Chapter the need for accurate measurements of 

the thermal conductivity was emphasized. It will also be shown in 

a latter section 04.5. ,p101) that the measurements described in 

this thesis -obtained by the transient hot wire technique- enjoy 

a high degree of precision and accuracy. We thus procceed to pre-

sent the theory of the transient hot wire technique. 

3.1. 	IDEAL SOLUTION 

In the transient hot wire technique a thin, straight platinum 

wire immersed in an isotropic gas and initially at equilibrium 

with it, is subjected at time t=0 to a step change in the vol-

tage applied to it . Following this change, the wire appears as 

a line source of heat with a constant magnitude, q, per unit 

length and the time evolution of the temperature of the wire is 

determined by the thermal conductivity of the fluid. Thus, the 

thermal conductivity of the gas can be calculated from the time 

taken for the temperature of the wire to rise to a certain pre-

determined value, the properties of the wire and gas and the ge-

ometry of the wire enclosure. 

In the ideal situation, an infinite, thin and long platinum 

wire of zero specific heat and infinite thermal conductivity is 

immersed in, and initially at equilibrium with, a gas of infinite 

extent at a temperature To  . The temperature field around the wi-

re following the initiation of a constant heat dissipation in it, 

at time t=0 , is described by the line source solution of the 

Fourier heat conduction equation :- 

aT  at  = kd.7?T (3.1) 
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Here, kd  =X/pcp  , is the thermal diffusivity of the medium and 

is assumed to be temperature independent. The boundary conditions 

of the solution of this equation for the transient hot wire in 

the ideal case read :- 

i) @ t 6  0 & any r 	a T(r,t) = 0 	(3.2) 

ii) @ r = 0 & any t' 0 	liom(r/T) _ - ALT 	(3.3) 

iii) 0 r = œ & any t = 0 lim(eT(r,t)) = 0 	(3.4+) 
r-.m 

The problem is a standard one and its solution is [73] :-  

2 
AT;d (r,t) = T(r,t) - To  = (- jx) Ei( - kdT ) (3.5) 

where, m 
Ei(x) = x dx = - 1nC - lnx + x +0(x2 ) (3.6) 

and C = exp(-y) = 1.78107... where -y is the Euler constant. 

At a fixed distance r=a (surface of the wire) and for small 

values of x (typically 166, in practice) equation (3.5) reads:- 

AT;d(a,t) = T(a,t) - To  = (4,L) ln( a4)  + ... 	(3.7) 

Thus, the temperature rise at the surface of the wire pT,d (a r t) 

in the time interval t, to t 2  may be represented as :- 

aT;d(a, t) = T(a,t2) - T(a,t,) _ 4gx  ln(?) 	(3.8) 

Therefore, the thermal conductivity can be obtained from the 

slope of a QT;d  versus lnt line. 

This, however, represents the ideal model. In practice becau-

se the conditions employed are different from ideal, corrections 

have to be made to real experimental data to adjust them so that 

they can be described by the simple working equation of the ideal 

model (3.8) . That is, the philosophy adopted is that corrections 

can be applied to real experimental data so that they refer to 

the ideal arrangement discussed above. To simplify the following 

analysis of the assumptions and corrections employed, the discus-

sion is separated into three main categories. Firstly, corrections 

that are eliminated entirely will be discussed. Such corrections, 
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are eliminated due to the careful design and mode of operation of 

the equipment.-  Secondly, corrections that are rendered negligi-

ble will be presented. By 'rendered negligible' it is implied 

that each particular effect constitutes a correction to aid  

which is not more than 0.01%. Finally, the remaining corrections 

will be discussed. 

Summarising, the format of this Chapter is :- 

A. Effects eliminated entirely 

i) Convection 

B. Corrections rendered negligible 

i) Finite diameter of the wire 

ii) Knudsen effect 

iii) Radiation 

iv) Viscous heating 

v) Compression work 

C. Remaining corrections 

i) End effects 

ii) Finite heat capacity of the wire 

iii) Outer boundary correction 

iv) Variable fluid properties 

The following analysis will presuppose that the temperature 

rise of a finite portion of an infinite wire as a function of ti-

me is available from experiments. The method whereby these measu-

rements are made will then be discussed in the following Chapter•. 

3.2. EFFECTS ELIMINATED ENTIRELY 

3.2.1. CONVECTION 

Convection, which is the major source of errors in most other 

methods (§1.3. p 9 ), ought to be examined very carefully for 
this method. Strictly, one must distinguish between two types of 

convective currents. One type, is due to temperature gradients 

along the vessel created if the upper regions of the wire enclo-

sures are warmer than lower regions. This type of convection can, 

however, be avoided by ensuring that the top of the wire enclo-

sures is at a slightly higher temperature than its bottom part. 
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The second type of convection starts due to the heat dissipation 

in the wire. Consider Fig. 9 	. The current in the wire induces 

a heat flow in the gas such that tem- 

eerratures T1 	and T2 	are higher than 

T; 	and 	Tz . However, this results in 

temperature T2 	being higher than 	T; 

and thus the conditions for the onset 

of convection are established. However, 

the experimental conditions can be so 

q q 

T1 > T, 

T2 > T2 
arranged 	that the characteristic time 

Gas Gas 
required 	for the boyancy forces to a- 

Wire ccelerate the gas and thus appreciably 

affect the rate of heat loss from the 

Figure 9 	Convection wire,is higher than the experimental 

times employed. The foregoing discussion 

indicates that experimental times can be chosen to eliminate con-

vective heat transfer entirely. However, the transient hot wire 

has the additional advantage that should convection occur it can 

lnt 

Figure 10 . Effect of convection on the temperature rise AT . 
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Figure 11 . Effect of convection on the thermal conductivity 

of Helium @ 7.13 MPa 35 'C 

be immediately detected according to the following analysis. 
Consider Fig. 10 , a significant influence from convection causes 

the wire temperature to increase less rapidly owing to this new 

mechanism of heat transfer and leads to an appreciably lower pla-

teau than AT„, - 6TOB  ( 6T0B  represents the outer boundary corre-

ction , §3.4.3.p 68). Furthermore, this effect results in a sud-

den increase in the apparent value of the thermal conductivity 

as shown in Fig.11 . 
Another point that ought to be made here, is that convection 

can also result if the wires are not absolutely vertical [38] . 

3.3. CORRECTIONS RENDERED NEGLIGIBLE 

3.3.1. FINITE DIAMETER OF THE WIRE 

Evidently in any real experiment the wire employed as the heat 

source must be of a finite radius a . Thus the previous boundary 

condition (3.3) has to be modified to :- 

r=a & any t=0 8T _  
ar - 2nxā (3.9) 

The solution of the conduction equation under these circumstances 

(page 338 of [73] ) reads :- 
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AT (r,t) _ - 7r2aT 
((l_ e_ut)[ J° (  r).J (ua)  - Y$(ua) )J, (ua)  du 
o 	 (3.10) 

small values of (r2/4kd t) the It is remarkable however that for 

ideal solution is recovered as :- 

AT (r,t) =  	In ( 4Cr t ) + n (a2/kdt ) {3.11) 

The effect of the last terms can be made small ( 0.01%) by emplo-

ying a wire of small radius (typically 3.5 pm ). Thus the first 
term remains which is identical with the ideal solution (3.7)@r=a. 

3.3.2. KNUDSEN EFFECTS 

The previous discussion (as well as that of further correcti-

ons) indicates that very thin wires ought to be used. This however 
introduces another problem, because at low densities, the mean 
free path in the gas becomes of the same order of magnitude as 

the wire diameter, resulting in a temperature jump at the wire 
surface. That is, the temperature of the gas at r=a is not nece-

ssarily equal to that of the wire at r=a. This temperature jump 
is described by the Smoluchowski equation [101,102] as :- 

Tw(a,t) - T(a,t) =  (3.12) 

where, Tw(a,t) is the wire temperature, T(a,t) is the temperatu-

re of the adjacent gas and g' is an empirical factor proportio- 

	

nal to the mean free path 	(no reliable measurements or co- 

rrelations for g are available). 
The presence of this temperature jump modifies the boundary 

condition (3.3) to :- 

@ r = a & any t = 0 -2aaA ār )r=a=  q (3.13) 

so that the temperature rise according to the analysis of Healy 

[100] to a first order approximation reads :- 

	

AT (a, t) _ 	In 4 	+ IOT
q 	 

= AT ;d 	+ 6 TK  (3.14) 

This result demonstrates that because 6TK  is time independent 

to a first order, Knudsen effects produce only a shift of the AT 
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versus lnt line and not a change in slope. Because the thermal 

conductivity is obtained from the slope of the line, this corre-

ction to a first order approximation can therefore be neglected. 

To second order approximation, however, Knudsen effects give 

rise to a change of slope.However, it has been shown [100] that 

if measurements are restricted to densities greater than :- 

p 	3.102•q ( 2 N oa  X a T ) 	(3.15) 

where, N is the Avogadro number and o• is the rigid sphere dia-

meter of the gas molecules,the second order effect is entirely 

negligible (<0.01% of the temperature rise). 

3.3.3. RADIATION 

The ideal solution of the Fourier law assumes that all energy 

is conducted into the fluid from the wire. In practice however, 

some of it can also be radiated, and thus reduce the actual a-

mount conducted. The radiated energy maybe partly absorbed by the 

gas and partly absorbed and re-emitted by the outer cylinder 

r=b. These effects could modify the temperature history of the 

wire. 

Fortunately, owing to the very small circumferential area of 

the wire, the very small temperature difference between the wire 

and the enclosure ( about 5 •C) and the weak absorption of most 
gases, there is no need to perform a detailed analysis of this 

process as for gases an approximate treatment is all that is 

necessary. 

Assuming that the gas is transparent and that all surfaces 

involved are black, the amount of energy radiated per unit length 

can be written as :- 

grad = 2 n a oe  (Tw - T;) = 87raor Tō AT 	(3.16). 

where ora  is the Stefan-Boltzmann constant. The radiation loss 

modifies q in equation (3.5) and is equivalent to a reduction 

in AT (a,t) by the amount :- 

ōT R 
	= gradAT (a,t) _ (8na a'B  T:/q) [AT (a,t)12 	(3.17) 

Typically for monatomic gases this produces a correction to 
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AT (a, t) of the order of 0.005 %. 

For absorbing fluids, the full integro-partial differential 

equations governing the simultaneous radiation and conduction 
problem must be solved. A recent treatment of the full problem 
has been solved and applied [104] to liquids where radiation can 

amount up to 2% of the total heat transferred in similar expe-

riments. 

3.3.4. VISCOUS HEATING 

As stated previously (§3.2.1.p.61 ), the temperature gradient 
in the gas inevitably gives rise to a velocity field. This veloci-

ty field in turn can cause viscous dissipation in the gas leading 

to local temperature increases and a consequent reduction in the 

heat loss from the wire. 

Healy [100] showed by solving the energy balance equation 

that an approximate formula for the effect of viscous heating on 

the temperature rise of the wire is e- 

Prg2 t 
2 To  cp  (3.18) 

where g is the gravitational constant and Pr is the Prandtl 
number. This effect however, was found to be of the order of 
0.01 % of the measured temperature rise and thus can 
be neglected. 

3.3.5. COMPRESSION WORK 
In the ideal model, the outer radius b , as well as the a-

xial length L, of the cell are assumed to be infinite. However, 

in practice , the hot wire is accomodated in a cylinder of finite 

dimensions (constant volume V=.rrb2L , and constant mass m ) and 
the fact that heat is fed into it causes even the pressure P to 

change with time. Thus elementary cylindrical expansion waves 
spreading outwards with the speed of sound result in essentially 

constant pressure in space but which changes with time. 

In order to account for this expansion process, the energy 
equation involving only terms due to compression work, coupled 

with an integral condition of constant mass and the perfect gas 

law, need to be solved. This produces a correction to the tempe- 
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rature rise of the wire as :- 

q R. 
t 	(3.18) dTcw  = 	

Q cp c„7r bZ 

where R is the Universal gas constant. This , in real terms, re-

sults in a correction of 0.01% to the temperature rise of the 

wire and according to our previous discussion can be neglected. 

3.4. REMAINING CORRECTIONS 

3.4.1. END EFFECTS 

Clearly in the real experiment the wire must be supported and 

provided with electric contacts. These connections provide depar-

tures from ideality known as end effects. Haarman [99] and Healy 

[100] , have provided different, approximate analyses of these 

end effects. Both analyses indicate that such effects are best 

eliminated experimentally. This may be accomplished by using two 

hot wires identical, except for length, both of which are sur-

rounded by the same fluid and both of which are subjected to the 

same heat dissipation per unit length. It may be shown that if 

the resistance of each wire is used as a measure of its tempera-

ture then the difference of the resistance of the two wires mea-

sures the temperature of a wire which acts as a finite segment 

of an infinitely long wire. That is, the end effects in the two 

wires cancel exactly. 

Of course this argument rests upon the assumption that the two 

wires differ only in length. However, it is impossible to obtain 

two samples of wire of identical diameter. Consequently, this i-

deal compensation can not be achieved. However, the description 

of this effect properly belongs with the working equations 

for the experimental installation and so it is postponned until 

a later Chapter (Chapter 4,§4.3.3•p•93). For now it is assumed 

that it is possible to experimentally determine the temperatu-

re rise of a finite segment of a wire free from end effects. 

3.4.2. FINITE HEAT CAPACITY OF THE WIRES 

Here we take into account the finite radius ,a , of the wire, 

its finite conductivity Aw  and its proper heat capacity (pcp)w  

per unit volume. The following two coupled Fourier equations can 
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be written, for the wire and the gas respectively :- 
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The continuity condition can also be used reading :- 

Tw(a,t) = T (a,t) 	& 	X ( 413.YLT a ( ar La (3.21) 
This is a standard problem (p.397 of [73] ) whose solution for 
large values of 4kd t/r2 reads :- 

((pc
2Āt 	pcp) 1

a2 jl-a2 	 ln(4r 4) 	2 
a2 AT(r,t) 4]~ + k$wt + 

(1- 	)(1 ) Oq 	-4wx t (3.22) 

The actual temperature measured (Chapter 4,§4.3.3.p.93) corresponds 

to an integral average of equation (3.22) over the radial coordi-

nate of the wire, so that :- 

2 
	 a2 X AT(t) = 441-a2 ((pc h Pcp ) J ln( 4 —) +2kdt 	4 ' +2 

. (3.23) 

Therefore the finite heat capacity correction constitutes a cor-

rection given by :- 
_ 	 z 

5THC - + .a ( (P2At pep) AT "• - 	(2-gw ) (3.24) 

Usually only the first term is considered because the second 

term constitutes a correction to AT of the order of 0.001%. 

It can be seen that the effects of this correction will be 

larger at small times. 

3.4.3. OUTER BOUNDARY CORRECTION 

The ideal solution presupposes an infinite outer boundary to 

the heat wave. However, the need to contain the heat fluid in a 

finite vessel means that at large times the thermal wave spreading 

out from the wire will reach the outer boundary of the cell @r=b 

and thus modify the temperature history of the wire. It should be 

expected however, that the correction will be small as b/a x 1500 
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and negligible at small times. 

To account for this effect the boundary condition (3.4) must 

be modified to read :- 

r = b & any t = 0 AT(r,t) = 0 	(3.25) 

which in effect implies that the temperature of the outer wall 

does not change. For b/a»1, Fischer [1061 derived an approxi-

mate solution for the temperature rise of the wire reading :- 

AT(a,t) = - AT,d  + texp(-ekd t/b2)(no(gv )fl {1n(1 9) 

(3.26) 

where g„ are the consecutive roots of Jo(g„)=0 . It can be seen 

that the ideal solution can again be recovered if we employ an 

outer boundary correction reading :- 

6T08 = -- 	{ln(4  t) + L exp(-gekdt/b2 ) (nY4 (gy) )2 } (3.27) 

This correction in contrast to the specific capacity correction 

has a larger effect at large times and it is also more emphasized 

at the lower density regions. However it never constitutes more 

than 1 % of the temperature rise of the wires, in practice. 

3.4.4. VARIABLE FLUID PROPERTIES 

The fact that the density and the thermal conductivity of the 

gas vary with temperature, introduces a further correction. This 

can however, most conveniently viewed, as a correction to the te-

mperature with which the thermal conductivity obtained from the . 

plot of AT versus lnt , is identified. 

In the present work, the slope of AT versus int, is usually 

obtained for the range AT(t 1 ) to AT(t 2). The change of the gas 

thermal conductivity over a small range of, say five degrees, is 

in the region of 1%. Thus it is possible to adopt the analysis 

given by Healy et al. [100] . This analysis indicates that if the 

temperature of the fluid at equilibrium is To  , the temperature 

to which the observed thermal conductivity refers is Tr  given :- 

Tr  = To  + y( ( AT(t,) + AT(t2)) 	(3.28) 

The error involved in this approximation is negligible. 
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Figure 12   Experimental region of measurements 

In the case of gas mixtures (§2.2.3,p.25) the theoretical 

discussion of the thermal conductivity has indicated that in 

the presence of thermal diffusion fluxes,the thermal conductivi-

ty coefficient is different from that in the absence of such 

fluxes. That is, W in eq.(2.68),p.26, represents the thermal 

conductivity in a gas mixture of uniform composition (at zero 
time in our measurement system) whereas X represents the ther-

mal conductivity in the non-uniform gas mixture corresponding 

to the steady state. It is therefore essential to establish 

which of these thermal conductivities is measured in a transient 

hot wire apparatus. An analysis of this problem has been given 

by Khalifa et al. [173). They have shown that the transient hot 
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wire method always determines the steady state thermal conducti-

vity. In essence this is because at the wire/fluid boundary there 

can be no diffusive flux of mass. 

3.5. 	SUMMARY 

The thermal conductivity is obtained from the slope of the 

AT versus Int plot according to the equation :- 

AT 	q 	ln L'(aX0/Qo cp )t  
.d = 4n]~r 	2 CC (3.29) 

where, subscript o refers to the initial equilibrium conditi-

ons whereas subscript r at the reference conditions. Here, 

AT;d = AT (t) 	+ 6T08 + 6THC 	(3.30) 
where 

and 
6THc _ + a2  ( (PCP L - Pep )  AT 2At (3.31) 

6T0e =   tmn( ct )  - 4A  + E exp ( g" bil t) (nY. (g,))21 (3.32) 

The thermal conductivity obtained is refered to a reference 

temperature Tr obtained from :- 

Tr = T. + 2(AT(t1) + t T(t2)) 	(3.33) 
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•FOUR 

DESIGN OF THE APPARATUS 
EXPERIMENTAL PROCEDURE 

4. 	INTRODUCTION 

In the previous Chapters the theory and the advantages of 

the transient hot wire were presented.We now proceed to describe 

the equipment used in this work, the consequent derivation of the 
working equations and the experimental procedure adopted. 

4.1. APPARATUS DESIGN 

In this section the apparatus used for the measurements of 

the thermal conductivity coefficient of gases will be described. 

The geometric, mechanical and electrical characteristics of the 

equipment were selected after a careful design study based upon 

the previous theoretical analysis. That is, the various confli-

cting requirements for accurate measurements were balanced so as 

to lead to an instrument whose precision is one of ± 0.1%. Con-

sequently the parameters of the equipment described below must 

be understood to be a result of such a study rather than an ar-

bitrary choice. 

4.1.1. INITIAL DESIGN OF THE CELLS 

The design of the present cells evolved through experience 

gained with an earlier set of cells. In order to provide the 

foundation for the present design the earlier one is described 

first. This will prove of value when the suggestions for future 

work are described in a later Chapter. 

The initial design is shown in Figure 13 ,p.74 . In order to 

minimise the corrections outlined in the third Chapter, a Spm 

diameter, Wollaston process platinum wire is used for the hot 

wire. For the same reasons two cells are employed which are ide-

ntical except for their length. The outer wall ® is made from 
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stainless steel (SS304), inside diameter lcm, and it has viewing 
slots ® milled in it. A concentric quartz tube Q , is pla-
ced inside the stainless steel tube. The 5pm platinum wire is su-
pported between two thick (0.5mm outside diameter) platinum tubes 
Q which in turn are spot welded to two threaded stainless steel 

pins ® . The stainless steel pins are electrically insulated 

from the tube by means of pyrophilite bushes Q . Nuts 01 provi-
de the vertical adjustments and the stainless steel pins the ele-
ctrical contacts. The assembly was performed in the following way. 

The platinum wire was cut to length and its ends were crimped in 

the platinum tube. The top tube was then spot welded to the top 

stainless steel pins. In order to remove the silver coating from 
the wire, the wire ends were covered by black wax and the whole 
wire held by the top pyrophilite bush was lowered into successive 
baths of dilute nitric acid to remove the silver, and finally car-
bon tetrachloride to remove the wax. The wire was then lowered 

into the cell and the bottom platinum tube was spot welded to the 
bottom stainless steel pin. The wire was then tightened until no 

deflection from the vertical was observed when a bar magnet was 
brought near the wire and a small d.c. current was flowing in the 
wire. 

One disadvantage of the above procedure, is that owing to the 

way in which the Wollaston wire is made some silver always diffu-

ses into the wire. Thus the temperature coefficient of resistance 

of the wire is not identical to that of pure platinum. Furthermore 
it is very difficult to ensure that the silver is completely re-

moved from the surface of the wire. Any remaining silver contri-

butes to non-uniformities in the wire radius. However, the most 
important disadvantage of this design is that during an experi-

mental run the wires increase in temperature. Because the wire is 

supported between two fixed points and is taut at room temperature 
during a run it necessarily expands and becomes slack.This slack-
ness implies a sideways motion of the wire through the gas, lead-
ing to convective cooling superimposed on any conductive transfer. 

Measurements with cells of this design were found always to reveal 
the presence of convective effects. 
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Present cell design (right) 
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4.1.2. PRESENT CELL DESIGN 

In order to obviate the difficulties discussed above a new de-

sign for the cells was adopted. To the constraints already.impo-
sed on the design of the cells it was thought desirable to ensure 
that the wires would not be touched by hand. Furthermore, because 
the original cells required about ten to fifteen days to prepare, 

the new design aimed to incorporate ease of assembly. 

In the present cells a 7pm bare platinum wire is used as the 

hot wire. As well as its freedom from the silver coating, the wire 

was appreciably more uniform than the Wollaston process wire. The 
problem associated with the thermal expansion of the wire during 

transient heating was solved by means of a tensioning spring.Fur-

ther features of the present cells are the ability to use longer 

wires and more flexible adjustments. The present cell design is 

shown in Figure 13 , p. 74 and Figure 14 , p. 76 . 

The cell body ® consists of a stainless steel tube (SS304) 
of internal diameter llmm and external 13mm. A longitudinal slot 

milled in the central section © provides access to the interi-

or. A matching hemicylindrical cover for the window manufactured 
from the same material, ensures the necessary cylindrical internal 

surface when placed in position. Electrical insulation of the pla-
tinum wire is provided at either end of the cell through non-porous 
glāss ceramic bushings (MGC9658) Q , that also provide the sup- 
port for the stainless steel pins 0 	The upper pin is equip- 

ped with an adjusting mechanism Q that allows either rotation 

of the pin or vertical movement. This is achieved by means of a 

set-screw at the top of the hollow cylinder 0 - if the set-screw 
is loose the pin can rotate; if the set-screw is tightened the 

pin is fixed to the hollow cylinder and the only vertical movement 

can be achieved with the knurled nut. The thread of this nut is 

callibrated so that the vertical movement resulting from its ro-

tation is known. A coarse adjustment is also provided for the bo-
ttom pin. At the upper end the wire is sldered with gold to a pla-

tinum hook () made from 0.5mm diameter wire. At the lower end 
the wire is fixed to a helical spring ® made from 0.25mm gold 
wire, which is also connected to another platinum hook with a sil-

ver alloy solder. The two platinum hooks are mounted in threaded 

stainless steel cones © with the same silver alloy solder and 

a stainless steel flux. Finally the two pins are screwed into the 
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Figure 14 . Present cell 
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cones. 

In order to assemble the cells the following procedure is 

adopted. First the platinum hooks are soldered to the cones and 

the cones are mounted 3n a jig. The spring is then prepared and 

soldered to the lower hook. A length of the 7pm platinum wire is 

placed over the hooks and soldered in position. The jig is then 

inserted in the cell and placed so that the cones are immediately 

next to the stainless steel pins. The pins are then screwed into 

the cones and a nut is placed on each pin to ensure it does not 

move. The small set-screw in the top hollow cylinder is then ti-

ghtened and the jig is carefully removed. The platinum wire is 

then annealed by direct Ohmic dissipation for about an hour at 

approximately 85 W/m..At the end of this period the heating cur-

rent is decreased slowly. The wire is then tightened until no 

movement is observed when a bar magnet is brought close while a 

small current (about 5mA) is passing through the wire. The wire . 

is then adjusted laterally to make it coincident with the cylin-

drical axis of the cell. The final step in the preparation of 

the cells is the imposition of a small, known tension in the wi-

res. In view of its importance to the measurements this is descri-

bed in a separate section below. 

4.1.3. WIRE TENSION 

The purpose of tensioning the wires in the thermal conducti-

vity cells is to ensure that the wires remain taut during the mea- 

surements. The choice of wire tension is therefore a compromise 

between the need to keep the wires taut and not causing them to 

creep or break. Furthermore, since the tension in the wires will 

vary throughout the transient heating of the wire, its value under 

equilibrium conditions must be known. 

The tensioning springs (see Fig. 13 ,p. 74 ) were manufactured 

by wrapping a predetermined number of turns of gold wire (0.25mm 

diameter) around a thin rod (imm diameter). One such spring was 

suspended in the field of view of a cathetometer and a lgr weight 

was attached of its bottom. An extension, e , of 0.04mm/turn was 

observed. This was repeated several times with weights up to 2g . 

The extension per turn was found to be proportional to the mass 

applied. Thus denoting by Nt the number of turns in a spring, 

and by F the imposed force, the spring constant KS  is given by:- 
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Ks - e Nt 	 - 245; 3 	N/m/turn (4.1) 

The gold wire has a much larger diameter than the platinum 

wire, thus the limiting yield stress is that for the platinum 

wire, which is 14x 106  N/m2(annealed) [108,109] . This corres-

sponds for the platinum wires to a maximum weight of about 650mg 

In the present cells, the stress imposed on the platinum wires 

was chosen to be about 30% of the yield stress. Therefore it is 

necessary to establish for each wire, the number of turns in the 

spring and the extension associated with the imposition of this 

stress. We start by arbitrarily choosing the number of turns of 

the spring to be such that given a certain tension, 60% of the 

extension will be taken by the spring and 40% by the wire. Further-

more, if Y is the Young Modulus of platinum (15x1010  N/m2,[109)), 

A the cross-sectional area of the wire and a the length of any 

wire, then :- 

Platinum wire extension = 1-1 Q 
	

(4.2) 
and 

Gold spring extension 

 

F (4.3) Ks Nt 

and using the above choice of the extension ratio of 3/2 of the 
spring to the wire, one obtains :- 

KS 
2 A Y  
3 e Nt 

(4.4) 

For specified wire lengths, equation (4.4) can be equated to equ-

ation (4.1) and thus for each wire the corresponding number of 

turns of the helical spring may be found. For the present cells 

the two springs were constructed with 4 '/ and 9 1/4 turns 

for the short and long wire respectively. 

After the wires and the springs were assembled and annealed 

the following procedure was adopted to tension the wires. The 

total extension of the wire and spring in series corresponding 

to a given tension can be obtained as the summation of equations 

(4.2) and (4.3). Thus a knowledge of the total extension of the 

wire-spring assembly serves to determine the imposed tension. 

The cell design allows vertical extension of the wire-spring as-

sembly by means of the adjusting knurled nut 01 of Figure 14, 
p. 76, whose thread is callibrated. Consequently rotation of the 
nut corresponds to known vertical movement of the upper stainless 
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steel pin Q and so the nut is rotated by a calculated amount 
so as to impose the required tension (30% of the yield stress) in 

the platinum wire. 

4.1.4. WIRE CALIBRATION 

The calibration of the cells to determine the temperature coe-
fficient of resistance of the 711m platinum wire was carried out 
with the wires slack, that is, under constant, zero tension. The 
cells mounted in an air filled enclosure were placed in a well-
stirred thermostat bath. The temperature of the bath was measured 
with an NPL calibrated platinum resistance thermometer (±1 mK) 
and the resistance of the wires was measured with a 30Hz a.c.bri-
dge (Automatic Systems Laboratories) to ±2 1640hms. The resistan-
ces of the wire and the NPL calibrated resistance thermometer were 
determined at three temperatures. Table 4 contains the resistan-
ce ratios for both the wire and the thermometer taking the lowest 

Bath 	Resistances 
	Ratios 

temp. NPL Long Short NPL Long Short 
thermometer wire 	wire thermometer wire 	wire 

'C Ohm Ohm Ohm MID 

35.30 29.3472 452.9672 190.0153 1.00000 1.00000 1.00000 

45.45 30.3651 468.6722 196.5746 1.03468 1.03467 1.03452 
50.54 30.8880 476.8148 200.0012 1.05250 1.05264 1.05253 

Table 4 . 

temperature as a standard. It can be seen that within the overall 
experimental error (0.01%) the resistance ratios are identical. 
This was expected because in contrast to the previously used Wol-
laston process wire, the present 7pm wire was of 99.99% purity 
platinum. Thus for the change of resistance of the wires with 
temperature we have employed the recommended correlation for pure 
platinum of the International Practical Temperature Scale of 1968 
[138] which reads :- 

R(273)15) 	1 + ā  (1 + G )(T-273.15)- s`G
_Z
(T-273.15)2 	(4.5) 

where,  . a _ '1.0250668x10       3   K 	and 6 = 1.4Q6334 	G = 100 K 
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Rewritting equation (4.5) in a more convenient form:- 

R(T)  
R(273.15) - 1 + A (T - 273.15) + B (T - 273.15)2 	

(4.6) 

where, A = 3.98471xlc' K' 	and B = 5.874557x1ō'  e 
This correlation for the temperature range concerned is insigni-
ficantly different from that of the International Practical Tem-
perature Scale of 1976 [139] but it is very much simpler to use. 

The average radius of the platinum wire was determined from 
several electron microscopic photographs of different wire seg-
ments. It was found to be 3.89 ± 0.01 pm. It should he noted that 
because the wire radius is not constant, small differences between 
the resistances per unit length of different wire samples should 
be expected. 

4.1.5. THE PRESSURE VESSEL 

Having discussed the way the cells are made and assembled we 
nowdescribe the pressure vessel employed to contain them and the 
sample gas. 

The pressure vessel in which the cells are enclosed, is a cy-
linrical vessel made from stainless steel (E1458B) designed for 
pressures up to 150 Atmospheres (see Fig.15 ,p.81 _). The flanged 
cap ®4 	of the pressure vessel is sealed by a gold wire '0' 
ring (0.5mm diameter). The cap itself is equipped with a gas/va-
cuum port_ Q1 also sealed with a gold '0' ring and feeds-through 
for electrical connections O .The feeds--through are constructed 
from copper wire embedded in Araldite and sealed by the double 
coned PTFE plug © .The sealing pressure is provided by the 
stainless steel flange bolted to the top cap. This arrangement 
has been found to be the most suitable for the work described in 
this thesis near ambient conditions. 

Holes are drilled in the top and bottom of the vessel ()  
for two calibrated Degussa platinum resistance thermometers used 
to measure the temperature of the vessel and copper/constantin 
thermocouples which act as sensors for the temperature control 
system. 



Figure 15  

Pressure Vessel 

OAssembly 
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4.1.6. THE TEMPERATURE CONTROL UNIT 

The pressure vessel is mounted in a massive copper cylindri- 

cal vessel 07 	(see Fig. 15,p.81 ). This external vessel is 

surrounded by heating wire and cooling coils and is used to pro-

vide an isothermal enclosure around the pressure vessel. The hea-

ting wire ® is wound in a bifilar fashion so as to ensure the 

absence of a magnetic field. Furthermore, the top part of the 

enclosure is separately wired so as to allow control of the temp-

erature gradient between top and bottom of the vessel. Both hea-

ting wires - top part and bottom- are connected to independent 

30V d.c. power supplies, which are regulated with two PID tempe-

rature control units using as sensors thermocouples embedded in 

the pressure vessel. The maximum fluctuation observed in the tem-

perature of the wires over a period of hours is ± 1-162  K appro-

ximately• The absolute temperature of the vessel is taken as the 

average of the results for the two Degussa thermometers. Usually 

a half degree temperature difference is maintained along the ves-

sel, with the top hotter than the bottom, so as to eliminate gra-

vitationally induced convective effects. The two Degussa thermo-

meters were calibrated against the NPL calibrated standard Tins- 

ley platinum resistance thermometer. For this purpose both Degussa 

thermometers and the standard were placed in a copper block immer-

sed in a fluid bath to ensure good thermal contact. Resistance 

measurements were performed using a Smith Bridge No 3,type 41623, 

Tinsley & Co. for the Degussa thermometers, and a Precision a.c. 

Double Bridge, Automatic Systems Laboratories, for the NPL ther-

mometer. In operation the resistances of the Degussa thermometers 

were measured with a Smith Difference Bridge, Cambridge Instruments 

Co., to ±0.0005 Ohm. Taken together with the calibration, the ove-

rall uncertainty in the temperature measured with the Degussa ther-

mometers is ±0.01 K. 

4.1.7. THE GAS SYSTEM 

The pressure vessel within the isothermal enclosure, is con-

nected to the Gas system shown in Figure 16,p.83 . The Gas system 

.The change in the bath temperature observed in the first Result 

Tables is due to changes in the reference ice point used for the 
thermocouples. 
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is equipped with two Edwards Vacuum Products pumps and a Stansted. 
Fluids Power compressor. All high pressure connections are made 
with Hoke or Aminco fittings whereas the vacuum lines employ Ed-
wards Vacuum Products fittings. The pressure gauges are supplied 
by Bernet Instruments and have been calibrated against a standard 
pressure balance by the manufacturers; one gauge reads 0 - 1000psig 
and the other 0 - 2000psig. 

Once the pressure vessel is connected, the system 
to less then 10-2 Torr, recorded on the Pirani gauges 
sequent closure of valves V3

. 
, V6 and V8 isolate the 

and gas from the cylinder can be allowed to enter the. 

ssel to the required pressure using the compressor C 

is evacuated 
P . Sub-
vacuum lines 
pressure ve- 
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4.2. 	ELECTRONIC COMPONENTS 

The purpose of the electronic components of the apparatus is 

ultimately to determine the temperature rise of the platinum wi-

re in the thermal conductivity cells as a function of the time 

during their transient heating. The next sections describe in 

detail the various components and the manner in which these me-

asurements were accomplished. 

4.2.1. THE BRIDGE CIRCUIT 

Consider the circuit diagram shown in Figure 17 ,p. 85. The 

resistances of the long and short wire mounted in the cells as 

described previously are denoted by R e  and RS respectively. 

Resistances Ri, R2 and RX are decade resistance boxes, while 

R3,R4,R9 and R10 are all equal in value (designated hereafter 

as R). Relay switches S2,S5,S6,S7,S8 and S9 are all high speed 

reed relays, S1 is a mercury wetted reed relay, S10 a low contact 

resistance manual switch and S12 a single pole manual switch. 

Two constant d.c. voltage units (Hewllet Packard 6112A) sup-

ply the power, arranged so that point A in the bridge is close 

to earth potential, so as to keep noise to a minimum. Voltage 

polarity changes are detected between points A and F, by a high-

impedance electronic comparator. 

The principle of the bridge operation is as follows. Prior 

to a measurement it. is arranged so that in the 'reset' position 

the upper right hand arm resistance is slightly in excess of that 

required for balance with all parallel resistors connected. RX is 

adjusted to be approximately equal to the sum of the two wire re-

sistances in order to avoid a significant jump in the load upon 

switching S1 to position Y. 

Switching S1 to position Y, a measurement cycle is initiated 

by sending a pulse through S2 and C from the current flowing in 

the wires. This pulse is used to open gates between six electro-

nic counters and a crystal-controlled clock, and thus initiating 

the timing sequence. Relay switch S2 is then opened again. 

The current flowing through the wires causes heat dissipation, 

their temperature is therefore increased as are their resistances 

Re and RS  . As the resistance of the wires increases with that 

of the long wire increasing more, the bridge approaches balance 
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Figure 1',  The bridge circuit 

R11,R12,R13,R14,R15 

TYPE/MAKE RANGE (Ohms) TOL.% 

VISHAY 	1304 0.01 - 1,000 0.005 

VISHAY 	HA412 2,000 0.001 

VISHAY 	HA412 1,000 0.001 

VISHAY 	HA412 2,000 0.001 

VISHAY 	HA412 4,000 0.001 

VISHAY 	HA412 8,000 0.001 

MUIRHEAD D825K lO x 	100 0.010 

10 x 	10 0.050 

lO x 	1 0.100 

10 x 	0.1 0.500 

MUIRHEAD D805E 10 x 	1,000 0.002 

MUIRHEAD D805F 10 x 10,000 0.001 

MUIRHEAD D805G/1 10 x100,000 0.001 

BRIDGE RESISTANCE 

R1,R2 
R3,R4,R9,R10 
R5 

R6 
R7 

R8 

RX 
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section P, to E, 
difference across 

of Figure 18, which contains the potential 
the bridge as a function of time. Eventually 

a point is reached 
when the polarity of 
the signal between 

be opened 

time,.t 

Figure 18 . Potential difference VAF across 
the bridge as a function of time 

VAF 

ti t2 t3 t 4 
sal causes the first 
electronic counter 
to be stopped, as 
well as switch S5 to 

. This action increases the resistance of the upper right 

E, \ E2 \E3 \E4 \E5 
This polarity rever- "t5 	t6 

points A and F (E,) 
is changed (see also 
Fig.l7 ,p. 85 ),indi-
cating that a balance 
point of the bridge 
is reached at the 

particular time t,. 

hand arm and the potential difference across the bridge rises to 
P2 .Subsequently owing to the continuous resistance increase of 
the wires, the potential difference decays again towards a new 
balance point E2 which occurs at time t2  which is used to stop 
a second counter. Relay S6 is then opened increasing the upper ri-
ght hand arm resistance. This process is repeated until all six 
counters are stopped. Thus six times are recorded, with the last 
time taken with switches S5 to S9 open. A single measurement the-
refore yields six time readings at which the bridge was balanced. 
It will be shown later how this information can be used to obtain 
the difference of the wire resistances at each of these times. 

To increase the number of balance points, a Selector and a 
Mode switch are installed. The Selector switch, which is indica-
ted by S10, simply alters the bridge configuration so that diffe-
rent wire resistances Re and Rs are required for balance. In this 
way a total of thirty times can now be obtained. The Mode switch 
alters the way the parallel arm resistances are switched. In one 
mode, they are all in the circuit and one at a time is removed 
(Mode A, described above) whereas in the other mode one resistance 
is replaced by another successively (Mode B). Further more switch 

S12 produces two more combinations and thus the total number of 
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readings can amount to hundred twenty. Moreover, by changing the 

values of the parallel resistances, even more balance points can 

be obtained. In this way for a single measurement (at a particu-

lar thermodynamic state) a sufficient number of points of balance 

can be recorded (in practice about 36) so as to produce a good 

distribution of points along the AT versus lnt line. It may be 

noted that as the last reading is always carried out with resi-

stance R9 only in the upper right hand arm, irrespective of the 

Mode and Selector positions, the condition for bridge balance is 

always identical. 

4.2.2. THE COMPARATOR 

The bridge is connected to a comparator which serves as a bri-

dge balance detector. It consists of two input buffer amplifiers 

(Analog devices type 43K). These are in a balanced crosscoupled 

mode so as to achieve a very high input impedence (greater than 

10" Ohms) and a common mode rejection ratio greater than 80 db. 

     

      

      

      

      

      

      

Figure 19. Comparator 

The cross coupling ensures that common mode signals are passed 

at unity gain while differential signals are amplified. The out-

puts of the two buffers are connected to a conventional differe-

ntial circuit, that is equipped with a zero-set control and a me-

ter to allow offset adjustments. The complete circuit has a band 

width of a 100KHz, a high gain of 4.106  and a peak to peak noise 

level of approximately 20µV . 
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4.2.3. THE CONTROL LOGIC 

The control logic is responsible for the automatic sequencing 
of the bridge operation and the gating of the counters (see Figure 
20 ,p,89). Sequencing is accomplished by the six-stage shift re-
gister (SN74174) which is clocked by the comparator through a 2ms 
monostable. The monostable ensures that only one pulse is passed 
to the register for each bridge balance point and effectively marks 
the comparator output during the bridge registor switching opera-
tion. The shift register outputs are connected to two sets of ga-
tes. The first set selects for activation the appropriate buffer 

transistor from a group which drives the high speed reed relays 
of the bridge. The second set feeds the corresponding counters 
from a 100MHz master clock (NEON type MC105-TM). The system is 
provided with an interlock to the counter unit in order to minimi-
se the risk of accidental triggering or resetting. This is accom-
plished by means of a 'reset' button that must be pressed before 
the 'arm' and 'start' operations become active. 

To commence a run, the 'reset' and 'arm' buttons are deppressed 
sequentially. The 'reset' button loads all stages to logic state 
'1' and resets all counters. In this state all counters are gated 
off and all relays de-energised. The 'arm' command enables the tri-
gger monostable 2 and the monostable 3. Depression of the 'start' 
button fires the 30ms monostable 3, which in turn energises the 
start relay S1 and thus the wires connect to the bridge. The cur-
rent in the bridge produces a pulse through the capacitor C (see 
Fig.17 ,p.85 ) which is fed to the trigger monostable 2. A 2ms pu-
lse is then passed to the clear input of the shift register set-
ting the outputs of all elements to logic state '0', thereby 
energizing relays S5 to S9 (Mode A). The 2ms pulse holds the shift 
register clear while the relays and comparator settle. In the case 
of no pulse returning through the capacitor C after 30ms since the 
monostable 3 has fired, relay S1 is de-energised and then the wi-
res disconnected. 

Following the first polarity reversal detected by the compara- 
tor a logic state '1' is shifted into the first element of the 
shift register. The first counter is therby stopped, and relay 
S9 is de-energised. While this is performed the comparator is di-

sconnected from the bridge by relay S2 so that it does not experi-
ence oscillatory inputs due to the bouncing of relay S9. The 
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The duration of this disconnection is set at ams. A similar pro-
cess is initiated by each successive polarity reversal of the bri-
dge until all counters stopped. The logic elements used throughout 
are '74' series TTL. 

The sequence described above corresponds to the position A of 
the Mode switch. In this case the gates controlling relays S5 to 
S9 are NOR gates. In Mode B the NOR gates are replaced in the cir-
cuit by NAND gates to achieve the desired switching pattern. how-
ever in other respects the principle of operation is similar to 

that described above. 
Relay S2 is used to switch the comparator in circuit upon de-

pression of the 'start' button. Finally, the counting unit consists 
of six counters each of six decades (type SN7490) with separate 
clock inputs and a common reset line. 

4.3. WORKING EQUATIONS 

4.3.1. THE BRIDGE BALANCE EQUATIONS 

To formulate the balance conditions of the bridge (see Fig.17, 
p.85 ) we consider the case of switch S12 being in the open posi-
tion and conditions of polarity reversal between A and F. 

Applying Kirchoff's law to the circuit we obtain:- 

V = I1 • (R1 + R e + RS  + R2) 
V = I2•R3 + 13•R4 
V = 14-R9 + (I2 - 13 + I4 + I5)-R10 
I4•R9 = I2•R3 + (I2 - 13).R' 
14•R9 = 15•RS 

(4.7) 
(4.8) 
(4.9) 
(4.10) 
(4.11) 

where RS is the total value of the parallel resistors in circuit 
in the upper right hand arm of the bridge at the time of polarity 
change and R' is the sum of R5,R6,R7 and R8. 

If now S is the fraction of R' in the circuit, for polarity 
reversal VAF  = 0 . Thus the following relations can be easily 
obtained from equations (4.7) to (4.11) :- 

Cl'R2 - R1 	Re _ 
R2 	Rs 	

(Re/R,) 1 ( R- - 	) 
(4.12) 
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where, 

and 

Cl -  1 - (B + 1)/D 	 (4.13) 
( 1 +B/D) 

B 	= 	R /R 	 (4.14) 

D 	= [2(-..) +  1 ~ (1 + R ) 	(4.15) 

Thus, the difference of the resistances of the two wires at 

any balance point may be obtained from a knowledge of the resi-

stances of the bridge. Similar relations can be easily obtained 

for all configurations. We note that in order to calculate the 

required resistance difference of the wires (Re - Rw) the ratio 

Re/R, should be known. However, as will be shown later, to a 

very good zero approximation, 	- 

Re = Re(0)  
RS 	R,(0) (4.16) 

where, Re(0) and RS(0) denote the resistances of the two wires 

at equilibrium condition prior to measurements, which may be mea-

sured directly. 

4.3.2. THE TEMPERATURE COEFFICIENT OF RESISTANCE 

It was shown in the previous section how the difference in 

the resistances of the wires (Re - Rs) can be obtained during an 

experimental run. In the following section we will obtain from 

this resistance difference the actual temperature rise of the mi-

ddle portion of one wire which acts as a finite segment of an 

infinitely long wire. For this purpose it is necessary to use the 

resistance-temperature characteristics of the wires and it is co-

nvenient to use a pseudo-linear-temperature coefficient of resis-

tance for any wire; defined by the equation :- 

R(T) = R(T ) fl  + a' (T,T0 ) (T 	T.)1 	(4.17) 

where, R(T) is the resistance of the wire• at a temperature T and 

T. refers to the equilibrium bath temperature prior to a measure-

ment. The advantage of this definition'is that we have substituted 

the full quadratic expression for the resistance of a wire given 
by equation (4.6) by a linear relation. 
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From equation (4.6) and (4.17) we can obtain an expression for 

this pseudo-linear-temperature coefficient of resistance as:- 

_  A + B(2 (T -273.1) + (T - To))  
ac (T'T° ) 	1 + A(`1' - 273.15) + B(T -273.15)2 

(4.18) 

This expression refers to the situation of constant, zero tension 

in the wire. However, under the experimental conditions the wires 

are subjected to a variable tension (§4.1.3.,p.77 ).The effect of 

this variable tension is to actually lower the temperature coeffi-

cient of resistance. Thus, under the experimental conditions of 

varying stress, we can write the effective temperature coefficient 

of resistance as :- 

dR 
a(Te) = R10){dT}e 

1 aR 
= R(0) aTJ.~_p 1 ~~jT 

[al 
+ R(0) 8Z a T e (4.19) 

ac' (T,T° ) 

where the subscript e denotes the experimental conditions. The 

first term on the right hand side of equation (4.19) is the pseu-

do-temperature coefficient of resistance whereas the second term 

can be evaluated to a good approximation as follows : 

Rlo [aT} - 	'I A ,2v) 	 (4.20) 
T 

~aT 	 ' ( YA + Q KS ) ' 	 (4.21) 
e 

In these expressions v and Y denote Poisson's ratio and Young's 

modulus of elasticity for platinum respectively while A is the 

cross-sectional area of the wire, e its length, S' the linear 

expansion coefficient of platinum and KS the elasticity constant 

of the spring. Substituting equations (4.20) and (4.21) in equation 

(4.19) one obtains the effective temperature coefficient of resi-

stance as :- 

a(To) = a' (T,T0) (1 -El) 	(4.22) 

e
__ 	'(1 + 2"I')  
a"(T,To)(1 + AY/CKs) 	(4.23) 

For the present cells s, has a value of 0.001 . 

and 

where, 
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4.3.3. THE TEMPERATURE RISE EQUATIONS 

The purpose of using two wires in the opposite arms of the 
automatic bridge is to eliminate the effects of axial heat trans-
fer in them, which occur at their connections to the cell termi-
nals. In the ideal case when the two wires and their supports are 
identical except for their length, this compensation works exactly 
and it 	possible from the resistance difference of the two wi- 
res to calculate the temperature rise of a central section of one 
of them directly [100] . However, inevitable nonuniformities in 
the radius of the platinum wire make the two wires slightly dif-
ferent. Consequently a different approach to the calculation of 
the temperature rise of the wire must be adopted. 

We first ascribe to each wire a different average radius and 
heat flux per unit length, denoted by a e and qe for the long 
wire and as and qs for the short wire respectively. Then, if 
each wire behaved as a finite portion of an infinitely long wire, 
the temperature rise of each wire reads :- 

and 
(AT)e - 	n -1n(4 ~ ) 

(AT), = 4n ā 	 ln(4a 

(4.24) 

(4.25) 

We ignore all corrections due to the heat capacity (§3.4.2.,p.6? ) 
and outer boundary (§3.4.3.,p.68 ) for the purpose of this analy-
sis, since we assume that the effects we are discussing are small 
and so their coupling to other small effects is one order smaller. 

Experimentally we infer the temperature rise for the wire from 
its resistance change. Let us describe an 'experimental' tempera-
ture rise for the long wire, ATe , defined by the equation :- 

Re - Re (0) 	= a(T. ) • R e (0)•A Te 	 (4.26) 

and for the short wire:- 

R, - R,(0) 	= a(T0 )•R s(0)•AT, 	(4.27) 

Here, Re and RS represent as before the resistances of the 
long and short wire at a time t , whereas Re(0) and R,(0) the 

resistances of the long and short wire at time t=0 (i.e. at the 
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bath temperature prior to the initiation of the current, that is 

R2(0) = Re(To) 	)• 
The 'experimental' temperature rise ATE differs from the ide- 

al temperature rise (AT)e by an amount dependent on the axial 

heat conduction at the ends of the wire. Therefore we can write:- 

AT e = (AT)e - 

and for the short wire, 

1t '(Ge ,ae ,t,ka,aw ) (4.28) 

AT, = (AT)5 - es I(GS'as,t,ka,Aw ) 	(4.29) 

where G is a function of the geometry of the ends of the wires. 
We now define a further temperature rise AT' such that :- 

DT' _ (Rg - Rs) - (Re(0) - R5(0)) 	(4,30) a(To)(Re(0) - R=(0) )  

Substituting now equations(4.26) to (4.29) in equation (4.30) we 

derive :- 

AT'= (oT)e  { 1 + R e(0
R
)   (R)  (0)''-(AT)E ) 	Re (0)1R5 (0) (ge 5A-9.s a5 ) } 

(4.31) 
where, 

= Re(0)/ee 	& 	cfs  = R,(0)/E, 	(4.32) 

It can be seen that if the radii of the two wires were exactly 
the same, their resistances per unit length would have been equal 

and so would the heat dissipation within them and the temperature 
rise in each wire. In this case equation (4.31) reads:- 

AT' = (AT)e 	(4.33) 

The first term in equation (4.31) accounts for the difference in 

the temperature rise of each wire. The second term represents the 

consequent incomplete canceration of the end effects of the two 

wires.Because, however, the end effects for each wire constitute 

only about 2% of the temperature rise, the difference between them 

can usually be neglected 1105] . 

Therfore, the temperature rise of a portion of the long wire 

acting as a segment of an infinitely long wire may be obtained 

from the temperature rise AT' as :- 
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(AT)2 = A T' 1 + Re 	(~) (0 )RS(0) (1 	(AT); ) 

	
(4.34) 

By further manipulation of equation (4.34) together with equations 

(4.?4) to (4.30), one can show that the required temperature rise 

(AT)r can be obtained from entirely experimental parameters by 

the following equations :- 

(AT)r = lA+ E2 	 (4.35) 

where AT' 

and 

is given by the equation (4.30) and, 

£3 	R3(0) 	E Z 	(4.36) (Re(0) - Rs(0)) 

C2 = £ (1 + ln(4 c) ) 	(4.37) 

E 	1 - Fr5/Ffe 	 (4.38) 

The difference (Re - R S ) in equation (4.30) is obtained from 

the bridge balance equations (§4.3.1.,p.90 ). There it was stated 

that to zeroth order the ratio Re/RS which is required for the 

evaluation, may be equated to Re(0)/RL(0). A more rigorous appro-

ach is to calculate the corrected value of Re/Rs with the aid of 

the following relationship :- 

Re  
RS 1 + a(Tc) [(AT)e - (AT)SI.} 

RS 0 	1 + a(T,)•(AT)e'E2 
(4.39) 

with e2 given by equation (4.37) and a(T,) is the effective te-

mperature coefficient of resistance of the platinum wire given 

by the equation (4.22). An approximate value for (AT)e may be 

obtained from the zeroth order approximation Re/Rs=Re(0)/Rs(0), 

which can then be used in equation (4.39) to generate a better 

estimate of Re/RS which can be returned to the bridge balance e-

quations for a better estimate of (AT)e . Normally one iteration 

of this type is sufficient. 
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4.3.4. THE HEAT FLUX EQUATIONS 

The bridge arrangement of Figure 17 ,p.85 , ensures that equal 
currents flow in both wires. However, this alone does not imply an 

equal rate of heat dissipation per unit length in the wires as has 

already been discussed. 
By a similar analysis to that in the previous section one can 

derive 1105] , the following equations for the heat flux per unit 

length of the middle portion of the long wire, q, written in terms 

of experimental quantities as :- 

where, 

and 

g,* 
q = (1 -EL )` (1 +E5) 

* 	V2(Re - Rs )/(Q2- e9)  q 	{Rl + R2 + (Re-R,)(ee+es)/(2t- e3) 2 

Ek _ 	/ 	2a-Rj  -c - eec  
Pe  — es) ̀Re +Rs ) + (Re —Rs) ( ee + es) 

E5 = 	ec e  
ee — es 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

where, V is the applied voltage to the bridge, while R1 and R2 

are bridge resistances defined previously (§4.2.1.,p.84 ). 

4.3.5. SUMMARY & ALGORITHM FOR ANALYSIS 

The foregoing analysis has shown that the temperature rise of 
a finite section of the long wire acting as a part of an infinite 

wire can be deduced from the measurements carried out by the au-
tomatic bridge. This temperature rise, (AT)e cannot yet be iden-
tified with the AT;d of section 3.1. (Ideal solution), because 
the latter refers to the temperature rise of a wire of negligible 

heat capacity in an infinite fluid of constant physical properties, 

whereas the former refers to the real wire. In order to deduce 
AT;d from (AT)e  it is necessary to correct the latter with the 

heat capacity (§3.4.2.,p.67 ) and outer boundary corrections 
(§3.4.3.,p. 68). This is accomplished by the equation:- 

AT;d  = (AT)e + STHc  + 5T09  (4.44) 

It was shown in Chapter 3 that these two corrections to the tem-

perature rise were the only significant ones (›.0.01%). 
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The values of AT;d  derived from the experimental data in this 

way together with the corresponding times are all that is necessa-
ry to derive the thermal conductivity of the fluid X (pr,Tr ) from 

the equation, 

9c 	ln(4kdt AT ;d  - 4TCA(pr,Tr) 	a
-17-6 ) (4.45) 

by linear regression. The reference temperature is defined by the 
equation, 

Tr  = To + 2 AT(ti) + AT(t2)) 	(4.46) 
and, 

Pr 	p (P,Tr) (4.47) 

In order to present a concise summary of the analysis of the 
experimental data we conclude this section with an algorithm de-
scribing a computer program written to carry it out. 

- 1. Solve the bridge equations (§4.3.1.,p.90 )(4.12) as-
suming Re/RS=Re(0)/R5(0). Thus (R e  - R,) is obtained. 

- 2. Calculate AT' from equation (4.30) assuming the effe-
ctive temperature coefficient of resistance a is 
temperature independent. 

3. Calculate the (A T)e  from equation (4.35). 
_ 4. Calculate a new effective temperature coefficient of 

resistance from equation (4.22) using the (A T)e value 
obtained in Step 3 and the RE/Rs  ratio from equation 

(4.39). 

- 	

5. Repeat Steps 2 to 3 until the value of (AT)e has co-
nverged to the required accuracy (± 0.01%). 

- 	

6. Compute the heat flux from equation (4.40). 
- 7. Correct the temperature rise for the specific heat 

capacity and outer boundary and evaluate the refere-
nce temperature. 

_ 8. Determine the slope of the final temperature rise 
versus lnt values line and thus the thermal condu-
ctivity from equation (4.45). 
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4.4. 	EXPERIMENTAL PROCEDURE 

4.4.1. PURE GASES 

The system is evacuated to 10-2  Torr and the pure gas is in-

troduced into the pressure vessel directly from the gas cylinder 
until a pressure of about 20 Atmospheres. The compressor is then 
switched on and the system is pressurised to 100 Atmospheres. The 
temperature control unit is turned on and the system is left for 
24 hours to reach equilibrium of pressure and temperature. The 
bath temperature , To , is taken as an average of the two Degussa 
thermometers (top and bottom) usually kept at a temperature diffe-
rence of 0.5 'C(top hotter). The pressure is then read. Resistan-
ces in the bridge are adjusted to give a good distribution in lnt 
and about six transient heating runs performed. Finally the diffe-
rence of the resistance of the wires and the resistance of each 
wire is recorded with the bridge operating at a steady state mode. 
These measurements are performed for several different bridge vo-
ltages and the resistance at zero voltage (i.e. at bath temperatu-
re) is obtained by extrapolating the measured resistances against 
input power to zero voltage. These plots were always found to be 
linear so that the extrapolation introduces negligible additional 
uncertainty. 

The density of the gases at equilibrium and reference tempera-
ture has been computed from experimental P-V-T data [110-117] . 

The constant pressure heat capacity of the gases has been de-
duced from standard tabulations of the zero density values 1108,109] 
[130] , combined with an estimate of the density effect. This lat-
ter estimate has been based on the equations s— 

c - c°  = S ( B -B, )2  - (C -C1 ) - 21 
• p2 
	B2.  P 

B1  = T•(i4) , B2 
= T•(aT) 

Cl = T•( ā T) 	= m ( .11.1.  ) 

where, 

and 

(4.48) 

(4.49) 

(4.50) 

For the second virial coefficient, B, and the third, C, experimen-
tal data have been employed[110-117]. 
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4.4.2. MIXTURES 

In the case of mixtures additional problems arise because the-

re are few available data for the density of the mixture as a fun-

ction of the pressure and temperature at different molefractions. 

For this reason the density associated with each particular mea-

surement had to be measured directly. Two sample cylinders (330m1 

nominal volume)were thoroughly evacuated and weighed. They were 

then filled with Argon at 70  Atmospheres, and their pressure was 

recorded with a standard dead weight tester. The temperature was 

also measured by means of a thermocouple. The cylinders were then 

weighed and thus(as their mass, pressure and temperature were 

known)from accurate P-V-T data 1110] the volume of the two sample 

cylinders was found. Table 5 presents the results for the mass 

and volume of the two sample cylinders. 

Cylinder name 
	

Red 
	

White 

Evacuated mass (Kg) 1.09077+0.0004% 1.08925+0.0004% 

Volume @ 35 'C(m ) 3.3235.164+0.03% 3.2988.164+0.03% 

Table 5 . 

The mixtures were prepared gravimetr•ically in the sample cylinders. 

First the one component is introduced and weighed and then the se-

cond. Molefractions were thus computed with a typical associated 

uncertainty of +0.0005 

The mixture is left for two days in order to attain thermody-

namic equilibrium and was then introduced into the pressure vessel. 

During measurement, the sample cylinder was kept at a temperature 

very near the nominal temperature of 35'C and following every me-

asurement the pressure vessel was isolated and the sample cylinder 

was removed and weighed. Thus the associated density of the gas for 

each measurement was obtained. Small corrections to this density 

which were sometimes necessary were performed using approximate 

P-V-T data for particular mixtures 
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Figure 21 . Temperature rise as a function of time 

(Helium 5.71 MPa, 35 'C) 

+0.10 

(0) 
+0.05 

0.00 

-0.05 

-0.10 

• • 
• 

• 

• 

• • •
• 

• 
• • • 

• 

• .

• 

• • 

• 
. • •• 

• 

• 

• • • • • • • 

0 	0.1 	 0.3 	 1.0 
(s)  

Figure 22 , Deviations from the LT versus lnt straight line 

(Helium 5.71 MPa, 35 '0) 
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4.5. EQUIPMENT PERFORMANCE 

The earlier discussion of the working equations has demonstra-

ted that if the apparatus conforms exactly to the mathematical mo-

del of its operation the experimental values of the tT;d  vs lnt 

for a particular run should lie on a straight line. Since the ma-

thematical description of the apparatus neglects entirely any co-

nvective heat transfer from the wire, the observation of the pre-

dicted linearity serves to establish that the experimental measu-

rements are free from such effects. The overall, random error in 

the measured temperature rise of the wire owing to the bridge re-

solution and the accuracy of the bridge resistors is estimated to 

be ± 0.1% . Thus, it is expected that the deviations of the expe-

rimental points from a straight line should be randomnly distri-

buted and should not exceed ± 0.1%. Figure 21 ,p.100 , shows a 

direct plot of the corrected temperature rise pT;d against lnt 

for a typical experimental run in Helium at 35 'C and a pressure 
of 5.71 MPa in order to illustrate the straightness of the line. 

In this Figure, the deviations of the points from the least-squa-

res fitted straight line have been multiplied by a factor of twe-

nty to make them visible. Figure 22 , shows a deviation plot for 

the same results and it is seen that the deviations are indeed 

randomly distributed with a maximum deviation of only ± 0.05%. 

This is taken as conclusive evidence for the correct operation 

of our equipment. 

It is estimated that the random error in the thermal conducti-

vity of the gas, derived from straight lines such as that of Fi-

gure 21 , is ± 0.1%. Including a possible error in the temperatu-

re coefficient of resistance of the platinum wires to which the 

reported thermal conductivities are proportional, the overall a-

ccuracy of the thermal conductivity is estimated as ± 0.2%. 

Occasionally measurements on Helium and Argon were repeated 

as a check on the continued satisfactory performance of the inst-

rument. Such measurements produced results that did not deviate 

from the original ones by more than ± 0.15% (see Figure 38,p.14Ij. 
Furthermore, measurements performed on Helium with a completely 

different set of wires yielded results which differed by not more 

than ± 0.25%. Thus, the overall accuracy of the reported thermal 

conductivity values is believed to be ± 0.2%. 
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• FIVE 

RESULTS 

5. 	INTRODUCTION 

In the previous Chapters it has been demostrated how the 

equipment described in this thesis can be used to perform accu-

rate measurements of the thermal conductivity of gases . In this 

Chapter results for the thermal conductivity of nine pure gases 

and eighteen binary mixtures at 35 'C and within the pressure ra-
nge 1 - 10 MPa will be presented. In the interests of clarity a 

discussion of the interpretation of the results in terms of the 

theories presented in Chapter 2,is given in the next Chapter. 

5.1. RESULTS 

The nine pure 

listed in Table 6 
gases studied in this work and 1.1111: purity arc 

the 	t_ o binary r.i t•.re 4 n , p.102 , while 1.t1E C1~11 VV~rtl N1..~w~ J ...~_ ...~.- _ _ _ _ 

Table 7 ,p.103 . The measurements have been carried out at 35'C 
and up to a pressure of 
10 MPa. The lowest. prep- 

Supplier 	sure at which measure- 

ments have been perfor-

med has been set by the 

need to avoid significant 

Knudsen temperature jump 

effects 03.3.2.,p.64 ). 
Table 8 ,p.103,pre-

sents the characteristics 

of the thermal conducti-

vity cells used to per-

form these measurements. 

The results for the ther-

mal conductivity of the 

Table 6 

Gas Purity 

Helium 99.9992 
Neon 99.9995 

Argon 99.9997 
Krypton 99.97 
Xenon 99.997 

Hydrogen oo,aoo 

Methane 99.99 
Nitrogen 99.9992 

Carbon Monoxide 99.995 

. 

B.O.C. 
B.O.C. 

B.O.C. 
B.O.C. 

B.O.C. 

P.O.C. 
B.O.C. 
B.O.C. 
Matheson 



Table 7 . 

Molefraction 

X He = 0.2172 

xHe = 0.4662  

XHe = 0.6823 

XHe = 0.7156 

xAr  = 0.4088 

xAr  = 0.7059 
X H2  = 0.2699 

xH2  = 0.5168 
xH2= 0.7182 
xH2  = 0.2614 
xH2 = 0.4847 
xH2 = 0.6402 
xH2  = 0.7504 
xH2 = 0.4795 
xH2 = 0.7312 
xH2 = 0.2136 
xH2  = 0.4865 
x H 2  = 0.7338 

Mixture 

He/Ne 

Ar/Kr 

H2  /Ne 

H2/Ar 

H 2/Kr 

H2 /N2 

103 

pure gases are contained in 

Tables 9 to 17 ,p.107 to 

123 , and for the mixtures in 

Tables 18 to 27 ,p.125 to 139,. 
Each Table is followed by a Fi-

gure showing the thermal con-

ductivity of the particular gas 
as a function of the density. 

In every Table the initial con-

ditions prior to a measurement, 
i.e. pressure P,temperature TQ , 

and density pot  as well as the 

reference conditions, tempera-
ture Tr and density are repo-
rted. The thermal conductivity 

X(Tr) is then given at the refe-

rence temperature. In addition, 

the thermal conductivity cor-

rected to a nominal temperature 

Tn  = 35 'C is given A (Tn ) . 

The correction to the nominal 

temperature has been carried 

out with the aid of the fol- 

lowing equation 

X (Tn'P r  ) = ? (Tr,Pr) + (aT)pr  (Tn -Tr) (5.1) 

For the purpose of this correction it has been assumed that 

Table 8 	. 

The characteristics of the thermal conductivity cells 

Length of the 	long cell 
Length of the short cell 

Internal diameter of the cell 

230.0 mm 

134.0 mm 

11.05±0.01 mm 

Length of the 	long wire 158.96±0.02 mm 

Length of the short wire 63.80±0.02 mm 

Long 	wire resistance @ 35'C 423.928+0.005 Ohm 

Short wire resistance @ 35'C 172.493+0.005 Ohm 
Platinum wire radius 3.89 ±0.01 	pm 
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the derivative (8A/8T), is independent of the density and equal 

to the derivative in the limit of zero density (this will be dis-

cussed later in this section). In the case of the pure monatomic 

gases the latter deriva.tiv0 has been obtained directly from the 

corresponding temperature derivative of the viscosity [60] . For 

pure polyatomic gases the Hirschfelder-Eucken relation (2.162) 

was used. For the binary mixtures of monatomic gases the deriva-

tive has been estimated from the appropriate kinetic theory for-

mulae and the universal functionals of the extended principle of 

corresponding states [587 , while for binary polyatomic mixtures 

the Mason-Monchick approximation ($2.4.2.,p.47 ) was used. Since 

the corrections amount to no more than 0.5% in any case the addi-

tional uncertainty introduced to the reported thermal conductivi-

ty at the nominal temperature is negligible. The value of the deri-

vative (8A/aT)? is included at the foot of each Table. 
The entire set of experimental thermal conductivity data for 

each gas at the nominal temperature has been subjected to a stati-

stical analysis to determine the values of the coefficients 

and c;  's in the density expansion of the thermal conductivity:- 

A (p) = A°  + c, = p + c2•p2  + 031p3 + c7•p2•lnp +.... 	(5.2) 

The first five data points starting from the low density region 

are fitted to a linear expression in density and the coefficients 

X0  and c; , their variance and the standard deviation of the who-

le fit are recorded. The procedure is then repeated including one 

more data point and continued until the standard deviation of the 

fit passes through a stationary point. This provides us with the 

range of densities where the linear fit is applicable. The whole 

operation is repeated for a quadratic, a cubic and a logarithmic 

fit. 

In this way we determine the values of the coefficients A. and 

c;'s for each order of density expansion. If the data points con-

form to such an expansion, the coefficients A. and e;'s should 

be identical within their variance, among the fits for various o-

rders of expansion. The logarithmic term eZ , was always found 

insignificant for the density range studied here and it is not co-

nsidered further. The remaining coefficients are listed for each 

order of expansion in Tables 28 to 31 ,p.139 to 152 . 
Figures 38 to 42 ,p.141 to 145 , contain the deviations of the 
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present experimental data from the expansion of equation (5.2) co-

vering the entire density range. With the exception of Xenon the 

maximum deviation of the present experimental data from the expan-

sion does not exceed +0.2%. For Xenon, where the gas is relatively 

close to its critical point, so that both the thermal conductivity 

measurements and the determination of the density are more uncer-

tain, the maximum deviation is +0.3%. The above Figures include 

the results of the independent measurements of Kestin et al.[42,51] 

for the pure gases, carried out with a similar apparatus at 27.5•C 

with an estimated accuracy of +0.2%. We specifically exclude the 

earlier relative measurements of de Groot et al. [39] owing to 

their small systematic error. The deviation between the two sets 

of results do not exceed 0.4%, which is equivalent to the combi-

ned uncertainty of the data. For Xenon up to a density of 180 Kg/m3  

this remains true, but above this density the measurements of Ke-

stin et al. deviate systematically upwards. This can be seen more 

easily if one examines the behaviour of the excess thermal condu- 

ctivity for Xenon compared with 	other gases. 

In the correction of our experimental results for the pure ga-

ses to a nominal temperature it was assumed that the excess ther-

mal conductivity AX of a dense ga4 is independent of the density. 

That is , 

DA = A (p) - A (0) = f(P) only 	(5.3) 

In order to substantiate this hypothesis, at least over small tem-

perature ranges, we have plotted in Figures 46 and 47 p.153to 

154  the excess thermal conductivity for the pure gases determined 

in this work at 35 'C as a function of density. The same Figures 
include the experimental data of Kestin et al. at 27.5 'C [42,51] 

[52],and the NEL data at 38.0 'C, 70.0 'c and 113.0 'C [119,120]. 

This method of comparison has the advantage that small, residual 

systematic discrepancies between the two sets of measurements and 

the present results are removed. The Figures demonstrate that the 

excess thermal conductivity for all gases but Xenon is indeed in-

dependent of temperature. In the case of Xenon •the temperature 

independence of the excess thermal conductivity is preserved up 

to a density of 180 Kg/m3  above which the values at the lower 

temperature of Xenon increase significantly more rapidly. The 

critical temperature of Xenon is 16.6 'C and its critical density 
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is 1155 Kg/m3  . The enhanced thermal conductivity at elevated den-

sities for the lower temperature is therefore almost certainly due 

to that arising from the tail of the critical point enhancement[137]. 

Figures 38 to 42 also Ghow that results of earlier work deviate 

from the present correlations by as much as 4%, with the exception 

of the results of Michels et al . [126] , Tufeu et al. [43,56]  and 

Haarman [36] that generally lie within +2%  of the present data. 

For the mixtures deviations of the experimental data points 

from the equation (5.2) are shown in Figures 43 to 45 ,p 146 to148. 

Comparisons, however, with other data are omitted because a direct 

comparison with the few earlier measurements is more difficult. 

In conclusion, the present experimental data for the pure ga-

ses and the mixtures studied are to be preferred to the earlier 

results owing to their higher accuracy. 
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Table 9 . 

Thermal Comducti,Tity of Helium @ Tn  = 35 'C 

P 
MPa 

To  
'C 

Po 
Kg/m3  

Tr  
'C 

Pr  
Kg/m3  

A(T, ) 
mW/m/C 

A(Tn  ) 
mW/m/C 

3.51 33.28 5.42 37.91 5.34 160.87 159.85 

4.17 32.95 6.43 37.62 6.34 160.96 160.05 
4.91 32.70 7.56 37.46 7.45 160.97 160.10 

5.64 32.55 8.67 37.07 8.54 161.28 160.56 
6.32 31.72 9.70 36.23 9.56 161.35 160.92 

7.13 33.33 10.86 37.74 10.71 162.10 161.14 
7.84 32.71 11.91 37.16 11.75 162.14 161.38. 
8.45 31.46 12.93 35.91  12.76 162.16 161.84 

9.38 31.26 14.24 34.82 14.08 162.10 162.16 
10.06 30.98 15.23 34.50 15.06 162.03 162.20 

10.73 30.14 16.24 33.69 15.98 162.27 162.73 

(ax/aT )35 •c = 0.350 mW/m/C2 
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Figure 23 .  Thermal Conductivity of Helium as a function of density_at 35.0 'C 
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Table 10.  

Thermal Conductivity of Neon @ Tn  = 35 

P 
NO?a 

To 
'C 

P0  
Kg/m3  

Tr 
'C 

Pr 
Kg/m3  

?(Tr ) 
mW/m/C 

X( Tn  ) 
mW/m/C 

1.44 32.05 11.37 37.26 11.18 51.04 50.79 
2.15 31.57 17.00 34.64 16.73 51.07 51.11 
2.93 30.70 23.08 35.65 22.71 51.42 51.35 
3.63 30.72 28.53 35.60 28.08 51.54 51.48 
4.36 32.00 34.01 36.66 33.51. 51.80 51.61 
5.01 31.81 38.97 36.50 38.39 52.04 51.87 
5.71 31.70 44.32 36.27 43.67 52.20 52.06 
6.40 31.39 49.56 35.88 48.85 52.48 52.38 
7.13 30.73 55.15 35.26 54.35 52.52 52.49 
7.74 30.32 59.75 34.68 58.92 52.66 52.70 
8.48 31.34 65.06 35.81 64.14 52.95 52.86 
9.31 30.85 71.24 35.22 70.27 53.18 53.15 
9.92 29.93 75.90 34.33 74.84 53.12 53.19 
10.62 29.68 81.08 33.98 79.98 53.40 53.51 

(ax /aT)35 , c  = 0.111 mw/m /c2 
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Figure 24 . Thermal Conductivity of Neon as a function of density at 35.0 •C 
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Table 11 . 

Thermal Conductivity of Argon @ Tn  = 35 'C 

P 
MPa 

To  

'C 

Po  
Kg/m3  

Tr  
'C 

Pr  
Kg/m3  

X(Tr  ) 

mW/m/C 
X(Tn  ) 

mW/m/C 

0.95 30.73 15.08 37.05 14.76 18.64 18.54 
1.24 30.60 19.84 36.76 19.42 18.75 18.66 
1.62 30.29 25.40 36.34 24.88 18.84 18.77 
1.94 29.11 31.08 34.99 30.46 18.92 18.92 
2.28 28.58 36.87 34.42 36.12 9.01 19.04 
2.62 28.36 42.43 34.88 41.59 19.17 19.19 
2.98 30.14 48.01 35.65 47.07 19.39 19.36 

3.34 29.84 53.93 35.33 52.87 19.47 19.45 
3.78 29.63 61.22 34.32 60.05 19.66 19.66 
4.19 29.73 67.91 34.25 66.62 19.85 19.81 
4.60 29.40 74.85 34.53 73.43 20.00 20.02 
4.97 29.20 80.99 34.26 79.45 .20.13 20.16 
5.24 29.22 85.61 34.13 .84.00 20.24 20.29 
5.77 31.01 93.68 35.96 91.94 20.52 20.47 
6.25 31.12 101.67 35.83 99.84 20.71 20.67 
6.69 30.99 109.08 35.81 107.05 20.91 20.87 
7.21 30.84 117.91 35.55 115.74 21.15 21.12 
7.61 30.66 124.71 35.19 122.47 21.31 21.30 
7.94 30.28 130.24 34.77 127.90 21.44 21.45 
8.39 29.82 138.16 34.27 135.68 21.60 21.64 
8.77 29.70 144.76 34.08 142.18 21.86 21.90 
9.12 30.39 150.16 34.68 147.53 21.98 22.00 
9.34 29.31 154.59 33.56 151.87 22.02 22.09 
9.72 29.44 161.06 33.68 158.21 22.29 22.36 
10.11 31.01 166.49 35.20 163.59 22.44 22.43 
10.49 30.45 173.40 34.47 170.48 22.68 22.71 
10.86 30.04 179.78 34.03 176.74 22.85 	. 22.89 

(a x /a T)3, 'C' = 0.050 mw/m/c2 
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Figure 25 .  Thermal Conductivity of Argon as a function of density at 35.0 'C 
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Table 12. 

Thermal Conductivi.ty of Krypton @ Tn  = 35 'C 

P 
MPa 

To  

'C 

Po  

Kg/m3  

Tr  

'C 
Pr 

Kg/m3  

X(Tr ) 

mW/m/C 
X(Tn)  
mW/m/C 

1.01 29.35 34.37 35.68 33.63 10.03 10.04 
1.46 29.27 50.30 35.31 49.23 10.20 10.19 
1.94 29.40 68.96 35.17 67.51 10.37 10.37 
2.46 29.41 86.02 34.87 84.25 10.58 10.55 
2 .97 29.37 104.98 34.71 102.79 10.69 10.70 
3.39 29.32  121.18 34.47 118.68 10.96 10.91 
3.96 29.29 143.05 34.27 140.08 11.16 11.18 
4.44 29.62 161.88 34.45 158.52 11.35 11.36 
4.93 29.18 181.65 33.87 177.87 11.57 11.60 
5.52 29.32  205.96 _ 33.82 201.68 11.82 11.86 
6.03 29.50 227.25 33.83 222.56 12.04 12.07 
6.55 29.30 249.71 33.50 244.54 12.30 12.35 
7.07 29.25 272.78 33.33 267.10 12.57 12.62 
7.62 29.20 297.27 33.12 291.12 12.90 12.96 
8.24 34.51 316.28 38.30 309.91 13.22 13.13 
8.69 34.31 337.03 37.93 330.32 13.56 13.48 
9.48 33.52 374.63 36.97 367.19 13.99 13.93 

(8A/aT)35  , c  = 0.028 mW/m /C2 
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Figure 26 . Thermal Conductivity of Krypton as a function of density at 35.0 'C 
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Table 13 . 

Thermal Conductivity of Xenon @ T - 35 'C 

P 
MPa 

T. 
'C 

Po  
Kg/m3  

Tr  
'C Kg/m3  

X( Tr ) 
mW/m/C 

X( Tn ) 
mW/m/C 

0.61 30.93 32.78 37.07 32.07 5.939 5.899 
0.85 30.83 45.95 36.67 44.97 6.003 5.972 
1.16 30.70 64.35 36.28 62.96 6.121 6.096 
1.30 30.59 72.59 34.91 71.35 6.200 6.201 
1.60 30.52 91.19 35.77 89.2o 6.308 6.294 
1.811 30.51 104.29 35.61 101.99 6.444 6.432 
2.05 30.47 120.52 35.42 117.84 6.488 6.48o 
2.32 30.56 138.22 35.32 135.11 6.671 6.665 
2.64 30.56 160.68 35.11 156.99 6.798 6.796 
2.97 30.55 185.40 34.87 181.06 6.963 6.965 
3;39 30.60 219.51 34.63 214.24 7.219 7.226 
3.72 30.62 248.02 34.51 241.78 7.461 7.471 
4.02 30.66 275.34 34.35 268.34 7.689 7.702 
4.32 31.10 303.77 34.58 295.74 7.951 7.959 
4.63 30.42 339.87 33.72 330.43 8.366 8.391 

ON/a19,5, = 0.019 mw/m/C2 
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Figure 27 . Thermal Conductivity of Xenon as a function of.density at 35.0 'C 
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Table 14. 

Thermal Conductivity of Hydrogen @ T r, = 35 'C 

P 
MPa 

To 
'C 

Po 
Kg/m3  

Tr  

'C .  
Pr 

Kg/m3  
r1(Tr) 
mW/m/C 

-! 
?(Tn ) 
mW/m/C 

2.00 30.44 1.583 34.50 1.562 193.56 193.80 
2.50 30.47 1.969 34.48 1.943 193.72 193.97 
3.13 30.42 2.459 34.35 2.429 194.30 194.61 
3.64 30.48 2.851 34.34 2.816 194.50 194.81 
4.34 30.46 3.387 34.20 3.346 195.11 195.48 
5.02 30.45 3.898 34.18 3.851 195.28 195.66 
5.79 30.50 4.475 34.16 4.423 195.97 196.36 
6.51 30.45 5.008 34.09 4.950 196.67 197.10 
7.20 30.48 5.514 34.06 5.452 196.94 197.39 
7.73 30.47 5.900 34.04 5.830 197.49 197.94 
8.40 30.45 6.386 33.96 6.315 197.74 198.23 
9.17 30.47 6.940 34.00 6.862 198.25 198.73 

(aA/aT),s  .c  = 0.475 mW/m /C2 
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Table 15. 

Thermal Conductivity of Methane (a T„ = 35 'c 

P 
MPa 

To  

'C 
Po 

Kg/m3  
Tr 
'C 

Pr  
Kg/m3  

X(Tr ) 

mW/m/C 

X(Tn) 

mW/m/C 

1.84 30.43 12.05 34.33 11.88 36.45 36.51 

2.60 30.41 17.24 34.12 17.00 3?.01 37.09 

3.31 30.43 22.25 34.00 21.94 37.62 37.71 

3.93 30.41 26.68 33.88 26.30 38.09 38.19 
4.48 30.41 30.68 33.81 30.25 38.62 38.73 
5.06 30.40 34.96 33.67 34.47 39.22 39.35 
5.79 30.41 40.44 33.58 39.87 39.99 40.12 

6.48 30.41 45.71 33.47 45.06 40.78 40.92 

7.12 30.42 50.62 33.42 49.89 41.53 41.68 

7.81 30.41 56.04 33.72 65.86 42.71 42.74 

8.36 30.42 60.42 33.58 59.16 43.39 43.43 

8.79 30.42 63.85 33.51 62.51 44.00 44.04 
9.27 30.41 67.74 33.37 66.35 44.65 44.71 

{aA/aT)35 c = 0.092 mw/m/c2 
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Table 16. 

Thermal Conductivity of Nitrogen @ T. = 35 'C 

P 
MPa 

To  

'C 
P0 

Kg/m3  

Tr  
'C 

P, 

Kg/m3  

A(T r  ) 
mW/m/C 

X(T„ ) 

mW/m/C 

1.07 30.46 11.85 36.02 11.64 26.96 26.90 
1.55 30.48 17.30 35.84 16.99 27.09 27.04 
2.00 30.49 22.21 35.69 21.83 27.21 27.16 
2.58 30.49 28.75 35.51 28.25 27.49 27.52 
3.15 30.47 35.04 35.38 34.45 27.74 27.72 
3.64 30.45 40.57 35.21 39.90 28.02 28.01 
4.19 30.44 46.71 35.14 45.94 28.24 28.23 
4.76 30.43 52.99 35.01 52.13 28.58 28.58 
5.35 30.47 59.57 34.82 58.64 28.78 28.79 
5.92 30.51 65.81 34.93 64.77 29.14 29.15 
6.45 30.45 71.62 34.67 70.52 29.35 29.37 
6.98 30.47 77.53 34.63 76.35 29.66 29.69 
7.41 30.43 82.24 34.51 81.01 29.87 29.90 
7.84 30.42 86.94 34.45 85.64 30.14 30.18 
8.32 30.44 92.20 34.40 90.84 30.42 30.46 
8.76 30.43 97.01 34.33 95.60 30.65 30.69 
9.03 30.43 100.00 34.32 98.55 30.84 30.88 
9.31 30.41 103.00 34.23 101.53 30.97 31.02 

(8X/8T)35 ,c  = 0.063 mW/m/C2 
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Figure 30 . Thermal Conductivity of Nitrogen as a function of density at 35.0 'C 



Table 17 

Thermal Conductivity of Carbon Monoxide @ Tn  = 35 'C 

P 	Ta 
MPa 'C 

P. 
Kg/m3  

Tr 
'C 

P r  
Kg/m3  

A(Tr) 
mW/m/C 

X(Tn) 
mW/m/C 

0.99 30.33 11.10 35.85 10.90 26 .21 26.16 
1.68 30.34 18.73 35.52 18.40 26.45 26.42 
2.28 30.34 25.44 35.36 25.01 26.72 26,7o 
3.31 30.33 37.04 35.10 36.42 27.12 27.12 
4.42 30.32 49.42 34.89 48.61 27.67 27.68 
5.01 30.31 56.07 34.89 55.17 27.90 27.92 
5.78 30.30 64.72 34.62 63.69 28.37 28.39 
6.46 30.29 72.27 34.52 71.14 28.61 28.64 
7.27 30.29 81.34 34.40 80.08 29.02 29.06 
8.00 30.26 89.45 34.28 88.09 29.44 29.48 
8 75 30.29 97.68 34.16 96,21 29.84 29.89 
9.43 30.1.9 105.26 34.05 103.69 30.11 30.17 

(a x /a T )35 ,c = 0.060 mW/m/C 2 
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Figure 31 . Thermal Conductivity of Carbon Monoxide as a function of density at 35.0 'C 



Table 18. 

Thermal Conductivity of Helium/Neon CAD T n = 35 'C 

P 
MPa C 

PO 
Kg/m3 

Tr 
'C 

P~ 

Kg/m
3 

X(Tr ) 
mW/m/C 

Ā(Tn ) 
mW/m/C 

XHe = 	0.2172 

1.53 30.39 9.77 36.17 9.60 63.90 63.72 
2.02 30.37 12.83 36.03 12.61 63.82 63.67 
2.71 30.40 17.46 35.93 17.15 64107 63.93 
3.33 30.39 21.51 35.84 21.14 64.23 64.11 

3.63 30.44 24.60 35.76 24.19 64.12 64.00 
4.43 30.42 28.15 35.71 27.68 64.58 64.47 
5.02 30.41 32.06 35.61 31.54 64.60 64.51 
5.74 30.41 36.32 35.55 35.73 64.78 64.70 

6.55 30.37 41.39 35.45 40.72 64.91 64.84 
7.53 30.33 47.45 35.34 46.71 65.51 65.46 

XHe = 	0.4662 

(aa/8T)35 .c= 0.149 mW/m/C2 

2.03 30.44 9.18 35.47 9.04 83.72 83.63 
2.29 30.41 11.17 35.39 10.99 83.64 83.56 
2.60 30.34 12.84 35.27 12.64 83.88 83.82 
3.22 30.41 15.75 35.25 15.51 83.89 83.84 
3.91 30.49 18.97 35.24 18.69 83.90 83.86 
4.44 30.50 21.56 35.88 21.20 84.33 84.15 
5.05 30.46 . 24.37 35.80 23.96 84.60 84.43 
5.75 30.45 27.65 35.70 27.19 84.45 84.32 
6.53 30.43 31.43 35.58 30.92 84.81 84.69 
7.49 30.41 36.03 35.49 35.45 84.87 84.77 
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(aa/aT)35 ,c = 0.196 mW/m/C2 



Table 19. 

Thermal. Conductivity of Helium/Neon @ TR  = 35 'C 

P 
MPa 

To  
I .  

Po 
Kg/m3 'C 

Pr 
Kg/m3  

X(Tr ) 
mW/m/C 

A(TO 
mW/m/C 

He = 	0.6823 

2.11 30.48 7.57 34.93 7.46 107.49 107.51 
2.43 30.38 8.80 34.82 8.67 107.54 107.59 
2.78 30.08 9.98 34.47 9.84 107.42 107.69 
3.16 29.74 11.36 34.09 11.20 107.57 107.80 
3.59 29.70 13.03 33.99 12.85 107.65 107.91 
4.14 29.84 14.88 34.09 14.68 107.62 107.85 
4.76 29.85 17.09 34.03 16.87 107.81 108.06 
5.53 29.84 19.79 33.99 19.53 108.08 108.33 
6.94 29.83 22.24 33.88 21.96 108.22 108.50 
7.49 29.96 26.69 33.95 26.36 108.85 109.12 

xHe  = 	0.7156 

(ax/aT)35 .c  = 0.256 mw/m/c2  

2.38 30.39 7.14 34.77 7.05 111.86 111.92 
2.75 30.43 9.18 34.70 9.06 112.06 112.13 
3.30 30.42 11.07 34.62 10.92 112.18 112.28 
3.98 30.44 13.22 34.59 13.04 112.42 112.52 
4.64 30.41 15.38 34.50 15.18 112.58 112.71 
5.74 30.42 18.94 34.43 18.70 112.88 113.03 
6.58 30.43 21.66 34.41 21.39 113.21 113.36 
7.63 30.39 25.07 34.28 24.77 113.62 113.81 
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(aA/aT)35  = 0.260 mW/m/c2 
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Figure 32. Thermal Conductivity of Helium/Neon mixture 

as a function of density at 35.0 'C 
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Table 20. 

Thermal Conductivity of Argon/Krypton @ Tfl  = 35 'C 

P 
MPa 

T 0 

'C 

Po  

Kg/m3  

Tr  

'C 

Pr  

Kg/m3  

A(Tr  ) 
mW/m/Ci 

A(Tn  
mw/m/C 

XAr 	= 0.4088 

1.09 30.46 28.90 37.25 28.25 12.89 12.81 

1.51 30.45 38.97 37.02 38.09 12.99 12.92 

1.99 30.45 52.57 36.78 51.41 13.15 13.10 

2.72 30.43 72.76 36.46 71.17 13.45 13.46 

3.29 30.41 88.28 36.23 86.37 13.61 13.57 

3.91 30.41 106.11 36.06 103.77 13.81 13.77 

4.84 30.41 132.95 35.79 130.01 14.17 14.15 

5.48 30.43 151.80 35.63 148.48 14.41 14.38 

6.33 30.42 176.87 35.43 172.97 14.77 14.76 

7.16 30.39 201.38 35.13 196.90 15.15 15.15 

8.21 30.43 233.51 34.95 228.25 15.68 15.68 

(aa /aP)35  .c  = 0.036 mw/m /c2  

XAr 	= 0.7059 

1.51 30.44 30.59 35.96 30.02 15.41 15.54 

2.10 30.41 43.07 35.72  42.28 15.76 15.73 

2.46 30.39 50.91 35.55 49.99 15.91 15.89 

3.16 30.45 66.02 35.40 64.86 16.14 16.13 

3.70 30.45 77.36 35.23 75.93 16.33 16.34 

4.26 30.44 90.09 35.08 88.52 16.57 16.57 

4.93 30.43 104.12 34.98 102.30 16.79 16.79 

5.71 30.43 121.38 34.77 119.29 17.09 17.10 

6.59 30.41 141.13 34.61 138.66 17.43 17.44  

7.62 30.38 169.06 34.44 166.07 17.89 17.92 
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(aa/aT ) 35 .c= 0 .043 mW/m/c2 
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as a function of density at 35.0 'C 
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Table 21. 

Thermal Conductivity of Hydrogen/Neon @ T„ = 35 'C 

P 
MPa 

To  

'C 
Po 

Kg/m3  

Tr 

'C 
Pr 

Kg/m3  

X(T r ) 
mw/m/C 

X(Tn) 
mw/m/C 

XH2 = 	0.2699 

1.91 30.42 11.60 35.22 11.42 76.10 76.06 

2.44 30.46 14.81 35.15 14.59 76.25 76.22 

3.06 30.45 18.44 35.08 18.17 76.42 76.41 

3.55 30.48 21.29 35.01 20.98 76.44 76.44 
4.12 30.49 24.55 35.03 24.19 76.60 76.59 
4.80 30.46 28.43 34.87 28.03 76.72 76.74 

5.55 30.48 32.75 34.83 32.30 76.83 76.86 
6.46 30.44 38.28 34.75 37.76 77.09 77.14 
7.49 30.40 43.98 34.67 43.38 77.13 77.19 

xH2  = 	0.5168 

(a x /aT)35  ,c  - 0.185 mid/m/C2  

1.99 30.44 8.38 35.59 8.24 106.39 106.22 
2.40 30.44 10.11 35.53 9.95 106.61 106.45 

2.96 30.43 12.37 35.42 12.17 106.71 106.60 

3.55 30.45 14.94 35.33 14.71 106.75 106.65 

4.12 30.42 17.22 35.29 16.96 107.02 106.93 

4.79 30.43 19.91 35.19 19.61 107.10 107.04 

5.56 30.44 23.00 35.33 22.65 107.25 107.20 
6.46 30.39 26.58 35.06 26.19 107.47 107.45 
8.18 30.40 30.76 35.01 30.31 107.75 107.75 

(ax/aT)35 .c  = 0.300 mw/m/c2 



Table 22. 

Thermal Conductivity of Hydrogen/Neon @ T„ = 35 'C 

P 
MPa 

To  
'C 

Po  
Kg/m3  

Tr  
'C 

Pr  
Kg/m3  

X(Tr) 
mW/m/C 

A(T n ) 
mW/m/C 

xH2  = 	0.7188 

2.20 30.48 5.975 34.98 5.890 138.07 138.08 
2.79 30.48 7.632 34.89 7.526 138.11 138.15 
3.33 30.47 9.135 34.82 9.010 138.30 138.37 
3.89 30.50 10.53 34.73 10.39 138.40 138.49 
4.51 30.48 12.24 34.75 12.07 138.54 138.64 
5.24 30.51 14.15 34.72 13.96 138.71 138.81 
6.10 30.50 16.33 34.67 16.11 139.11 139.23 
7.11 30.48 18.92 34.58 18.68 139.39 139.55 
8.12 30.47 21.20 34.48 20.93 139.60 139.80 

(aX/aT)35  .c  = 0.377 mW/m /C2 
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Table 23. 

Thermal Conductivity of Hydrogen/Argon @ Tr, = 35 'C 

P 
MPa 

To  
'C 

Po  
Kg/m3  

Tr  . 
'C 

Pr  
Kg/m3  

X(Tr  ) 

mW/m/C 

A(Tn  ) 

mw/m/C 

xH 2  = 	0.2614 

1.71 30.48 19.85 35.56 19.52 43.18 43.27 

2.18 30.48 25.94  35.45 25.51 43.39 43.31 
2.54 30.48 30.51 35.33 30.02 43.60 43.55 
3.09 30.45 37.28 35.20 36.7o 43.71 43.68 

3.57 30.49 43.07 35.18 42.40 43.79 43.76 

4.15 30.44 49.94 35.05 49.17 43.88 43.87 
4.84 30.51 57.84 35.06 56.91 44.04 44.04 

5.59 30.45 66.96 34.94 65.90 44.20 44.20 

6.48 30.54 77.41 34.91 76.18 44.31 44.33 
7.49 30.46 89.55 34.80 88.12 44.65 44.68 

xH2  = 	0.4847 

(aa/aT),s ,c = 0.163 mW/m /C2  

2.20 30.50 18.24 34.84 17.98 72.02 72.06 
2.47 30.51 21.14 34.76 20.84 72.01 72.08 
2.90 30.49 24.53 34.71 24.19 72.21 72.28 
3.34 30.52 28.44 34.67 28.05 79.19 72.28 
3.89 30.48 32.87 34.56 32.43 72.39 72.50 
4.51 30.46 38.11 34.66 37.57 72.47 72.59 
5.23 30.49 44.15 34.45 43.56 72.50 72.64 
6.06 30.47 51.01 34.43 50.34 72.98 73.13 
7.05 30.50 58.96 33.79 58.30 72.79 73.10 
8.06 30.61 65.13 33.82 64.42 73.23 73.53 
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Table 24. 

Thermal Conductivity of Hydrogen/Argon €a T„ = 35 'C 

P 
MPa 

To  
'C 

Po 
Kg/m3 

Tr  
'C 

Pr 
m3 

x(Tr) 
mW/m/C 

x(Tn  ) 
mW/m/C 

xH2 = 	0.6402 

1.88 30.47 11.51 34.88 11.34 97.71 97.75 
2.21 30.52 13.31 34.87 13.12 97.79 97.83 
2.68 30.48 16.42 34.78 16.19 97.84 97.91 
3.30 30.52 20.04 34.71 19.76 97.85 98.15 
4.00 30.49 24.23 34.62 23.91 98.13 98.25 
4.64 30.48 27.94 34.53 27.57 98.12 98.27 
5.37 30.48 32.35 34.50 31.92 98.43 98.59 
6.23 30.50 37.36 34.40 36.88 98.50 98.70 
7.24 30.49 43.32 34.34 42.76 98.70 98.90 

x H2  = 	0.7504  

(aA/aT)35  ,c  = 0.322 mW/m/C2  

1.96 30.49 8.67 35.00 8.54 120.94 120.94 
2.57 30.49 13.36 34..94 11.20 121.18 121.20 
3.05 30.52 13.38 35.00 13.18 121.28 121.28 

3.52 30.50 15.48 34.85 15.26 121.42 121.47 
4.15 30.53 18.13 34.87 17.88 121.59 121.64 
4.84 30.50 20.95 34.73 20.65 121.76 121.86 
5.62 30.51 24.17 34.70 23.84 122.11 122.22 
6.51 30.49 27.94 34.66 27.57 122.36 122.49 
7.60 30.47 31.70 34.55 31.58 122.63 122.79 
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Table 25. 

Thermal Conductivity of Hydrogen/Krypton @ T„ = 35'C 

P 
MPa 

To  
•C 

Po 

Kg/m3  
Tr 
'C 

Pr 
Kg/m3  

X(Tr) 
mW/r/C 

X(Tn ) 
mW/m/C 

xH2 = 	0.4795 

1.66 30.50  25.09 34.99 24.73 59.65 59.65 
2.36 30.51 37.63 34.87 37.11 59.70  59.73 

3.04 30.53 50.11 34.81 49.43 59.91  59.96 
3.71 30.52 61.80 37.75 6o.97 59.96  60.02 

4.28 30.53 72.27 34.56 71.35 60.02 60.12 

4.94 30.51 84.20 34.51 83.14 60.07 60.19 

5.71 30.51 97.85 34.44 96.63 60.17 60.31 

6.59 30.49 113.8 34.36 112.4 60.26 60.42 

7.64 30.46 132.9 34.28 131.3 60.37 60.54 

xH2 = 	0.7312  

(ax /aT)35  .c = 0.240 mW/m/C2  

2.02 30.45 18.75 34.99 18.48 106.80 106.80 
2.53 30.40 23.72 34.87 23.39 106.98 107.03 

2.94 30.45 27.44 34.83 27.06 106.98 107.04 

3.56 30.43 33.41 34.78 32.95 107.14 107.22 

4.14 30.43 38.61 34.67 38.09 107.20 107.33 
4.83 30.44 44.67 34.64 44.08 107.49 107.63 

5.60 30.41 51.67 34.52  50.99 107.69 107.86 

6.50 30.42 59.64 34.46 58.88 107.74 107.94 

7.51 30.39 69.00 34.37 68.14 108.01 108.24 

(a a/aT )35  .c  = 0.360 mw/m/c2 
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Table 26 . 

Thermal Conductivity of Hydrogen/Nitrogen IV T„ 35 'C 

P 
MPa 

To 

'C 
Po 

Kg/m3  
Tr 
'C 

Pr 
Kg/m3  

A(Tr ) 
mW/m/C 

A(Th  ) 

mW/m/C 

X H2  0.2136 

2.02 30.51 18.13 35.24 17.85 44.72 44.68 

2.72 30.46 24.67 35.06 24.31 44.99 44.98 

3.33 30.50 29.99 35.01 29.56 45.17 45.16 

3.88 30.50 34.84 34.95 34.35 45.22 45.23 

4.68 30.47 41.89 34.83 41.31 45.52 45.54 

5.41 30.51 48.25 34.78 47.59 45.73 45.76 
6.28 30.46 55.88 34.62 55.13 46.06 46.12 

7.31 30.49 64.71 34.60 63.86 46.35 46.41 

a H  2  = 	0.4865 

(aa/aP)35 .c  = 0.150 mw/m/c2  

1.66 30.50 10.54 35.42 10.37 74.80 74.69 

2.13 30.46 13.23 35.22 13.03 74.83 74.77 
2.46 30.51 16.55 35.25 16.30 74.98 74.91 
3.26 30.54 20.14 35.12 19.84 74.99 74.96 

3.92 30.52 24.12 35.09 23.77 75.08 75.05 
4.58 30.58 28.01 35.07 27.61 75.13 75.11 
5.30 30.52 32.39 34.89 31.94 75.31 75.34 
6.14 30.55 37.34 34.87 36.83 75.49 75.53 
7.16 30.48 43.20 34.70 42.62 75.71 75.78 

(Caa/aT)35 'c = 0.260 mW/m/C2 
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Table 27 . 

Thermal Conductivity of Hydrogen/Nitrogen @ T, = 35 'C 

P. 

MPa 'C 
PO 

Kg/m3  
Tr 

'C 
Pr 

Kg/m3  
7%(Tr) 

mW/m/C 
A(Tn ) 

mW/m/C 

XH2 = 	0.7338  

2.22 30.48 8.03 35.18 7.90 116.11 116.04 
2.82 30.47 10.09 35.09 9.94  116.34 116.30 
3.41 30.48 12.35 35.02 12.17 116.45 116.44 
4.00 30.46 14.26 34.94 14.05 116.68 116.70 
4.65 30.47 16.40 34.89 16.17 116.87 116.91 

5.38 30.49 19.06 34.87 18.80 117.15 117.20 
6.25 30.44 22.01 34.75 21.70 117.43 117.52 
7.27 30.45 25.36 34.63 25.02 117.70 117.84 

(aa//T)35 .c  = 0.370 mW/m/C2 
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Above :- Helium/Neon mixture at 35 'C 
• XHe = 0.2172 ■ xHe = 0.4662 

• XHe = 0.6823 

Below :- Argon/Krypton mixture at 35 'C 
• XAr = 0.4082 ■ xAr = 0.7059 
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Table 28 

Statistical analysis of the experimental thermal conductivity values. 
(Pure mcnatonic gases) 

Gas 
Highest 
den3ity 

Kem
3  

No 

mw/m/C 

Cl 

}lwm 2/Kg/C 

C 2  

nwm5/Kg2/0 

C3 

PWM 8/Kg3/C 

Standard 
deviation 

He 16 158.40 +0.10 256. +9. 0.07 

81 50.41 +0.03 38.4+0.7 00 0.09 

Ar 55 18.18 ±0.01 24.0±0.3 - - 0.05 
85 18.20 +0.01 22.0+0.7 33. + 7. - 0.05 
155 18.20 +0.02 22.2+1.2 38. ±18. -112.+82. 0.07 

Kr 100 9.722+0.004 9.5+3.1 0.02 
370 9.708+0.020 9.5_:0•3 5.4+ 0.7 - 0.24 

Xe 220 5.656+0.014 7.31-0.1 0.25 
250 5.676+0.027 6.8+0.4 2.1+ 1.7 HMI 0.25 
340 5.609+0.034 8.8+0.7 -14. ±10. 4o.± 9. 0.30 



Table 29 . 

Statistical analysis of the experimental thermal conductivity values. 

(Pure polyatomic gases) 

Gas 
Highest 

density 
Kg/m3 

1% 

mW/m/C 

e l  

pWm2/Kg/C 

C2  

nWm5/Kg 2/C 

C3  

pWme/Kg3/C 

Standard 

deviation 

H2 5 192.21+0.01 951. + 30. - - 0.06 
7 192.27+0.10 913. +122. 5694.±1452. - 0.06 

CH4 30 35.35+0.04 120. + 	1.8 - - 0.06 
40 35.23+0.14 102.8+ 14.0 412.+ 	33. - 0.05 
65 35.23+0.11 104.4+ 10.7 194.± 180. 6340.+2813. 0.07 

40 26.45+0.06 37.5+ 	2.8 - - 0.16 
105 26.43+0.03 34.5+ 	1.4 106.+ 	11. - 0.12 

CO 85 25.68+0.03 41.7+ 	0.6 - - 0.16 
110 25.73+0.014 36.8+ 	1.8 61.+ 	13. - 0.13 



Table 30. 

Statistical analysis of the expeririental thermal conductivity values. 
(Monatomic mixtures) 

  

   

Gas 
Mole 

fraction 
Highest 
density 

Kg/m3 mW/m/C 

c' 
}lWm2/Kg/C 

C2 

nWms/Kg 2/C 

Standard 
deviation 

9~ 

He/Ne xHo = 0.2172 50 63.24+0.08 39.6+3.3 - 0.12 

xHe = 0.4662 35 83.13+0.0E 47.5+3.9 - 0.09 
xHe = 0.6823 27 107.02+0.06 65.2+5.2 - 0.05 

XHe s 0.7156 22 111.22+C.03 98.4+2.0 - 0.02 

Ar/Kr XAr = 0.4088 130 12.43±0.01 13.1+0.1 - 0.09 
230 12.46+0.02 11.9+0.5 7.±2. 0.09 

XAr= 0.7059 170 15.00+C-.01 17.6±0.1 - 0.06 



Table 	31 . 

Statistical analysis of the experimental thermal 

(Hydrogen mixtures) 

conductivity values 

Gas 
Mole 

fraction 

Highest 

density 
Kg/m3 

x° 

mW/m/C 

C1 

)Wm2/Kg/C 

02 

pWm5/Kg2/C 

Standard 

deviation 

H2 /Ne xH2 = 0.2699 43 75.64+0.03 38.9+1.2 0.0.E 
xH2 = 0.5168 32 105.74+0.04 65.9+2.3 0.04 

xH2 = 0.7188 20 137.49+0.04 94.4+4.5 0.02 

H2/Ar xH2 = 0.2614 90 42.89±0.03 19.8+0.7 0.10 

xH2« 0.4847 55 71.50±0.11 30.1+1.6 .1110 0.06 
xH2  - 0.6402 45 97.35±0.04 36.6+1.6 IMP 0.0i 
x1.2  = 0.7504 34 120.24+0.03 80.7+0.02 0.03 

H2 /Kr xH2 = 0.4795 135 59.48+0.03 8.3+0.4 0.0? 
X H2 22  0.7312 70 106.28+0.05 28.9+1.2 0.05 

112/N2 xH2  = 0.2136 65 44.02+0.07 37.2+1.0 0.09 

xH2` 0.4865 45 74.33+0.04 32.3+1.0 INN 0.04 
xH2  = 0.7338 35 115.21+0.03 105.5+1.8 0.02 
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SIX 

DISCUSSION 

6. 	INTRODUCTION 

In this Chapter the results obtained by the transient hot 

wire technique described in this thesis, are analysed and compa-

red with the most accurate kinetic theories available (Chapter 2). 
For simplicity the analysis is separated into five sections, 

the pure monatomic gases, monatomic mixtures, pure polyatomic 

gases, hydrogen/monatomic mixtures and polyatomic mixtures. 

6.1. PURE MONATOMIC GASES 

6.1.1. THE ZERO DENSITY LIMIT 

The statistical analysis of the experimental thermal condu-
ctivities as a function of density (§5.1. ,p.104) yields a° , 
the zero density thermal conductivity of the gases (Table 28, 

p.149) which we may employ to confirm the accuracy of our thermal 
conductivity measurements. For the pure polyatomic gases this is 

made possible by the exact kinetic theory relationship for the 
Eucken factor (§2.3.3.,p.42) :- 

° 
Eu = 	C~ rl°(T) • F(T*) = 2.5 (exact) (6.1) 

Kestin and his collaborators [60] have reported zero density 
viscosities 9° , for the five pure monatomic gases with an esti-

mated uncertainty of ±0.1%. The correction factor F(Tw)which 

accounts for the kinetic theory approximations above the first, 

was shown by Kestin and Mason [58] to be, to a good approximation 
independent of the intermolecular potential. They, therefore , 
proceeded to correlate this factor using the collision intergrals 

of the (11-6-8) potential model proposed by Hanley [1511. Their 
result for the factor F (T* )reads : - 
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F(T*) = 1 + 0.0042 [1 - exp[0.33(1 - T*)]} 	(6.2) 

The accuracy of this expression is estimated to be +0.1%. 

In Table 32 , we list the Eucken factors obtained with the 

aid of equation (6.1) for the five noble gases based on these 

data sources and our own thermal conductivity results at zero 

density. 

Table 32 . 

Experimental Eucken factors for the pure monatomic gases 

Gas 11 °  
pPa s 

A° 

mW/m/C 
F(T*) Eucken factor 

He 20.31+0.02 158.4 	+0.3 1.0042 2.494+0.01 
Ne 32.47+0.03 50.41 +0.10 1.0035 2.503+0.01 
Ar 23.24+0.02 18.18 +0.03 1.0012 2.503+0.01 
Kr 26.15+0.03 9.722±0.020 1.0006 2.497±0.01 
Xe 23.84+0.02 5.656±-0.010 1.0001 2.497+0.01 

HeR  20.31+0.02 3_58.5 	+0.3 1.0042 2.496+0.01 
ArR  23.24+0.02 18.17 +0.03 1.0012 2.501+0.01 

He" 20.31+0.02 158.3 	+0.3 1.0042 2.493±0.01 

At the bottom of the Table 32 , remeasured values for Helium(HeR) 

and Argon (ArR) are also presented. Measurements performed on He-

lium after all other results, using a new set of wires are also 

shown (He"). It can be seen that within the combined uncertainty 

the experimental viscosity and thermal conductivity data are 

entirely consistent with the theoretical Eucken factor of 2.500. 

This provides supporting evidence for the claim that the accuracy 

of the present measurements is one of +0.2%. Measurements perfor-

med on Helium with a new set of wires show that the reproducibi-

lity of the equipment is +0.1%, and therefore consistent with 

our estimate of the precision of the apparatus. 
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6.1.2. THE DENSITY DEPENDENCE 

The outstanding problem in the transport coefficients of mo-

derately dense gases and gas mixtures remains the rigorous theo-

retical calculation of the first density coefficient of the ther-

mal conductivity from first principles and known intermolecular . 

potentials. Such calculations have only been carried out for 

rigid spherical molecules by Sengers et al. [152] . The reason 

that the calculations are restricted to such crude molecular 

models are related to the difficulty of accounting for the dimers 

(bound states) which may be formed in three body collisions. It 

will be sometime before a full theory is developed. 

Two semi-theoretical approaches have been developed. The first 

is by Hoffman and Curtiss [154] and it basically neglects the pre-

sence of bound states but accounts for the effect of collisional 

transfer. The second, of Kim and Ross [1531 incorporates the ef-

fect of bound states but it neglects collisional transfer. These 

two semi-theoretical approaches were put together by Olmstead and 

Curtiss [163] who proceeded to derive first density coefficients 

as a function of the reduced temperature.The basic assumption 

of their method is the neglect of an atom-diatom collision in the 

singlet distribution function. The consequence of this is that 

although the theory properly accounts for the effects of colli-

sional transfer only approximate account of the effects of 

bound states is taken. Their results for the collisional tran-

sfer are the same as those by Snider and Curtiss 1164] . The 

first density coefficient Cr reduced in a dimensionless form 

is related to the previously discussed first density coefficient 

(§5.1.,p.104) c, by the expression :- 

c*  = 	c, • M  
A°N a3  

and it incorporates two contributions as :- 

C* 	(C*)sc + (Cr)eo 

(6.3) 

(6.h) 

where (C*)sc  is the collisional transfer contribution, first de-

rived by Snider and Curtiss 11641 and (Cr)Em  is the contribution 

of the bound states.Their results together with our experimental 

first density coefficients for the pure monatomic gases are plotted 
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in Figure 48. Due to the complexity of the calculation involved 

the theoretical results are based on an unrealistic Lennard-Jones 

(12-6) potential.Their results , however, seem to produce only 

order of magnitude agreement . We believe that part of this may 

be atributed to using an unrealistic potential and part owing 

to an inadequate treatment of bound states. It is beyond the 

scope of this work to provide an improvement on their theory, 

although such improvement is necessary since the discrepancies 

shown in Figure 48 are larger than the experimental uncertainty. 

The present measurements provide the means by which modifica-

tion of their theory or further suggestions can be checked. 

6.2. MONATOMIC MIXTURES 

6.2.1. THE ZERO DENSITY LIMIT 

In the case of monatomic mixtures the equivalent Eucken fa-

ctor relation, equation (2.107),p. 42 , involves the interaction 

viscosity and thermal conductivity. For the two binary systems 

studied here, the interaction viscosity (r)11  has been derived 

from the measurements of Kestin PTO coworkers [140,141] using 

the analysis based on the second order kinetic theory expressions 

and described in detail elsewhere [142] . In the case of the 

thermal conductivity of the binary mixtures, the poorer conver-

gence of the kinetic theory formulae requires a third order ana-

lysis in order to determine the interaction thermal conductivity 

[A;;], . This analysis has been based on the third order kinetic 

theory formulae (§2.3.2.,p. 33) as follows. For the analysis of 

both the viscosity and the thermal conductivity data it is ne-

cessary to assume an intermolecular pair potential for each of 

the three interactions in the binary mixture. Although the choi-

ce of the intermolecular potential has only a small effect on the 

computed values 	of [r1),  and [AO, ], it is desirable to use as 

reasonable a potential as possible. Accordingly, we have applied 

the inversion procedure of Gough et al.[122] to the universal 

collision integral 5212''(T*) of the extended law of corresponding 

states[58,60] so as to determine a 'universal' intermolecular pair 

potential for the interactions of the monatomic gases [143] . 

This pair potential has then been employed to compute all the col-
lision integrals which occur in  the third order expression for 
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the mixture thermal conductivity and thus the factor fmix which 

represents the ratio of the third order thermal conductivity to 

the first order, is computed via the explicit formulae of section 

§2.3.2. The experimental thermal conductivities are then assumed 

to be equal to the third order Chapman Cowling thermal condu-

ctivities. By means of the factor M these values are con-
verted to first order thermal conductivities, using the follow- 

ing expression (§2.3.2.,p.33) :- 
0 

[ Amixl1= [ 	Aff l31 
lmix 	Jmix 

First order values for the pure components thermal conductivities 

are computed in a similar manner. The first order expression for 

the mixture thermal conductivity (§2.3.1.,p.32) is then solved 

to obtain iteratively the interaction thermal conductivity [AO, 

for every mixture. The resulting values are given in Table 33 
together with their estimated uncertainties. 

Table 33 . 

Experimental Eucken factors for the monatomic mixtures 

Gas Molefraction [ 1101 
pPa s mW/m/C 

Eucken factor 

- 
He/Ne X He = 0.2172 22.21+0.2 102.5+1.0 2.472+0.05 

xH.= 0.4662 22.21+0.2 102.0 +1.0 2.460+0.05 

XHe= 0.6823 22.21+0.2 102.5 +1.0 2.472+0.05 

X He = 0.7156 22.21+0.2 101.7 +1.0 2.453+0.05 

A1/Kr xAr = 0.4088 23.98+0.2 13.74+0.14 2.486+0.05 

XAr = 0.7059 23.98±0.2 13.80+0.14 2.496±0.05 

The uncertainties in the computed values of [ nO, and [ai;l, are 

significantly larger than those in the mixture transport proper-

ties themselves, particularly when the mass ratio of the two spe-

cies is much different from unity, as in the case of Helium/Neon 

mixture where the mass ratio is about five. We have confirmed by 

direct calculation that an error of only 0.0005 in the mole fra-

ction of this particular mixture can contribute as much as +0.4% 

to the uncertainty in the calculated value of [k;l,. In addition, 

(6.5) 
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Fi2are 49 . Deviations of the experimental, zero density 
thermal conductivity of the binary mixtures 

from a calculation based on the third order 

kinetic theory formulae. 

• Experimental data for Helium/Neon 

o Experimental data for Argon/Krypton 

	First order calculation for Helium/Neon 	

First  order calculation for Argon/Krypton 

errors of +0.2% in the estimated collision integral ratios A* 

and B* each contribute to ±0.15% in the error in [7 ;;],,[75] • 

When account is taken of these uncertainties, together with the 

errors in the experimental thermal conductivity data of the mi-

xtures and the pure gases, the overall uncertainty in the cal-

culated value of [X;;1, is estimated to be one of +1%. 

From the Table 33 , it can be seen that fluctuations in the 

computed values of[A;;],. for the different composition mixtures 

lie within their estimated uncertainty and the corresponding 

experimental Eucken factors included in the same Table are con-

sistent with the expected value of 2.500 . 

In order to illustrate the importance of the higher-order 
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kinetic theory approximations to the thermal conductivity of bi-

nary mixtures, we have computed both the first order and third 

order approximations to the thermal conductivity of the mixtures 

studied here. For this purpose we have employed the mean value 

of [x0, determined above, the experimental values of the pure gas 

thermal conductivities and the collision integrals determined 

from the extended law of corresponding states [58,60] . Figure 

49 ,p.161, contains a plot of the deviations of the experimental 

data from the third order calculation of the mixture thermal con-

ductivity for the systems discussed here. The maximum deviation 

amounts to only ±0.1% so that the third order kinetic theory 

equations provide an adequate description of our experimental 

data. It can be seen in the same Figure that the first order 

formulae underestimate the thermal conductivity by up to 1.6% 

in the case of Helium/Neon mixtures although for Argon/Krypton 

the difference is only 0.2%. These calculations indicate the poor 

convergence of the kinetic theory formulae for the thermal con-

ductivity of binary gas mixtures with a large mass ratio. In the 

case of polyatomic gas mixtures the only formulae which exist 

are those equivalent to the first order Chapman-Cowling appro-

ximation. 

6.2.2. THE DENSITY DEPENDENCE 

A rigorous treatment of the first density coefficient of the 

thermal conductivity of monatomic mixtures has not yet been given. 

A semi-empirical description of the density dependence of the 

thermal conductivity of dense monatomic gas mixtures, is provided 

by the Mason-Wakeham approximation (§2.5.1.,p.54) which was pre-

sented in Chapter two. Because the expressions involved are first 

order in the Chapman-Cowling sense, first order thermal conducti-

vities for the pure components are required for consistency. These 

may be derived from our measurements by using the factor f;,31  in 

the manner described in the previous section and assuming that 

this factor is density independent, in the absence of other gui-

dance.The same intermolecular potential as in the zero density 

case is used for the functionals A* and B* whereas virial co-

efficients have been derived from the corresponding states corre-

lation of Kestin and Mason [58,60] . The pseudo-radial distribu- 
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tion functions (§2.5.1.,p.54) for the pure components are 

shown in Fig. 50,p.163. It can be seen that their behaviour is 

physically reasonable (real and greater than unity). 

The thermal conductivity of the mixtures obtained by this 

scheme are plotted in Fig. 51,p.164 for the Helium/Neon mixtu-

res and in Fig. 52,p.165 for the Argon/Krypton mixtures, where 
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Figure 52 .. Thermal Conductivity of Argon/Krypton mixture 
as a function of density at 35.0 'C 

they are compared with experimental data. 
The calculations for the Helium/Neon mixtures (dotted lines) 

lie systematically below the experimental results by up to 1.7%, 
a consequence of the first order nature of the calculations. 
For Argon/Krypton the calculations (dot-ted lines) differ by less 

than 0.3% from the experimental data. This improved agreement is 

a result of the smaller mass ratio of this mixture. Although no 

higher order approximations for the dense gas thermal conductivity 
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exist it is possible to make an empirical correction to the for-
mulae to account for them. For this purpose we have computed a 
third order correction factor fm!x  according to the equation :- 

f (3) - 	( 'mix] 3 
mix 

[Ami01 
(6.6) 

using the explicit third order expressions for the zero density 
limit described previously. We have then applied this correction 
factor uniformly to the calculated thermal conductivity at all 
densities. The results of this procedure are included in Fig.51 
and 52 (continuous lines); it can be --seen that a greatly impro-
ved agreement with experimental values is obtained as the devi-
ations now do not exceed 0.3%. 

An alternative approach to the above procedure is to use the 
experimental thermal conductivities of the pure components dire-
ctly in the equations. Although this method automatically ensu-
res that the pure gas thermal conductivities are reproduced, it 
leads to worse agreement with the experimental values for the 
mixtures. This is probably due to the additional uncertainty 
introduced by using third order values in a first order expression. 

6.2.3. MONATOMIC GASES & THEIR MIXTURES - CONCLUSION 

From the foregoing discussion it can be seen that at low de-
nsities the available kinetic theory formulae are entirely ade-
quate to describe the experimental results for monatomic gases 
and gas mixtures. Furthermore because intermolecular pair poten-
tials for all such interactions are well known there is no need 
for further measurements at zero density for these gases and 
their mixtures. 

At moderate densities the extensions of the modified Enskog 
theory to mixtures within the Mason-Wakeham approximation(§2.5.1) 
seem to be succesful in cases where the mass ratio of the con-
stituent gases is about one. When the mass ratio is significantly 
different from unity (as in Helium/Neon mixtures, about five) 
semi-empirical schemes like the one described in this thesis 
seem to work well. However this is only possible in monatomic 
species where the thermal conductivity can now be calculated to 
a third order approximation with the aid of the equations derived 
in this thesis. 
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The problem of calculating the first density coefficient from 

first principles and known intermolecular potentials was shown 

here to be still in the early stages. 

The measurements presented in this thesis, will, themfore 

provide in the future, a check on the theoretical predictions 

for more realistic potential models, and modifications of the 

present theories. 

6.3. 	POLYATOMIC GASES 

6.3.1. HYDROGEN 

To a first order non-vanishing terms in the expansion of 

the velocity distribution function, the relationship between the 

thermal conductivity of a polyatomic gas and its viscosity in 

the limit of zero density can be written - as was shown by Mason 

(§2.4.1.,p.46,eq.(2.125))- in terms of the Eucken factor Eu as:- 

Eu = 	
no 

hl 
'- 2C; 3R 

	L ) + y, c; (Co.  .nt+ 	) (6.7) 

where L is given by equation (2.126) and accounts for the effects 

of inelastic collisions in the gas. This expression is appropria-

te for the situation where only one mode of internal energy is 

excited. This, indeed, is the case for Hydrogen at 35 'C since 
the rotational modes are almost fully excited whereas the vibra-

tional energy contributes less than 0.1% to the total energy of 

a molecule. In these circumstances we can identify the collision 

number t with the colision number for rotational energy rela-

xation trot ,and the diffusion coeffient Dint with the diffusion 
coefficient for rotational energy D.°t. 

Furthermore, Hydrogen has relatively large collision numbers 

for rotational relaxation and thus inelastic collisions in the 

gas are rare although sufficient to maintain equilibrium between 

the different modes of motion of the molecule in the gas.For 

such cases, equation (6.7) was shown (§2.4.1.,p.47,eq.(2.127)) 

to simplify and yield the Modified Eucken relation reading:- 

Eu= M  _ 1 R 
r)° C° Y 	4 C° (6.8) + 	~D rot (1 	3R

° 
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The present thermal conductivity data at zero density,when 

combined with accurate measurements of the viscosity [60] give 

the opportunity to test equations(6.7) and (6.8) to a high degree 

of accuracy. 

In order to perform these calculations we must first obtain 

values for rot and Drot . The collision numbers for rotational 

relaxation of Hydrogen have been measured by Jonkman et al.[144] 

at low temperatures and their results have been extrapolated to 

35 'C using the appropriate formula given by Parker [145] . As 

far as Drat is concerned, to a first approximation it may be 

equated with the self diffusion coefficient D of the gas [80] 

which itself has been estimated with the aid of the first order 

kinetic theory relationship :- 

~ D - 	A* - 	Akk m  .1° 
r (6.9) 

where A* is a ratio of collision integrals, which are functionals 

of the intermolecular pair potential. The ratio A* has been o-

btained from calculations for an intermolecular potential de-

duced from molecular beam scattering data, second virial coef-

ficients and dispersion energy calculations by Gegenbach et al. 

[146] . The collision integral calculations have been performed 

by a semi-classical evaluation of phase shifts to account for 

the small, but significant, quantum effects at room temperature 

[127] . The collision integral calculations are believed to be 

accurate to within +0.2% at 35 'C 
Finally, we have used the zero density heat capacity given 

by McCarty [130] and computed the internal contribution to the 

molar heat capacity from the relationship :- 

3 
Cv,~nt = C„ 	- 2- R (6.10) 

Table 34 presents the values of the parameters obtained 

from the foregoing discussion and the values of the consequent 

Eucken factors. 

From the Table, it can be seen that the results of the Modi-

fied Eucken expression ,eq.(6.8) and the more rigorous formula 

by Mason et al. eq.(6.7) , are identical essentially. We note 

also that although neither formula reproduces the experimental 
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Table 34 . 

Eucken factors for pure Hydrogen 

rot 
A* 

'1°  

= 200 

= 1.1309 

= 9.123 pa s 

X°  = 192.21 mW/m/C 

Xtr = 140.95 mW/m/C 

Experimental Modified Eucken Mason et al. Hirschfelder 

eq. (6.8) 	eq. (6.7) 	eq. (2.132) 

2.068+0.008 
	

2.0531 
	

2.0529 	2.0530 

Eucken factor for Hydrogen within the experimental uncertainty, 

the maximum discrepancy amounts to no more than +0.75%. However 

both theoretical formulae underestimate the Eucken factor. 

There are several possible explanations for this discrepancy. 

It was thought that one of them might be related to the assum-

ption that normal-Hydrogen is a single component gas. In order 

to assess the validity of this assumption we have treated Hy- 

drogen as a two component gas - composed of ortho and para-Hy-

drogen - and used the Hirschfelder-Eucken formula (§2.4.2.,p.47, 
eq.(2.132)) to calculate the Eucken factor. The resulting Eucken 

factor, however, was found to be in complete agreement with the 

theoretical ones as can be seen from Table 34. 

All the theoretical expressions employed so far, are essenti- 

ally first order formulae in the Chapman-Cowling sense. From 

our discussion on the monatomic gases (§6.1.1.,p.155) we know 

that first order expressions can underestimate the thermal con-

ductivity to viscosity ratio by about 0.3%. Assuming that the 

higher order corrections in polyatomic gases constitute a simi-

lar amount to the ratio, this could provide an explanation for 

some of this discrepancy. 

A further point that must be considered is that the theoreti-

cal calculations of the Eucken factors are bounded by the uncer-

tainty associated with the selection of the value for Dr,t  . An 

error of 2% in this value, is sufficient to contribute up to 1% 
to the uncertainty in the Eucken factor. We therefore estimate 
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that the overall uncertainty in the calculated Eucken factors 

may be as much as +2%. Within this tolerance band the experimen-

tal and theoretical Eucken factors are consistent, although the 

theoretical predictions are less accurate than our measured 

values. 
Viehland et al. [84] attempted to provide a better approxi-

mation to the Eucken factor for polyatomic gases by accounting 

for the spin polarisation contribution to the transport proper-

ties of a polyatomic gas (§2.4.4.,p.50). Their expression howe-

ver restricted to cases for which the rotational energy level 

spacing is small compared to kT. Since this is not a valid as-

sumption for Hydrogen their result can not be used in our analy-

sis for the Eucken factors for Hydrogen. 
The foregoing discussion indicates that before useful infor-

mation can be deduced from the transport coefficients of poly-

atomic gases more accurate theoretical formulae must be obtained. 

6.3.2. NITROGEN 

In Nitrogen the rotational energy level spacing is small com-

pared to kT. Therefore the most accurate available theoretical 

calculation of the Eucken factor is the one presented by Vieh-

land [80] which incorporates spin polarization effects. This 

expression has the form (eq.(2.145),§2.4.4.,p.52):- 

Eu =, Mo 
 = - { 2 — 0 ) + no C v t  (0:int + A  ) x ri 	7 	 .I 

4(1 	 „ 	(6.11) 
l 

— 
	

+ Āint ) (A)11.9  A sat 

where A is defined by equation (2.126). 

The only quantity in this expression for which experimental 

data are not available or for which accurate calculations can 

not be performed is Dint  .Thus in this case we prefer to use our 

experimental data to calculate this quantity. 

To carry out this calculation we have employed our experimen-

tal results for the zero density thermal conductivity and the 

zero density viscosity by Kestin et al. [157] . The collision 

number for rotational relaxation in Nitrogen has been taken from 

the experimental data of Prangsma et al [1581 . The heat capa-
city has been obtained from the values of Hilsenrath et al. [159] 
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and the value of (AX„/ X )Sat  from the measurements of neemskerk 
et.al. [160] . Finally in accordance with equation (6.9) we have 

written :- 

nDint — D 	Dint _ 
e 	

P 
	t D 	5 A D

1 (6.12) 

where the functional A* can be obtained from the correlations 

of the extended law of corresponding states [58,60] . 

Table 35 

Eucken factor for pure Nitrogen 

rot 	A*  

5.7 1.0832 

(LX1/X)Sat 	ri° 	Xe 	A" 	Experimental 

pPa s mW/m/C mW/m/C Eucken factor 
—8X103  18.23 26.45 18.93 	1.9550 

The numerical values for all of the parameters discussed are 

presented in Table 35 . When these are employed in equation (6.12) 
we obtain :- 

D int 
D 0.93 	 (6.13) 

To establish the significance of this result several observations 

must be made. If the spin polarization effect is neglected, as it 

only constitutes a 1.3% correction to the Eucken factor, the value 

of(D;nt /D) is reduced by 3.5% and hence is further from unity. 
Furthermore, 10% fluctuations in the rotational relaxation number 

results in only a +0.5% change in the value of (Dint /D ) 
The right hand side of equation (6.9) is, as shown before, 

a first order formula while in the left hand side we use experi-

mental quantities. From our experience with monatomic gases, we 

know that using first order formulae can constitute errors of 

0.3% in the theoretical ratio. Such an error would result in a 

1% error on the ratio of (D;nt /D ). Finally, of course an error 
in A* contributes directly to the error in the calculated ratio 
of (D;nt /D), but it is unlikely that even allowing for the effects 
of inelastic collisions on A* , its value could be in error by 
more then +1%. 
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Sandler[165] has performed the only theoretical calculation 

of the ratio (D;,,t/D) for a spherocylidrical molecular model. For 

this particular model the calculation of(D;,,,/D) is relatively 

straightforward and a correlation of his results reads :- 

Din - 	+ 0.24 	0.44 	0.9  
t~ 	r1 2 	 3 
Srot 	rot 	b rot 

For the value of Knot 5.7 appropriate to Nitrogen this leads 

to the result :- 

D; 
D 1.023 (6.15) 

so that the internal energy diffusion coefficient is greater than 

that for mass in contrast to our experimental results. 

The physical significance of the result of equation (6.13) 

is that the internal, rotational energy in Nitrogen diffuses more 

slowly than do the molecules themselves. This in turn implies that 

there is a mechanism whereby rotational energy can be exchanged 

between Nitrogen molecules at a relatively long-range so that a 

fraction of the molecular collisions in the gas appear like 

head-on-collisions for rotational energy. It is possible that the 

long-range quadrapole-quadrapole interaction between Nitrogen 

molecules provides the means whereby this exchange is achieved. 

6.3.3. CARBON MONOXIDE 

The most accurate available theoretical calculation of the 

Eucken factor, as in the case of Nitrogen, is the one presented 

by Viehland [80] which incorporates spin polarisation effects 

eq.(6.11). As Carbon Monoxide displays very similar properties 

to Nitrogen, expression (6.11) was used to calculate the ratio 

of the internal energy diffusion coefficient to that for diffu-

sio of mass. 

We have employed our experimental data for the zero density 

thermal conductivity, The zero density viscosity was obtained 

from the measurements of Kestin et al. [161] whereas the colli-

sion number for rotational relaxation in Carbon Monoxide from 

the experimental data of Prangsma et al. 1168] . The heat capa-

city has been obtained from the values of Hilsenrath et al.11591 

and the value of (Alai,/i1)Sat from the measurements of Hermans et 

al.[1621. Finally the functional A* required for the calculation 

(6.14) 
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of the dimensionless group (pD;nt /rfi) from equation (6.12), was 

obtained from a (12-6) Lennard-Jones intermolecular potential 

for Carbon Monoxide suggested by Amdur et al. [170]. 

The numerical values for the parameters discussed are pre-

sented in Table 36 

Table 36 

Experimental Eucken factor for Carbon Monoxide 

trot 
	

A* 	(AX11/7  )sat x1° 	A" 	Nir 	Experimental 

pPa s 	mW/m/C mW/m/C Eucken factor 

4.1 1.109 -8.18163  18.23 25.73 18.61 1.898 

Employing these parameters in equation (6.11) we obtain :- 

Dint 
D 0.77 	 (6.16) 

If the spin polarisation effect is neglected, as it only consti-

tutes a 1.5% correction to the Eucken factor, the value of (Dk/D) 

is reduced by about 4% and hence further from unity. Furthermore, 

10% fluctuations in the rotational relaxation number results 

in only a ±0.5% change in the value of (Dint /10). An error in the 
functional A* ofcourse contributes directly to the error in the 

calculated ration of (Dint /D) but it is unlikely that even allowing 

for the effects of inelastic collisions in A*, its value could 

be in error by more than +1%. From the foregoing discussion we 
estimate the uncertainty involved in the ratio (Dior/D)  to be at 
most ±3%. 

The result above for Carbon Monoxide is remarkable. First 

despite the similarity of Carbon Monoxide and Nitrogen the re-

lationship between the mass and internal energy diffusion coef-

ficients is considerably different. Secondly the experimental 

finding that the internal energy diffusion coefficient is some 

20% smaller than that for mass is unusual. No experimental 

observations of such behaviour have been reported before although 

theoretical calculations based on approximate analyses have sug-

gested the possibility for strongly polar molecules. The origin 
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of this gross discrepancy between D;nt and D for polar gases 

is thought to be resonant exchange of internal energy brought 

about by the long range dipolar interaction for strongly polar 

molecules[1711 . Carbon Monoxide is in fact weakly dipolar and 

so we have employed the analysis of resonant exchange given 

by Mason and Monchick[171] to investigate whether it can explain 

the above observation. According to their analysis :- 

where, 

Dint_ _ 	1  
D 	1 + b 

2 '/212 
s 	= (1.7963 •ln3 ) 	udM e3mt z z 

(cfintiR)0 j~ T 

Here, 1d is the dipole moment in debyes, M the molecular weight 

in g/mole °Tot the rotational temperature in 'K and o the in-

termolecular pair potential parameter in A' . 

We have evaluated ō using standard tabulations of the mo-

lecular properties [155] and find b= 0.0005 . From this we 

infer that either the resonant exchange of internal energy is not 

responsible for our observations or that the appropriate analy-

sis of Mason and Monchick[171] is not complete. 

The only other means at present for estimating (Dint /D) are 

based on a model calculations. However neither the Sandler [165] 

spherocylinder tnodel which yields (Dint /D) = 1.019 , nor the 

rough sphere argument of Mason et al. [171] which yields the 

value (Dint /D) = 1.11 , is capable of explaining our results. 

It appears therfore that an explanation of this observation will 

have to await calculations of internal energy diffusion coeffi-

cient based on the Wang Chang and ūhlenbeck equations for reali-

stic potential models possibly with the aid of the recent Infi-

nite Order Sudden (I0S) approximation [128] to the collision 

dynamics. 

6.3.4. METHANE 

The same analysis is applied to Methane. The zero density 

viscosity is obtained from the measurements of Kestin [161]. 

The functional A* is taken from the correlations of the extended 

law of corresponding states 158] whereas the value of (iXii /N)sat 

from the measurements of Hermans et al.[1621.Finally the rotati- 
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onal relaxation number has been obtained from the experimental 
measurements of Prangsma et al. [158] . 

The numerical values for the parameters discussed are pre-

sented in Table 37 . 

Table 37 . 

Experimental Eucken factor for Methane 

(LAil/x)sat 	xi' 	~' 	 4 	Experimental 

lPa s 	mW/m/C mW/m/C Eucken factor 
Srot 
	A* 

8,7 1.083 -1.8x103 11.39 35.35 20.36 1.812 

Employing these parameters in equation (6.11) we obtain :- 

1.006 (6.19) 

For Methane the spin polarisation effect constitutes a 0.3% cor-

rection to the Eucken factor in contrast to Nitrogen or Carbon 

Monoxide. This is due to the smaller value of (AA„/X ),at 

Fluctuations of 10% in the rotational relaxation number result 

in only a ±0.4% change in the value of (D;,,t /D). We estimate,thus 
that the uncertainty involved in the ratio (Dint /D) is attributed 
mostly to the value of A* chosen and is about 1%. 

Within this uncertainty, for Methane, the diffusion coeffi-

cient of inernal energy seems to be equal to the mass diffusion 
coefficient. 
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6.4. 	HYDRUG ;N/MOIrATOiniC viIATURES 

From the theoretical point of view, the mixtures of the mona-

tomic gases with non-polar diatomic species are particularly in-

teresting to study.The binary mixtures of the monatomic gases with 

Hydrogen are especially atractive because inelastic collisions 

in the gas mixtures are rare, Thus on the one hand, relatively 

simple kinetic theory formulae which neglect such collisions en-

tirely should be quite adequate. On the other hand, the poorly 

known quantities related to inelastic collisions, which occur in 

the more rigorous kinetic theory formulae for the thermal condu-

ctivity have only a small effect on the calculated thermal con-

ductivity. 

6.4.1. THE ZERO DENSITY LIMIT 

In the limit of zero density the most accurate available ki-

netic theory is the one presented by Mason and Monchick  

p.47). 
The thermal conductivities of the pure gases at 35 'C have 

already been determined and reliable data for the viscosity of 

Hydrogen are available [60] . Therefore in order to carry out 

the theoretical calculation of the thermal conductivity of the 

mixtures from equations (2.131) to (2.144), it is necessary to 

obtain values for the various rotational collision numbers ~; , 

the diffusion coefficients for internal energy D;,; m j , and the 
functionals of the unlike interactions in the mixture A* and B*. 

The rotational collision numbers for the mixtures and pure 

Hydrogen have been obtained from the low temperature measurements 

of Jonkman [144] . The results have been extrapolated to 35 'C 
using the appropriate formula of Parker [145] and the values are 

listed in Table 38,p.177. For the diffusion coefficient of inter-

nal energy we have adopted the assumption employed by Monchick 

et al. [80], that it may be replaced by the ordinary mass diffu-

sion coefficient calculated in turn from equation (6.9). 

For the pure monatomic species we have computed the mass dif-

fusion coefficient from the experimental thermal conductivities 

obtained in this work, and the functionals A* of the extended 

law of corresponding states [58] via eq. (6.9). For pure Hydrogen 
we have employed the experimental viscosity [80] together with 



Le Roy et al. 	A* 
(149] 	 B* 

[ Al2], 9 mW/m/C 

1.108 
1.105 

77.81  

IMO 
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A* computed from the intermolecular pair potential given by Gengen-
bach et al. [146] . 

The necessary functionals of the unlike intermolecular pair 
potential have been computed for the potentials proposed by Bickel 
et al. [147] on the basis of molecular beam scattering data and 

Le Roy and van Kranendonk [148] on the basis of spectroscopic stu-

dies. In the case of Hydrogen/Argon interaction a further pair 

potential has been proposed by Le Roy et al. [149] from an exami-

nation of a greater range of experimental data. 

Table 38 . 

Parameters for the calculation of mixture thermal conductivities 

Unlike Intermolecular 
Pair Potential H2/Ne H2/Ar H2/Kr 

AI , mW/m/C 	192.21 192.21 192.21 
elAr , mW/m/C 	140.95 140.95 140.95 

A°2 , mW/m/C 	50.41 	18.20 	9.722 

„ 	250 	250 	250 

22 	00 	 00 	 00 

12 	 8o 	lo0 	14o 
21 	 0 	 00 	 00 

Bickes et al. 	AZ 
[147] 	B* 

[X12] 1 • mW/m/C 

1.105 
1.091 

108.06 

1.096 
1.096 

78.58 

1.904 
1.104 

67.57 

Le Roy and 	A* 	1.109 	1.098 	1.097 

Kranendonk[148] B* 	1.091 1.093 1.096 

[ A,2], , mW/m/C 	105.37 	76.97 	67.81 
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The potentials suggested by Bickes et al. and Le Roy and van 

Kranendonk are both of Lennard-Jones (12-6) form and as they are 

therefore spherically symmetric the evaluation of their collision 

integrals is straightforward. However the potential proposed by 

Le Roy et al. [149] is orientation-dependent, and so in this ca-

se the collision integrals have been computed by the method of 

Parker and Pack [128]. 

Table 38 summarises all the data employed for the theoreti-

cal evaluation of the thermal conductivity of the mixtures. In 

these calculations we have employed experimental values for the 

thermal conductivity of the pure gases to ensure our calculation 

reproduces the thermal conductivity at each end of the composi-

tion range. The results of the calculations are listed in Table 39. 

Table 39 

Calculated thermal conductivities of the mixtures 

at zero density 

Systems 

0 
~ exp 

mw/m/C 

Bickes [147] 

HE 	Xmix 

mw/m/C 	mw/m/c 

le Roy [1.48] 

A HE 	Amix 

mw/m/C 	mw/m/C 

Le Roy [ 149] 

A HE 	Āmtx 

mw/m/C mw/m/C 

H2/Ne 
xH2 = 0.2699 75.64 72.83 72.86 72.34 72.36 
xH2 = 0.5168 105.74 101.80 101.84 101.12 101.16 
xH2 = 0.7188 137.49 133.01 133.05 132.41 132.45 

H2/Ar 
x H2 = 0.2614 42.89 41.79 41.81 41.25 41.27 42.17 42.21 
xH2= 0.4847 71.49 69.43 69.47 68.48 68.52 70.09 70.13 
xH2 = 0.6402 97.35 94.96 95.02 93.86 93.91 96.76 95.81 
xH2= 0.7504 120.24 117.66 117.71 116.60 116.65 118.45 118.50 

H2 /Kr 
xH2= 0.4795 59.48 57.57 57.75 57.73 57.77 
xH2= 0.7312 106.28 103.25 103.30 103.21 103.27 



179 

First, as expected, the contribution of inelastic collisions to 

the mixture thermal conductivity is very small (0.05%) so that 

the simpler Hirschfelder-Eucken result is entirely adequate. Se-

condly, the calculations consistently underestimate the thermal 

conductivity of the mixtures by up to 4%. The best agreement 
is achieved for H2/Ar mixtures using the non-spherical HFD po-

tential of Le Roy et al. [149]where the deviations are no more 

than 1.5%. 

In view of the fact that the intermolecular pair potential 

employed have been derived without reference to transport pro-

perties, this agreement is encouraging. Nevertheless, the discre-

pancies between the experimental and calculated thermal condu-

ctivities lie well outside of the experimental uncertainty. It 

would be premature, however, to attribute all of this failure 

to the intermolecular pair potentials because the kinetic theory 

formulae employed for the calculation are only first-order ap- 

proximations. It was shown (§2.3.2.,p.33) that for monatomic mi-

xtures with species mass ratio much different from unity the 

first order formulae can underestimate the thermal conductivity 

by some 3%. Although no higher order expressions exist for the 

thermal conductivity of polyatomic gas mixtures it seems likely 

that the effect will be of a similar magnitude, particularly 

as for the mixtures studied here she mass ratio is greater than 

ten. It seems, therefore, that before polyatomic gas mixture 

properties at low density can be used as a test of intermolecu-

lar pair potentials more accurate kinetic theory expressions 

must be derived. 

6.4.2. THE DENSITY DEPENDENCE 

For moderate densities we have employed as for the monatomic 

mixtures the scheme proposed by Mason outlined in Chapter two, 

(§2.4.2.,p.47). In addition to the information needed for the 

calculation of the thermal conductivity in the low density limit 

the procedure requires the thermal conductivity of the pure gases 

as a function of density as well as estimates of the temperature 

dependent molecular size parameters y;i  . These parameters have 
been obtained from the second virial coefficients as shown in 

equation (2.155),p.54,  obtained from corresponding states [58] 

for the monatomic gases. For Hydrogen the second virial coeffi- 
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cient was obtained from the work of Brewer et al. [150] as were 

the interaction virial coefficients Bij . 

At zero density this formulation of Mason et al. reduces to 

the Hirschfelder-Eucken result, which neglects explicit inelastic 

effects. Therefore, for the reasons given earlier, the absolute 

values of the dense gas mixture thermal conductivity lie syste-

matically below the experimental values. Since there is no known 

method of correcting these calculations to a higher order of ap-

proximation we examine here only the predicted first density 

coefficient of the thermal conductivity defined in equation (5.2). 

Figure 53,p.180, contains plots of the calculated and ex-

perimental values of the coefficient c, for the three binary 

mixtures as a function of the Hydrogen molefraction in the mixtu-

re. The agreement between the two sets of values is remarkably 

good, confirming the usefulness of the procedure of Mason and 

his collaborators. 
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6.5. HYDROGEN/NITROGEN MIXTURES 

To complete the Hydrogen mixtures we chose to study a Hydro-

gen/polyatomic mixture because in this particular case, inelastic 

collisions play a more inportant role than before but only two 

rotational relaxation times are significant. The same analysis 

as the foregoing for the Hydrogen/monatomic mixtures is employed. 

6.5.1. THE ZERO DENSITY LIMIT 

As in the case of Hydrogen/monatomic mixtures (§6.4.1.,p.176) 
the only available kinetic theory is the semi-empirical appro-

ximation by Mason and Monchick (§2.4.2.,p.47). 

The thermal conductivity of Hydrogen and Nitrogen have already 

been determined. The zero density viscosity of the mixtures has 

been obtained from the measurements of Kestin and Yata [164] and 

employed to compute the interaction viscosity. 

The rotational collision numbers for the pure components 

and the mixtures have been obtained again from the low tempera-

ture measurements of Jonkman [144] and extrapolated to 35 'C 
using the approximate formula of Parker [145] . In order to cal-

culate the diffusion coefficient for internal energy we have em-

ployed for the pure Nitrogen and the Hydrogen/Nitrogen interaction 

the experimental viscosities together with the functionals A* 

computed from a Lennard-Jones (12-6) intermolecular potential 

suggested by Kestin and Yata [169] , according to eq.(6.9). That 

is, the diffusion coefficientsfor internal energy have been assu-

med to be identical with the mass diffusion coefficients. 

Table 40 

Parameters for the calculation of mixture thermal 

conductivity at low density 

TH2 

 

711121r 	XN2 	ĀN2tr ~H2 

mW/m/C mW/m/C mW/m/C mW/m/C 

• 

L2 SH2N2 N2H2 A* 	$' 	[ --H2N2.1 
mW/m/C 

192.21 140.95 26.45 18.93 200 5.7 200 5.7 1.1023 1.0906 ?3.701 
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Table 40 summarises all the data employed for the theoreti-

cal evaluation of the thermal conductivity of the mixtures. In 

these calculations we have employed experimental values for the 

thermal conductivity of the pure gases to ensure our calculation 

reproduces the thermal conductivity at each end of the composi-

tion range. The results of the calculation are listed in Table 41, 

Table 41 . 

Calculated mixture thermal conductivities 

at zero density 

A :xp 

mW/m/C 

O 
AHE 	~ma 

mW/m/C mW/m/C 

xH2 = 0.2136 44.09 43.60 43.78 
xH2 = 0.4865 74.47 74.1, 6 73.13 
xH2 = 0.7338 115.21 116.20 114.31 

The contribution of the inelastic colisions is larger id 

this case than the one obtained for the Hydrogen/monatomic sys-

tems and it amounts up to 2%. Therefore, the Hirschf'eider- ;ucken 

result is not sufficiently accurate for this system. The calcu-

lations consistently underestimate the thermal conductivity of 

the mfr. turc: by up to 1%. 	to be better 	the This seems .,,, 	than i.}iP egt-ea- 

ment obtained for the comparable Hydrogen/Neon cases (3%). How-

ever, this improved agreement is probably fortiutous. 

One point that ought to be made is that since inelastic col-

lisions constitute a 2% of the thermal conductivity an accurate 

value of the rotational relaxation number is important. Typica-

lly a 3% change in the rotational relaxation number for Nitrogen 

or Nitrogen/Hydrogen interaction constitutes a 27% change in the 

inelastic contribution term and therefore a 0.6% in the total 

thermal conductivity of the mixture. On the other hand, changes 

in the diffusion coefficient for internal energy of 3% produce 

only small changes ,0.0196, in the total thermal conductivity. 

Furthermore, changes in A* and B* of 3% produce only 0.6% change 
in the thermal conductivity. Hence if more accurate thermal con- 



184 

Cl 

(pwa/Kg/C ) 

100 

10 

• 

0 	0.25 	0.50 	0.75 	1.0 

Hydrogen molefraction 

Figure 54 . First density coefficient c, as a function 

of composition at 35 'C 
Expo.vir„ental 3- 	• 	112/N2  

Theoretical s- 	H2/N2 



185 

ductivity expressions were available the measurements could be 

used to determine the rotational relaxation number for the 

Ni-trogen/Hydrogen interaction. 

6.5.2. THE DENSITY DEPENDENCE 

For moderate densities the scheme proposed by Mason (§2.5.1., 

p.54) is again employed. Estimates for the temperature dependent 

molecular size parameter Y;! have been obtained from the second 

virial coefficient,as shown by equation (2.167), from the measu-

rements of Michels et al. [116] for Hydrogen, Michels and Wouters 

[117] for Nitrogen and Brewer [1501 for the unlike interaction. 

The functional B* was obtained in the same way as A* in the 

zero density limit previously examined. For the same reasons out-

lined in section(§6.4.2.,p.l79) we examine here only the predi-

cted first-density coefficient of the thermal conductivity of the 

mixtures as defined by the equation (5.2). 

Figure 54,p.184, contains plots of the calculated and expe-

rimental values of the coefficient c, for the three binary mi-

xtures as a function of the Hydrogen molefraction in the mixture. 

As in the Hydrogen/monatomic mixtures, the agreement between the 

two sets of values is remarkably good, confirming the usefulness 

of the procedure of Mason and his collaborators. 
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SEVEN 

SUGGESTIONS 
FOR FUTURE WORK 

In this thesis we have shown how very accurate measurements 

of the thermal conductivity of gases can be performed with the 
transient hot wire technique. We have also demonstrated the 
superiority of this technique over all other methods of measu-
ring the thermal conductivity of gases. 

Measurements on monatomic gases and their mixtures, at low 
density, were found to be adequately described by the available 
kinetic theory as extended to a third order approximation in 
this thesis. At elevated densities, semi-empirical schemes pre-
sented in this thesis were found to be adequate, whereas more 
rigorous theoretical predictions of the first density coeffi-
cient were not quantitatively accurate. For the polyatomic gases 
it was shown how molecular properties such as the internal ener-
gy diffusion coefficient can be derived from our results. Semi-
empirical interpolation formulae for the polyatomic mixtures 
were found to be very useful in correlating the results in the 
absence of rigorous theoretical calculations which do not yet 
exist. It it thus concluded that we have reached a stage where 
the measurements can be performed with a higher accuracy than 
the existing theoretical calculations. Therefore, we believe 
that no further measurements at room temperature are needed, on 
the basis that they will not offer us more information until 
the kinetic theory is more advanced. 

There are still however, insufficient experimental data on 
very low and high temperatures as well as very low pressures. 
As far as the very low pressures are concerned the present equi-
pment has to be modified by using a thicker platinum wire. The 
reason for this, is that at very low pressures Knudsen effects 
become important , that is, the mean free path in the gas becomes 
compatible with the radius of the wire. 

To perform measurements at very high or very low temperatures 
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the equipment must also be modified in two respects. Firstly, 

the cells were manufactured from stainless steel type 304 which 
6 

has a much larger linear thermal expansion coefficient (~16.10m/m) 

than the platinum wire (09x1d6m/m). Therefore at high temperatu-

res the wire will be stretched and break while at low tempera-

tures it will become slack. To overcome this difficulty it is 

proposed that the cells should be remade using another type of 

steel such as S80 which has a similar thermal expansion coeffi-
cient (i10.166m/m) to the wire. Secondly, in order to reach extre-

me temperatures, a vacuum must be introduced around the isother-

mal enclosure to avoid heat transfer to the environment. For low 

temperatures a system by which liquid Nitrogen is circulated a-

round the vessel must be introduced. These two requirements can 

both be met by surrounding the pressure vessel itself with Helium 

contained in a sealed isothermal enclosure , fitted• with heating 

cables and liquid Nitrogen circulation pipes, mounted in a vacuum 

chamber. The thermal inertia of the isothermal enclosure employed 

in the present measurements together with the vacuum jacket should 

be sufficient to ensure adequate temperature stability. In other 

respects the measurements can be performed as described in this 

thesis with due account being taken of the changes in the plati-
num wire length as .a function of temperature. 



SYMBOLS 

GENERAL SYMBOLS 

a 	- Wire radius 

b 	- Van der Waals co-volume 

B 	- Second virial coefficient 
ep 	- Molecular specific heat capacity at constant pressure 
c„ - Molecular specific heat capacity at constant volume 

By - Specific heat capacity at constant volume per unit mass 

c; 	- Absolute velocity of species i 

C 	- Third virial coefficient 

C; 	- Peculiar velocity of species i 
C„ - Molar specific heat capacity at constant volume 

- Dimensionless velocity. 
Du 	Multicomponent diffusion coefficient 
DT;  - Multicomponent thermal diffusion coefficient 
Dint  - Diffusion coefficient for internal energy 
e - Extension 
E - Energy 
F 	- Force 
g - Relative velocity of a molecule 

g' - Gravitational constant 

I 	- Electric current 
k 	- Boltzmann's constant 

kd - Thermal diffusivity 

KT; - Thermal diffusion ratio of species i 
KS  - Spring constant of elasticity 

- Length 
m 	- Molecular mass 

n 	- Number density 

N 	- Avogadro number 

Nt 	- Number of turns in a spring 
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P - Pressure 

P - Pressure tensor 

Pr - Prandtl number 

q - Heat flux 
Q 	- Heat flow 

✓ - Radius 
R - Resistance 

S - Switch 

t - Time 
T - Temperature 

u - Mean kinetic energy 

✓ - Hydrodynamic velocity 

V; 	- Diffusion velocity vector 

✓ - Voltage 
x; 	- Mole fraction of species i 

Y 	- Young's modulus of elasticity 

GREEK SYMBOLS 

a 	- Temperature coefficient of resistance 
R 	- Impact parameter for a collision 

Ri 	- Linear expansion coefficient 

y 	- Free path shortening parameter 

5pq - Kronecker's delta 

E - Potential well depth parameter 
- Collision number for equilibrium of translational 

and internal energy 

11 	- Viscosity 

R 	- Order of approximation 

A 	- Thermal conductivity 

A' 	- Partial thermal conductivity 

p 	- Reduced mass 

✓ - Number of components in a mixture 

v 	- Poisson's ratio 

n - 3.141592 	 
p 	- Mass density 
T 	- Potential parameter 

- Resistance per unit length 
0-8  - Stefan Boltzmann constant 
T 	Tension 
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x; - Angle of deflection on a collision 

- Pseudo-radial distribution function 

- Angle defining the orientation of a collision plane 
Q'e.si - Collision integral 

SUBSCRIPTS 

cw - Compression work correction 

e Experimental conditions 

tr - Translational contribution 

id - Ideal conditions 

int - Internal contribution 

- Long wire 

mix - Mixture 

o - Initial equilibrium conditions 

OS - Outer boundary correction 
R 	- Radiation correction 
s 	- Short wire 

SH - Specific heat capacity correction 
w - Wire 
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