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ABSTPACT 

Linear optimal control theory has been applied to the design 

of an integrated controller of a single machine power system through 

excitation and governor reference settings. The effect of system 

modelling on the design of the controller and the importance of different 

feedback signals are studied and output controllers, using measurable 

parameters as feedback, have been proposed comparable in performance to 

those using unobtainable state feedbacks. 

Other linear and nonlinear controller design methods have been 

applied and their advantages and disadvantages are discussed. 

Dynamic estimators are designed to enable the system to avoid 

the cost of measuring devices and the noise which each measurement 

introduces. The effect of the order of the estimator on filtering and 

control is studied. 

An adaptive feature is introduced in the estimator so that it 

also estimates the tie—line impedance and adjusts its internal value 

using a Newton—Raphson iterative method. This adaptive feature is 

further extended so that when the system voltage and frequency are 

varying, these values are also estimated. 

A dynamic estimator is designed which gives the states of the 

machine up to its terminals — a local estimator, which has the advantage 

that none of the parameters it works with is changing. The system was 

tried with variable system voltage and frequency and may also be used to 

estimate the tie-line impedance. 

Controllability studies are presented which show the effective-

ness of A R and governor loops in damping different oscillatory modes. 

Observability studies show which signals are able to "see" and influence 

the most modes of oscillation. 
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CHAPTER 1  18. 

INTRODUCTION  

1.1 	POWER SYSTEM STABILITY 

The stability of a power system is defined under two 

categories, steady state stability and transient stability. The steady 

state stability of the system is the capability of the system to 

withstand small disturbances (normal fluctuations), whereas the transient 

stability is the ability of generators to regain and maintain synchronism 

after a large sudden disturbance (faults, switchings). The operation of 

a generator has to be limited to the maximum power output of the turbine 

and the beating limit of the rotor and stator. At leading power 

factors this limit is not normally reached as it is well above the 

stability limits, particularly that of transient stability. The 

steady state stability limit being concerned with small variations is 

well defined by linearising the system model about each operating 

condition and looking at its characteristic equation. The transient 

stability limit is not, however, a well defined criterion and it 

depends on the type and duration of the disturbance. Usually the 

disturbance is chosen as a three—phase fault with a certain clearing 

time. The generator is then said to be transiently stable if its rotor 

angle during the first and subsequent swings does not exceed 1800. 

During the years, the trend in power systems has been towards 

larger generators with bigger ratings, mainly due to the introduction 

of improved cooling techniques on both the,statcr and the rotor. For 

economic reasons, the generators are designed with lower inertia 

constants and short circuit ratios. These parameter changes together 
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with relatively higher transmission voltage and longer tie-lines have 

adversely affected the stability of the system, requiring faster circuit 

breaker operation, thus reducing scheduled fault clearing times. 

However, other methods of control are required to improve stability in 

some circumstances. 

1.2 	POWER SYSTEM STABILITY IMPROVEMENT  

The mechanical power delivered from the turbine to the 

generator is converted to electrical power and transferred to the load. 

After a disturbance, the balance between the electrical and the 

mechanical power is.changed, causing the generator speed to vary. 

There are three ways of controlling such a generator so as to maintain 

synchronism with the rest of the system and to provide good damping. 

A signal may be given to the governor system to change the mechanical 

input power. The presence of entrained steam and other storage effects 

in the various parts of the turbine as well as slow governor action, 

often prevent rapid input power control. However, fast-acting 

electrohydraulic governors20  and fast valving action20'21  in turbines 

have changed this situation. The second method is by the variation of 

the voltage regulator setting, causing changes in terminal voltage and 

consequently electrical power output of the generator. Finally, the 

last method is to change the shape of the network (load) presented 

to the 'generator terminals. This method requires more investment and 

is usually thought of in terms of transient stability controllers. 
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1.3 	APPROACHES TO EXCITATION AND GOVERNOR. CONTROL 

1.3.1 	General  

The improvements introduced by the action of continuous 

voltage regulators (AVRs) on the system steady state and transient 

stability has been well established1-7. Various feedback signals in 

addition to the terminal voltage have been proposed and used for the 

enhancement of system stability through the AVR loop. Deviation of 

speed3-7'13'15 and its derivative (acceleration)
6'7,10,11,56 or the 

accelerating power are reported to have been used for stabilization 

and it is claimed4'5 that they are the ideal signals for stabilization. 

Because of the practical difficulties in measuring the above signals
14, 

terminal power is suggested
4'12'56. 

This causes a temporary 

depression in voltage during periods of increased generation
17
. 

Scheif et als use terminal frequency and derive the speed as a function 

of this measurement. This idea has been further extended~7 for the 

derivation of an accelerating power signal derived from only electrical 

measurements. 

The improvement in system damping introduced by stabilizing 

networks is very necessary in systems with high gain excitation 

systems5,6, especially for thyristor excitation systems. 

Although the design of the stabilizer compensating networks 

has been through the small signal approximation and the use of 

frequency response analysis, the additional signals generally proved 

to be beneficial to the transient stability6'56. Recently some 

optimization techniques have been reported for the optimal setting of 
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one or two parameters of the stabilizer network in the excitation 

s stem16,18,19~ 
Y 

The use of additional signals in the turbine governor loop 

has also been studied. The effect of the time-integral of speed 

deviation added to speed deviation has been examined by frequency 

response methods10 and the use of rotor acceleration added to speed 

deviation to control transient stability has been tested11. The speed 

deviation, its time-integral and derivative have been proposed as 

feedback signals in a PID governor controller9. 

The use of stabilizing signals to both AVIL and turbine 

governor has also been studied
10,11. 

It has been shown that the use of 

these signals is beneficial to the system damping for small perturb-

ations. The transient stability limit (first rotor angle swing) is 

also improved with better control of terminal voltage and power swings. 

These advantages were confirmed in some practical field tests
4
'6. 

Dual-excited machines which are capable of extending the 

steady state and transient stability limits
23-26 h

ave also been proposed. 

1.3.2 	Design of Additional Control Scheme for Excitation  
and Governor Control  

Methods for the design of additional controllers for the 

excitation and governor loops can be divided into two main categories: 

a) frequency response methods (classical or modern multi-

variable techniques) and modern linear multi-variable 

state-space techniques; 

b) 	optimal control theory. 
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In the application of the method of category (a) to the system 

controller design, the linearised (small disturbance) model must be 

used. However, for optimal control application linear or nonlinear 

system models can be used. A review of different methods used for 

the design of the system controllers is given below. 

Most of the stabilizing signals mentioned in the previous 

section have been derived using classical control methods such as 

frequency response analysis
3,10,12 

and leadf,lag networks for transfer 

function pole compensation4. 

Smith28  and Jones 	suggested the application of bang-bang 

control to excitation systems for damping the frequency oscillations 

after a major disturbance. The switching times were obtained from a 

decision function derived from the energy balance (equal area) criteria. 

These studies were followed by the application of optimal 

0  
control theory to power system stabilization', in which controllers 

were obtained by the minimization of a cost function. With the choice 

of the cost function as a quadratic function of states and inputs, 

optimal controllers were derived for non-linear systems using complex 

optimization techniques35-37. These methods showed that the best 

results could be achieved with optimal variation of inputs, but then 

a method was required to relate these control functions of time to 

control laws (functions of system state). Also, the results obtained 

were a function of the disturbance type and duration. Finally, the 

results depended on the pre-disturbed condition of the system. By 

using a linearised system model with the same quadratic performance 

index, the controller obtained is stated as a linear function of the 
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states of the system and it does not depend on the severity of the 

disturbance. 

This type of control, because of its simplicity, has 

attracted the attention of many research workers in the last decade29-34'  

38-43,45 	It has been shown that the system with this controller can 

achieve improvements in both transient and dynamic stability. This 

has been confirmed by many practical applications of optimal controllers 

to microalternators and small scale generators40,43,46 48'53'58.  The 

effectiveness of the control method on a multi—machine system has 

also been checked 
0

One difficulty with the linear optimal 

controllers, however, is the need to measure all the system states, 

some of which are not measurable. This has been overcome in several 

ways. Firstly by the simplification of the system model, reducing the 

order"of the model so that the unmeasurable system states are eliminated 

from the control law. The second approach is-'the use of some measurable 

output instead of unmeasurable ones to which they are related
51,126,127. 

In another attempt, unmeasurable states were eliminated from the control 

signal39, but this method, in general, does not ensure the stability of 

the system. Another approach is by the choice of controller as a linear 

function of measurable outputs and so changing the problem to a 

parameter optimisation problem34. The authors, however, stated that 

the above output controller can never be as good as that with all 

states included in the controller. Further, convergence difficulties 

may arise in the method based on parameter optimisation techniques 

when the number of such parameters is large19'52.  Other parameter 

optimisation techniques for deriving sub—optimal controllers have been 

reported which take into account the,non—linear system model47. 

Several attempts have appeared recently in which sub—optimal controllers were 
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developed using dynamic optimization49'54. Furthermore, with the 

introduction of sensitivity functions in the performance index, the 

controller was also made insensitive to some system parameter changes. 

This technique has also been used for the design of excitation non—linear 

state feedback63. As has been indicated in refs. 49 and 54, the above 

iterative optimization methods are sensitive to the initial starting 

points and convergence to a unique minimum is not assured. Also, the 

optimal feedback gains are obtained for a given system disturbance and 

hence must vary with the type and location of the fault. Another 

iterative optimization technique64  has been reported using only one 

feedback signal for excitation control. 

There are a number of research studies reported which treat the 

difficulties of optimal controllers. Kumar et al50  suggested a method 

for designing a suboptimal linear controller which basically is obtained 

from the linearization of the system model about two operating conditions, 

so that the controller is suitable for a wide range of operating points. 

Another attempt was to design the gains so that their sensitivity to the 

operating condition is minimized71. Other suggestions have been the use 

of a look—up table
40'45'62'65, 

 giving the appropriate gains for different 

operating conditions. A curve—fitting technique41'53  has also been 

suggested for relating the gains to the operating conditions. The look-

up technique has been applied in practice, but sustained oscillations of 

frequency have been reported
45,65 

due to the variation of operating 

condition along the intersection of two grids. This difficulty has been 

treated in several ways
62,65

There has been some effort made to choose 

the elements of the performance index
51,104 

`weighting matrices) in a 

logical way rather than by guess work. 

Modal control techniques67,68  have been recently proposed for 

designing the regulators. The controllers obtained are linear functions 
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of states similar to linear optimal controllers, but their 	advantage 

over the optimal regulator is claimed to be that they do not need the 

selection of weighting matrices. However, this must be looked at with 

care as the placement of the closed-loop system eigen-values must be 

done through engineering experience, guessing and also with the 

consideration that the eigen-values are not representative in large 

disturbances as non-linearities occur and non-linear simulations should 

really be made. 

Optimal time-optimisation problems occur when the performance 

index is chosen as a linear function of time, minimising the time taken 

to reach the target condition. The solution to this problem is of 

bang-bang form. For a linear system of dimension n, (n-1) switching 

times are required for a unique minimum73. For nonlinear systems, 

however, the use of the Pontryagin Maximum Principle is required. In 

this way, time optimal excitation control has been achieved using a 

very simple model72  and more recently for a high order model75. The 

results obtained from the latter case, however, suffer from the 

following drawbacks. Firstly, in the design of the controller the final 

steady state conditions must be known beforehand. The results depend on 

the disturbance and the system operating condition. Finally, the 

strategy obtained is for application after the fault is cleared. 

A closed loop time optimal controller has been proposed74'75  

using very simple order model. The final practical proposa175  is a 

linear controller of states similar to a linear reg.:;ator. 

Multi-variable frequency response techniques15,59 have been 

applied to the design of stabilizers for the excitation and governor 

loops. 
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Discrete-control techniques
6o,66

have also been reported 

• for generator control. Walker et a160  presented a predictive method 

using current measured output and previous values for the controller. 

In another attempt66  a discrete controller was proposed for direct 

digital control of a system using current measurements, the conventional 

controller loops being omitted, unlike other studies. 

Adaptive excitation controllers have been reported 
 

In one very recent case62  filters are used to realize the slow drift 

of system parameters (new steady state values) and with the use of a 

look-up table the appropriate optimal gains together with the settings 

are selected for the operating condition. Other attempts69,70  have 

been reported, changing some parameters in the excitation stabilizer 

so that the performance follows a special reference model or minimising 

voltage changes. These studies69,70  have been based on a very crude 

system model. 

In general the multi-variable controllers which have been 

suggested fall into the following categories: 

(a) Those which consider excitation control only. 

(b) Those which retain conventional governor and/or AVR systems 

and apply additional inputs to the set points. 

Those which replace the AVR and/or governor by a multi-

variable controller
44,48,61'66. In this case steady state requirements 

for controlling 	speed 	and/or terminal voltage must be satisfied by 

the multi-variable controller. 

(c)  
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1 . 4 	STABILITY IMPROVEMINTS BY CHANGES IN NETWORK 

The methods in which network changes are made to improve 

stability (also called discrete supplementary controls) unlike the AVR 

and governor loops function only for a short period after a disturbance. 

The list of these controls usually includes the following76'77: 

1. Dynamic braking, 

2. High speed circuit breaker reclosing, 

3. Independent pole tripping, 

4. Controlled system separation and load shedding, 

5. Series capacitor insertion, 

6. Switched shunt capacitors or reactors, 

7. Power modulation of direct-current lines, 

8. Generator tripping. 

Dynamic braking involves the insertion of a braking resistor 

asa temporary load to the generator terminals to release the stored 

energy due to imbalance between power generated and power delivered 

during a fault. The switching logic for the application of these 

resistors may be developed either from the point of view of providing 

equal damping on all the generators in a power sys1em78  or through the 

Use of the optimal control theory79. This method gives rise to large 

torques on turbine generator shafts. High speed circuit breaker 

reclosing is very helpful in reducing scheduled fault clearing times. 

This, however, results in transient torques or turbine shafts. 

Independent pole operation of circuit breaker reduces the severity of 

multi-phase faults because the failure of any one phase does not 

automatically prevent any of the two remaining phases from proper 
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operation. Controlled system separation and load shedding together 

with generator tripping are measures taken to achieve a balance between 

load and generation when there is a major disturbance involving the 

loss of generation or load. Series capacitors are used to increase 

the power transfer of long transmission lines by reducing net inductive 

reactance between the sending and receiving ends. The switching of the 

capacitors in and out of the circuit has been shown to have beneficial 

effects on the generator mechanical transients and the switching times 

can be determined from consideration of equal area criteria80  or 

through the use of the optimal control theory
71,81. 

 Such a control 

method may give rise to subsynchronous resonance torques. 

The effects of shunt reactors and capacitors is similar to 

that of series capacitors. 

Finally, the power flow on a d.c. transmission line can be 

modulated by controlling the converters at each end of the line. The 

converters can be controlled to reduce the oscillation of power between 

the two areas after a transient. 

In addition to the above methods, phase shift insertion has 

also been proposed to change the effective rotor angle
82. 

1.5 	CONTENTS OF THE 'TRESIS AND CONTRIBUTION 

Many ways of achieving stability improvements were considered. 

It was felt that the cheapest method with the least extra implementation 

is through the control of AVR and governor settings, and that it 

required a comprehensive investigation. 
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The studies performed in this thesis can be divided into 

two; control and estimation. 

The first part is mainly concerned with the development of 

multi-variable controllers for the integrated control of generators 

through the AVR and governor. The objectives which these controllers 

had to achieve were; the increase in transient stability (decrease 

• in first rotor angle swing), good terminal voltage performance after a 

large disturbance and, finally, good damping for system parameters when 

the system is subjected to a small disturbance, or is recovering from a 

large disturbance without loss of synchronism. Linear optimal control 

is applied and the effect of system modelling on the design of 

controllers is studied. The significance of different signals is 

studied and measurable-output controllers are developed. Other linear 

and non-linear control methods are applied to the system and compared 

with linear optimal controllers. 

The second part of the thesis deals with the synthesis of 

system states with very few measurements. For this purpose, optimal 

dynamic estimators are designed taking the system to be of varying order, 

their behaviour when used as a part of the controller in the system 

being studied together with their capability for filtering measurement 

noise. A self-tuning dynamic estimator was developed which also 

estimates the transmission-line impedance and adjusts the internal 

corresponding value. This was then extended to the case when system 

voltage and frequency vary and these values are also estimated. 

Finally, local dynamic estimators of varying order were developed which 

have the advantage that their structure remains constant with changes 

in system parameters. The estimation of tie-line impedance with this 

estimator is also studied. 
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The following aspects appear to be, in the author's opinion, 

original contributions: 

(i ) 
	

A full study of modal controllability and observability 

of the detailed system model has been made. These studies show 

the relative significance which each control loop (AVR, governor) 

can have on the control of each oscillatory mode. The relative 

value of each measured output for the reconstruction of each system 

oscillatory mode can also be obtained from these studies. 

The effect of system modelling on the design of linear 

optimal regulators has been studied and measurable—output controllers 

were developed from consideration of the significance of different 

feedbacks. 

(iii) 	Dual mode controllers have been designed using three 

different methods. These controllers have two distinct modes for 

transients with large and small deviations. A non—linear controller 

has also been proposed which has the same advantages as the dual 

mode controllers. The performance of the systems with these 

controllers has been compared to those of a linear optimal controller. 

Different order optimal dynamic estimators have been 

designed for the system. The behaviour of the system with the 

dynamic estimator as a part of the system has been studied including 

the consideration of measurement noise. 

(v) 
	

Partial dynamic estimators have been proposed which only 

estimate the parameters of part of a system which is required, 

thus its order is much less than that of the whole system dynamic 

estimator. 
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A self—tuning estimator has been developed which estimates 

the tie—line impedance and adjusts its corresponding internal 

value. The order of this self—tuning estimator was then reduced. 

The idea of tie—line impedance estimation was extended to the 

estimation of system voltage and frequency. 

Different order local dynamic estimators have been 

developed. The advantage of these estimators is that their 

structure is constant and no adjustment is required. The estimation 

of tie—line impedance with this estimator is established. 
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CHAPTER 2  

MATHEMATICAL MODELS OF POWER SYSTEMS UNDER TRANSIENT  
CONDITION  

2.1 	INTRODUCTION 

The transient stability of electrical power systems has been 

a subject of major interest for the last two decades, and over the years 

various theoretical and practical methods for evaluating the generator 

performance have been proposed38'94. Accurate detailed knowledge of 

generating units is necessary when a power system operates under 

marginally stable conditions. The complexity introduced by the 

increase in the number of generating units and their interconnection 

makes control more difficult than previously. Single machine—infinite 

busbar systems have been studied to establish the validity of 

synchronous machine representations837-86, 

In this chapter several models are described. These are 

used with excitation and governing system model with and without)  

conventional regulating loops to give full simulation of system non-

linear performance. Linearised versions of these models are derived 

for use in controller design and dynamic stability analysis. 

The expressions developed may also be used to obtain the 

performance when the infinite busbar is replaced by one at which 

voltage and frequency varies. 
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2.2 	BASIC SYSTEM ASSUMPTIONS AND EQUATIONS  

A single generator coupled through a transformer and a double 

circuit transmission line to a large system is considered, as shown in 

Figure 2.1. The machine is represented by a two-axis model, as shown 

in Figure 2.2, single damping circuits being shown on each axis to 

represent the action of solid rotor. Saturation and hystersis are 

neglected. Janiscbewsky7 et al showed that the dynamic behaviour of 

the machine is primarily determined by transient and subtransient 

reactances which are not changed significantly by magnetic saturation. 

The motoring sign convention of Adkins88'95 is followed and the machine 

equations are in p.u. terms: 

vd = p Pd +W (pq + raid 

vg = -l1J (pd + p (pq 
+ raiq 

0 	= i kdikd + p )lcd 

0 	- rlcgil~q + p (pkq 

of = rfif + p kpf 

The flux linkages associated with each winding are: 

''I
`~d = Ldid + Lmdikd + Lmdif 

,,
`pf = Lmdid + (L.f +Lmd)if t Lmdikd 

`kd= Lmdid + Lmd
if + (I +Lmd)ikd 

(rq = Lgiq + Lmgikq 

~1kq= Lmgiq + 
(Lmq

+Lkq)ikq 

The electrical torque is: 

W 
Me = 2°( ~diq 	%1d) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
(2.8) 

(2.9) 
(2.10) 

(2.11) 

Defining 5 as the angle between the rotor q-axis and a reference axis 

rotating with synchronous speed Wo, the rotor position, speed, slip 

and acceleration are: 
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(2.12) 

(2.13) 

(2.14) 

(2.15) 

0 _ (Wot- 5 

W  = 10—P5 

S = PS/(00  

P
20 = —P26  

The torque equation is: 

MT  _ me - 21ip26—kp5 
0 w°  ( tpdiq  — )̀qid)  — w-  p2S — k p 6 (2.16) 

The axis voltages are determined below. The voltage in phase A of a 

balanced three—phase supply of frequency 	(Wo ' w0) is: 

• 

Va 	Vmax sin Wit 
	

(2.17) 

Assuming that Lil _ w0+ p(t), where p(t) is a frequency deviation, 

then from equation (2.12): 

wit = (6 + a  + p.t) (2.18) 

Substituting (1)tt into equation (2.17) and expanding it, gives: 

Va = Vmax sin(6 + p t)cos(8) + Viny, cos(S + pt)sin(0) 	(2.19) 

The transformation relating the voltage in phase A to the axis 

voltages is: 

Va _  vdcos(o) + vgsin(9) (2.20) 

As the two values of V must be identical for all 0: 
a  

vd = Vmaxsin(5 +p t) 

vq  = V cos(6 +pt) 
max 

(2.21) 

(2.22) 
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and: For an infinite bulbar p = 

vd 

v q 

= 

= 
maxsin(&) 

V 	cos(S) max 

(2.23) 

(2.24) 

2.3 	SYNCHRONOUS MACHINE MODELS 

2.3.1 	Accurate Model  

The eqūations of the synchronous machine are put in state 

variable form. The state variables are chosen as: 

CS, PS, Wo `Yd' Wo (Pf' Wo Pkd' Wo q)q Wo4)kgII 
(2.25) 

Equations (2.6)-(2.11) relating fluxes to currents are put in matrix 

form: 

C Wo Vd] - CXgd] • ['di 

C Wo ~q] = CXgq] CIq] 

where yd, q, Id and Iq are vectors containing the direct and 

quadrature axis fluxes and currents (Appendix 2-1). Similarly: 

Lid] = rYgd] • C Wo 4id] 

CI] = Cvgq: C Wo 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

where CY ] and EA- 3 are inverse matrices of CX ] and CX ] . 
gd 	gq 	gd 	gq 

Rearranging equations (2,1) to (2.5), multiplying by (.00  throughout 

and combining them with the equation of motion, leads to the state 

variable equation (2.30): 



Wovd+P 6 (0 

Wov f 

x(2) 	
1

e-M) 

P Wo 

[i (1)1 
x(2) 

WoV q—P F0d 

-1 

Di] 
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where: 

 

(2.30) 

 

LZ1] _ - [Rgd] • E gd] 

CZ2J = - DRgq] EYggD 

(2.31 ) 

(2:32) 

J = 2A/w 0 
2 

Me = 
W2 

CYgd(1,1)-Ygq(1,1)] (Wo (1d)( Wo U)q )+Ygd(1,2)( Wo (41d). 

•((.0o (~Jkq) - Ygd (19 2)( Wo (1)q )( Wo 40-Ygd(1,3)( Wo (pq )( Wo 4)kd) 

(2.33) 

The matrices Cxgd] , Exgq~ , ERgdI and ERgq] are given in Appendix 2-1. 

2.3.2 	Approximate Model  

In this model the stator transient terms p(pd, p(pq, pid and 

piq are neglected in the voltage equations. New values of We 
`Yd 

and 

(~l)o 
()q are obtained in terms of other variables at each instant. Thus 

the state variables are: 

L6, PS' Wo k.Pf Wo `l.)kd' Wo ~i{qj 
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The values of Wo ~d and Wo 
iq in terms of the state variables are: 

h1Z2(1,1) + 110(1 — pb% (ilo) 
Wo 	= 	h3 

Wo 
1'' 	h1(1 — pb/wo) — h0Z1(1,1) 

q 	 h
3 

where: 

h1 = vd + z1(1,2)(Wo f) + z1(1,3)(Wo t)l{a) 

h2 = vq + Z2(1,2) (Wo kPlcq) 
h3 	Z1(1,1)Z2(1,1) + (1 — p6/(02 

(2.34) 

(2.35) 	. 

(2.36) 
(2.37) 

(2.38) 

2.3.3 	Improved Approximate Models  

Although the approximate model gives reasonably accurate 

results in many instances, it is tunable to simulate the phenomena of 

backswing. It has been shown89 that when the stator transient terms • 

are omitted from the calculation, the oscillatory component and a part 

of unidirectional component of electrical torque are not obtained. 

Shacicshaft90 has shown that the oscillatory component is more 

significant and devises an approximation to allow for it. A step 

change of speed is applied to the rotor at the instant that the fault 

occurs, of value: 

Ats = 
Vft 

(2.39) 2Hx 
s 

where Vft is the prefault voltage at the fault and xs is subtransient 

reactance of the machine with terminals taken at fault point. 

Alternatively the analytic equation given by Mehta91 may be used to 

simulate the electrical torque during the fault and approximate 
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representation after it has been cleared12 . The results are more 

accurate than those obtained with Shackshaft 9s method. With either of 

these methods large time steps can be used and load angle is obtained 

more accurately than with the approximate method. 

2.3.4 	Simple Model  

In this model not only are stator transients neglected but 

also damping effects are taken into account by a damping factor. The 

order of the model is Z and the state variables are: 

Cs, Po, if] 	. 

The derivation of this model is given in Appendix 2-2. 

2.4 	TRAN'SMISSION LINE MODEL AND MODIFIED MACHIN'E TECHNIQUE 
FOR REPRESENTATION OF A DISTURBANCE IN 1IIE SYSTEM 

In this study the transmission line is represented by series 

reactance and resistance. The network equations which relate the 

components of terminal voltage to those of the system busbar are: 

(x ex id) _ (W 
ig xex) 

vd - vbd - rexid Wo 	Wo 

(xexpiq  ~ 
	(w 	

idxeX) 

rq vbq rexiq 
Wo + Wo 

(2.41) 

where x 
ex 

and r 
ex 

are the total reactance and resistance of the 

transformer and transmission line between the alternator and the system 

husbar. For simple system representation the network equations (2.40) 
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and (2.41) remain the same except that the terms containing pid  and 

pi are eliminated. 

In short circuit studies, the modified machine technique is 

used. The terminals of the modified machine are chosen at the system 

busbar during normal operation and at the fault point during the short 

circuit period. All impedances between the modified and real machine 

terminals are then lumped into the machine stator impedance. The 

advantage of this technique is the simplification in the calculations 

of the axis components of voltage. The axis components of modified 

machine terminal voltage are zero during the short circuit and they are 

equal to the axis components of the system busbar voltage at other times. 

2.5 	VOLTAGE REGULATOR AND TURBINE GOVERNOR MODEL 

2.5.1 	Automatic Voltage Regulator (AVR) Model  

A general model of a typical AVR and exciter system includes 

a comparison of measured and reference voltages, an amplifier and an 

exciter. Both the amplifier and exciter may have stabilizing loops. 

Magnetic amplifiers have time constants between 44-100 ms and rotating 

exciters can have a 200 ms time constant98, 

The advent of solid state AVMs and exciters, particularly of 

the thyristor type, has made possible a considerable reduction of time 

constants to as little as0 to 	ms3. Digital AVRs93  have also been 

considered to have small time constants. The advantages of fast 

excitation systems on generator stability have been pointed out in 

several research papers 
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A simple model of a fast excitation system, having two time 

constants to represent the amplifier and exciter, has been adopted in 

this work. The block diagram is shown in Figure 2.3. This type of 

excitation system was chosen as it allows for better additional control 

action compared with that of slower, more conventional excitation 

systems. The model is: 

vE GA 	GA 	 ( t -> 
v. = —  

T  — T . V 	. V 	
2.t2 

A A 	A 
R 

 

v
f = Tf — TE vE 	 (2.43~ 

E E 

v /v 
vE MAX iIN ` E 	—MAX 

v
f v̀f f 	 (2.r45) 
MIN 	MAX 

The ceiling values for excitation voltage vE and field 

voltage of are chosen as -3 times the rated load value. 

2.5.2 	Turbine Governor Model 

A standard oil—servo type governing system model can be 

represented with time constants of about 100 ms for the valve relays 

and 500 ms for the entrained steam between the h.p. ,.ylinder and the 

turbine.blades.". With long time constants such as these, it is 

difficrlt to improve transient stability by using additional signals 

0 
in the.governing loop. Electro—hydraulic governors '2` have much" 

shorter time constants. \Then they are used with valves which may be 

closed quickly and if the time constant associated with entrained 

steam is kept small, governor control can improve transient stability21 22 
,  



41. 

Here it is assumed that the system described above and the 

turbine-governor loop is modelled as shown in Figure 2.4. This model 

is taken from Itef. 98. Tv represents the valve closing or opening time 

constant, Ts represents the entrained steam time constant and GG the 

speed governor gain. This model equations are: 

GG 	Yo A = - T + T po+T 
p v v v 

A M 
M - -~ - T 

T - T 	T 

The constraints on governor setting and the valve position are: 

0 <Yo 0 

0 <Ap 1 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

2.6 	SYSTE?.1 MODEL 

Different models of the system were obtained by using 

different machine models and regulating loop dynamics. The structure of 

these models is given in Appendix 2-3 and summarized in the table below. 

SYSTEM MODEL 

Title Order 
. 	Machine Model Used 

:VII Loop 
order 

Governor 
order 

Title Order 	Ref. 

Full 11 Accurate 7 	12,3.1 2 2 

Approximate 9 Approximate' 5 2.3.2 2 2 

Simple 7 Simple 3 2.3.3 2 2 

Crude 4 Simple 3 2.3.3 0 1 

Very Simple 3 Simple 3 2.3.3 0 0 

Table 2.1: 	System models. • 



(2.50) 

(2.51) 

(2.52) 

x• 

Qx• _ (aX)o  Lx + ( ju)i6u 
Ax' = A Qx + B Au 
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2.7 	LINEARISED SYSTEM MODELS  

Linearised models are used here f.or controller design and for 

calculating system dynamic stability. The non-linear equations are 

linearised about the operating point by partial differentiation: 

This is done for all the system models and the derivations are 

given in Appendix 2-4. 

2.8 	SYSTEM PARAMETERS AND CALCULATION OF STEADY STATE 
OPERATING CONDITION  

The system parameters together with the base values are given 

in Table 2,2. The parameters are those of a 588 MVA CEGB96  generator 

with a high coiling exciter (± 3 times value for rated load) and an 

electrohydraulic governor with fast valving. The parameters of the 

regulating loops are those of Moya98  except that the AVR. amplifier gain 

is decreased so that the system transient performance is better. 

In the steady.state all the derivatives of state variables 

are zero and a set of algebraic equations is solved to give the steady-

state conditions. These calculations are shown in Appendix 2-6 and 

the system initial conditions calculated for the system parameters of 

Table 2.2 are given in Table 2.3. 
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Figure 2.2: 	Two—axis representation of a three—phase 
synchronous machine. 

Figure 2.3: 	AVR, system. 

Figure 2.4: 	Governor system. 
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Magnetising reactances: 

Armature resistance 

Field leakage reactance 

Field resistance 

Direct axis synchronous reactance 

Quadrature axis synchronous reactance . 

Direct axis transient reactance 

Direct axis subtransient reactance 

Quadrature axis subtransient reactance 

Direct axis transient open circuit time constant 

Direct axis transient short circuit time constant 

Direct axis subtransient open circuit time constant 

Direct axis subtransient short circuit time constant 

Quadrature axis subtransient short circuit time constant 

Direct axis damper winding resistance 

Direct axis damper winding reactance 

Quadrature axis damper winding resistance 

Quadrature axis damper winding reactance 

Transmission line resistance 

Transmission line reactance 

Transformer resistance 

Transformer reactance 

Inertia constant, kWS/I{VA 

AVII amplifier time constant, s 

Exciter time constant, s 

Turbine valve time constant, s 

Entrained steam time constant, s 

Governor speed gain 

Voltage regulator amplifier gain 

Exciter gain 

Table 2.2: 	System parameters. 



Vb  0.937 

bb  -79.20 

vt  1.0 

St  -53.37 
P -0.847 

-0.276 

if  -1.561 

MT  -0.8479 

Table 2.3: 	Steady state values for the system of Figure 2.1, 
with o in degrees and other variables in p.u. 

46. 
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CHAPTER 3  

APPLICATION OF LINEAR OPTIMAL CONTROL TO POWER SYSTEMS  

3.1 	INTRODUCTION 

Optimal control theory is concerned with deriving a sequence 

of controls, or a continuous control function in time, which when applied 

to the given control system will cause the system to operate in some 

optimum manner. The optimality of a control scheme is measured by a 

performance index, I, which is usually a time integral of some perform-

ance measure over a specified period of time and an optimum control is 

defined as one which extremises the performance index. Some important 

results regarding necessary conditions to achieve extrema of the 

performance index as developed by the calculus of variations, Pontryagin's 

Minimum Principle and dynamic programming are summarised in Appendix 3-1. 

The general optimal control problem is inherently difficult to 

solve whether it be formulated by variational calculus resulting in a 

two—point boundary value problem which, in general, can only be solved 

by iterative methods requiring successive integration of the state and 

adjoint equations or by dynamic programming, resulting in a partial 

differential equation for which no general solution is available. 

Furthermore, even when a solution is achieved, the optimal control is, 

in general, in the form of an open—loop control or a feedback control 

with time—variant feedback gains except for special cases such as the 

linear regulator problem with the control interval extended to 

infinity, where the optimal control is a constant linear feedback of 

all states. These optimal open—loop or variable gain state controls 
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are only applicable to systems which have fixed parameters and operating 

conditions, and subject to a given set of disturbances. This is highly 

impracticable for the control of turbo-generator sets in power systems. 

The approach which is chosen here is to formulate the problem 

as a linear regulator problem which may be stated as follows: given a 

linear system which is considered by: 

X.  = Ax + BIJ 

Y = CX 
x(t0 ) 	x0  (3.1) 

where A, B and C are n x n, n x m,. p x n matrices, an optimal control 

U over the closed interval Do, t ] is required which minimises the 

performance index, I, in the form: 

tf 
	

• 

I = J (xTR1X + UTR2U)dt + xT(t f )IL,X(t f ) 	(3.2 ) 

where R1  is an n x n positive semi-definite symmetric matrix and R2  is 

an m x m positive definite symmetric matrix (n is the dimension of X 

and m is the dimension of U). This problem was solved by Kalman99  

under the assumption of complete controllability of the plant. The 

solution of this problem leads to a feedback control law: 

where: 

U = F X 

F = -R21BTP(t) 

(3.3) 

(3.14) 

and P(t) is the unique, symmetric positive definite solution of the 

Riccati type matrix differential equation: 

- dt = PA + ATP - PB1121  BTP + R1  

which satisfies the boundary condition: 

P(t ) - R3  

(3.3) 

to 0  
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The minimum value for the performance indes (3.2) is given by: 

T = I . 
	a X o P(tf)—o (3.7) 

In the special case of a time-invariant system (in which case, A and B 

are constant matrices) and, with the control interval extended to 

infinity, P is obtained as the steady state solution of the Matrix 

Riccati Equation in the form: 

PA + ATP - PBR01  BTP + R1  = 0 

The feedback gain matrix F becomes a constant matrix as: 

F = -R 1  BTP  

(3.8) 

(3.9) 

Two methods were used here for the solution of the Riccati 

equation (3.8). The first method uses the Kleinman106  iterative 

technique. When the order of model is high and the tolerance is small, 

this method requires many iterations and may oscillate. The second 

method uses the Diagonalisation107  Technique and gives the exact 

solution. These techniques are explained in more detail in Appendix 3-2. 

For the application of linear optimal control theory to a 

. power system, the non-linear system model must be linearised around 

an operating point as described in Chapter 2. 

3.2 	SYSTEM CONTROLLABILITY 

The necessary condition for the design of a linear optimal 

controller for a system is the controllability. By definition, a 

system is said to be controllable'if it is possible to find a constant 
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vector u(t) which, in specified finite time tf, will transfer the 

system between two arbitrary specified finite states xo  and x)°,9 

However, in physical terms, controllability implies simply that it is 

possible with the given set of control forces at hand to have the plant 

under "complete control", i.e. its state may be changed completely in 

accordance with an arbitrary aim, 

For linear systems of the form (3.1), there are methods which 

give necessary and sufficient conditions for controllability. One 

method suggested by Kalman
101 

considers the so-called "rank" of the 

n x nm matrix, which is obtained by grouping the n, n x rn matrices 

B, AB, A2B, ..., An-1B into the new matrix: 

D = EA AB A2B An-1B] (3.10) 

It is•possible to show that the system is completly controllable only 

if the rank of this matrix equals n. There is another method first 

suggested by Gilbert ,̀ through eigen-value and eigen-vector analysis. 

Considering the linear system (3.1) (X(0) =0, the solution of which 

can be written as: 

Y(t) = J` CeA(t -Z)  B U(Z)dt (3.11) 
0 

Diagonalizing A gives: 

A = MA M-1 	 (3.12) 

where: M (n x n) = col(M1, M2, ..., Mn),where M. is the normalized 
• 

eigen-vector corresponding with A..
J
, i.e. A M 

J  
. _ X .J'I ., I Mi! = 1. di 

J 

M 1(nxn) = row(V 1T, V2T,..., Vn ) 

/k (nxn) = diag( Xl,  X2,  • • . .n)  

(3.13) 
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then the transition matrix can be written as: 

  

X (t—T) 
1 	

M.V. 
1 1 

 

eA(t T)  

 

(3.15) 
i=1 

When this expression is substituted into equation (3.11): 

n A (t—T) 

Y(t) = 	C( T-e 1 	M.V T)B u(T)dT 
0 	

1=1
3. 

= 

n 
t  Ā (t—t) 
e 1  

0 
dT > 	(C M.)(V.T  B) 

i=1 

(3.16) 

(3.17) 

Equation (3.17) illustrates that the output Y(t) can be expressed as a 

superposition of the n modes. In this equation, the 1 x m vector 

(V T  B) matrix reflects the extent to which the ith  mode is excited by 

the m'inputs. A different interpretation is possible by noting that 

(3.11) can be written as: 

r 
V1r  B  

Y(t) = 	[cMl, CM2,...,CMn] e (t 
Z) 
 V2T  B 

0 

Vn 
T  B 

u (T)dT (3.18) 

It is clear that each column of the n x m matrix 

V1T B  

Vn 
T  B 

corresponds to an input, and the relative magnitude of the n elements 

in a given column reflects the relative effectiveness to which an input 

excites the r. modes. 
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The method described above is superior to the rank criterion 

in two respects. First, it gives a quantitative measure of controll-

ability as against the "go, no go" answer given by the rank method. 

The second advantage of this modal approach is that it is easy to 

compute; whereas the numerical determination of the rank of a general 

matrix is still an open question in numerical analysis. 

The second approach was used here for system controllability 

assessment. The full order linearised model of the basic system 

(Figure 2.1) was used. The calculation of the matrix VTB needs the 

evaluation of matrix V which needs the inversion of the complex eigen-

vector matrix M. The simpler method is to use the fact that VT  is the 

eigen-vector matrix of AT.and this can be obtained by transposing 

equation (3.12): 

AT  = (M A v)T = (VT, 1̀1T ) 

The system matrix V 	is given in Table 3.1. In this table the first . 

column corresponds to the AVR loop and the second column corresponds to 

the governor control. It can be seen that no element in this column 

is zero, which shows that all the modes of the system are controllable 

through both AVR and/or governor action. Table 3.2 also shows the 

corresponding eigen-values of the system. One very obvious fact in 

both AVR and governor control loops is that the relative controllability 

of the mode corresponding to the eigen-values (-12.46 ± j314.05) is 

very low. These are very fast modes of about 50 Hz due to a stator 

transient. Some modes are clearly better controlled by one loop than 

the other and it may b' concluded that the use of both loops is likely 

to give the best control. 



I 	CONT°OLL AaILITY tIATRI;= I 

  

I SYSTI1 FIGLU-VAUES I 

    

t 	A.V.R. LOOP 	I GOVE 1R LOOP I 

      

      

        

        

I -.66172-C6+J -.152E-O=+I -.240:-15+J .175=-05I I -12.+~:3900+.J 314,03432I 

         

I -.8'-7+ti- J6+.J. . 1522-GLI -.2LJ._-J5+J -.1751-51 

 

I -12,45900+J-31L,05432I 

         

         

I .115::-31+J 

I .115C-01+J 

nI -.236E-11+J -.476E-01I. I 	-.41903+J 	7,7j5721 

     

0I -.236'-J1+J .476E-C11 I -.419C3+.J -7,73E72I 

I .1.131-C1+J 	^I -.1531-J2+J 
	ri 

I .200L-C1+J 	^I .952i-14+J .487E-741 

T 	.2)11_-C1+J 	LI 	.952:-)4+J -.+F7E-CLI 

I 

	

I -11.96222+J 	CI 

	

I -21.33963+J 	.3.433591 

I -21.33953+J -:3,4875'3I 

I .117 1- 01+ J 
	JI -.6382-)2+J 

	
GI 	 -,=,5198+J 

	0 I 
I .19RC-31+J 	CI .13O::+]^J 

I .211c-01+J 	OI -.466E-J1+J 

I .1381-01+J 	01 -.6232+lO+J 

I -2.'15627+J 

I -23. .1148+J 

I - 3, 65L 78+J 

CT_ 

CI 
0I 

CI 

;I 

Table 3.2: 	System eigen-values. Table 3.1: 	Controllability matrix. 
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3.3 	CIIOICE OF WEIGHTING MATRICES 

The major objectives to be achieved by controllers for power 

systems are: 

(a) The reduction of first rotor excursion for the improvement 

of the transient stability; 

(b) The quick settling of terminal voltage. 

To satisfy the above objectives the choice of weighting matrices R1  

and R2  prove to be important, although most of the time they have been 

chosen through trial and error. There has of course been some progress 

towards the systematic procedure for selecting the [R1] matrix31,104. 

Yu and Moussa31  proposed an algorithm which determines the diagonal 

elements of the 
ER1] 

matrix such that the dominant eigen-values of 

the closed loop system are shifted to the left of the complex plane 

as far as practical controller gain limits permitted. The controllers 

developed using this method were applied to the non-linear power 

system model and although a quick zeroing of the rotor angle and speed 

deviations was obtained, the generator terminal voltage showed large 

transient variations. The other - shortcoming of this method is that 

again the choice of R2  matrix is left to engineering experience. In 

another attemptiOl!, the authors diagonalize the system matrix and use 

diagonal R1  and rt2  matrices in which all the diagonal elements are 

equal and by varying the ratio of R1  and 119  elements, r2/ri, the 

dominant eigen-values 'are shifted. In this method too the•choice of 

R1  and R2  of this special type seems to be arbitrary. It must also he 

mentioned that the maximum shift of dominant eigcn-values does not 

necessarily
34,98 

guarantee a good transient response after a large 

disturbance in a system where nan-1.i.neari ties arise and constraints 
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in regulating loops come into action. In the end, non—linear 

simulations must be performed, final adjustments being made to obtain. 

the best results. There are some guidelines which might ease the 

choice of these weighting matrices: 

(a) The choice of performance index which only weights voltage 

produces a very good performance for voltage but does not damp speed 

and angle oscillations". 

(b) Large weightings of speed and angle give quick settling of 

speed and rather overdamped response of angle, but large variations 

might result in terminal voltage. The overdamped behaviour of angle 

suggests that the speed weight must be less than that of angle as it 

determines the rate that angle can change30'33'34'35. 

(c)  A performance index weighting speed, angle and voltage 

(voltage approximated with other state variables) will prove to 

satisfy the requirements105,38. 

(d) The control weighting matrix shows the strength of action 

which controller loops are given and this depends on the limits of 

the controller loops. Moya?s" equal degree of saturation criteria 

seem very helpful. In this criterion, control weightings are chosen 

so that the ratio of the free control to the saturated practical 

contre'_ of both loops is equal. 

In this study the R1  weightings are similar to those of 

Moya98, using the above guidelines. The weighting for speed was less 

than that on the states giving rise to voltage. The choice of R2  

was initially made the same as that Of Moya. Final adjustment of Ro  

was made on two considerations. Firstly, the values of it1/ R2  
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determine the effective gain which was sought in the control loops. 

' 

	

	Secondly, the relative values of the diagonal elements of R2  determine 

the relative action of each control loop. The diagonal matrices R1  

and R2  chosen in this study are given below: 

ER1J = diag [0.1, 0.01, 0.01, 0.01, 0.01, 0.01, 
0.01, 0.01, 0.01, 0.01, 0.01 

CR2] = ding r0.00001, 0.001j 

3.4 	SYSTEM PERFORMANCE WITH DIFFERENT CONTROLLER 

Linear optimal control was used for the design of system 

controllers. The linearised version of the system model was used for 

the controller design. The performance of the system with only 

conventional controllers after a three—phase short circuit of 80 ms 

at h.v. busbar is given in Figure 3.1. In this figure, the variations 

of rotor angle, terminal voltage, field voltage, mechanical torque, 

governor and AVR settings are shown. In this case as there is no 

supplementary signal AVR and governor settings are constant. 

Figure 3.2 also shows the performance of the system after the same 

disturbance when a full order model is used for the design of the 

optimal controller. The variations of rotor angle and terminal voltage 

are very much improved. The variation of field voltage in this case is 

of bang—bang form initially after the disturbance. Figures 3.3 and 3.4 

show load angle swing and terminal voltage with controllers designed on 

different system models (Chapter 2). Figure 3.3 shows that as the 

order of the model is simplified and the number of feedback states 

reduces, not only does the angle of the maximum swing increase towards 
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Figure 3.]: 	System performance following an 80 ms three—phase fault. 
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the value when no additional control is provided, but the damping of 

subsequent swings becomes poor. The performance of terminal voltage 

when an approximate (9th  order) model is used is very close to that 

of the full order model and it is not shown in Figure 3.4. The 

performance of "very simple" model (third order) was worse than that 

of crude model (fourth order) and it had marginal improvement over 

that of conventional controllers, and is not included here. It must 

be mentioned that all the above performance was obtained by the non-

linear simulation of the system using full order model. The integration 

routine used for solving the set of differential equations was fifth 

order Ku.tta—Merson, which is described in Appendix 3.3. This routine 

provides information which automatically adjusts the time step. 

3.5 	SYSTEM PERFORMANCE UNDER SMALL DISTURBANCES  

In the previous section the performance of the system after a 

three—phase fault for different controllers was discussed. Here the 

system performance under small disturbance is sought. The disturbance 

chosen is a l070 variation of system voltage (infinite busbar) for 80 ms. 

Figure 3.5 shows the performance of the system after such a disturbance 

when only conventional control loops function. This figure shows that 

the performance of the system is very oscillatory. Figure 3.6 shows 

the performance of the system when an 11th  order optimal controller 

(designed on the full order model) is used, This figure shows that 

the oscillations in terminal voltage and rotor swing are very well 

damped and the terminal voltage is.recovered very quickly. The 

controller gains are the same as used in the Previous section for 

large disturbance behaviour. 
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3.6 	VARIATION OF OPTIMAL CONTROLLER  GAIN WITH 
THE OPERATING CONDITION  

As mentioned earlier in this chapter, the design of the 

optimal controllers is based on linearised system models which are 

themselves functions of operating conditions (Chapter 2). Therefore 

the optimal controller gain matrix F will be a function of generator 

operating conditions. Here the variations of elements of F matrix 

for an 11th  order controller over the full range of power and reactive 

power is studied. In this case the matrix F is of dimension (2 x 11) 

and the variation of all the elements is given in Figures 3.7 and 3.8. 

These three—dimensional plots cover up to full rated power and 1:0.5 

(leading and lagging) reactive power. They were obtained by solving 

the Riccati equation at different points. As these plots show the 

variation of the gains in the normal operating conditions (P = 1 to 

P = 0.5 and Q = —0.5 to Q = 0 (lagging)) are mostly flat planes, and 

for other regions it looks as if a few values could represent the 

gain variation for the whole region. 

	

3.7 	DIRECT DIGITAL CONTROL 

The previous studies in this chapter assumed that the 

conventional- loops are still available and the extra control effort 

is obtained through the changes in reference values. Although the 

existence of these conventional loops makes the system more reliable, 

in future power systems they might be eliminated because of the extra 

cost they introduce. Here this possibility is looked at and the 

performance of the system without any conventional loop with direct 

control is given. The design of controller in this case is based on 
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system model which takes into account this elimination (Chapter 2). 

Figure 3.9 shows the performance of the system after the three—phase 
fault of 80 ms on the h.v. side of the transformer when the generator 

is directly controlled without any conventional loops. Figure 3.10 

compares the performance of the controlled system with and without 

conventional loops. The uncontrolled system performances are also 

given for comparison. These pictures show that conventional loops do 

not affect the transient behaviour of the system when these controllers 

are used; however, their improvement on transient stability can be 

observed when there is no other control action. 

3.8 	THE EFFECT OF FAULT DETECTION TIME ON SYSTEM PERFORMANCE 

If the control regime is initiated shortly after the 

occurrence of the fault, its performanceimay be spoilt. Figure 3.11 

shows maximum load angle plotted against detection time for 11 th  and 

7th  order controllers (Curve (a) and (b)). This figure shows that a 
large detection time for either scheme impairs the performance and 

for detection times of more than 200 ms none of the controllers can 

improve the transient stability limit of the system. For detection 

times of more than 80 ms both the controllers give a similar improve-

ment to the first swing. A detection time of one cycle hardly affects 

the performance of the controller based on the 11th  order model. A 

much longer detection time (about 100 ms) for the controller based 

on 7th  order model fails to affect it. This shows that the 11th  

order controller is more efficient during the initial period just 

after the fault. 
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3.9 	SUPPLEMENTARY SIGNAL SENSITIVITY TO DIFFERENT FEEDBACK STATES 

The supplementary signals which are added to AVR and 

governor settings are linear functions of states and the importance of 

these states can be obtained by their contribution. Figures 3.12 and 

3.13 show the supplementary signals for AVR. and governor with all 

their components, after a three—phase fault of 80 ms when the controller 

is based on the full order model. The results of these figures are 

summarised in Figure 3.14, which shows a rough idea of the importance 

of the states during transient period. As these figures show, the 

most important signal is speed. They also reveal that stator fluxes 

41, ~q are not important and might be neglected but the damper fluxes 

are quite important and cannot be eliminated. These results agree with 

the previous studies with different controllers and confirms that the 

approximate model neglecting stator transients is a good choice for 

controller design. 

3.10 	DESIGN OF  CONTROLLERS USING MEASURABLE OUTPUTS  

The controllers discussed in this chapter need the system 

states for feedback. It has been shown that an approximate model 9
th 

order) is sufficient for controller design. There are four 

unmeasurable states in this approximate model: field and damper 

fluxes and the load angle to the infinite busbar. Four other measurable 

outputs were chosen as: 6t, terminal load angle, if, field current, 

power and terminal voltage. These were related to the states by 

linearisation: 

Y = C.X 
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and the feedback control law is: 

U = F.X = F.0-1.Y 

The derivation of the C matrix is given in Appendix 3-4. Figure 3.15 

shows the performance of the system when this output controller is 

used after a three—phase fault of 80 ms. For comparison, the 

performance of the systems with other discussed controllers are also 

given. This figure shows that the performance of the system with this 

controller is very close to the best obtained by the feedback of 

unmeasurable states. It is possible to use Q, reactive power, instead 

of terminal voltage, but Q, P and Vt  cannot be used together as they 

are dependent and C is then not invertible. A simpler output controller 

is obtained by using a simple model system. In this case St,  the 

terminal angle, is used for 6, the load angle to the infinite busbar. 

The derivation of the C matrix for this case is similar to the previous 

one. Figure 3.16 shows the performance of the system with this 

controller after the same three—phase fault disturbance. For comparison, 

the performance of the system with the previous output controller is 

given. This figure shows that this simple output controller has a 

performance comparable with those feeding hack unavailable states 

when the controller is designed on the simple system model. Also it 

shows that the performance is inferior to the complete output 

controller, especially from the transient stability limit point of view. 

Some attempts were made to use some other variable. instead 

of M,1,,  mechanical torque, and v
f 
	A.  and v., the derivatives of Ap, 

valve position, and vF, exciter voltage, were chosen as the substitutes. 
J  

The C matrix was developed. The results show that when v.  is used as 
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an output, the performance is not different from the case when of  is 

directly fed back, but when Ap is used for NT, the performance is 

inferior to that when MT  is available. Theoretically there should 

not be any problem in using v. and Ap instead of of  and MT,  but the 

change in the system performance probably arises because for large . 

disturbances the variations of A and vE  are in bang-bang form going 

to their limits, and so their derivatives cannot reflect the behaviour 

of MT  and vf,  especially during the initial period after the 

disturbance, although it may work well for small disturbances. 

3.11 	CONCLUSION  

The studies in this chapter show that linear optimal controllers 

improve the system performance both under large and small disturbances. 

It is shown that in the design of controllers, the approximate (9
th  

order) system model is a very reasonable choice. 

The variation of optimal controller gains with operating point 

are given. A few values of regional gains would be necessary in some 

loops. Others are effectively constant in the generator operating region. 

Direct control of the system without the conventional loops 

was also considered. The conventional loops do not change the transient 

behaviour of the system, although the system might be thought more 

reliable with them. 

Output controllers, replacing unmeasurable states with other 

variables, were shown to have performance comparable to those using 

immeasurable states directly. 
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CHAPTER 4  

OTHER CONTROL ALGOItITIDIS 

	

4.1 	INTRODUCTION  

In this chapter other control algorithms are applied to the 

power system. Integral action eliminating the steady state offsets of 

some system parameters is introduced into the linear optimal controller 

derivation. Dual mode controllers which have two different control 

modes during transient and steady state condition are designed using a 

number of different methods. A non-linear controller is designed which 

uses powers of system states as well as linear combinations. This 

controller acts similarly to dual mode controllers. While linear 

terms are designed to ensure very good damping during steady state 

conditions, the non-linear terms take over during he transients to 

make the system recover very quickly. 

	

4.2 	INTEGRAL CONTROLLER 

In practical situations it is desirable to have some system 

parameters as constant as possible despite the changes which might 

occur in the system. In such conditions integral action may be 

introduced to restore sucL parameters to their pre-disturbed value. 

This is done by the introduction of a new state vector h, as: 

h. 	z - -z-d  = g(x,u) 
	

(4.1) 

where z is the vector of parameters which must be forced to retain 

their desired value z in the steady state. Equation (4.1) is added 

to the system state equation to develope a new state vector: 
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where, 

xl = f l (x,u1 ) (4 .2) 

x 
x1 = 	and fl _ 

h 
(4.3) 

Linear optimal control can be used to derive the controllers 

for the system equations (4.2). This non—linear equation is linearised 

about the operating conditions and by minimising the performance index: 

or, 

I — J'A XT Rl Ax1 + AuT RAu 

I =AxT Rl Ax + AhT 
R3 Ah + A T 

R2 Au 

The control law is: 

~u = F Axl = F1 Ax + F2 Ah 	(4.6) 

It is important that the number of "integral" variables h 

be equal to or less than the number of control variables. It is 

possible to choose any variable as an integral parameter but power, 

t 
voltage and angle are system variables which have been used 45. The use 

of these variables as the integral variables is justified when the 

conventional control loops are not present". Input variables51 can 

also be chosen as integrals, especially when the conventional loops 

are present. The control law obtained can be used in the presence of 

permanent changes in the 'msbar voltage, busbar frequency or line 

reactance, or at an operating point different from predisturbance one. 

In this work the performance of the system is considered 

with integral action on the input variables. A linearised simple 

system model (7 	order) was used. The introduction of integral action 
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increased the order of model to 9 and the controller obtained was a 
t 

linear function of the integral variables deviations Ah( 	Cjuldt and 

J

t 
Au2dt, the integral of the input deviations to the governor and AVR 

0 
settings), as well as the state variable deviations Ax as given in 

equation (4.6). The performance of this controller was simulated in 

a full order non—linear system model (11th order), the order of which 

increased to 13 due to the dynamics of the integral action. Figure 4.1 

shows the performance of the syste.a after a three—phase fault of 80 ms 

when one line is lost. This figure shows the variation of the rotor 

angle, terminal voltage, mechanical torque and field voltage for 3 

seconds. It shows that with this integral controller, the machine 

parameters move to the new operating condition without any steady state 

error. The weighting matrices CR1] and CR2]  are the same as those chosen 

without the integral action in the previous chapter. The studies 

shuwed that with this choice of ER1  ; and ER2] the  performance of the • 

integral controller is very sensitive to the choice of [R3J , the 

weightings of the integral variables. Figure 4.(2 shows the effect 

of the choice of Ell] on the performance of the system. This figure 

shows that the best results are obtained when DLI is chosen similar 

to ER2] , the input weighting matrix (curve (a)). Inferior results are 

obtained when ER3] is chosen with the same element ratio of ER 2] and 
comparable' element magnitudes (curve (b)). 

It should be mentioned that although the integral contrullers 

may obtain a desirable steady state condition, they impair the transient 

behaviour of the system and a compromise must he reached in the proper 

choice of weighting matrices. 
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System performance following an 80 ms three—phase 
fault with the loss of one line with integral 
controller. 



Figure 4.2: 	The effect of [It3J on load angle swing following an 
80 ms fault. 

a 	 [lt3] _ [R2] = diag(0.00001, 0.001) 
b 	 [Its] = diag(0.0001, 0.01) 
-- -- • [ltd] = d i a g (0.01, 0.01) 
	 No integral action 
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4,3 	DUAL MODE CONTROLLERS  

Dual mode control has been proposed for the control of 

systems
109,110. 

 These controllers have two distinct modes, one for the 

transient conditions when the deviations are large and the second one 

for the small deviations when good damping is required.' In this 

section a number of these controllers are designed using different 

methods which are described in the following subsections. 

4.3.1 	High and Low Gain Linear Controller  

In the design of linear controllers, the relative magnitude 

of the elements of ER11 and [11
2
] , the state and control weighting 

matrices, decides the type of controller. Small weighting elements in 

ER2] result in a high gain controller and vice versa. High gain 

controllers are efficient in increasing the transient stability limit 

but they tend to reduce the damping during steady state operation. This 

is less obvious when controllers are designed through higher order system 

models as they take into account more system modes of oscillation. 

Figure 4.3 shows the swing curves for a high gain controller, (a) 

obtained with small ER2] , that with low values of gain, (b) and (c) 

which has a high gain followed by a switch to low gain after 0.3 sec. 

The high gain controller gives bang—bang action, variables reaching 

ceiling values (also called saturation type controller"). The above 

controllers were designed on the simple system model (7th  order) and 

the disturbance was the same, a three—phase fault of 80 ms at the 

transformer h.v. terminals. Similar results are obtained when the 

measurable output controller based on approximate system model (9th  

order) is used (the controller was derived in Chapter 3). The results 

are shown - in Figure 4.4. 
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4.3.2 	Bang-Bang Scheme and Linear Controller 

The results show that an efficient controller is initially 

of bang-bang form after the occurrence of the transients. Low order 

controllers which provide good damping for the system do not fulfill 

this requirement, therefore the improvement they give to transient 

stability limit is marginal. This can be overcome by using a bang- 

, bang switching-type controller, just after the occurrence of the 

fault and by switching to a linear controller with good damping after 

a period. Curve (a) in Figure 4.5 shows the rotor angle swing when a 

bang-bang controller is used initially and is followed by a simple 

(7th  order) linear optimal controller. The bang-bang controller has 

only one switching time of 100 ms, in other words, it takes the 

governor setting to the minimum limit and AVIL setting to the maximum 

limit for 100 ms. Curve (b) is similar to curve (a) except that the 

bang--bang controller contains two switchings, the second switching 

lasting for 50 ms. Curve (c) shows the performance of the system with 

a simple (7
th 
 order) linear controller. This figure shows that the use 

of a bang-bang controller reduces the first swing but that any increase 

in the number of switchings above 1 only improves the performance 

marginally when the bang-bang action is followed by a linear controller. 

Curve (a) in Figure 4.6 shows the rotor angle variation when the 

measurable output controller is used. The controller is obtained 

through very simple system model 
3rd 

 order) and requires the feedback 

of P, Vt, bt, power, terminal voltage and terminal angle. Curve (b) 

shows the performance when the above controller is followed by a 

bang-bang controller of one switching with 100 ms duration. The system 

performance with the conventional controllers only is also given in 
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Figure 4.6: 	Load angle swing following an 80 ms three—phase fault. 
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curve (c) for comparison. This figure shows that the initial bang—

bang strategy is very effective in increasing the transient stability 

limit. 

4.3.3 	Dual Mode Controller Design using the 'Second  
Method of Lyapunov'  

The 'Second Method of Lyapunov' (S.M.L.) has been well 

described in literature
111. 

 Below, the results of S.M.L. theorems are 

explained briefly. 

The equilibrium state X = 0 of a continuous—time, free 

stationary dynamic system 

is asymptotically stable if and only if, given any symmetric positive 

definite matrix R1,  there exists a symmetric positive definite matrix P 

which is unique solution of the matrix equation 

PA + ATP = —R1 
	 (4.8) 

and 

(4.9) 

is a Lyapunov function for (4.7). 

• There is another theorem in the second method of Lyapunov 

which states that a continuous—time autonomous dynamical system, with 

AZ= 11(A ) with h(0) = 0 (4.10 

is asymptotically stable when a scalar function V(Ax) exists with 
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continuous first partial derivative with respect toAx such that: 

(i) V(A x) > 0 for all Ax 0 and V(0) = 0 

(ii) V. x) < 0 for all Ax ; 0 
(iii) V(Ax) ---co with Ax ---oo. 

Using the above, feedback controllers can be designed which 

guarantee the asymptotic stability of the controlled system. It is 

shown111 that for the system 

Ax. = AAx + BAu 	 (4.11) 

where the control variables Au are subject to the constraint: 

ai (Aui 	O. (i = 1,2,..., m: G \0, pi> 0) 	(4.12) 

with the Lyapunov function (4.9), the controller is as below: 

~i 	if 0T AAx] i > 0 

u. = — 0 	if [BT A AX 	= o 

if [BT A Lax 1 i < 0 

i = 1,...,m 

ai 
(4.13) 

In practice, the controller of the form (4.175) presents certain 

difficulties, and it has been suggested111 that a saturation—type 

controller, as given below, be used: 

Ri 

	

if 	k i EBT p AL‘ 

	

ui = — Ici [BT pAx ] if 	a <Ici EBT P 	<pi (4.14) 

ai 	if 	Ic i LBr p Ax , ̀  ai 
i. = 1,2,...,m 

where ki> 0 is an arbitrary constant. Cleaily the controller given 

by (4.14) approximates to the controller (4.13) as ki becomes large. 
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For the application of this method to controller design for 

a power system, the non—linear system must be linearised around an 

operating condition. Equation (4.8), which is called the Lyapunov 

equation, was solved using the same techniques used for the solution 

of Riccati equation (Chapter 3). The choice of R1 , the weighting 

matrix, is similar to the one used in Chapter 2 for the linear optimal 

controller. By varying ki  different system performance is obtained. 

Different models were used for the design of controllers. The results 

obtained are very similar to those obtained by linear optimal control. 

By proper choice of ki, the controller can be either a high gain or low 

gain controller. The interesting point here, of course, is that ki  

does not enter into the Lyapunov equation (4.8) and therefore the 

solution pg is independent of lc.. In other words, equation (4.8) is 

solved only once and different controllers are obtained as given by 

equation'(4.14). A dual mode controller was considered similar to 

that in (4.2.1, a high gain controller initially being followed by a 

low gain controller after a short period. It is remarkable that in the 

application of the method, two sets of gains are not required, each set 

of gains associated with one controller loop being related by a factor 

of k1ik2  where k1  and k2  are coefficients chosen to give the high and 

low gain controller. In this way only one set of gains with two 

coefficients relating the gains for the high and low gain controller 

for AVR, and governor loops are required to be stored. Figure 4.7 

shows the variation of rotor angle for the same three—phase fault 

disturbance as before for different controllers d,,,igned on the simple 

system model. Curve (a) is the system performance when the Lyapunov 

method is used for the controller design. The controller is dual 

mode using a high gain controller initially and switching to a low 



Figure 4.7: 	Load angle following an 80 ms fault. 
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gain controller after 0.3 s. Curve (b) shows the performance of the 

system when a dual mode controller using two linear optimal controllers 

as explained in Section 4.3.1 is used. The performance of the system 

with a linear optimal controller (Chapter 3) is also shown (curve (c)) 

for comparison. This figure shows that the dual mode controllers 

obtained by the Lyapunov technique are as efficient as those of linear 

optimal control except that it does not need two different sets of 

gains and one set is related to the other with two coefficients 

associated with the AVR and governor loops. In the above Lyapunov dual 

mode controller, the controller coefficients ki  (i = 1,2) were changed 

after 0.3 s to change the mode of the controller. It would he possible 

to make these factors change continuously and make them a function of 

state deviations. 

NON-LINEAR CONTROLLER DESIGN  

With the dual mode controllers in mind, here a single controller 

is developed which provides the system with good damping for small 

disturbances and during large disturbances has a high loop gain, with a 

fast recovery action for the system. A non-linear controller is 

suggested which has the same advantages as those obtained with the dual 

mode controllers in that the control signal has two components, the 

linear part which provides high damping for small disturbances and the 

non-linear component which contains high order states, and dominates 

the performance during large disturbances and has negligible action during 

small disturbances. The desi n of controller 	
113 g 	 given below is 

very simple and similar to that of linear optimal control, only a set 

of algebraic equations has to be solved. Finally this non-linear 
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transformation is used to define and develcpe 

X .-1 and A 
CPS 

for X(n) and matrix A (n x n) which is useful for 

obtaining the required solution. X[131 is defined as a vector with the 
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controller guarantees closed—loop asymptotic stability and it has 

the form of an explicit expression. 

4.4.1 	Design of Controller  

The problem is to design an asymptotically stable non—linear 

feedback control law for a linear plant, 

X•= AX + BU 

Y = CX 

of the form 

U(X) = —FX + UNL(X) 

(4.15) 

(4.16) 

0.17)' 

wnere tTNL(•) is a non—linear homogeneous function. The gain F is 

chosen via the solution of a non—linear quadratic regulator problem, 

discussed in the previous chapter, so that the linear system 

X' _ (A — BF)/1 (4.13) 

is asymptotically stable. Since the UNL( ) is non—linear and homogeneous. 

U(X) _ —FX for small X, and hence —FX will dominate the system response 

for small disturbance. 

dimension: 

,~,n 	(n+p-1) — (n7-1)Ypt  
1 p 	p 	 (n-1) (4.19) 

with elements of the form: 
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(  n pi 
CC 1 	li=1 Xi 

where pi are non-negative integers such that 

(4.20) 

n 

>—"p= p 
i=1 

 

(4.21) 

   

a = )(pPP1) 	(p—p1 1  	
pn 

(4.22) 

and thus the power pth transformation of X' = AX is, 

a t 

 

(x51) = A[p] x~'1 (4.23) 

It is shown
112 

that the 
Jth 

component of non—linear controller is in 

the form below: 

m 

U (X) — — I B 	(~X1J~)p X~J1 
NL 	 = 	 7X 	J 

J=2 

(4.24) 

where the matrix PJ is obtained by the'solution of the Lyapunov 

equation:' 

where 

A[J1 PJ PJ t1[JJ = — QJ J = 2,3,...,m (4.25) 

A = A — BF 	 (4.26) 

To summarise the method, for the design of Jth component of non—linear 

controller. terns 
UN%, the following steps must be ta'.(-n: 

1. 	X[J1 and 71r— —r must be developed using Brocket9 s transform- 

ation from A, given above (4.26). 
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2. EPJl is calculated by the solution of Lyapunov matrix 

equation (4.25). 

3. Jth  non-linear component is obtained from (4.24). This 

1 
equation requires the calculation of the matrix: [ 33x 

4.4.2 	Application of Non-Linear Controller to Power System 

For the purposes of this non-linear controller design, a 

simple system model has been used. The non-linear equation x.  = f(x,u) 

is linearised about a prefault operating condition giving, 

• 
X.  = AX + Bu 
	 (4.27) 

where 	X = Ax 
(4.28) 

and 	U  

Linear optimal theory is applied to this system and, as described in 

the previous chapter, the control signal Au is obtained as a linear 

function of states: 

U = F x 	 (4.29) 

The linear controller designed is a low gain controller suitable for 

small changes from the operating condition. Substituting the control 

law (4.29) in (4.28) results in: 

X°  _ (A-BF)X 	 (4.30) 

or 

X.  = X x 	 (2.31) 

where 	A = A - BF 	 (4.32) 
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In~ this study only the non-linear components with J = 2 are considered. 

XL-(2] which is the second power vector X transformation is developed 

using equations (4.19) to (4.22). The dimension of vector X-21 is (27). 

The system state variable vector X and the second order non-linear 

state variable X[2] developed are shown in Table 4.1. The transformed 

non-linear state equation (4.23) for this case is given below: 

X[-2] = Ar-2] X~-2~ (4.33) 

Au] is developed from A, the optimally controlled linearised system 

matrix given in equation (4.32). Table 4.2 shows the AD] (28,28) 

matrix developed on the A elements (a11'a12'
...)• As it is quite 

time-consuming to develop. this matrix by hand, a simple computer 

algorithm was developed to build this matrix from the data of A on the 

basis of the relation between the derivatives of the non-linear state 

r 
variables X~-2] and system state variable X as given below: 

P C X(I).X(J)J = X.(I)X(J) + X(I).X'(J) 

= )
n 	

\
n  

A(I,K).X(K).X(J) + ) A(I,K).X(K).X(J) 

k=1 	k=1 	(4.34) 

The matrix AE] developed is used in the Lyapunov equation, 

~j~ 
~{2] 

A[2] 
+ A[2~ P[2 J _ -Rl (4.35) 

This equation is solved using diagonalisation technique (Appendix 3-2) 

r-n 
to give 11-`- (28,28). The weighting matrix R(28,28) is chosen as a 

diagonal matrix with first element 0.1 and the rest as 0.01. Finally, 

for the nor-linear controller given in equation (4.25), the Jacobian 

matrix 312] j1X is required.. This matrix, which is a function of 

current system states, is. shown in Table 4.3. 



X1-  

L~ X1X2 
07 X1x3 

— x1X11 

v2 x1X5 
2 
x1x6 
X,X7 

x22 

2 X2X3 

1/2 x2x4 
0 x2x5 

X2X6 

x2x7 ,,  
X„- 

V2 X3X4 

x3x5 
` ~2 X 5x6 
V 22X3X7 

xl f 
X4X5 

tir X4X6 
y X ~ 1~X7 

~
X 
''  X5X6 

2X5x7 
x6 
07

,,X6X7 

(a) 	 (b) 

Table 4.1  

(a) 	EX] linear system state variable. 

lb) 	X-2~ second order non—linear state variatle, 
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X = 

xi 
x9 

x3 
X4 

x5 

x6 

 

Ab 

As. 

0 lf 

AvE 

AV  

LAp 

MT 

 

X7_ 

  



1 1 3 ti 5 6 1 B 9 10 $1 /2 13 /'/ /S 16 /7 /8 /9 20 21 22 23 24 25 26 27 2e 

151 hiral ro j raly ra irz '̀ran 	I 	I 	1 	i 	I  1

an+ 	I 2 	a a n 	a a ra a l a n a a I 	 j, au IS Ln 13 u : L7 	1a 1.3. 1 F 15 16, 17 	 1 	I 	I 

alli: 
3 "'SI --1 i a33 -34 als GS6 ' 77 	a12 	i -... ~ Irp13 A14 a4S• au? 011) 	

Ī 	
j 	-- 	f 	I -- 

	

t1 	

1 

4 r 1; a4 . a43 71~± 4i la44 a47 	' 412 	1 	' a13; 	l 	f 	. rali ° tS A16 A17 	

..I 	I 

5 r Sr a5X S3y 
au a 

° 	 1 a/1 	 i 	a/J ; 	I l 	a 4 ir0„,5 0,6 a7 
I 	alit' 	 1 	n 	I 	I 	 I 	l a 	411.5 

	~r p ra G Q 

	

s! Al 631 G•V 65 , a64 aL7. 	1-...'ar• 	...-- I---- --..:.- T=• -- ~ --• ---1~ k41 -- 	- 	' 	 •-- 	~+ c1/71  
7 ra 	}. a :4 	q I P āll1_ 	 qr 2 1 	I 	 ar$~

_ 	
i 	

lary f_..
arf' 	arc ra7 

,1 7. r3 7ti 7~. I6 rs 
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I 	 I 	1 	
L

a. Q 'a 4 	r a 	Q a14  'a 	' 	! 

r ~1 432 a33 a34 a;5 434 37 	a1i. 	I ra
l; A lk a'1+ au. a .1 

r a a a an+ a la a 	i ---.a
_a13, 	1 	ira, a13 °u 

--41 	
42 43 ,' a,1y 	45 	tir'' 67 .._ ,_.._ 	12 	.  -- 
 

i - 	---i 	 , 

	

aint, 	 a I 	rO Q 	a ' ra i -)̂  a.3; 59 a55' S6 , G 7 . 	 ... 	- 	- 	 i --= ---~-- - Iy -- -- 	IS r6 is 	F_ 

 p

l 	
1 	la 

r3 I 

~ G 'a++a a~ a 	I ai2 l I I arc 

 

__1__ 	a44 	 rOIra'4 I 61 63 1 G1 65' a 	 ~        
a 0 . a a 	4 . a °1~r 	 r fi,= 	I 	

! 	
1 	• a, 	I 	a,,,. 	.a,s I 	.Q,6 ra, 

7/ 7-
y 

73: 7y _75;__T6 77 

	

ra ! 	 la ~ ra ra ra ra ra 7 ; 	 1 
I - 	 *Z3 Al 	3 	~ 	. : .. I . .: 

a 'a t 	_ - I — '~ -- 'ra alz'a a a a ;ra a :a a a 	-- 
?,; i: , 	 .32°J3 34 J5 36 37 u 24 aS A6 a7 ' 	 - s a. ,. 

	

atil l 	iil _ _ 	r 41 43 rx 44 a45 66Q 7, i ū' I 	I 	r y4is ii 67 

51~-- 	a21~ _ 
	

rs: a J A
J9 ass sc 	1 ja21, 	1

. 	
a11  • 	r g a24 all 

j 	- 

	

, a ( 	ia 	ra a6 a a axf a 	I I 	w 	I 	a 	aas 	ra 

	

6l 	2 t 	62 ~3 v'/ 65 ace G7 	 21 	 29 	27 

	

i 	 au 	 a 	I a 	;a sj 1a ra 
	°71 	 21 Vo.  	

a76 Q75 76 r4r 	 ; 23, 	I 	24; 	2 	26 ray 
''ra 

	 I 	,ra 	1 za ra , ra 
	~- 

I. 
I 

	

I 	1 	I 	' 	! 32 	I 	 33 3v JS r Jc r J3, ā 	I 	 ....... 
a 	i 	 °33~a. 'a 	a 	ra A 	a 	a' 	1. _ 

1. 

	

yl a71 ' 	i 	42 32 ~ 	. 63°4V ~S, iG 47 . Ji JS .76 37. T.. 	 a 	 Gu t a ' O 	a 	i 	R 	a ,rw {- 	- .. 
CIS/ 	J1 	I 	52 	Q 2 	r 5iasi °ss 56 57i 	3r 	i 	, 35 .76 371  : 	--  

a3Jt O 	0 	 a 	 p 
____T  

i  - Ac1 	I J1 	i 	Ia62 	a32 	r 63 61 065RG‘ 67 	3-4 	ss 	r āb 37 
• -1 	1 	• 	' 	•. 	, - • 	I 	 a t 

q7 	' a I 	a I 	A ra a A a 	 qJ9 	Q95 	Ji { 	/ i 	 3~ 	72 	■ 	32 73 7f 73 7'a a7r 	 I 	r 47 
.ra. 

— I 
	I 	I 	ra 	Ī 	 'ra 	I 	;a ra is ra 	i 	

ttt
, 

--- f -
'1---.t'' 

  ; .41 	1 	 ' 	, 42 	---- - ,. 	 4 95 tis yr 	1 	1 

 Tt
— 	a IQ 	j- 	a a 	ra °,i 6155 a a Q„;  o 

5/ 	— — ! 	52' 4'2 	$3 'r3 	S4Q~ 	S7 4s 	 +r 
I 

	

I 	

061 
-- 	i 	 062, 	

af21 .._ 
	

A63 	aril 	r 0611065_". 

	

y 6i acb' a6r 	a S 	I Ys: v71 
ra t 	i 	a7, 	.l 	 7Z 	 73 	Y3~ r7~ 7S 76 arr: 	 tis 	~6 1 71 

1--- - 	 II t I ra I 	ir 	 a 
■ I 	1 	Sr 	 i2 	i 	; r 53. 	S'4 • 	; 	55 qr5 rQ 7 

	

I 	
... 

4 o 	
- a 	a 	, 	a 	a 	0,_,„ I a 	ra 	- J- a to a.{ 

GI. Sr 	 62 S2 	 63 53 	 SN 	65acc G7 56 37 
— ` I- 	

71 I • 	I 
071 	 73 	1 5~r, 75 76 a7y 	: 56 54 

' 	i ril 	I 	t 	ra 2 	 { 	! ra , 	
— 	r4 ' 	' rās 	3y6~r67 

a 

—} 	T.—...~ 
C? 4 	j 	

q a67 	F A 	'a a • 	
.° 	ra s.c . ro 

	

. 7/ 61 ; 	 { 	72 62 	 73 63 
I
i Y 	1 7_•v Fr/' 	1 7S ; 65. 76°7•r.. 67 ?— 

I--- 	
- - I 	rG 	t—' 	ra 	t 	I' 	

rv~i 	i 	~rp ..( 
	

a I 	ra ..ia 
 74. • 

Ir=' • 

Table 4.2  



1 2 3 4 5 6 7 B 9 10 11 1213 141516 17 1819 2021 22 23 24 2526 27 28 

a Z,Ir221 r2,3 rxii  r x5  rz4;  rx7 i 	I 	I 	H 	1 	1 	
I 	11 	I 	I 

I 	I 

I-, 	. 	i   

	

-ii 	1  
—1-- i i l tr 

	

! 	az. rx3  rz • rx rz rz7 	i 	i 	I 
I 	' 

lx • ri... rz. •rz ■x_,  [ 	!r2/1', 	 i 	I 	r2z 	1 	I 	 1 

	

1-• I- 	 3., 1  .7: o: 7 	; 	 1 

1  rjr it? 	! !rx 

	

, 	x 	/ I 	
. 	i 	• 	1 	,• 	

1 'ry..3,  	! 	AK, r5 i raf6.rx„. 
	I 

	t
1 	1 	1„rzi 	1 	! 	1 	; Z 	i 	 irz.3 1 	i 	

,r X:  ■ , 	. 

	

. 	i 	i 	i 	i 	I 	I 	if Z 	
_ 

1 
• 1' 	

1 	, - 	• .r.....".......,.........._ _ 	....._............ 7  ......... _ 
1,,r2,, 	rx 6 	

, 

	

, 	i 	'rz : 	! 
. ,-- • -r-  . --i- , . 	. 

	

...- 	 • 	5.i.  
3i 

r Zxl 	I 	i 	fZ.3 	• i 	rzi' i 	
r  xi 	ir.i.2x7  

Table 4,3: 
ax[2] 

The Jacobian matrix ' 
ax 

  

1 

2 

t2] 3 

; 



102. 

Figure 4.8 shows the performance of the system when this 

controller is used. The disturbance is a three-phase fault of 80 ms 

duration at the transformer h.v. terminals. In this figure, variations 

of rotor angle, terminal voltage, field voltage, mechanical torque, 

AVR setting and governor setting are shown. Figure 4.9 compares the 

variation of rotor angle of the above non-linear controller with that 

of the linear controller alone. This figure shows that the non-linear 

controller has decreased the first swing while the system damping is 

as good as that of the linear optimal controller. By changing the 

matrix R in equation (4.35), the non-linear component of the controller 

varies and so does the performance of the system. A good guideline for 

the choice of ER] matrix is the consideration of ER: as the weightings 
of non-linear state variables and as the non-linear state variables 

are functions of linear state variables, the elements of LRI can be 
obtained from the choice of weightings for linear optimal control; 

for example, R(2,2) can be considered as the weighting for non-linear 

state variable X,.X2  so: 
1. 

R(2,2) 	R(X1X2) 	R1(X1).R2(X2) 
	

( 4F.36) 

In this study the non-linear state variables used were of order 2 but 

when the form of control is taken into account (equation (4.24)), it 

will be seen that the quantities actually fed in are of third order. 

Theoretically variables of greater order could be used, the order of 

variables fed in being equal to that of the state variables chosen (J) 

and that of the Jacobian 0-1). Thus the order of variables fed in 

goes up almost as J`" and there is little incentive to go to values 

higher than J = 2. 
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Figure 4.9: 	Load angle swing following an 80 ms fault. 
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The method can be extended to the case where output feedback 

is used. The other line of investigation is of course the derivation 

of the sensitivity of the controller to each element and the 

simplification of the controller on the base of the sensitivity study. 

lf. 5 CONCLUSION  

In this chapter some other control algorithms were developed. 

The introduction of integral action on some system parameters seems to 

be very useful. In the cases where the analogue controllers exist, it 

would be more appropriate to leave integral action on supplementary 

signals provided for stabilization through AVR, and governor settings. 

Dual mode controllers are quite effective, especially when 

controllers are designed on simple system models. Three different dual 

mode control algorithms are proposed:. 

(i) The use of two linear optimal controllers with high and low 

gains in succession with 0.3 s switching time. 

(ii) The use of a bang—bang controller followed by a linear 

controller. It was shown that the bang—bang controller would only 

require one switching of 100 ms duration. 

(iii) The use of Lyapunovts second method for the design of high 

and low gain controllers. The sets of gains obtained for high and 

low gains are 	dependent and are related with uniform factors, 

which makes the controller attractive. 
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A non—linear controller is developed in this chapter which 

feeds back higher order terms of system states as well as linear terms. 

The design of controller is similar to that of the linear optimal 

controller and requires the solution of a matrix equation. Further 

study would show which element variables provide effective feedback and 

if the remainder were removed, the controller could be simplified. 
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CHAPTER 5 

DYNAMIC ESTIMATOR DESIGN FOR A POWER SYSTEM 

5.1 	INTRODUCTION  

As was shown in previous chapters, modern control theory 

is directly applicable to the control of power systems during transient 

conditions through the AVR and governor systems. Output controllers  

using measurable variables as feedback, although very efficient, 

introduce noise and the cost of measuring devices and instrumentation 

is not negligible. With the recent progress in state estimation 115-117 

it seems possible to estimate the states of the system on—line from 

very few measurements. Usually all such studies assume the same simple 

model for the system and the dynamic estimator and also neglect the 

effect of measurement noise. The application of observer theory
122  

to power systems
120,121 

and its use for the control of generators 

through excitation system
120,121,123,121

seemed to be promising, but 

the simple linear models used for the observer have made only marginal 

inprovements. Measurement noise was neglected in these studies. 

Here, a full study of the application of dynamic estimators 

of several orders, for the control of the system during transients is 

undertaken, their efficiency in filtering, estimation and control 

being compared. Although the optimal gain of the estimator is obtained 

through linearisation, its structure remains non—linear. Speed 

deviation has been used as the only system measurement, but guidelines 

are given for the use of any other system parameter or parameters 

instead. In all the studies measurement noise is considered. 
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5.2 	TI1E TIIEORY OF ESTPIATION  

The control of generators with the feedback of multi-variable 

signals supposing that they are measurable, has the problem of noise, 

the accuracy of the measuring devices and the cost of these measuring 

devices. Here the state vector, or an approximation to it, is obtained 

from very few observed variables
107,118. This may be expressed formally 

as finding a functional H, 

R(t) = II [y(-c), to  <Z < tJ 	to  I t (5.1) 

where: 
	

to  = the initial time of observation, 

Y 	= observed variable, 	 (5.2) 

X(t)= reconstructed state, 

such that X(t) = X(t). Note that H [y(t), t o -t <t] , the 
reconstructed X(t) is a function of the past observations y(t), 

to , Z 4 t. Once the states are reconstructed, they may be used as 

multi-variable control inputs. It is shown107  that for the n-dimensional 

system 

x•(t) = A(t) x(t) + B(t) U(t) 

Y(t) 	= C(t) x(t) 	 (5.3) 

where the dimensionsof U and Y are m and p, the dynamic of the 

obser —r is: 

K' (t) - A(t). (t) + B(t).u(t ) + K(t) [ (t )-c(t)X (t)] 	(s.4) 

where K(t) is in general an arbitrary time-varying matrix. 

Equation (5.4) can also be expressed as: 

K' (t) = [A(t)-K(t)C(t)J X(t)+II(t)U(t)+K(t)Y(t) (5.5) 
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Here the dimension of the estimator is assumed to be that of the 

system, n and the use of lower order estimators is discussed later. 

The dynamics of estimator behaviour are governed by K(t). Under 

conditions of system observability, it is possible to choose K(t) so 

that the poles of the observer are assigned arbitrarily in the complex 

plane, ensuring.that the observer is asymptotically stable. Also, as 

with optimal control, it is possible to choose K(t) optimally so that 

a performance index is minimised. Using the latter approach, the 

general case is considered where there is excitation and observation 

noise. The system equations are: 

x• (t) = A(t)X(t) + B(t)u(t) + W1(t) 

Y(t) 	= c(t)x(t) + (1)0(t) 
(5.4) 

where, CO1(t) is termed the state excitation noise and U02(t) is the 

observation or measurement noise. It is assumed that the joint 

process Col. C UJi(t), w2(t)] can be described as white noise with 

intensity: _ 

     

E 
Cw1T(t) , w2T(t)] 

 

v11(t) 	
v12(t) 

v12
(t) 	v22(t) 	t~ to 

(5.5) 

   

    

    

Furthermore, the initial state x(to) is uncorrelated with U)1 and uj2. 

E[x(to)] = xo 	 (5.6) 

E [X(to)-70] CX(to)—,70] T = Q (5.7) 

Considering the observer 

)1° (t) = A(t)x(t)+B(t)U(t)+K(t) [Y(t)-.c(t)x(t)] 	(5.8) 

The problem of finding the matrix functions K(T), to < Z 	t, and 

the initial condition y(t 
o~
) so as to minimise X( to) 
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E [eT(t) 	e(t)1 	 (5.9) 

where the reconstruction error is 

e(t) = X(t) — X(t) 
	

(5.10) 

and where W(t) is a positive definite symmetric weighting matrix, 

termed the "Optimal Observer Problem". If all signals. observed contain 

white noise, i.e. v22(t)).0  ,t ~, to, the problem of devising an optimal 

observer is non—singular. The non—singular optimal observer problem 

where it is assumed that the state excitation noise and the observation 

are uncorrelated (v12 = 0) was first solved by Kalman and Buoy118. The 

solution is obtained by choosing for the gain matrix: 

K(t) = Q(t) cT(t) v~2(t) 	t > to 	(5.11) 

where Q(t) is the solution of the matrix—ILiecati equation, 

Q(t) = A(t)Q(t) + Q(t)AT(t)—vll(t)—Q(t)CT(t)v (t)C(t)Q(t) 

> t 	(5.12) 

and the initial condition 

Q(to) = Q0 (5.13) 

In the original derivation of Kalman and Bucy118 it is proved that 

this filter is the minimum mean square linear estimator, that is, it 

is impassible to find another linear functional of the observation 

Y(t) and input U(T), to T . t, that produces an estimate of state 

X(t) with a smaller mean square reconstruction error. It can also be 

proved119 that if the initial state X(to) is Gaussian, and state 

excitation noise process W1, and the observation noise 000 are 

Gaussian white noise processes, the Kalman—Bucy filter produces an 

estimate X(t) that has minimal  mean square reconstruction error among 



all estimates that can be obtained by processing the data Y(- ) and 

U(T), to  < Z < t. 

The optimal observer provides a compromise between the speed 

of state reconstruction and immunity to observation noise. The balance 

between these two is determined by the magnitude of the white noise 

intensities v11  and v22. The balance may be explored by setting v11 

- constant and putting v22  = 1)M,  where M is a constant positive definite 

matrix and pis a scalar. Increasing p improves the speed of 

reconstruction since lesa effort is required to filter out observation 

noise. 

In a way similar to the regulator problem when the A and C 

matrices are time—invariant, the steady state solution of Q is the non—

negative solution of the algebraic observer Iliccati equation: 

AR + QAT  + v11 — QCTv22CQ  = C 	 (5.114) 

Corresponding to this Q the steady state optimal observer gain matrix 

is: 

K = QCT v22 (5.15)  

Finally the structure of the system and the estimator when the 

estimated signals are used for the control, is given in Figure 5.1. 

The structure of Figure 5.1 can be 	by substitution of the 

control law: 

Uoptimal = —F(t).X(t) 

The simplified structure is shown in Figure 5.2. 
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Figure 5.1: 	Linear system,controller and estimator. 
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Figure 5.2: 	Condensed structure of Figure 5.1. 
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5.3 	POWER SYSTEM DYNAMIC ESTIMATOR DESIGN 

Considering the basic system shown in Figure 2.1 of a generator 

connected to an infinite busbar, the dynamics of which can be written: 

x•  _ f(x,u) = Ax + Bu +f- 	(5.16) 	. 
y = cx 

where ('contains all the non—linear terms. Remembering that the observer 

for a linear system, 

X' = AX + BU, 	Y = CX 	 (5.17) 

is: 

K. = AX + BU + K(Y—CX) 	 (5.18) 

The observer for the basic system of equation (5.16) would be of the form: 

x" = AX + Bu + r + K(y — Cx) 	 (5.19) 

To obtain the gain K, the system equation (5.16) is linearised about an 

operating condition, giving: 

Ax' = A9 Lx + B'Lu 

Ay = CV AX 
(5.20) 

By using At., B', C', K is obtained from equations (5.14) and (5.15). 

Although the estimator gain has been obtained through linearisation, 

the dynamic estimator itself (equation (5.19)) is not linear and the 

only extra linear item is the forcing term, K(y—Cx). The structure 

of the plant, and The estimator when the estimated signals are used 

for the control, is ti-7en in Figure 5.3. 
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Figure 5.3  
The structure of the plant and the 

dynamic estimator. 
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5.4 	SYSTEM OBSERVABILITY 

In the previous sections the problem of reconstructing the 

behaviour of the state of the system from incomplete and possibly 

inaccurate observations has been considered. It is important to know 

whether or not a given system has the property that it is at all 

possible to determine from the behaviour of the output what the behaviour 

of the states is. This condition is called system observability. It is 

shown below that if a linear system is observable all the estimator 

poles can be arbitrarily located in the complex plane by choosing K 

suitably, in other words, the observability condition ensures the 

asymptotical stability of the estimator. Even if the system is not 

completely observable, it is possible to have an asymptotically stable 

observer which does not observe some system modes if the system is 

detectable, in other words, the unobserved modes stay in their stable 

subspace 

In a manner similar to that used to study controllability, it 

is possible to show that the system is completely obser':able only if 

the rank of the matrix, 

rC 

CA 

CÀ
o 

Q = 

equals n. 

Alternatively, another method is through eigen—value and 

eigen—vector analysis, which was described in the assessment of system 
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controllability in Chapter 3. It was shown that the system output can 

be expressed as: 

Cn 	T  t̀ x i 
Y(t) = > (CASi) (Vi B) J  e 	U(t)dt 

1=1 	0  

where M. is the eigen—vector corresponding to the ith  eigen-value. 

This equation illustrates that the output Y(t) can be expressed as a 

superposition of the n modes. In this equation, the p elements in the 

CM. reflect the extent to which the 
.

mode appears in the p outputs. 

A different interpretation is possible by representing Y(t) in the 

form below: 

• 
T 

Y(t) = 
it  

(C141' CM2"." 	
(t—Z) V1TB  U(I)di 

0 	 V B 
n  

Each row of the matrix (CM) corresponds to an output. Moreover, the 

relative magnitude of the n elements in a given row reflects the 

relative extent to which this output "sees" the n modes of the system. 

Thus the relative observability of the modes at a given output can be 

determined readily. 

Following the latter method, the full order linearised model 

of the basis system (Figure 2.1) was used. The matrix M(11 x 11) was 

developed and is shown in Table 5.1 with the corresponding eigen—values 

in Table 5.2. As described, each row of the matrix 	(Table 5.1) 

corresponds to an output. Although in this study speed is the state of 

interest, the observability of all the other states was looked at, for 

comparison. First of all the second row of this matrix corresponds to 

speed measurement. The relative magnitude of the elements of this row 

reflects the relative extent to which speed sees the 11 modes of the 
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system. As there is no zero element in this row, the observability 

of the system with this signal is ensured. Furthermore, it is 

noticeable that the first and second elements of this row corresponding 

to the very fast modes of the system (-12.46 ± j314.05) have much less 

relative magnitudes, which confirms that the stator transient modes 

are less observable than the other system modes. 

It is interesting to notice that this table gives the modal 

observability of each state. It could also be used to derive the 

modal observability of other output signals, like power and voltage, 

by relating them to the states of the system in the linearised version. 

5.5 	A FULL ORDER POWER SYSTFN DYNAMIC ESTIMATOR 

A full order dynamic estimator for the system was designed of 

order equal to that of real system 11. The only observed signal y was 

speed deviation. The estimator gain matrix in this case is an 11
th  

order vector and was obtained by the solution of the estimator Riccati 

equation (5.14) with the techniques explained in Appendix 3-2. 

Initially the matrices vll  (11 x 11) and vL2  (1 x 1) were chosen as 

unity matrices and the effect of their variations on the estimator 

performance is discussed later. Figure 5.4  shows the performance of the 

system plus the estimator after a three—phase_ fault of 80 ins at the h,v. 

terminals of the transformer when it is controlled with the conventional 

loops. Figure 5.5 shows the performance of the system after the same 

disturbance when the estimated signals are fed hack (Figure 5.3) through 

the optimal gains obtained for direct state feedback of the system. 

These figures show that the estimated values of states are very close to 
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real values. Figure 5.5 also shows that the performance of the system 

with the estimator is as good as that with direct (but unobtainable) 

state feedback. 

To see the effect of the weighting matrices v11  and v
22'  

v11  (11 x 11) = [I] was kept constant and v22  was varied from 0.01 to 

100. The effect of 
vll 

 and v22  variation in this case was insignificant. 

-This effect will be discussed later when noise is considered and the 

order of dynamic estimator is simplified. 

5.5.1 	The Effect of Noise on the Behaviour of the System 

To make the studies more realistic, a standard computer 

package was used to generate noise. The generated noise is added to 

the observed signals — in this case only speed. A number of different 

types of noise were considered but here the one which is the most 

general will be discussed. White noise was considered with zero mean 

value and the standard deviation is 

(5.21) 

where (and Rare constants and /,(his speed variation. This kind of 

noise ensures that in the steady state when LA = 0 there is a noise 

with the standard deviation of 	and during transients the standard 

deviation of noise increases with the deviation of speed. The values 

of r(, and 	were both chosen as 0.05, a high noise level. Figure 5.6 

shows the performance of the system with the estimator when such a 

noise is added. to the measured speed. This figure shows that the 

estimated speed is very well filtered and the performance of the system 
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is not affected, although a small oscillation appears in the field 

voltage. It is interesting to compare these results with the case when 

all the states are directly fed back and all of them contains the noise 

which is structurally the same as that defined in (5.21): 

(5.22) 

where xi is the ith feedback state deviation. With a and R 
both 0.05, 

the system in this case was so noisy that it was unstable. In order to 

obtain some idea about the performance of the system with direct measure-

ment, a much smaller noise level was chosen, a= 0.01 and p= 0.05. 

Figure 5.7 shows the performance of the system when all signals are 

measured and contain noise with the distribution given in (5.22). This 

shows that the AVR and.governor settings are very noisy and the field 

voltage is highly oscillatory. Thus even with a comparatively low 

noise level, the performance of the system is worse than when an 

estimator was used (Figure 5.5). The reason for this could be that if 

n signals are mixed, with standard deviations of Cf. 	, then the 
i=1,n 

standard deviation.of the resultant signal is, 

Ci 	= Cfl2 r d 	ò  + 	 + U~12 
resultant (5.23) 

From equation (5.22), the standard deviation of resultant control signal 

(governor speed setLing or AVR voltage setting) when all the signals are 

measured directly is as follows: 

Cd 	 - `~/C; +13x1/—   + (a+ ,x )2 + ... + (a+ r~ x )2 
resultant 	 ~ 2 	N 11 

(5.2't) 

With the assumption that the signal deviations are roughly equal to X, 

resultant = 1̀ 11(a + 13x)2 	+p x) (5.25) 
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Equation (5.25) shows that the noise standard deviation of the resultant 

signal is 3.3 times that of individual signals. 

5.5.2 	The Effect of Parameter Difference between the 
Estimator and the Real System  

In power systems the exact values of parameters are not 

always known. So a test was performed assuming that all the machine 

parameters used in the estimator were 10% high, a pessimistic 

assumption. Figure 5.8 shows the performance of the system when such 

an observer is used to stabilize the system after the three—phase fault 

of 80 ms at the h.v. terminals of the transformer. As this figure 

shows, the performance of the system remains virtually the same except 

for a, bigger second back—swing and some small oscillations in the field 

voltage. Figure 5.9 shows the performance of the system with this 

estimator when the measured speed signal contains a noise with standard 

deviation as before, 

air= 0.05 + 0.05Ac,W 	 (5.26) 

Figure 5.8 shows that this estimator filters the speed signal very well 

and that the performance of system remains the same except for a 

slightly bigger second back—swing. These studies show that the estimator 

sensitivity to the machine parameter.: is low and that it is not necessary 

to have accurate values. 
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5.5.3 	The Variation of Estimator Gain Matrix with the  
Operating Condition  

The estimator gain matrix K given in equation (5.14) is a 

function of the operating condition as the solution of Riccati equation 

(5.14)-requires the linearised system model about an operating condition. 

To see the variation of estimator gain matrix K with the operating 

condition, a broad region of power from zero to the rated value and 

that of reactive power from zero to the rated value and:that of reactive 

power from zero to 0.5, leading and lagging power factors. This region 

was divided by a mesh and the estimator Riccati equation (5.14) was 

solved many times to obtain the optimal gains at different nodes, 

Figure 5.10 shows the variation of the elements of the K (11 x 1) 

matrix with operating point. These three—dimensional pictures show 

that the variation of the elements in the normal operating region 

(0.5 \< P <1. lagging power factors) is small and that most of them lie 

on planes/are virtually constant. In the remainder of the feasible 

operating region the elements do not change abruptly, but could be 

represented by a series of local values. This is similar to the optimal 

controller gain considered in Section 3.5 of Chapter 3. 

5.6 	LOWER, ORDER DYNTAMIC ESTIMATORS 

Lower order dynamic estimators are obtained by simplification 

of the system model. In this way the order of the dynamic estimator is 

reduced from 11 to 9, 7 and 4. The performance of these estimators, 

their efficiency in filtering, estimation and control is discussed 

below. 



100 MM 

mm 

Figure 5.10: 	Variation of the elements of a full order estimator gain matrix K with the operating 
condition. 
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5.6.1 	Approximate (9th  Order). Dynamic Estimator  

By using an approximate system model 
(9th 

 order) for the 

estimator, an approximate dynamic estimator is obtained. The approximate 

system model eliminates stator transients p 1d  and p (I) q, therefore this 

estimator does not estimate these values. To design the gain matrix K 

which in this case is a vector with nine elements, the linearised 

approximate system model (Chapter 2) must be used in the estimator 

Riccati equation (5.110. The system controller must also he designed 

on the basis of an approximate system model so that its requirements 

are fulfilled with this estimator. Although in this case the estimator 

model is the approximate model, the simulation of the plant used for 

testing it has the full 11th  order form from which the observation of 

speed signal is obtained. Matrices v11(9 x 9) and v22  (1 x 1), the 

estimator weighting matrices were chosen as unity for the calculation 

of the gain matrix K. Later the effect of these weightings on the 

system performance is discussed. Figure 5.11 shows the performance of 

the system after a three—phase fault of 80 ms at h.v. terminals of the 

transformer when the states estimated by the estimator are fed back to 

fulfill the requirement of an approximate (9th order) optimal 

controller. The performance of the system is similar to that obtained 

with direct.  measurement of the states. Figure 5.12 shows the perform-

ance of the system :hen the measured speed is corrupted with a noise 

of the standard deviation G'= 0.05 + 0.05Q(0. This figure shows that 

the estimator filters the speed signal and the performance of the 

system remains the same except for small oscillations imposed on the 

field voltage. To see the effect of the matrices v11  (9 x 9) and 

v22 
(1 x 1), v11  (9 x 9) is left as unity matrix and v29  was changed 

from 0.01 to 100. Figure 5.13 shows the effect of v
22 

variation on 
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è
• El CD
 

rD
 

173
 

rD
 

SJ
 

tn
 

C
- 

U)
 CD Y
•
 

Co
 ainVTa  '~

~
T 



R
O

TO
R
 A

NG
LE

, D
EG

 

........... 

8O — 	 -- r~ 
/ \ 

\ 
/ . \ 	-- • —• v22 = 100 

v22 = 0.01 

v22 = 0.1 

v22 = 1.0 

v22 _ 	10 

•. 
1 	•• 

\\\\ 
	~~ •~ 

N 
/ \.~N - 

~0 0 

Figure 5.13: 

0.4 	0.8 	1.2 	1.6 
TI ME, S 

Effect of vo,, variation on the load angle swing of the system with 
the approxifi to estimator and controller following an 80 ms three—
phase fault. 



134. 

the performance of the system. This figure shows that as v00  increases, 

the results improve and for v22  = 100 the result is the best. Further 

increase of v22  does not improve the performance. 

5.6.2 	Simple (7th  Order) Dynamic Estimator  

A simple dynamic estimator is obtained by the consideration of 

a simple system model 7th  order) for its dynamics. The simple system 

model is linearised for the calculation of estimator gain matrix K which 

in this case is a (7 x 1) vector and is calculated through the solution 

of the Riccati equation (5.14). It is obvious that this estimator will 

produce 7 signals and so the design of the controller for this system 

should be through a 7th  order model. In other words, the design of 

optimal estimator gains K and optimal controller gains are dual; 

v 11
(7 x 7) and voo(l x 1) estimator weighting matrices were chosen as 

unity for the calculation of gains. Figure 5.14 shows the performance 

of the system when a simple estimator is used to estimate signals for a 

simple 
7th 

order controller. Figure 5.15 compares the performance of 

the system when an estimator is used with that with direct measurement 

of states. Also in this figure the performance of the system when a.  

lower gain gontroller is used, is shown. Figure 5.15 shows that the 

performance of the system with the estimator is as good as that of 

direct measurement of the states. Even from the transient stability 

point of view (first swing angle), the performance of the system with 

the estimator is better than that with direct measurement. 

Figure 5.l6'shows the effect of estimator weighting matrices, 

which will affect the estimator gain K, on the performance of the 
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system. 
v11 

(7 x 7) was left as a unity matrix and v
22 (which is a 

scaler) was varied from 0.01 to 100. Similar to the approximate 

estimator, the best results are obtained for v22  = 100. For this 

study v22  = 10 was chosen, which seemed to be a good compromise between 

the filtering and reconstruction speed. Figure 5.17 shows the 

behaviour of the system when the speed signal contains a noise with the 

standard deviation of the same structure as before, (f _ 0.05 ± 0.05&0. 

This figure shows that the speed signal is well filtered and the 

performance of the system virtually remains the same. 

It is possible to decrease the order of system by 1 with the 

use of real speed signal as a feedback. Figure 5.18 shows the perform-

ance when measured speed is fed back instead of estimated values. This 

figure shows that the noise magnitude in AVR and governor controller 

signals is much bigger than that in Figure 5;17, where the estimated 

speed signal was fed back. This might become important if the 

magnitude of speed noise is greater. 

5.6.3 	Crude  (4th  Order) Dynamic Estimator  

A crude dynamic estimator is obtained when a crude (4th order) 

system model is used. Again the plant was fully represented while its 

estimator was the crude one. The estimator gain matrix K (4 x 1) was 

obtained by the solution of the estimator Riccati equation (5.14). 

The optimal controller gain matrix F (2 x 4) was obtained by the 

controller R.iccati equation explained in Chapter 3. Figure 5.19 shows 

the performance of the system when a crude estimator is estimating the 

four signals required for feedback. v1  (4 x 4) and v20  (1 x 1) were 

chosen as unity matrices. This figure shos that the performance of 
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the system is very similar to that obtained when four signals are 

fed back directly. Figure 5.20 shows the performance of the system 

when the measured signal (speed) contains the white noise with 

standard deviation (f = 0.05 + 0.050W. This figure shows that the 

estimator filters the speed signal very well and the performance of 

the system is similar to the one without any noise. In this case also 

the measured speed signal was used directly in the feedback to decrease 

the order of the estimator to 3. It can be observed from Figure 5.21 

that although the performance of the system remains unchanged, the AVR 

and governor setting signals become noisy and might he troublesome when 

the magnitude of noise is high. Finally, the effect of the variations 

of the weighting matrices is shown in Figure 5.22 when v11  (4 x 4) is 

kept as a unity matrix and v22  is varied from 0.01 to 100. 

5.7 	PARTIAL DYNAMIC ESTIMATOR • 

The dynamic estimators studied in this chapter estimate all 

the system parameters. In some studies only the parameters of one 

part of the system which are not accessible for measurement are 

required. The estimation of the parameters of the excitation system 

or governing system are in this category. Here a dynamic estimator 

for the governing system was designed. 

5.7.1 	Governing System Dynamic Estimator 

The governing system model considered in this study has two 

time constants. It was assumed that the inputs to this system as well 

as valve positioning are measurable while tile tiacr,i1Fitiit:a i torque is the 
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state which is required. A second order dynamic estimator was devised 

using the governing system model (given in Chapter 2) and valve 

position as the measurement. The estimator gain matrix K (2 x 1) is 

obtained by the solution of estimator Riccati equation (5.14). 

Figure 5.23 shows the performance of the system when it is controlled 

with directly measured signals in a full—order optimal controller. 

Also shown are the estimated values of valve position and mechanical 

torque. It was assumed that the dynamic estimator has no knowledge of 

valve position limits and this is obvious in the figure, as the 

estimated values vary with a slower rate. The close correspondence 

between the estimated and measured values confirms that dynamic 

estimators can be developed to construct the parameters of a part of 

the system which is of special interest. This type of dynamic estimator 

can be developed for the excitation systems to estimate the field 

voltage when the measurement of this parameter is difficult. 

5.8 	THE EFFECT OF INTEGRATION INTERVAL ON ESTIMATOR PERFORMANCE  

The simulation of the plant and its estimator have up to now 

been done in the same program and using the same integration routine as 

one requires the data from the other when the estimator is used to 

control the plant. However, more realistic conditions are obtained by 

simulating the plant with a very small integration interval and 

observing the effect of longer estimator integration intervals. In 

this way the longest integration interval usable in the dynamic estimator 

can be found. For this purpose the performance of the estimator was 

found for different time steps when it was not performing the control 

action, so that the plant does not need any data from the estimator. 
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The plant was simulated with the full system model and time intervals 

of 2 ms using the integration routine explained in Appendix 3=3. 

Rotor angle, speed and terminal voltage variation were stored on tape 

for further use. Another program was used to simulate a full order 

dynamic estimator and at the beginning of each time step the 

corresponding speed data was transferred to this program from the tape. 

• The estimated values of rotor angle and terminal voltage are compared 

with those of the plant for different estimator integration times, 

shown in Figures 5.214 and 5.25. In these figures the performance of 

the estimator when the estimator gain is zero, in other words, there 

is no forcing term to force the estimator to track the plant, is also 

given. These figures show that even for time steps of up to 20 ms, the 

estimated values are very close to the real values, especially when 

they are compared with the case of K = 0. Figure 5.25 shows that the 

estimated voltage for large time steps is not as good as that of 

angle and this can be understood in that the forcing term in these 

studies is only a function of speed. The use of another measurement 

in conjunction with or instead of speed which observes the effect of 

voltage variation bet+er, such as field voltage, would improve this 

performance. 

5.9 	CONCLUSION 

The design of a dynamic estimator for a power system is 

explained in this chapter. The choice of measured signals is made 

with regard to modal observability, so that all the system modes are 

observable through them. This is a necessary condition for an 

asymptotically stable observer. The speed signal chosen here is shown 

to fulfill this requirement. 
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It was shown that the estimator sensitivity to the system 

parameters is low. This was confirmed with a test in which the 

estimator machine parameters are 10% different from those of plant and 

the performance of the system was marginally different from that with 

the exact parameters. 

The variation of optimal estimator gain matrix K with the 

operating point was studied in a broad region of conditions. This study 

showed that the variation of the elements of K matrix in the normal 

operating region is small and in the remainder of the feasible 

operating region, a series of local values might be used to represent 

them. 

Lower order dynamic estimators are developed, and their 

performancesare discussed. As in the controller design problem, as the 

order of dynamic estimator reduces, so will the number of estimated 

signals and the whole system performance deteriorates. This study also 

shows the duality between the control and estimation in the way that 

the deterioration in the system performance can be introduced either 

by the order of estimator model or the order of controller. For 

example, the performance of the system with a full estimator (11th  

order) is similar to that of a simple estimator (7th  order) when the 

controller is designed on the simple system model. In other words, the 

order of the estimator and controller has to be the same. 

All the estimators discussed filter the measurement noise very 

well. It has been_•shown that the estimator can control the system well 

even when the ratio of noise to signal is so high that the system with 

direct measurement of the states was unstable. The effect of the 

variation of the estimator measurement noise covariance matrix 
v22 

on 

the system performance was s lud i ed and in all lime cases a value For 
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v222  of between 10 and 100 gave a good overall system performance from 

both filtering and reconstruction speed point of view. It is possible 

to reduce the order of the estimators by 1, if the measured signal is 

directly used in feedback. This introduces some noise to the 

- controller signal, which might become important if the measurement 

noise is high. 

It was shown that dynamic estimators can be developed which 

only estimate the parameters of part of a system if only this is 

required. Obviously the order of these dynamic estimators is much 

less than the whole system dynamic estimator. 

The effect of the integration interval on the estimator 

performance was considered. The result shows that for time—steps as 

big as 20 ms, the performance of the dynamic estimator is almost 

unchanged. 
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CITAPTER 6  

ADAPTIVE DYNAMIC ESTIMATOR. FOIL POWER SYSTEM  

	

6.1 	INTRODUCTION 

In the previous chapter, dynamic estimators were developed for 

a power system. Dynamic estimation theory is based on the fact that the 

system model is known
115-117,128 

 This is not always the case for a 

power system as it commonly happens that after an emergency the system 

parameters change. For example, the system considered (Figure 2.1) 

might lose one of the double circuits of the transmission line. For 

the estimator to track the behaviour of the system closely it must 

have the current parameters of the system. The tie—line impedance is 

particularly important in the control of the system. In this chapter, 

an adaptive dynamic estimator is described which with the use of an 

extra measurement estimates the line impedance. This parameter is 

corrected in the estimator so that this information is available for 

the control of the system. 

This pattern of estimation and correction of the line 

impedance was extended so that the estimator could also estimate the 

voltage and, frequency of the system and remove the assumption of an 

infinite busbar. 

	

6.2 	A DYNAMIC ESTIMATOR TO ESTIMATE THE LINE IMPEDANCE 

The estimator described in Chapter 5 must be provided with 

the tie—line impedance and the voltage at the far end, if it is to 
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track the plant closely
115-117. 

Here the full (litt order) estimator 

was used to estimate another measurable signal (terminal voltage) 

corresponding to any arbitrary value of system impedance. By 

comparison of the estimated terminal voltages with the measured values, 

the error in the value of impedance assumed in the estimator was 

obtained. Further, a progressive programme of correction to the 

impedance value, a Newton—Raphson iteration, was made until estimated 

and measured voltages agreed within a reasonable tolerance. Terminal 

voltage was chosen for the measurement as it is very sensitive to the 

tie—line impedance. Other signals could also be used. 

Thus as terminal voltage Vt is a function of tie—line 

reactance, x e , resistance r e and other system variables, 

Vt = h(xe, re, x1, x2, x3, ...) (6.1) 

a Taylor series, ignoring second order terms and assuming that only 

tie—line parameters are changing, gives, 

0V 	v t 	a t 
AVt 	(ix )o Axe + (3r )o Are + ... e 	 e 

also, 

r o ~ 
= 	e x

x 
0 

where ro and xo are the initial steady state values. Then 

(6.2) 

(6.3) 

OVt 
/SVt = (~x ) o Qxe + 

-rt)o xo ~xe 
e 	o 

(6.4) 

3Vt 8V. r 

AVt = ( 3x + art • Y )o Axe 
e 	

o  

and rearranging: 

(6.5) 
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AVt  Axe 
= 3Vt 3Vt ro 

ūx 3r x 
e 	e o 

(6.6) 

and 

r 
o 

Are = Axe x 
0 

(6.7) 

Better values for xe and re can be obtained by: 

x(n+l) — x(n) 
e 	e —a0 x e 

r(n+1) — re 
(n) — C A re 

(6.8) 

(6.9) 

where(] is an acceleration factor. 

As re ~C xe, the error in assuming that all lines have the 

same r/x ratio which is used in the deviation of re is small. Repeated 

use of equations (6.8) and (6.9) gives good values for xe and re. This 

requires an updated calculation of the Jacobian elements 

ayt  

ūxe 	2V

11  

wo (—v
dpi d g — vgpiq + UPIgid) (6.10) 

t 	1 
3re — 2V (— idvd — igvq) 

which are derived in Appendix 6.1. The logic on which this adaptive 

estimator works is shown in flow chart form in Figure 6.1. 

6.3 	CALCULATED RESULTS FOR. AN ADAPTIVE DYNAMIC ESTIMATOR FOR THE 
ESTIMATION OF TRANSMISSION LINE PARAMETERS  

The adaptive logic explained has been used with a full order 

system estimator for the estimation of tie line parameters. It has 

been tested in two different conditions as explained below. 



START AT t = t
o 0  

ESTIMATE TERMINAL VOLTAGE V (t + At)  
FROM THE DATA AT t AND MEASUI Vt  (t + A t 

Xe=xe-a LXe 
r =r 

e
-ccAr 
 e 

No 	PROCEED TIME 
t=t+ At 

No 
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STOP 

Figure 6.1: 	Flow chart of the tie-line estimator. 
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6.3.1 	Identification of Transmission Line  
Parameters after Short Circuit  

The estimator devised was used t) determine the transmission 

line parameters after a short circuit. It was assumed that the fault 

was at the high voltage terminals of the transformer, so the impedance 

of the transmission line fell to zero during the short circuit period. 

Initially during the fault period, the dynamic estimator was using the 

normal value of the tie—line impedance, 0.0209 + j0.3333 . 

Figure 6.2 shows the effect of acceleration factor on the 

number of iterations that it took for the dynamic estimator to converge 

to the correct value of xe  and re. This figure shows that for low 

values of 	(a. 1), the convergence was overdamped and it took the 

estimator six iterations to converge, while for large values of 

the performance wasunderdamped, oscillatory and it required eight 

iterations to converge. The performance was improved a-hen re  and xe  

were restricted to positive values (re, xe) 0). With this restriction, 

for all values of acceleration factor CY> 2, convergence was obtained 
after only one iteration. In this study the voltage tolerance was 

chosen as 0.005 (0.5 percent). When this was increased to 0.2 

(20 percent) the convergence was still obtained after only one iteration. 

6.3.2 	Identification of Transmission Line  
Parameters after Short Circuit Recovery  

The dynamic estimator was next used to identify if the 

transmission line impedance had changed after the clearance of a fault. 

For this reason it was assumed that the system would lose one line of a 

double—circuit transmission line after the short circuit recovery, and 

(a- 4) 
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1 
	

2 	3 	4 	5 	6 	7 
	

4 	9 
NUMBER OF ITERATIONS 

Figure 6.2: 
	The effect of acceleration factor on the number of 

iterations for convergence in the estimation of the 
tie—line impedance after an 80 ms fault. 
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so the impedance would increase to twice the normal value (0.0418 + 

j0.6666 ). The estimator initial value was chosen as the normal value 

of the impedance. As during the fault, for low values of a , 
convergence is overdamped and the estimator takes a number of 

.iterations to converge. For large a it converges in one iteration. 
Tables 6.1 and 6.2 show the estimated values of x e 

and r 
e
after a short 

circuit recovery for a.= 2 and C(= 4 with the tolerance of 0.05. The 

estimator had some difficulty in converging when the initial values of 

xe and re  were zero. This estimator worked well up to a tolerance of 

10%, but for higher tolerances it became oscillatory. The terms 3Vt/axe  

and W
t
/ar

e 
 used in equation (6.6) to give the impedance correction were 

calculated repeatedly, but it is possible to calculate this value once 

at the prefault operating condition. The results obtained by doing, this 

were worse than with repeated calculation. Table 6.3 shows the 

estimation of x 
e 
and r 

e 
after a short circuit recovery when one line 

was lost and constant values were used for aVt/are  and 3V t/are. The 

tolerance was 10% and a = 1. This table shows that it took the 

estimator 128 ms to estimate the transmission line impedance. For 

tolerances of 20% the estimator was not able to converge. 

6.4 	SYSTEM PERFORMANCE WITH THE LINT IMPEDANCE ESTIMATOR 
AFTER A SHORT CIRCUIT WITH THE LOSS OF ONE LINE 

A knowledge of the tie—line impedance is advantageous in 

both estimation and control. This information is required in estimation 

if the estimator is to follow the system closely. This information is 

useful in control in the sense that the new operating condition is 

calculable once the change of impedance is known. Then steady state 
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t 

Z 
a 

Line Reactance 
msec. āi Actual Estimated 

H 

o o 0.6666 0.3333 

0 1 0.6666 0.4758 

6 2 0.6666 0.5890 

12 3 0.6666 0.6488 

18 4 0.6666 0.7120 

c c 

t r Line Reactance 
m.sec. w Actual Estimated 

H 

0 0 0.6666 0.3333 

0 1 0.6666 0.6183 

Table 6.1  

Estimation of tie-line impedance 
after short circuit recovery with 
the loss of a line; c(= 2, E:=  0.005. 

Table 6.2  

Estimation of tie-line impedance 
after short circuit recovery with 
the loss of a line: a= 4, £= 0.005 

t 
m.sec. 

0 

o 

t 
4-,  
H 

Actual 
Line Reactance 

Estimated 

0 0 0.6666 0.3333 

58 1 0.6666 0.600o 

58 2 0.6666 0.8690 

58 3 0.6666 1.1359 

58 4 0.6666 1.3980 

120 5 0.6666 1.1349 

124 6 0.6666 0.8510 

128 7 0.6666 0.5788 

1500 7 0.6666 0.5788 

Table 6.3  

Estimation of tie-line impedance 
after a short circuit recovery 
with the loss of a line with 
constant Jacobian element; E= 0.1, a,= 1. 
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errors can be avoided, the governor and AVR settings being chosen to 

correspond with the new operating condition. Figure 6.3 shows the 

performance of the system after the short circuit of 80 ms at the high 

voltage terminals of the transformer when one line was lost and the 

estimator with identification of line impedance was used. This figure 

shows that the change of operating condition takes place very smoothly. 

Figure 6.4 shows the load angle variation when a simple (7
th 

order) 

controller was used with the above tie-line impedance estimator. For 

comparison, the performance with the full (11t1'  order) controller is 

also shown. This figure shows that when this estimator was used, both 

controllers control the system successfully which is unstable with 

conventional controllers., It also guides the system towards the new 

steady state condition without any offset error in voltage and power as 

the governor and AVIL settings are changed corresponding to the impedance 

change. 

6.5 	LOWER ORDER DYNAMIC ESTIMATOR OF TIE--LINE IMPEDANCE 

In this section tie-line impedance estimation technique is 

used with simpler dynamic estimators, i.e. those of an order less than 

the real system. For this purpose an approximate dynamic estimator 

(9th order) was used and the same iterative method (Chapter 6.2) was 

used to estimate and adjust the tie-line impedance in the estimator. 

The system was represented through the full (11th order) model while 

the estimator was the approximate one (9±I' order). Table 6.4 shows 

the estimated reactance and resistance when there was a three-phase 

short circuit of 80 ms at the h.v. terminals of the transformer with 

the loss of one line after the short circuit recovery. The tolerance 
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Figure 6.'i: 	Load angle swing with the tie—line impedance estimator 
following an 80 ms three—phase fault with the loss of 
one line. 
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for impedance adjustment was 6= 0.01 and the acceleration factor O = 1.5. 

This table shows that the estimated value of reactance was very near 

to zero during the short circuit. After the short circuit recovery, 

the impedance was adjusted repeatedly, the last adjustment being at 

0.568 s and the estimated value was then very close to the actual values. • 

The number of iterations could be reduced, similar to the case with a 

full order estimator, by limiting the estimated reactance and resistance 

to positive values. This stops the estimator from having small 

oscillations about zero, although it produces some difficulty in 

convergence after the short circuit recovery. This difficulty might he 

avoided by choosing the normal value of impedance for the first guess. 

The increase of the impedance estimation tolerance (E) made the 

estimation less accurate but it also reduced the number of iterations 

involved. Table 6.5 shows the estimation of tie—line impedance after 

the same disturbance as in the previous test. The tolerance E 	was 

0.05 and the values of the line resistance and reactance were 

restricted to positive values (r , x >, 0). This table shows that only 
e  

two iterations were required during the short circuit or after the 

short circuit recovery to give sufficiently accurate values. The 

initial value after the short circuit recovery was chosen as the normal 

value of the impedance and the acceleration factor awns 1.5. Inferior 

results were obtained if constant values for ~Vt/cO.xe and i)Vt/ōre were 

used throughout. 

The above results show the possibility of the simplification 

of the impedance estimator. An attempt was made to simplify this 

estimator :further by using a simple system model (7th order) for the 

estimator. The estimation of impedance, especially during a short 

circuit, was poor. It is thought that this failure was clue to the 
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t 
msec. 

o 0 
- o 
cp 
H 

Line 
Actual 

Reactance 
Estimated 

0 0 0 0.3333 
2. 1 0 0.0693 
2 2 0 0.0151 
2 3 0 0.0042 
8 4 0 -0.0024 
12 5 0 -0.0008 
22 6 0 -0.0028 
30 7 0 -0.0082 
72 8 0 -0.1463 

80 Short Circuit Recovery 

80.  8 0.666 -0.1463 
82 9 0.666 0.0639 
82 10 0.666 0.1912 
110 11 0.666 0.3747 
120 12 0.666 0.4602 
126 13 0.666 0.5466 
130 14 0.666 0.6367 
132 15 0.666 0.7140 
144 16 0.666 0.7888 
148 17 0.666 0.8640 
154 18 0.666 0.9359 
226 19 0.666 0.8944 
230 20 0.666 0.8570 
234 21 0.666 0.8221 
238 22 0.666 0.7890 
244 23 0.666 0.7566 
256 24 0.666 0.7274 
256 25 0.666 0.7001 
264 26 0.666 0.6740 
278 27 0.666 0.6493 
290 28 0.666 0.6274 
488 29 0.666 0.6326 
512 30 0.666 0.6580 
548 31 0.666 0.6731 

1500 31 0.666 0,6731 

t 
m.sec. 

It
e

ra
ti

on
)  

Line 
Actual 

Reactance 
Estimated 

0 0 0 0.3333 

2 1. 0 0.0693 

2 2 0 0.0151 

80 Short Circuit Recovery 

80 2 0.666 0.0151 

188 3 0.666 0.7092 

686 4 o.666 0.6515 

1500 4 0.666 0.6515 	
J 

Table 6.5  

Estimation of tie-line impedance after 
a short circuit and its recovery with 
the loss of a line and the approxirate 
estimator: E. 0.05, c,= 1.5; with 
the restriction x , r 	0. 

e e i 

Table 6.4 

Estimation of the tie-line impedance 
after a short circuit and its recovery 
with the loss of a line with the 
approximate estimator: E:.  0.01, C(= 1.5. 
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error in estimated voltage, and it would appear that a ninth order 

estimator is the lowest order which can function well. It might be 

possible to simplify the estimator by approximating the states of 

the AVR, and governor loops by lower order models. 

6.6 	A DYNAMIC ESTIMATOR TO ESTIMATE THE 
FAR BUS SYSTEM VOLTAGE 

Up to this point. all the studies were made with the assumption 

of the generator connected to an infinite busbar. Here an attempt was 

made to see whether the estimator could estimate the system voltage as 

the assumption of an infinite busbar may not be acceptable in all cases. 

The estimation of system voltage is important from two points of view. 

Firstly, all the other estimated parameters of the system depend upon 

this value; and secondly, a knowledge of system voltage is helpful in 

the control of systems. Here, similar to the adaptive tie—line 

impedance estimator, a dynamic estimator was developed which estimated 

far—system voltage and adjusted the internal value as it went along. 

The adaptation process was similar to that of line impedance and the 

extra measurement chosen was the same terminal voltage. The problem 

formulation is given below. In this study it is assumed that the tie—

line impedance value is known and the emphasis is on the estimation of 

system voltage. 

Using network equations (2.10) and (2.141),  Vt  can be stated 

in terms of the system voltage Vs  and other system variables, 

Vt 	h2(Vs, xl,x2,...) 
	

(6.12) 
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A Taylor series, ignoring second order terms and assuming 

that only system voltage is changing, gives: 

QVt  = (e)  QVs  + ... 
s 

or 

QVs _ caV t 
( v ) 

Better values for V 
s 

are obtained by: 

Vs Vs 
	
= V(n) —C(QVs  

QV 
t• 

(6.13) 

(6.14) 

(6.15) 

where a  is the acceleration factor. This method requires the calculation 

of DVt/Ws' 

DV 	f v v _ 
() 

V
D

` 	
V_t\ 

d 
3Vs 	
t

sin 6 — cos 6)  

which is derived in Appendix 6-2. 

(6.16) 

The first test made with this estimator was a 10% step change 

in system voltage for 80 ins. The results given in Table 6.6 show the 

estimated system voltage. The tolerance E was 0.005 and the acceleration 

factor a was 8 2. This table shows that it took the estimator two 

iterations to estimate the voltage drop and another two to estimate its 

recovery. The best results were obtained for a= 13\47, when only one 

iteration was required for estimating the voltage drop or its recovery. 

The second test was a three—phase short circuit for 80 ins at the h.v. 

terminals of the transformer. The results for this test are given in 

Table 6.7. The voltage tolerance in this test was E:=  0.005 and the 

acceleration factor q,= 80. The table shows that the estimator 

required three iterations to identify the voltage drop and five to 

obtain the voltage recovery. Poorer estimation was obtained with a 

constant valuee of ravt/0Vs. 



t 
m.sec. 

Z 
0 

+~ 

2 
w 

H 

System 

Actual 

Voltage 

Estimated 

o 0 1.193 1.325 

o 1 1.193 1.238 

0 2 1.193 1.208 

80 Voltage Recovery 

80 2 1.325 1.208 

80 3 1.325 1.292 

80 4 1.325 1.321 

Table 6.6  

Estimation of system voltage with 10% 

step change and its recovery; a= 10\72",. 

E= 0.005. 

t 

m.sec. 

0 

, 

t 
4, 
H 

System 

Actual 

Voltage 

Estimated 

o 0 0 1.325 

0 1 0 0.310 

0 2 0 0.056 

0 3 0 0.009 

80 Short Circuit Recovery 

80 3 1.325 0.009 

80 4 1.325 0.611 

80 5 1.325 0.943 

80 6 1.325 1.123 

80 7 1.325 1.276 

80 8 1.325 1.305 

810 8 1.325 1.305 

Table 6.7  

Estimation of system voltage after a 

short circuit and its reenuery; a. — 8\./75-,  

E. 0.005. 

168. 



169. 

6.7 	A DYNAMIC ESTIMATOR TO ESTIMATE THE TTE—LINE 
IMPEDANCE AND THE SYSTEM VOLTAGE  

In the previous section dynamic estimators were developed 

which could estimate either the tie—line impedance or the system voltage 

by the use of another measurement. Here, a dynamic estimator which can 

estimate both the tie—line impedance and the far system voltage is 

considered. The method was similar to that used in Sections 6.2 to 6.6, 

but two extra measurements in addition to the speed signal were required. 

Terminal voltage Vt  and terminal angle St  were chosen as the additional 

measured quantities, as they were thought to be sensitive to the 

variation of tie—line impedance and system voltage. These measured 

values were compared with, values estimated by the estimator. If the 

errors were not within a given margin, the values of the impedance of 

the line and the system voltage magnitude in the estimator were 

adjusted. A Newton—Raphson iteration was made until the error was 

acceptably low. Thus as terminal voltage Vt  and phase S t  are functions 

of line reactance, line resistance and system voltage and other variables, 

Vt  = h(xe, re, Vs, ...) 

ōt  = g(xe, re, Vs, ...) 

A Taylor series ignoring second order terms and the terms arising 

from the secondary effects of these variations, gives, 

dh 
	T\if  

AVt_ Axe
+  d 

oh  
r Are + 	AVs 

e 	e 	s 

A6 = c —Axe +d— Are +d -Avs 
e 	e 	s  

It is assumed that 

r. 
0 

Are = 	Axe  

(6.19) 

(6.20) 

(6.21) 
0 



3h 	ah 	ro 

axe + are xo 

Dg 	3g 	ro 
ōx + 3r ' x 
e 	e 	o 

Lvs 

A vt 

A 6t 
(6.22) 

where r O 
and x 

o 
are the initial steady state values. Then: 

170. 

which, upon inversion, gives: 

    

Qx e 

[LvS 
J1 

Lvt 
A bt 

(6.23) 

   

Improved values are obtained repeatedly. 

x(n+1) 
e. 

r(n+1) -
e 
V(n+l) -  
s 

x~n) .—C(0xe 

r (n) —a A r e 
V(n) —a AV s 	s 

(6.2'x) 	. 

where a is an acceleration factor. The elements of J1, 4 he Jacobian 

matrix in equation (6.23), are derived in Appendix 6.3. This estimator 

was tested with a 10% step change in system voltage and the loss of one 

of the tie—lines, both for 80 ms. The results of the estimation are 

given in Table 6.8. In this test the tolerance E and the acceleration 

factor a were 0.005 and 1. The results show that the estimator 

required four iterations to predict the new values of the parameters 

within the given tolerance after the start of the disturbance, and seven 

iterations after the recovery from the disturbance. As before, the 

number of iterations both after the disturbance and after its recovery 

were reduced by limiting the tie—line reactance and resistance to 

positive values. A similar restriction could be imposed on system 

voltage magnitude. This test shows that the estimator can perform well 

when a change in line impedance is accompanied by a small voltage 
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disturbance. The second test was a three—phase short circuit and its 

recovery after 80 ms. The short circuit was at the h.v. terminals of 

the transformer. The values of the tolerance E and the acceleration 

factor a,, in this test, were 0.005 and 2. Also, there was the 

restriction that: 

xe, re, V 	0 s/ (6.25) 

Table 6.9 shows the results of this test. It shows that the estimator 

required only two iterations to estimate the new values of the tie—line 

impedance and the system voltage. The number of iterations required 

for the estimation of these parameters after the short circuit recovery 

is eight, and the last one occurred 542 ms after the occurrence of the 

fault. The final test with this estimator was again the same three—. 

phase short circuit disturbance but with the loss of a line after the 

short circuit recovery. The tolerance E and the acceleration factor a 

in this case were 0.01 and 1. As is shown in Table 6.10 after the 

fault, the estimator initially assuming the normal values for system 

voltage and line impedance, adjusted these correctly in five iterations 

within the tolerance of 0.01. It also shows that after the short 

circuit recovery following the clearance of the fault, it took the 

estimator twelve iterations to give values for system voltage and line 

reactance within lob of the actual values and more adjustments were 

made later, further iterations occurring as measured and estimated 

values drifted apart. 
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t 
msec. c. s 

System 
Actual 

Voltage 
Estimated 

`Lii:e- 

Actual 
~tcā.:-t : i~,ēi 
Estimated 

o 0 1.193 1.325 0 0.333 
0 1 1.193 1.268 0 0.1114 

0 2 1.193 1.231 0 0.028 
0 3 1.193 1.211 0 	_ -0.003 
0 It 1.193 1.201 0 -0.0003 

80 Disturbance Recovery 

80 tf 1.325 1.201 0.333 -0.0003 
80 5 1.325 1.242 0.333 0.153 
80 6 1.325 1.265 0.333 0.212 
80 7 1.325 1.281 0.333 0.249 
80 8 1.325 1.291 0.333 0.271E 
80 9 1.325 1.299 0.333 0.293 
80 10 1.325 1.304 0.333 0.306 
80 11 1.325 1.309 0.333 0.317 

• 
Table 6.8: 'Estimation of system voltage magnitude and line impedance 

after a 10% step change in system voltage and the loss of 
lines and their recovery: e= 0.005, a= 1. 

t 
msec. 

IteatioIn 
System 

Actual 
Voltage 
Estimated 

;Line -Pc
Actual 

0.P±u?emcee 
Estimated 

0 0 0 1.325 0 0.333 
0 1 0 0.118 0 0.007 
0 2 0 0.000 0 0.000 

80 Short Circuit Recovery 

80 2 1.325 0.000 0.333 0.000 
80 3 1.325 0.324 0.333 0.000 
80 4 1.325 1.021 0.333 0.483 
80 5 1.325 1.199 0.333 0.347 
80 6 	- 1.325 1.272 0.333 0.320 
80 7 1.325 1.296 0.333 0.324 
86 8 1.325 1.310 0.333 0.329 
498 9 1.325 1.327 0.333 0.325 
542 10 1.325 1.338 0.333 0.335 
824 10 1.325 1.338 0.333 0.335 

Table 6.9: 	Estimation of system voltage magnitude and line impedance 
after a short circuit and its recovery; E= 0.005, C(= 2. 
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t 
msec, 

iteration 
System 

Actual 
Voltage 
Estimated 

r.Sy.t:eni-
Actual 

V"iil,ta 	- 
Estimated 

0 0 0 1.325 0.333 
o i• 0 0.582 0.225 
o 2 0 0.078 0.145 

0 3 0 0.000 0.070 
0 4 0 0.000 0.023 
0 5 0 0.000 0.001 

80 Short Circuit Recovery 

80 5 	- 

L'1
 In In  L'1

 lf1
 LCA  If1

 in
 i n in Lrl

 in  L'  \ In
  ta

 L' 1 tr  In In  L
^  L'1

  t'  \ In  
N

  CDI  N
 C

I  CI  C
I  N

  C1  N
  C

!  N
  N

  C
I  CDI  N

  N
  N

  N
  N

  CJ  N
  N

  CI  
trl
 

Ir l
 

tr1
 trl
  trl
 	

trl
  trl
  tr'■ tr l

  t  1  t
,̂ 	 trl
  to  tr l

  t' l
  tr l lr1

 
trl
  trl
  14 l
  t'-1 

r
-I
 r1

 r-a  
r-I  r

-{
 r-I
 r
i
 r-I
 r-i  

r- 	
r
 

I
 r-I
 r

. 	
I 	

r- I 	
-

! 
 

0.000 
0.613 
0.918 
0.988 
1.042 
1.084 
1.117 
1.145 
1.168 
1.188 
1.204 
1.218 
1.241 
1.252 
1.263 
1.273 
1.284 
1.299 
1.313 
1.324 
1.334 
1.334 
1.334 

0.666 0.001 
80 6 0.666 0.032 
80 7 0.666 0.329 
80 8 0.666 0.389 
80 9 0.666 0.426 
80 10 o.666 0.460 
80 11 0.666 0.488 
80 12 0.666 0.511 
80 13 0.666 0.531 
80 14 0.666 0.547 
80 15 0.666 0.561 
80 16 0.666 0.573 
80 17 0.666 0.594 
88 18 0.666 0.603 
104 19 o.666 0.613 
120 20 0.666 0.624 
142 21 0.666 0.634 
504 22 0.666 0.655 
536 23 0.666 0.640 
558 24 0.666 0.648 
588 25 0.666 0.661 
1040 26 	. 0.666 0.672 
150o 26 0.666 0.672 

Table 6.10  

Estimation of system voltage magnitude and line impedance after 
a short circuit and its recovery with the loss of a line; C(• = 1, E=  0.01 
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6.8 	A DYNAMIC ESTIMATOR TO ESTIMATE THE SYSTEM 
VOLTAGE AND PIHAS1? (FREQUENCY) QUENCY)  

In general, the frequency of the system is likely to change. 

This implies that the components of system voltage on the direct and 

quadrature axes (which also determine the rotor motion) will vary. 

With variable system frequency the direct and quadrature components of 

voltage are: 

vsd  = Vs  sin(6 + p1) 

vsq = VS  cos(6 + p1) 

Pl  = wo  - w 

(6.26) 

(6.27) 

(6.28) 

where 6 is the rotor angle. with respect to a synchronous frame and u' 

is system frequency. The derivation of these equations is given in 

Chapter 2. If the change of frequency of the network is significant 

and the assumotion of constant frequency does not hold, the estimator 

must be informed of pl  if it is to track the system closely. IIere the 

method of previous sections is used to obtain the voltage and phase 

(frequency) of the. system with respect to the rotor (6 +p ).  It was 

assumed that the estimator had the correct tie—line impedance. The 

two measurements used for the estimation of system voltage and phase 

are the same as before, terminal voltage and phase. As before, knowing 

that, 

Vt  = h(Vs, 6 , ...) s  

6t  = g (V, 6s, ...) 

Using a Taylor series and neglecting the second order terms, and 

assuming that only 5 
v 
and V

s 
are changing, 

(6.29) 

(6.30) 
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then, 

which gives, 

AVt 

S t 

AVt 

QV s 

Ads 

= 

= 

c7ti 	cah + 	... 

S 	.. + 

QV 

L 6s 

—1 

. 

s 

1\6t 

Avt 

(6.31 ) 

(6.32) 

(6.33) 

(6.34) 

Avs 	n6S + a6 
s 	s 

~.~ AV 	Q S + av 	s 	16 

	

s 	s 

	

Oh 	Oh 
)11.s 	)6  s 

dem. 

	

Og 
av 
	

06s— 

J2 

Here the estimation requires the calculation of the Jacobian matrix 

J2, the elements 

If the estimation 

constant and 

Improved values 

simpler 

Avsd 

Av 
— 	sq— 

v
(n+1) 
sd 

v(n+l) 
sq 

are 

of 

is 

= 

= 

which must be obtained 

made in Cartesian 

for calculation, 

J 
3 

obtained repeatedly, 

(n) 

	

vsd 	 `A"  Ay 

v(n) —Cf. Av 

	

sq 	sq 

—1— 

form, 

using 

LV , U 

v 

q- 

the 

the network equations. 

Jacobian matrix is 

(6.35) 

(6.36) 

The elements of the J3 matrix are derived in Appendix 6-4. This estimator 

was tested with a change in system frequency. The system frequency was 

assumed to have a half—cycle sinusoidal drop and recovery over two 

seconds (Figure 6.5), which produced about 460 of phase change in the 

system with respect to the synchronous rotating frame. Table 6.13 
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compares the real and estimated values of the direct and quadrature 

components of system voltage after the above frequency variation. The 

variation of v 
sq

, the quadrature component of the system voltage with 

the assumption of constant network frequency and that estimated with 

this estimator, are compared with the real values in Figure 6.6 for 

7.5 seconds. The tolerance E and the acceleration factor( in the 

above tests were 0.005 and 2. The results of Table 6.11 and Figure 6.6 

show that iterations occur and adjustments are made on the system 

voltage components as the measured and estimated values drift away. 

The total number of iterations is 30, and the last adjustment is at 

5.82 seconds. 

An attempt was made to estimate tie—line impedance, system 

voltage and frequency simultaneously. This was done on the basis of 

three additional local measurements. It was found that these local 

measurements were unable to provide information about the power system, 

i.e. the estimator was now working with a system that was not observable. 

The estimator did not provide convergent values, but went into 

mounting oscillations. 

6.9 	CONCLUSION 

A dynamic estimator was devised which leaves the impedance 

of the.tie—line as a variable parameter being adjusted as time gobs 

by by means of an additional measurement which was chosen to be the 

terminal voltage. The adaptive dynamic estimator obtained in this way 

automatically adjusted its internal value of the tie—line impedance. 
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The estimation of this impedance improved the control of the system, 

especially when the impedance change was large. This estimator can 

also estimate the place where the fault has occurred. It is possible 

to simplify this adaptive dynamic estimator by reducing its order, but 

this reduction must be done with care as the modelling error introduced 

affects the estimation of impedance. The approximate dynamic estimator 

9th order) was shown to be successful but the simple estimator 7th 

order) has a poor performance. The adaptive approximate dynamic 

estimator must be simplified by approximating the states of the AVR 

and governor loops but not by simplifying the machine model. 

The adaptive dynamic estimator was applied to the case where 

two parameters required adjustment, making use of two extra measurements, 

in this case terminal voltage and phase. In one study the tie-line 

impedance and the system voltage (previously assumed to be that of an 

infinite busbar) were chosen as the adjustable parameters. The 

adaptive estimator estimated system voltage change and tie-line impedance 

and adapted the dynamic estimator to model the plant. In another study 

the system voltage and frequency were estimated, and updated values 

kept the estimator adaptive and removed any assumption about the system. 

Attempts were also made to estimate tie-line impedance. 

System voltage and frequency (phase) simultaneously. The results show 

that in this case the extra local measurement did  not give any 

information about the external system; in other words, the estimator 

loses observability and fails to converge. 



t 

m.sec. 
Iteration 

Actual 

v
sd 

 Estimated 

v 

Actual 

sq 

Estimated 

0 0 -1.302 1.302 0.248 0.248 

130 1 -1.303 -1.302 0.241 0.238 

210 2 -1.305 -1.304 0.228 0.226 

270 3 -1.307 -1.307 0.218 0,215 

340 4 -1.309 -1.309 0.207 0.205 

440 5 --1.310 -1.310 0.198 0.194 
550 6 -1.310 -1.311 0.199 0.204 

700 7 -1.308 -1.309 0.211 0.205 

990 8 -1.309 -1.308 0.200 0.203 

1090 9 -1.311 -1.309 0.195 0.191 

1220 10 -1.312 -1.311 0.186 0.181 

1300 11 -1.312 -1.313 0.187 0.192 

1440 12 -1.310 -1.311 0.201 0.204 

1520 13 	. -1.308 -1.304 0.211 0.215 

1630 14 -1.306 -1.306 0.223 0.226 

2280 15 -1.306 -1.306 0.221 0.216 

2460 16 -1.306 -1.306 0.223 0.226 

2600 17 -1.304 -1.305 0.234 0.237 

2740 18 -1.302 -1.303 0.244 0.248 

2960 19 -1.303 -1.302 0.241 0.238 

3130 20 -1.304 -1.303 0.233 0.227 

3210 21 -1.304 -1.305 0.232 0.237 

3440 22 -1.303 -1.303 0.242 0.248 

3830 23 -1.303 -1.302 0.242 0.238 

4260 24 -1.302 -1.303 0.245 0.249 

4700 25 -1.303 -1.302 0.243 0.239 

5030 26 -1.302 -1.303 0.245 0.249 

5590 27 -1.303 -1.302 0.243 0.239 

5690 28 -1.303 -1.302 0.243 0.249 

5760  29 -1.302 -1.302 0.244 0.237 

5820 30 -1.302 -1.303 0.245 0.247 

7500 30 -1.302 -1.303 0.245 0.247 

Table 6.11  

Estimated and actual values of the direct- and quadrature-axis 

components of system voltage after a half-cycle sinusoidal drop 

of frequency for 2 seconds. 
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CIIAPTER 7  

LOCAL DYNAMIC ESTIMATORS FOR POWER SYSTEM  

	

7.1 	INTRODUCTION 

In Chapter 5 some dynamic estimators were developed for the 

system, the dynamics of these estimators (Figure 5.3) being similar to 

those of the system129. In Chapter 6 it was recognised that some of 

the parameters change and better estimation and control was obtained 

by telling the estimator to update its internal values of these 

parameters 

Here a different approach is presented to overcome the problem 

of the changes in the system parameters and dynamics. A dynamic 

estimator is designed for the generator system alone as shown in 

Figure 7.1. The structure of this estimator only contains the generator 

and its governing—loop dynamics and consequently it remains constant 

whatever happens in the real plant, such as the loss of tie—lines and 

variation of system voltage. This estimator requires measured values 

of terminal' voltage. The values estimated by this estimator can be 

used to supply a multi—variable controller which requires the system 

variables. It is also shown that this estimator with some assumptions 

can estimate the transmission line parameters. 

	

7.2 	FULL ORDER LOCAL DYNAMIC ESTIMATOR 

To design a full order dynamic estimator for the generator 

alone (Figure 7.1), the dynamics of it viewed from its terminals must 

be considered: 



.0• 

Figure 7.1  

System, controller and local estimator. 
• 
• 
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x' = t (x,u) 

y = g(x,u) 

(7.1) 

(7.2 ) 

The dynamics of the estimator for such a system can be shown to be in 

the form below (Chapter 5): 

x' = .(x,u) + K(y — g(x,u)) 	(7.3) 

where x is the estimated state vector and y is the measured output 

vector. Similar to the design of an estimator for the basic system 

of a generator connected to an infinite busbar,£(x,u) is a set of 

non—linear differential equations which must be linearised around an 

operating condition, to give, 

.where, 

X' = AX +. Bj 

Y = C1X 

X = Ax 

= Au 

Y = Ay. 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

A1, B1, C1  are used in the solution of the estimator Riccati equation 

(5.14), and the estimator gains are derived from eaiation (5.15). 

Although a linearised system model has been used for the determination 

of the estimator optimal gain matrix K, the dynamics of the estimator 

remain non—linear, as shown in equation (7.3). The dynamics of the 

generator viewed from its terminals x6  = 2(x,u) are similar to that of 

the system except that the terminals of the modified machine (as 

explained in Chapter 2) are now fixed at the generator terminals and 

naturally the direct— and quadrature—axis modified machine terminal 

voltage components are entered in the system equation x' = P(x,u) and 
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are now the direct and quadrature components of actual terminal voltage 

vd  and v and are obtained as below: 

vd = Vmt  sin 
 bt 
	 (7.9) 

vq = Vt cos t 
	 (7.10) 

Even when the generator is connected. to an infinite busbar and the 

system voltage magnitude is constant, Vmt,  the terminal voltage 

magnitude is not constant. This fact necessitates the measurement of 

the terminal voltage as an input to the above estimator for the 

calculation of vd  and vq. 

The measurable signal used in this estimator as a forcing 

term for the estimator to track the plant was again speed deviation. 

Using a full order model (11th  order) for the estimator, the estimator 

gains are obtained by the minimisation of the'performance index (5-9) 

through the solution of the estimator Riccati equation, the estimator 

gain of which is a (11 x 1 ) matrix obtained using equation (5.14). 

The estimator gain matrix obtained in this manner is a function of v11  

and v22,  the observation and noise covariance matrices. The effect of 

the variation of these matrices is discussed later. 

Naturally when such an estimator is designed which provides 

the information about the generator dynamics, the controller must also 

be designed in a way that can be satisfied with these estimated values. 

In other words, the controller must be designed on the basis of the same 

model used for the estimator and in this way the say: states which are 

estimated are used for the controller. In this estimator the rotor 

angle estimated is the terminal angle and the flux linkages associated 

with the transformer and transmission line are not considered with the 
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stator fluxes (p
d 
 and d)q. Figure 7.2 shows the performance of the 

system after a three—phase short circuit of 80 ms at the h.v. terminsls of 

the transformer when the dynamic estimator was used to estimate the 

generator variables and they were used to control the generator 

through a full order (lith  order) controller which was designed on 

the hill linearised local system model (equations (7.4) and (7.5)). , 

The two measurements fed to the estimatorlin this case were speed 

deviation and terminal voltage, which were both corrupted with white 

noise of standard deviations: 

- 0.02 + 0.02QW 6speed  

olta ge 0.02 + 0.02 OVt 

where AW and A Vt  are speed and terminal voltage deviations. The 

controller weighting matrices R1  and R2  were similar to those used in 

the design of the controller for the basic system, given in Chapter 3. 

The estimated covariance matrices v11  (11 x 11) and v29  (1 x 1) in 

this test were chosen as unity matrices. In this figure, the 

variations of rotor angle, measured voltage, measured and estimated 

speed, governor and AVR setting and estimated terminal angle are shown. 

This figure shows that the transient stability improvement (first swing) 

and the damping of angle and voltage obtained by this local estimator 

and controller were as good as those with direct measurement or with 

the estimator developed in Chapter 5. The estimated speed had some 

small variations which probably occur because the estimator did not 

include the dynamics of the tie—line and the variation of the line 

impedance and the transients arising from them. The filtering action 

of the estimator might be improved by variation of v22, the measurement 

covariance matrix. h'i_gure 7.3 shows the performance of the system when 
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this estimator is used with a simple controller 7th order). The 

simple controller is designed in terms of the complete system model, 

the generator being connected to the infinite busbar, but the terminal 

angle was chosen as a measurable output instead of the angle with 

respect to the infinite busbar. The method for the design of such an 

output controller is given in Chapter 3. The disturbance was the same 

three—phase short circuit of 80 ms plus the loss of one line after the 

short circuit recovery. In this test, the measured terminal voltage 

and speed are also corrupted with the same noises as in the previous 

test. As is expected, the performance with a simple controller is more 

oscillatory than that with full order controller but still the system 

remains stable, which does not occur with conventional controllers. 

The effect of v11  and v22,  the covariance matrices, on this 

estimator were explored with 
v11 (11 x 11) chosen as a unity matrix 

and v22  was varied. Figure 7.4 shows the effect of v22 (0.01 — 100)  

in rotor angle variation for the fault disturbance of 80 ms. System 

performance is not strongly dependent on v22  but it was observed that 

the values between 10 and 100 gave the best filtering and fast re-

construction speed. 

The above results show that the constant structure estimator 

can be used to estimate generator parameters and improve its perform-

ance without knowledge of the system beyond the machine terminals. 

7.3 	LOWER ORDER LOCAL DYNAMIC ESTIMATOI? 

Lower order local dynamic estimators can be obtained by using 

simpler order system models for the estimator. Similar to lower order 

system estimators explained in Chapter 5, a number of these could be 



1.• 

188, 

R
O

TO
R
 A

N G
LE

 ,D
EG

 

	  v22  = 1.0 	

v22= 
10 

	 v22  = 100 
v22= 0.1 

----v22 = 
0.01 

• 
/ 

_ - //  

‘,. 

N N 	 I 	 i 
0.0 • 0.4 	0.8 

TI ME, S 
1.2 	1.6 

Figure 7.4: 	The effect of v00  variation on the load angle swing 
of the system with full order local estimator and 
controller following an 80 ms three—phase fault. 



189. 

designed and the feeling is that the performance of these estimators 

must degrade as their order reduces. Here only the simple (7th  order) 

local estimator was considered, and it was thought that the individual 

study of all lower order estimators was unnecessary and some general 

conclusions might be obtained from the similarity of these estimators 

with those studied in Chapter 5. 

The simple order local estimator was obtained by using a simple 

system model (7th  order) for the generator system with the regulating 

loops. This model was obtained by fixing the modified machine terminals 

at the generator terminals. The states of this model were those of the 

basic system simple model (Figure 2.1) except that the rotor angle which 

was taken with respect to the generator terminals instead of the 

infinite busbar. Again, the terminal voltage was fed to the estimator 

as an'input and speed deviation was chosen as-the only measurement to 

force the estimator to track the real plant. 

The speed measurement was corrupted with a noise of O.05+0.05Ato 

standard deviation. The estimator designed was expected to estimate the 

simple system model states with the rotor angle as the terminal angle. 

Naturally the controller had to be designed to use the estimated states 

available. The controller could be designed by taking St,  terminal 

angle, as an output and relating it to 6, the angle with respect to 

the infinite busbar in 'a linear form. This type of controller design 

was fully discussed in Chapter 3 in the section concerning output 

controllers. Figure 7.5 shows the performance of t:: system after the 

three—phase fault of 80 ms at the h.v. terminals of the transformer 

when a simple local estimator was used for the estimation of generator 

variables and a simple (7th  order) optimal controller feeding back bt  

instead of 6 was used. The estimator covariance matrices in this case 
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were chosen as v11  (7 x 7) = CI] and v92 = 100. The controller state 

weighting matrix R1  was similar to the one given in Chapter 3. The 

control weighting matrix R2  was chosen as: 

R2  = diag.(0.001, 0.001) (7.11) 

This figure shows that the speed was well filtered and the system 

performance was comparable to those with the direct feedback of states. 

The effect of v22  variation on the performance of the system was studied 

and it was again found that a value between 10 and 100 was best, giving 

good filtering and fast reconstruction. 

Another design of controller suitable for this simple (7th 

order) estimator is obtained by the use of the same linearised simple 

(7th order) system model, used for the estimator design which is the 

simple generator model up to its terminals. Figure 7.1  9:1ows the 

performance of the system when such a controller is used. The value 

of v22  is 10 and R2  matrix is the same as that of Figure 7.3. This 

figure shows that although both controllers have the same behaviour 

from the transient stability point of view and the same damping, the 

latter controller has an initial steady state error after 1.5 seconds. 

This steady state error would disappear later. 

7.4 	A LOCAL ESTIMATOR TO ESTI`IATE TIE TIP—LINL IMPED\NCE 

The local estimators developed in this chapter for a 

generator connected to an infinite busbar were used to estimate the tie—

line impedance. The system considered was a generator connected to an 

infinite busbar, the frequency of which was constant. If it is also 
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6 = J(xe, re,  x1,  x2, ...) 

a Taylor series, ignoring second order terms, gives: 

A6 = ?d 

	

	lb Are x + ax 	e 	or 	e + 
a 	e 

also 
r 
0 r = 	Y 

e 	x 	e 
0  

(7.13) 

(7.14) 

(7.15) 

where r 
0 

and x 
0 
are the initial steady state values. Then: 
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assumed that the network frequency is constant, there is a fixed 

difference between 6t  and ā. The estimate developed in Section 7.2 can 

give values for machine busbar quantities. From a knowledge of these 

quantities together with approximate values for line impedance, 

estimated for vbd  and vbq  can be obtained by the use of network 

equations (2.40) and (2.41). Thus the estimated value for b is 

obtained as: 

tan 6 =  vbd  
v
bq  

(7.12) 

and 6 must equal At  plus the steady state difference. Thus the impedance 

used for the calculation of 6 is iteratively adjusted until the measured 

and calculated values of 6 are within a chosen tolerance. The initial 

guess for the tie—line impedance can be its normal operating value. 

The above iterative process adds the requirement of measuring terminal 

angle for the estimation of line impedance. 

Thus, as the rotor angle with respect to the infinite busbar 

6 is a function of tie—line impedance, xe, resistance, re, and other 

system variables, 

pa = )6 )6 ro 
(ox + or  :7-) Axe  e 	e o 

(7.16) 



and rearranging 
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A6  
= Axe a6 a6 ro 
ax are e e o 

and 
r 

Are = Axe x
o 
 

Better values for xe and re can be obtained by: 

x(n+l) = x(n) —Ct Ax e 	e 
r (n+1) = re —a —a Are 

0 

(7.17) 

(7.18) 

(7.19) 

where q, is an acceleration factor. This requires the calculation of 

36/axe and Ware: 

pi 	i 	v 	pi 	i 
36 _ 	. 	1 	1 	d _ ____ic _  	— 	d 

[ ( 	) (-1'1-X—(1 } (. 
axe 	(1 + tan26) vbq Wo 	Wo 	vb 	 o 	Wo 

q 

.20) 	• 

36 _ 	1 j~a — °balm 
Or 

e 	(1 + tan 	vbq 	v2q 
(7.21) 

which are derived in Appendix 7-1. 

The first test with this estimator was the estimation of tie—

line impedance during a three—phase fault, and its recovery. The fault 

duration was 80 ins at the h.v. terminals of the transformer. Figure 7.7 

shows the performance of the system and the estimated values. The 

value of the tolerance E in this test was 0.005. This figure shows 

that initially after the short circuit there was a mal—estimation of 

the impedance and this was corrected very quickly. After short circuit 

recovery the estimator estimated the impedance very well but initially 

it had very small oscillations about the value of the impedance. The 

misbehaviour of the estimator initially after the short circuit and the 

small oscillations after the short circuit recovery can be explained 

in terms of the error introduced by the assumption of constant network 
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frequency. The above estimator was improved by assuming that the 

reactance and resistance of the line could only change between zero 

and three times the normal value. Also, to improve the convergence 

of the estimator, the values of caS/ōx 
e 
and 6/ r 

e 
were calculated 

continuously, but limited: 

ax, ar i 0.5 
e 	e  

(7.22) 

āX 
j >, —0.5 

e 	e 

These restrictions were imposed because very small values of 3S,/3x 
e  

and a6/ re  produced very large adjustments in the impedance which 

produced oscillations and. delayed the convergence. The iterative 

process for the estimation of tie—line impedance was stopped when 

either the measured and the estimated output (terminal angle) lay 

within the chosen tolerance, or the adjustment made in the value of the 

impedance was less than a chosen value. Finally, the number of 

iterations was also limited. 

The second test was the estimation of tie—line impedance after 

the same fault with the loss of one of the lines after the short circuit 

recovery. Figure 7.8 shows the performance of the system with the 

estimator when a simple (7 th  order) controller is used for the control. 

The estimated values of -the line reactance are also shown in this 

figure. The value of the tolerance and other restrictions are the same 

used in the previous test. This figure shows that the estimation of 

the line impedance during the short circuit and after its recovery is 

similar to the first test except that the value of the estimated 

impedance is twice the normal value. 

(7.23) 
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These two tests show that the local estimator can success-

fully estimate the tie-•line impedance with the use of one extra 

measurement chosen here as the terminal angle 6t. 

7.5 	A LOCAL ESTIMATOR FOR A GENFIIATOR CONNECTED TO A 
SYSTEM WITH VARIABLE VOLTAGE AND FREQUENCY  

The local estimators developed in this chapter were based on 

the assumption that the generator was connected to a busbar with 

constant frequency (Figure 2.1). This assumption might not be acceptable 

in some cases. As explained in Chapter 6, the variation of system 

frequency affects the components of system voltage in the direct— and 

quadrature—axes which also determine the rotor motion. It was shown in 

Chapter 6 that for correct estimation these voltage components must he 

determined properly. In frequency variable systems this requires 

knowledge of the voltage magnitude and phase with respect to the rotor 

position. In the local estimator when the system frequency varies, the 

position of the rotor with respect to the terminal voltage will vary 

and so will its direct— and quadrature—axis components vd  and vq. In 

these cases the values of vd  and v are defined as: 

vd 	Vmt  sin(6t  +Īpi ) 

v 	= Vmt  cos(6t  +(J1)  
q 

(7.24) 

(7.25) 

where St is the rotor position with respect to a synchronous frame 

initially in phase with the terminal voltage and P1 the terminal 

voltage phase difference with respect to the synchronous frame. For 

correct calculation of vgl  and vq, (bt  + p1), the phase angle between 

the rotor position and terminal voltage, must be defined. This 
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necessitates the infeed of both the terminal voltage magnitude and 

phase to the estimator in those cases where the constant system 

frequency assumption does not bold; in other words, the assumption 

P1z 0 is not valid. 

Figure 7.9 shows the performance of the system for 7.5 seconds 

after a half—cycle sinusoidal drop in system frequency for 2 seconds. 

This figure shows that S and bt,  the rotor angles  with respect to the 

system voltage and terminal voltage, both get a steady state error of about 

46o  because of this frequency drop. This loss of phase would not have 

been realized by the estimator if the terminal angle had not been fed 

to the estimator. In this test the system was not provided with any 

controller and only the conventional loops were functioning. The aim 

of this test was to display the behaviour of the estimator. 

7.6 	ESTPIIATION OF TIE—LINE PIPEDANNCE FOR VARIABLE FRFQUFNCY SiSTEIS  

The local estimator developed in the previous section can 

estimate the generator variables accurately despite changes in the 

system voltage and phi-se. In this section the estimation of tie—line 

impedance in such conditions is examined. The method explained in 

Section 7.4 for the estimation of tie—line impedance is based on the 

assumption that the system frequency remains constant. In the general 

case where the system voltage and frequency varies, the tie—line 

impedance cannot be estimated with the use of extra local measurement 

as the system observability is lost. In other words, any other 

machine measurement does not add to the knowledge of the system and 

is already available in terms of existing measurements. However, in 

these conditions the tie—line impedance might be estimated if either 
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some assumption could be made about the system voltage, like constant 

magnitude or frequency, or some information could be obtained about 

it which this information too might be obtained through a static 

estimator. 

Here, firstly, it was assumed that one measurement could be 

transferred from the system busbar and a method is described for the 

estimation of the tie—line impedance. The measurement transferred 

could either be the system voltage magnitude or phase (frequency). 

The estimator developed in the previous section can give values for 

machine busbar quantities. Use of these values in the network equations 

2.40) and (2.41) together with approximate values for line impedance 

gives estimates for vbd  and vbq  even when system voltage and frequency 

are varying. From these values of vbd  and vbq, the position of the 

rotor with respect to the system voltage,
s
, is obtained as: 

where, 

tan 5 	=  Jbd  
s 	vbq  

bs  = 6 + pl  
pl  = W0 -w 

(7.26) 

(7.27) 

(7.28) 

where 6 is the rotor angle with respect to a synchronous frame originally 

in phase with the system voltage, p1 is the phase difference of system 

voltage with respect to that frame and Wis the system frequency. By 

the measurement of the system phase with respect to the synchronous 

frame, the actual value of 6s  can also be obtained. The estimated and 

actual values are also obtainable. The estimated and actual values are 

compared and if the error is not within a given margin, the value of 

the tie—line impedance is adjusted using the iterative technique as 

before. The corrections in the values of r
e and x are obtained using P. 

similar method as before: 



Axe = 36 	ld r 
s s o 

(3x + ōr x ) 
e 	e o 

Ass  
(7.29) 
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r 

Are = 	Axe x 
0  

and improved values for xe  and re  are obtained repeatedly, 

x(n+1) = x(n) —a  A xee 

r  (n+l ) 
= r (n) —a Aree 

(7.30 ) 

(7.31) 

(7.32) 

where a  is an acceleration factor. This requires the calculation of 

ad s /6x e and ab s /ar  e given in equations (7.20) and (7.21). 
• 

The first test with this estimator was the estimation of the 

tie—line impedance after a three—phase short circuit of 80 ins at the 

h.v. terminals of the transformer, with the loss of one line and a 

sinusoidal drop of 2 seconds in system frequency after the short circuit 

recovery. Figure 7.10 shows the performance of the system and the 

estimated values for 7.5 seconds, The values of the tolerance E and 

the acceleration factor a in this test were 0.01 and 0.2. The 

restrictions discussed in Section 7.4 were considered in the estimation 

of impedance so that the method converges faster. This figure shows 

that the estimator performs very well during short circuit and after 

its recovery despite some small variations in the estimated values of 

the tie—line reactance just after the short circuit recovery. The 

estimation time interval in this case was set to 10 ms because values 

were wanted for a longer period, 8 s. Figure 7.11 shows the same 

variables when the estimation time interval is 2 ms. Isere the small 

variation in the value of estimated reactance disappeared and the 

quality of estimations improves. It is queshiVi]ahle whether the 
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improved results justify the extra cost that estimating in 2 ms, rather 

than 10 ms, should involve. If instead of transferring system frequency 

it is assumed that the terminal voltage and the system voltage have 

similar frequency, the iterative process explained in Section 7.4 

can be used to estimate the tie—line impedance. Figure 7.12 shows 

the performance of the system and the estimated values for 7.5 s for 

the same disturbance of Figure 7.10, a fault of 80 ms with a sinusoidal 

drop of 2 s in system frequency after the short circuit recovery. This 

figure shows that the quality of the estimation of tie—line impedance is 

poorer than that of Figure 7.10. The estimated reactance after the 

fault recovery has a damped oscillation of the same rotor swing 

frequency about the correct tie—line reactance. The value of tie—line 

impedance can be correctly determined from this estimator, but it 

requires a fraction of a second before the decision is made, unlike the 

case where the system frequency was known (7.10). Also, there is no 

guarantee of correct estimation with the above assumption when there 

is an ultimate change in tie—line impedance as the steady state 

difference between 
.s 

 and St  changes. 

7.7 	CONCLUSION 

In this chapter local estimators were developed. The 

dynamics of this estimator does not include the system dynamics beyond 

the generator terminals and consequently the structure of the estimator 

remains constant despite changes in the tie—line parameters. However, 

this dynamic estimator when estimating the parameters of a system of 

a generator connected to a constant—frequency busbar, requires the 
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infeed of terminal voltage measurement. The infinite busbar is a special 

case of a constant frequency busbar with constant voltage magnitude. 

This estimator was very successful in estimating the generator and its 

governing—loop variables which were used for control of the system. 

The system controller was designed on the basis of a local system model 

so that it is satisfied with the estimated values. The controlled 

system performance with this estimator showed comparable results with 

those of the full order system estimator developed in Chapter 5 or 

using direct feedback of states with a full order controller. 

Lower order local estimators are obtained by simplifying the 

system model. The results obtained for a simple 7th  order) local 

estimator showed the same trend observed in Chapter 5 for system 

estimators in the sense that the reduction in the order of estimator 

and controller impairs the system performance and a compromise must be 

reached between the performance improvement and the estimator order. 

A method was proposed by which the transmission line impedance 

can be estimated by a local estimator. The method requires the measure- 

ment of the terminal angle. A full 

	measure- 

/ 
	order) local estimator 

obtained the tie—line impedance very well during the short circuit and 

after its recovery. 

In the general case where the system voltage and frequency 

are changing, it was shown that the local estimator performs very well 

but requires measurements of both the terminal voltage and phase. 

However, the tie—line impedance cannot be estimatedwith the use of 

local measurements. It was shown that the tie—line impedance could be 

estimated accurately if one measurement from the system is accessible. 

This measurement could be the voltage magnitude or frequency (phase). 
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The results obtained with the system frequency measurement proved 

very successful in tie—line impedance estimation. The time interval 

for system frequency measurement might be longer than that of local 

measurement because of the slow variation of its nature. 

As the dynamics of the transformer and the transmission line 

are not included in the local estimators, these estimators have some 

advantages over the system estimators developed in previous chapters. 

Firstly, the structure of them remains constant and, secondly, the 

error due to bad tie—line impedance estimation does not affect the 

future estimated values. 
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CONCLUSIONS 

8.1 	CONCLUSION OF THE STUDY 

The studies in this thesis show that linear optimal controllers 

improve the system performance both under large and small disturbances. 

The studies of the effect of system modelling on the controller design 

demonstrate the advantage obtained with fuller models. For a three—

phase fault of 80 ms in the system considered, the first swing with a 

simple linear controller (7th  order) is 23°  and is 6°  less when a 

full controller (11th  order) is used. If these results are compared 

46 
with those of Elmentwally et al where, for a disturbance causing about 

23°  swing with simple linear controller, the non—linear controller 

obtained through non—linear optimization technique could only improve - 

it 2.5°  (excitation control loop only), then the effect of system 

modelling in controller design can be appreciated. The purpose here 

is not the deprecation of any non—linear optimization technique, but 

to emphasize the importance of system modelling in the controller design. 

It has been shown here that the approximate 9th order) system model 

is a very satisfactory choice for the design of controllers. 

The variation of optimal controller gains with the operating 

point is given. A few values of regional gains would be necessary in 

some loops. Others are effectively constant in the generator operating 

region. 

Output controllers, replacing unmeasurable states with other 

variables, were shown to have performances comparable to those using 

unmeasurable states directly. 
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The results obtained from modal controllability studies 

show that all the modes of the system are controllable through both 

AVR and/or governor action, but that the relative controllability of 

very fast system modes due to stator transients is very low for both 

loops. Some modes are clearly better controlled by one loop than the 

other, and it may be concluded that the use of bath loops is likely to 

give the best control. 

The introduction of integral action on some system parameters 

seems to be very useful. In the cases where the analogue controllers 

exist, it would be more appropriate to leave integral action on 

supplementary signals provided for stabilization through AVR and 
• 

governor settings. When there is no conventional AVR or governor loop 

the use of integral action on important system variables such as 

terminal voltage, power and rotor angle ensures that they regain their 

set values. 

Dual mode controllers are quite effective, especially when the 

controllers are designed on the basis of simple system models. Three 

different dual mode control algorithms were proposed: a linear 

optimal controller with high and low gains in succession with 0.3 s 

switching time, a bang—bang controller with only one switching of 

100 msec followed by a linear optimal controller, and finally a linear 

controller with high and low gains in succession determined from 

Lyapunov's second method. In this arrangement the gains used for 

signals fed to the excitation under high gain conditions are a common 

multiple of those used with low gain. Similarly, those used in the 

governor are a different common multiple of the low gain values. 

This feature makes the controller attractive. 
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A non—linear controller is developed feeding back high order 

terms of system states as well as linear terms. The design of the 

controller is similar to that of a linear optimal controller and 

requires the solution of a matrix equation. The results obtained 

showed that this controller acted in a similar manner to dual mode 

controllers, improving the transient stability limit while the damping 

remains as good as that obtainable with linear optimal controllers. 

Further study is required for simplification and elimination of some 

of the non—linear feedback elements whose contribution is small. 

In the development of the system dynamic estimator, a 

necessary condition for an asymptotically stable dynamic estimator is 

that all the modes of the'system are observable by the chosen measured 

signals. The measured signal chosen here was speed and with the use 

of the modal observability technique, this signal was shown to fulfill 

this requirement. Any other signal or signals chosen instead of speed 

must be checked for modal observability. 

The optimal estimator designed was shown to have low 

sensitivity to the system parameters. This was confirmed with a test 

in which the estimator machine parameters are 105 different from 

those of plant and the performance of the system was marginally 

different from that with the exact parameters. ' 

The variation of optimal estimator gain matrix K with the 

operating point was studied in a broad region of conditions. This 

study showed that the variation of the elements of the K matrix in 

the normal operating region is small and in the remainder of the 

feasible operating regions, a series of local values might be used to 

represent them. 
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In the development of the lower order dynamic estimators, 

using lower order system models, as in the controller design problem 

when the order of the dynamic estimator is reduced, so the number of 

estimated signals and the system performance deteriorates. The other 

important result is that a deterioration in the system performance 

can be introduced either by the low order of the estimator model or 

that of the controller. This means that the system performance 

remains about the same with a full order estimator or a simple 

estimator when a simple controller is used. In other words, the system 

models on which the controller and the estimator are designed should be 

the same. 

All the estimators of varying order that were designed 

filtered the measurement noise very well. It has been shown that the 

estimator can control the system well even when the ratio of noise to 

signal is so high that the system with direct measurement of the 

states is unstable. The effect of the variation of the estimator 

measurement noise covariance matrix v22  on the system performance was 

studied and in all cases a value for v22 of between 10 and 100 gave 

good filtering and reconstruction speed. However, this must not be 

taken as applicable in every situation and, depending on the noise 

which measurement devices introduce, this value should be adjusted. 

It is possible to reduce the order of the estimator by 1, if the 

measured signal is directly used in the feedback. This introduces some 

noise to the controller signal which might become important if the 

measurement noise is high. 

Dynamic estimators were developed which only estimate the 

parameters of part of a system if only this is required. Obviously 
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the order of these dynamic estimators is much less than the whole 

system dynamic estimator. As an example, a governor system estimator 

was developed. This estimator measures the valve position and 

reconstructs the governor states such as mechanical torque which is 

not measurable. 

The effect of the estimation interval on the estimator 

performance was considered. The results showed that for time—steps as 

large as 20 ms the performance of a full (11th  order) dynamic estimator 

is almost unchanged. This time—step, however,  could be much higher for 

lower order dynamic estimators. 

An adaptive dynamic estimator has been devised which leaves 

the impedance of the tie—line as a variable parameter, it being 

adjusted periodically by means of an additional measurement which was 

chosen to be the terminal voltage. This estimator automatically 

adjusted its internal value of the tie—line impedance. The estimation 

of this impedance improved the control of the system, especially when 

the impedance change was large. This estimator can also estimate the 

place where the fault has occurred. The simplification of the adaptive 

estimator was done by reducing its order, but this reduction must be 

done with care as the modelling error introduced affects the estimation 

of impedance. The approximate dynamic estimator 9th  order) was shown 

to be successful but the simple estimator (7th  order) has a poor 

performance. The adaptive approximate dynamic estimator might be 

simplified by approximating the states of the AVR, and governor loops 

but not by simplifying the machine model. 
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The adaptive dynamic estimator was applied to the case where 

two parameters required adjustment, making use-of two extra measure-

ments, in this case, terminal voltage and phase. In one study the 

tie—line impedance and the system voltage (previously assumed to be that 

of an infinite busbar) were chosen as the adjustable parameters. The 

adaptive estimator estimated system voltage change and tie—line 

impedance and adapted the dynamic estimator to model the plant. In 

another study the system voltage and frequency were estimated, and 

updated values kept the estimator adaptive and removed any assumption 

about the system. 

Attempts were also made to estimate tie—line impedance, system 

voltage and frequency (phase) simultaneously. The results show that in 

this case the extra local measurement did not give any information about ' 

the external system; in other words, the estimator lost observability 

and fails to converge. 

Local dynamic estimators were developed, the dynamics of which 

do not include the system dynamics beyond the generator terminals, and 

consequently the structure of the estimator remains constant despite 

changes in the tie—line parameters. However, this dynamic estimator 

when estimating the parameters of a system connected to a constant—

frequency busbar, requires the infeed of machine terminal voltage. This 

estimator was very successful in estimating the generator and its 

governing loop variables which were used for control of the system. 

The system controller was designed on the basis of a local system model 

so that it only required the estimated values available. The system 

performance -with the estimator and controller showed results comparable 

with those of a full order system estimator developed earlier or direct 
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feedback of states for a full order controller supposing them to be 

available. 

Lower order local estimators were obtained by simplifying 

the system model. The results obtained for a simple (7th  order) local 

estimator showed the same trend observed before for an estimator of the 

whole system, in that the reduction in the order of estimator and 

controller impaired the system performance and a compromise must be 

reached between the performance improvement and the estimator order. 

A method was proposed for the estimation of transmission line 

impedance by a local estimator. The method requires the measurement of 

the terminal angle. A full (11th order) local estimator showed itself 

very successful in estimating the tie—line impedance during the short 

circuit and after its recovery. 

In the general case where the system voltage and frequency 

are changing, it was shown that the local estimator performs very well 

but requires measurements of both the terminal voltage and phase. 

However, the tie—line impedance cannot be estimated accurately with the 

use of local measurement. It was shown that the tie—line impedance 

could be estimated accurately if one measurement from the system is 

accessible.. This measurement could be the voltage magnitude or 

frequency (phase). The-results obtained with the system frequency 

measurement proved very successful in tie—line impedance estimation. 

The time interval for system frequency measurement might be longer 

than that of local measurement because of its slow variation. 

As the dynamics of the transformer and the transmission line 

are not included in the local estimators, these estimates have some 
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advantages over the system estimators. Firstly, their structure remains 

constant and, secondly, the error due to bad tie—line impedance 

estimation does not affect the future estimated values. 

On the whole a dynamic estimator could be looked at as a 

digital equipment which uses as input a few system measurable parameters 

and estimates other system parameters. This in itself can be 

substituted for measuring devices and could be of help to the operator 

in presenting all the system parameters. Furthermore, as shown in this 

thesis, it can be used as a part of a control loop. Although in the 

studies made here the estimators were used to supply optimal controllers, 

they can be used to supply other control apparatus, linear or non—linear, 

which require some system parameters like acceleration, voltage, etc. 

8.2 	SUGGESTIONS FOR FURTHER WORK 

The first extension of this work seems to be the design of 

optimal controllers for the system with the consideration of mechanical 

dynamics of the turbine shaft, so that the controller designed, also 

damps the mechanical modes of the system. To apply such a controller, 

a dynamic estimator must be developed which includes the shaft 

mechanical dynamics. 

The design of an optimal controller for a system with the 

control of the variations of the AVil and governor settings together 

with network parameters changes (switching capacitors or braking 

resistors, etc.) is another line for further research. Such a study can 

show the relative effectiveness that each input can have on the control 
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of the system and with the consideration of their interactions, 

algorithms can be developed for computer control of these variables. 

The multi-machine control studies is another area for the 

extension of this work. The relative modal controllability technique 

applied to one-machine system here can be applied to multi-machine 

systems. This study will show the most effective control inputs (AVR 

and governor settings) in the system, in the sense of damping the 

system modes. The results can be used in existing power systems for 

deciding where the new stabilizers should be installed for the best 

improvement to system stability. 

An optimal controller can also be designed for a multi-machine 

system. A multi-machine dynamic estimator can also be developed to 

supply the optimal controller. The modal controllability studies are 

helpful in the elimination of ineffective inputs. Modal observability 

studies can be used to assess the minimum number of measurements and 

their locations. As a multi-machine system dynamic estimator must have 

information about the parameter changes in the whole system, it 

requires the real time information about circuit breakers, etc. This, 

however, can be avoided with the application of the adaptive technique 

developed in this thesis for the estimation of network parameter changes. 

The performance of such a whole system controller and estimator can be 

compared to one where the local estimators and local controllers 

developed here are applied to the individual generator or at least to 

the largest generator in the system. 

The practical application of the estimators for the control 

of generators and dedication of cheap digital components (microprocessors) 
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to the development of the estimator and other parts of controller 

systems is the ultimate target of this project. 

The co—ordination between the transient stability and 

voltage—frequency controllers is another area in which further research 

needs to be done. 
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VECTORS OF MACHINE STATE VARIABLES 
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Xmd
+Xa Xmd 	Xmd 

xmd 	Xmd+Xf Xmd 

xmd 	xmd 	Xmd+Xkd 

CXgdJ (A2-1.2) 

Q 	xmq+xa 
	xmq 

	

CJlgq~ - x 	x +x mq 	mq a 

ra 	0 	0 

	

CRgd1 = 0 	rf 	0 

	

Lo 	0 	
rkd_ 

0 

	

CRgq~ =
a

[01 	
rkq 

(A2-1.3) 

(A2-1.4) 

(A2-1.5) 



r 	—x 
ae 	qe  a1 = Z2 ' 	a2  = 	

Z2  
a3  = 

xde 	rae  
lit 	

72 	
b2  = 	

Z2 , 
	b3  = 

—x
gexmd  

Z2  
(A2-2.8) 

(A2-2.9) 
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APPENDIX 2-2  

• 

SIMPLE MACHINE MODEL  

Neglecting p d, p1q, p(Pkd,  pkpI{q  the machine equations 

(2.1)—(2.10) can be summarised as follows. The infinite busbar is 

taken as machine terminals: 

(A2-2.1) 

(A2-2.2) 

(A2-2.3) 

(A2-2.4) 

(A2-2.5) 

vbd 	= LOOP(' + raeid 

vbq 	— Wo `4d + raeiq 

vf 	= rfif  + P(xmdi +(xmd+xf)i1)4wo 

Wp ( d 	(xae+xmd)id  + xtndlf  

Wo (Pd = 
(xae +x )i mq q 

By eliminating 	d and 	q, id  and i are obtained as: 

id = alvbd + a2vbq + a3if 

iq  - blvbq  + b2vbq  + b3if  

(A2-2.6 ) 

(A2-2.7) 

where: 

where: 	r 	= r + r -F r 
ae 	a 	t 	e  

xae  = xa  + xt  + xe  

xde  = xd  + xt  + xe  

xqe  = xq +xt +xe  
2 

Z2 	rae + xgexde 

(A2-2.10) 

(A2-2.11) 

(A2-2.12) 

(A2-2.13) 

(A2-2.14) 
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Substituting for ici and i in equation (A2-2.3) gives: 

pif = Dlv f + D2V 6 sin 6 + D3Vmb6 cos 6 + Dt}i f 	(A2-2.15) 

where: Dl = Wo/a 	 (A2-2.16) 

D2 = — xge3md 	(A2-2.17) 
ZF 

— xmd3ae 	 (A2-2.18) D3 — 
ZF 

D1 
_ — Worf/a 	 (A2-2.19) 

Zf = Z2(xmd+xf) — xmdx qa 
	 (A2-2.2o) 

a = ZJZ2 	 (A2-2.21) 

Electrical torque is obtained by substituting the above values of current ' 

and fluxes in equation (2.11), as: 

Me = C1sin245 + C2cos26 + 2 + C4sin4.cos6 + C.-ifsins + Cico:s6 

(A2-2.22) 

where: 

Cl = Jr
aexdeVmb/

Z4 

q" 

C2 = —1(xd—xq)raex.geV2
1 

mb /Z} 

C = 	t 
1x2 r (x 

 
2+r2 )/Z

t 
3 	' md ae q ae

2 C4 = iv2  (x d—xg
) (r2e—x.dexge)/Z

t f 

C5 	211~(xd—xq) 
(rae -xdexge)Ymudvmb + 72 mdxdeemb 

Z 

C6 - a exmdvmb - 2. ' d-a q )x q z 
Z` 	Z- 

(A2-2.23) 

(A2-2.24) 

(A2-2.25) 

(A2-2.26) 

(A2-2.27) 

(A2-2.28) 
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In this model terminal voltage components are: 

vd  = x i + raid  
q q 

v 	= —xdid  — xmdif  -i- raiq  

(A2-2.29) 

(A2-2.30) 

Substituting for id  and iq  from equations (A2-2.7) and (A2-2.8): 

where: 

vd 	e1sinb + e2cosS + e3if  

vq  = f1sinS + f2cosS + f3  if  

el = Vmb(x
gbl  + raal) 

e2 = Vmb(xgb2 + ra
a2) 

(xgb3  + a3ra) 

f1  = mb(—x
dal  + rabl) 

f2  = mb(—xda2  + rab2) 

f3  = (—xda3  + rab3  - xmd) 

(A2-2.31) 

(A2--2.32) 

(A2-2.33) 

(A2-2.34 ) 

(A2-2.35) 

(A2-2.36) 

(A2-2.37) 

(A2-2.38) 
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SYSTEN MODELS  
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simple (7th order) (c) 
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Ai_xe) 

wo 
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Lkw lgxe  
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SYSTEM LINEARISATION 

In each system model there are non-linear terms for terminal 

voltage and electrical torque, amongst others. Linearisation of all 

terms except the terminal voltage is straightforward by the use of 

equation (2.50). The linearisation of Vt is as follows: 

but: 

Vt (v2 + vq)/2 

avt 	avt 

Avt 	av d Avd + av ~vq 
q 

avt 	vd 	avt 	
vg  

3V 	2Vt' 3vq - 2Vt 

v
d 

QVt = 2VtQvd + 2Vd q 

(A2-4.1) 

(A2-4.2) 

(A2-4.3) 

(A2-4.4) 

Equations (2.40) and (2.41) are linearised to obtain A vd, Av : 

(A2-4.5) 

where: 

Avbd = A (fbsinb) = VmbcosS A6 

Avba 	
A(VmbcosS) - -Vmbsin6 AS 

(A2-4.7) 

(A2-4.7) 

and current terms are functions of'fluxes (equations (2.27) and (2.28)). 

After the manipulations, AVt is stated as follows: 



(A2-4.18) 

(A2-4.19) 

(A2-4.20) 

(A2-4.21) - 
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QV = V AS + v2 	+ v3A I d + 
V11 	+ v 	+ v j j) + V  t 	2 	`~f' 	~~f 	5~~~lcd 	(i~ 	1~`~'hc 

(A2-4.8) 

where: 
V 

vl 	2 h
(vd V 	cosb - vgsinō) 

t 

X e 
v2 = 2 oVt(vdiq - vgid) 

Ygd(1,1) 
v3 2Vt 	(-regvd + xegvq) 

Ygd(l,2) 
v4 	2Vt 	(-regvd + xegvq) 

Ygd(1,3) 
- 	2V 	(-regvd + xegvq) 

t 

Y~(1,1) 
v6 = 	

2V
t (-xegvd - regvq) 

Y
q
(1,2) 

v7 	
2V
t (-xegvd - regvq) 

and: 	r_ = re + rt 

X 	= X T X 
eq 	e 	t 

The variation of electrical torque is: 

L Me = 
M3 A (W 0 ̀ )d) + N116'( wo q) f) + N5 A (a qj kd ) 

+ ̀ 16 A( Wo t4)q) + M7 (wo'Pkq) 

M3 = 0.5 Y(6) CYq(1,1) - 
Ygd(1,1)] 4 Y(7)Ygq(1,2) 

N1 = -0.5 Ygd(1,2)Y(6) 

M5 = -0.5 Ygd(1,3)Y(6) 

(A2-4.9) 

(A2-4.10) 

(A2-4.11) 

(A2-4.12) 

(A2-4.13)• 

(A2-4.14) 

(A2-4.15) 

(A2-4.16) 

(A2-4.17) 
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M
6 
	= 	Or>I'i(3) Clgq(1,1)-1gd(1 T 1)l —Yg (19 2)Y(4)—Ygd(l,3)Y(5) 

(A2-4,22) 

M7 	= 	0.5 Ygq(1,2)Y(3) (A2-4.23) 

The linearised full system model is: 

1 	, 	I 	 , 
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.e 

In the same way, other linearised system models are given below. In the 

derivation of linearised approximate model, it is very important that 

equations (2.33) and (2.34) are taken into account and linearised. 
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G21 = J Fi3 mU (sind—Z̀ (1,1)cosb)+M6V.h(cos6+Z1(1,1)sinS)] 

G23 = 
J [M

3Z1(12)Z2(1,1) + ri6Z1(1 ,2) + M,] 

G24 = J 
L 

M3z1(1,3)Z2(1,2) + M6z1(1,3) + M51 

G~5 = J [_I3z(1,2)  — M6z1(1,1)z2(1,2) + M7] 

G 

G61 = - TA [V3Vb(sino—Z2(1,1)cosS)+V-Vmb(cos6+Z1(1,1)sini )+V1] 

G 
G63 = - T[_v3z1(1,2)z0(I,1)  + V6Z1(1,2) + V4] 

G 
G64 = — T~ C 

V~Z1(1,3)Z2(1,1) + V6Z1(1,3) + 
V51 

GA 
G65 = — T [\r_Z1(l,2)  — V6Z1(1,1)Z2(1,2) + V7J A 
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Linearised 3rd order 
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SYSTEM MODEL WITH DISCONNECTED PEGULATING LOOPS 

2/13. 

(a) 	Nonlinear. 
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2.1S1  
Imt - V 

(A2-6.4) 

tans = V 
mt 

- rcosy( - x sill¢ a 
mt 	q 

x cosy( - r sink( 
q 	a 

(A2-6. 7) 
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CALCULATION OF STEADY STATE OPERATING CONDITIONS  

If the generator is feeding a load of S = P+JQ p.u., then: 

S = P + jQ = VtIt (A2-6.1) 

tan  = P/Q 	 (A2-6.2) 

From the axis transformations: 

vd = Vmtsinb 

vq = Vmtcosb 

id 	Imtsin(b_') 

i = Imtcos(b- 

(A2-6.3) 

where V
M 

and I 
m 

are maximum values and: 

In the steady state the transient terms and the damper circuit currents 

are zero. So from equation (2.9): 

(ilo l~q 	xglq (A2-6.5) 

If the values (A)o yq, vd, vq, id, iq are substituted from equations 

(A2-6.3) and (A2-6.5) into equation (2.1), then: 

Vmtsin6 = raImtsin(s-f) + xgImt
cos(6-0) (A2-6.6) 

Expanding sin(b-0) and cos(b-O), then the value of tant is found to be: 
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with this value of 3 the axis voltages and currents can be derived from 

equation (A2— .3) and field current in the steady state can be found as: 

if  = (Wo Yd xdid)/Xmd 

vf = rfif 

(A2-6.8) 

Also, the AVR and governor settings are obtained by neglecting the 

derivative terms as follows: 

of  

Yo  = Ap  = MT 
 

VE. 
 rf  

It is noticeable that a factor of 	is taken account of 
Xmd 

in GA, AVR amplifier gain; which is necessary for the conversion of 

stator base to field voltage base. 

VR  = Vt  — G
AGE  



	

= 0 	(Control Equation) 

	

0 	(State Equation) 

3L4  
au 
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OPTIMAL CONTROL METHODS 

Consider a dynamic system described by the vector equations: 

x' = f(x(t), u(t), t) x(to ) = Xo  (A3-1.1) 

'where x(t) is the state n-vector and u(t) is the control m-vector. For 

convenience the argument of x(t) and u(t) is dropped below, where no 

ambiguity arises. Let the performance index be: 

If 
I = J L(x, u, t)dt 	 (A3-1.2) 

0 

where L(x, u, t) is the performance measure. The optimal control problem 

is to find the necessary conditions to be satisfied by the control and 

state vector u(t) and state vector u(t) and x(t) for the time t such 

that to  < t < tf  in order to minimise the performance index, subject to 

the dynamics of the system represented by the state equation (A3-1.1). 

By using variational calculus, this constrained function 

minimisation problem is converted to an unconstrained one through the 

Lagrange Multiplier. A new performance measure, LI, is formed such that: 

Lt(x',x, X(t),t) 	L(x,u,t)+ XT(t) [f(x,u,t)-x'] 	(A3-1.3) 

where A(t) is the vector of Lagrange Multipliers. The necessary 

conditions to be satisfied for the minimisation of the performance 

index are given by108  the equations: 
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aL t 	c1 i1L 
ax

tf f 
to 

- 	0 

- 	0 

(Euler-Lagrange Equation) 

(Transversality Condition) 

(A3-1.6) 

(A3-1.7) 

ax — āt 

[-,T cOLQ~ 
ax 

where x is an arbitrary n-vector defined over closed interval Lto,tf] . 

These necessary conditions as specified by equation (A3-1.4) to (A3-1.7), 

when applied to a dynamic system, generally give rise to a two-point 

boundary value problem (TPBVP) consisting of 2n ordinary differential 

equations with boundary conditions specified both at the initial and 

final points. 

The optimal control problem as formulated using variational 

calculus requires that the state equations have continuous first partial 

derivatives with respect to the control variables. Another drawback of 

this formulation is that constraints on the control variables cannot be 

conveniently handled. 

Pontryagin formulated the optimal control problem in terms of 

the Hamiltonian function defined by: 

H(x, X(t), u, t) 	L(x, u, t) + Af(x, u, t) 	(A3-1.8) 

The necessary 

index are 

- 

given 

al 	_ 
au 

all 
d71 - 

all 
+ 

x 
A 

conditions to be satisfied to minimise the performance 

by the set of equations: 

0 	 (Control Equation) 	(A3-1.9) 

x ' 	0 	 (State Equation) 	(A3-1.10) 

A 	= 0 	 (Adjoint Equation) 	(A.3-l.11) 

- 0 	(Transversality Condition)(A3-1.12)• 
t o 0 
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Pontryaginls Minimum Principle states that, for the optimal 

trajectory, the Hamiltonian takes its minimum given by: 

H* = u(t) H(x, A(t), u, t) 

where u(t) is a member of the set of admissible controls and inf 

(infimum) denotes the greatest lower bound. Pontryagin's formulation, 

together with the Minimum Principle, also generally give rise to TPBVP 

but they relax the requirement of continuous partial derivatives of the 

state equations with respect to the control variables and unconstrained 

control. 

An alternative to variational procedures for deriving the 

optimal control is the method of dynamic programming. A minimum 

performance function is defined as: 

• t 

n(t)E(x,t) 	L(x, u, ,,d, 	(A3_,.,3) 

where L is the performance measure and a is a member of the set of 

admia.,i.ble controls. The corresponding necessary conditions that the 

optimal control must satisfy is Bellmanes Equation in the form: 

- at(x,t) = m(t). L
L(x,u,t) + fT(x,u,t)~~(x,y)] 	(A3-1.14) 

This condition implies the following equation be satisfied: 

at = L(x,u,t) + fT(x,u,t) (x,t) (A3-1.15) 

and 

3u(x'u't) + an aE(x,t) = 0 . (A-3.1.16) 

Equation (A3-1.15) is known as the Hamilton-Jacobi Equation. The 

solution of the Hamilton-Jacobi Equation is the minimum performance 

index E(x,t). With the minimum performance function known, equation 
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(A3-1.16) can be solved for the optimal control. An alternative to 

the direct solution of equation (A3-1.15) to determine the minimum 

performance function E(x,t) is to assume a particular form which is 

known to be suitable and then establish a set of ordinary, non-linear 

differential equations with known one-point boundary value conditions, 

for calculating the time-varying coefficients in the minimum 

performance function. 

There is yet no general solution available for Bellmanss 

partial differential equation (A3-1.14). However, the Hamiltonian-

Jacobi differential equation (A3-1.15) could be solved for the 

important special case of a linear system with a quadratic performance 

measure, L(x,u,t). This constitutes the Linear Regulator Problem as 

obtained by the solution of the Matrix Riccati Equation. 
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SOLUTION OF RICCATI EQUATION  

Two different methods were used for the solution of the 

matrix Riccati equation 

PA + ATP — PBR2IBTP + R1 = 0 	(A3-2.1) 

The first method uses the algorithm suggested by Kleinman106 and 

involves the following iterative procedure
105: 

(1)  Start with an initial guess value LPr1 for the solution of 

the Riccati equation (A3-2.1). 

(2) Form the feedback matrix: 

Fr = — R21BTPr 

and hence the closed loop system matrix: 

A = A+ BTF Ar 	r 

(3) The new improved value of the LPJ matrix LP 1I is given by 

the solution of the matrix equation: 

Pr+l 	r 	r 2 r Ar + ~ Pr+l 	— FRF + B2 

It can be shown106 that if the initial guess value for LP] 

is such that all the eigen—values of the closed—loop system matrix LA 
have negative real parts, then the iterative process converges to yield 

the solution of equation (A3-2.1). In these studies the initial guess 

for LPl was the identity matrix. However, for the cases that the 
solution of Riccati equation is required many times for different penalty 
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matrices, Rl  and R2, the last values of El)] obtained for one choice of 

R1  and R2  are used as the initial guess for the other choice instead 

of the identity matrix. This procedure reduces the number of iterations. 

When the order of the model is high, and the tolerance is 

small (1%), this method requires many iterations and might oscillate. 

The second method is called the diagonalization method. In 

this method the 2n x 2n matrix Z is developed as below: 

A 	—BR-1BT 

Z= 
—R1 	—AT  

It is shown107  that if this matrix is diagonalized in the form: 

Z = w.A.w 1  

W _  Wll W12 

W21 W22  

The matrix W consists of the characteristic vectors of the matrix Z so 

arranged that the first n columns of W correspond to the characteristic 

value of Z with positive real parts and the last n columns of W to the 

characteristic values of Z with negative real parts. Then the solution 

of Riccati equation for P is: 

P  = W22W12 

This method is not iterative and it gives the exact solution. However, 

its efficiency depends upon the efficiency of the subprogram that 

computes the characteristic vectors. In this work, this method was 

used most of the time, and especially when the order of the model was 

.high. 
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INTEGIIATION ROUTINE 

The integration routine for all the simulations was Kutta— 

Verson. This method uses five intermediate stages in an interval to 

get the last value. The method is as follows: 

1.  vl 	yo+ f(x ,vo} . 

Y2  = Yo+ 1-6hf(xo,Yo) 

1 1 
Y3  = Yo+ 8hf(xo,Yo) + g 1f  (xo+3 ,Y2)  

Y = Yo+ hf(fo,Yo) + hf(xo+ih,y2) + 2hf(xo+2 	,Y3) 

Y5  

• 

Yo+ b  f(xo,Yo) + th• f(xo+21,Y3) + -hf(x
o+h,y,1) 

y at the end of step h is y = 5(y,—y5). 

For the simulations the time step of 2 m.sec. was used. 

This routine automatically adjusts the time step until the two results 

at the end of integration period h are within the specified tolerance.• 
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DERIVATION or OUTPUT MATRICES 

Power, reactive power, field current, terminal load angle. 

and terminal voltage might be used as the measurable signals. These 

parameters can be stated as below: 

P = 2(vdid + vgig) 

Q = 2(vdiq - vgid ) 

Vt = V(vd + vq)/2 

bt = tan -1 v
d/
v 
q 

For small variations these equations can be written as: 

AP = 2( A vdid + avgiq + Aidvd + Ligvq) 

~Q = 	Avdiq - Avgid + Aigvd - tidvq) 

vd 	v 

AVt = 2Vt 
Avd Vt ~vq 

1 

	

1 + tan t 	

Avd vd w~ 

bt 2 0 v 	
vq 

where Avd, rvq, Aid, Aiq and Aif can be stated as linear fuiction 

of machine states, as given in Chapter 1. 

The output matrix C is obtained by substituting these values 

in the above equations. 
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CALCULATION OI'' JACOBIAN ELEMENTS OV/Ox , V /Or 

Using direct- and quadrature-axis convention, terminal voltage 

can be stated as: 

Vt  - v/f(vā + v2)02 	 (A6-1.1) 

- (xe+xt)pid/  WO_  wig(xe+xt)/GJo(A6-1.2) vd  = vbd (re+rt)id  

vq  = vbq  - (re+rt)iq  - (xe+xt)Piq/C.o-Wid(xe+xt)/ 0o(A6-1.3) 

where vbd  and vbq  are direct- and quadrature-axis components of infinite 

busbar, 	(x 
e 
,r 

e
) are transmission line and transformer 

aVt 	3Vt  avd 	aVt  avq  

parameters respectively. 

(A6-1.4) 

(A6-1.5) 

(A6-1.6) 

(A6-1.7) 

(A6-1.8) 

(A6-1.9) 

(A6-1.10) 

(A6-1.11) 

axe 	- 

aVt  

avd axe + Ov
q 

ax
e 

 

aVt 3vd 	OVt 
 Ov 

ar
e 
	- 

but from equation 

aVt  

av
d 
ar

e 
 

(A6-1.1): 

vd  

avq  are  

IA)i 

Dvd 	d  

avt  _ 

2Vt  

avq 	— 

and from (A6-1.2) 

avd 

2Vt  

and 	(A6-1.3): 

pi d  

axe  

av _ 

Wo  

piq 

W 
Wid 

axe  
avd 

wo 

d 

-iq  

Wo  

Or 	- 
e  

av 

Or
e  

Substituting equations (A6-1.6) to (A6-1.11) into equations (A6-1.4) and 

(A6-1.5) gives: 
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(A6-1.12) 

(A6-1.13) 

ōVt 
= 
	1 — (_v pi 	c.~v i 	v pi + wv i 

cas 	2Vt Wo 	q 	q 	q 	g g
) 

nt 
ar — 	 V (_igVq - igvq} 

e 	t 

e 
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APPENDIX 6-2  

CALCULATION OF DVL/DVs 

Direct- and quadrature-axis components of Vt are used to 
avt 

derive 
DV 

as: 
s 
cayt Irt Dvd DVt Dvq 

Mr - av ' Mr t av ' DV
s 

	

s 	d 	s 	q 	s 

	

Dvd 
	

Dv 
To obtain 

aV 
and 

āV 
, Vs the system voltage must be resolved into its 

	

s 	s 
direct- and quadrature-axis components vbd and vbq, where: 

2 	2 

V = vbd + vbq  
s 	2 

Then: 
avd 	av 	b

d 	Dvhd 	avd 	
Dv 

q, 
DVs 

_ 
- Dv

bd 
' DVs + Dv

b q 
•

s 
D - v~ 	

+ 

avbd DDv av
bq 

DVs - avbd ' DVs 	cDvbq 	DVs 

but from equation 

av
s _ vbd 

Dv bd - 2V 

avs 	vbq 

Dvbq - 2V 

and from network equations (A6-1.2) and (A6-1.3): 

(A6-2.2) 

(A6-2.3) 

(A6-2.4) 

(A6-2.5) 

(A6-2.6) 

Dvd 

av
bd -

Dv 

Dvbq 

1 

1 

(A6-2.7) 

(A6-2.8) 

Substituting equations (A6.-2.5) to (A6-2.8) in equation (A6-2.3) and 

(A6-2.4) gives: 

Dvd 	2Vs 

aVs 	
vbd 

av. 	2V 
q 	s 

DVR 	vl? q 

(A6-2.9) 

(A6--2.10) 
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Substituting from equations (A6-2.9) and (A6-2.10) for 3vd/3Vs  and 

ōvq/aVs  in equation (A6-2.1) and using the values of 3Vt/Dvq  and 31/t/Dvd  

from equations (A6-1.6) and (A6-1.7), 

3Vt 	Vs  vd 	v 

ays 	Vt  vbd vbq  

gives: 

(A6-2.11 
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CALCULATIONS OF ō~i clx s a`S ar  AND ay* 

a6t Bo
t The calculation of 

Tx , 8r and 
aV 

is similar to that used 
e 	e 	s 

for the derivation of V . Knowing that: 

• 
tan 6t 	 (A6-3.1) 

a general equation can be derived by taking a partial derivative of 

both sides of equation (A6-3.1) with respect to an arbitrary variable z. 

or, 

3 tan S
t 
	a(vd/va ) 

az 
	

az 
(A6-3.2) 

a tan
t 
	aat 	a(vd/v ) 	avd 	ō(vd/v ) 	avd 

a6t 	• az 	- 	avd 	• az + 	ūv 	. az (A6-3.5) 
q 

	

a a 	av 	v 	avd 
(1 + tan2bt)az

t = (v )azd - d2 • az q 	v 
q 

or, 

ab
t _ 	 1 	1 av

d vd av 
_ 	_ 

az 	
(1 + tan2

t
c~ 

)(v

q 	

az 	v - az 

	

aS 	a5 q 	a3 
By replacing z with xe, re and V

s, axt, art 
and 
,,Vt 

may be obtained as 

	

e 	e 	s 
below: 

36
t 	1 1 avd 	vd av 

axe 
	(l+tan 6t) v

q•3xe 	v2'axe 

	

2 ( - ~) 	 (A6-3.6) 
q 

abt _ 	 1 	1 av
d 	vd av

• 	

_ 	 ( 	- 	_9.) 	(A6-3.7) 
ore 	(1 + tan25t) v

q'are 	vq'are 

ab
t 	i 	1 av

d v av 	

• (A6-3.8) ( 	
-- —g) aVs 

= (l+tan26t) v
q•aVs v2 Vs 

av Dv av av av av 
Substituting for ax

d, 3x , r a d, art, avd and 
-
a
vg- from equations (A6-1.8) 

e 	e 	e 	e 	s 	s 
to (A6-1.11) and (A6-2.9) to (A6-2.10) in the above equations gives: 

(A6-3.4) 

(A6-3.5) 
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1 Wi  _ Wvd i 	Pid 	v2piq) 
_ 	+ (A6-3.9) 

(1+tan26t) ( 	ovq C.fo1 
q ōv2  

g 	 v  	) o 

(YO) 	( 
o 

vd  + vg) 
q 	v 

q 

(A6-3.10) 12 (1+tan bt) 

1  1  vd  _  (A6-3.11) ( 
vgvbd 

)  
(l+tan26t) vgvbg 



i (A6-4.1). 

0 (A6-4.2) 

0 (A6-4.3) 

1 (A6-4.4) 

avd 

av
sd = 

avd 

av 
sq 

By 

av
sd 

= 

= 

ay 
—~-- = 
av 

sq 
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CALCULATION OF 317 /317, 
Dv /Dv

~q , clvq
/dvsd' 	/3vsq 

Using the network equations (A6-1.2) and (A6-1.3), these 

values are obtained as: 



a tan 3 
s 

a (vbd/vbq) 

az 	az 
(A7-1.2) 
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APPFNDIX 7-1  

CALCULATION OF BSs/axe, 38s i.314 

Knowing that 

vbd 
tan o = 

s 	vbq 
(A7-1.1) 

By partial differentiation of both sides of this equation with respect 

to an arbitrary variable z, 

a tan bs abs 	 (v
bd/vbq) ovbd 	(vbd vb2 avbQ 

aSs 	'az 	- 	avbd 	' az + 	avb 
q 	

' az 	
A7-1.3) 

36
s

(1+tan2Sc) 	
~s 	— 	1 avbd - 

vbd 
av
bq 	(A7-1.'i) 

az 	vb az v2 az• 
q 	bq 

or 

1 avbd vbd avbq Ss 	1 	
(A7-1.5)  

OZ 	
(l,+tan-8s) 

vbq' bz 	

vU 	

az 

q 

ab 	ab 
By replacing z with xe and r

e
, T-3--

c 
and ai,s .re obtained as below: 

e 	e 

av 
 

ax
e 

_ 	1 	(vl ~ a~ 	
— 

bd 	
v2d•asb ) 	

(A7-1.6) - 	 

e 	(l.+tan So) bq 	e 	vbq 	e 

ad
s  	1 	

‘
8s) 

1 	
a v

bd - vbd avbq) 	
(A7-1.7 ) 

3re (1+tan2  v
bq e v 'ar2 'ar 
 bq e  

Zj 

axbd, arbrl, axbq an
d 

arl'q 
are obtained from the network L!quations (A6-1.2) 

e 	e 	e 	e 
and (A6-1.3) as: 



OY 
e 

avbd pid tx)iq 
- 	+ 	 

wO ~O 

(A7-1.8) 

av 	pi 	wi 
bq = 	L f 	Q 

e Wo wo 

a 
__ha are - 1 q 

aX 
(A7-1.9) 

(A7-1.10) 

(A7-1.11) 

~r - id 
e 

Dvbd 

262. 

Substituting the above values in equations (A7-1.6) and (A7-1.7) results 

in: 

a6 	 pi 	c~ii 	v 	pi 	wi 
Dx 	1 2 
	 [( .L)

v  ( Wo 
+ 

w 
	q)-( Pee  - w dd e 	(1+tan 6s) 	bq 	o 	o 	vbq 	o 

47-1.12) 

abs = 	1 	(
i
d _ v2d i 	) 	(A7-1.13) Ore 	l+tan bs bq v

bq 
q 


