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ABSTRACT

Linear optimal control theory has been applied to the design
of an integrated controller of a single machine power system through
excitation and governor reference settings., The effect of system
modelling on the design of the controller and the importance of different
Teedback signals are studied and output controllers, using measurable
parameters as feedback, have been proposed comparable in performance to

those using unobtainable state feedbacks.

Other linear and nonlinear controller design methods have been

applied and their advantages and disadvantages are discussed.

Dynamic estimators are designed to enable the system to avoid
the cost of weasuring devices and the noise which each measurement
introduces. The effect of the order of the estimator on fiitering and

control is studied.

An adaptive fcature is introduced in the estimator so that it
also estimates the tie-line impedance and adjusts its internal value
using a Newtoﬁ—Raphson iterative method. This adaptive feature is
further extended so that when the system voltage and frequency are

varying, these values are also estimated.

A dynamic estimator is designed which gives the states of the
machine up to its terminals - a local estimator, which bhas the advantage
that none of the parameters it works with is changing. The system was
tried with variable system voltage and frequency and may also be used to

estimate the tie-line jimpedance.

Controllability studies are presented which show the effective-
ness of AVR and governor loops in damping different oscillatory modes.
Observability studies show which signals are able to "see" and influence

the most modes of oscillation.
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CHAPTER 1 18.

INTRODUCTION

1.1 POWER SYSTEM STABILITY

The stability of a power system is defined under two
categories, steady state stability and transient stability. The steady
state stability of the system is the capability of the system to
withstand sﬁall disturbances (normal fluctuations), whereas the transient
stability is the ability of generators to regain and maintain synchronism
after a large sudden disturbance (faults, switchings). The operation of
a generator has to be limited to the maximum power output of the turbine
and the heating limit of the rotor and stator. At leading power
factors this limit is not normally reached as it is well above the
stability limits, particularly that of transient stability. The
steady stote stability limit being concerned with small variations is
well defined by linearising the systcm model about each operating
condition and looking at its characteristic equation. The transient
stability limit is not, however, a well defined criterion and it
depends on the type and duration of the disturbance. Usually the
disturbance is chosen as a three-phase fault with a certain cleafing
time. The generator is tben said to be transiently stable if its rotor

angle during the first and subsequent swings dves not exceed 180°.

During the years, the trend in power systems has.been towards
larger generators with bigger ratings, wainly due to the introduction
of improved cooling techniques on both the statcr and the rotor. For
economic reasons, the generators are designed with lower inertis

constants and short circuit ratios. These parameter changes togcther



19,

with relatively higher transmission voltage and longer tie-lines have
adversely affected the stability of the system, requiring fasfer circuit
breaker operation, thus reducing scheduled fault clearing times.
However, other methods of contrel are required to improve stability in

gsome circumstances,

1.2 POWER SYSTEM STABILITY IMPROVEMENT

The mechanical power delivered from the turbine to the
generator is convertea ‘to electrical power and transferred to the load.
After a disturbance, the balance between the electrical and the
mechanical power is.changed, causing the generator speed to vary.

There are three ways of controlling such a generator so as to maintain
synchronism with the rest of the system and to provide good damping.

A sipnal may be given to the governor system to change the mechanical
input power, The presence of entrained steam and other storage efifects
in the various parts of the turbine as well as slow governor action,
often prevent rapid input power control. However, fast-acting
electrohydraulic governors22 and fast valving actiongo’21 in turbines
have changed this situation. The second method is by the variation of
the voltage regulator setting, causing changes in terminal voltage and
consequently electrical power output of the generator. Finally,-the
last method is to change the shape of the network (load) presented

to the ‘generator terminals, This method requires more investment and

is usually thought of in terms of transient stability controllers,
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1.5 APPROACHES TO EXCITATION AND GOVERNOR CONTROL

1.3.1 General

The improvements introduced by the action of continuous

voltage regulators (AVRs) on the system steady state and transient

1-7

stability has been well established” ‘. Various feedback signals in
. addition to the terminal voltage have been proposed and used for the

enhancement of system stability through the AVR loop. Deviation of

3‘7,13:15 )6,7,10,11,56

speed and its derivative {acceleration or the

accelerating power are reported to have been used for stabilization
and it is claimedli’5 that they are the ideal signals for stabilization,

Because of the practical difficulties in measuring the above éignalslA,

terminal power is suggested4’12’56. This causes a temporary

s

* . . . . - .1
depression in voltage during periods of increased generation ‘.

Scheif et al5 use terminal frequency and derive the speed as a function

17

of this measurement. This idea has been further extended for the
derivation of an accelerating power signal derived from only electrical

measurements.

The improvement in system damping introduced by stabilizing
networks is very necessary in systems with high gain excitation

5,6

systems s especially for thyristor excitation systems,

Although the design of the stabilizer compensating networks
has been through the small signal approximation and the use of
frequency response analysis, the additional signals generally proved

6,56

to be beneficial to the transient stability . Recently some

optimization techniques have been reported for the optimal setting of



one or two parameters of the stabilizer network in the excitation

system16’18’19.

The use of additional signals in the turbine governor loop
has also been studied, The effect of the time-integral of spced
deviation added to speed deviation has been examined by frequency
response methods10 and the use of rotor acceleraticn added to speed
_deviation to control transient stability has been testedll. The speed
deviation, its time-integral and derivative have been proposed as

feedback signals in a PID governor controllerg.

The use of stabilizing signals to both AVR and turbine
governor has also been studiedlo’ll. It has been shown that the use of
these signals is beneficial to the system damping for small pe?turb—
ations, The transient stability limit (first rotor angle swing) is

also improved with better control of terminal voltage and power swings.

!
These advantages were confirmed in some practical field testsl’6.

Dual-excited machines which are capabie of extending the

23-26

steady state and transient stability limits have also been proposed,

1.3.2 Design of Additional Control Scheme for Excitation
and Governor Control

Methods for the design of additicnal controllers for the

excitation and governor loops can be divided irto two main categories:

a) frequency response methods (classical or modern multi-
variable techniques) and modern lincar multi-variable

state-space techniques;

b) optimal control theory.



In the application of the method of category (a) to the system

controller design, the linearised (small disturbance) model must be
used. However, for optimal control application linear or nonlinear
system models can be used. A review of different methods used for

the design of the system controllers is given below.

Most of the stabilizing signals mentioned in the previous
section have been derived using classical control methods such as

3,10,12

frequency response analysis and lead<lag networks for transfer

function pole compensationh.

Smith28 and Jones27 suggested the application of bang-bang
control to excitation systems for damping the frequency oscillations
after a major disturbance. The switching times were obtained from a

decision function derived from the energy balance (equal area) criteria.

These studies were followed by the application of optimal
control theory to power system stabilizationzg, in which controllers
were obtained by the minimization of a cost function. With the choice
of the cost function as a quadratic function of states and inputs,
optimal controllers were derived for non-linear systems using complex
optimization technique535~37. These methods showed that the best
results could be achieved with optimal variation of inputs, but then

a method was required to relate these control functions of time to
control laws (functions of system state)., Also, the results obtained
were a function of the disturbance type and duration. Finally, the
results depended on the pre--disturbed condition of the system. By

using a linearised system model withb the same quadratic performance

index, the controller obtained is stated as a linear function of the
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states of the system and it does not depend on the severity of the

disturbance.

This type of control, because of its simplicity, has

attracted the attention of many research worxers in the last decadng-Bk’

38-43’45. It has been shown that the system with this controller can
achieve improvements in both transient and dynamic stability. This
_-has been confirmed by many practical applications of optimal controllers

110"!*3:2*6_48,53,58

to microalternators and small scale generators The

effectiveness of the control method on a multi-machine system has
also been checked32. One difficulty with the linear optimal
controllers, however, is the need to measure all the system states,

some of which are not measurable. This has been overcome in several
ways. Firstly by the simplification of the system model, reducing the
order’ of the model so that the unmeasurable system states are eliminated
from the eontrol law, The second approacﬁ is “the use of some measurable
output instead of unmeasurable ones t& which they are related51’126’127.
In another attempt, unmeasurahble states were eliminated from the control
signaljg, but this method, in general, does notf ensure the stahility eof
the system. Another approach is by the choice of controller as a linear
function of measurable outputs and so changing che problem to a
parameter optimisation problemBh. The authors, however, stated that

the above output controller can never be as good as that with all

states included in the controller. Further, convergence difficulties
may arise in the method based on parameter optimisation techniques

19,52

when the number of such parameters is large Other parameter

optimisation techniques for deriving sub-optiwal controllers have been
b7

reported which take into account the non-linear system model ',

Several attempts have appeared recenily in which sub-optimal controllers viere



in

24,

49, 54

developed using dynamic optimization . Purthermore, with the
introduction of sensitivity functions in the performance index, the
controller was also made insensitive to some system parameter changes.
This technique has also been used for the design of excitation non—liﬁear

state feedback63

« As has been indicated in refs. 49 and 54, the above
iterative optimization methods are sensitive to the initial starting

points and convergence to a unique minimum is not assured. Also, the

* optimal feedback gains are obtained for a given system disturbance and

hence must vary with the type and location of the fault. Another
iterative optimization technique64 has been reported using only one

feedback signal for excitation control.

There are a number of research studies reported which treat the

difficulties of optimal controllers. Kumar et alDO suggested a method

for designing a suboptimal linear controller which basically is obtained
from the linearization of the system model about two operating conditions,
so that'the controller is suitable for a wide range of operating points,
Another attempt was to design the gains =o that their sensitivity to the

71

operating condition is minimized’'~., Other suggestions have been the use

L 2
of a look-up tablehoﬁ*3,6_,65

y giving the appropriate gains for different
operating conditions. A curve-fitting technique“’53 has also been
suggested for relating the gains to the operating conditions, The look-
up technique has been applied in practice, but sustained oscillations of
frequency have been reportedlg’65 due to the variation of operating
condition along the intersection of two grids. This difficulty has been

62,65

treated in several ways « There has been some effort made to choose

31,104

the elements of the performance index {weighting matrices) in a

logical way rather than by guess work.

67,68

Modal control techniques have been recently proposed for

designing the regulators. The controllers obtained are linear functions



of states similar to linear optimal controllers, but their advantage
over the optimal regulator is claimed to be that they do not need the
selection of weighting matrices., However, this must be looked at with
care as the placement of the closed-loop system eigen-values must be
done through engineering experience, guessing and also with the
consideration that the eigen-values are not representative in large
disturbances as non-linearities occur and non-linear simulations should

really be made,

Optimal time-optimisation problems occur when the performance
index is chosen as a linear function of time, mirimising the time taken
. to reach the target condition., The solution to this problem is of
bang-bang form, For a linear system of dimension n, (n-1) switching
times are required for a unique minimum73. For nonlinear systems,
however, the use of the Pontryagin Maximum Principle is required. In
this way, ;ime optimal excitation control has been achieved using a

72

very simple model and more recently for a high order mode173. The
results obtained from the latter case, however, suffer from the
following drawbaclts. TFirstly, in the design of the controller the final
steady state conditions must be known beforehand. The results depend on

the disturbance and the system operating condition. Finally, the

strategy obtained is for application after the fault is cleared.

74,75

A closed loop time optimal controller kas been proposed
75

using very simple order model., The final practical proposal is a

linear controller of states similar to a linear regu.ator.

15,59

Multi-variable frequency response tectniques have been
applied to the design of stabilizers for the excivation and governor

loops.



Discrete-control techniques60’66 have also heen reportied
for generator control., Walker et al60 presented a predictive method
using current measured output and previous values for the controller.
In another attempt66 a discrete controller was proposed for direct
digital control of a system using current measurements, the conventional

controller loops being omitted, unlike other studies.

62,69,70

Adaptive excitation controllers have been reported
In one very recent case62 filters are used to realize the slow drift
of system parameters (new steady state values) and with the use of a
look-up table the appropriate optimal gains fogether with the settings

69,70

are selected for the operating condition. Other attempts have
been reported, changing some parameters in the excitation stabilizer
so that the performance follows a special reference model or minimising

69,70

voltage changes. These studies have been based on a very crude

system model.

In general the multi-variable controllers which have been

suggested fall into the following categories:
(a) Those which consider excitation control only.

(v) Those which retain conventional governor and/or AVR systems

and apply additional inputs to the set points.

(c) Those which replace the AVR and/or governor by a multi-
variable controller44’48’61’66. In this case steady state requirements

for controlling speed and/or terminal voltage must be satisfied by

the multi-~variable controller.



1.4 STABILITY IMPROVEMENTS BY CHANGES IN NETWORK

The methods in which network changes are made to improve
stability (also called discrete supplementary controls) unlike the AVR
and governor loops function only for a short period after a disturbance.

76,77:

The 1list of these controls usually includes the following

1, Dynémic braking,

2. High speed circuit breaker reclosing,

3. Independent pole tripping,

L, Controlled system separation and load shedding,
5 | Series capacitor insertion,

6. Switched shunt capacitors or reactors,

7. Power modulation of direct-current lines,

8. . A Generator tripping.

Dynawic braking involves the insertion of a braking resistor
as a temporary load to the generator términals to release the stored
energy due to imbalance between power generated and power delivered
during a fault. The switching logic for the avplication of these
resistors may be developed either from the point of view of providing
equal damping on all the generators in a power system78 or through the
use of the‘optimallcontrol theory79. This method gives rise to large
torques on turbine generator shafts. High speed circuit breaker
reclosing is very helpful in reducing scheduled fault clearing times,
This, however, results in transient torques on turbine shafts.
Independent pole operation of circuit breaker reduces the severity of

multi-phase faults because the failure of any one phase does not

automatically prevent any of the two remaining pliases from proper



opevation, Coutrolled system separation and load shedding together
with generator tripping are measures taken to achieve a balance between
load and generation when there is a major disturbance involving the
loss of generation or load. Series capacitors are used to increase
the power transfer of long transmission lines by reducing net inductive
reactance between the sending and receiving ends. The switching of the
capacitors in and out of the circuit has been shown to have beneficial
effects on the generator mechanical transients and the switching times

. . . . . 80
can be determined from consideration of equal area criteria or

71,81

through the use of the optimal control theory . Such a control

method may give rise to subsynchronous resonance torques.

.

The effects of shunt reactors and capacitors is similar to

that of series capacitors,

Finally, the power flow on a d.c. transmission line can be
modulated by controlling the converters at each end of the line. The
converters can be controlled to reduce the oscillation of power betveen

the two areas after a transient.

In addition to the above methods, phase shift insertion has

also been proposed to change the effective rotor angle82.

1.5 CONTENTS OF THE THESIS AND CONTRIBUTION

Many ways of achieving stability improvements were considered.
It was felt that the cheapest method with the least extra implementation
is through the control of AVR and governor settings, and that it

required a comprechensive investigation.



The studies performed in this thesis can be divided into

two; control and estimation,

The first part is mainly concerned with the development of
multi-variable controllers for the integrated control of generators
through the AVR and governor. The objectives which these controllers
had to achieve were; the increase in transient stability (decrease
. in first rotor angle swing), good terminal voltage performance after a
large disturbance and, finally, good damping for system parameters when
the system is subjected to a small disturbance, or is recovering from a
large disturbance without loss of synchronism. Linear optimal control
is applied and the effect of system modelling on the design of
controllers is studied. The significance of different signals is
studied and measurable-output controllers are developed. Other linear
and non-linear control methods are applied to the system and compared

with linear optimal controllers.

The second part of the thesis deals with the synthesis of
s&stem states with very few measurements, For this purpose, optimal
dynamic estimators are designed taking the system to be of varying order,
their behaviour when used as a part of the controller in the system
being studied together with their capahility for filtering measurement
noise. A self-tuning dynamic estimator was developed which also
estimates the transmission-line impcdance and adjusts the internal
corresponding value. This was then extended to the case when system
voltage and frequency vary and these valnes are alsu estimated,
Finally, local dynamic estimators of varying order were developed which
have the advantage that their structure remains constant with changes
in system parameters. The estimation of tie-line impedance with this

cstimator is alse studied,
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The following aspeects appear to be, in the author's opinion,

original contributions:

(i) A full study of modal controllability and observability
of the detailed system model has been made. These studies show
the relative significance which each control loop (AVR, governor)
can have on the control of each oscillatory mode., The relative
value of each measured output for the reconstruction of each system

oscillatory mode can also be obtained from these studies.

(ii) The effect of system modelling on the design of linear

optimal regulators bhas been studied and mecasurable-output controllers

were developed from consideration of the significance of different

feedbacks,

(iii) Dual mode controllers have been designed using three
different metheds, These controllers have two distinect modes for
transients wiib large and small deviations. A non-lincar controlier
has also been proposed which has the same advantages as the dual

mode controllers. The performance of the systems with these

controllers has been compared to those of a linecar optimal contreller.

(iv) Different order optimal dynamic estimztors have been

designed for the sysfem. The behaviour of the system with the

dvmamic estimator as a part of the system has been studied including

the consideration of measurement noise,

(v) Partial dynamic estimators have been proposed which only
estimate the parameters of part of a system which is required,
thus its order is much less than that of the whole system dynamic

estimator,
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(vi) A self-tuning estimator has been developed which estimates
the tie-line impedance and adjusts its corresponding internal
value, The order of this self—tuning'estimator was then reduced.
The idea of tie-line impedance estimation was extended to the

estimation of system voltage and frequency.

(vii) Different order local dynamic estimators have been
developed. The advantage of these estimators is that their
structure is constant and no adjustwment is required. The estimation

of tie-line impedance with this estimator is established.
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CHAPTER 2

MATHEMATICAL MODELS OF POWER SYSTIMS UNDER TRANSIENT
CONDITION

2.1 INTRODUCTION

The transient stability of electrical power systems has been
a subject of major interest for the last two decades, and over the years
various theoretical and practical methods for evaluating the generator
performance have been proposedss’gk. Accurate detailed knowledge of
generating units is necessary when a power system operates under
marginally stable conditions. The complexity introduced by tbe
increase in the number of generating units and their interconnection
makes control more difficult than previouslyi Single machine-infinite
busbar systems have been studied to establish the validity of

. . 83-86
synchronous machine representations I,

In this chapter several models are described. These are
used with excitation and governing system model with (and without)
conventional regulating loops to give full simulation of system non-
linear performance, Linearised versions of these models are derived

for use in controller design and dynamic stability analysis.

The expressions developed may also be used to obtain the
performance when the infinite bushar is replaced by one at which

voltage and frequency varies,



2.2 BASIC SYSTEM ASSUMPTIONS AND EQUATIONS

A single generator coupled through a transformer and a double
circuit transmission line to a large system is considered, as shown in
Figure 2.1. The machine isArepresented by a twe-axis model, as shown
in Figure 2.2, single démping circuits being shown on each axis to
represent the action of solid rotor. Saturation and hystersis are
i neglected. Janischewskj?7 et al showed that the dynamic behaviour of
the machine is primarily determined by transient and subtransient
reactances which are not changed significantly by magnetic saturation.

8,95

The motoring sign convention of Adkins is followed and the machine

equations are in p.,u., terms:

e = PUg +u)(pq+raid | (2.1)
Vg T TWigt Py + T 1 . (2.2)
0 = Tpglpa + PUyq (2.5)
0 = rkqikq + p(pkq . (2.4)
Ve = rfif + p(bf (2.5)

The flux linkages associated with each winding are:

$g = Lgig * Lyalig * Lnale (2.6)
q% = Lgig+ (L.f +L Jie + L i o (2.7)
P Loaig + Logls + (y«erd)ikd (2.8)
q)q = Loig + Dgig . (2..9)
qu: Lygtq * (Cuglig) g (2.10)

The clectrical torque is:

wO( . .

Me = T2 LI"dlq - quld) (2.11)
Defining 6 as the angle between the rotor q-axis and a reference axis
rotating with synchronous speed bdo, the rotor position, speed, slip

"and acceleration are:
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0 = wt-3 (2.12)
W = W, ~Dpd (2.13)
s = pd/w, (2.14)
p29 = —p26 (2.15)
The torque cquation is:

20 2
MT' = M -=p § ~kpé

0

Wo, . : oH 2
= —2-( q)dlq - quld) —(:0—0 p8-kp$ (2.16)

The axis voltages are determined below. The voltage in phase A of a

1
balanced three-~phase supply of frequencyié%f(to‘ £ Luo) iss

vV, o=V osing't : (2.17)

Assuming that (D’ = Loo+ p(t), where p(t) is a frequency deviation,
then from equation (2,12):
Wit = (§+2+p.t) (2.18)

Substituting (Y!'t into equation (2.17) and expanding it, gives:

Vo=V o sin(8 +Pt)cos(0) + Voo

cos(6 + Pt)sin(9)  (2.19)

The transformation relating the voltage in phase A to the axis
voltages is:
v, o= vdcos(O) + vq51n(9) (2.20)

As the two values of V must be identical for all 9:

a
vy = vmxsin(a +pt) (2.21)
vy = Vmaxcos((f +0t) (2.22)



=
(1

For an infinite busbar P= 0, and:

vy = Vmaxsin(S) ~ (2.23)
Vg = Vﬁaxcos(S) (2.24)
2.3 SYNCHRONOUS MACHINE MODELS
2.3.1 Accurate Model

The equations of the synchronous machine are put in state

variable form. The state variables are chosen as:

LS5 p8: w, Pgr wo Wer o Wiar 1o g woq)kq:\_ (2.25)

Equations (2.6)-(2.11) relating fluxes to currents are put in matrix

form:

Co,y,d = B0 0] (2.26)

Cw,yd - B0 (2.27)

where q&, uh, Id and I are vectors containing the direct and

quadrature axis fluxes and currents (Appendix 2-1). Similarly:

il

N
07,

EYgd] - Lw, ljldj ' ' (2.28)

—~
]
\>

] Cw, g 29)

where | Y and | Y are inverse matrices of | X and | X .
[, ana [, ] (%o ond [, ]
Rearranging equations (2,1) to (2.5), multiplying by W throughout
and combining them with the equation of motion, leads to the state

variable equation (2.30):



x(1)
x(2)
x(3)
X(4)
x(5)
x(6)
x(7)

x(1) __; 1/ﬁ)}0 : i } ’
Dk | j
X(2 — {
(2) BRIV N R
x(3) | -1
p X(’*) Fa wo 1 Ezl:l
x(5)
x(6) 1 i
T ) [Z
X(7) } 2
L . a S B PR S R
where:
Ezlj = = I:Rgd:l . EYgdj

o
|

SO YD

on/ w,

W
M =
€

B -

1
3(M8~WT)

u%vd+p5Qn§HE

wov f

U)OVq-p a%qjd

- _
(2.30)

~

(2.31)

(2.32)

2
%[EYgd(l,l)—qu(l,l)] (w, by) (W, Y )+, (1,2) (w, Uy)-

(0, 0] = X (102) (0, 4 (0, 910103 (w0, ), By

(2.35)

The matrices Eng:, ’ Eng] ’ ERgd:I and [qu:l are given in Appendix 2-1,

2.3.2 Approximate Model

In this model the stator transient terms pq)d’ pd)q, pid and

piq are neglected in the voltage equations. New values of u)o Lpd and

u)o q)q are obtained in terms of other variables at each instaht. Thus

the state variables are:

LG’ ps, W, P woq-’i(d’ wo“.bkq]



The values of Luolbd and Luolbq in terms of the state variables are:

b Z,(1,1) + by(1 = p8/ W)

U.)o q)d = - h 2.311)
3
h, (1 - p&/w ) - b2, (1,1)
1 o 271
W, Py = b _ (2.35)
where:
hy = vq+ 2(5L2)(w, §p) + 2,(1,3) (w, Ppq) (2.36)
by = v+ 5(1,2) (W, Py (2.57)
2
by = 2(1,1)2,(1,1) + (1 - p8/ W) (2.38)
2.3.3 Improved Approximate Models

Although the approximate model gives reasonably accurate
results in many instances, it is unable to simulate the phenomena of
backswing., It has been shown89 that when the stator transtent teraws
are omitted from the calculation, the oscillatory component and a part'
of unidirectional component of electrical torque are not obtained.

Shackshaftgo

has shown that the oscillatory component is more
significant and devises an approximation to allow for it. A step
change of speed is'applied to the rotor at the instant that the fault
ocecurs, of.value:

‘ , ;

ft : -
Aw = - QHXS (20 )9)

where Vft is the prefault voltage at the fault and x_ is subtransient

reactance of the machine with terminals taken at fault point.

Alternatively the snalytic equation given by Mehta91 may be used to

simulate the elecirical torque during the fault and approximate
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representation after it has been cleared ~~. The results are more
accurate than those obtained with Shackshaft's wethod. With either of
these methods large time steps can be used and load angle is obtained

more accurately than with the approximate method.

2.3.4 Siwple Model

In this model not only are stator transients neglected but
also damping effects are taken into account by a damping factor. The

order of the model is 3 and the state variables are:

ES’ p6, if] ’

The derivation of this model is given in Appendix 2-2,

2.4 TRANSMISSION LINE MODEL AND MODIFIED MACHINE TECHNIQUE
TOR REPRESENTATION OIF A DISTURBANCE IN THE SYSTEM

In this study the transmission line is represented by series
recactance and resistance. The network equations which relate the

components of terminal voltage to those of the system bushar are:

X _Pp. wi x
_ .. ex id q ex
Va4 = Vpd " Texlq T ( u% ) - ( u% ) (2.&0)
x _pi wi,x
) _ ~ — ex’ q d ex
vq = qu rexlq ( (UO ) + ( W, ) (2.41)

where Xex and rex are the total reactance and resistance of the

P, P

transformer and transmission line between the alternator and the system

bushar., For simple systcm representation the network equations (2.40)



and (2.4%1) remain the same except that the terms containing pid and

piq are eliminated.

In short circuit studies, the modified machine technique is
used. The terminals of the modified machine are chosen at the system
busbar during normal operation and at the fault point during the short
circuit period., All impedances between the modified and real wachine
terminals are then lumped into the machine stator impedance., The
advantage of this technique is the simplification in the calculations
of the axis components of voltage, The axis components of modified
machine terminal voltage are zero during the short circuit and they are

equal to the axis components of the system busbar voltage at other times.

2.5 VOLTAGE REGULATOR AND TURBINE GOVIERNOR MODEIL

2.5.1 Automatic Voltage Repulator (AVR) Model

A general model of a typical AVR and exciter system includes
a comparison of measured and reference voltages, an awmplifiecr and an
exciter. Both the amplifier and exciter may have stabilizing loops.
Magnetic amplifiers have time constants between h4-1C0 ms and rotating

. . 8
exciters can have a 260 us time constant9 .

The advent of solid state AVHls and exciters, particularly of
the thy;istor type, has made possible a considerable reduc@ion of time
constants to as little as 30 to 50 msB. Digital AVRs93 have also been
considered to have small time constants. The advantages of fast
excitation systems on generator stability have been pointed out in

6,8,97

several research papers



L0,

A simple model of a fast excitation system, having two time
constants to représent the amplifier and exciter, has been adopted in
this work, The block diagram is shown in Figure 2.3. This type of
excitation system was chosen as it allows for better additional control
action compared with that of slowef, more conventional excitation

systems, The model is:

Vé:‘%'%'vt*%"’a (2.42)
v %_ (;_2 B (2.43)
VEMIN LB QVEMAX (2.44)
. \ Y (2.45)

MAX

The ceiling values for excitation voltage vy and field

voltage v_. are chosen as t} times the rated load value.

I

2.5.2 Turbine Governor Model

A standardroil~servo type governing system model can be
represented with time constants of about 100 ms for the valve relays
and 500 ms for the entrained steam between the h.p. .ylinder and the
turbine,blades?Q. With 16ng time constants such as these, it is
difficrlt to improve transient stability by using additional signals

8,2

2
in the.governing loop. Electro-hydraulic governors ~ have much’

shorter time constants. When they are used with valves which may be
closed quickly and if the time constant associated with entrained

01.99
steam is kept small, governor control can improve transient stabilitygx’z“



turbine-governor loop is modelled as shown in Figure 2.4,

is taken from Ref. 98,

L1,

Here it is assumed that the syster described above and the
This model

Tv represents the valve closing or opening time

constant, TS represents the entrained steam time constant and GG the
speed governor gain., This model equations are:
ﬁR GG Y0
Ap = -7 T péd + T (2.46)
v v v
A M
= - - ]
MT T T (2.47)
K] 3
The constraints on governor setting and the valve position are:
0 <Yo <1 (2"’!8)
0 ga (1 (2.49)

=}

2.6

different

SYSTEM MODEL

Different models of the system were obtained by using

machine models and regulating loop dynamics., The structure of

these models is given in Appendix 2-3 and summarized in the table below.

SYSTEM MODEL

Title brder Machine Model Used AVR Loop | Governor
Title Order| Ref. | °F4er order
Full 11 Accurate 7 2,3.1 2 2
Approximate 9 Approximate 5 12.3.2 2 2
Simple 7 Simple 3 12.3.3 2 2
Crude b Simple 3 (2.3.3 0 1
Very Simple 3 Simple 2.3.5 0 0

Table 2,1:

System models,
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2.7 LINEARISED SYSTEM MODELS

Linearised models are used here for controller design and for
calculating system dynamic stability. Tiie non-linear equations are

linearised about the operating point by partial differentiation:

X = f(x w) (2.50)
Axt = Gh, Ax+ GDAu (2.51)

AAx + BAu (2.52)

>
><.
i

This is done for all the system models and the derivations are

given in Appendix 2-%,

2.8 SYSTEM PARAMETERS AND CALCULATION OF STEADY STATE
OPERATING CONDITION

The system paramcters together with the base values are given
in Table 2,2. The parameters are those of a 588 MVA CEGB96 generator
with a high coiling exciter (t 3 times value for rated load) and an
electrohydraulic governor with fast valving. The parameters of the
regulating loops are ihose of Moya98 except that the AVR amplifier gain

is decreased so that the system transient performance is better.

In the stqady.state all the derivatives of state variables
are zero and a set of algebraic equations is solved to give the sieady-
state conditions. These calculations are shown in Appendix 2-6 and
the system initial conditions calculated for the system parameters of

Table 2,2 are given in Table 2.3,
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Magnetising reactances:

Armature resistance

Field leakage reactance

Field resistance

Direct axis synchronous reactance

Quadrature axis synchronous reactancé‘

Direct axis transient reactance

Direct axis subtransient reactance

Quadrature axis subiransient reactance

Direct axis transient open circuit time constant
Direct axis transient short circuit time constant
Direct axis subtransient open circuit time constant
Direct axis subtransient short circuit time constant
Quadrature axis subtransient short circuit time constant
Direct axis damper winding resistance

Direct axis damper winding reactance

Quadrature axis damper winding resistance
Quadrature axis damper winding recactance
Transmission line resistance

Transmission line reactance

Transformer resistance

Transformer reactance

Inertia constant, kWS/KVA

AVR amplifier time ccenstant, s

Exciter time constant, s

Turbine valve time constant, s

Entrained steam time constant, s

Governor speed gain

Voltage regulator amplifier gain

Exciter gain

2.82
2.67
0.00115
0.16
0.00114
2,98
2.83
0.3114
0.176
0.17788
8.32
0.8995
0.0855
0.0484
0.0853
0.0063
0,018
0.0063
0.C18
0.0209
0.3333
0.0044
0.157
3.48
0.05
0.05
0.05
0.3
0.0709
0.001
5.56

Table 2.2: System parameters,




Vb 0,957
Sb -79.20
Vt 1.0
5, ’ -53.37
P -0.847
Q -0.276
- )/
MT 0.8479
Table 2,73 teady state values for the system of Figure 2.1,

with o in degrees and other variahles in p.u.

L6,
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CHAPTER 3

APPLICATION OF LINEAR OPTIMAL CONTROL TO POWER SYSTEMS

3.1 INTRODUCTION

Optimal control theory is concerned with deriving a sequence
of controls, or a continuous control function in time, which when applied
to the given control system will cause the system to operate in some
optimum manner. The optimality of a control scheme is measured by a
performance iﬁdex, I, which is usually a time integral of some perform-
ance measure over a specified period of time and an optimum control is
defined as one which extrémises the pérformance index, Some important
results regarding necessary conditions to achieve extrema of the
performance index as developed by the calculus of variations, Poniryagin's

Minimum Principle and dynamic programming are swmmarised in Appendix 3--1,

The general optimal control problem is inherently difficult to
solve whether it be formulated by variational calculus resulting in a
two-point boundary value problem which, in general, can only be solved
by iterative methods requiring successive integration of the state and
adjoint equations or by dynamic programming, resulting in a partial
differential equation for which no general solution is available.
Furthermore, even when a solution is achieved, the optimal control is,
in general, in the form of an open-loop control or a feedback control
with time-variant feedback gains except for special cases such as the
linear regulator problem with the contrel interval extended to
infinity, where the optimal control is a constant linear feedback of

all states, These optimal open-loop or variable gain state controls
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are only applicable to systems which have fixed parameters and operating
conditions, and subject to a given set of disturbances. This is highly

impracticable for the control of turbo-generator sets in power systems,

The approach which is chosen here is to formulate *he problem
as a linear regulator problem which may be stated as follows: given a

linear system which is considered by:

X* AX + DU

. X(to) = X, (3.1)
Y = ¢X

where A, B and C are n x n, n x m,_'p x n matrices, an optimal control
U over the closed interval [}0, t :]is required which minimises the

performance index, I, in the form:
t
j £ T 7
I = ) (x RX + U R2U)dt + X (tf)RBX(tf) (3.2)
[¢]

where Rl is an n x n positive semi-definite symmetric matrix and R, is

an m x m positive definite symmetrvic matrix (n is the dimension of X
and m is the dimension of U), This problem was solved by Kalmau99

under the assumption of complete controllability of the plant. The

solution of this problem leads to a feedbhack control law:

U= FX (3.3)

where: F = ~R;lBTP(t) (3.4)
and P(t) is the unique, symmetric positive definite sclution of the
Riccati type matrix differential equation:

1.7

dp B - -
-gf = PA+AP-PBRBP 4+ (3.5)

which satisfies the voundary condition:

g

(&3}
L ]
(&1
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The minimum value for the performance indes (3.2) is given by:

1 5T
I = %X, P(t)X, (3.7)

In the special case of a time-invariant system (in which case, A and B
are constant matrices) and, with the control interval extended to
infinity, P is obtained as the steady state solution of the Matrix

Riccati Equation in the form:

PA + TP - PBRgl B'P 4 Ry =0 (3.8)

The feedback gain matrix F becomes a constant matrix as:
F = -R, BP (3.9)

Two methods werelused here for the solution of the Riccati
equation (3.8). The first method uses the Kleinman106 iterative
technique. When the order of model is high and the tolerance is small,
this method requires many iterations and may oscillate. The second

107

method uses the Diagonalisation Technique and gives the exact

solution. These techniques are explained in more detail in Appendix 3-2.

For the application of linear optimal countvol theory to a
power systeﬁ, the non-linear system model must be linearised around

an operating point as described in Chapter 2.

3.2  °  SYSTEM GONTROLLABILITY

The necessary condition for the design of a linear optimal
controller for a system is the controllability. 3By definition, a

system is said to be controllable if it is possible to find a constant
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vector u(t) which, in specified finite time tf, will transfer the
system between fwo arbitrary specified finite states X, and xgop
However, in physical terms, controllability iwmplies simply that it is
possible with the given set of control forces at hand to have the plant

under '"complete control™, i.e., its state may be changed completely in

accordance with an arbitrary aim,

For linear systems of the form (3.1), there are methods which
give necessary and sufficient conditions for controllability. One
method suggested by Kalman101 considers the so-called "rank" of the
n x nm wmatrix, which is obtained by grouping the n, n x m matrices

B, AB, AQB, veny AnnlB into the new matrix:

D = [a a8 A% ... a"l§] | (3.10)

It is-possible to show that the system is completly controllable only
if the rank of this matrix equals n. There is arother method first
o .

suggested by Gilbertlo“, through eigen~value and eigen-vector analysis,.
Considering the linear system (3.1) (X{0) =0), the solution of which
can be written as:

Jt

Y(t) = CeA(t -T) B u(T)dT (3.11)
0

Diagonalizing A gives:
-1 : ‘ -
A = MAM (3.12)

where: M (n x n) = col(M

}' "o Vv 3 -~ is i
1? 12, ’ Mn),\hele MJ is the normalized

eigen-vector corresponding with Aj’ i.e. A Mj = kj~Hj’ lMiI = 1. VY1

-1 T T T .
M (nxn) = row(V1 » Vo 9eeer Vo ) (3.13)

A(nxn) = diag( )\1, }\2,..., An) (3.11)
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then the transition matrix can be written as:

n

X (4T
Al=T) Ze i (1 T)Miv. (3.15)

1
i=1

When this expression is substituted into equation (3.11):

t n K _ :
J c( N 3 (¢ T)MiViT)B u(t)dt (3.16)

Y(t) = ] {:16
n T [t A, (t-T)
- z (cM)(v," B) ] e’ dt (3.17)
) 0

Equation (3.17) illustrates that the output Y(t) can be expressed as a
superposition of the n modes. In this equation, the 1 x m vector

(ViT B) matrix reflects the extent to which the ith mode is excited by
the m inputs. A different interpretation is possible by noting that

(3.11) can be written as:

T
t vy B .
Y(t) = - [cml, CMQ,...,CMn]e (+-1) VQTB u(t)at (3.18)
0
T
VB
_n ]

It is clear that each column of the n x m matrix

corresponds to an input, and the relative wagnitude of the n elements
in a given column reflects the relative effectiveaess to which an input

excites the n medes.
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The method described above is superior to the rank criterion
in two respects., TFirst, it gives a quantitative measure of controll-
ability as against the "go, no go' answer g&ven by tie rank method.
The second advantage of this modal approach is that it is easy to
compute; whereas the numerical determination of the rank of a general

matrix is still an open question in numerical analysis.

The second appreoach was used here for system controllability
assessment. The full ordér linearised model of the basic system
(Figure 2.1) was used. The calculation of the matrix VTB needs the
evaluation of matrix V which needs the inversion of the complex eigen-
vector matrix M; The simpler method is to use the fact that VT is the:

eigen-vector matrix of AT and this can be obtained by transposing

equation (3.12):

A A - A

f

The system matrix VFB is given in Table 3.1. In this table the first
column coriyesponds to the AVR loop and the secend column corresponds to
the governor control., It can be seen that no element in this column

is zero, which shows that all the modes of the system are controllable
through both AVR and/or governor action. Table 3.2 also shows the
corresponding eigen—values of the system. One very obvious fact in

both AVR and governor control loops is thaf the relative controllability
of the mode corresponding to the eigen—values (-12.46 t 3314.05) is
very low, These are very fast mcdes of ahout 50 Hz due to a stator
transient, Some wodes are clearly better controlled by one loop than
the other and it may b2 concluded that the use of both loops is likely

to give the best control,
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3 CIIOICE OF WEIGHTING MATRICES

A2}
L]
o

The major objectives to be achieved by controllers for power

systems are:

(a) The reduction of first rotor excursion for the improvement

of the transient stability;
(b) The quick settling of terminal voltage,

To satisfy the above objectives the choice of weighting matrices R1

and R2 prove to be important, although most of the time they have been
chosen through trial and error. ‘There has of course been some progress

towards the systematic procedure for selecting the [hl:]matrile’loh.

31

Yu and Moussa”™ proposed an algorithm which determines the diagonal
elements of the [ﬁl:]matrix such that the dominant eigen-values of

the closed loop system are shifted to the left of the complex plane

as far as practical controller gain limits permitted. The controllers
developed gsing this method were applied to the non~linear powver
system model and although a quick zeroing of the rotor angle and specd
deviations was obtaihed, the generator terminal volcvage showed large
transient variations, The'other'shortcoming of this method is that

again the choice of R, matrix is left to engineering experience. In

!
another attempthi, the authors diagonalize the system matrix and use

2

diagonal R1 and R2 matrices in which all the diagonal elements are

equal and by varying the ratio of R, and R, clements, rQ/rl, the

1

dominant eigen-values =re shifted. In this method too the-choice of

R1 and R2 of this special type secms to be arbitrary. It must also be

mentioned that the wmaximum shift of deminant eigen-values does not
34,98 ’

necessarily guarantee a good transient response after a large

disturbance in a cystem where non-linearities arise and constraints
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in regulating loops come into action, In the end, non-linear
simulations must be performed, final adjustments being made to obtain.
the best results. There are some guidelines which might case the

choice of these weighting matrices:

(a) The choice of performance index which only weights voltage
produces a very good performance for voltage but does not damp speed

I,
and angle oscillations*ﬁ.

(b) Large weightings of speed and angle give quick settling of
speed and rather overdamped response of angle, but large variations

might result in terminal voltage; The overdamped behaviour of angle
suggests that the speed weight must be less than that of angle as it

=) =
determines the rate that angle can change30’33’)1’)5.

(¢) A performance index weighting speed, angle and voltage

(voltage approximated with other state variables) will prove to

105, 38

satisfy the requirements

(d) The control weighting matrix shows the strength of action

which controller loops are given and this depends on the limits of

i [
the controller loops. Moya’s)3 equal degree of saturation criteria

seem very helpful. 1In this criterion, control weightiiugs are chosen
so that the ratio of the free control to the saturated practical

contrs? of both loops is equal,

In this study the R, weightings are similar to those of

1

Moyags, using the ahove gnidelines. The weighting for speed was less
than that on the states giving rise tuv voltage. TLe choice of R2
was initially made the same as that of Moya. Final adjustment of R,

/R

was made on two considerations. Firstly, the values of R o

1
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determine the effective gnin which was sought in the conirol loops.

Secondly, the relative values of the diagonal elements of R2 determine

the relative action of each control lcop. The diagonal matrices R1

and R, chosen in this study are given below:

[R1]= diag [0.1, 0.01, 0,01, 0,01, 0.01, 0,01,
0.01, 0.01, 0,01, 0,01, 0.0l ]

[®,] = diag [0.00001, 0.001]

3.4 SYSTEM PERFORMANCE WITH DIFFERENT CONTROLLER

Linear optimal control waé used for the design of systen
contrqllers. The linearised version of the system model was used for
the controller design. The performance of the system with only
convention$1 controllers after a three-phase short circuit of 80 wms
at h.v., busbar is given in Figure_B.l; In this figure, the variations
of rotor angle, terminal voltage, field voltage, mechanical torque,
governor and AVR settings are shown. In this case as there is no
supplementary signal AVR and governor settings are constant.

Figure 3.2 also shows the performance of the system after the same
disturbance when a full order model is used for the design of the
optimal controller. The variations of rotor angle and terminal voltage
are very much improved, The variation of field voltage in this case is
of bang-bang form>initia11y after the disturbance, Figures 3.3 and 3.4
show load angle swing and terminal voltage with controliers designed on
different syétem models (Chapter 2). Figure 3.3 shows that as the
order of the model is simplified and the number of feedback states

reduces, not only does the angle of the maximnm swing increase towards
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the value when no additional control is provided, but the damping of
subsequent swings becomes poor, The performance of terminal voltage
when an approximate (9th order) model is used is very close to that
of the full order model and it is not shown in Figure 3.4. The
performance of "very simple" model (third order) was worse than that
of crude model (fourth ofder) and it bad marginal improvement over
that of conventional controllers, and is not included here. It must
be mentioned that all the above performance was obtained by the non-
linear simulétion of the system using full order model. The integration
routine used for solving the set of differential equations was fifth
orvder Kutta-Merson, which is described in Appendix 3,3, This routine

provides information which automatically adjusts the time step.

) SYSTEM PERFORMANCE UNDER SMALL DISTURBANCES

(0]

In the previous section the performance of the system after a
three-phase fault for different centrollers was discussed. Here the
systein performance.under seall disturbance is szcught. The disturbance
chosen is a 10% variation of system voltage (infiniie buébur) for 80 ms.
Figﬁre 3.5 éhows the performance of the system after such a disturbance
when only conventional control locops function., This figure shows that
the performance of the system is very oscillatory. Figure 3.6 shows
the performance of the system when an llth order optimali controller
(desigéed on the full order model) is used. This figure shows that
the oscillations in terminal voltage and rotor swing are very well
damped and the terminal voltage is recovered very quickly. The
controller gains are the same as used in the vrevious section for

large disturbance Dbehaviour,
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3.6 VARIATION OF OPTIMAL CONTROLLER GAIN WITH
THE OPERATING CONDITION

As mentioned earlier in this chapfer, the design of the
optimal controllers is based on linearised system models which are
themselves functions of operating conditions (Chapter 2). Thereforg
the optimal controller gain wmatrix F will be a function-of generator
operatiﬁg conditions, Here thé variations of elements of F matrix
for an 11th order controller over the full range of power and reactive
power is studied. In this case the matrix F is of dimension (2 x 11)
and the variation of all the elements is given in Figures 3.7 and 3.8.
These three-dimensional plots cover up to full rated power and i0.5
(leading and lagging) reactive power. They were obtained by solving
the Riccati équation at different points. As these plots show the
variation of the gains in the normal operating conditious (P =1 to
P=0.5and Q = -0.5 to @ = 0 (lagging)) are mostly flat planes, and
for other regions it looks as if a few values could represent the

gain variation for the whole region.

3.7 DIRECT DIGIWAL CONTROL

The previous studies in this chapter assumed that the
conventional loops are still avgilable and the extra control effort
is obtained through the changes in reference values. Although the
existence of these conventional loops makes the system more reliable,
in futuré power systems they might be eliminated because of the extra
cost they introduce. Here this possibiiity is looked at and the
performance of the system without any conventional loop with direct

control is given, The design of controller in this case is based on
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Variation of the elements of controller gain
loop with the operating condition.

matrix F associated with AVR
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Variation of the elements of controller gain watrix F associated with
governor loop with the operating condition,
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system model which takes into account this elimination (Chapter 2).
Figure 3.9 shows the performance of the system after the three-phase
fault of 80 ms on the h.v. side of the transformer when the generator
is directly controlled without any conventional loops. Figure 3.10
compares the performance of the controlled system with and without
conventional loops. The uncontrolled system performances are also
given for comparison. These pictures show that conventional loops do
"not affect the transient behaviour of the system when these controllers
are used; however, their improvement on transient stability can be

observed when there is no other control action.

3.8 THE EFFECT OF TAULT DETECTION TIME ON SYSTEM PERFORMANCE

If the control regime is initiated shortly after the
occurrence of the fault, its performance may be spoilt. TFigure 3.11
shows maximum load angle plotted against deiection time for llth and
'7+'h order controllers (Curve (a) and (b)). This figure shows that a
large detection time for either scheme impairs the performance and
for detection times of more than 200 ms none of the controllers can
improve the transient stability limit of the system., For detection
times of more than S0 ms both the controllers give a similar improve-
ment to the first swing. A detection time of one cycle hardly affects
the performance of the controller based on the 11th order model., A
much longer detection time (about 100 ws) for the controller based
on 7JEh order model fails to affec£ it. This shows that the 11th

order ccnlroller is more efficient during the initial period just

after the fault,
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3.9 SUPPLEMENTARY STGNAL SENSITIVITY T0 DIFFERENT FEEDBACK STATES

The supplementary signals which are added to AVR and
governor settings are linear functions of states and the importance of
these states can be obtained by their contribution. Figures 3.12 and
3.13 show the supplementary signals for AVR and governotr with all
their components, after a three-phase fault of 80 ms when the controller
is based on the full order model. The results of these figures are
summarised in Figure 3.14, which shows a rough idea of the importance
of the states during transient period. As these figures show, the
most important signal is speed., They also reveal that stator fluxes
Qh, qh are not important and might be neglected but the damper fluxes
are quite important and c;nnot be eliminated. These results agree with
the previous studies with different controllers and confirms that the
approximate model neglecting stator transients is a good choice for

controller design.

3410 DESIGN OF CONTROLLFERS USING MEASURABLE OUTPUTS

The controllers discussed in this chapter need the system
states for feedback. Il has been shown that an approximate model (9th
order) is sﬁfficient for controller design. Th;re are four
unmeasurable states in this approximate model: {field and damper
fluxes and the load angle to the infinite busbar. Four other wmeasurable

outputs were chosen as: St, terminal load angle, i field current,

f,

power and terminal voltage. These were related to the states by

linearisations:

Y C.X



and the feedback control law is:

The derivation of the C matrix is given in Ap?endix 3-4. Figure 3.15
shows the performance of the system when this output controller is

used after a three-phasc fault of 80 ms. For comparison, the
performance of the systemé with other discussed controllers are also
given. This figure shows that the performance of the system with this
controller is very close to the best obtained by Lﬂe feedback of
unmeasurable states, It is possible to use Q, reactive pawer, instead
of terminal voltage, but Q, P and Vt cannot be used together as they

are dependent and C is then not invertible, A simpler output controller
is obtained by using a simple model system. In this case St’ the
termigal angle, is used for 6, the load anglg to the infinite busbar.
The derivation of the C matrix for this case is similar to the previous
one. Figure 3.16'shows the performaunce of the system with +this
controller after the same three-phase fault disturbance. For comparison,
the performance of the system with the previous output controller is
given., This figure shows that this simple output contvoller has a
performance comparable with those feeding hack unavailable stotes

when the controller is designed on the simple syztem wmodel., Also it
shows that the performance is inferior to the complete output

controller, especially from the transient stability limit point of view,
) y P

Some attempts were made to usc some other variable instead

of M, mechanical torque, and v, A; and v.

£ E,_the derivatives of Ap,

T!

valve pesition, and v

B exciter voltage, were chosen as the substitutes.
4

The C matrix was developed. The results show that when vé is used as
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flS

directly fed back, but when Aé is used for MT, the performance is

an output, the performance is_not different from the case when v

inferior to that when MT is available. Theoretically there should

. o o \
E and Ap instead of Ve and dT’

change in the system performance probably arises because for large .

not be any problem in using v but the

disturbances the variations of AP and vp are in bang-bang form going

to their limits, and so their derivatives cannot reflect the behaviour
of MT and Ves especially during the initial period after the

disturbance, although it may work well for small disturbances.

3,11 CONCLUSION )

The studies in this chapter show that linear optimal controllers
improve the system performance both under large and small disturbances,
th

It is shown that in the design of controllers, the approximate (9

order) system model is a very reasonable choice.

The variation of optimal controller gains with operating point
are given, A few values of regional gains wonld be necessary in some

loops, Others are effectively constant in the generatof operating region,

Direct control of the system without the conveniional loops
was also considered. The conventional loops do not change the transient
behaviour of the system, aithough the system might be thought more

reliable with them.

Output controllers, veplacing unmeasurable states with other
variables, were shown to have performance comparable to those using

unmeasurable states directly.
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CHAPTER 4

OTHER CONTROL ALGORITIMS

b1 INTROBUCTION

In this chapter other control algorithms are Applied to the
power system. Integral action eliminating the steady state offsets of
some system parameters is introduced into the linear optimal controller
derivation, Dual mode controllers which have two different control
modes during transient and steady state condition are designed using a
numnber of different methods. A non-linear controller is designed which
uses powers of system states as well as linear combinations, This
controller aéts similarly to dual mode controllers. While linear
terms are designed to ensure very good damping during steady state
conditions, the non-linear terms tale over during the transients te

make the system recover very quickly.

4,2 INTEGRAL COLTROLLER

In practical situations it is desirahle to have sowme system
parameters as constant as possible despite the changes which might
occur in the system. In such conditions integral action may be
introduced to restore such parameters to their pre-disturbed value,

This is done by the introduction of a new state vector h, as:

o= oz -z = glxu) (4.1)

where z is the vector of parameters which must be forced to retain
their desired value z4 in the steady state. FEquation (4.1) is added

to the system state equation to develope a new state vector:
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X, = fl(x,ul) . ' (4.2)
where,
X f
xl = N and fl = ’i.j)

Linear optimal control can be used to derive the controllers
for the system equations (%4.2). This non-lincar equation is linearised
about the operating conditions and by minimising the performance index:

I =IAX1T RAxy Au" R Au e (4.4)

-
i

AxT R, Ax + AhT R3 Ab + AuT R, Au (n.5)

The control law is:

Au = FAx1 = Fle+F2Ah {h.6)

It is important that the number of "integral' variablas h
be equal to or less than the number of control variables, Tt is
possible to choose any variable as an integral parameter but power,
voltage and angle are system variables which have been usedhs. The use
of these variables as the integral variables is justified when the
conventional control loops are not presenféé. Input variablesSI can
also be chosen as integrals, especially when the conventional loops
are present. The control law obtained can be used in the presence of
permanent changes in the husbar voltage, busbar frequency or line

reactance, or at an operating point different from predisturbance one,

In this work the performance of the system is considered
with integral action on the input variables. A linearised simple

+
system model (7‘h erder) was used. The introduction of integral action
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increased the order of model to 9 and the controller obtained was a
linear function of the integral variables deviations Ab( gt Auldt and
JtZXugdt, the integral of the input deviations to the governor and AVR
gettings), as well as the state variable deviations Ax as given in
equation (4.6). The performance of this controller was simulated in
a full order non-linear system model (11th order), the order of which
increased to 13 due to the dynamics of the integral action. Figure 4.l
shows the performance of the systeu after a three-phase fault of 80 ms
when one line is lost. This figure shows the variation of the rotor.
angle, +terminal voltage, mechanical torque and field voltage for 3
seconds, It shows that with this integral controller, the machine
parameters move to the new operating condition without any steady state
error. The ﬁeighting matrices [}H:]andlzné] are the same as those chosen
without the integral action in the previcus chapter. The studies
showed that with this choice of [ﬂl:}aud [Ré] the performance of the
integral controller is very sensitive to the choice of Eﬁsj y the
weightings of the integral variables., Tigure %.2 shows the effect
of the choice of [R;] on the performance qf the system. This figure
shows that the best r2sults are obtained when [ﬁﬁ:]is chosen siuwilar
to [Ré] , the input weighting matrix (curve (a)). Inferior results are
obtained when [ﬁsj is chosen with the same element ratio of [Ré] and

comparable ‘element magnitudes (curve (b)).

It should be mentioned that although the integral controllers
may obtain a desirable steady state condition, they impair the transient
behaviour of the system and a compromise must be reached in the proper

choice of weighting matrices.
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4,3 DUAL MODE CONTROLLERS

Dual mode control has been proposed for the control of
109,110 C o
systems . These controllers have two distinct modes, one for the
transient conditions when the deviations are large and the second one
for the small deviations when good damping is required.” In this

section a number of these controllers are designed using different

methods which are described in the following subsections,

4.3.1 High and Low Gain Linear Controller

In the design of linear controllers, the relative magnitude
of the elemeﬁts of [j%;]and [Ré] y the state and control weighting
matrices, decides the'type of controller. Small weighting elements in
[hgj result in a high gain controller and vice versa., High gain
controllers are efficient in increasing the transient stability limit
but they tend to reduce the damping during steady state operation, This
is less obvious when controllers are designed through higher order s«ystem
models as they take info account more system modes of oscillation.
Figure 4.3 shows the swing curves for a high gain controller, (a)
obtained with small [R2] , that with low values of gain, (b) and (c)
which has a.high gain followed by a switch to léw gain after 0.3 sec.
The hiéh gain controller gives bang-bang action, variables reaching

98)‘

ceiling values (also called saturation type controller The above
controllers were designed on the simple system model (7th order) and
the disturbance was the same, a three-phase fault of 80 ms at the
transformer h.v, terminals, Similar results are obtained when the
measurable output controller based on approximate system model (9th

order) is used (the controller was derived in Chapter 3). The results

are shown in Figure 4.4,
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4,3,2 Bang—-Bang Schewme and Linear Controller

The results show that an efficient controller is initially
of bang-bang form after the occurrence of the transients. Low order
controllers which provide good damping for the system do not fulfil?
this requirement, therefore the improvement they give to transient
stability limit is marginal., This can be overcome by using a bang-

- bang switching-type controller, Jjust after the occurrence of the
fault and by switching to a linear controller with good damping after
a period, Curve (a) in Figure 4.5 shows the rotor angle swing when a
bang-bang controller is used initially and is followed by a simple |
(7th order) linear optimal controller. The bang-bang controller has
only one switching time of 100 ms, in other words, it takes the
governor setting to the minimum limit and AVR setding to the maxiuwnm
limit for 100 ms. Curve (b) is similar to curve (a) except that the
bang-bang controller contains two switchings, the second switching
lasting for 50 ms. Curve (c) shows the performance of the system with

th order) linear controller. This figure shows that the use

a simple (7
of a bang-bang controller reduces the first swing but that any increase
in the number of switchings above 1 only improves the performance
marginally when the bang-bang action is followed by a linear controller.
Curve (a) in Figure 4.6 shows the rotor angle variation when the
measurable output controller is used., The controller is obtained
through very simple system model (Brd order) and requires the feedback

of P, Vt’ d,, power, terminal voltage and terminal angle, Curve (b)

t’
shows the performance when the above controller is followed by a

bang-bang controller of one switching with iIC0 ws duration., The system

performance with the conventional controllers only is also given in
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(a) ,,,,,,,,, one on-off period of bang-bang control
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(a) ——— only conventional conivoller
(b) —_ very simple measurable output controller
(¢)  ceeereenne. one on-off pericd of bang-bang control

(100 ms) followed by (b)
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curve (c¢) for comparison., This figure shows that the initial bang-
bang strategy is very effective in increasing the transient stability

limit,

4,3.3 Dual Mode Controller Design using the 'Second
Method of Lyapunov!

The 'Second Method of Lyapunov! (S.M.L.) has been well
described in literaturelll. Below, the results of S.M.L., theorems are

explained briefly.

The equilibrium state X = 0 of a continuous-time, free

stationary dynamic éystem '

x = [WJx (4.7)

is asymptotically stable if and only if, given any symmetric positive
definite matrix Rl, there exists a symmetric positive definite wmatrix P

which is unique solution of the matrix equation

PA + AP = Ry (4.8)

and

vx) = Lx'[P]x (4.9)
is a Lyapunov function for (4.7).

There is another theorem in the second method of Lyapunov

which states that a continunous—time autonomous dynamical system, with

Ax=1u(Ax) with h(0) = 0 (n.10)

is asympivotically stable when a scalar function V(Z&ﬁ) exists with
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continuous first partial derivative with respect toAx such that:

(i) V(Ax)> 0 for ail Ax £ 0 and V(0) = 0
(ii) V' (Ax) €0 for all Ax £ 0
(iii) V(Ax) ———® with Ax -——w,

Using the above, feedback controllers can be designed which

guarantee the asymptotic stability of the controlled system. It is

shown111 that for the system

Ax* = AAx + BAu (4&1)

where the control variables Au are subject to the constraint:

o, {Au, By (=1,2000, m: O o, B> 0 = (n12)
with the Lyapunov function (%.9), tihe controller is as below:
¥y . T
g, if (3" aAx]; > o
0 it [B% A Ax ] ;= 0 (h.13)

. T
é;. if [B* A Ax ] N <: 0 |

u = -

h S

In practice, the controller of the form (4.13) presents certain

difficulties, and it has been suggested111 that a caturation-type

controller, as given below, be used:

Bi if ki [ﬁT Plﬁz.:h:> ﬁi
u, =k, EBT pAx ] ir Q, <ki EBT PAx ]i <Q1 (no14)
A itk (B pAs T La,

1
1l = 1,2,...,m

where ki:> 0 is an arbitrary constant. Clearly the controiler given

by (4.14) approximates to the controller (4.13) as ki becomes large.



For the application of this method to controller design for
a power system, the non-linear system musi be linearised around an
operating condition., Equation (%.8), which is called the Lyapunov
equation, was solved using the same techniques used for the solution
of Riccati equation (Chapter 3). The choice of Rl’ the weighting
matrix, is similar to the one used in Chapter 2 for the linear optimal
controller, By varying ki-different system performance is obtained.
Different models were used for the design of controllers. The results
obtained are very similar to those obtained by linear optimal control.
By proper choice of ki, the controller can be either a high gain or low
gain controller, The interesting peoint here, of course, is that ki
does not enter into the Lyapunov equation (4.8) and therefore the
solution Ef] is independent of ki' In other words, equation (4.8) is
solved only once and different controllers are obtained as given hy
equation (4.14). A dual mode controller was considered similar to
that in (4.2.1), a high gain controller initially being followed by a
low gain controller after a short period. It is remarkable that in tfhe
.application of the method, two sets of gains are not required, cach set
of gains associated with one controller loop being related by a factor
of kl/k2 where kl and k2 are coefficients chosen to give the high and
low gain controller., In this way only one set of gains with two
coefficients relating the gains for the high and 1ow gain controller
for AVR and governor loops are required to be stored. Figure 4.7
shows the variation of rotor angle for the same three-phase fault
disturbance as before for different controllers designed on the simple
system model, Curve (a) is the gystem performance when the Lyapunov
method is used for the controller design. The contvoller is dual

mode using a high gain controller initially and switching to a low
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gain controller after 0.3 s. Curve (b) shows the performance of the
system when a dual mode controller using two linear optimal controllers
as explained in Section %.3.1 is used, Thé performance of the system
with a linear optimal controller (Chapter 3) is alsc shown (curve (c))
for comparison, This figure shows that the dual wmode controllers
obtained by the Lyapunov technique are as efficient as %hose of linear
optimal control except that it does not neced two different sets of
gains and one set is related to the other with two coefficieﬁts
associated with the AVR and governor loocps. In the above Lyapunov dual
mode controller, the controller coefficients ki (i = 1,2) were changed
after 0.3 s to change the mode of the controller. It would be possible
to make these factors change continuously and make them a function of'

state deviations.,

b,k NON-LINEAR CONTROLLER DESIGN

With the dual mode controllers in mind,'here a single controller
is developed which provides the system with good damping for small
disturbances and during large disturbances has a high loop gain, with a
fast recovery action for the system. A non-linear controller is
suggested which has the same advantages as those obtained with tbe dual
mode controllers in that the control signal has two components, the
linear part which provides high damping for small disturbances and the
non-linear component which contains high order states, and dominates
the performance during large disturbances and bas negligible action during

o)
small disturbances. The design of controllerll“’ll3

given below is
very simple and similar to that of linear optimal control, only a set
p I y y

of algebraic cquations has to be solved, Tinally this non-linear
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controller guarantees closed-loop asymptotic stability and it has

the form of an explicit expression.

b4, 1 Design of Controller

The problem is to design an asymptotically stable non-linear

feedback control law for a linear plant,

X' = AX + BU (4.15)
Y = CX (4.16)
of the form

U(ﬁ() = -FX + U, (X) | o (nay)

wnere UNL(.) is a non-linear homogeneous function. The goin F is
chosen via the solution of a non-linear quadratic regulator problem,
discussed in the previous chapter, so that the linear system

X" = (A -BFR)X (%.18)

)

is asymptotically stahle, Since the UNL(X) is non-linear and homogeneous.
U(X) = -FX for small X, and hence —-FX will dominate the system response

for small disturbance,

Brocket'sll& transformation is used to define and develcpe

iy

and A [?] for X(n) and matrix A (n x n) which is useful for
obtaining the required solution. X£}i] is defined as a vector with the

dimension:

n+p-1 s
B! n+p-1)ip}
e () - LTH_—I}—,P- (4.19)

P

with elements of the form:
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n .
Q l__l XI.)l (4.20)
i=1 i

Zp =p | (4.21)

a - \/P )(PP1).. ... (P~Py= == o=Py 1 (4.22)

p1 p2 pn

and ‘thus the power p.th transformation of X' = AX is,

XD’J (4.23)

lc.

o < g

[=H

t

It is shoxml12 that the Jth compenent of non-linear controller is in

the form below:

U, (X) = -43B Z (—D}[Jj)l’ il (h.2k)

where the matrix P_ is obtained by the solution of the Lyapunov

J
equations’
_A[J] P+ Py A[J] = - Q J = 2,700, (4.25)
_ where
A = A-BF (4.26)

To summarise the method, for the design of JJCh couponent of non-linear

controlleyr term U,

NL? the following steps must be talen:

1. X[pj and %:i] must be developed using Brocketfs transform-

ation from A, given above (4.26).
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2. [?i] is calculated by the solution of Lyapunov matrix

equation (4.25).

3. Jth non-linear component is obtained from (4.24), This

]];1..

: J
equation requires the calculation of the matrix: [Bx

L, 4,2 Application of Non-Linear Controller to Power System

For the purposes of +this non-linear controller design, a
simple system model has heen used. The non-linear equation x* = f(x,u)

is linearised about a prefault operating condition giving,

X" = AX + Bu (4.27)

where X = Ax _
(4.28)
and U = Au

Linear optimal theory is applied to this system and, as described in
the previous chapter, the control signal Au is obtained as a linear

function of states:
U = FX ' (1.29)

The linear controller designed is a low gain controller suitable for
small changes from the operating condition, Substituting the control

law (4.29) in (4.28) results in:

XG

(A-BF)X (%.30)
or
X* = AX (4.31)

where A = A-~3DF . (4.32)
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In this study only the non-linear components with J = 2 are considered.
thj'which is the second power vector X transformation is developed
using equations (4.19) to (%.22). The dimension of vector)(l:-é:I is (27).
The system state variable vector X and the second order non-linear
state variable X[?] developed are shown in Table 4.1, The transformed

non-linear state equation (4,23) for this case is given below:
A2l . Ao 2] (4.33)

ﬁ:é] is developed from A, the optimally controlled linearised system
matrix given in equation (%4.32). Table 4.2 shows the qzzj (28,28)
matrix developed on the A elements (all,a12,...). As it is quite
time-consuming to develop. this matrix by hand, a simple computer
algorithm waé developed to build this matrix from the data of A on the
basis of the relation between the derivatives of the non-linear state

variables X£3i] and system state variable X as given below:

P [ x(1).x(J)]

X (1)X(3) + X(1).X"(J)

n 1

ZK(I,K).X(K).X(J) + ZX(I,K).X(K).X(J)

k=1 k=1 (4.3%)

The watrix A[2] developed is used in the Lyapunov equation,
2] T 2 ] :
P[ Ao+ 407 PI-_- = -R, (1.35)

This equation is solved using diagonalisation technique (Appendix 3—2)

0O

-
to give FLf:](28,28). The weighting matrix R(28,28) is chosen as a
diagonal matrix with first element 0.1 and the rest as 0.0l. Finally,
for the nou-linear controller given in equation (4,25), the Jacobian

2 . , . . . .
matrix &A: :]/ax is reguired. This matrix, which is a function of

current system states, is shown in Table 4.3.
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(a)

I3

(v)

(a) (b)

Table 4.1
[X] linear system state variable.

2] : .
X+ second order non-lincar state varialtle,

99.
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Figure 4.8 shows the perfermance cof the systcem when this
controller is used. The disturbance is a three-phase fault of 80 ms
duration at the transformer h,v, terminals. In ihis figure, variations
of rotor angle, terminal voltage, field voltage, mechanical torque,

AVR setting and governor setting are shown, Figure 4.9 compares the
variation of rotor angle of the above non-linear controller with that
of the linear controller alone. This figure shows that the non-linear
controller has decreased the first swing while the system damping is

as good as that of the linear optimal controller. By changing the
matrix R in equation (h.35), the non-linear component of the controller
varies and so does the performance of the system. A good guideline for
the choice of [h] matrix is the consideration of Eﬁ] as the weightings
of non-linear state variables and as the non-linear state variables

are functions of linear state variables, the elements of [}C]can be
obtained from the choice of weightings for linear optimal controlj

for example, R(2,2) can be considered as the welghting for non-linear

state variable Xl,X so:

2
R(2,2) - R(XIXQ) = R]_(xl).ng(xg) (4.736)

In this study the non-linear state variables used were of order 2 but
when the form of centrol is taken into account (equation (h.24)), it
will be seen that the quaﬂtities actually fed in are of third order.
Theorctically variables of greater order could be used, the order of
variables fed in being equal to that of the state variables chosen (J)
and that of the Jacobian (J-1). Thus the order of variables fed in
goes up almost as J2 and there is little incentive to go to values

higher than J = 2,
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The wethod can be extended to the case wvhere output feedback
is used. The other line of investigation is of course the derivation
of the sensitivity of the controller to each element and ihe

simplification of the controller on the base of the sensitivity study.

k.5 CONCLUSION

In this chapter some other control algorithms were developed.
The introduction of integral action on some system parameters seems to
be very useful., In the cases where the analogue controllers exist, it
would be more appropriate to leave integral action on supplementary

signals provided for stabilization through AVR and governor settings.

Dual wode controllers are quite effective, especially when
controllers are designed on simple system models., Tbree different dual

mode control algorithms are proposed:.

(1) The use of two linear optimal contrcllers with high and low

gains in succession with 0,3 s switching time,

(ii) The use of a bang-bang controller follewed by a linear
controller, It was shown that the bang-bang controller would only

require one switching of 100 ms duration.

(iii) The use of Lyapunov!s second method for the design of high
and low gain controllers. The sets of gains ohtained for high and
low gains arve dependent and are related with uniform factors,

which makes the controller attractive,
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A non-linear controller is developed in this chapter which
feeds back higher order terms of system states as well as linear terms,
The design of controller is similar to that of the linear optimal
controller and requires the solution of a matrix equation, Further
study would show which element variables provide effective feedback and

if the remainder were removed, the controller could be simplified.
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CHAPTER 5

DYNAMIC ESTIMATOR DESIGN QR A POWER SYSTEM

5.1 INTRCDUCTION

As was shown in previous chapters, modern control theory
is directly applicable to the control of power systems during transient
“conditions through the AVR and governor systems. Output controller551’126’127
using measurable variables as feedback, although very efficient,
introduce noise and the cost of measuring devices and instrumentation
is not negligible, With the recent progress in state estimation 115-117
it seems possible to estimate the states of the system on-line from
very few measurements., Usually all such studies assume the saﬁe simple
model for the system and the dynamic estimator and also neglect the

o . . . 122
effect uvf weasurement noise, The application of observer theor
I

120,121

to power systems and its use for the cuntrol of generators

2 !
through excitation system120’121’1"3’12*

seemed to be promising, but
the simple linear models used for the observer bave made only marginal

inprovements. Measurement noise was neglected in these stulies,

Here, a full study of the application of dynamic estimators
of séveral orders, for the control of the system during itransients is
undertaken, their efficiency in filtering, estimation and control
being coupared. Although the optimal gain of the estimator is obtained
through linearisation, its structure remains nen-linear. Speed
deviation has been used as the only system wmeasurement, but guidelines

are given for the use of any other system parameter or parameters

instead. In all the studies measurcment noise is cunsidered.
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5.2 THE THEORY OF ESTIMATION

The control of generators with the feedback of multi-variable
signals supposing that they are measurable, has the problem of noise,
the accuracy of the measuring devices and the cost of these measuring
devices, Here the state vector, or an approximation to it, is obtained

107,118

from very few observed variables . This may be expressed formally

as finding a functional H,

() - nlr@), ¢ <t < ¢ 6§ b (5.1)

where: t

o the initial time of observation,

Y

observed variable, (5.2)

i(t): reconstructed state,

such that X(t) = X(t). Note that H [y(T), t, T £t], the
reconstructed i(t) is a function of the past observations y(t),

t0<:1: $; t., Once the states are reconstructed, they may be used as

107

multi-variable control inputs. It is shown that for the n-dimensionail

system

X*(t)

Y(t)

A(t) X(t) + B(t) U(t)

c(t) X(t) (5.3)

where the dimensiors of U and Y are m and p, the dynamic of the

observ-or is:

X (t) = A(£).X(t) + B(1).U(t) + X(t) [Y(-t)—C(t))_(.('t)] (5.4%)

where K(t) is in general an arbitrary time-varying matrix.

Equation (5.4) can alsc be expressed as:

X (%) = [A()-K(2)c(+)] X(1)+B(£)U(+)+K(t)Y(t) (:

Ul
.
(1]

e’
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Here the dimension of the estimator is assumed to be that of the
system, n and the use of lower order estimators is discussed later,
The dynamics of estimator behaviour are governed by K(t). Under
conditions pf system observability, it is possible to choose K(t) so
that the poles of the observer are assigned arbitrarily in the complex
pl ane, ensuring .that the observer is asymptotically stable. Also, as
with optimal control, it is possible to choose K(t) optimally so that
a performance index is minimised, Using the latter approach, the
general case is considered where there is excitation and observation

noise, The system equations are:

X" (t)

A(D)X(t) + B(t)u(t) + l.L)l(t)
(5.4)

Y(t) c(t)x(t) + wy(t)

where‘Lﬂl(t) is termed the state excitation noise and (Ug(t) is the
observation or measurement noise., It is assumed that the joint
process Col, [knl(t)’ (DQ(t):]can be described as white noise with
intensity:
(.\)l(t) vll(t) vm(t)
E T T £t
. v (¢ z
(5.5)

Furthermore, the initial state X(to) is uncorrelated with LUl and Wye

Ex(t))] = X (5.6)

E[x(¢)-x J[x(¢ )-X ] T2 g (5.7)
Considering the observer
X (t) = A(E)X(t)+B(+) u{t)+K(t) [x(t)-c(+)X(+)] (5.8)

1 . . + .2 +3 7w A l
The problem of finding the matrix functions A(t), togg't s; t, and

the initial conditicen X(io) 50 as to minimise



: [}T(t) (%) e(ti] (5.9)

where the recorstruction error is

eft) = X(t) - X(¢) (5.10)

and where W(t) is a2 positive definite symmetric weighting matrix,
termed the "Optimai Observer Problem". If all signals observed contain
white noise, i.e. V22(t)> 0, t}, to’ the problem of devising an optimal
observer is non-singular. The non-singular optimal observer problem
where it is assumed that the state excitation noise and the obscrvatinn

118

are uncorrelated (v, = 0) was first solved by Kalman and Bucy + The

12

solution is obtained by choosing for the gain matrix:
T -1
K(t) = Q(t) ¢ () vy, (t) tyt, (5.11)

where Q(t) is the solution of the matrix-Riccati equation,

Q(t) = A(1)Q(t) + Q()AT (6)-v, (D)= ()T (£)vpa(t)e(t)a(t)
> b (5.12)

4

and the initial condition

[0}

a(t)) = Q (5.13)

In the original derivation of Kalman and Bucy118 it is proved that
this filter is the minimum mean square linear estimator, that is, it
is impossible to find another linear functional cf the observation
Y{T) and input U(T), tosg't S: t, that precduces an estimate of state
X(t) with a smaller mean square reconstruction error. It can alse be

119

proved that if the initial state X(to) is Gaussian, and state
excitation noise precess (Dl, and the eb;ervation noise W, are

Gaussian white noise processes, the Kalman-Bucy filter produces an

estimate X(%) that has minimal mean squaie reconstruction error among
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all estimates that can be obtained by processing the data Y(T) and

u(T), t,KT Kt

The optimal observer provides a compromise between the speed
of state reconstruction and immunity to observation noise. The balance
between these two is determined by the magnitude of the white noise
intensities Y11 and Voo

- constant and putting Voo = P M, where M is a constant positive definite

The balance way be expiored by setting Vi1

matrix and D is a scalar. Increasing D improves the speed of
reconstruction since less effort is required to filter out observation

noise,

In a way similar to the regulator problem when the A and C
matrices are time-invariant, the steady state sclution of Q is the non-

negative solution of the algebraic observer Riccati equation:
‘ T T -1
. — = !
AQ + QAT #+ vy, =~ QCV,,0Q = 0 (5.14)

Corresponding to this Q the steady state optimal observer gain matrix

iss
K = QClvgy, (5.15)

Finally the structure of the system and the estimator when the
estimated signals are used for the control, is given in Figure 5.1.
The structure of Figure 5.1 can be cimplified by substitution of the

control law:

Uoptimal -F(t).X(t)

The simplified structure is shown in Figure 5.2.
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Figure 5.2:

Condonsed structure of Figure 5.1.
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3 POWER SYSTEM DYNAMIC ESTIMATOR DESIGN

i
-
&

Considering the basic system shown in Figure 2.1 of a generator

connected to an infinite busbar, the dynamics of which can be written:

x* = f(x,u) = Ax + Bu +[ ) (5.16)
Y = ¢x

where [~ contains all the non-lincar terms. Remembering that the observer

for a linear systen,

.X'

AX + BU, Y = CX (5.17)

is:

>*‘;i
1l

AX + BU + K(Y-CX) (5.18)
The observer for the basic system of equation (5.16) would be of the form:
X* = A¥ + Bu + [+ K(y - CX) (5.19)

To obtain the gain K, the system equation (5.1€) is linearised about an

operating condition, giving:

Ax®
Ay

A'le + B'Au

C'[Xx

(5.20)

By using A', B!, C!, K is obtained from equations (5.14) and (5.15).
Although the estimator gain has been obtained through linearisation,
the dynamic estimator itself (equation (5.19)) is not linear and the
only extra linear item is the forcing term, K(y-Cx). The structure
of the plant, and the estimator when the estimated signals are used

for the control, is given in TFigure 5.73.
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5.4 SYSTEM OBSERVABILITY

In the previous sections the problem of reconstructing the
behaviour of the state of the system from incomplete and possibly
.inaccurate observations has been considered. It is important to know
whether or not a given system has the preperty that it is at all
possible to determine from the behaviour of the output what the behaviour
of the states is. This condition is called system observability. It is
shown below that if a linear system is observable all the estimator
poles can be arbitrarily located in the complex plane by choosing K
suitably, in other words, the observability condition ensures the
asymptotical sfability of the estimator. Even if the system is not
completely observable, it‘is possible to have an asymptotically stable
observer which does not observe some system modes if the system is
detectable, in other words, the unobserved modes stay in their stable

107

subspace .

in a wanner similar to that used to study controllability, it
is possible to show that the system is completely observable only if

the rank of the matrix,

P

CAn—l

equals n.

Alternatively, another wethod is through eigen-value and

eigen-vector anulysis, which was described in the assessment of svystem
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controllability in Chapter 3. It was shown that the system output can

be expressed as:

I:

Y(t) = ) (CMi)(ViTB)

=1

J’t e}\i(t—t)

0

u(t)dt

[

where Mi is the eigen-vector corresponding to the ith eigen-value.
This equation illustrates that the output Y(t) can be expressed as a
superposition of the n modes, In this equation, the p elements in the
CPE reflect the extent to which the ith mode appears in the p outputs.
A different interpretation is possible by representing Y(t) in the

form below:

Each row of the matrix (CM) corresponds to an output. Moreover, the
relative magnitude of the n elements in a given row reflects the
relative extent to which this output "sees" the n modes of the system.'
Thus the relative ohservability of the modes at a given output can be

determined readily.

Following the latter method, the full order linearised model
of the basic system (Figure 2.1) was used., The matrix M(11 x 11) was
developed and is shown in Table 5.1 with the corresponding eigen-values
in Table 5.2, As described, each row of the matrix (Table 5.1)
corresponds to an output. Although in this study speed is the state of
inferest, the observability of all the other states was looked at, for
comparison, First ofvall the second row of this matrix corresponds to
speed measurewrert, The relative magnitude of the elements of this row

reflects the relative extent to which speed sees the 11 modes of the
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system. As there is no zero element in this row, the observability

of the system with this signal is ensured, Furthermore, it is
noticeable that the first and sccond elements of this row corresponding
to the very fast modes of the system (-12.46 ht j314.05) have much less

relative magnitudes, which confirms that the stator transient modes

are less observable than the other system modes,

It is interesting to notice that this table gives the modal
observability of each state. It could also be used to derive the
modal observability of other output signals, like power and voliage,

by relating them to the states of the system in the linearised version,

5.5 A FULL ORDER POWER SYSTEM DYNAMIC ESTIMATOR

A full order dynamic estimator for the system was designed of
order equal to that of rcal system 11, The only observed signal y was
speed deviation, The estimator gain matrix in this case is an 11th
order vector and was obtained by the solution of the estimator Riccati
equation (5.14) with the techniques expiaincd in Appendix 3-2.

Initially the matrices Y11 (11 x 11) and Voo (1 x 1) were chosen as
unity matrices and the effect of their variations on the estimator
performance is discussed later, Figure 5.4 shows the performance of the
system plus the estimator after a thvee-phase fault of 80 ms at the h,v,
terminals of the transformer when it is controlled with the conventional
loops. Figure 5.5 shows the performance of the sysziem after the same
disturbance when the estiﬁated signals are fed back (Figure 5.3) through
the optimal gains obtained for direct state feedhack of the system,

These figures show that the estimated values of states are very close %o
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real values. Figure 5.5 also shows that the performance of the system
with the estimator is as good as that with direct (but unobtainable)

state feedback.

To see the effect of the weighting matrices Y11 and Voo

Vi1 (11 x 11) = Eﬁ] wvas kept constant and v, was varied from 0,01 to

22

100, The effect of Vi1 and Voo vaiiation in this case was insignificant,
- This effect will be discussed later when noise is considered and the

order of dynamic estimator is simplified.

5¢5.1 The Effect of Noise on the Behaviour of the System

To make the studies more realistic, a standard computer
package was used to generate noise. The generated néise is added to
the observed signals - in this case only speed. A number of different
types of noise were considered but here the one which is the most
general will be discussed. White noise was considered with zero mean

value and the standard deviation is

g=a + B (Aw) (5.21)

where ({ and Bare constants and Ay is speed variation., This kind of
noise ensures that in the steady state when A() = 0 there is a noise
with the standard deviation of and during transients the standard
deviation of noise increases with the deviation of speed, The values
of ¢ and 3 were both chosen as 0.05, a high noise level. Figure 5.6
shows the performance of the system with the estimator when such a
noise is added to the measured speed. This figure shows that the

estimated speed is very well filtered and the perlormance of the system



122,

is not affected, although a small oscillation appears in the field
voltage., It is interesting to compare these results with the case when
all the states are directly fed back and all of them contains the noise
vhich is structurally the same as that defined in (5.21):
g = .
x, = +B X (5.22)

where Xi is the ith

feedback state deviation., WithQ and Bboth 0.05,
the system in this case was so noisy that it was unstable. In order to
obtain some idea about the performance of the system with direct measure-
ment, a much smaller noise level was chosen, ¢{ = 0.01 and B:: 0.05,
Figure 5,7 shows the performance of the system when all signals are
measured and contain noise with the distribution given in (5.22). This
shows that the AVR and governor settings are very noisy and the field
voltage is highly oscillatory. Thus even with a comparvatively low

noise level, the performance of the system is worse than when an
estimator was used (Figure 5.5). The reasen for this could be that if

s, then the

n signals are mixed, with standard deviations of 0& 1.n
. =Ly

standard deviation of the resultant signal is,

N 2 2 2 5 oz
o’r,esu.lta.'ﬁ: - \ﬁl +O’2 v "'Un (5.23)

From equation (5.22), the standard deviation of resultant control signal
(governor speed setiing or AVR voltage setting) when all the signals are

measurcd directly is as follows:

g

resultant

Ve 817+ (@eBX)7 + won s (@epX;)”
(5.24)

With the assumpiion that the signal deviations ave roughly equal to X,

resultant =\/1(C(+ BX)Q =\’{1 (a +BX) (5.25)
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Equation (5.25) shows that the noise standard deviation of the resultant

signal is 3.3 timwes that of individual signals.

5e¢5.2 The Effect of Parameter Difference between the
Estimator and the Real System

In power systems fhe exact values of parameters are not
always known. So a test was performed assuming that all the machine
parameters used in the estimator were 10% high, a pessimistic
assumption., Figure 5,8 shows the performance of the system when such
an observer is used to stabilize the system atter the three-phase fault
of 80 ms at the h.v. terminals of the transformer. As this figure
shows, the performance of the system remains virtually the same except
for a, bigger second back-swing and some small oscillations in the [ield
voltage. Figure 5.9 shows the performance of the system with this
estimator when the measurcd speed signal contains a noise with standard

deviation as before,

d= 0.05 + 0.05AWw (5.26)

Figure 5.8 shows that this estimator filters the speed signal very well
and that the performance of system remains the same except for a

slightly bigger second back-swing, These studies show that the estimator
sensitivity to the machine parameteiz is low and that it is not necessary

to have accurate values.
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5.5.3 The Variation of Estimator Gain Matrix with the
Operating Condition

The estimator gain matrix K given in equation (5.14) is a
function of the operating conditién as the solution of Riccati-equation
l(5.14)rrequires the linearised system model about an operating condition,
To see the variation of estimator gain matrix K with the operating
condition, a broad region of power from zero to the rated value and
that of reactive power from zero to the rated value and:that of reactive
powver from zero to 0.5, leading and lagging power factors. This region
was divided by a mesh and the estimator Riccati equation (5.14) was
solved many times to obtain the optimal gains at different nodes,

Figure 5.10 shows the variation of the elements of the K (11 x 1)
matrix with operating point. These three-dimensional pictures show

that the variation of.the elements in the normal operating region

(0.5 \<P \(' 1, lagging power factors) is small and that most of them lie
on planes/are virtually constant., In the remainder of the fensible
operating region the elements do not change abruptly, but could be
represented by a series of local values. This is similar to the optimal

controller gain considered in Section 3.5 of Chapter 3.

5.6 LOWER GROFR DYNAMIC ESTIMATORS

Lower order dynamic estimators are obtained by simplification
of the system model. In this way the order of the dynamic estimator is
reduced from i1l to 9, 7 and 4., The performance of these estimators,
their efficiency in filtering, estimation and control is discussed

below,



& xi2n s

-]
r

Variation of the elements of a full order estimator gain matrix K with the operating

Figure 5,10:
) condition.,

*631



130.

5.6.1 Approximate (ch Order). Dynamic Estimator

By using an approximate system model (9th order) for the
estimator, an approximate dynamic estimator is obtained. The approximate
'system model eliminates stator transients p(pd and p(bq, therefore this
estimator does not estimate these values. To design the gain matrix K
which in this case is a vector with nine elewents, the linearised
approximate system model (Chapter 2) must be used in the estimator
Riccati equation (5.14). The system controller must also be designed
on the basis of an approximate system model so that its requirements
are fulfilled with this estimator. Although in this case the estimator
model is the approximate model, the simulation of the plant used for
testing it has the full lith order form from which the observation of

speed signal is obtained. Matrices v11(9 x 9) and v (1 x 1), the

22
estimator weighting matrices were chosen as unity for the calcnlation
of the gain matrix K. Later the effect of these weightings on the
system performance is discussed. TFigure 5,11 shows the performance of
the system after a three-phase fault of 80 ms at h.v., terminals of the
transformer when the states estimated by the estimatoxr are fed back to
fulfill the requirement of an approximate (9th order) optimal
controller. The performance of the system is similar to that obtained
with direct measurement of the states. TFigure 5.12 shows the perform-
ance of the system vhen the measured speed is corrupted with a noise
of the standard deviation G= 0.05 + 0.0SAUJ. This figure shows that
the estimator filters the speed signal and the performance of the
system remains the same except for small oscillations imposed on the
field voltage., To see the cffect of the matrices v (9x 9) and

11

v

99 (1 x 1), Vi1 (9 x 9) is left as unity matrix and v, was changed

22
from 0,01 to 100, TFigure 5.13 shows the effect of v

50 variation on

-
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the performance of the system. This figure shows that as v increcases,

o

o
=

the results improve and for v

0o = 100 the result is the best. Further

increase of Voo does not improve the performance,

5.6.2 Simple (7th Order) Dvnamic Estimator

A simple dynamic estimator is obtained by the consideration of
a simple system model (7th order) for its dynamics. The simple sysiem
model is linearised for the calculation of estimator gain matrix K which
in this case is a (7 X 1) vector and is calculated through the solution
of the Riccati equation (5.1%). It is obvious that this estimator will
produce 7 signals and so %he design of the contreller for this system
should be through a 7th order model. In other words, the design of
optimal estimator gains K and optimal controller gains are dual,
v11(7 x 7) and Vgg(l x 1) estimator weighting matrices werc chosen as
unity for the calculation of gains. Figure 5.14 shows the performance.
of the system when a simple estimator is used to estimate signals for a
simple 7th order controller. Figure 5.15 compares the performance of
the system when an estimator is used with that with direct measurement
of states, Also in this figure the performance of the-system when a,
lover gain controller is used; is shown. Figure 5.15 shows that the
performance of the system with the estimator is as good as that of
direct measurement of the states. Even from the transient stability
point of view (first swing angle), the performance of the svstem with

the estimator is better than that with direct measurement.

FPigure 5.10’ shows the effect of estimator weighting matrices,

which will affect the estimator gain K, on the performance of the
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system. Yi1 (7 x 7) was left as a unity matrix and Voo (which is a
scaler) was varied from 0.01 to 100, Similar to the approximate
estimator, the best results are obtained f;r Voo = 100. For this

study Voo = 10 was chosen, which seemed to be a good coupromise between
the filtering and reconstruction speed. Figure 5,17 shpws the
behaviour of the system when the speed signal contains a noise with the
standard deviation of the same structure as before, 0= 0.05 4 0.05Aw.

This figure shows that the speed signal is well filtered and the

performance of the system virtually remains the same,

It is possible to decrease the order of system by 1 with the
use of real speed signal as a feedback. TFigure 5.18 shows the perform-
ance when measured speed ;s fed back instead of estimated values, This
figure shows that the noise magnitude in AVR and governor controller
signals is much bigger than that in Figure 5.17, where the estimated

speed signal was fed back. This might become important if the

magnitude of speed nouise is greater.

5.6.3 Crude 1§t“ Order) Dynamic Estima tor

A crude dynamic estimator is obtained when a crude (hth order)
system modél is used. Again the plant was full& represented while its
estimator was the crude one. The estimator gain matrix K (4 x 1} was
obtained by the solution of the estimator Riccati equation (5.14).

The optimal controller gain matrix F (2 x 4) was obtained by ‘the
controller Riccati equation explained in Chapter 3. Figure 5.19 shows
the performance of the system when a crude estimator is estimating the
four signals required for feedback, v (& x 1) and Voo (1 x 1) were

chosen as unity wmatrices. This figure shows ihat the performance of
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the system is very similar to that obtained when four signals are

fed back directly. TFigure 5.20 shows the performance of the system
when the measured signal! (speed) contains the white noise with

standard deviation @'= 0.05 + 0.05AW). This figurec shows that the
estimator filters the speed signal very well and the performance of

the system is similar to the one without any noise. 1In this case also
the measured speed signal'wﬁs used directly in the feedback to decrease
the order of the estimator to 3. It can be observed from Figure 5.21
that although the performance of the system remains unchanged, the AVR
and governor setting signals become noisy and might be troublesome when
the magnitude of noise is high., Finally, the effect of the variations

of the weighting matrices is shown in Figure 5.22 when v (h.x 4) is

11

kept as a unity matrix and v is varied from 0.01 to 100,

22

5.7 PARTIAL DYNAMIC ESTIMATOR

The dynamic estimators studied in this chapter estimate all
the system parameters., In some studies only the parameters of one
part of the system which are not accessible for measarement are
required. The estimation of the parameters of the excitation system
or govérning system are in this category. Here a dynamic estimator

for the governing system was designed,

5.7.1 Governing System Dynamic Bstimator

The governing system model considered in this study has two
time constants., It was assumed that the inputs to this system as well

as valve positiening are mcasurable while thte wechanical lorque is the
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state which is required. A second order dynamic estimator was devised
using the governing system model (given in Chapter 2) and valve
position as the measurement. The estimator gain matrix K (2 x 1) is
obtained by the solution of estimator Riccati equation (5.14).

Tigure 5.23 shows the performance of the system when it is controlled
with directly measured signals in a full-order optimal éontrcller.
Also shown are the estimated values of valve position and mechanical
torque., It was assumed that the dynamic estimator has no knowledge of
valve position limits and this is obvious in the figure, as the
estimated values vary with a slower rate. The close correspondence
between the estimated and measured values confirms that dynamic
estimafors can be developed to construct the parameters of a part of
the system which is of special interest. This type of dynamic estimator
can be developed for the excitation systems to estimate the field

voltage when the measurement of this parameter is difficult.

.8 THE EFFECT OF INTEGRATION INTERVAL ON ESTIMATOR PLREFORMANCE

1

The simulation of the plant and its estimator have up to now
been done in the same program and using the same integration routine as
one requires the data from the other when the estimator is used to
control the plant, Iowever, more realistic conditions are obtained by
simulating tbhe plant with a very small integration interval and
observing the effect of longer estimator integration intervals. 1In
this way the longest integration interval usable in the dynamic estimator
can be found. For this purpose the performance of the esﬁimator was
found for different time steps when it was not performing the control

action, so that the plant does not need any data from the estimator.
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The plant was simulated with the full system model and time intervals
of 2 ms using the integration routine explained in Appendix 3=3,

Rotor angle, speed and terminal voltage variation were stored on tape
for further use., Another -program was used to simulate a full order
dynamic estimator and at the béginning of each time step the
corresponding speed data was transferred to this prograﬁ from the tape.
The estimated values of rotor angle and terminal voltage are compared
with those of the plant for different estimator integration times,
shown in Figures 5.24 and 5,25, In these figures the performance of
the estimator when the estimator gain is zero, in other words, there

is no forcing term to force the estimator to track the plant, is also
given., These figures shoy that even for time steps of up to 20 ms, the
estimated values are very close to the real values, especially when
they are compared with the case of K = 0. Figure 5.25 shows that the
esvimated voltage for large time steps is not as good as that of

angle and this can be understood in that the forcing term in these
studies is only a function of speed. he use of another measuremeunt
in conjunction with or instead of speed which observes the effect of

voltage variation bet*er, such as field voltage, would improve this

performance,
5.9 CONCLUSION

The design of a dynamic estimator for a power system is
explained in this chapter. The choice of measured signals is made
with regard to modal observability., so that all the system modes are
observable through them. This is a necessary condition for an
asymptotically stable observer. The speed sigunal chosen here is shown

to fulfill this requirement,
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It was shown that the estimator sensitivity to the system
parameters is low, This was confirmed with a test in which the
estimator machine parameters are 10% diffe?ent from those of plant and
the performance of the system was marginally different from that with

‘the exact parameters.

The variation of optimal estimator gain matrix K with the
operating point was studied in a broad region of conditions., This study
showed that the variation of the elements of K matrix in the normal
operating region is small and in the remainder of the feasible
operating region, a series of local values might be used to represecnt

them,

Lower order dynamic estimators are de&eloped, and their
performances are discussed. As in the controller design problem, as the
order of dynamic estimator reduces, so will the number of estimated
signals and the whole system performance deteriorates. This study also
shows the duality between the control and estimation in the way that
the deterioration in the system performance can be introduced either
by the order of estimator model or the order of controller. For
example, the performance of the system with a full estimator (11th
order) is similar to that of a simple estimator (7th order) when the

controller is designed on the simple system model, 1In other words, the

order of the estimator and controller has to he the same.

All the estimators discussed filter the mecasurement noise very
well. It has been - shown that the estimator can control the system well
even when the ratio of noise to signal is so high that the system with
direct measurement of the states was unstable. The effect of the
variation of the estimatcr wmeasurcment noise covariance matrix Voo ON

the system performance was studied and in aill Lue cases a value for



Voo of between 10 and 100 gave a good overall system performance from

both filtering and reconstruction speed point of view. It is possible
to reduce the order of the estimators by 1; if the measured signal is
directly used in feedback. This introduces some noise to the
‘controller signal, which might become important if the measurement .

noise is high,

It was shown that dynamic estimators can be developed which
only estimate the parameters of part of a system if only this is
required. Obviously the order of these dynamic estimators is much

less than the whole system dynamic estimator.

The effect of the integration interval on the estimator
performance was considered., The result shows that for time-steps as
big as 20 ms, the performance of the dynamic estimator is almost

unchanged.
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CILAPTER 6

ADAPTIVE DYNAMIC ESTIMATOR FOR POWER SYSTEM

6.1 INTRODUCTION

In the previous chapter, dynamic estimators were developed for
a power system, Dynamic estimation theory is based on the fact that the
system model is known115_117’128. This is not always the case for a
powver system as it commonly happens that after an emergency the system
parameters change., For example, the system considered (Figure 2.1)
might lose one of the double circuits of the transmission line. For
the estimator to track the behaviour of the system closely it must
have the cur?ent parameters of the system. The tie-line impedance is
particularly important in the control of the system., In this chapter,
an adaptive dynamic estimator is described which with the use of an
extra measurement estimates the line impedance. This parameter is

corrected in the estimator so that this information is available for

the contrel of the system.

This pattern of estimation and correction of the line
impedance was extended so that the estimator could also estimate the
voltage and frequency of the system and remove the assumption of an

infinite busbar.

6.2 A DYNAMIC ESTIMATOR TO ESTIMATE THE LINE IMPEDANCE

The estimwator described in Chapter 5 must be provided with

the tie-line iuwpedance aund the voltage at the far end, if it is to
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115_117. Here the full (llth order) estimator

track the plant closely
was used to estimate another measurable signal (terminal voltage)
corresponding to any arbitrary value of syétem impedance. By
comparison of the estimated terminal voltages with the mcasured values,
‘