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ABSTRACT  

The dynamic characteristics of circular and non-circular bearings are 

investigated theoretically and experimentally for various geometric 

parameters. 

The analysis is based on the precept that the dynamic properties of a 

bearing can be represented by a set of stiffness and damping coefficients. 

These coefficients were used directly in unbalance response calculations 

and in the determination of self-excited whirl instability. 

A test rig and suitable methods of bearing assessment were developed. 

The static and dynamic characteristics of four basic bearing types were 

experimentally determined. The bearings investigated were: 

circumferential groove 360°  circular bearing with L/D = , circular 30°  

and 90°  axial groove bearings with L/D = Z, 30°  axial groove elliptical 

bearing with preloading of 0.4, 0.5, 0.6 and 0.75 with L/D = 4, and 60°  

axial groove offset halves bearing with preloading of 0.4, 0.5 and 0.6 

with L/D = I. 

The steady-state and dynamic characteristics of the bearings tested 

were calculated for a range of eccentricity ratios and presented as non-

dimensional variables in graphical form. These were compared with the 

measured performance of the bearings. It was found that the experimental 

results were in good agreement with the theoretical analysis. 

In moderately and heavily loaded conditions, the elliptical bearing 

has the best stability and dynamic response characteristics, while in 

lightly loaded conditions, the offset halves bearing is superior. 

* the ratio of the geometric preset of the arc centre to the arc clearance 
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NOMENCLATURE  

a 	: major semi-axis of elliptical orbit 

b 	: minor semi-axis of elliptical orbit 

e 	: radial arc clearance 

c. 	oil film damping coefficients 

C. 	. non-dimensional oil film damping coefficients, c. w c/W 14 	 20 

d : radial preload of bearing arc 

e 	: eccentricity of the journal with respect to the bearing centre 

F
0 	: constant rotating load 

fx,ff  . oil film force components 

Fx,Fy  : non-dimensional oil film force components 

h 	. film thickness 

H : non-dimensional film thickness, h/c 

k.. 	oil film stiffness coefficients 
Z,7 

. non-dimensional oil film stiffness coefficients, k2. c/W 

L : bearing length 

M 	: bearing housing mass 

n : non-dimensional excitation frequency, St/w 

N rotational speed of the shaft, RPS 

p : pressure 

P . non-dimensional pressure, p (c/R)2/(6 w n) 

ro 	. shaft run-out radius 

R : shaft radius 

So 	Sommerfeld Number, pb  (c/R)2/(rt N) 

stability parameter, W/M a w2 

t : time 
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T 	. non-dimensional time, wt 

W 	static bearing load 

x,y,z 	fixed coordinates X,Y,Z 

[Z]n  : oil film impedance matrix 

Greek Symbols  

a 	: bearing axial groove angle 

S 	. inclination of elliptical orbit from horizontal axis 

Y : oil feed pressure ratio, pf/pb  

. non-dimensional preload, d/c 

eccentricity ratio, 

absolute viscosity of lubricating oil 

0 	. angular coordinate 

• Ak 	.  an eigenvalue of the characteristic equation 

v 	non-dimensional whirl frequency 

ok 	real part of Ak  

attitude angle of line of centres 

* 	. phase angle between the exciting force and displacement 

angular speed of the shaft (rad/s) 

excitation frequency 

Subscripts  

b : bearing 

in 	. inlet 

min . minimum 

max . maximum 

n 

 

: refers to non-dimensional excitation frequency 

- along the line of centres 

. normal to the line of centres in the direction of rotation 

E 

n 
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CHAPTER 1  

INTRODUCTION  

1.1 STATEMENT OF THE PROBLEM  

It is well known that a rigid rotating shaft supported in oil 

lubricated journal bearings may vibrate due to one or more reasons. 

Vibrations at the rotational frequency of the shaft (synchronous) result 

from run-out or forces due to out-of-balance of the shaft. Under certain 

operating conditions, other types of motion may occur. 	In these, the oil 

film causes a transfer of energy from the rotational motion about the axis 

of the shaft to the translatory motion of that axis. This leads to what 

are called self-excited oscillations in which the vibration amplitues may 

reach inadmissibly high levels. This particular form of instability 

induced by the fluid film forces manifests itself by the frequency of 

rotor precession which is found to be half or less of the rotor speed for 

circular bearings. The origin of the non-synchronous precession is due 

principally to the anisotropic non-linear properties of the oil film 

forces, which include the effect of'film rupture and reformation conditions. 

The operating conditions and resonant vibration amplitude and frequency are 

largely influenced by the design of the journal bearing. 

The objective of this investigation was to determine experimentally 

the stability characteristics and coefficients of 41 mm nominal diameter 

bearings of different bore shapes. Due to the difficulty of machining 

the multi-lobe bearing, the two basic types of bearings, elliptical and 

offset halves, with different preloads and groove angles, were tested and 

assessed using linearised theory. Because of the inevitable difficulties 

in the experimental determination of the coefficients, more attention has 

been devoted to the stability threshold. The results are compared with 

the prediction of linearised analysis. 
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1.2 LINEARISED MODEL OF JOURNAL BEARING SYSTEM  

In order to understand the dynamical characteristics of a journal 

bearing system, it is necessary to have an accurate knowledge of the 

bearing fluid film forces under dynamic conditions. Numerous 

investigators have discussed, both experimentally and analytically, the 

properties of the oil film forces for some fifty years. Many authors 

have assumed that variations in the oil film force acting on the journal 

can be linearly related to the variations in the journal displacement and 

velocity relative to its steady running position [1,2,3]. 	The stiffness 

coefficients arise from the change in the oil film shape and the damping 

coefficients arise from the squeeze film considerations. 

The linearised model has proved extremely useful in rotor bearing 

system analysis. The influence of the bearings on the critical speeds, 

stability and response of rotors has been shown to depend upon the eight 

linearised stiffness and damping coefficients. The theoretical 

derivations of these coefficients are now well known, many being based on 

the finite difference solutions of the Reynolds equation with constant 

viscosity. Although linearisation is valid only for small amplitudes, 

Lund & Thomsen [4] state that, in practice, it had been found to hold for 

amplitudes of up to one half of the clearance. However, considering the 

highly non-linear oil film forces with respect to the eccentricity ratio, 

it is much more appropriate to mention the limitation in terms of the 

minimum film thickness as proposed by Lund & Orcutt [5]. They state that 

the linearisation represents the actual oil film force also for large 

amplitudes with surprisingly good accuracy as long as the minimum film 

thickness during the vibration does not become less than approximately 25% 

of the radial clearance. 

Using various analytical approximations for the relationships between 

r 
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the oil film force and the position and velocity of the journal for 

circular bearings, many authors have predicted shaft behaviour under 

dynamic conditions [6,7,8]. Although these approximate analytical 

solutions may be helpful in explaining the behaviour of systems with 

circular bearings, they are not applicable to bearings of non-circular 

profile. 	In engineering practice, it has been found that system stability 

is greater with bearings of non-circular profile [9]. 

1.3 METHODS OF DETERMINATION OF BEARING COEFFICIENTS  

Although the analysis of rotor bearing systems is considerably 

simplified by the eight linearised bearing coefficients, unless the 

coefficients can be measured experimentally such an analysis is of limited 

value. 

There are two basic methods available for the determination of the 

coefficients experimentally. 	These are classified according to the use of: 

(a) the static characteristics; 

(b) the dynamic response characteristics of the bearing. 

The stiffness coefficients can be derived from the static testing of 

the journal locus curve. The definite relationship between the load and 

the eccentricity and the attitude angle is given by Morrison [3]. The 

other method given by Mitchell et al [10] is termed the incremental loading 

method, which is based on the measurements of the quasi-static equilibrium 

positions under the small changes of the imposed component of the load. 

The eight coefficients can also be determined from the dynamic 

response of bearings. The technique of exciting the bearing sinusoidally 

in two mutually perpendicular directions, and in each case measuring the 
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amplitude and phase angle of the resulting motions was adapted by 

Glienicke [11] for a series of tests on 120 mm diameter bearings. Full-

scale bearing tests with this method were presented by Morton [12]. 

With the known values of the stiffness coefficients, the damping 

coefficients were calculated by Woodcock et al [13] from the measurements 

of the vibration amplitudes and phase angles relative to the unbalance 

force. 

Morton [14] has developed a transient technique which involves a step 

change in the force applied to a rotating shaft. Full-scale test results 

were presented. 

In all these methods, it is generally accepted that the coefficients 

derived from static testing data are extremely sensitive to measurement 

errors. The sensitivity of dynamically derived coefficients is more 

difficult to assess due to the ill-conditioning of the matrix formed in 

the evaluation of the coefficients. 	In particular, the cross-coupling 

stiffness coefficients, one of which always changes sign over the loading 

range, affect the accuracy of the calculations. 	Iwatsubo [15] analytically 

found that the damped natural frequency is not greatly affected by the 

effects of bearing coefficients, but the damping characteristics of the 

system which are very important for instability and unbalance response are 

sensitively affected. 

1.4 NON-CIRCULAR BEARINGS  

In recent years, considerable attention has been paid to non-circular 

bore bearings due to their substantially better dynamic behaviour compared 

to conventional circular bearings. These bearings have found extensive 

use in high speed machinery and the support of turbo-generator rotors. 

Various types of special-purpose journal bearings are used in 
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engineering. There are many geometric parameters available in the design 

of fixed arc, multi-lobe bearings. These include the number of arcs, arc 

clearance, preload, offset of arcs and groove angles and positions between 

the arcs. Complex bearing geometries can be designed by the proper choice 

of these variables in order to greatly improve the stability of a rotor. 

However, generally speaking, these bearings are more costly to manufacture, 

install and maintain than circular bearings. 

The standard design is to modify the two axial-groove circular 

bearings but displacing the arc centres from the geometric centre. This 

type of bearing is widely used in turbomachinery due to the simplicity of 

design. 	Examples are the elliptical and offset halves bearings. 

Although extensive literature is available on circular bearings, the 

literature concerning the effects of different non-circular bearing designs 

on the dynamic characteristics of.rotors is comparatively very little. 

The steady-state load capacity and power loss of the elliptical and 

the symmetric three-lobe bearing have been theoretically and experimentally 

investigated by Pinkus [16,17,18,19,20]. 	Pinkus & Sternlicht [21] have 

extended these results to a greater range of geometric variables. The 

static and stiffness properties of the elliptical and offset halves bearings 

have been analysed by Wilcock [22]. 

Using linearisation theory, the coefficients and the stability of some 

multi-lobe bearings have been investigated experimentally by Glienicke [11]. 

Falkenhagen at al [23] examined the stability and transient characteristics 

of a three-lobe bearing. The stability characteristics of six different 

bearing bore shapes are investigated for various geometric parameters in 

[24]. Recently, stability and transient and unbalance characteristics of 

four specific multi-lobe bearings have been reported in [25,26]. 

In all these analyses, it has been found that in applications where 
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the load carrying capacity is of secondary importance, the multi-lobe 

bearings can show better performance, depending on the operating condition. 
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CHAPTER 2  

DYNAMICALLY LOADED JOURNAL BEARINGS  

2.1 REYNOLDS EQUATION  

The full form of the Reynolds equation for a dynamically loaded 

bearing, shown in Figure 2.1, is derived by Pinkus & Sternlicht [21], and 

is given for an isoviscous lubricant as: 

u (h3  2) + az (h3  ) = en I (rv - 2 g) R 5S+ 2 51. cos 0 l 	(2.1) 

It is convenient to use the non-dimensional form of the equation in 

order to maintain the generality of the solution. 	Introducing the 

following non-dimensional variables: 

=R , Z = 	, P= 	p 	H= ē 
S w n CR/c)2  

(2.2) 

into equation (2.1) gives the following non-dimensional form of the 

Reynolds equation: 

aē (H3  ae) + (L)2  H3 
32P = 

(1 - 2¢) d4 + 2ē cos 0 	(2.3) 
az2  

The boundary conditions used in the integration of this equation are, 

for a circumferentially grooved bearing: 

P(0,0) = 

P(6,1) = 

P(0,Z) = 

P f  

0 

P(27r,Z) 

} (2.4) 
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Figure 2.1: Dynamically loaded journal bearing 
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and for axial groove bearings: 

P(ein, Z) = P(8out' Z)  = 0 

P(0,1) = P(6,-1) = 0 

The cavitation condition was also imposed by introducing: 

DP 
8s 0 	when 	P = 0 	 (2.6) 

where s is the coordinate normal to the cavitation boundary in the O-Z 

plane. 

It is to be noted that the Reynolds equation is a strong function of 

film thickness due to the cubic terms. For the preloaded non-circular 

bearing types, the film thickness may be defined in terms of eccentricity 

and attitude angle relative to the bearing centre. However, to actually 

calculate the film thickness, it is the eccentricity and associated 

attitude angle of each lobe relative to the centre of the bearing arc 

which is of interest. These relationships are well defined and given in 

Appendix A for the tested elliptical and offset halves bearings. 

The Reynolds equation was integrated by using a, conventional finite 

difference procedure. The mesh size used in the calculations was 72 

divisions circumferentially and10 divisions axially for half of the bearing. 

The Gauss-Seidel iteration method was applied to the finite difference 

equation and the following convergence limit was imposed which had to be 

satisfied before the termination of the iterative procedure: 

77  (P7  - 	
4 10 6  

ii7pi 1-17 
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The cavitation condition was allowed for by setting all negative 

pressures to zero as they were generated. When the pressure distribution, 

which is a function of the bearing bore geometry, aspect ratio and 

eccentricity, is obtained, the steady-state and dynamic characteristics of 

the oil film can be computed. 

2.2 THE STEADY-STATE CHARACTERISTICS OF AN OIL FILM  • 

The principal steady-state characteristics are the bearing load 

capacity and attitude angle for a given eccentricity. With a chosen 

bearing geometry with axial grooves, the eccentricity and attitude angle 

are preset, giving a set of lobe eccentricities and attitude angles for 

which the solution of the Reynolds equation for steady conditions 

(i.e. 3 = ē = 0) gives the pressure distribution generated in the wedges. 

The oil film forces along and perpendicular to the line of centres of the 

journal and bearing, 	and ff, respectively, are obtained by integration 

as follows: 
L/2 271-  
f 	f p cos e (R de) dz 
-L/2 o 

L/2 27r 

f 	f p sin e (Rde)dz 
-L/2 a 

By using the non-dimensional variables defined in equations (2.2), the non-

dimensional oil film forces can be written as: 

E/L R 	1 27r 
FE 	

f 
	 - f f P cos e de dZ 
3r (R/c) 2 	-1 0 

(2.7) 

F fd)
/L R 	- 

3 to n  (R/c) 2  
ff P sin e de dZ 
-1 0 

and the attitude angle in centrally loaded bearings (as shown in Figure 
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2.1) is: 
F 

0 = tan-1 (- F~ ) 

Having obtained an accurate attitude angle, 	it it is possible to 

compute a new 070-1 from a similar procedure. This iterative process may 

converge slowly. Hence, a relaxation factor between 1.0 and 1.4 can be 

employed to increase the convergence rate. A sufficient condition for 

convergence was set as 10
10-1

-0k 14 1°. 	This procedure locates the shaft 

at the correct equilibrium position where all the forces in the horizontal 

direction are zero. Then, for this position, the load capacity can be 

expressed in terms of Sommerfeld number as: 

So = Pb (R)2 = 37 [F E2 + F
0
2]2 

n 
(2.8) 

and the non-dimensional mean bearing pressure is: 

_ 	Pb 	f/L D 	
(F 2 	2e f F 	

_ So Pb 	
6 03 n (R/e) 2 	6w rt (R/c) 2 	4 	727 

In this analysis, the following points should be clearly borne in 

mind: 

- the oil viscosity is an effective uniform viscosity at the operating 

condition; 

- for the circumferentially grooved circular bearing, the attitude 

angle is directly calculated from the oil film forces; therefore, 

there is no need for iteration of the journal position; 

- there are two clearances in preloaded two-wedge bearings, namely, 

maximum and minimum clearances. For mathematical simplicity and 



afx 	
k = — a—~

f 
	k = 

a 

ay ~x ax YY ay 
(2.11a) 

ax 
xx 

afx 
k  kxy — 
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uniformity, the bearing arc clearance, c, was used in all the non- 

dimensionalisations. 

The forces in the polar coordinate system are related to the forces 

in the cartesian coordinate system as follows: 

IFx] = 	sin 0 	cos 0 Fe 

Fy 	- cos 0 sin 0 F
$ 

(2.9) 

 

2.3 THE DYNAMIC CHARACTERISTICS OF AN OIL FILM  

The hydrodynamic oil film force obtained from the Reynolds equation 

is a non-linear function of the eccentricity, the attitude angle, and the 

corresponding velocity components. If the journal is in motion at the 

coordinates (x,y) around the equilibrium position, then the dynamic part 

of the oil film force can be linearised for small amplitude motion. 	This 

can be done by the first order Taylor expansion of the film force about the 

equilibrium position. The dynamic part of the film force can be expressed 

as: 

Afx = -k x-k Y -cxx -c Pxy 

Afy = -k x - kyy y - cyx x - eyy 

where the oil film stiffness coefficients are: 

and the damping coefficients are: 
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afx 	afx 	
af 	af 

_ . 

	

cxx ax 	
c 	

a~ 

	c
yx ax ' cyy aJ 

(2.11b) 

where fx and f are the components of the fluid film force. The first 

index of the coefficients gives the direction of the fluid film force and 

the second index gives the direction of the perturbation. In general, 

due to the anisotropy of the oil film, the direction of the perturbation 

is not colinear with that of the disturbing force. Therefore, the cross-

coupling terms are introduced. 

In rotor bearing analysis, it is common practice to non-dimensionalise 

the oil film force with the steady load. By introducing the following 

dimensionless variables: 

X=x , Y=LC= x 	 - . e 	c 	c m 	c 

of . 	f. 
~F. = s , F:= 	, i= X,I 

Equations (2.10) can be written as: 

Y 

~X 
[K11 
	KXY 

K 	K 
YX 	YY 

X 

Y 

C 	CXY 

C 	C 
YX 	YY 

Y 

where the non-dimensional film coefficients are: 
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The non-dimensional oil film forces, F'., are related with the forces 

given in equations (2.9) through equation (2.8) as follows: 

Fi 	Fi So 

The linearised dynamic coefficients of the oil film are obtained from 

the perturbation solution of the Reynolds equation. Small perturbations 

in displacement and velocity about the equilibrium journal position give 

the incremental fluid film forces which are used to calculate the 

coefficients defined in equation (2.11). 

For the calculation of the stiffness coefficients, the journal centre 

is displaced from its equilibrium locus to the disturbed position, J1, in 

the X-direction, as shown in Figure 2.2, where the journal is in 

equilibrium, i.e. X = Y = 0. 	Then, the fluid film force at the disturbed 

position for the eccentricity ratio of a is the same as that for the 

journal at J2 on the equilibrium locus, where Ob J2 represents an 

eccentricity ratio equal to c. And the direction of the force is 

inclined from the vertical load with an angle a. Then, the additional 

oil film force components are: 

AFX = F' sin a 

AFT = F' cos a - 1 

The corresponding stiffness coefficients are: 

aF 	AF" X 	
~ 

__ 	X 
KXX - ax 	 XY="k=YO 

BF' 	AF' 
K 	_ - 	- YX  Y 

aX - ( ,y )YYr==0 
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Figure 2.2: Oil film forces at the displaced journal position 

(for full circular bearings only) 
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Similarly, by a small displacement in the Y-direction and calculation 

of the additional film force components give the other two stiffness 

coefficients K and KyY. 

For the calculation of the damping coefficients, the journal is given 

small velocities either in the X-direction or the Y-direction at the 

equilibrium position, i.e. X = Y = 0. The velocity components along the 

line of centres and normal to it are calculated from the following 

transformation: 

The Reynolds equation (2.3) is solved with these velocity components and 

the resulting additional film force components are used to calculate the 

damping coefficients given in equation (2.11b). 

In the calculations of the linearised dynamic coefficients by 

direct perturbations of the journal position and velocity, the magnitude 

of perturbations were found to be immaterial provided these were small. 

In this work, the non-dimensional displacement and velocity perturbations 

were set at 0.001. 
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CHAPTER 3  

THE DYNAMIC ANALYSIS OF A RIGID ROTOR BEARING SYSTEM  

The dynamics of a rotor supported in bearings is strongly influenced 

by the properties of the bearings. In the case of a stiff rotor, the 

response to excitation and the stability characteristics are almost 

entirely determined by the stiffness and damping of the bearing. It is 

the purpose of this chapter to describe how the bearing properties can be 

used in calculations. 

3.1 GOVERNING EQUATIONS OF MOTION  

A fixed cartesian coordinate system has been employed. This has 

eliminated either the transformation of the bearing forces from rotating 

to non-rotating coordinates or the formulation of the journal equations of 

motion in the rotating, non-inertial coordinate system, which are highly 

non-linear in the acceleration terms. 

The equations of motion are derived considering the translational 

motion of a rigid shaft in ,a rigid bearing which is free to move in the 

clearance space, as shown in Figure 3.1(a). 	The bearing is supported 

eccentrically by the oil film at a stable equilibrium position, B, under 

the application of a static load, Wb. If the geometric centre of the 

journal, C, is not concentric with the rotation centre, J, due to the run- 

out, ro, the oil film will be excited at the synchronous speed. 	If the 

bearing housing with a mass M is excited by a constant rotating force, Fo, 

at a speed of 0, then the equations of motion of the bearing housing about 

the equilibrium position can be written as follows: 

M x = Ofx  + Fo  cos Stt 

M x,' = Aff  + Fo  sin 0t 
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where 4fx  and Ify  are the additional fluid film forces acting on the 

bearing when it is at a position (x,y). 	If there is a phase difference, 

S, between the run-out and the excitation force at the time t = 0, then 

from Figure 3.1(b) it can be seen that the oil film forces can be expressed 

in terms of relative quantities by using equation (2.10) as follows: 

p fx  = - kxx  (x - xo) - kxy  (y -y0) - cxx  (X-1.0) - cxy  (y - y' o  ) 
(3.2) 

p fy  = - kyx  (x -x0) - kyy  (y -y0) - cyx  (x - xo) - cyy  (p- 0) 

where: 	xo  = ro  cos (t-) 

yo  = ro  sin (wt - S) 

By substituting equation (3.2) into equation (3.1) and introducing 

the following non-dimensional variables: 

	

x 	ki  c 	ci• w  • c 

	

X= - , Y =k 	K. = a 	, C. -  	 

	

W 	W 

r 
T=wt , Ro = ° 

c  
n = m 	S =  W  

P Mc w2  

one can obtain: 

1  X 

	rX7C 

cXY k - Xo 	KXX KXY X - Xo 	Fo  [cos n T 
S 	

f 
p Y 	 YX CYY  Y - Yo 	KI,X  KYY  Y - Yo 	W sin n T 

(3.3) 

Xo 	cos (T — a) 
R 

ō 	° sin (T-13) 

where: 
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(a) Rigid shaft bearing system 

X 
	

X 
0 

(b) Simple model of a rigid shaft bearing system 

Figure 3.1: Simulated model of a dynamically loaded bearing 
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3.2 RESPONSE TO EXTERNAL EXCITATION  

In practice, excitation at synchronous speed, w, is almost always 

present due to run-out or unbalance. 	Excitation at some other frequency, 

nw, is often present, for example due to shaft ovality in flexible systems, 

where n = 2. 	In the apparatus constructed for this work, the test bearing 

can be excited at any independent speed up to 60 Hz. 	Since it proved most 

difficult to eliminate synchronous excitation, it is necessary to develop 

the equations for the response to excitation at two frequencies. Due to 

the cross-coupling damping terms present in equations (3.3), it is much 

easier to express all the state variables as complex quantities. 	Since 

there are two excitations at frequencies w and nw, the solutions can be 

assumed as harmonic functions of these frequencies: 

i (T-4X1) 	i (nT-¢Xn) 
X =X-FX R 	 F =  X1  e 	+ n e 

(3.4) 

i (T-0YI) 	i (nT-cpYn) 
Y = YR  YY  = Y1  e 	+ 

n 
e 

Note that only the real part of equations (3.4) are the solutions and 

X1,  Y1,  Xt  and n are real quantities. The derivatives are: 

X = iXR +in XY  

k = iY+inYY  

2 = - XR  - n2  XF  

Y = 	
YR. 

- n2  YF  

Substituting into equation (3.3) and expressing the external and run- 

out excitations as parts of complex numbers, the equations can be separated 
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into the two frequencies as: 

[[Z]1  - S [Tl] 
ÍXR1  = 	Ro ei(T-S) 

[Z]1 
1 

(3.5) 
P YR  -i 

and: 	
[[Z]n 

- s2 [T] ] XF = 	Fo 	n T ei  1 (3.6) 
p YF  W -i 

where [Z]n  is the complex dynamic stiffness matrix or the impedance of the 

oil film and elements are: 

ZXX 
= KXX  + i n CXX  

n  

ZXY 
= KXY  f- i n CXY 

n 

ZI,X  = KI,X  + i n CYX 
n  

ZYY  = KYY finC
YY  n  

(3.7) 

It is to be noted that the oil film impedance is frequency dependent 

and subscript 1 refers to the synchronous impedance. 

The amplitude of the response and the phase angles can be solved by 

inverting equations (3.5) and (3.6): 

-4X1  
ICI  e-2 ,1 	Ro 

e1ā  [Z111 1[Z]
1
[1

-1 

Y1  e 
(3.8) 

[Z]31 = [Z]1  - 1 [I] 
where: 
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and: 

where: 

Xn 	e-i(1)Xn 

Y 	
e 24Yn 

n 

[Z]nn 	= 

F° 
W 	[Zi 

-1 

nn  

[Z]n  - SZ [I] 

1 

-. 
(3.9) 

As it may be seen, the response variables are expressed as complex 

variables at the two excitation frequencies, in equation (3.4), and the 

amplitudes and the phase angles are given in equations (3.8) and (3.9). 

Since the responses are harmonic functions, a stationary double-loop orbit 

can be observed if the external excitation frequency is half of the shaft 

speed. This orbit converges to a single-loop elliptical orbit: 

(a) if there is no run-out (or its response is negligibly small 

compared to the external excitation response); or 

(b) if there is no external excitation. 

In general, the major and minor semi-axes, their direction of 

inclination and the phase angle between the excitation force and the major 

semi-axis are of interest for comparison with experiment and are derived in 

Appendix B. 

3.3 GENERAL STABILITY ANALYSIS  

The stability of a linearised system can be tested by giving an 

arbitrary small motion with an assigned frequency around the equilibrium 

position. 	If the imposed motion persists with time, then the parameters 

defined by the equations of motion determine the threshold stability 

condition and the assigned frequency determines the threshold frequency. 
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This can be analysed mathematically by examining the system characteristic 

equation which can be obtained from the homogeneous part. of the equations 

of motion. 

For the journal bearing model described in section 3.1, the 

homogeneous part of the equations of motion given in equation (3.3) are: 

1 X } CXX 	CXi' 

P Y C yx 	C yy  
+ KXX KXY X = 

IA 	Kyx  Kyy 1' 
(3.10) 

Thus, for a bearing operating at a certain equilibrium eccentricity, its 

stability is dependent on only the stability parameter, Si,. Assuming the 

solutions of the form: 

X = X
0 
eXI  

Y = Y0 e
AT 

where X is a complex eigenvalue, and substituting into equation (3.10) 

gives an explicit solution of the stability parameter at which the real 

part of the eigenvalue vanishes. The derivation of the instability 

threshold condition is presented and discussed in Appendix D. 

Thus, the boundary of the stable region, being simply the curve of 

zero damping in the 
P 

 c space, can be determined at the particular 

equilibrium eccentricity for which the bearing coefficients have been 

calculated. 

It is to be noted that the destabilising property of the bearing 

coefficients stems from the lack of symmetry in the stiffness matrix and 

it does not vanish by the introduction of the principal axis transformation. 

Therefore, the oil film forces due to displacements are not elastic in the 

sense that X . # K  , hence the self-excited vibrations arise from these 



K 	X  XX XY 

KYX KYY- 

KXX  

KXI, + KI,X  

2 

KXY 
+ 

KYX  
2 

KYY 

0 

KXY -K YX   
2 

t 

-37- 

terms are quite apart from those introduced by the damping in the 

vibration analysis. 	If the stiffness matrix is resolved into symmetric 

and cosymmetric parts: 

The symmetric part characterises the usual elastic component of the force 

and the cosymmetric part characterises the circulatory (non-conservative) 

force component. If the journal is displaced from its equilibrium position 

to a distance u = 1.77;7-g, then the circulatory force F = (KXy  - KI,X ) u is 

perpendicular to the displacement u and therefore it maintains straight 

precession of the journal. Under certain operating conditions, this 

circulatory force, which always exists even at stable conditions, cannot 

be damped out and causes the transfer of the rotational energy of the 

shaft to the precession motion and makes it unstable. 

The damping coefficients are not small and give rise to forces of the 

same order as those due to the stiffness terms; thus, they play an 

important role in the determination of the damped natural frequencies. 

3.4 A METHOD FOR THE DETERMINATION OF THE COEFFICIENTS FROM THE DYNAMIC  

RESPONSE  

In rotor dynamics calculations, knowledge of the oil film coefficients 

is necessary for the solution of the response and stability equations, as 

explained in previous sections. However, it is to be recalled that the 

oil film coefficients required are used in the dynamic situation. 
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Therefore, it is possibly of importance to calculate these coefficients 

from the dynamic response of the bearing and not from the quasi-static 

conditions. 

An attempt has been made to calculate the coefficients by exciting 

at two frequencies, with a small difference between them, in order not to 

affect the equilibrium position of the shaft. However, in this case, the 

responses are very similar to each other, causing ill-conditioning in the 

calculations and giving no reasonable solutions. 

In this section, feasible methods of experimental determination of 

the coefficients from the dynamic response are discussed. 

The first attempt to determine the eight linearised coefficients 

directly from the response was adopted by Glienicke [11]. His technique 

involved the synchronous excitation of the bearing sinusoidally in two 

mutually perpendicular directions. 	In each case, the measurements of 

the vibration amplitudes and phase angles of the resulting motion in the 

two directions gave the necessary eight equations for the solution of the 

coefficients. However, he stated that "due to the accumulation of error 

in the calculations, an accuracy of measurement of about 1% in amplitude 

and of 10  phase angle resulted in about 5% error in the experimental 

coefficients, even if the measuring methods are optimised". However, the 

mean error of his results was about 20% to 30%, and in some coefficients 

it was about 50%. Morton [12] measured the coefficients with the same 

method but excited the bearing at a frequency non-synchronous with the 

running frequency. The error in his calculations was much higher than 

Glienicke's results. 

By means of the equations of motion, experimental methods can be 

devised for the determination of the coefficients. From a practical 

point of view, unbalance excitation is the simplest way of applying 
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synchronous sinusoidal excitation. If the equations of motion given in 

equation (3.6) are considered with the unbalance excitation, then from 

measurements of the amplitudes and phase angles of the resulting motion in 

the two directions give four equations. In order to obtain the missing 

four equations, experiments must be carried out under varied conditions. 

The value of unbalance force, Fo, cannot be changed because it will not 

produce linear independent equations, and the experiments cannot be carried 

out with different values of w, c or W, because they all determine the 

operating condition of the bearing at which the coefficients are sought.. 

The only parameter that can be changed is the vibrating mass, M. The 

experiments can be carried out at substantially different values of the 

mass in order to obtain reliable results. However, as it is seen in 

Figures 5.29(a) and 5.29(b) for different bearing geometries, there is a 
of 

range eccentricity and stability parameter for which the amplitudes of 

response converge to the same value. Therefore, substantially different 

values of response for different values of M (i.e. for different values of 

Sp), for practical reasons, are limited to high eccentricities and low 

stability parameters (which, of course, should be well above the threshold 

value). 

The method presented in this section makes use of the dependence of 

the oil film impedances on the excitation frequency. At a certain 

operating condition, response to excitation at a non-synchronous frequency 

gives a set of four equations. For the determination of the second set 

of equations, the oil film is to be excited at a different frequency in 

order to obtain a substantially different response. For practical 

purposes, it is advantageous to have stationary response orbits. This 

can be achieved at half of the shaft speed. Response to external 

excitation at half of the shaft speed is given in Figure 5.31 for comparison 
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with the synchronous response in Figures 5.29(a) and 5.29(b). They show 

different characteristics. 	In practice, these two excitations are 

applied simultaneously. Synchronous excitation occurs due to run-out and 

half-synchronous excitation from an external exciter. In this case, it 

is necessary to separate out the response to non-synchronous forcing from 

the synchronous vibration. In order to reduce the effect of measurement 

error, it is desirable to have deliberate run-out to obtain a large 

response orbit and in half-synchronous excitation the force amplitude 

should be kept small enough due to low damping of the fluid film bearing 

at this frequency ratio. Further, the overall response amplitude should 

be small enough in order not to violate the assumption of the linearisation 

of the oil film forces. If there is no run-out, then by exciting at 

synchronous and half-synchronous frequencies the necessary eight equations 

can be obtained. 

If the amplitudes and phase angles of the resulting motions in the 

two directions are measured, then the vibrations can be expressed as: 

For synchronous response: 

i (T-¢XI) 	iT 
XR = X1 e 	= R1 e 

i(T-t 11) 	iT YR 	Y1 e 	YR1 e 

For half-synchronous response: 

i (nT-~Xn) 	infi 
XF 	n e 	= XFn e 

i (nT-OYn) 	inT YF = n e 	= Y e Fn 

where n = '. 
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If these equations are substituted into equations (3.5) and (3.6), 

respectively, and keeping the terms including the impedances on the left 

hand side gives: 

rrFn 
- ō [1] 	n 2 [C11 

LY„,„ 	W 	p YFn 

If these equations are written with the impedances as unknowns: 

[Z]n 

ZYY1 

These equations are to be written as real variables for the solutions of 

the eight coefficients; then the two sets of four equations are: 

[AZ] 

:KU 

CXX 

KXY 

CXY- 

0 

0 

a/W 

0 

Re (XR1) 

1 	Im (XR1) 

Sp n2 Re(X ) Fn 

n2 Im 
(XFn )_ 

(3.14) 
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[AZ] 

0 

0 

0 

Fo/W_ 

Re(Y
R1) - 

Im(YR1) 

p n2 Re (Y ) En 

n2 /W Y151) 

(3.15) 

    

    

where n = Z, and: 

[AZ] = 

-Re (X81-Roe-i8) 

Im (XR1-Roe's) 

Re (XFn) 

_ Im (XFn) 

-Im(XR1 Roes) Re 

Re(XRI Roe s) Im 

tie*Im(XFn) 

n*Re (X) 

(Y214-iRoe-is) 

(YR1+iRoe-is) 

Re (Y ) En 

Im (Y ) Fn 

-Im(YRl*zRoe~s) 

Re (YRl#iRoe~s) 

-n*Im(YFn) 

n*Re(Y
Fn) 

(3.16) 

The coefficients can be solved by inverting equations (3.14) and (3.15) for 

given values of operating parameters Fo/W and S. 

The effect of measurement errors on the calculations of the 

coefficients with this method is also investigated. For circular and 

elliptical bearings, the errors in the coefficients are calculated for 

+10% errors in amplitude of all measurements (i.e. in the elements of [AZ] 

and on the right hand sides of equations (3.14) and (3.15)) and the results 

are shown in Figures 3.2 and 3.3 as dashed lines. 	In equations (3.14) 

and (3.15), the parameters are taken as Fo/W = 0.2, Sp = 1.0, Ro = 0.4, 

a = 30° and s = 60°. Although the errors are small at high values of the 

coefficients, for low values of the coefficients (less than about 2.0) the 

errors can reach higher percentages. 
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Figure 3.2: Variation of the errors in the coefficients of a circular 
bearing 
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(a) Stiffness coefficients 
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Figure 3.3: Variation of the errors in the coefficients of an elliptical 
bearing 
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CHAPTER 4  

EXPERIMENTAL APPARATUS  

4.1 DESIGN REQUIREMENTS  

In practice, shafts which carry large rotors have two sorts of motion, 

namely, rotation and vibration, while the bearings are mounted on 

structures that can usually be taken as rigid. However, for research 

purposes, dynamic bearing loads can be more readily adjusted and measured 

by allowing one element only to rotate and one only to vibrate. Therefore, 

it was advantageous to have a stationary shaft axis and a vibrating bearing. 

With this arrangement, the danger of a rotating heavy mass is diminished. 

It was considered as an important design principle that various test 

parameters could be varied simply and with minimum effort. Therefore, 

several features were included in the design. 

To avoid the effect of gravity on bearing loading, the shaft was 

mounted vertically so that the bearing and its housing vibrated in the 

horizontal plane. The bearing was supported and located in the horizontal 

plane by a hydrostatic air bearing which gave negligible resistance to 

vibration. By designing the centre of gravity of the "floating" mass to 

be at the test bearing centre, and the planes of application of static and 

dynamic loading to be at the mid-horizontal plane, it was possible to 

eliminate tilting effects. 

To focus attention on the characteristics of the bearing and not to 

allow too many other factors to influence the system, it was necessary to 

simulate a rigid shaft and a rigid bearing housing system. An important 

requirement was that the test bearing be easily removed axially without 

disturbing the driven end of the shaft. 	It is well known that the 

performance of the test bearing could be greatly influenced by the 
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flexibility of its housing and shaft. Therefore, the choice of the 

arrangement was not arbitrary. The effect of shaft elasticity can be 

reduced considerably by placing the test bearing at the root of the 

overhanging part of the shaft. 

Since the bearing housing was allowed to vibrate on the horizontal 

plane, the shaft had to be fixed firmly in its position in order to prevent 

any sort of motion. This was achieved by mounting the shaft housing in a 

relatively large concrete mass. 

With this sort of arrangement, having a rigid shaft and a rigid 

bearing, it was possible to investigate easily the characteristics of only 

the bearings. Although the chosen experimental arrangement differs from 

that which normally occurs in rotating machinery, namely, bearing fixed-

shaft free layout, it is important to consider that dynamic properties 

established in this test apparatus are valid for the conventional machinery 

arrangement. Details of loading arrangements were arranged so that all 

forces acting on the bearing would be known at any direction. Some extra 

care was taken to ensure that no extra unaccounted forces were present. 

4.2 DESCRIPTION OF THE EXPERIMENTAL APPARATUS  

An experimental rig and instrumentation were designed to cope with the 

requirements described in the previous section. A sectional view of the 

test machine design is shown in Figure 4.1. The essential features of the 

machine are as follows. 

The test rig consists of two main assemblies. One of them is the 

shaft, its housing and auxiliary assemblies, and the other is the test 

bearing and its housing assembly. 

Great care was taken in the design of the shaft support bearings in 

order to have a smooth running spindle. Since the running accuracy was 
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important, it was necessary to remove all internal clearances from the 

bearings and to maintain the balls in their correct running positions. 

Therefore, it was decided to design a spring-loaded angular contact ball 

bearing arrangement. 

The shaft (1)* which was vertically placed in the housing (2) was 

mounted at the two places on angular contact ball bearings. Originally, 

the bearings were placed in back-to-back arrangement (the open side of the 

outer rings face in the opposite way) on the ends of the shaft. 	In order 

to increase the rigidity of the shaft on the test bearing end, a tandem 

unit was used on this side and a single row angular contact bearing was 

used on the drive end of the shaft. 	In this arrangement, the line of 

contact between the balls and their raceway diverges as they approach the 

shaft which gives a more rigid mounting. However, this arrangement caused 

misalignment and shaft axis movement when the shaft was loaded. Therefore, 

it was necessary to modify this arrangement by removing the inner one of 

the tandem unit. Again, this arrangement caused the movement of the shaft 

axis under the loaded condition. Therefore, at the test bearing end of 

the shaft, it was decided to have a paired face-to-face bearing (3) which 

was spaced by a small distance piece placed between the inner rings and 

clamped firmly on the outer rings. This unit has been preloaded against 

the ball bearing (4) at the drive end. This preload was necessary to 

ensure a minimum amount of run-out and to prevent the transmission of 

disturbances coming from the drive system. Although this arrangement gave 

a smooth running of the shaft with minimum run-out (measurement showed that 

there was 0.0003 in peak to peak run-out), due to high preloading on the 

bearings, it was not possible to run the shaft by a 2 HP DC variable speed 

* ( ) shows the part numbers in Figure 4.1. 
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controlled motor above 2000 RPM. Therefore, it was driven by a 10 HP AC 

motor at 2000 and 3000 RPM by using a toothed-belt and pulley drive. 

Due to practical reasons, it was necessary to put the test section 

of the shaft at the overhung part of the shaft. The first critical speed 

(25,000 RPM) of the shaft was well above the maximum operating speed. The 

test section of the shaft was tapered with an included angle of two degrees 

to allow the clearance to be infinitely varied. The nominal diameter was 

41 mm. At the drive end of the shaft, a pulley (5) and a timing gear (6) 

were placed. 

The shaft housing was secured from the top plate (7) by eight anchor 

bolts and from the bottom by four screws to a 2.5 ton concrete block. 

This was necessary to eliminate the effect of journal vibration on the 

bearing and it was mounted on the ground at the four corner points. 

On top of the rotor housing, an annular air thrust bearing (8) was 

placed. The test bearing housing (9) had a mass of 152 kg and could move 

freely on the air bearing. The part holding the test bearing (10) could 

be adjusted vertically up and down so that the clearance could be varied 

infinitely between the tapered shaft and bearing (11). The clearance was 

set by the three adjusting screws (12) and then this part was clamped to 

the housing by the clamping screws and wedge rings (13). 

The air bearing and the test bearing mid-plane and the centre of 

gravity of the floating bearing housing were designed to be at the bearing 

centre. The static and dynamic loads were applied directly to the freely 

floating bearing housing in the same plane so that inertia forces and fluid 

film forces and all external forces acted on the mid-bearing plane. 

(a) Test bearings: The detailed drawings of test bearings are shown 

in Figures 4.3, 4.4, 4.5 and 4.6. A photograph of the bearings is shown 
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Figure 4.1: A sectional view of the experimental rig 
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Figure 4.2: A view from the test apparatus 
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in Figure 4.7. The test bearings were made of hard bronze with 41 mm 

nominal diameter. To ensure identical taper on shaft and bearing, the 

bearings were bored to fit a dummy shaft which was of the same taper as 

that of the test shaft. The oil was fed through the circumferential oil 

way which was behind the test bearing. 

The circumferential groove bearing had a 3 mm wide x 3 mm deep groove 

and the oil was fed through the eight equally spaced holes at the root of 

the groove. 

The elliptical and offset halves bearings were split and, by inserting 

a shim of known thickness between the halves and machining the outer 

diameter of the bearing to the correct housing size, it was possible to 

change the preload. This procedure was repeated progressively from the 

maximum preload to zero preload value, i.e. the circular bearing. 

Bearing temperatures were measured by thermocouples arranged around 

the mid-plane of bearings, about 1 mm below the bearing surface. The oil 

inlet temperature was measured by thermocouples placed into the grooves. 

(b) Loading system: The "pull" type of static load was applied to 

the floating bearing housing at the mid-place of the test bearing by way 

of an air cylinder-piston arrangement. The load was measured directly by 

a spring balance placed between the air piston and the test bearing housing. 

The dynamic load was superimposed on the static load by the two 

unbalance units (14). These units were assemblies of a small rotating 

shaft and a disc. They were attached at diametrically opposite positions 

on the bearing housing and driven by a 1.0 HP variable speed motor. By 

using a toothed-belt and pulley system, these units were driven in the same 

direction by two flexible drive cables. Unbalance force was produced by 

attaching an equal amount of out-of-balance masses on the discs and by 
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Figure 4.7: A view of the test bearings 
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adjusting at the couplings in order to rotate the masses in phase. The 

effect of any source of vibration coming from the drive system was 

prevented by the use of flexible couplings. These units were driven 

without out-of-balance masses and there has been no observable effect on 

bearing vibration. 

(c) Oil supply system: A separate framework was built for the oil 

supply unit. Oil was supplied from a tank by means of a gear pump. A 

filter protected the oil supplied to both the test bearing and ball 

bearings. A cooler was incorporated on the by-pass circuit in order to 

control the oil temperature in the tank. The oil supply pressure to the 

test bearing could be set to any value by suitable adjustment of the by-

pass valve and the throttle valve in the line supplying the test bearing. 

Flexible pipe was used immediately prior to the test bearing housing so 

that the supply pipe did not affect the housing motion and to prevent the 

transmission of vibration coming from the oil pump. Oil was delivered 

to the ball bearings through a small jet. Drained oil from the test 

bearing and ball bearings was collected under gravity by flexible pipes and 

returned to the tank. 

The lubricant used was SAE50 oil, the calibrated values of the 

viscosity against temperature being shown in Figure 4.8. Oil inlet 

pressure in the oil way was measured on a calibrated Bourdon tube type 

gauge. 

4.3 INSTRUMENTATION  

In the investigation of journal bearing performance to find correlation 

with theoretical predictions, it is necessary to measure the applied load 

and the journal centre position and motion in the clearance space. 	Since 
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the film thickness is an important aspect in bearing design, the accuracy 

required for displacement measurements is high. 

The horizontal and vertical displacements of the bearing relative to 

the journal were monitored by means of capacitive proximity transducers. 

In order to measure accurately the response of the bearing to imposed 

unbalance load, it was necessary to eliminate the effect of shaft ovality, 

eccentricity and axis motion due to the support bearings. The measurements 

showed that the shaft surface was round and concentric with the rotating 

axis to within less than 0.00015 in in radius. Therefore, the two 

orthogonally placed transducers were mounted horizontally on the bearing 

housing against the shaft surface. A two channel Wayne-Kerr frequency-

modulated amplifier was used to give a voltage analogue of the transducer 

signals which were recorded on a two-channel oscilloscope. Each probe 

was calibrated before installation as a unit, together with its co-axial 

cables and amplifier. The sensitivity of the probes were nominally 1 V 

per 0.254 mm (0.010 in). 

In this way, the bearing motion could be observed visually on the X-Y 

trace and any non-synchronous motion easily detected. 

The shaft speed and the unbalance force excitation speeds were 

measured by inductive probes placed close to the toothed-discs. The 

speeds as number of revolutions were displayed on digital frequency meters 

with an accuracy of ± 5 RPM. 

The temperatures of the bearing surface and the inlet and outlet oil 

temperatures were measured by chromel-alumel type thermocouples. These 

were calibrated after installation. 
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4.4 EXPERIMENTAL PROCEDURE  

4.4.1 Clearance Setting and Alignment Check  

Considerable care was taken in the design and manufacture of 

the apparatus to assure close alignment between the test bearing and the 

shaft axis. 

With the bearing housing floating on the air thrust bearing, 

the test bearing housing was lowered on to the tapered shaft so that the 

bearing was concentric with the journal at zero clearance. Then the air 

pressure was turned off and the bearing housing was moved vertically 

upwards with the help of three adjusting screws equally placed around the 

housing. The incremental upward movement was obtained by rotating the 

BSF screws 45°  each time in turn and was measured by three dial gauges 

(with 0.0005 in smallest division) equally spaced around the housing. 

The bearing housing movement was monitored as change in clearance observed 

on the oscilloscope connected to the capacitive transducers which were 

placed against the tapered shaft surface. By setting the same amount of 

gain for both channels of the oscilloscope (0.0005 in per major division), 

the beam on the X-Y trace moved at a 45°  angle as the bearing was moved 

along the shaft axis. This procedure maintained the concentricity of the 

bearing throughout the clearance setting procedure. The bearing upward 

movement was measured to within ± 0.0005 in. From the geometry of the 

arrangement, the maximum misalignment would be of the order of 

0.0005/12 = 0.04 x 10-3  in per inch of bearing length, which was neglected. 

During the clamping procedure of the bearing housing to the floating mass, 

the subsequent clearance movement was kept within 0.0001 in (the smallest 

division) on the oscilloscope. 

Alignment was also checked by comparing the bearing clearance 

shape dimensions, as measured by the capacitive transducers, against the 
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clearance dimensions calculated from the maximum movement of the journal 

inside the bearing for a given specific bearing geometry, as described in 

Appendix A. Any disagreement on the clearance shape due to the distorted 

form was attributed to the misalignment of the bearing housing, and 

therefore all the procedure described above was repeated again starting 

from zero clearance setting position until good agreement was reached. 

It is to be noted that with this sort of clearance setting, it 

was possible to set the minimum clearance to a certain value and to check 

the maximum journal movement in the clearance shape with the known specific 

geometry of the bearing. 

4.4.2 Determination of the Clearance Shape and Steady-State Operating  

Positions  

At the beginning of each test, a clearance shape was 

established by applying a small load in different directions around the 

bearing housing, sufficient to cause contact between the journal and the 

bearing with no shaft rotation for a certain minimum clearance setting. 

At each of the corresponding bearing positions, a photo-record of the 

transducers in X-Y trace of the oscilloscope enabled one point on the 

clearance shape to be determined. 

While the shaft was running at a certain speed, the static 

load applied to the bearing housing was reduced by small increments until 

the first indication of instability was observed in the form of non-

synchronous vibration of the bearing housing. The load at which the 

instability began to build up was taken as the instability load and the 

load was then gradually decreased to zero. During this process, stable 

journal positions on the journal locus and unstable whirl orbits were 

recorded on the same photograph with the corresponding clearance shape. 
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Note that in the photographs journal rotation is in the clockwise 

direction unless otherwise stated. 

Once the clearance shape was determined, for the other 

experiments the operating point in the clearance shape and the lowest 

position of the shape was marked when the shaft was at rest and the bearing 

housing was loaded lightly to the journal. This was checked by disturbing 

the bearing several times. By using this position as a reference, the 

bearing centre was located from the known geometric positions. This 

enabled the determination of the operating eccentricity, e, and the 

attitude angle, ¢o, of the journal at any stable operating condition and 

at the instability onset condition. 

4.4.3 Determination of the Stiffness Coefficients  

The incremental loading method as outlined in Appendix C was 

employed in the determination of the stiffness coefficients. When the 

bearing was loaded against the rotating shaft at a certain equilibrium 

position, a small increment of load was applied in the x and y-directions 

successively and the resulting incremental displacements from the 

equilibrium position were measured. Great care was taken to avoid 

displacements greater than 0.3 of the bearing clearance and not less than 

0.0003 in for accurate measurements. 

4.4.4 Determination of the Dynamic Response  

Dynamic tests were performed on the test bearing to observe 

the response to unbalance excitation at a variety of operating conditions. 

In order to reduce the effect of run-out and measurement errors, 

it is desirable to impose a large unbalance force to obtain large response 

orbits. However, if the orbits are too large, the assumption of 
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linearisation of the dynamic oil film forces may be violated. Therefore, 

a compromise was established between these considerations by carefully 

chosen unbalance masses. For most operating conditions, the amplitude of 

the vibrations at synchronous excitation was not more than one third of 

the bearing clearance. 

Throughout the excitation speed range, the amplitudes in the 

x and y-directions were taken, and at the synchronous speed, the major and 

minor axes of the elliptical orbits were measured. 
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CHAPTER 5  

DISCUSSION AND CONCLUSIONS  

5.1 DISCUSSION OF EXPERIMENTAL RESULTS  

The static properties of different types of bearing are presented as 

the variation of the load capacity and the attitude angle against the 

eccentricity ratio. The experimental points were determined at a constant 

speed by varying the static loading for different values of clearance 

ratios. At every operating point, the journal was run for a few minutes 

to allow the oil film and the bearing temperatures to reach the equilibrium 

values. The experimentally measured load capacities for all bearing types 

were found to be somewhat lower than the theoretical values. The oil film 

temperature measurements around the top edge of the bearings were found to 

be the same as the bearing centre-line temperatures. However, due to the 

necessary preloading of the ball bearings on the shaft, the heat generated 

at those support bearings was conducted along the test section of the shaft. 

Therefore, the shaft surface temperature could be higher than the maximum 

bearing temperature. In order to take into account this complicated heat 

flow effect, the viscosity of the oil at the maximum bearing temperature 

was introduced into the Sommerfeld number as an effective viscosity. 

During the experiments on static load capacity, the range of operating 

conditions was restricted because of the occurrence of large-amplitude 

whirl instability. At low values of eccentricity (corresponding to low 

values of load), meaningful data could not be obtained and the number of 

experimental points are comparatively scarce. 

In the two axial groove bearings, the load is applied centrally to the 

bottom half of the bearing. With the non-circular bore bearings, the 

journal is unable to move within the whole bearing clearance space between 
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the bearing and the journal; therefore, with these bearings the static 

locus of the journal was shown relative to the envelope of maximum 

movement of the journal. 

The bearing load at the stability threshold was obtained by reducing 

the static load in small increments at a constant shaft rotational speed. 
• 

The first indication of instability was observed in the form of non-

synchronous vibration of the bearing housing. The stability threshold 

parameter was calculated at that load and plotted against the measured 

eccentricity at the onset of instability. With this method of 

experimentation, the results were found to be repeatable. 

In order to see the whirl orbit at the no load condition, the load 

was reduced further beyond the stability threshold value. 	In general, at 

high eccentricities, the whirl amplitudes gradually become larger as load 

was reduced, but at low eccentricities the whirl amplitude expanded 

suddenly at the onset condition. 

In all these figures, theoretical predictions are shown by full 

lines and the experimental results are shown by the symbols given on the 

first figure of each bearing type. It is to be noted that the indices of 

the stiffness coefficients are consistent with Figure 2.1 and the 

stability parameters for non-circular bearings are calculated by using the 

bearing arc clearance. 

5.1.1 The Circular Circumferentially Grooved Bearing  

The effect of feed pressure on the whirl stability was 

investigated with this bearing. It is well known that the existence of 

unstable bearing operation is directly related to the extent of the fluid 

film cavitation in the bearing. Since the pressure distribution is 

determined by the wedge shape of the oil film, the effective way of 



-68- 

controlling the cavitation region in the diverging part of the film shape 

could be by a pressurised supply from the edge of the bearing. 

The effect of ambient pressure on the extent of the cavitation 

region was investigated by Barrett et al [27]. By using the short 

bearing approximation and assuming that the oil film cavitates when the 

absolute pressure was zero, they showed that journal stability can 

-effectively be controlled by the ambient pressure and for the ambient 

pressure to mean bearing pressure ratio greater than two, the journal 

always becomes unstable for eccentricity values less than 0.6. 

In this series of tests, experiments were carried out by 

varying the oil feed pressure in the groove, i.e. at the inner edge of the 

land, while at the outer edge the pressure was the atmospheric pressure. 

Experimental data points and the corresponding theoretical predictions of 

the load capacity and the attitude angle variation are given in Figures 

5.1(a) and 5.1(b). 	The full lines are the theoretical values for different 

feed pressure ratios, y, defined as y = pf/pb  = pf/(W/LD). The feed 

pressure has a moderate effect on the load capacity, although this becomes 

negligibly small at high eccentricities. The experimental points are 

given for a feed pressure ratio of y = #. The measured load capacities 

are below the theoretical values and show experimental scatter. 

A comparison of the experimental bearing stability with the 

theoretical values for various oil feed pressure ratios are given in 

Figure 5.2. 	In each case, a hysteresis effect was observed, i.e. for the 

same clearance ratio, in that once the whirl was started, the load required 

to cease the whirl was found to be higher than the load at the onset. 

Therefore, for each data point, the instability onset and ceasation values 

are connected by a line. This hysteresis effect can be explained by the 

fact that the cavitation region cannot easily re-locate to its original 
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position by increasing the loading once it starts whirling. This has 

been shown also experimentally in dynamically loaded bearings by Olsson 

[28]. He states that the position of the cavitation region boundaries 

are dependent not only on the present situation but also on the pre-history 

of the oil film. 	Therefore, it may require some extra force to recover 

the oil film forces during the transition from the stable to the unstable 

region. 

The temperature profiles are shown in Figure 5.3. The bearing 

temperature at the maximum film thickness region is about at the oil inlet 

temperature and it reaches the maximum value around the minimum film 

thickness. The temperature increase is steeper at high clearance ratios 

due to the associated higher eccentricity ratios. 

5.1.2 The Circular Two Axial Groove Bearing  

The effect of groove angle on the whirl stability of a 

centrally loaded bearing was investigated for 30°  and 90°  groove angles. 

The steady-state load capacity and the attitude angle variation data 

against the equilibrium eccentricity are given in Figures 5.4 and 5.8 for 

30°  and 90°  groove angles, respectively. The load capacity of the 90°  

groove angle bearing is slightly lower than the 30°  angle bearing. 

The experimentally determined stability threshold data are 

given, together with the theoretical stability borderline in Figures 5.6 

and 5.9. From these figures, it is seen that increasing groove angle has 

a strong destabilising effect. For medium and low eccentricities, 

increasing the groove angle from 30°  to 90°  causes the instability border-

line to rise by a factor of about 2. 

Typical load dependent whirl orbits are shown in Figure 5.5 

for a 30°  groove angle bearing. The bearing begins to whirl almost in a 
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small elliptical orbit around the equilibrium eccentricity ratio of 0.67 

at the bearing load of 48 lb. As the load is decreased successively from 

40 lb to the no load condition in equal decrements below the stability 

threshold, the steady whirl orbits are observed. At the no load condition, 

it becomes full clearance whirling. The increasing importance of non-

linearity effects as the whirl amplitudes increase can be clearly seen. 

The fluid film forces acting on the bearing will be largest when the 

journal is approaching the bearing wall and smallest when the journal is 

approaching the bearing centre. Therefore, as the load is decreased, the 

whirl orbit expands in a distorted elliptical shape and the centre of the 

orbits move closer to the bearing centre. 

The typical temperature profile development along the 30°  and 

90°  groove angle bearing centre-line are given in Figures 5.7 and 5.10, • 

respectively. As the oil inlet pressure and temperature are kept constant, 

the bearing temperatures increase steadily as the clearance ratio decreases. 

The temperature increase for the 30° groove angle bearing is steeper than 

the 90° groove angle. In the top half of the bearing, the temperature 

increase is negligible for clearance ratios larger than 8x 10-3  and 3x 10-3  

for the 30° and 90°  angle bearings, respectively. 

5.1.3 The Elliptical Two Axial Groove Bearing  

The effect of preload on the stability characteristics of the 

elliptical bearing was investigated for a 30°  groove angle. Experimental 

data points and the corresponding theoretical results of the steady-state 

load capacity, the attitude angle variation and the stability threshold 

maps are given in Figures 5.11, 5.12, 5.13 and 5.14 for different preload 

values. 

At low eccentricities, the top half of the bearing is as 
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Figure 5.4: (b) Locus of shaft centre in the 30°  two axial groove bearing 
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Figure 5.5: Experimental whirl orbits, w = 1990 RPM, a = 30°, co  = 0.67 
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Figure 5.8: (b) Locus of shaft centre in the 90°  two axial groove bearing 
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effective as the bottom half in the generation of pressure. The journal 

locus moves almost horizontally in the bearing at low loading conditions. 

As the loading increases, the effect of the top half decreases and the 

journal locus curves down to the bottom half. As the preload increases, 

the load carrying capacity of the bearing for the same minimum film 

thickness decreases. 

The stability of the elliptical bearing increases as the 

preload increases. The preload has a considerable stabilising effect, 

especially at high preload and high and medium eccentricity ranges. 

Some of the typical temperature profiles are shown in Figure 

5.15 for the same bearing load and oil feed pressure. From Figures 5.15(a) 

and 5.15(b), it can be seen that, for the same preload, small clearances 

give rise to a larger circumferential temperature increase around the 

bearing. The temperature rise increases with the preload of the bearing. 

The temperature of the top half of the bearing is slightly less than the 

bottom half temperature. Even at high clearances, a circumferential 

temperature increase was observed on the top half due to the high lobe 

eccentricity. 

Some typical whirl orbits for the elliptical bearing are shown 

in Figure 5.16 for various operating conditions. In these photographs, 

the small points around the bearing show the maximum available bearing 

movement. Some points of stable operation are shown in sequence with 

decreasing mean bearing pressures of 100 psi, 50 psi, 30 psi and, finally, 

at the bearing "point" locus just before whirling begins. The whirl 

orbits were found to be load dependent. As the load was further decreased, 

the whirl orbits expanded and at the no load condition the largest of the 

orbits was obtained. It is to be noted that the whirl orbits do not 

expand to the full clearance space, even at the no load condition. 
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From the following sequence of photographs (Figure 5.16), it 

can be seen that the preload has a strong influence on stability and whirl . 

amplitudes for the same bearing arc clearance. In Figures 5.16(a) and 

5.16(b), the bearing arc clearances are 0.0092 in and 0.00088 in, 

respectively. But the whirl amplitudes for S = 0.75 are much smaller 

than for S = 0.6. 	This effect can be seen also in Figures 5.16(d) and 

5.16(g). 	In these figures, the bearing arc clearances are 0.0042 in and 

0.0044 in, respectively. 

At a constant preload, the effect of arc clearance and the 

preload distance can be seen in Figures 5.16(b), 5.16(c) and 5.16(d). 	As 

the preload distance and the arc clearance decrease, the whirl amplitudes 

decrease sharply and the bearing does not whirl for d = 0.0025 in at the 

same speed. Therefore, the photograph is given at 2960 RPM and it shows 

a relatively small whirl amplitude at the no load condition. 

The effect of shaft speed can be seen in Figures 5.16(f) and 

5.16(g) for the same bearing geometry. The whirl amplitudes increase 

with speed. 

The stiffness coefficients obtained by the incremental loading 

method are shown in Figures 5.17 and 5.18 for different values of the 

preload. Although the experimental values show close agreement with the 

theoretical values, scattering in the actual stiffness measurements are 

quite large. This may be attributed to the difficulty in measuring the 

very small displacements and to the effect of non-linearity of the oil 

film forces. 

It is to be noted that the arc clearance (prior to the 

application of preload) is used in the stability parameter when comparing 

the experimental data with the theoretical predictions for different values 

of the preload. However, for a given arc clearance, the higher values of 
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preload correspond to lower minimum assembled clearance. In practical 

applications, the minimum clearance is quite an important factor to 

maintain the bearing operating temperature within a reasonable upper limit. 

Therefore, depending on the application, the minimum clearance is limited. 

For a given minimum film thickness, the preload can be increased by 

increasing the arc clearance. Figure 5.19 	shows a plot of the 

instability threshold parameter in which the minimum clearance is kept as 

an independent variable. As it is seen that as the preload is increased, 

the stability of the elliptical bearing increases, although the arc 

clearance increases. 

5.1.4 The Offset Halves Two Axial Groove Bearing  

The stability characteristics of the offset halves bearing were 

investigated for 30°  and 60°  groove angles. Within the operating 

parameters of the test machine, it was found that the 30°  groove angle 

bearing had good stability characteristics. At high preloads, it was 

always stable. In order to have experimental data points for comparison 

with the theoretical predictions, it was decided to increase the groove 

angle to 60°  in order to destabilise the bearing. Therefore, the effect 

of preload on the stability and the static load capacity of the bearing 

are given in Figures 5.20 to 5.22 for a 60°  groove angle. 

The load capacity of the offset halves bearing decreases with 

increase in the preload. This is due to the higher top half eccentricity 

ratio for the same minimum film thickness. For all the preload values and 

low and medium eccentricity ranges, the locus of the shaft centre follows 

nearly a vertical line. 

The stability of the offset halves bearing increases with 

preload and the unstable region becomes smaller. As the preload increases, 
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(a) 1990 RFM, 6 = 0.75, d = 0.007 in 

Figure 5.16: Whirl orbits of the elliptical bearing motion 
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the stability of the bearing improves, especially in the low eccentricity 

region. 

At the stability threshold, the whirling orbit appears 

initially as a "figure of eight" oriented in the maximum clearance 

direction. Then, as the load is decreased, the whirl orbit expands into 

the full clearance shape. 

Some of the temperature profiles are shown in Figure 5.23. 

The effect of preload is seen as a higher temperature increase on the 

bottom half of the bearing. However, on the top half, there is no 

observable temperature rise. This effect has also been observed on the 

30°  groove angle offset halves bearing. 

For various operating conditions, the typical offset bearing 

motions are shown in Figure 5.24. In these photographs, the clearance 

envelopes are again seen as small points around the bearings. The 

equilibrium bearing centres are taken in sequence with decreasing mean 

bearing pressures of 100 psi, 75 psi, 50 psi and 30 psi, and at the load 

just prior to whirl. 

In Figures 5.24(a) and 5.24(b), the effect of preload distance 

and arc clearance can be seen for the same preload ratio. As the preload 

distance decreases, the whirl amplitude decreases and it starts whirling 

at lower eccentricity. The onset of whirl is sudden at low eccentricity, 

as in Figure 5.24(b), and it is load dependent at higher eccentricity, as 

in Figure 5.24(a). 

The decrease in load capacity with increase in preload can be 

seen in Figures 5,24(a) and 5.24(c). Although the arc clearance is 

larger for S = 0.3 (0.0085 in) than for d = 0.5 (0.0007 in), for the same 

loading with higher preload (Figure 5.24(c)) gives higher eccentricities. 

Figure 5.24(d) shows a stable offset halves bearing even at the 



no load condition due to high preload. 

The stiffness coefficients are given in Figure 5.25 for the 

preload value of 0.5. The deviations and scattering of the measured 

values are quite large. This may be attributed to the peculiar shape of 

the shaft locus. The displacements due to incremental loading in the 

static load direction are very small and they directly determine the 

coefficients K and KX1,  and can affect the other coefficients. XX 

5.1.5 General Comments  

In general, although the agreement between the theoretical and 

experimental results is good, there are some sources of error which cause 

deviation from the theoretical results and scattering.Comparisons between 

actual measurements and calculations are based on the assumption of 

constant viscosity. During the experiments, the usual temperature 

increase of the oil was about 10°C, but at high load and low clearance 

conditions it could increase to 20°C. Hence, variation of the oil 

viscosity through the film thickness and around the circumference can 

affect the results. Karl [29] showed experimentally that a calculation 

that does not take into account the dependence of the lubricant's viscosity 

on temperature results in values for maximum pressures of the film higher 

than the experimental values. Therefore, the experimental load capacities 

can be lower than the theoretical values. Matcher [30] experimentally 

found that, due to viscosity variation at the same Sommerfeld number, the 

equilibrium position of the shaft can be at different positions depending 

on the inlet oil temperature. 

From the definition of Sommerfeld number, it is clear that the 

viscosity can influence the operating position of the shaft in the bearing. 

However, the variation of viscosity around the bearing may also affect the 
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stiffness and damping coefficients of the bearing, and hence the 

instability threshold. Nikolajsen [31], by using the short bearing 

theory and the exponential relation between temperature and viscosity, 

proved that for circular bearings the instability threshold boundary can 

increase, especially at low eccentricity values. 

In general, the experimental stability threshold values are 

found to be higher than the corresponding theoretical predictions. The 

effect of flexibility of the shaft and the bearing housing on the 

stability threshold was considered. The overall stiffness of the shaft 

bearing system was measured to be 2 x 106  lb/in. In most of the stability 

threshold conditions, the ratio of the deflection to the clearance was 

less than 0.05. Hahn [32] has shown theoretically that the effect of 

flexibility of the system on the stability threshold is negligibly small 

for flexibility ratios as small as.0.05. 

In two axial groove bearings, the experimental conditions for 

the lubricant supply did not match those assumed in the theory. In the 

experiments, the effect of the oil feed pressure on the stability of the 

two axial groove bearing was investigated, but no observable effect was 

found on the stability threshold. Therefore, it has been kept constant 

in all the experiments at 15 psi and in the solution of the Reynolds 

equation the oil feed pressure was assumed to be zero. In reality, oil 

is fed from the recesses at both sides of the bearing. Although the 

recesses are in the form of an arc, the leading edges of the oil films can 

be pressurised due to the velocity of the approaching lubricant film. 

The large and deep oil pockets can cause recirculation and turbulence in 

the grooves. The lands on each side of the grooves may cause additional 

oil film forces which were not taken into account in the calculations. 

These may affect the static and dynamic characteristics of the bearings. 
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Figure 5.24: Some oscilloscope photographs of the offset halves bearing 
whirling motion 



- 121 - 

I* -I Q002 in. 

a 

(c) 1990 RPM, 6 = 0.5, d = 0.0035 in 

Shaft rotation: clockwise 

(d) 2960 RPM, 6 = 0.6, d = 0.0025 in 

Shaft rotation: counter-clockwise 

Figure 5.24: Some oscilloscope photographs of the offset halves bearing 
whirling motion 



A II 	0 

A ~ Dv • 

• 

A 0 

K 

5 . 	 

2 	 

10 	 

5 	 

V Kxx 

V 

L/D= 3/4 
oz_ = 60° 
ō = 0.5 

V 

V 

7 

Theoretical 

A 

V 
V 

0 p 

0 • 

1 
0 

_J 	 
0.2 0.4 	0.6 	0.8 	1.0 	1.2 	1.4 	1.6 	1.8 	2.0 	2-22 

em 
(a) Stiffness coefficients 	andd K 

Figure 5.25: The variation of the stiffness coefficients for the offset halves bearing with d = 0.5 



I K 

5 

2 

10 

5 

2 

1 

0 
-0-4 

0 

(b) Stiffness coefficients Kly  and KXy  

Figure 5.25: The variation of the stiffness coefficients for the offset halves bearing with 6 = 0.5 

2.22 
1  I 

V  
A 

•0  

0 0 

V 

00  

•	 
n 

Theoretical 

A 

Q 

0 

• 

A 
L1 	' 0 • 

■ 

L /D- 3/4 
oC. = 60° 
8 - 0.5 

A ■ 

V 

V 

V 

V 

K yy  

1.0 	1.2 
Em 

0.4 0.6 0.8 0.2 1.8 2.0 1.6 1.4 



- 124 - 

At certain operating conditions, once the temperatures around 

the bearing were stabilised, any small change of load (i.e. that which can 

cause displacements of the order of one-tenth of clearance) was observed 

as an immediate change in the measured temperatures. The thermocouples, 

which were placed about 1 mm below the bearing surface, appeared to be 

quite sensitive and to measure the actual oil film temperatures. 

The measured temperature distribution in the centre-plane of 

the bearing showed that temperature increased from maximum film thickness 

to the minimum film thickness positions. When the oil feed pressure was 

kept constant, as the clearance was decreased, the temperature levels 

steadily increased. 

5.1.6 Comparison of Bearing Bore Types  

The essential feature of the non-circular bearings is that the 

centres of curvature of its arcs are displaced from the geometric centre 

of the bearing. As a result of this feature, in elliptical and offset 

halves bearings the hydrodynamic pressures generated in the top half at 

zero journal eccentricity is the same as in the bottom half. Due to their 

specific geometries, the locus of the journal centre is almost horizontal 

and vertical for elliptical and offset halves bearings, respectively. The 

minimum film thickness occurs on the load carrying bottom half of both the 

bearings. In the elliptical bearing, the oil film has another minimum 

value in the top half due to the lobe eccentricity. The converging part 

of the film is not of large extent due to the groove, and this decreases 

the load capacity considerably. In the offset halves bearing, the 

converging oil film cannot reach the minimum value due to the groove; 

therefore, the oil film force on the top half is not as effective as in the 

elliptical bearing. This causes the offset halves bearing to have a 
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higher load capacity than the elliptical bearing. This feature of the 

bearings can be shown easily by plotting the load capacity against the 

minimum film thickness of the bearings which occurs on the bottom half. 

Figure 5.26(a) shows a comparison of the load capacities of different 

bearing bore shapes for the same geometric parameters. Although there is 

a small discrepancy between the offset halves and the circular bearing, the 

load capacity of the elliptical bearing is much lower than these two 

bearings. 

A comparison of the stability thresholds of the bearing bore 

types are shown in Figure 5.26(b) for the same geometric parameters. The 

elliptical and offset halves bearings have much better stability 

characteristics than the circular bearing. In order to see the effect 

of the load capacities on their stability, the load lines are shown as 

follows: For the same loading conditions (i.e. for the same value of So 

and p), the operating conditions can be at C, E and 0 for the circular 

elliptical and offset halves bearings. As the load is decreased, the 

stability threshold is reached at the medium eccentricity region for the 

circular and elliptical bearings. But for the cases shown, due to the 

higher load capacity and better stability characteristics of the offset 

halves bearing, it will always be stable. 

As the speed is increased, the elliptical bearing reaches the 

stability threshold at higher eccentricity, while the offset halves 

bearing reaches the threshold in the medium eccentricity range. Therefore, 

the elliptical bearing is much better than the offset halves bearing under 

heavily loaded conditions. 

This feature of the bearings can also be shown from the effect 

of the cross-coupling stiffness coefficients. As explained in section 3.3, 

the difference of the cross-coupling stiffness coefficients is important 
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from the stability point of view. As shown in Figures 5.17 and 5.25, 

although these coefficients are of the opposite sign for the elliptical 

bearing, except for the high values of the eccentricity, for the offset 

halves bearing they are of the same sign except for the medium eccentricity 

range in which it shows an unstable region. 

For the same geometric parameters and running conditions, 

although the offset halves bearing is stable even at the no load condition, 

as seen in Figure 5.24(d), the elliptical bearing can become unstable at 

low loads, as seen in Figure 5.16(d). 	In these figures, the destabilising 

effect of the 60° groove angle in the offset halves bearing is to be 

remembered. 

A further important criterion for comparison can be the 

bearing operating temperatures. The elliptical bearing shows a higher 

temperature rise than the offset halves bearing. Although the top half 

of the offset halves bearing shows no observable temperature rise, the 

elliptical bearing shows a slightly lower temperature increase in the top 

half than in the bottom half. This is again due to the higher lobe 

eccentricities of the elliptical bearing for the same operating conditions. 

5.1.7 The Dynamic Test Results  

Experimental curves of bearing response as a function of 

excitation speed for different bearing bore geometry are given in Figures 

5.27, 5.28 and 5.29. 	The excitation force amplitudes were given on the 

right hand side of each graph. For each of the bearing types, the trend 

of the response to unbalance as the speed was varied showed common 

characteristics. 	In each case, the magnitude of vibration initially 

increased with increase in the excitation frequency up to the damped 

natural frequency of the system corresponding to the smallest damping 
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factor. As the excitation frequency increased, the vibration amplitudes 

decreased and, after reaching a minimum value, they reached higher 

amplitudes beyond the synchronous speed. 

The response amplitudes show a rounded rather than a sharp 

peak, corresponding to well-damped behaviour. The amplitude and damped 

natural frequency are governed by the eigenvalues of the characteristic 

equation, as described in Appendix D. As it can be seen from equation 

(D.1), the eigenvalues are complicated functions of the bearing 

coefficients. The increase of the response at the resonant frequency is 

due to the decrease in the damping factor of the system. 

The oscilloscope photographs which are shown in Figures 5.27, 

5.28 and 5.29 were taken in sequence with increasing excitation frequency. 

In all these photographs, the direction of rotation is in the clockwise 

direction and the corresponding excitation speeds are shown above and 

below the photographs. Since the test shaft has a certain amount of run-

out, the bearing shows a small vibration orbit around the equilibrium 

position. The amplitude of this vibration is small compared to that from 

the synchronous' external excitation. At half synchronous speed, the 

effect of run-out on the response can be seen as a small cusp on the 

elliptical orbit. 

The assumption of the linearisation of the dynamic oil film 

forces about the equilibrium position was examined during the experiments 

by applying different values of unbalance weights. Although the preloaded 

bearings have the effect of intensifying non-linearity due to higher lobe 

eccentricities, it was found that the limit of linearisation can be valid 

for maximum vibration amplitudes up to one third of the bearing clearance. 

Allaire et al [26] have found that the vibration characteristics are linear 

up to about a half to one third of the bearing clearance. 
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The calculations of the response to forced excitation were 

made by using the stiffness and damping coefficients of the bearing as 

described in section 3.2. 	As it can be seen from equation (3.6), the 

vibration amplitudes are linearly dependent on the unbalance force to 

static load ratio. Therefore, synchronous unbalance response amplitudes 

are presented as the product of the non-dimensional major or minor axis 

•and the static to unbalance force ratio. 

The theoretical response curves are plotted from Figures 5.30 

to 5.37 for different bearing bore geometries against their load capacities. 

They showed fairly common characteristics. At low loads, the major axis 

amplitude increases with increase in the load capacity. At higher loads, 

for circular and offset halves bearings, the amplitudes may decrease or 

stay at the same level, but for elliptical bearings, it increases with the 

load. The minor axis amplitude increases at low loads and decreases at 

higher loads. 	But, again, for elliptical bearings it keeps increasing 

at a low rate. The stability parameter has a strong effect on the 

vibration amplitudes. It is to be noted that as the stability parameter 

approaches to the corresponding threshold value (i.e. as the load decreases 

or the shaft speed increases), the Fo/W ratio increases; therefore, the 

real vibration amplitudes a/c or b/c increase. 

Experimentally determined response orbit axes for 

circumferentially grooved bearings for a feed pressure ratio y = # are 

given in Figures 5.30(a) and 5.30(b). They show good agreement with the 

theoretical results over a range of stability parameters.. 

The effect of groove angle on the response is shown for the 

circular bearing in Figures 5.32 and 5.33. At lightly loaded conditions, 

the vibration amplitude increases considerably. 

The effect of preload on the vibration amplitudes are shown in 
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Figure 5.36: The response of the offset halves bearing with 6 = 0.4 
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Figures 5.34 to 5.37 for the elliptical and offset halves bearings. 

Preload decreases the vibration amplitudes of the elliptical bearing at 

high loads. 	This is due to its better stability characteristics at high 

preload and eccentricity. 

In the offset halves bearings, preload decreases the vibration 

amplitudes in the lightly loaded region. This is again due to its better 

stability characteristics at high preload and low eccentricity. 

5.2 CONCLUSIONS  

The following conclusions are drawn from the results for the 

circumferentially grooved bearing and centrally loaded two axial groove 

bearings: 

1. The general validity of the linearised model of the journal 

bearing system is confirmed experimentally for circular and 

non-circular bore shaped bearings. 

2. The effect of oil feed pressure on the control of film extent 

and therefore on the stability threshold is shown experimentally 

for the circumferentially grooved bearing. As the cavitation 

region decreases due to increasing the feed pressure, the 

stability of the bearing decreases. 

3. Although the non-circular bearings have their shortcomings with 

regard to the load capacity, they have better stability • 

characteristics than conventional circular bearings. 

4. The groove angle has a strong influence on stability. Improvement 
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in the stability performance and static load capacity can be 

obtained by decreasing the groove angle. 

5. The load capacities of the elliptical and offset halves bearings 

decrease with increase in the preload. 

6. The stability characteristics of these bearings progressively 

increase with preload. 

7. In lightly loaded conditions, the offset halves bearing exhibits 

the best stability characteristics, while for heavily loaded 

conditions the best bearing is the elliptical bearing. 

8. For the same operating conditions and geometric parameters, the 

elliptical bearing has higher temperature rise than the offset 

halves bearing. 

9. Under stable operating conditions, the least amount of unbalance 

vibrations can be obtained with the elliptical bearings in 

heavily loaded conditions and with the offset halves bearing in 

lightly loaded conditions. 
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APPENDIX A  

GEOMETRY OF THE NON-CIRCULAR TEST BEARINGS  

A.1 ELLIPTICAL BEARING  

Although it is usually called the elliptical bearing, the cross-

section is actually not elliptical, but is made up of two circular arcs 

with the same clearance, c. Their centre of curvature 01  and 02, each 

displaced a distance, d, normal to the split surface. 	The preload, d, is 

defined as the ellipticity of the bearing. 	It is clear from Figure A.1 

that for any given journal position, J, the eccentricities e1  and e2  and 

the attitude angles 4)1  and ¢2  of the two lobes will be different. Various 

geometric parameters can be mathematically related as follows. 

For the lower lobe: 

= [e2  f d2  - 2e d cos (Tr-q)]2  = [e2  + d2  t 2e d cos c143/4-  

cP1 = sin-1 
(e sin 0)  

e1  

where e is the eccentricity and 4) is the attitude angle of the bearing. 

Non-dimensionalising the above equations by the arc clearance, c, gives: 

Cl  = [e2  f 62  -P 2e d cos 0] 

= sin 1 (
E Sin 0)  

Cl 
 

The film thickness, h, for the lower lobe is given by: 

h1  = c f  e1 cos 01  

and: 41 
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where 61 is the coordinate measured from the line of centres along the 

bearing arc in the direction of rotation. Dividing the equation by the 

arc clearance, c, gives: 

H1 = 1teI. cos 61 

Similarly, for the upper lobe: 

E
2 

= [e2 t 62 - 2e 6 cos cl)] 

(1)2 = r - sin-1 (e sin ~ e 	 ) 
2 

H2 = 1 f e2 cos 62 

It should be noted that because of the preload in the bearing, there 

are two clearances in an elliptical bearing, the minimum and maximum 

values, as shown in Figure A.1(a). However, the journal movement is 

bounded in the maximum clearance direction by the circular arcs, while the 

centre, J, is on the split line (i.e. 4 = Tr/2). 	Therefore, OIJ = 02J = c, 

then the maximum movement of the journal is: 

OJ = [0? - 7007]3/4.   

or: 	= [c2 - d2] 



(a) Elliptical bearing 

(b) Clearance shape and lobe centre geometry 
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cmax= c  

Figure A.1: Elliptical bearing geometry 
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and: 
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A.2 OFFSET HALVES BEARING  

This type of bearing is obtained by the disposition of the arc centres 

of a two-lobe bearing orthogonally to the load line in the opposite 

direction. Figure A.2 shows the two circular arcs with the same 

clearance, c, are displaced an amount d from the geometric centre of the 

bearing. For any given journal position, J, the eccentricities el and e2 
and the attitude angles (pl and cp2 of the two lobes are determined from 

Figure A.2(b) as follows. 

For the lower lobe: 

el = [e2 + d2 - 2e d cos (2 f 0] 

and: 
n - sin-1 Ce sin ((w/21 	4).11

1 = 2 	 L 	el 

where e and are the eccentricity and the attitude angle of the bearing, 

respectively. Non-dimensionalising by the arc clearance, c, gives: 

[c2 #62 -2E (5 cos (+ rP)] 

sin ((w/2) 'f ,)] 
El 

Similarly, for the upper lobe: 

E2 = [E2 f s2 - 2E Ō cos (Z - 4)] 
3z 

and: 
4'2 = 

- [Tr 
- sin 1 (E sin ((7r/2) — ~) )

J 

1 
2  

And the non-dimensional film thicknesses are: 
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H1  = 1+
e1 cos 01  

H2  = 1 + e2  cos 02  

where o1  and 02  are the coordinates measured from the lines of centres in 

the direction of rotation along the lower and upper arcs, respectively. 

It should be noted that offset halves bearing is not symmetric about 

any axial plane; therefore, the direction of rotation is to be specified 

for the given disposition of the halves. 	In Figure A.2, the direction 

of rotation is in the counter-clockwise direction. 

If the preload, S, is less than 0.5, the maximum journal movement is 

equal to the arc clearance and, if it is greater than 0.5, the maximum 

journal movement is bounded by the circular arc of the lobe and the vertical _ 

line drawn from the edge of the other lobe. Figure A.2(b) shows the free 

clearance space of the bearing within which the journal is able to move 

without being in contact with the bearing surface. From the geometry of 

the clearance shape: 

f = [c2  - c2n]2 = [2c d - d2]% 
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(a) Offset halves bearing 

(b) Clearance shape and lobe centre geometry 

Figure A.2: Offset halves bearing geometry 
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APPENDIX B 

ANALYTICAL DESCRIPTION OF AN ELLIPTICAL ORBIT  

An elliptical whirl orbit, in general, can be expressed in terms of 

complex variables as: 

i(T- ) 
X = Re {X e 	X  } = Re { (X - iXs) ein  } 

_ i (T-7 
Y = Re {Y e 	

Y) 
} = Re {(Yc  - iYs) eZT} 

or in terms of real variables as: 

= X cos (T - x) = Xs  sin T t Xc  cos T 
(B.1) 

Y = Y cos (T - Ty) = Ys  sin T t Ic  cos T 

where: X = (X2 tXs2) 

Y = (ē2 e2)  z 

_ 
TX  = tan-1  (X) 

c 
_ 	 Y 

= tan-1  ( s) 

If the X-Y coordinate is rotated such that it coincides with the major 

and minor semi-axes of the ellipse, as in Figure B.1, then the motion can 

be expressed as: 

X' = A cos (T t *) 

(B.2) 

Y' = Bsin (T ts,) 
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where A and B are non-dimensional major and minor semi-axes, respectively, 

and is the phase angle between the exciting force and the major semi-axis. 

If a is the angle between the major semi-axis and the X axis, then 

using the following transformation equations: 

X' 	cos a sin ln  • 

.1" - sin R cos   

and equating the coefficients of sin T and cos T terms by the use of 

equations (B.1) and (B.2) gives: 

A cos 11, = Xc  cos S + c  sin S 
	

(B.3a) 

- A sin p = Xs  cos a + S sin s 
	

(B.3b) 

B sin 11, = - Xc sin +Yc cos R 
	

(B.3c) 

B cos (, = - Xs  sin S + Ys  cos a 
	

(B.3d) 

Eliminating ' and S between the equations in two ways gives: 

A2  + B2  = Xc2 + o2  + Xs2  + s2 	(B.4) 

and: 
	

(A+B)2  = (Xc+17.8) 2   + (Ic  - X8 )2 	(B.5) 

From equations (B.4 and (B.5), one can deduce that: 

B 
X Y - Y X es es 

A 
(B.6) 

Substituting equation (B.6) into equation (B.4) gives: 
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A4  - (c2 # X 2 + c2  + Y 2) A2  + (Xc  S - 
 C 

XS)2 = o  

then: 

A = {%(X02+X82+ c2+S2) + V (Xc2+Xs2+ c2+ s2) 2  - (XXYs  - Y x) 2 } 

The attitude angle of the elliptical orbit, g, can be obtained by 

eliminating A and B and * between the equations (B.3) and gives: 

2 ( c 
 c + Xs 	S)  

= z tan-1  
C s s c 

Then, the phase angle between the excitation force and the major 

semi-axis can be solved by using any one of equations (B.3). 

X 2 + X 2 - (Y 2 + Y 2) 
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X 

Figure B.1: Dynamic load orbit 
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APPENDIX C  

THE INCREMENTAL LOADING METHOD  

The stiffness coefficients of an oil film are calculated from the 

experimentally determined influence coefficients as follows. 

Consider the static load locus of a journal as shown in Figure C.1. 

If the point J1  represents the static position of the journal centre due 

to the application of a vertical static load, W. When an extra 

incremental load, 4fx,  is added in the x-direction, let the journal centre 

move to the new static position, J2, as shown in Figure C.1(a). 

Figure C.1: Method of determining the stiffness coefficients 

The influence coefficients, rxx  and rax, are given by: 

x1 r = y1 
xx Afx 	x ofx  

Similarly, upon the application of a static load, Afy, in the 

y-direction, as shown in Figure C.1(b), gives: 
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Y2 
ryy  =  f  

If Afx  and 1fy  are now applied simultaneously, then the total 

displacements are: 

x = x1  x2  = 4fx rxx f 4fy xy 

= y1  y2 = Afx ryx 
+ 

/fy ryy 

Equation (C.1) can be inverted to give: 

rxy 
x2  

Af  y 

Afx 
efy  

1 	ryy 
Det [rib -r 	r 

yx xx 

x 

y 
(C.2) 

 

where Det [r2i] = rxx  ryy  - rxy  ryx. 

The oil film forces are defined in terms of stiffness coefficients as 

in equation (C.2): 

Afx 

Lfy 

[kxx k 

kyx  kyy  y 
(C.3) 

  

From equations (C.2) and (C.3), one can deduce that the stiffness 

coefficients are: 

kxx kxy  - 	1 	ryy 	- rxy  

Lk yx  kyy 	xx ryy xy ryx - ryx rxx 
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APPENDIX D  

THE STABILITY THRESHOLD CONDITION  

Substituting equation (3.11) into equation (3.10) gives the following 

system of equations: 

A2 + p (A CXX+KXX) 	p (A CXy +KXy) [xo 	[0] 
_ 

s (A CYX  + KYX) 	A2 + Sp  (X CyY  + KYY) o 
	0 

For a non-trivial solution to exist, the characteristic determinant 

must vanish. Thus, for a rigid journal bearing system, the characteristic 

equation is a polynomial of the order four with respect to X: 

A4 + Al A3 + A2 A2 + A3  A + A4  = 0 	(D.1) 

where: 

Al  = p al = S (CXX  + CYy) 

A21 	S a21 	p (KXX + KYY) 

A22 	p
2 
a22 	p

2 
 (CXX CYY - CXY CYX)  

A21 
+ 
A22  

A3 = p2 a3 = p2 [KXX CYY + CXX KYY - KXY CYX - KYX CXY]  

A4  = 
p2 

 a4 = p2 [KXX KYY - KXY KYX]  

(D.2) 

The eigenvalues of the characteristic equation (D.1) can be expressed as: 
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Ak  = ak + i vk  

where ak  is the real part of the Ak  and denoted as the growth (ak  > 0) or 

decay (ak  < 0) factor; and 

vk  is the imaginary part of 
Ak and denoted as the damped natural 

frequency of the system. 

The condition for stability is that the real part must have a negative 

value. The instability threshold is defined to be the condition at which 

the growth factor is zero. Then, by substituting A = i v0  into equation 

(D.l), where v0  is the instability threshold frequency, gives: 

04  -  Al  v03  - A2  v02  4— 	V0 
 f  A4 = 0 	(D.3) 

In order that the above equation is satisfied, the real and imaginary 

parts must vanish. 	By considering the imaginary part to be zero, one 

gets: 

2 	A3  _ a3 
v0 	Al 	a1 p  

(D.4) 

which is known as the whirl frequency ratio, and by equating the real part 

to zero and substituting equation (D.4) gives: 

A
3 - A2 

 A
1 

+ A = 0 ) 
Al 	1 

4 

Substituting the coefficients from equations (D.2) and solving for the 

stability parameter gives: 



- 174 - 

a32  + 12 
 a4  

S = 	a2122  a1  a3  
(D.5) 

This is the stability threshold parameter at which the journal becomes 

unstable at the particular equilibrium eccentricity. 

The system behaviour above the stability borderline may be investigated 

from the behaviour of the roots of the characteristic equation. For a 

given stability parameter above the threshold value, the characteristic 

equation (D.1) has, in general, two negative real roots and a pair of 

complex roots. As p approaches the threshold value, two negative roots 

change into a pair of complex roots, whose real part is a negative value. 

The other pair of roots, whose imaginary part is slightly less than 0.5, 

and that real part of it changes from a negative to a positive value on the 

stability borderline. Therefore, this mode of natural vibration becomes 

self-excited at the threshold. 



COMPUTER PROGRAM 

COMMON SXX,SXY,SYX,SYY►CXX►CXY,CYX►CYY,XD,YD,OXI,DY1►FR,SP►FOWC 
COMMON FX(3,3,3) ,FY(3,3,3) ,H (80) ,EB,DE,LG(80, 11) ,JG,KG,REC►F,PI1 
COMMON YLD,DT,DY►JT,KT,FI,PS,PC,NX,NY,IS,RP,EP,LMAX,NBTYP 
COMMON P (80,11) , WS, WT, G (80) , CE (80) , CW (80) ,CNS (80) , EPS1, EPS2 
DIMENSION X(10) ,XA (10) ,QA (80) 
DIMENSION KK (11) 
PT1=4DO:1DATAN C1D0) 
GRAV=9800. 

C 	SHIFTS FOR BEARING COEFFICIENTS 
XD=.001 
YD=.001 
DX1=.001 
DY1=.001 

C 	 MESH SIZE 
JT=37 
KT=7 
DT=2.*PIl/FLOAT(JT-1) 
DY=1./FLOAT(KT-1) 

C 	PRINT OUT FLAGS 
NVISC=0 
NPRGR=O 
NPRES=O 
NCONT=1 

C 	BEARING OPERATING VARIABLES 
NBTYP=3. 
D=355.8 
YL=266.85 
GY=166. 
FA=42. 
ANL=0.0 
CL=0.3556 
RPM=3000. 
EU=0.01 
PC=.0 
PSUP=1.E+5 
IREF=1 
TIN=25. 
REC=1000. 
CP=1880. 

C 
YLD=YL/D 
CR=2.*CL/D 
OM=2. %KPI1'RPM/60. 
U=OMgD/2. 
NCASES=15 
DE=0.6 
IF (NBTYP . E0.1) DE=O.0 
FR=1. 
SP=GRAV/CL/OM 2 
FOWC=GRAV/CL/EU/OMP'K2 

C 	ATTITUDE ANGLE ITERATION VARIABLES 
FI=1.594 
LF=20 
FCC=1.. 
RF=1. 

C 	TEMPERATURE INCREASE ITERATION VARIABLES 
DELT=18. 
LTC=10 
TCC=1. 
RT=0.5 
TK=0.8 
TF=0.8 
RTMAX=1.5 

C 	PRESSURE DISTRIBUTION ITERATION VARIABLES 



RP=1.5 
EP=1.E-4 
L MAX=JT%l,KT 

GROOVE GEOMETRY 

J81= (JT-1) 2+1 
TA=FA*P I1/180 . /2. 
JG=IFIX (TA/DT) 
KG=IFIX (CYL-GY) /YL/DY) +1 
GL=YL-FLOAT (KG-1) %►,DY=YL 
JG1=JG+1 
JG2=JB1-JG 
JG3=JB1+JG 
JG4=JT-JG 

C 	SET GROOVE POSITION 
DO 31 K=1,KT 
DO 31 J=1,JT 
LG (J, K) =1 

C 	USER SHOULD SET NON-STANDART GROOVE HERE 
31 IFC(J.LE.JG1.OR.(J.GE.JG2.AND.J.LE.JG3).OR.J.GE.JG4).AND.K.GE.KG) 

1 LG <J, K) =0 
FAR=DT%rFLCnT(JG) %r180./PI1=2. 

CI'I∎  TEMPERATURE-VISCOSITY CHARACTERISTICS%►,  %x% %z%K= " == 
C 	SUPPLY vREF1,VREF2,VREF3, AT TEMPS TREF1,TREF2,TREF3 
C 	SET NUNITS PARAMETER AS FOLLOWS 
G 	TEMPERATURE UNITS 	VISC UNITS 	NUNITS 
C 	DEG FAH 	REYNS 	1 
C 	DEG FAH 	C-POISE 	2 
C 	DEG C 	C-POISE 	3 
C 	DEG C 	C-STOKE 	4 

TREF1=38. 
TREF2=93. 
TREF3=10. 
NUNITS=4 
GO TO (51,52i5354,55) , IREF 

C 	IREF=1 
51 DEN=870. 

VREF1=25. 
VREF2=5. 
VREF3=126. 
GO TO 56 

C 
52 DEN=870. 

VREF1=35. 
VREF2=6.2 
VREF3=184. 
GO TO 56 

C 
53 DEN=873. 

VREF1=49.5 
VREF2=7.7 
VREF3=321. 
GO TO 56 

IREF=2 

IREF=3 

C 	IREF=4 
54 DEN=880. 

VREF1=59. 
VREF2=8.4 
VREF3=432. 
GO TO 56 

C 	IREF=5 
55 READ(6,103)TREFI,TREF2,TREF3,VREF1,VREF2,VREF3,DEN 
103 FORMAT(7F10.0) 
56 	CALL VISCOS(NUNITS,DEN,TREF1,TREF2,TREF3,VREF1,VREF2,VREF3,VK,BV, 

1CONN,NVISC) 

C 
C 



C 
C 

V60=VVEXP (BV/ (60 . %K1.8+32 . +CONN)) /1.4503E-5 c=;:icw ci;: rolcact^1=::a: oK'.oco : ccocta.:= z:ri.::ti. ;:r;:K:rAmcnoccr: =====antr.cctrz:z..r=.x:K:z:x : ."..4:r. 
WRITE (6, 300) 

300 FORMAT(1H1,38X,48H ELLIPTICAL BORE BEARING PERFORMANCE DATA 
io/37X,53H  

C 
Ca :I; s :t :tact I:=1.11:11:*•.t:::K:=:r.:=:r.=:r.:r;::w:t^.t^~: 1:3. ;;IC IZN::► ;r;r,N :r, t=1.:C1:::z :t::.z: ,z:t:===r.:r.1^.r.:I:K:z:K 

WRITE(6,302)DrYL,CL,RPM,EUrGY,GLrFA,FAA,ANL,V60+IREF 
302 FORMAT(/10X126HBEARING DIAMETER 	=r 	FB.2,2Xr2HMM, 

1/10Xr26HBEARING LENGTH 	=, F8.2,2X12HMM, 
3/10Xr26HRADIAL ARC CLEARANCE 	=,F8.292X,2HMM, 
3/10X,26HSHAFT SPEED 	=, 	F8.2,2X,3HRPM, 
4/10X,26HUNBLANCE DISTANCE 	=r 	FB.2r2Xr6HMM 
5//10Xr26HPROPQSED GROOVE LENGTH =, F8.202Xr2HMM, 
6/10Xr26HASSUMED GROOVE LENGTH =, F8.2,2X13HMM , 
7/10X,26HPROPOSED GROOVE ANGLE _, F8.2r2X,8HDEGREE 
8/10X,26HASSUMED GROOVE ANGLE =, F8.2,2X,8HDEGREE 
9/10X126HLOAD ANGLE 	=r 	F8.292Xr8HDEGREE 
1/10X,26HOIL VISCOSITY AT 60 DEG C=F8.2,2X,5HP3ISE, 
1/10X,26HUSER OIL NUMBER 	=1I8, 
1///) 
IF (NPRGR.NE. 1) GO TO 62 
WRITE (6, 102) (K r K=1, KT) 

102 FORMAT(25X,17HGROOVE POSITION,//17X,7(2HK=,I2, 4X)118HANGULAR CO 
1ORDINATE/) 
TT1=-0T 
DO 61 J=1,JT 
TT1=TTI+DT 
TT=TT1 %K180 . /P I1 

61 	WRITE (6 ,104) J, (LG (J,K) ,K=1, KT) ,TT 
104 FORMAT (5X, 3HJ = + I3 r 7 (5X, I3) , F14.2) 
62 TT1=0.0 

NX=2 
NY=2 
DO 3 J=1,JT+1 
DO 3 K=1,KT+1 
P(J,K)=0. 

3 CONTINUE 
C 

	

	MAIN LOOP 
I=1 
EB=FLOAT(I) /10.:x(1.—DE) 
FI=-0.27 

C 	TEMPERATURE INCREASE CONVERGENCE CHECK 
LT=1 
TI=TIN-K1.8+32. 

58 T=TI+TF*DELT 
IF (LT—LTC) 7 r 7 , 8 

8 	WRITE(6,42) LT 
42 FORMAT(3),84H$$$$$$$ NUMBER OF ITERATION FOR TEMPERATURE 

1INCREASE IS GREATER THAN 	,I5,10(1H$)) 
STOP 

7 VIS=NK'I•EXP (BV/ (T+CONN)) /1.4503E-7 
PS=PSUP-KCL-K=t'2/6 . /U/VIS/D%K2 

ATTITUDE ANGLE CONVERGENCE CHECK 
L=1 

2222 IF(L—LF) 4 	4 , 5 
5 	WRITE(6,41) LF 
41 FORMAT(5X,87H$$$$ $$$ NUMBER OF ITERATION FOR 	ATTITUDE 

TANGLE IS GREATER THAN 	, I5,10 (1E,$) ) 
STOP 

4 	I5=1 
CALL SOL 
CALL FILMF 



FX <NX, NY, IS) =2. * (WS=SIN (FI) +WT=COS (FI) ) 
FY (NX, NY, IS) =2. * <-WS COS CFI) +WT''S IN (FI) ) 
F=ATAN C-;.JT/WS) +ANL*PI1/180. 
IF(NBTYP.NE.3.AND.F.LT.0.0)F=F+PI1 
WRITE (6,101) F,FI 

101 FORMAT(2X,10(1PE12.4)) 
IFCABS(F-FI) .LE.FCC*PI1/180.) GO TO 3612 
FI=FI+RF*(F-FI) 
L=L+1 
GO TO 2222 

C 	END OF ATTITUDE ANGLE LOOP 
3612 HMIN= (1.-EP51) *CL 

IF CEPS2.GT.EPS1) HMIN= (1.-EPS2) *CL 
FIO=FI*180./PI1 
FX1=FX (NX, NY,1) 
FY1=FY <NX, NY,1) 

C 

	

	LOAD CAPACITY 
S=PI1*SORT(FX1**2+FY1=2) *3. 

C 
C 

	

	OIL FLOW RATE 
DO 6 J=1 JT 
RE=REC-t1-1(J) 
Yl( =1.+0.01G8:rRE**0.741/12. 

6 	QA (J) =H (J) -r-1:3* C-3. *P CJ , 1) +P (J, 2) *4. --P <J, 3)) / (2. *DY) /YK 
CALL SIMPCQA,DT,JT,AR) 
Q=AR 
OF=Q%► U CL*YL/2. /YLDN:=2%M3.6E-3 

C 	CIRCUMFERENTIAL FLOW AT THE MAX. PRESSURE 
JM1=1 
JM2=1 
DO 63 J=2,JT 
IF<JM1.GT.1.AND.J.LT.JB1) GO TO 63 
IF(JM2.GT.1) GO TO 63 
IF (P <J , KT) . GE . P (J-1 , KT)) GO TO 63 
IF(J.GT.JG1.AND.J.LT.JG2) JM1=J-1 
IF(J.GT.JG3.AND.J.LT.JG4) JM2=J-1 

63 CONTINUE 
RE=REC*H <JM1) 
YK=1.+0.0198yRE**0.741/12. 
DO 64 K=1,KT 

64 QA <K) =H (JM1) -H (JM1) **3/YK* (P CJM1+1, K) -P CJM1-1, K)) /2. /DT 
CALL SIMP CQA,DY,KT,AR) 
QM1=AR 
RE=REC*H (JM2) 
YK=1.+0.0198*RE**0.741/12. 
DO 65 K=1,KT 

65 	QA <K) =H (JM2) -H (JM2) a-X3/YK* CP CJM2+1, K) -P CJM2-. , K)) /2. /DT 
CALL SIMP CQA, DY, KT, AR) 
QM2=AR 
Q=QM1+QM2 

' C 
C 

	

	FRICTION FORCE 
CALL FRICF 

C 	TEMPERATURE INCREASE 
TN=vI5T4.130/DEN/CP/GL**2=YLD**2*1. E-3 
DT1=TN%KF/Q*TK 
IF (ABS CDT1-DELT) . LE. TCC) GO TO 57 
DELT= (DT1-DELT) *RT+DELT 
REC=DEN*UnL/VIS*1. E-3 
L T=L T+1 
GO TO 58 

END OF TEMP. INCREASE LOOP 
PB=SWISIRPM/60 . /CR**2*1. E-6 
WL=PB*YL=D31.E-6 

C 
57 



TO=TIN+DELT/1.8 
TMAX=TIN+RTMAXKDELT/1.8 

C 	POWER LOSS 
PL=VI5:i'U'g2*YL%10/2. /CL*F*1. E-12 
WRITE (6,303)YLD,CR,DE,PC,PSUP,EBIS,WL,PBIFIO,HMIN,TIN,TO,TMAX,QF, 

1PL 
303 FORMAT(///10X,26HLENGTH/DIAMETER RATIO 	=,F8.2, 

A/10X,26HARC CLEARANCE RATIO =,F8.4, 
1/10X,26HPRELOAD 	=,F8.2, 
2/10X,26HCAVITATION PRESSURE 	_+F8.212X,7WKN/M'*2, 
3/10X,26HFEED PRESSURE 	=,68.2,2X,7HKN/t1 2, 
C///42X,25HSTATIC 	CHARACTERISTICS/,37)(135(1H—), 
1////10X,26HBEARING ECCENTR. RATIO =1F8.2, 
2/10XI26HSOMMERFELD NUMBER 	=,F8.2 
A/10X,26HSTATIC LOAD 	,F8.212X,2HKN, 
B/10X,26HMEAN BEARING PRESSURE =,F8.2,2X17FHKN/M=2, 
3/10X,26HATTITUDE ANGLE 	=,F8.2,2X,6HDEGREE, 
4/10X,26HMININUM FILM THICKNESS =1F8.292X12HMM, 
5///, 
6/10X,26HDIL INLET TEMPERATURE 	=+F8.212X15HDEG Co 
7/10X,26HOIL OUTLET TEMPETATURE =,F8.2,2X,5HDEG Co 
8/10X126HMAX.BEARING TEMPERATURE =,F8.2,2X,5HDEG Co 
4/10X126HOIL FLOW RATE 	=,F8.1,2X110HL/HR, 
9/10X,26HPOWER LOSS 	=,G8.2,2X,5HW 	1 

6//) 
FMU=F*CL*PI1/ (D/2.) /S 
WRITE (6 , 308) FMU , REC 

308 FORMAT(/l0X+26HFRZCTION COEFFICIENT =,F8.4,2X, 
5/10X,26HREYNOLDS NUMBER 	=,F8.21 
1//) 
IF (NPRES . NE .1) GO TO 60 
WRITE(6,202) (K,K=1,K1) 

202 FORMAT(30X,39HNON—DIMENSIONAL PRESSURE DISTRIBUTION,//10)07(3HK 
1=, I2,8X) , 11HFILM THICK./) 
DO 59 J=1,JT 

59 	WRITE (6, 201) J, (P (J, K) , K=1, KT) , H (J) 
201 FORMAT(2HJ=,I3,8(1X,1PE12.3)) 
60 TT=10. 
C 	VELOCITY PERTURBATION IN X—DIRECTION 

IS=2 
CALL 	SOL 
CALL FILMF 
FX (NX, NY, IS) =2. * (W5*SIN (FI) +WTKCOS (FI) ) 
FY (NX, NY, IS) =2. * (—WSNCOS (FI) +WTkSIN (FI) ) 

C 	 VELOCITY PERTURBATION IN Y—DIRECTION 
IS=3 
CALL 	SOL 
CALL FILMF 
FX (NX, NY, IS) =2. * (WS*SIN (FI) +WT*COS (FI) ) 
FY (NX, NY, IS) =2. * (—WS*COS (FI) +WTKSIN (FI) ) 

C 	DISPLACEMENT • 	PERTURBATIONS 
I5=1 
X(1) =EB*SIN CFI) 
X (3) =—EB*COS (FI) 
XA(1)=X(1)-2.*DX1 
XA (3) =X (3) —2 . *DY1 
Y1=XA (3) 

DO 20 NX=113 
X(3)=Y1 
XA (1) =XA (1) +DX1 
DO 20 NY=1,3 
XA (3) =XA (3) +DYS 
IF(NX.E0.2.AND.NY.EQ.2) GO TD 20 



IF<NX.NE.2.AND.NY.NE.2) GO TO 20 
EB=SQRT (XA (1) ,ieic2+XA (3) **2) 
FI=ATAN (—XA (1) /XA (3) ) 
IF (FI.LE.0.0) FI=FI+PI1 
CALL 	SOL 
CALL 	FILMF 
FX (NX, NY+ IS) =2. * (WS*SIN (FI) +WTrCOS <FI) ) 
FY <NX+NY, IS) =2. * (—WS*COS (FI) +WT*SIN (FI) ) 

20 CONTINUE 
CALL 	SC 
FC=-3.PI1/S 
SXX=SXXIKFC 
SXY=SXY=FC 
SYX=SYXXFC 
SYY=SYYWC 
CXX=CXXC 
CXY=CXYxFC 
CYX=CYX%IFC 
CYY=CYY=FC 

C 	DIMENSIONALIZATION OF THE DYNAMIC COEFFICIENTS 
SXX1=SXXXWL/CL 
SXYI=SXY=WL/CL 
SYXI =SYX%.1L /CL 
SYY1=SYYMWL/CL 
CXX1=CXXXWL/CL/OM 
CXY1=CXY•'rWL /CL /OM 
CYX1=CYXXWL/CL/OM 
CYYI=CYY-KWL/CL/OM 
WRITE(6+301)SXX,SXX1+CXX+CXX1+5XY,SXY1+CXY,CXYI,SYX+SYX1,CYX,CYX1, 

ASYY+SYYI+CYY+CYY1 
301 	FORMAT(1H1,///45X+24HDYNAMIC CHARACTERISTICS,/43X,28(1H—)/15X, 

A25HSTIFFNESS 	COEFFICIENTS.38X,2'HDAMPING 	COEFFICIENTS+ 
1//20X+8HNON—DIM.,8X+5HKN/MM+43X,8HNON—DIM.+7X,7HKN—S/MM/10X, 
23HKXX+2(1X,F14.3) ,30X,3HCXX,2(1X+F14.3)/10X, 

33HKXY, 2 (1X, F14. 3) , 30X, 3HCXY, 2 (1 X, F 14. 3) /10X, 
43HKYX+2(1X,F14.3) +30X,3HCYX,2(1X,F14.3)/10X, 
53HKYY,2(1X,F14.3) ,30X,3HCYY+2(1X+F14.3)/) 

C 	STABILITY 	THRESHOLD 
A1=CXX+CYY 
A21=SXX+SYY 
A22=CXX- CYY—CYX CXY 
A 3 =5 YY=C XX+S XXXC YY—C XY=S YX—C YX%KS XY 
A4=SXXXSYY—SXY=SYX 
IF(A1.GT.0.0.AND.A3.GT.0.O.AND.A4.GT.0.0) GO TO 23 
WR ITE (6 , 304) A 1, A3 , A4 

304 FORMAT(//78H*** COEFFICIENT OF THE CHARACTERISTIC POLYNOMIAL 
1 IS NEGATIVE ***###.It/10X,3HA1=,G14.4/10X,3HA3=,G14.4,/10X, 
23HA4=,G14.4) 

23 	SPO= C (A3 2+A1XX2MA4) /A1/A3—A21) /A22 

C 	WHIRL FREQUENCY RATIO 

SBO=A3/A1 
IF(SPO.LE.0.0) GO TO 22 
WFR=SART (SP0%KSBO) 
WRITE (6+305) SPO, WFR 

305 FORMAT(//10)626HSTABILITY THRESHOLD 	=,F8.4, 
1/10X.26HWHIRL FREQ. RATIO 	=,F8.4//) 
SP=GRAV/CL/OM2 
FOWC=GRAV/CL/EU/OM**2 
FR=1. 
CALL EIGEN 
CALL RESPON 



JA=JT 
KA=KT 
IF (NCONT. EQ . 1) CALL CONTOR (P , JA , KA) 
STOP 
END 
SUBROUTINE COF 
COMMON SXX,SXY,SYX,SYY,CXXiCXY+CYX,CYY,XD,YDIDX19DY1,FR,SP,FOWC 
COMMON FX(3,3,3) ,FY(3,3+3) ,H(80) ,EB,DE,LG(80+11) ,JG,KG,REC,F,PI1 
COMMON YLDIDT,DYIJT,KT+FI,PS,PC,NX,NY+ISIRPtEP,LMAX,NBTYP 
COMMON P(80a11) ,WS,WT,G(80) ,CE(80) +CWCBO) +CNS(80) ,EPS1,EPS2 
DIMENSION DHT(80) 

C 	BEARING GEOMETRY 
JB1= (JT-1) /2+1 
DO 33 
IF (M-1) 33 , 40 I 41 

C 
C 	BOTTOM 	HALF 
C 
40 GO TO (34, 34 31) 9 NBTYP 

C$$$$$$$$$$$$$$$$ FOR OFFSET HALVES BEARING $$$$$$$$$$$$$$$$$$$$$$ 
31 	EPS=SART (EB=K%K2+DE=2-2.,i,DE*EBxCOS (PI1/2.+FI) ) 

IF (EPS. GE.1.0) WRITE (6+51) 
A1=PI1/2.—ASIN CEB*SIN (PI1/2.+FI) /EPS) 
X=P 11/2 . —A 1 

GO TO 52 
c= ==;i:****** FOR 	ELLIPTICAL 	BEARING %K%,%r.:r.;rr.:::::a:a::r.:ra::r.:K:r.:K*:ra;:r.:r„c1:a:*a::r.;t: 



34 EP5=SORT (EB=2+DEy"r,2+2 . =DE*EB=COS (FI) ) 
Al=ASIN (EB*SIN (FI) /EPS) 
X=PI1/2.-A1 

52 EPS1=EPS 
IF (EPS. LE.1.0) GO TO 38 
WRITE (8951) 

51 FORMAT(//53H$$$BOTTOM HALF ECCENTRICITY GREATER THAN 1.0 $$) 
STOP 

38 	IT=1 
JI=JB1-1 
GO TO 36 

C 	TOP HALF 
C 
41 	GO TO (35 r 35 r 32 ) 9 NBTYP 
C $$$$$$$$$$$$$ 	FOR OFFSET HALVES BEARING $$$$$$$$$$$$$$$$$$$$$$ 
32 • 	EPS=SART (E8m"K2+DE%r2-2. *EB*DE*C05 (P I1/2. -FI) ) 

A2=-(PI1/2.-ASIN (EB%KSIN (PI1/2.-FI)/EPS)) 
X=3.=PI1/2.-A2 

GO TO 53 
Cy^r:r^rm:1^r.1=1:=cFOR 	ELLIPTICAL 	BEARING 	%K '. z:r::r ::r 'X:x: :r:=r%K:conct: 

35 EPS=SART (EBin%R+OE•rcI.2-2. -aEBinDEa,C0S (FI) ) 
A2=PI1-ASIN (EBW5IN (FI) /EPS) 
IF(NBTYP.EQ.1)A2=PI1-A2 
X=3 . %r•'P I 1 /2 . -A2 

53 EP52=EPS 
IF (EPS . LE.1.0) GO TO 37 
WRITE (6+50) 

50 FORMAT(//53H$$$ TOP 	HALF ECCENTRICITY GREATER THAN 1.0 $$) 
STOP 

37 IT=JB1 
JI=JT 

36 ED=0.0 
FD=0.0 
A=A1 
IF (M. EQ . 2) A=A2 
IF (IS-2) 42 + 2 . 17 

2 FD=XD%r,CO5 (A) /EP5 
ED=XD-r•'SIN (A) 
GO TO 42 

17 FD=YD-r•'SIN (A) /EP5 
ED= -YD=C05 (A) 

42 X1=X 
C 	FILM THICKNESS AND ITS DERIVATIVE 

DO 4 J=IT.JI 
H (J) =1. +EPS%aC05 (X) 
DHT(J) =-EPS=SIN (X) 

4 X=X+DT 
IF(NBTYP-1) 5 609 60 

C 	DISCONTINUTY OF FILM THICKNESS DERIVATIVE 
60 	IF(IT.NE.JB1) GO TO 5 

DHT(JB1) = (DHT (JB1-1) +DHT (JB 1+1)) /2. 
DHT (JT) = (DHT (JT-1) +DHT (2)) /2 . 
DHT(1) =DHT (JT) 
H (JT+1) =H (2) 
DHT (JT+1) =DHT (2) 
X=X1 

COMPUTING COEFFICIENTS 
DO 1 J=IT,JI 
RE=REC*1(J) 
TK=1.+0.026/12. inRE%a'='0.8265 
YK=1.+0.0198inREinm0.741/12. 
DTK=1.791E-3inRECin-a0. 8265=DHT (J) /H (J) inin0.1735 
D=-DTK/i'K 
ALD=SART (YK/TK) inYLD 



IFCJ.EQ.JB1.OR.J.EQ.JT) GO TO 6 
GO TO 7 

6 	DH2= CH CJ+1) -2. qH CJ) +H (J-1)) /DT=2 
F=3 .:r:  (D%+DHT CJ) /H CJ) + (DHT CJ) =2/2 . /H (J) +DH2)) /2. 
GO TO 8 	- 

7 	F=3 . -'EPS= (EPS*S IN CX)%r2/H CJ) /2 . -COS CX) -SIN CX) *D) /2 . /H CJ) 
8 	C=2. /DT-2+2 . / CAL [MY) =2+F 

CE CJ) = C 1. /DT=2+D/2 . /DT) /C 
CW (J) = C 1 . /DT=2-0/2 . /DT) /C 
CNS CJ) =1 ./ CDY*ALD) t2/C 
G1=(1.-2.-►,FD) -ti'DHT(J)+2.%:ED COS CX) 

• G CJ) =-GI/ CSORT CH CJ))) %3/C=TK 
1 X=X+DT 

33 CONTINUE 
RETURN 
END 
SUBROUTINE SOL 
COMMON SXX.SXY+SYX,SYY+ Oar CXY+CYX+ Crf +XD.YD+DX1IDY1,FR+5P+FOWC 
COMMON FX(3+3+3) +FY(3+3+3) +H(80) +EB+DE+LGC80+11) +JG+KGrREC+F+PI1 
COMMON YLD+DT.DY+JT+KT+FI+PS+PC+NX+NY.IS+RP+EP+LMAX+NBTYP 
COMMON P C80+ 11) +WS. WT+G (80) +CE (80) +CW C80) +CNS (80) . EPS1 +EPS2 
CALL COF 
L=0 

115 L=L+1 
RS=.O 
XS=.0 
DO 7 K=2+KT 

P C 1, K) =PS%R'SQRT CH (1)) 3 
DO 7 J=2+JT 

Z=P (J+K) 
IF CLG (J + K) . EQ . 0) GO TO 70 
P CJ . K) =CW CJ) -KP (J-1 + K) +CE CJ) =P (J+1 . K) +CNS CJ) :K  (P (J + K-1) +P CJ + K+1) ) 

2+G CJ) 
DP=P (J+K) -Z 
P (J + K) =Z+RPmDP 
IF CP (J + K) -PC) 9 r 19 + 19 

9 	P (J + K) =PC 
19 IF (P CJ + K)) 1 + 7 . 1 
1 	RA=ABS C1.-2/P CJ+K) ) 

XS=XS+ABS CP (J + K) ) 
RS=RS+RA=ABS CP (J+K) ) 
GO TO 7 

70 P CJ+K) =PS=SQRT(H CJ)) =3 
7 CONTINUE 
DO 2 K=1+KT 
P CJT+1. K) =P (2 + K) 

2 P(1+K)=PCJT+K) 
DO 5 J=1+JT 

5 	P (J+KT+1) =P CJ+KT-1) 
WR=RS/XS 
IF (L-LMAX) 8+8+21 

8 IFCWR-EP) 11+11+115 
21 	ITE (6+ 102) 
102 FORMATC//95H$$$$$$ PRESSURE DOES NOT CONVERGE WITHIN THE 

1 ITERATION LIMITS 	$$$$$$$$$$$$$$$ 	) 

STOP 
11 	DO 81 J=11JT 

DO 181K=1+KT+1 
PCJ+K)=PCJ+K)/(SQRT(HCJ)))-' 3 

181 CONTINUE 
81 CONTINUE 

RETURN 
END 
SUBROUTINE FILNF 



COMMON SXX,SXY,SYX,SYY,CXX,CXY,CYX,CYY,XD,YD,DX1,DY1,FR,SP,FOWC 
COMMON FX(313,3) ,FY(3,3,3) ,H(80) ,EB,DE,LG(80,11) ,JG,KG,REC,F,PI1 
COMMON YLD,DT,DY, JT, KT, FI, PS, PC,NX, NY, IS, RP,EP,LMAX,NBTYP 
COMMON P (80 ,11) , WS , WT, G (80) , CE (80) , CW (80) , CNS (80) ,EPS 1, EPS2 
DIMENSION A (19) , PM (90) , PT (90) 
X=PI1/2.-FI 
DO 30 J=1 JT 
DO 31 K=1 ,KT 

31 A (K) =P (J, K) 
CALL S IMP (A , DY, KT, AR) 
PM (J) =AR%►,'COS (X) 
PT (J) =AR%KSIN (X) 

30 X=X+DT 
CALL S IMP (PM, DT, JT, AR) 
WS=AR 
CALL S IMP (PT, DT, JT, AR) 
WT=AR 
RETURN 
END 
SUBROUTINE S IMP (A.H,  NT, AR) 
DIMENSION A (90) 
A2=0. 
A4=0. 
N1=NT-1 
N2=NT-2 
DO 23 N=2,N1,2 

23 A4=A4+4.:KA (N) 
DO 24 N=3 N212 

24 A2=A2+2 . ;KA (N) 
AR= CA2+A4+A (1) +A (NT).) *4/3. 
RETURN 
END 
SUBROUTINE FRICF 
COMMON SXX,SXY,SYX, SYY,CXX,CXY,CYX, CYY,XD +YD,DX1,DY1,FR,SP,FOWC 
COMMON FX(3,3,3) ,FY(3,3,3) ,H(80) ,EB,DE,LG(80, 11) ,JG,KG,REC,F,PI1 
COMMON YLD,DT,DY,JT.KT,FI,P5+PC+NX,NY,IS,RP,EP , LMAX , NBTYP 
COMMON P(80,11) , WS , WT, G (80) , CE (80) , CW (80) , CNS (80) , EPS 1 ,EPS2 
DIMENSION A (80, 11) ,A0 (80) ,D (11) 
DO 40 K=1 ,KT 
P (JT+1, K) =P (21K) 
DO 41 J=2 JT 
DPDT= (P (J+1, K) -P (J-1, K) ) 2 . /OT 
RE=REC%KH (J) 
TK=1. -FO .026/12.=RE:K*0.8265 
IF (LG (J, K) . EQ . 0) GO TO 46 
IF (K.EQ.1. AND .P(J,K+1) GT PC) GO TO 45 
IF(K.EQ.1. AND .P(J,K+1) .LE.PC) GO TO 47 
IF(P(J-1,K) .LE.PC. AND .P(J,K) .LE.PC) GO TO 44 
IF (P (J-1, K) .GT. PC . AND .P (J , K) . LE . PC) GO TO 42 
FRAC=1.0 
GO TO 43 

42 HC=H (J) 
44 FRAC=HC/H (J) 

GO TO 43 
47 TK=0.0 
45 DPDT=0.0 

FRAC-1. 
43 	A (J, K) =FRAC%K (-3 . %KH (J) *DPOT+TK/H (J) ) 

GO TO 41 
46 	A (J, K) =0.0 
41 	A0 (J) =A (J, K) 

AO (1) =A0 (JT) 
A (1,K) =A (JT,K) 
CALL 5IMP (AO ,DT,JT, AR) 



• 

D(K)=AR  
CALL SIMP (D,DY,KT,AR) 
F=AR 
RETURN 
END 
SUBROUTINE VISCOS(N,DE,T1,T2,T3,V1,V2,V3,VK,BV,CONN,NPRINT) 
IF(N.LT.3) GO TO 1 
T1=T1*1.8+32. 
T2=T2*1.8+32. 
T3=T3*1.8+32. 

1 	IF(N.EQ.1) GO TO 2 
V1=V1*1.4503E-7 
V2=V2*1.4503E-7 
V3=V3*1.4503E-7 
IF(N.EQ.4) GO TO 2 
V1=V1*DE/1000. 
V2=V2*DE/1000. 
V3=V3*DE/1000. 

2 	AAV=ALOG (V1/V2) 
BBV=ALOG (V1/V3) 
TEST=AAV/BBV 
CONN=-T1 

5 CONN=CONN+1. 
GR= (1. - (T1+CONN) / (T2+CONN)) / (1. - (T1+CONN) / (T3+CONN) ) 
IF (TEST-GR) 5 ", 5 , 6 
AV=1. / (T1+CONN) -1. / (T2+CONN) 
BV=AAV/AV 
VK=V1*EXP (-BV/(T1+CONN) ) 

DONN=CONN*0.1 
IF(NPRINT.E0.1) WRITE(6,50) VK,BV,DONN 
IF (NPRINT. EQ. 1) WRITE (6, 101) 
DO 150 JFAH=801230,10 
T=JFAH 
VREYN=VK EXP (BV/ (T+CONN)) *1. E6 
VCP=VREYN/0.14503 
VCS=VCP*1000./DE 
IF(NPRINT.EQ.1) WRITE(6,201)JFAH,VREYN,VCP,VCS 

150 CONTINUE 
IF(NPRINT.EQ.1) WRITE (6, 102) 
DO 151 JDEGC=20,120,10 
T=FLOAT (JDEGC) *1.8+32. 
VREYN=VK*EXP(BV/(T+CONN))*1.E6 
VCP=VREYN/0.14503 
VCS=VCP*1000./DE 
IF(NPRINT.EQ.1) WRITE(6,201)JDEGC,VREYN,VCP,VCS 

151 CONTINUE 
RETURN 

50 FORMAT UH1,28X,46HCONSTANTS IN VOGEL'S VISCOSITY TEMPERATURE LAW/ 
1/, 30X, 39HV ISCOS TTY (REYNS) =K*EXP (B/T DEG F + C .)),/, 
246Xr2HK=r1PE10.3r/,46X,2HB=,1PE10.3r/,46Xr2HC=,F5.1) 

101 FORMAT(1H0r30X,10HTEMP DEG Fr6Xr10HMICROREYNSr3Xr10H C-POISE ,4X, 
110H C-STOKE ) 

102 FORMAT UH0r30X,10HTEMP DEG C,6X,1OHMICROREYNS,3X,10H C-POISE ,4X, 
110H C-STOKE ) 

201 FORMAT (1H ,34)6 I3,10Xr3 (F5.2,6X) ) 
END 
SUBROUTINE CONTOR(P,JT,KT) 
DIMENSION P(80,11) 
DIMENSION NR(111) ,LINE(111r30) 
INTEGER BLANK,STAR,LINE 
READ (5,100) BLANK, STAR 

100 FORMAT(2A1) 

C 



GR=0. 
DO 11 I=1•KT 
DO 12 J=11JT 
IF (P (J , I) . GT. GR) GR=P (J , I) 

12 CONTINUE 
11 CONTINUE 

IR=1 
IN=20/ (KT-1) =IR 
JN=110/(JT-1) 
FJ=FLOAT UN) 
FI=FLOAT(IN) 
MT=JN (JT-1) +1 
INV=IN+1 
DO 1 L=1,KT-1 
DO 3 I=1,MT 
JM= (I-1) /JN+1 
IF LIMED . JT) GO TO 10 
P1=P UM, L) 
P2=P (JM+1, L) 
P3=P (JM,L+1) 
P4=P (JM+1, L+1) 
P3=P (JM, L+1) 
LM= UM-1) *JN+i 
F2= I-L M ' 
F1=FJ-F2 
X= (P1:KF1+P2-1F2) /FJ 
Y= (P3-7F1+P4-1:F2) /FJ 
GO TO 201 

10 	X=P (JM, KT) 
Y=P (JM, KT+1) 

201 RED=1. 
DO 2 K=1 I INV 
F3=INV-K 
F4=K-1 
NR (I) = (X•'KF3+Y=F4) /FI/GR10.+.5 
L1=K+(L-1) -:INV 
IF( (MR (I)+1)/2-NR(I)/2) 8 , 9 , 8 

9 	LINE (I,L1)=STAR 
GO TO 2 

8 LINE(I,L1)=BLANK 
2 CONTINUE 
3 CONTINUE 
1 CONTINUE 

WR_TE (Ely 200) ( (LINE (I•L) , I=1 ,MT) ,L=1, INV%:(KT-1) ) 
200 FORMAT (5X,/109 (Al) ) 

RETURN 
END 



SUBROUTINE SC 
COMMON SXXiSXY,SYX,SYY,CXX.CXY,CYX,CYY,XD.YD$DX1,DY1,FR,SP,FOWC 
COMMON FX(3,3,3) ,FY(3,3,3) ,H(80) ,EB,DE,LG(80,11) ,JG,KG,REC,F,PI1 

C 	STIFFNESS AND DAMPING COEFFICIENTS 
NX=2 
NY=2 
SXX= (FX (NX+1, NY, 1) -FX (NX-1, NY, 1)) /2. /DX1 
SXY= (FX (NX, NY+1, 1) -FX (NX, NY-1,1)) /2 . /DY1 
SYX= CFY (NX+1, NY, 1) -FY (NX-1, NY,1)) /2 . /DX1 
SYY= CFY (NX, NY+1, 1) -FY (NX, NY-1, 1)) /2 . /DY1 
CXX= (FX (NX, NY, 2) -FX (NX, NY, 1)) /XD 
CXY= (FX (NX, NY, 3) -FX (NX, NY,1)) /YD 
CYX= (FY (NX, NY, 2) -FY (NX, NY,1)) /XD 
CYY= (FY (NX, NY, 3) -FY (NX, NY, 1)) /YD 
RETURN 
END 
SUBROUTINE EIGEN 
COMMON SXX,SXY,SYX,SYY,CXX,CXY,CYX,CYY,XD,YD,DX1,DYI,FR,SP,FOWC 
REAL AK (4, 4) , RR (4) , R I (4) , WK (8) , AX (10) 
INTEGER IN (4) 

C 	ELEMENTS OF THE COEFFICIENT MATRIX 
DO 21 IJ=1,4 
DO 21 K=1,4 

21 	AK(IJ,K)=0.0 
AK (1, 1) =-SP*CXX 
AK (1, 2) =-SP*CXY 
AK (1 , 3) =-SP*SXX 
AK (1 , 4) =-SP*SXY 
AK (2, 1) =-SPxCYX 
AK (2 , 2) =-SP*CYY 
AK (2, 3) =-SPxSYX 
AK (2, 4) =-SP*SYY 
AK(3,1)=1.0 
AK (4,2) =1 .0 

C 	EIGENVALUES OF THE COEFFICIENT MATRIX 
IA=4 
N=4 
IF=1 
CALL F02AFF(AK,IA,N,RR,RI,IN,IF) 
IF(IF.EQ.0) GO TO 120. 
WRITE(6,99) IF 

99 	FORMATC2X,10I5) 
STOP 

120 	WRITE (6 , 302) CRR (K) , RI (K) , K=1 , N) 
302 FORMAT(///32X0* RESPONSE TO STEP INPUT%l//33X0KDECAY RATE%K,6X, 

1*DAMPED NAT. FREQ. /15X,%KROOT 1*,2X,2(5X,F15.3)/15X, 
2*ROOT 2*,2X,2(5X,F15.3)/15X,*ROOT 3*,2X,2(5X,F15.3)/15X, 
3*ROOT 4,2X,2 (5X, F15. 3) //) 
RETURN 
END 
SUBROUTINE RESPON 
COMMON SXX,SXY,SYX,SYY,CXX,CXY,CYX,CYY,XD,YD,DX1,DY1,FR,SP,FOWC 
COMPLEX 2A(2,2),2B(2,1),2C(211),XJ,YJ 
DIMENSION WK (5) , FE (2) , WD (5) 



PI1=4D0*DATAN (1D0) 
2A (1 s 1) =CMPLX (SXX—FRy,-I,2/SP + CXX*FR) 
ZA (1 s2) =CMPLX(SXY+CXY%i,FR) 
ZA (2s 1) =CMPL X (SYX+ CYX*FR) 
AA (2 + 2) =CMPL X (SYY—FR**2/SP + CXX*FR) 

C 	RIGHT HAND SIDE 
BB (1 + 1) =CMPLX(1. s0.) 
2B (2 s 1) =CMPLX (0 . 9 -1. ) 
IF=0 
CALL FO4gDF(2Al2s2Bs2s2s1+aC+2+WK,IF) 
WK(1) =CABS (2C(1s1)) 
WK (2) =CABS (2C (2 + 1) ) 
WRITE (6.303) FR 

303 FORMAT (40Xs *RESPONSE TO EXTERNAL EXITATION*//5X s 
1%i:EXCITATION FREQ. RRTIO*5X+F5.2//) 

WRITE (59 11) (ZC (I2,1) +WK (I2) + 12=1.2) 
11 	FORMAT (/3 (2X, 1PE13.4) ) 

XC=REAL (2C <121) ) 
XS=—AIMAG (aC (1 s 1) ) 
YC=REAL (2C (2 + 1) ) 
Y5=—AIMAG (2C (2+ 1) ) 

C 	DESCRIPTION OF ELLIPTICAL ORBIT 
AMAJ=SORT (0. 5* (XC**2+XS=2+YC**2+YSX=2) +SORT (0.25* (XC**2+XS**2 

1—YC:1:=1:2—YSy"2) **2-1- <XC:1:YC+XS:I:YS) :' 2) ) 
BMIN= (XC*YS—XS%KYC) /AMAJ 
FAXIS=0. 5M (ATAN (2. * (XC*YC+XS*YS) / (XC**2+XS%r%K2—YC%x*2—YS:=2) ) 
FPHASE=O . S=I: (ATAN (2. (—XCxXS—YC*YS) / (XC%I::1:2—XS-i:;1:2+YC3:32—YSI:x2) ) 
FAXIS=FAXIS:1:180. /PI1 
FPHASE=FPHASE%1:180 ../P I1 
WRITE(6.102)AMAJ+BMIN+FAXIS+FPHASE+SP 

102 	FORMAT (8X+9 (1PE13.5) ) 
RETURN 
END 



PUBLICATIONS 



LOAD AND FEED PRESSURE ON 

WHIRL IN A 

GROOVED JOURNAL BEARING 

M. Akkok* 

C. M. M. Ettles** 

March 1978 

ASLE Paper 78 LC6B3 

* Research Student,Mechanica1 Engineering Department,Imperia1 College 

London SW7 2BX 

** Lecturer,Mechanical Engineering Department,Imperial College 

London 5W7 2BX 



SYNOPSIS 

An experimental investigation is described of the whirl stability of a 

circumferentially grooved journal bearing carrying a stiff rotor. The shaft 

and bearing were made with a slight taper so that the clearance could be 

infinitely varied, and the assembly could be tilted to any angle between the 

horizontal and vertical directions to vary the load on the bearing. 

These features allowed a wide range of running conditions. 

Experimental results imply that sub-ambient film pressures are negligible, 

regardless of load, and that Reynolds boundary conditions apply with cavitation 

at ambient pressure. This has an important effect on film extent and con- 

sequently on promoting stability. The influence of feed pressure on the control 

of film extent, and hence on stability, is shown by analysis and experiment. 
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NOTATION 

$xx, etc • stiffness coefficients of film per land of bearing 

bxx, etc 	damping coefficients of film per land of bearing 

cr 	bearing radial clearance 

D 	bearing diameter 

F 	total oil film force on one land 

k 	polar radius of gyration (equations (2)) 

L
o 	

axial length of one land 

e 	axial radius of gyration (equations (2)) 

M 	effective mass of rotor at test bearing 

Mt 	mass of whole rotor 

p 	specific loading, F/L D 

p 	pressure 

S stability parameter, 2F/M c W2  

g 	cavitation parameter, - p /p 

cav  

feed pressure parameter, 
pfeed/p  

non-dimensional unbalance 

equilibrium eccentricity ratio of bearing 

angle of inclination of shaft from horizontal 

roots of perturbed motion (equations (8),(9)) 

spin velocity of shaft, rad/s 

0 

A 
n  

w 
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INTRODUCTION 

The extent of the fluid film in a journal bearing is known to have a 

moderate effect on load capacity and a more marked effect on the dynamic 

characteristics. A bearing running under full Sommerfeld conditions can be 

shown theoretically to be completely unstable at all speeds, whereas if the 

Reynolds boundary condition is applied to allow for cavitation, the stability 

boundary becomes well defined. 

The full Sommerfeld and Reynolds conditions represent the extreme ends 

of a range in which practical bearings operate. A lightly loaded bearing with 

a loading intensity of less than 0.1 bar could be expected to run under full 

Sommerfeld conditions since the peak pressures would be of the order + 0.3 bar 

(depending on eccentricity ratio) and it is likely that the film could withstand 

such a relatively small negative pressure relative to atmospheric conditions. 

Conversely, a heavily loaded bearing at 100 bar tends closely to the Reynolds 

condition, which assumes the cavitation pressure to be ambient. The 

intermediate case is of great practical interest since some sub-ambient pressure 

may occur within the cavitated zone or upstream of it. 

Dyer and Reason [1]  have presented an experimental study of a steadily 

loaded bearing using a pressure transducer rotating with the shaft, showing that 

tensile stresses of up to 3 bar without cavitation could occur during a single 

shaft revolution, followed by cavitation at an irregular sub-ambient pressure 

during the next revolution. This behaviour was attributed to the random 

occurrence of asperities or air bubbles from which cavities could grow. 

For lightly  loaded bearings (in the range 0.5 - 4.0 bar) cavitation at 

less than atmospheric pressure would have a considerable destablising effect 

since the film extent and attitude angle would be affected. This range of 

loading is of practical interest since many test machines to investigate 

rotor behaviour are run lightly loaded. Some pump bearings (which are large 

for reasons of shaft strength) are run at similar loading., 
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A second factor which can control film extent is the feed pressure to the 

bearing. Of the various practical grooving designs, a full central circum-

ferential groove gives the greatest control on film extent since by using very 

high feed pressures it ispossible to approach full Sommerfeld conditions, 

regardless of loading intensity. 

This work was undertaken to find the individual and combined effects 

of loading intensity and feed pressure on the half-frequency whirl stability 

of a circumferentially grooved bearing. 



APPARATUS 

A general arrangement of the shaft and bearing is shown in Figure 1. The 

first test bearing was of 12.7mm (0.50 in.) nominal diameter with two lands 

formed by a circumferential groove 2.5mm (0.10) wide and of the same depth. Each 

land was of L= 3.2mm (0.125in) axial length, giving a ratio L/D = 0.25 per land. 

A second test bearing for the same specific loading was made of 8.2mm (0.323 in.) 

nominal diameter and 5.5mm (0.217 in.) land length to give L/D = 0_.671 per lande 

The rotor was supported on two bearings as shown, one being the oil film 

bearing under test and the other a self-aligning double row spherical track ball 

bearing with collet fixing to the shaft. The ball bearing was assumed to act as 

a hinge when considering the dynamics of the shaft. 

The bore and journal of the test bearings were tapered with an included 

angle of 2.43 degrees to allow the clearance to be infinitely varied. This 

was achieved by loosening the collet of the ball bearing and sliding the shaft 

forward to give zero film thickness in the journal bearing. The shaft was 

then moved back a known distance (measured using a clock gauge) so that, knowing 

the taper angle, the running clearance could then be found, nominally to within 

three significant figures. 

The same taper on shaft and bearing was achieved by finish machining on 

the same lathe with an unaltered skew cross slide setting. The alignment of the 

assembly was achieved by tn. sctld lapping and checked using thin applications 

of engineering blue. To assist the small amount of lapping necessary, the 

journal was of hardened steel and the bearing of brass. 

The calculated first critical speed of the shaft when assumed pinned at 

the bearings was more than twice the maximum speed available on the test 

machine. For analysis purposes tht rotor was considered to be stiff. 'The 

drive was applied by a simple coupling consisting of a piece of slack cord 

passing through an axial groove on the free end of the shaft. 
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The dimensions were such that the specific loading on both test bearings 

was 0.345 MPa (50 psi) when the assembly was horizontal. The unit and motor 

were mounted on a base plate of 225kg mass (500 lbm). The whole assembly could 

be tilted (with the test bearing downwards) to allow the bearing load to be.  

infinitely varied from 0.345 MPa to nil. 

The lubricant used was a mineral oil of 365 cS at 30°C and 17.9 cS 

at 100°C. The effective temperature for the determination of viscosity was 

measured by a single thermocouple close to the film. For the great majority 

of running conditions, the temperature rise of the bearing over inlet was 

less than 2°C. 

The static reaction at the test bearing when the assembly was horizontal 

was 2.835kgf, however, considering the ball bearing to be a hinge, the effective 

mass of the rotor viewed from the test bearing was 2.585kg, or 8.8 per cent less 

than the static reaction. (Had the rotor been a uniform rod, this reduction 

would have been 33.3%.) In the stability analysis (to be described), this 

shaft assembly was balanced without the collet (which it was necessary to 

remove) to a nominal error of 0.5gm cm. 

The range of operation variables for the test machine were: 

Speed 	0 - 130 rev/s 

Load 	0 - 0.345 MPa (50 psi) 

Radial Clearance : 0 - 0.23mm (0.009 in.) 

Feed Pressure 	: 0 - 0.621 MPa (93 psi) 



THEORETICAL ANALYSIS 

The pressure field within the film was calculated using a finite-difference 

iterative solution of the Reynolds equation. The boundary pressure at the outer 

edge of the land was set to ambient (zero). At the inner edge the feed pressure 

was sdt according to an independent parameter y, where y = (feed pressure/ 

bearing specific loading) = pfeed/P  ' For any fixed value of 
E the feed 

pressure was found to affect the pressure fluid in the film and the film 

extent. The oil film force F was therefore slightly affected by feed pressure. 

To obtain a fixed value of y the value of feed  was adjusted according to the 

current value of F as the convergence of the iterative solution proeeded. 

To allow for sub-ambient cavitation, a floating boundary condition was 

applied such that if the pressure at any node during an iterative sweep was 

found to be less than - S P, the pressure was set immediately to that limiting 

value. A value of S= 0 corresponds to the Reynolds boundary condition. The 

pressure in the cavitated zone was assumed to be zero absolute or minus 

0.101 MPa gauge (one atmosphere = 0.101 MPa). The loading P changes with 

the angle of inclination e of the shaft from the horizontal and is equal to 

cos g. The ratio 8  is therefore 0.101/P0=0  cos sand, for this apparatus, Pe=O  

has the following values. 

9 P 	(MPa) (psi) 8 

80 0.060 8.7 1.67 

70 0.118 17.1 0.85 

60 0.173 25.0 0.58 

45 0.244 35.4 0.41 

0 0.345 50.0 0.29 
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The choice of zero absolute as the pressure in the cavitated zone was 

arbitrary but corresponds approximately to Dyer's experiments [ 1) for a 

fractured or striated film. The occurrence of tensile stresses within the 

film, as found for some conditions by Dyer, could be accommodated within 

the solution by using higher values of a , but for the purposes of this paper 

this is later shown to be unnecessary. For each value of S, solutions were 

obtained for values of y = 0, 0.25, 0.5, 1, 2. An illustrarion of the effect 

of y on film extent is shown in Figure 2 for a typical value of 8 = 0.5. 

At a value of y= 2, cavitation is avoided although a small area of the film is 

at sub-ambient pressure. 

Stability Analysis  

Assuming that the rotor is hinged at the ball bearing and taking moments 

about the hinge, the equations of motion about the equilibrium running position 

in the x andy directions are as follows: 

I 	Jw.  
L2 x- L2 y 
0 	0 

+ 2 

a a  xx xy 
b b 
xx xy 

0 	(1) 

x 

L--- y + 	x 
0 	0 b b  yx yy a a  yx yy 

where 	I 	= moment of inertia of rotor about hinge 

J 	= polar moment of inertia of rotor 

Lo 	= distance between bearings 

x 	= horizontal coordinate at bearing from equilibrium running 

position 

y 	= vertical coordinate at bearing from equilibrium running 

position 

The setting up of such equations has been demonstrated by Woodcock and Holmes 

[2] for a similar but more complex system where the rotor was supported on 
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two oil firm bearings. The concept of linearised spring and damping 

coefficients relating to small displacements of a journal bearing from the 

equilibrium running position is well established and is described in detail 

in, for example, [3] by Holmes. The coefficients were determined in the oil film 

analysis by imposing small perturbations of displacement or velocity in the x or 

y directions and observing the change in oil film force. 

The equations of motion are set in non-dimensional form by the sub-

stitutions: 

I = mt 2  

J=M
t 
k2 

x = Xc r 

y =Ycr  (2) 

t = T/W 

a 	= A 	F/c , etc. 
xx 	xx . 	r  

b 	= B 	. F/m c , etc. xx xx r 

After some manipulation, the equations of motion become: 

           

           

X - Yn 

+Xn 

+ S 

A Axy  

 

X 

+ S 

 

B B 
xx xy 

  

= 0 	(3) 

          

 

A A  yx yy 

 

Y 

 

B B 
_ Yx YY_ 

   

        

        

        

           

where: 	 2F 
S = 	 

crw2  Mt  (t/Lo) 2  
(4) 



and: 	n = (k/.e) 2  

The form of the stability parameter (4) can be further reduced to include 

the effective mass, M, at the bearing as follows. Considering the equations (1) 

and writing the oil film forces from both lands as F{, Fy, then the equation 

can be written: 

I x - J w • 
L 	L Y + Fx  L = 0 
0 	0 	• 

L  y+ L w  x+ F Lo = 0 
0 	o 	

y  

If the system is at rest, x = y = 0 and using the identities Fx  M x, 

F = My, then both (5) and (6) yield the same result: 

M = I/Lo2  = Mte2/Lo
2  

As an example, for a uniform rod I = MtLo2/3  so that M = Mt/3 

compared to the static reaction F = Mtg/2. As a consequence of equation (7), 

the stability parameter in equation(4) becomes the commonly used parameter 

S = 2F/M crw2. 

The stability of the equation of motion (1) is assessed as in (4,5] by 

assuming a solution: 

k=Ae AT 
 Y = B 

JIT 

If equation (8) is substituted in the equations of motion, the result can 
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(5) 

(6) 

(7)  

(8)  

be expressed as: 



[ z ][:] = [:1 

where LZJ is a 2 x 2 matrix, made up of S,a and the spring and damping 

coefficients. From conventional vibration theory, the determinant of )ZJ 

must be zero for a solution to exist. Expansion of the determinant gives a 

fourth order equation for A. The four roots are usually arranged as conjugate 

pairs: 

Al 2 
A3,4 = a2± ist 

 

(9) 

   

If a value of S is assumed, the numerical values of the roots can be 

found. All real parts of the roots must be negative for stability.. The solution 

of the determinental equation for the roots can be avoided by applying Routh's 

stability criterion [4, 5~ . This locates the threshold of stability corres- 

ponding to a zero value of the largest real part a (all other real parts 

being negative). Applying the criterion gives a particular value of S 

(the threshold value) at which the stability is neutral. For values of S 

less than the critical value, the system is unstable. 

Solutions are presented in the form of stability profile maps according 

to the Routh criterion. Extreme examples are shown in Figure 3 for angles of 

inclination of 800 and zero, where the stability parameter S = 2F/M cr w 2 

is plotted against the equilibrium eccentricity ratio co. It appears that 

the low loading for 0=80o (P = 0.59 bar) gives almost complete Sommerfeld 

conditions and the bearing is unstable for all conditions fore() less than 0.6. 

In Figure 3(a) for 0 = 0 (P = 3.40 bar), the conditions are intermediate between 

pure Sommerfeld and Reynolds. The effect of increased feed pressure in 

lowering the stability is apparent. 

As a matter of interest, the classical solution for stability 

assuming a point mass concentrated at the bearing, is shown in Figure 3(a) 
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for Y= 0 as a dashed line. This should be compared with the full line 

which represents the stability of the test system and includes gyroscopic 

effects. The two characteristics are not greatly different. 

The case of vertical rotors (9= 90°) is of practical interest. The 

force F applied to the bearing is then zero and the stability parameter is 

also zero. Theoretically the rotor is unstable at all speeds. This 

was verified experimentally. Capone [7] has shown experimentally that the 

amplitude of whirl can be controlled in an unloaded journal bearing although 

whirl always occurs. 

Vertical axis machines are usually provided with pivoted pad guide 

bearings. If the circular bore bearings are used several factors could 

operate fortuitously to prevent whirl. These include misalignment, unbalance 

magnetic pull (to give a finite value of F), coupling forces and thermal 

distortion of the bore. 
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EXPERIMENTAL RESULTS AND DISCUSSION  

Results were taken for both test bearings at six angles of tilt between 

0 and 80 degrees and for five values of radial clearance at each tilt setting. 

For a standard test run, the feed pressure was set to give a y value of 4  ,1 , 

1 or 2 and the speed gradually increased until whirl began. Due to the 

asymmetry of the collet, it proved difficult to eliminate all unbalance from the 

rotor and, although the residual unbalance did not materially affect the whirl 

onset speed, it modified the way in which whirl appeared according to the clearance 

setting. 

In theoretical studies, a convenient general form to indicate the extent of 

unbalance is given by chin which the distance of the mass centre from the geometric 

centre is normalised with respect to the radial clearance. A value of si?-0.3 is 

sufficient to suppress all sub-synchronous frequencies, but for eb' 0.3 half 

speed whirl occurs at approximately the same speed as for a perfectly balanced 

•=1;.tf.t together with synchronous whirl. 

Figure 4, taken from A.G. Holmes (8), shows the amplitude of the half 

speed whirl component for an unbalance of Eh = 0.2. The data was derived from 

a Fourier analysis of the limit cycle motion found using short bearing theory. 

An inspection of Figure 4 shows that, as the stability threshold is approached, 

a small component of half speed motion arises, which appears on the orbit 

initially as a double loop and then as a cusp as the half speed component increases 

(9). 

In the present work, the variation of clearance by a factor of four, together 

with a small and fixed value of residual unbalance gave a variation of cb over 

a range which was estimated to be 0.02 to 0.08. For large clearances, the onset 

of whirl was sudden and well defined, whereas for small clearances, whirl appeared 

initially as a double loop and then as a cusp as the speed was slightly increased, 

together with a general increase in size of the orbit. Figure 4 shows, for the 

comparatively large unbalance of sb = 0.2, that the growth of a cusped orbit 
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becomes clear over the stability parameter range 0.16 to 0.14 which corresponds 

to a speed increase of 7%. It is interesting that Tondl (10) found in a com-

prehensive series of tests with different bearing types that unbalance did not 

affect the instability threshold. 

All whirl conditions showed hysteresis in that once whirl was established 

it was possible to reduce the speed by about 30% below the onset speed before 

whirl ceased. The same effect was found by Tondl. 

The experimental points for whirl onset conditions are shown in Figure 5. 

Groups of points run at the same clearance ratio c r/R and 

are joined with dashed lines. The influence of feed pressure is clear for a 

line of points such as aa'. The solid lines attempt to join experimental points 

of constant y  regardless of clearance and loading intensity. The most interesting 

result is that loading intensity has no clear effect on stability. 

The theoretical results in Figure 3 which assume cavitation at zero absolute 

pressure will now be reviewed. Comparing the two cases (a, 6 = O, P = 3.40 

bar; b, 6= 80°, P = 0.59 bar) it can be seen that effect of P is totally 

dominant. The experimental results do not show this trend, indeed there appears 

to be no effect of P on stability. 

This implies that sub-ambient pressures were not present as assumed in the 

data of Figure 3, but that the cavitated area vented at atmospheric pressure as 

assumed in the Reynolds boundary condition. 

To verify this conclusion the stability profile map fora = 0 was obtained 

and appears in Figure 6. This corresponds to the Reynolds boundary condition and 

is indepenent of P. Figure 6 gives fair correlation with the experimental results. 

The agreement between analysis and experiment on the effect of feed pressure is 

good. 

On the phenomenon of cavitation in journal bearings, a number of questions are 

raised which, if examined in detail, must lie outside the scope of this paper. 

However, it is possible to reach some tentative conclusions. Dyer (1) has argued 
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that the occurrence of cavitation is initiated by a disturbance or discontunuity, 

such as an asperity or entrained bubble. It could be surmised that small fluctu-

ations due to run out from out-of-round or unbalance effects could give a cyclically 

varying cavitation position which, by reason of its unsettled nature, promotes 

cavitation at ambient pressure. This hypothesis can be reinforced in the case of 

incipient whirl even if no run out or out-of-balance exists. Supposing that 

negative pressures and a large film extent do occur, the bearing would be tempor-

arily unstable. The resulting growth of the orbit could provide the necessary 

disturbance to promote ambient cavitation and a return to steady running. 

It is significant that in the experiments reported by Dyer (1) tensile 

pressures occured during single individual revolutions of the shaft. Subsequent 

revolutions gave a cavitated film until conditions settled and the tensile pressures 

were repeated. 

The hypothesis can also be supported weakly from minimum energy considerations 

in that more energy is absorbed in whirl than in steady running, so that the film 

will self-adjust to promote minimum dissipation. 

An interesting situation would arise if the temporary instability referred 

to above was strong rather than slight. This could give large initial displace-

ments (equivalent to shock loading) which might grow rather than damp out. This 

effect, which is illustrated by the hysteresis or continuation of whirl in stable 

regions once initiated, is due to non-linear effects within the film and could be 

an explanation for the scatter of experimental results seen. in part of Figure 5. 

The effect of system damping to restore stability has been considered in 

recent publications (e.g. 11, 12). A quantitative assessment of damping is given 

by the real parts oc 	of the eigenvalues A = i=ris defined in equation 

(9). The largest  value of of is taken as a  and indicates the reserve of system 

damping. For example ifi= -1/01S= -2 thencCI  =QC1 = -1. If QC is strongly neg-

ative, then the damping is correspondingly .strong. 

Figure 7 shows a plot ofoc forL%D= 0.25 anay =a = O. The curve forDec  = 0 • c 

corresponds to the stability threshold found using the Routh criterion. Of 
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particular interest are the regions for high and low eccentricity ratio where the 

system damping is low. Figure 8 shows a further peculiarity at high eccentricity 

ratios. This figure, which is similar to data in [31, shows the response to 

unbalance in the direction of loading as a proportion of the unbalance ratio 

The area of irregularly spaced contours at high values of eccentricity show that 

large amplitude aperiodic behaviour is likely, as found by A.G. Holmes in Figure 

4 using non-linear methods. 

Figure 7 and 8 are offered as further possible explanations for the scatter 

of experimental results which, for L/ D= 0.67, is more pronounced at high and low 

eccentricity ratios. 

A general conclusion of thispaper is that, contrary to expectations, light 

loading does not affect the stability of a journal bearing. This is supported 

by the successful running of flexible test rotors in several reported cases, e.g. 

[21, [133 , [14] , [15) , [16] , where the bearing loading varied from 0.5 to 1.7 

bar. In three of the references quoted (2,13,16], the loading was in the region 

0.6 bar or less, under which almost pure Sommerfeld conditions could be expected, 

leading to strong instability over almost the whole speed range as shown in Figure 

3(b), which corresponds to a loading of 0.59 bar. However, in none of these cases 

was half frequency whirl reported, although its possible occurrence was realised. 

The previous work most relevant to the hypothesis outlined in this paper is 

a short discussion by Cole and Hughes (17) which is reproduced here in full. 

"During the course of some film extent experiments on a transparent sleeve 

bearing (25 x 25 x 0.05 mm) with a single-hole entry, we have observed that whirl 

at a frequency near to half shaft speed may occur over a wide speed range but 

only while the film remains complete. As soon as the film breaks, as a result of 

increased eccentricity ratio or changed oil-supply conditions, whirl ceases. 

A cyclic effect which probably is associated with the construction of the 

test machine has been noticed. Whirl gradually builds up, then the film breaks. 

down, whereupon whirl ceases and the complete film is formed again, permitting 
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the whole cycle to repeat. If the oil supply is shut off, this state of 

affairs continues until insufficient oil remains in, or near, the bearing to 

maintain a complete film." 

The discussion offers further explanation for the experimental scatter 

seen in Figure 5. The work by Cole and Hughes was subsequently published in 

more detail [181 but their earlier discussion describes the bearing behaviour 

more succinctly. In [18] it is further reported that control of the oil film 
extent by alteration of the inlet oil position increased the tendency to whirl 

if the film extent was increased and vice versa. 



CONCLUSIONS 

1. Within the context of the paper, the effect of leading intensity on film 

extent and the subsequent stability is small. The Reynolds boundary con-

dition implying cavitation at ambient pressure appears to apply, regardless 

of load, for conditions close to the instability threshold.. 

2. It has been demonstarated that feed pressure exerts an influence on 

stability, most probably by its effect on film extent. Lower feed pressure 

enhanced stability. 

3. For horizontal rotors where F = Ilmg the stability parameter S reduces to S= 

g/c
2r . For a light feed pressure an approximate threshold value is S = 0.2. 

This gives the maximum allowable clearance as Crn 5g/w2  for horizontal 

rotors. 

4. Slight unbalance has little effect on the stability threshold but can affect 

the manner in which whirl appears. 
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The Effect of Grooving and Bore Shape on the 
Stability of Journal Bearings 

M. AKKOK and C. M. McC. ETTLES 
Imperial College of Science and Technology 

London SW7 `?BX, England 

The stability thresholds of four basic journal bearing types are 
found. Increasing groove size (up to 90 °) is found to exert a 
strong destabilizing effect. Increasing aspect ratio (LID) also has 
a destabilizing effect. The stability of each type was found to 
improve progressively with preload. 

The influence of bore shape was found to be less impor-
tant than groove size, a, or preload, 8. For fixed values of a, 
8 and LID, the bore shapes in increasing order of stability 
were found to be: circular, lemon bore, offset halves, three lobe. 
Some variations on the three-lobe design are investigated. 

INTRODUCTION 

The whirling of a rotor usually originates from two dif-
ferent classes of vibrations; self-excited vibrations and 
forced vibrations. 

Examples of self-excited or free vibrations include the 
"oil whip" of a rotor supported on fluid film journal bear- 
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ings and the unstable motion of a rotor carrying compo-
nents with a light shrink fit. Forced vibration can be caused 
by noncircularity of the shaft, unbalance or excitation from 
steam or coupling forces. 

In the past decade. much effort has been spent on the 
development of analytical techniques to predict rotor be-
havior. It has been demonstrated analytically and by exper-
iment [e.g. (I)] that. as a flexible rotor is brought to speed, 
the system passes through one. two or even three reso-
nances associated with the bending tnu'ies. 

The upper limit of operation is siren hv self-excited oil 
whip originating from the bearings. Recent experimental 
work by Leader and others (2) with a single-mass, flexible 
rotor clearly demonstrates the sequence of events. In (2), it 
is also shown that bearing type (or bore shape) exerts a 
strong influence on the threshold of oil whip. 

There are several journal bearing bore shapes in com-
mon use. These include, apart from the classic circular bore 
bearing, the lemon bore, three-lobe, offset halves, and piv-
oted pad. Within each type, there is a range of further 
parameters which are thought or known to affect stability. 
These include preload, groove extent, feed pressure, iner-
tia effects, and top-half relief. Little is known of the stability 
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NOMENCLATURE 

are, etc. = damping coefficient of bearing 
c 	= radial clearance between arcs and shaft before preload 

is applied 
c,. 	= minimum local clearance when bearing and shaft are 

concentric (Fig. I) 
D 	= bearing diameter 
e 	= eccentricity of shaft center from bearing center 
e, 	= preload of bearing arc (Fig. 1) 

= distance of rotor mass center from geometric center 
F 	= load on bearing 
krr , etc. = stiffness coefficient of bearing 
L 	= axial length of bearing 

= mass of rotor associated with bearing  

= shaft speed (rev/s) 
= projected loading. FIL D 
= shaft radius 
= Reynolds number. pUcl'7 
= Sommerfeld number, Pct/N,IR' 
= stability parameter. F/Mcw= 
= groove size (degrees) (Fig. 1) 
= damping 
= preload. e,lc 
= eccentricity ratio, elc., 
= viscosity 
= stability root 
= lubricant density 
= shaft spin velocity, 2tr N, (rad/s) 
= natural frequences of bearing 
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characteristics of each basic type, and very little for varia-
tions on each type. 

The development of bearings for turbomachinery has, 
until recently, proceeded on an ad hoc basis. For example, it 
has long been industrial practice to use top-half relief and 
large "scallop" feed grooves which subtend angles of up to 
90°. The purpose in using such "cutaway" bearings has been 
to reduce friction and temperature rise. The effect on sta-
bility of these departures from the basic bore shape is 
largely unknown. In this connection, recent suggestions (3) 
that, for conservation of energy, the losses in turboset jour-
nal bearings be further reduced seem fraught with undesir-
able consequences for rotor behavior. The bearing losses in 
machines of about 500 MW are in the region of 0.5 percent 
or less, giving little room for improvement. 

This paper attempts to supply basic information on the 
effect of grooving and bore shape on stability. The rele-
vance of the results presented is discussed in the light of the 
small amount of published experimental work carried out 
in this area. 

ANALYSIS 

The very simplest linearized analysis is used, assuming a 
stiff symmetric rotor of mass 2M on identical bearings. The 
translatory rather than conical mode of motion is consid-
ered. Given the eight linearized coefficients of a bearing, it 
is possible to carry out the most sophisticated analysis of 
rotor behavior [e.g. (4)1. However, this is not the purpose of 
this work which is to concentrate specifically on bearings. 

The stability analysis, which is detailed in Appendix 1, 
produces a variable, S. = FhVIcto2 , where F is the bearing 
load, M is the associated mass, c is a reference clearance (to 
be described), and w the rotational speed of the shaft (rad/ 
s). This variable has appeared in various forms in other 
treatments, where it is often called the critical mass. Other 
forms include its inverse, square root (or both), or the sub-
stitution of LDV(R/c)2  o F for the load term. The basic 
form S. is used in this work. 

For any given bearing, the linearized analysis produces a 
threshold value of S. below which the bearing is unstable. 
Concerning this type of analysis, Lund and Thomsen (5) 
write: "The critical mass may be considered as a measure of 
a particular bearing type's sensitivity to instability." This 
implication will now be examined in detail to justify the 
analysis and also to show its shortcomings. 

RELEVANCE OF THE ANALYSIS 

The theoretical aspects of rotor dynamics have provided 
pleasure and employment for many years. There has been a 
strong imbalance between theoretical work and its experi-
mental verification, particularly in practical situations. 

A weak justification for the linearized analysis method is 
that the alternative nonlinear approach gives the same sta-
bility threshold. The nonlinear analysis method assumes a 
small initial perturbation and the subsequent orbit path is 
found by solving the equations of motion over small dis-
crete time intervals. That the same threshold value is found 
has been demonstrated in, for example, (6), (7) and (8). The 
nonlinear method can yield more information than the  

linearized approach, particularly on the existence of limit 
cycles beyond the threshold and on the effect of unbalance. 
Experimental Verification 

In (9), the stability of a 500 MW turboset is considered. 
The rotor system consisted of seven solid-coupled rotors on 
fourteen bearings. The presence of steam piping caused 
uneven thermal distortion of the foundation, changing the 
load distribution (F) among the bearings. However, the 
mass (M) associated with each bearing remained un-
changed. Severe whirl occurred. 

The form of stability parameter preferred by the authors, 
S, = FIMcco2 , is particularly relevant in this case, since F 
varies while Mcco2  does not (at constant speed). 

By considering the elasticity of the shaft and die dis-
turbed catenary, it was possible to calculate the new values 
of So  at each bearing and to demonstrate that, at some bear-
ings, the value of S. was beyond the stability threshold. 

The problem was rectified by misaligning the catenary in 
the cold condition so chat, when hot, the bearings ran in a 
stable condition. The theoretical basis of this action was 
later treated in detail (10). 

Some excellent experimental work with a stiff rotor is 
reported by Lundholm for circumferentially grooved bear-
ings (11) and bearings with one or two narrow axial grooves 
(12). For both bearing types, Lundholm found good 
agreement for the onset of whirl at calculated critical mass 
values. 

Stability experiments at zero load are widely reported by 
Schuller and others (6), (13) for lobed bearings with preload 
and offset. Comparison with theoretical results in (13) was 
poor and was attributed to a departure of the actual 
geometry to that assumed. However, in (6), agreement be-
tween theoretical and experimental stability thresholds was 
good. In this work, it was shown that the three-lobed bear-
ing can operate above the threshold by forming a limit cy-
cle. This has also been experimentally confirmed by 
Capone (14) for circular bearings under zero load. 

The experimental work of Edwards and others (15) is 
unusual and concerned with the natural frequencies of a 
bearing carrying a stiff rotor. The frequencies, w,,, can be 
obtained from the roots of the perturbed motion, X = y ± 
iw„ (see Appendix 1). Agreement with experiment was fair. 

A recent experimental study by the authors (16) was con-
cerned with the effect of load intensity and feed pressure 
on the whirl threshold. At very light loading, a bearing 
could be expected to operate at near Sommerfeld condi-
tions and to be very unstable. It was shown that, even under 
loads of P = F/LD = 0.5 bar, cavitation appeared to take 
place at_atmospheric pressure which had a stabilizing effect. 

To account for this, a "continuous agitation" hypothesis 
was formed in which unbalance or out of round caused 
agitation of the cavitation boundary and allowed the film to 
vent at atmospheric pressure. In the absence of such syn-
chronous forcing, it appeared that the bearing would begin 
to whirl, giving the necessary disturbance of the cavitation 
boundary and a return to steady running. Further evidence 
to support this is given by Lundholm (11) for P = 1.67 bar, 
who writes (page 70): When the speed approached critical, 
very small vibrations occurred. The onset speed of these 
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small vibrations was too diffuse to be determined. At that 
speed which was taken as critical the vibrations suddenly 
changed to very large." 

Unbalance Response 

A limited amount of experimental work has been cited to 
demonstrate the effectiveness of simple stability analyses. It 
is worth mentioning that the agreement of response calcula-
dons with experiment is less good. Orcutt and Arwas (17) 
show fair agreement with predicted and test orbits. An at-
tempt by Morton (18) to derive linear coefficients from ex-
citation showed fairly poor agreement with analysis. 

It might be expected that the onset of whirl stability could 
be more accurately predicted than response, since the 
analysis is concerned with infinitesimally small excursions 
about the equilibrium position which either grow or decay. 
In contrast to this, experiments by Tondl (19) have shown 
that the stability threshold is not greatly affected by unbal-
ance. The authors reached the same conclusion in (16). 

The nonlinear analysis in (8) showed that, with an unbal-
anced rotor, an increasing proportion of half-synchronous 
motion appears as the stability threshold is approached, 
causing a more gradual onset of whirl than the sudden 
large amplitude motion observed by Lundholm (I1). 

ANALYSIS RESULTS 

Range of Results 

The six basic types considered are shown in Fig. 1. All 
except for the circular bearing are geometrically "preload-
ed." which is defined by the parameter 6 = e,,,"c. The refer-
ence clearance, c, is defined as the radial clearance before 
preload. The effect of varying groove size, a. on stability 
has not been investigated previously, and this, together with 
the preload, S, form the main variables within each type. 

The effect of aspect ratio (LID) is found for some cases 
and for the lemon bore bearing only the effect of Reynolds 
numbers up to 10 000 is found. This is defined as Re = 
pUc/n, and is based on the reference clearance. The effec-
tive turbulent viscosity relationships proposed by Constan-
tinescu (20) were used for this section of the work. 

The feed grooves were considered to extend for the 
whole axial length of the bearing and to be at zero pressure. 
In (11) and (16), both concerned with circumferentially 
grooved bearings, it was shown that feed pressure below 
about 0.25 P has a marginal effect on stability. The feed 
pressures used in practice are usually far below this figure. 

In all cases, the load is assumed to be vertically down-
wards (Fig. 1). This is probably a serious departure from 
practice since horizontal as well as vertical misalignment of 
rotor systems can occur. Although the effect of nonvertical 
loads could be found without extra difficulty, the volume of 
data would be excessive for a single paper. 

Presentation and Discussion of Results 

The majority of results are presented as stability maps of 
the threshold value of FIMcw" against the dual (horizontal) 
scales of e = e/c,,, and Sommerfeld capacity, S = Pc2INr1R2. 
The eccentricity ratio is defined from e, the distance of the 
shaft center from the bearing center when the bearing is  

supporting a downwards load, and c,,, the minimum clear-
ance of the bearing when the shaft and bearing are concen-
tric (see Fig. 1). 

The Circular Bore Bearing 

The effect of groove size, a. on stability is shown in Fig. 2 
for LID = 1/2. The full line for a = 0° is close to the classical 
result for a bearing with no grooves. For this bearing and 
others, a = 0° denotes a line groove at zero feed pressure. 
The groove sizes in common use, a = 60° to 90°, have a 
considerable destabilizing effect. 

A single case for LID = 1, a = 60°, is given in Fig. 2 and 
should be compared with LID = 1/2, a = 60°. It can be seen 
that increasing LID also has a destabilizing effect. 

In general, the same effects for increasing groove size 
and increasing LID are followed for other bearing types. 

The Lemon Bore Bearing 

The effects of preload (for a = 60°) and groove size (for 
6 = 0.6) are shown in Figs. 3(a) and 3(b). This type of bear-
ing is widely used and comparison with Fig. 2 shows a con-
siderable advantage over the circular type. Stability increases 
progressively with preload, although it must be taken into 
account that, in practice, as the preload is increased so is the 
reference clearance, c. 

The effects of turbulence are shown in Fig. 3(a) for the 
case a = 60°, 6 = 0.6, LID = 1/2. Increasing turbulence has 
only a mild destabilizing effect, the effects of preload or 
groove size being much stronger. 

The introduction of an effective turbulent viscosity 
(based on local Reynolds number) gives a variation of viscos-
ity around the bore. In (21), a study is made of the effect of 
varying local viscosity due to heating. A similar conclusion is 
reached, in that there is only a moderate decrease of stabil-
ity with decreasing viscosity index. 

Figure 4(a) confirms the destabilizing effect of LID ratio 
for a = 0°. Figure 4 (b) gives the Sommerfeld capacity for 
LID = 1/2, a = 60° and varying Reynolds number. 

The Offset Halves Bearing 
This type of bearing is not widely used in practice and 

little is known of its stability characteristics, although it is 
classed as an "antiwhirl" bearing. Figure 5(a) shows the ef- 

SHAFT ROTATION ANTI-CLOCKWISE 
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fect of preload for a = 60°, LID = 112. The effect of increas­
ing preload is more marked than for the lemon bearing. 
particularly at eccentricities of up to 0.5. For 8 = 0.6. a 
single case for LID = 1 is ploued. which again shows the 

destabilizing effect of increasing aspect ratio. 
The effect of increasing groove size [Fig. 5(b)] is to give 

increased stability. This trend is contrary to the circular and 
offset types. 



0.0 	0 2 	0.4 	0-6 	0.6 	t 0 
e 

1 101 
Fig. S—The offset halves bearing 

(b) The effect of groove size on stability, LID = 112, 5 = 0.6 

I8 1 6 11. I.2 

110.1 	0..0• 
01 	1 	2 	5 	5 	'0 	20 S0 

52081E 

5.025, -- . 1 

i 
T 

. 
1 

I f 
~.i_
.. 

3.1—.N1 
' 1 '1 	1 

t. 	VNSTABLE 1 
1 

,1 	 : 1 

Il 	
i I 

I 
I 	l l 

I 11 

 ■ 

	1 I ~ 

OD •'12 

3 	• 

01. 	05 	10 	3 	Ī 	'9.5

ll 

2 	5_0 20 5 

6.0 	
STABLE 

I 	i 

025 ' 	∎ ~ 

—, 

I 	i 

1 06 	1 a•  2d• 
i ~f<<\ 

.i 11 I 

I 	! I \° ICI i 
l li I i 	i 	i I i 

00 	02 	04 6 0e 	3 8 
	~0 

1m 

6 
0 25 

0 60 

00020 02 04 E 0e OS 10 	0022 

Im 

Des  x•0• 
0 60 
a 101 
060 a•20• 05 

07 

2' .i 

005 

0 02 

0 01 

0 005 

005 

002 

00 

0 005 

i 
\1 

I 
v 

I 
I I 	'. I P 

11 
I I 

1 i' 
: 0 en 

I I 1 	I 	' 
11 

	

/ 	. 

	

I 	1 .' 1 0002 

1m 

3 13 

1°1 

3.05 

1 

0• 

I,0 0 
3 

u- 

0- 1 
N 

0.0 

0 02 

0.01 

0-005 

The Effect of Grooving and Bore Shape on the Stability of Journal Bearings 	 5 

L/002 	6 _06 
0105 	I0 	2 	S 	S 	 1 0 	a- 

r•—  --y---r=--- 

1 

- 7 90a.. 

STABLE 

f 
300— _ J 

N. 

1 
1 

60 %,„
~I 

•\ 
~, 

i 

I 

• 

I 

~~ 

\ 

~r II 

1 
1 

I 

1 I 
I 
f 

I 

I I 

The Symmetric Three-Lobe Bearing 

In this basic type of bearing, the three arcs are of equal 
size and have equal preload. The effect of preload is partic-
ularly marked, as shown in Figs. 6(a) and 6(b), where a = 0° 
for both cases. One case where a = 20° is also shown. 

The Asymmetric Three-Lobe Bearing 

Although the symmetric three-lobe bearing is known to 
have satisfactory stability properties, the Sommerfeld capac-
ity can be improved by increasing the size of the bottom arc. 
In turbines, this also gives advantages in disassembly of the 
top casing for inspection. The example considered (see Fig. 
1) has a bottom arc of 140° and two top arcs of 70°, giving 
two 30° grooves near the horizontal split line and a 20° 
groove at the top of the bearing. The same preload is 
applied on each arc. The attitude angle curve in Fig. 7(a) 
shows that the minimum film thicknesses occur in the top 
arc for higher preloads. Figure 7(b) shows that the stability 
characteristics are good, although strongly dependent on 
preload. 

The Asymmetric Offset Three-Lobe Bearing 

This is a progression of the previous type in which the arcs 
are tilted as well as preloaded to give an offset film. The 
offsetting of the lobes in this way is reported by Falkenha-
gen (6) to have beneficial effects. 

The design analyzed was that proposed by McGuire* in 
which the bottom arc is preloaded by 0.5 and the top arcs 

'See Acknowledgments.  

Fig. 6—The symmetric three-lobe bearing 
(a) The effect of preload on stability, a = 0°, 20°, LID = 1/2 

(b) The effect of preload on stability, a = 0°, LID = 1 

Fig. 7—The asymmetric three-lobe bearing (no offset) 
LID = 112, a = 30° at ± 90° to load, a = 20° at top of bearing (see Fig. 1) 

(a) Locus paths due to static loading 
(b) Effect of preload on stability 

by 0.778. The top arcs are also offset by approximtely 0:3. 
The locus paths and stability threshold for certain varia-

tions of the geometry are shown in Figs. 8(a) and 8(b). In 
this instance, there appears to be little advantage producted 
by the offset but the stability characteristics are better than 
the lemon bore or offset halves bearings. 

As a matter of interest, the stability characteristics were 
found of the HP turbine circular bearings in Ref. (9) which 
it is intended to replace with a design of three-lobe. offset 
bearing. The bearing [shown in Fig. 9(a)) has wide use for 
turbosets of the two bearings-per-rotor type. The important 
features of this bearing are feed scallops of 60° and a relief 
groove of depth 2.5 c extending from scallop to scallop in 
the top half. 
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The stability characteristic in Fig. 9(b) shows that a con­
siderable improvement will result from replacement three-
lobe bearings. . 

Pivoted Pad Bearings 

Although this type of bearing has not been analyzed in 
this particular project. it is worthwhile to consider briefly 
the state of the art. Pivoted pad bearings are being increas­
ingly used in European turbosets (22), (23) and in the USA. 
The design described in (22) is particulary interesting, and 
consists of three pads pivoted at approximately 20°, 160° 
and 260° from the vertical in the dir ~ction of rotation. The 
second pad of 110° extent is the argest and preIoad is 
supplied by spring loading of the top pad. It is claimed 
(page 335) that the dynamic behavior of the coupled rotors 
was "perfect." 

A stability analysis of the sim pie type used in this work 
shows that pivoted-pad bearings with preIoad are always 
stable. However, there is some doubt as to their damping 
capacity. In the experimental investigations (2), (24), it is 
commented that, with flexible rotors, this class of bearing 
gave larger amplitudes at critical speeds than other types. 

A contributing factor to low damping is shown in (23) to 
be thermal and elastic distortion of the pads. This is con­
firmed in (25) where the bearing coefficients of se\'eral 
complete assemblies were found experimentally. The 

FIg. 8-The asymmetric three-lobe bearing with offset 
(a) Locus paths due to static loading 
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Fig. 8-The asymmetric three-lobe bearing with offset 
(b) The effect of varying offset and groove size on stability 
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damping coefficients were found to be lower than the 
theoretical stiff pad values. particularly at high loads. Un­
published analysis work at the authors' college also confirms 
this trend. 

A Comparison of Bearing Types 

A review of Figs. 2 to 7 shows the preload and groove 
sizes are more important effects than the bore shape. In 
Fig. 1 O(a), the stability profiles are compared of all the bear­
ing types considered in this work. Common values of LID = 
112, Cl = 60° and 8 = 0.6 ~re used which represent usual 
design practice for bearings with two arcs. For three-lobe 
bearings, the same value of Cl = 60° is i~admissible since this 
would give a bottom (load-carrying) arc of only 60°. A value 
of Cl = 20° is used here for the symmetric type. Figure 10(a), 
therefore, gives a comparison of types for usual design 
practice. The reader can make an asses.sment for Cl = 20° 
throughout for all the types considered by interpolation 
from Figs. 2, 3(b) and 5(b). 

The various types of three-lobe bearing are clearly 
superior but this is partly due to small groove sizes consid­
ered. Figure IO(b) shows the Sommerfeld capacity of each 
[ype, and Fig. 11 presems [he corresponding loci. 

Response to Unbalance 

Space limitations allow only a very brief review of this 
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FIg. 9-The circular bearing with top half relief 
UD = 1/2, c/R = 0.002. Re = 1000, zero feed pressure 

(a) Locus path due to static loading 
(b) Stability threshold 

.0 

property, which is taken by some as being more important 
than stability. In practice. it is not possible to remove all 

• forms of excitation. particularly those due to unbalance. 
T~e simplified analysis in Appendix 2 derives the ampli­

tude, Xn , normalrzed with respect to eu , the distance between 
the mass and geometric centers. With a stiff rotor. the am­
plitude of vibration increases as the stability threshold is 
approached. This is due to the reduction in system damp­
ing. Figure 12(a) shows the natural frequency of bearing 
vibration at the stability threshold. It should be noted that 
the frequency of the unstable motion is_ about 0.5 Cd only for 
the circular bearing. 

Figure 12(b) shows the amplitude of vibration at a specific 
value of stability parameter. So = 0.3, which is in the stable 
region for all types. The behavior of the lemon bore bear­
ing is particularly interesting. Reference to the stability pro­
file in Fig. 3(a) shows a peak (closest to the value So = 0.3) is 
reached at ~ = 0.3. The response shows a marked increase 
at this point, and decreases as the stability threshold recedes 
from the value So = 0.3. However, beyond E :: 0.8, the 
amplitude increases rap-idly. The response of a circular 
bearing is off scale. 

Figure 12(b) illustrates a common fallacy that it is possible 
to stabilize a bearing by causing it to run at high eccentricity. 
Although all bearing types considered here show a "stable" 
area at high eccentricity, the dam ping is very low. This leads 
to high amplitudes of vibration which can be aperiodic (8). 

CONCLUSIONS 

I. The large feed grooves used in most turboset bearings 
exert a strong destabilizing effect. For purposes of 
stability. feed grooves should be as narrow as possible. 
Attempts at energy conservation by using severely 
"cutaway" bearings may have undesirable consequen­
ces for rotor behavior. 

2. Increasing preload in all bore shape types exerts a 
strong, progressive stabilizing effect. However, when 
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-a 
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Fig. 1o-A comparison of bearing types 
(a) Stability threshold 

\'iewing stability charts. it must be borne in mind that 
the reference clearance. c. must be increased approx­
imately in proportion to preload. 

- 3. The asymmetric three-lobe bearing with a large bot­
tom arc is acceptable for practical purposes. The sta­
bility of this type is good but strongly dependent on 
preload. 

4. Local variations of effective viscosity due to inertia or 
heating effects exert a mild destabilizingeffect. 

5. Groove size and preload exert a stronger influence on 
stability than bore shape. For typical fixed values of a. 
cS and LID, the approximate order of increasing stabil­
ity is: circular (least stable), lemon bore, offset halves, 
three-lobe. 

6. Increasing LID ratio exerts a destabilizing effect. 
7. All bearing types are shown to be stable at high eccen­

tricity ratio. However, vibration may be considerable 
due to low system damping. 

8. The response tounbalance is a further important 
criterion for the assessment of a bearing design. The 
amplitude of vibration increases as the stability 
threshold is approached, but the rate of increase var­
ies according to design. 
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APPENDIX 1 

Stability Analysis 

Considering a stiff symmetric rotor running in two iden­
tical journal bearings, the linearized equations of motion 
can be written: 

where 2M is the mass of the rotor. 
Introducing the following nondimensional variables: 

x = xlc ; Y = yle ; A = a c wlF 

K = k ciF ; T = cu l 

The equations of motion become: 

XISo + Azz X + An Y + K.r.r X + Kn Y = 0 

Note that the stability parameter So = FIMccu'l appears as a 
result of the nondimensionalization process. 

Assuming a solution X = C teA.T, Y = C-#A.T, and substitut­
ing this into the equations of motion, gives: 

For a nontrivial solution, the determinant which is fourth 
order in A must be zero. The roots of the equation usually 
occur in complex conjugate pairs: 

At.: = ')'t ± i CUrt, ; A3 ... = ')': :t i CUrt: 

If both values of 1 are negative. e.g. 1t = -112, ')'2 = -3. 
the system is stable. The value of interest is the largest value 
of')' (i.e. 1t = -112). since this represents the bearing damp­
ing. If disturbed slightly from the equilibrium position. the 
shaft vibrates with decaying amplitude at a combination of 
frequencies CUrtt and CUrt:. 

The threshold value of So where 11 = 0 can be found by 
trial and error or by applying the Routh criterion. 

The bearing coefficients azr, kzrr etc., were found from 
the linearization of the oil film forces about the equilibrium 
position, as described in (17). This can be expressed math-
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ematically as a first order Taylor expansion. The Reynolds 
equation was solved by means of the finite difference 
method using the Reynolds boundary condition. The oil 
film forces were calculated from integration of the pressure 
distribution obtained for small displacements about the 
equilibrium position of the journal center and for small 
velocities of the journal center. The gradients of these 
forces with respect to the perturbations gave the bearing 
coefficients, the first index being the force direction and the 
second index the perturbation direction. 

frequency of excitation. The characteristic equation is: 

A2 + 2Ea (cu„/w) X + (cu,t/w)= = 0 

and the roots are: 

w„ 
co 

whence: 

= — t to„/to 	(growth or decay rate) 

APPENDIX 2 

Simplified Analysis for Response 

The determinental equation can be factorized as follows: 

[X — (y, + t w,)] [X — (y1 — i co,,1)] [X — (y, + i (on2)] 

[x — (.y — i wire)] ° 0 
The response K. (Fig. 12) is given by: 

or: 

[A2-2ytit+(yt'+teni)] [X — 272A+(y. + cu ] 

e„ (w/o„)- cos (T — 4)) 
Y, — [( 2 p. w/w„)2 + (1 — (co/w„)) ]t""- 

If 1711 « ly_~, which is usually the case, the fourth order 
equation can be reduced to second order: 

A2 — 27t A + (y,' + to„;) = 0 

which is the same as the characteristic equation of a single 
degree of freedom system with damping: 

~1z +cz + k x = 0 

If the mass of the rotor is distance e„ from the geometric 
center, the excitation is Me„w2 cos wt. 

After nondimensionalization, this leads to: 

+ 2p. (w„/w) X + (w„/(a)2 X = e„ cos T 

where tan 	= (2p. w/w„)I(1 — (w/w„)-). 
The value of co/co„ at which the maximum amplitude oc-

curs is given by: 

( w 

_ 	1  
ton 	„ l — 

This is shown by dashed lines in Fig. 12(h). The effect of 
damping on the growth or decay of motion per revolution 
can be found as follows: 

The envelope curve is: 

R = eY r 

so that the percentage growth per revolution is given by: 

where co„ is the undamped natural frequency, and to is the 
R — R, 

R 
—e1— 1 

Errata: The numerical values on the.vertical axis of Fig. 9 should be multiplied by ten. e.g.; 0.05 should become 0.3 etc. 
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Inverse Hydrodynamic Methods 
Applied to Mr. Beauchamp Tower's 
Experiments of 1885 

The experiments of Mr. Beauchamp Tower and their subsequent interpretation by Pro-
fessor Osborne Reynolds form the basis of all hydrodynamic lubrication theory. In the ex-
periments described in his second report, Tower made nine pressure tappings in a 157 deg 
partial arc bearing. Reynolds assumed that the film shape corresponded to a circular 
bearing and analyzed the results on this assumption. Inverse hydrodynamic theory allows 
the calculation of the actual film shape from this measured pressure distribution. It is 
found that the film was a slightly convergent wedge which does not correspond to a fitted 
bearing as assumed by Tower and certainly not to the clearance bearing assumed by Reyn-
olds. 

Existing methods of inverse hydrodynamic analysis require the second differential of 
the pressure profile (or its equivalent in the two-dimensional case) to become zero at some 
point in the film. The film thickness can be found directly at this point and then else-
where by the solution of a cubic equation. Two separate and more general methods are de-
veloped in this paper in which this requirement for the second differential is unneces-
sary. 

C. M. McC. Eales 
M. Akkok 

A. Cameron 

Lubrication Laboratory, 
Mechanical Engineering Department, 

Imperial College, 
London SW7 28X, 

Britain 

Introduction 

This paper describes a computer detective investigation. The In-
stitution of Mechanical Engineers decided on February 20, 1879 to 
undertake three investigations, one on hardening steel, two on rivetted 
joints and three "should time and money be found to be sufficient, 
friction between solids at high velocities." The investigator they chose 
was Mr. Beauchamp Tower who during his research discovered hy-
drodynamic lubrication. To celebrate the centenary of this decision 
the Institution asked one of us to give the "Beauchamp Tower Cen-
tenary Lecture" [1]. 

Tower's results are contained in two reports, one of 1883 [2] and 
the other of 1885 [3]. The statement that there was a fluid film sup-
porting the load is in the first report and nine pressure readings are 
in the second, which are shown in Fig. 1. 

Reynolds in 1886 [4] derived the equations of hydrodynamic lu-
brication on which all subsequent theory is based. He used Tower's 
mid-plane pressure readings to confirm his theory and obtained a 
most impressive fit. To do this he assumed the bearing was a clearance 
bearing, though Tower several times comments how it "fitted the shaft 
beautifully," Reynolds assumed it ran at an eccentricity ratio of 0.5. 
Using the Laboratory's computer program the axial pressures were 
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calculated, which of course Reynolds could not do, and in no way did 
they fit a clearance bearing 4 in. diameter X 6 in. long as used by 
Tower. 

It occured to the authors that the actual film shape in this bearing 
could be obtained by the application of inverse hydrodynamics using 
Tower's pressure readings. Unfortunately though Tower in his first 
report gave friction for a grooved bearing over a range of speeds and 
loads, there are not such data for the exact conditions used in the 
second paper. This means that the absolute values of viscosity, may 
be incorrect by 10-15 percent. While this is unfortunate from a his-
torical view point it does not invalidate the technique which has 
several points of interest to the general public as Dr. Watson pointed 
out when writing his stories of Mr. Sherlock Holmes. 

It is for this reason that this paper has been written and is sub-
mitted for publication. 

The One-Dimensional Problem 
A method of obtaining the film profile from a known pressure dis-

tribution is given in 1959 by Dowson and Higginson [5] for the one-
dimensional case. An essential feature of the solution is that the sec-
ond differential of the pressure d2p/dx 2 passes through zero at some 
point in the domain. An initial inspection of the pressure distribution 
obtained by Tower indicated that the second differential was probably 
negative throughout, which required the development of an alter-
native and preferably more general solution. 

For the one-dimensional case Reynolds equation can be written 

Discussion on this paper will be accepted at ASME Headquarters until November 9, 1979 
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For the purposes of illustration the viscosity is assumed to be uni­
form. The following nondimensional substitutions are made; 

x =x*B 

h = h*hj 

p = p*SUTlB/h j 2 
(2) 

where hi is the fiim thickness at the loading edge x * = 0 and is un­
known. Equation (l) becomes 

d ( dP*) dh* - h*3_--
dx* dx* dx* 

(3) 

The expansion of equation (3) allows the gradient dh*/dx* to be 
expressed as 

dr* h*3(d 2p*/dx*2) 

dx* (1 - 3h*2dp*/d%*) 
(4) 

Equation (4) is in initial value or Runge-Kutta form, and allows the 
film profile to be "marched out" from % * =- 0 where h * = 1. In actual 
fact equation (4) represents a special form of the Runge-Kutta for­
mulation known as a shooting problem since the initial film thickness 
hi is unknown. The solution proceeds as follows. 

A low value of hi is chosen corresponding to about 25 percent of the 
estimated value. The assignment of a value to hi allows trial values 
of p* and the differential terms to be evaluated throughout the fIlm. 
Forwards or backwards differences must be used at the leading and 
trailing edges. The film profile is marched out through the domain, 
preferably using a corrector type formula. For example for the mth 
node. 

1 
hm = hm - t + -. ilx(dh/dxm + dh/dxm_l) (5) 

2 

A trial film shape has now been established. To verify that this is 
correct a finite difference solution for p* is obtained for the trial shape. 
Let the pressure field found from the fmite difference solution be P* 
and the pressure field used for the solution of the film shape be p*. 
The general magnitude of the pressures will be similar but the shape 
will be different. An estimate of the lack of fit can be obtained from 
the residual R 

M 
R = 2: 1(1- P*/p*)I (S) 

1 

where M is the number of nodes. The initial film thickness hi is varied 
until the residual is a minimum. 

Fig. 2 shows the values of p*, dp*/dx* and d 2p*/dx*2 for a plane 
pad with convergence of 1.5:1. It should be noted that in this example 
the second differential is negative throughout. The dimensional 
pressure field to be used in the solution was obtained by choosing 
particular values of TI, U and B, and an initial film thickness hi of 1 
X 10-3 in. The film shape produced by the Runge-Kutta method 
should therefore be a plane reducing from 1 X 10-3 in. at the inlet to 
two thirds of this value at the outlet. Fig. 3 shows for eleven nodes (M 
= 11) the film shapes obtained using successive values of hi. The 
correct (plane) shape is shown as a dashed line. The behavior of the 
residual as hi is varied is shown in Fig. 4 and reaches a sharp minimum 
at the known solution. 

The pressure tappings made by Tower correspond to a mesh of five 
nodes in the circumferential (%) direction and four nodes in the axial 
(y) direction (i.e. M = 5, N = 4). The mesh in the % direction is non­
uniform which was allowed for in the treatment of Tower's results. 
Since the mesh is extremely C08l:se a smoothing technique was used 
for all differential terms to give a more even distribution of values. 

________ ~Nomenclature! ____________________________________________________________________ ___ 

A = shape constant for leading edge film; 
equation (17) 

B = length of pad in direction of motion 
c = radial clearance of journal bearing 
D = shaft diameter 
h = film thickness 
H = h/ii 
L = axial length of bearing 
m = node number in % direction 
M = total number of nodes in % or 8 direc-

tion 
N = total number of nodes in axial (y) di-

2 

rection 
p = pressure 
P = pressure found from finite difference 

solution 
R = residual: equation (6) 
U = sliding speed 
% = coordinate in direction of sliding (Fig. 

8) 
Y = coordinate in axial direction (Fig. 8) 
a = 4L2/B2 
E = eccentricity ratio of journal bearing 
TI = viscosity 

8 = coordinate in direction of sliding 
T = shear stress 
cl> = altitude angle of journal bearing 

Superscripts 
* = nondimensional 
- = where ?Jp/?Jx = 0 

Subscripts 

a ::; value of I where d2p/dx2:; 0 
i = initial; value at % = 0 
o = at trailing edge 
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Both the differential terms in each direction were smoothed in this 
way in the test cases and in Tower's results. In the majority of test 
cases the grid was uniform. 

An examination of equation (4) shows that the method is likely to 
fail when the denominator term becomes zero, i.e. when 
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1— 3h*2(dp*/dx*) = 0 	 (7) 

For the example in Figs. 2, 3, 4 this occurs at a value of hi consid- 

	

erably greater than the solution value and is of no consequence. 	
~sa = 0 
	 (10) 

	

However this behavior cannot be guaranteed for all pressure profiles. 	 l  
Fig. 5 shows the pressure and differential terms for a plane one di- or 

	

mensional wedge of convergence 4:1. An important feature in this 	 1 	 

	

example is that the second differential passes through zero. Such a 	 hQ = ~3(dp,dx)a 	
(11) 

profile can be treated by the method of Dowson and Higginson [5] as 
follows. 	 If (dh/dx) is known to be non zero at this point then the film 

Expanding equation (3) gives; 	 thickness ha can be found directly from (11) since the dimensional 
2 	 form of this equation is 

	

ha dcl p+ 3h 2 dh - dp = dh 	
(8) 	 / 	 

dx 2 	dx dx dx 	 ho = AV 2, U 	 (12) 

	

The stars ` have been omitted. At the point x = a where the second 	 (d p/dx )a 
differential is zero this reduces to; 	 The substitution of (11) into the integrated form of (3) gives 

dh 
dil

l-3h 2 l 
dxJa-0 	 (9) 	 h= āha 

This gives two solutions; 
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Fig. 5 Pressure profile and differential terms for an infinitely wide plane pad 
where h,/ha = 4.0 

The film thickness may now be determined at any point by rear-
ranging equation (8) as 

H3 + K + K =0 	 (13) 

where H = h/h and K in dimensional units is K = h2(dp/dx)/67U. 
The cubic equation can be solved at each node, giving two positive 

and one negative root or a positive and two complex roots. The be-
havior of the equation is discussed in detail by Ruskell [6]. In the case 
of two positive roots the "correct" value is usually obvious, and can 
be found by solving the equation at a node adjacent to x = a. 

Equation (9) is also relevant to the Runge-Kutta method given in 
equation (4). In practice the failing case when 1- 3h2(dp/dx) = 0 does 
not occur, since as this expression tends to zero the second differential 
also tends tozero. By L'Hopitals rule; 

 dh 
r

h)
x a = rim  dx = 	2 

h°4(dsp•/dxi3) 

This is shown by Ruskell [6] and can be verified for any integrable 
functionh = f(x), e.g. h = hoeax. In principle, therefore, there should 
be no difficulty in applying the Runge-Kutta method to a case such 
as Fig. 5 where the second differential does pass through zero, since 
a node at this point can be avoided by a suitable choice of mesh. 
However it was found that the corrector formula (5) failed to converge 
at the end of the first step in spite of heavy under relaxation, while 
any formula of the predictor type (forward integrators) produced 
unacceptable divergent oscillation. Similar problems can occur in 
nonlinear vibration analysis and must be treated using a "stiffly 
stable" method of which the backwards Euler formula is the sim- 

Fig. 6 Film shapes produced for Fig. 5 by variation of h, through the known 
value 

pleat. 

hm  = hm-1  + tax • (dh/dx),,, 	 (14) 
• 

This formula was applied to each step by varying h,,,• over the 
range 1.5 to 0 in steps of 0.001. Let h,,,1  be the trial value of h,,, that 
is systematically varied and h,,,2  in the value of h,,, obtained. A re-
sidual R is formed for each trial value as R = 11 - (hm1/h,a2 )1 and 
stored in an array. When all trial values have been attempted the array 
is scanned for the minimum residual, giving the appropriate value of 

In general this method worked well although perhaps lacking in 
finesse. In some test cases where h1 was not the correct (known) value 
the residual curve formed a saddle at the correct value of hin  and 
reached a slightly lower minimum at some other value of hin  which 
apparently corresponded to the other real root of the cubic equation 
(13). 

The film profiles for the plane pad with 4:1 convergence are shown 
in Figs. 6(a) and 6(b) for 11 and 7 nodes, respectively. The uneven 
shape in Fig. 6(a) occurs due to the very low local value of the second 
differential at x • = 0.5 where a node occurs for M = 11. This value is 
avoided for M = 7 and a smoother curve results. The variation of re- 
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sidual with hl is shown in Fig. 7. The discontinuities in the curves are 
due to the occasional selection of the wrong root, which apparently 
occurs due to truncation error. 

Use of the Runge-Kutta Method in Two Dimensions 
The nondimensional form of the Reynolds equation in two di-

mensions is; 

p• 
a  h•3 	+ a 

h•3 a}} ah 
bx* 	ax• 	by '1 	ay1 ax* 

Where the nondimensional forms given by equation (2) apply and 
in addition; 

a = 4B2/L2 

y = yL/2 

The equation can be set in Runge-Kutta form as; 

h3 aZp+a a2p +3ah2ah.bp 
ah  	axe 	ay2 	ay ay  
ax 	

(1- 3h2
ōs- 

Since the cross gradient (ah/ay) appears on the right-hand side, 
equation (16) must be applied recursively. Considering the mesh 
system shown in Fig. 8, the film thicknesses at any vertical line of 
nodes m can be found by initially assuming that (ah/ay) = 0. The set 
of film thicknesses so determined allows a new trial set of (ah/ay) to 
be found and the cycle continues until convergence. The corrector 
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formula (5) was used to advance from one line of nodes to the next so 
that an individual step involved two nested loops, for the cross gra-
dients and for the closed integration of equation (16). 

The pressure is nondimensionalized according to hi, the film 
thickness on the center line at the leading edge where h• = 1. It is 
essential to the method that the film thickness at other points on the 
leading edge are defined. In the analysis of Tower's results the leading 
film was defined as; 

hi = 1 + Ay2 	 (17) 

Where A is unknown and is found by systematic variation to give 
the minimum residual. This is subsequently discussed. It should be 

Table 1 

1.040 
I 

Leading Edge 1.0~ 40 

1.040 

Center line 1.040• 

Required Solution 1.000 

Outer Edge 
.987 .815 

.890 .761 

.846 .733 

.820• .721- 

.845 .750 

Best film shape obtained for plane pad of L/B = 1.114 with 2:1 convergence. M = 5, N= 4. Distorted 
mesh according to tapping points used by Tower 

	

.700 	 .619 
1 

	

.656 	 .56I 4 	Trailing Edge 

	

.640 	 .553   3 

	

.636• 	 .550 	Centerline 

	

.655 	 .500 
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noted that equation (17) allows (ahi/ay),,._0 = 0. In the analysis of 
Tower's data it was assumed that (ah/ay) = 0 at all nodes on the 
center line. 

Fig. 9 shows the variation of residual with initial film thickness for 
various mesh sizes (M x N), where N is the number of modes in the 
axial direction. The test case considered is a plane pad of LIB = 1.114 
(corresponding to Tower's dimensions) and a convergence of 2:1. In 
this case A = 0 in equation (17). In Fig. 9 the residual change with hi 
is seen to be mild. The minimum points (according to the third sig-
nificant figure of the residual) are marked in Fig. 9 as small circles. 
The case marked 5a is for a distorted mesh in the x direction corre-
sponding to Tower's tapping points. 

The "best" film shape for a 5 X 4 nonuniform mesh determined 
according to the minimum residual is given in Table 1. The required 
solution for the plane pad (where ah/ay = 0) is also shown. The film 
thickness along the outer edge is seen to be most in error. This is ap-
parently due to truncation effects in the calculation of differential 
terms at the edge using offset differences. The agreement is considered 
acceptable considering the very coarse nonuniform mesh used. 

The application of the Runge-Kutta method to Tower's results is 
given later and is compared to the results from a second method which 
will now be developed. 

A Second Method Adapted From Morton [7] • 
The nondimensional form of Reynolds equation for a journal  

bearing can be written; 

	(121I
aB 

(h3
a6~ + ILl Y 

3 
ay / aft

(18) 

In a short appendix in (7) Morton develops an inverse hydrody-
namic method as follows. If ah/ay = 0 throughout and a = (D/L )2, 
equation (18) can be expanded as; 

h3(a2p+a a2 1+ h2.gdhop_dh=0 
aO2 	ay2 	dB aB dB 

For the point where 

a02+aā 22=0 
Y 

then dh/dB = 0 
or 

h.= 
	

1 	 (20) 
 3(ap/aB)° 

The dimensional form of (20) is similar to (12) so that provided (19) 
applies somewhere in the film, a dimensional value of film thickness 
can be determined at that point. Reynolds equation can then be set 
in cubic form similar to equation (13). 

The restriction that (19) apply is actually unnecessary. If h= f(0, 
y), Reynolds equation (18) can be integrated from zero to any 0 as 
follows 

alp alp 
(19) 

(
3ap)l  	3ap  	

e a 3ap  	—110 	(21) 
h   aOle   —   h   aB   o   

+   a   o   ay   ~h   ay)   h  

with the boundary condit'on that h(0, 0) = 1 and h(0, y) is defined. 
Equation (21) can be set in the form 

9 	 h3 ~ —h+G=0 	 (22) 

where 

G=ho—(h3 aBlo + a f "(3h
2avap

+h2—P~dB 

e 
Fig. 11 Film shapes from the cubic equation method for 120 deg partial arc 
bearing where h = 1(0, y), M = 5, N = 4 
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no 
Fig. 10 Film shapes from the cubic equation method for a 120 deg partial 
arc bearing (L/D = Y_, e = 0.5, oh/ay = 0) as h, is varied through the known 
value 

The calculation cycle proceeds as follows; 
1. Assume a value of A in equation (17) 
2. Assume a dimensioned value of hi 
3. Assume h(0, y) 
4. Calculate G 
5. Solve equation (22), obtaining h(0, y) 
6. If H(0, y) ;t h(0, y) return to 3 
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Fig. 12 Variation of residual for cases in Figs. 10, 11 

7. Return to 2, varying h; until a minimum residual compared to 
a finite difference solution is obtained. 

8. Return to 1, varying A until the least residual is obtained. 
Figs. 10 and 11 show the application of this method to two test cases 

of a partial arc bearing where A = 0. In both cases the required solu-
tion for h; is 3 x 10-3  in. In Fig. 11 for 5 X 4 mesh, the scatter of results 
for h in the axial direction is seen to be small and a considerable im-
provement over the film shape shown in Table 1 for the Runge-Kutta 
method. The behavior of the residual for the two cases is shown in Fig. 
12. The correct minimum position is obtained fora (13 X 7) or (7 x 
4) mesh system but not for a (5 x 4) mesh which corresponds to 
Tower's case. This was subsequently improved by the use of 
smoothing of the pressure differential terms, as in the Runge-Kutta 
method. 

The behavior of the residual for Tower's experimental results is 
shown in Fig. 13 for various values of A. It was found that A = 0.1 gave 
the least residual. 

Determination of Mean Viscosity 
The importance of viscosity in lubrication was not apparent until 

Reynolds' paper of 1886 and Tower in his second report gives no 
mention of the oil characteristics except to state that it was a "heavy 
mineral oil." A known value of viscosity is essential if absolute values 
of film shape are to be determined from inverse hydrodynamics. The 
absolute value of film shape is dependent on the ratio ti/h; 2  which is 
put equal to C1 (say). All calculated film shapes were obtained as-
suming a viscosity of 5 poise. 

Unfortunately Tower gives results for friction only at 20 rpm and 
not at 150 rpm, the speed he used when the pressure tappings were 
made. He states (second report) that "the pressure indicated by the 
pressure gauge at 20 revolutions per minute was the same as that at 
150, thus showing that the brass was completely oil-borne at the lower 
speed as it had been at the higher." 

Friction measurements were carried out at a range of loads, in-
cluding 8008 lbs at which the pressure readings were taken. If both 
load and friction are known, as is the case for 20 rpm, then the vis-
cosity can be found as follows. 

Journal of Lubrication Technology 

Fig. 14 Isometric view of film shape in Tower's bearing astound by the Runge 
Kutta method (unbracketted values) and the cubic equation method 
(bracketted values). Units are In. X 10-3  

The shear stress r on the bearing is given by 
= nU + h - ap 

h 2 bx 
and may be integrated to give the friction. The result for friction is 
dependent on the ratio n/h; = C2 (say). The numerical values for C1 
and C2 were determined for 20 rpm on the somewhat shaky assump-
tion that the pressure distribution was unchanged from 150 rpm. This 
allowed the calculation of viscosity and initial film thickness hi as 

n = 1.95 Poise 
h; = 0.70 x 10-3  Ins. 
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Tower states that the oil bath was maintained at 90°F for all ex-
periments and it is probably reasonable to assume that the same 
viscosity applies at 150 rpm. On this basis the value of hi at 150 rpm 
was found to be 1.65 X 10-3  inches from the cubic equation method 
and 1.25 X 10-3  in. from the Runge-Kutta method. 

Results for Tower's Bearing 
The full film shape from both methods is shown in Fig. 14. The gap 

at the leading edge is found to be flared in both cases, and both 
methods produced a similar shape although with different absolute 
values. The average convergence in each case is small, being 1.35:1 for 
the Runge-Kutta and 1.44:1 for the cubic equation method. The low 
degree of convergence is to be expected from the general shape of 
Tower's pressure result. Fig. 15 shows the effect of convergence on 
film shape for a plane pad, and it is clear that the convergence in 
Tower's bearing is small. 

Equation (16) for the two-dimensional Runge-Kutta method can 
be extended to include the effect of varying viscosity. Some trial runs 
were made in which the viscosity was assumed to decrease in the di-
rection of motion by amounts varying between +40 and —10 percent. 
The minimum residual was in all cases higher than that with no vis-
cosity change, and consequently the viscosity in the film was taken 
as uniform throughout. 

The Use of Tower's Results by Reynolds 
It was an obvious point of pride in both Tower's reports that the 

bearing was "beautifully fitted" to the shaft, implying that the radial 
clearance c was zero. The choice of a clearance must have been an 
enigma for Reynolds who also had to pick figures for viscosity and 
eccentricity ratio e for his theory to apply. It appears that Reynolds 
chose a value of f = 0.5 on a fairly arbitrary basis and allowed c2/71 in 
the load number to be a disposable constant. 

In Fig. 16 the authors rather ungraciously compare the result for 
e = 0.5 with the film shape found by the cubic equation method. An 
attitude angle 4~ = 45 deg is assumed from established theory for a 157 
deg arc with e = 0.5 and the curves have been made to coincide at the 
mid point of the bearing (i.e. on the load line). Fig. 16 shows that if 
Tower's bearing can be said to have a radial clearance then the value 
of c was 2.26 X 10-3  in which corresponds closely to modern prac-
tice. 

Conclusions 
Present methods in inverse hydrodynamics are based on the inte-

gration of Reynolds equation to form a cubic equation. If the second 

I 	1 	I 	I 	1 	I 	1  
100 20 40 60 80 100 120 140 160 

Distance From Leading Edge , Degrees 
The best fit for a circular bearing to the result from the cubic equation 

differential of the pressure profile (or its equivalent in the two-di-
mensional case) falls to zero at any point, the film thickness may be 
determined there directly, and elsewhere by the solution of the cubic. 
In this paper this method has been further developed so that the oc-
curence of a zero second differential is unnecessary. The calculation 
then becomes iterative, in which the appropriate value of dimensional 
Film thickness hi is varied to give the minimum residual between the 
pressure profile assumed and that obtained from a finite difference 
solution using the film shapes from successive trial values of hi. 

The inverse hydrodynamics problem can also be set up in Runge-
Kutta form and film shape marched out from a trial value of hi. Clo-
sure in the true value of initial film thickness is obtained as before by 
comparison with the finite difference solution. Both methods require 
the film profile at the leading edge to be defined, although this is not 
necessary if the method due to Morton can be applied. 

Difficulties occur with the Runge-Kutta method where the second 
differential of pressure is positive. These can be overcome at the ex-
pense of accuracy by using a stiffly stable method of film thickness 
propagation such as the backwards Euler scheme. 

In general the authors prefer the modified cubic equation method 
(as developed here) to the Runge-Kutta since 

(a) The method can be easily applied regardless of the second 
differential term, which (for the x direction) does not appear in the 
calculation: 

(b) The integration necessary is from the current node to the start 
of the film which imposes an increasing degree of smoothing as the 
calculation proceeds. 
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