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ABSTRACT

It is known that the information required for the intelligibil-
ity of a speech signal is distributed non-uniformly in time. In
this paper we propose WSTOI, a modified version of STOI,
a speech intelligibility metric. With WSTOI the contribution
of each time-frequency cell is weighted by an estimate of its
intelligibility content. This estimate is equal to the mutual in-
formation between two hypothetical signals at either end of
a simplified model of human communication. Listening tests
show that the modification improves the prediction accuracy
of STOI at all performance levels on both long and short utter-
ances. An improvement was observed across all tested noise
types and suppression algorithms.

Index Terms— Intelligibility, intelligibility metric, intel-
ligibility estimate, mutual information, speech entropy

1. INTRODUCTION

In situations where a measurement of the intelligibility of a
degraded speech signal is required, but where listening tests
are too impractical or time consuming, an algorithmic esti-
mate of the intelligibility may provide an adequate substitute
for its true value. A popular family of intelligibility metrics
are based on a correlation-comparison between the spectral
envelopes of clean and degraded versions of the speech. One
such metric, the Short-Time Objective Intelligibility Measure
(STOI) [22], has been shown to have a high correlation with
the intelligibility scores of both unenhanced and enhanced
noisy speech signals [12, 20].

More recently, metrics based on the mutual information
between the spectral envelopes of the clean and degraded sig-
nal have been proposed [14, 23]. The metric proposed in [23],
which estimates mutual information using a k-nearest neigh-
bor estimator, achieved comparative results to STOI in one of
the tested performance measures and marginally worse results
in the other. The metric in [14], which is computed from the
lower bounds of mutual information, achieved a performance
approximately equal to that of STOI.

To obtain the final metric in [22, 14, 23], the interme-
diate intelligibility measures computed in different Time-
Frequency (TF) regions are averaged using uniform weights.
However, it is known that not all portions of a speech sig-
nal contain equal quantities of the information required for
intelligibility. For example, multiple studies in which parts

of a waveform corresponding to consonants and vowels are
replaced with noise have observed that vowel phones appear
to contribute more to speech intelligibility than consonants
[7, 15, 9]. In [21] the authors investigated the link between
the relative information carried by different sections of speech
and the degree to which the signal in those sections changed
as a function of time. Their findings were consistent with
the sensitivity to change of human perceptual systems and
also with the principle from information theory that the infor-
mation a signal carries is related to its unpredictability. En-
couraged by the results in [21], the authors of [5] compared
the intelligibility prediction performance of two metrics after
modifying them to exclude segments of speech containing
little speech information. The authors found that the best
performing segmentation schemes retained most segments
corresponding to vowel-consonant transitions and excluded
vowel-only or consonant-only segments.

In this paper we propose a modified version of STOI in
which the contribution of each TF cell is weighted according
to the estimated contribution of the cell to intelligibility. This
estimate equals the mutual information between two versions
of a hypothetical signal, representing the information bear-
ing component of the clean speech envelope, at either end of
a simplified model of human communication. The modifi-
cation improves STOI by better accounting for the variation
in information content of a speech signal with time and fre-
quency. An added bonus is that, since “silent” frames contain
little or no information and are therefore downweighted, it is
no longer necessary to delete these frames before calculating
the STOI metric. This is advantageous since STOI’s deletion
scheme is sensitive to high energy frames and can result in the
concatenation of speech segments that are widely separated in
time.

2. OVERVIEW OF STOI

We present here a brief overview of the STOI metric on which
the work described in this paper is based; readers are referred
to [22] for a more detailed description. The metric compares
a clean speech sample with a degraded speech sample. The
clean sample is first converted into the Short Time Fourier
Transform (STFT) domain using 50%-overlapping Hanning
analysis windows of length 25.6 ms. STFT frames whose to-
tal energy is 40 dB or more below that of the frame with high-
est energy are deemed to be silent. These frames are deleted



from both the clean and degraded speech signals and are not
used in calculating the STOI metric. The resultant complex-
valued STFT coefficients, X(k,m), are then combined into
J = 15 third-octave bands by computing the TF cell ampli-
tudes

Xj(m) =

√√√√√Kj+1−1∑
k=Kj

|X(k,m)|2 for j = 1, . . . , J (1)

where Kj is the lowest STFT frequency bin within frequency
band j. The correlation between clean and degraded speech
is performed on vectors of duration 384 ms. For each m, we
therefore define the modulation vector

xj,m = [Xj(m−M+1), Xj(m−M+2), . . . , Xj(m)]T (2)

comprising M = 384/ (0.5× 25.6) = 30 consecutive TF
cells within frequency band j. The degraded speech is simi-
larly processed to obtain Y (k,m), Yj(m) and yj,m. Before
computing the correlation, the degraded speech amplitudes,
Yj(m), are clipped to limit the impact of frames containing
low speech energy. The clipped TF cell amplitudes, denoted
by a tilde superscript, are determined as

Ỹj(m) = min

(
Yj(m), λ

‖yj,m‖
‖xj,m‖

Xj(m)

)
(3)

where λ = 6.623 and ‖ ‖ is the Euclidean norm. The corre-
sponding modulation vectors are ỹj,m. The STOI contribu-
tion of the TF cell (j, m) is then given by

d (xj,m, ỹj,m) ,
(xj,m − x̄j,m)

T
ỹj,m

‖xj,m − x̄j,m‖ ‖ỹj,m − ¯̃yj,m‖
(4)

where x̄j,m denotes the mean of vector xj,m. The overall
STOI metric is found by averaging the contributions of TF
cells over all bands, j, and all frames, m.

3. WEIGHTED-STOI

In this section we describe WSTOI, a modified version of
STOI in which the contribution of each TF cell is weighted
by an estimate of its intelligibility content. In WSTOI, it is no
longer necessary to identify and delete “silent” frames since
these frames contain little information in any case. In the
block diagram of WSTOI shown in Fig. 1, the left panel
is identical to STOI and calculates the STOI contribution,
d (xj,m, ỹj,m), of each TF cell. The right panel determines
the weight, Ij,m, to apply to each cell and the final metric in
the lower block is a weighted sum of the contribution from
each TF cell. To compute Ij,m we estimate the mutual in-
formation between the unpredictable component of a hypo-
thetical signal that we assume the speaker intended to pro-
duce, and the version of this signal which is perceived by a
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Fig. 1: Diagram of the modified version of STOI.

listener in an imagined scenario where the listener hears the
clean speech signal at a comfortable listening level. To do
this, we consider a simple model of communication between
the speaker and listener.

3.1. STOI weights

The clean speech,Xj(m), is expressed asXj(m) = Sj(m)+
Vj(m) where Sj(m) is the speaker’s intended speech sig-
nal and Vj(m) models the “production noise” proposed in
[16]. The production noise models the natural variation in
the human speech production process. We denote, by Ŝj(m),
a linear prediction of Sj(m) of order P , so that Ŝj(m) =∑P

p=1 bpSj(m − p) where bp are a set of frequency band-
dependent prediction coefficients. The linear prediction resid-
ual, Rj(m) = Ŝj(m) − Sj(m), is the message signal at
the input of our communication model. The output of our
model, termed Wj(m), is the sum of Rj(m), Vj(m) and
a frequency band-dependent hypothetical internal ear noise,
Nj(m), which models the absolute threshold of human hear-
ing. If we model Xj(m), Rj(m) and Nj(m) as Gaussian
random variables whose power is constant within each modu-
lation vector, we can estimate the mutual information between
the signals at the input and output of the model, in the modu-
lation vector ending in (j, m), as
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Fig. 2: a) Spectrogram of the utterance “We like blue cheese but Victor prefers Swiss cheese” with a phonetic transcription
shown above. b) Speech information rate predicted by the phoneme-level trigram language model from Sec. 3.2. c) WSTOI
weights, (5), summed over all frequency bands.

I(rj,m; wj,m) = 0.5×log2

1 +
‖rj,m‖2(

Nj(m) + a ‖xj,m‖2
)
 ,

(5)
where I( ) denotes the mutual information, rj,m and wj,m

are defined in an analogous way to (2), and a is a fixed co-
efficient representing the ratio of the power of the production
noise to that of the speech signal [16]. The value of a is deter-
mined from training data as described in Sec. 3.2. When
forming rj,m in (5) we approximate Rj(m) as R̂j(m) =

X̂j(m) − Xj(m) since Sj(m) is unavailable. Using (5) as
weights, WSTOI is computed as a weighted average of (4)
over all bands, j, and all frames, m.

3.2. Optimising weights with language model

The TF-dependent weight in (5) is a measure of the local in-
formation capacity of the communications channel. To de-
termine the free parameter, a, in (5), we assume that the in-
formation content of the speech mirrors the channel capac-
ity. Accordingly, the parameter a is chosen to maximize the
correlation between (5) summed over all frequency bands, j,
and the speech information as estimated from a phoneme-
level trigram language model. The interpolated Kneser-Ney
model from [6] was implemented; this is a modified version
of the model from [17]. The optimisation was performed on
TIMIT [10] with phoneme labels mapped to the reduced set
from [18]. The correlation coefficients were computed over
the length of each utterance. The output of the language
model was the negative log conditional probability of the third
phoneme given the previous two phonemes, divided by the
duration of the phoneme. The language model output was
smoothed with a moving average of window length M = 30,

to replicate the smoothing effect of (5). The optimum was
found to be a = 2.2× 10−4.

Fig. 2 shows a) a spectrogram of the utterance “We like
blue cheese but Victor prefers Swiss cheese”, b) the smoothed
output of the language model and c) the STOI weights from
(5) summed over all frequency bands. The information rate
estimated by the language model is high in time intervals con-
taining many closely spaced phonemes. The summed weights
are high in intervals with frequent changes in the speech spec-
trum. Since intervals with closely spaced phonemes coin-
cide with intervals where the spectrum changes frequently,
the summed weights mirror the information rate estimated by
the language model.

4. EXPERIMENTAL PROCEDURE

The WSTOI algorithm was evaluated using the results of the
intelligibility tests in [11]. Recordings of the IEEE sentences
[19] spoken by a single male speaker combined with babble
or car noise were played at one of five Signal-to-Noise Ra-
tios (SNRs) to 60 listeners in either an unprocessed condition
or after having been processed using one of three noise sup-
pressors. The number of content words a listener was able
to correctly identify in each sentence (between zero and five)
was recorded. We define intelligibility as the % of content
words correctly identified. The responses to a total of 200
sentences were recorded for each combination of noise type,
SNR, noise suppressor and suppressor condition (On/Off).
For car noise, SNR = −{21, 18, 15, 12, 9} dB, and for bab-
ble noise, SNR = −{12, 9, 6, 3, 0} dB. The suppressor algo-
rithms were spectral subtraction (SS) [3, 4], minimum mean
squared error log spectral estimation (MMSE) [8, 4] and sub-
space enhancement (SSA) [13]. STOI scores, d, were mapped
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Fig. 3: Root mean square error in predicted intelligibility against intelligibility for STOI and WSTOI applied to a) five-sentence
segments (25 content words) and b) single-sentence segments (5 content words).

to an intelligibility prediction using the logistic function from
[22],

f(d) =
100

1 + exp (cd+ e)
,

where c and e are free parameters which were fitted to the data
using non-linear least squares optimization. Separate map-
pings were computed for STOI and WSTOI. The available
data was split randomly, with half used to optimize the logis-
tic mapping and the remaining half for algorithm evaluation.
This process was repeated 1000 times using different splits,
with the results from each repetition averaged to compute an
overall set of results. The values Nj(m) for j = 1, . . . , 15 in
(5) were obtained by integrating the reference internal noise
spectrum levels from Table 3 of [2] over the width of each
frequency band and then scaling the resulting values for each
utterance so that the mean speech-to-internal-noise power ra-
tio of the utterance during active speech periods matched the
ratio of the speech and noise spectrum levels for a “normal”
vocal effort. Active periods were identified using the proce-
dure in [1]. The prediction order was P = 3.

5. RESULTS

Fig. 3a plots the root mean square error (RMSE) in pre-
dicted intelligibility against the true intelligibility, for STOI
and WSTOI applied to five-sentence segments having the
same noise type, SNR and suppressor condition. The his-
togram is grouped according to the true intelligibility of each
segment. We see that both STOI and WSTOI were able to
predict the true intelligibility with a root-mean-square error
(RMSE) of between 8.7% and 17.7% and that WSTOI gave
a lower RMSE in all bins. Fig. 3b shows the performance
of STOI and WSTOI on single-sentence segments containing
only five content words. Even with these short segments,
both STOI and WSTOI were able to predict the intelligibility
with an RMSE of between 20.6% and 27.8%. For every one
of the 1000 splits the intelligibility prediction performance
of WSTOI was significantly better than that of STOI with

p < 10−6 using a 1-sided sign test.
Fig. 4 shows the RMSE in predicted intelligibility for the

algorithms applied to single-sentence segments, plotted for
each suppressor and noise type. For every combination of
suppressor and noise type WSTOI resulted in a lower RMSE
than STOI.
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Fig. 4: Root mean square error in predicted intelligibility for
STOI and WSTOI applied to single-sentence segments, plot-
ted for each suppressor and noise type.

6. CONCLUSION

We have presented WSTOI, a modified version of STOI in
which the contribution of each TF cell is weighted by an
estimate of its intelligibility content. The proposed method
improves STOI’s performance in active speech frames by
weighting TF cells containing important speech information
more heavily than cells containing less important informa-
tion. Listening tests showed that the modification improved
the prediction accuracy of STOI at all performance levels
on both long and short utterances. An improvement was
observed across all tested noise types and suppression algo-
rithms.
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