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Abstract. In this paper we consider the issue of paradigm evaluation by applying Bayes’
theorem along the following nested hierarchy of progressively more complex structures: i) pa-
rameter estimation (within a model), ii) model selection and comparison (within a paradigm),
iii) paradigm evaluation. In such a hierarchy the Bayesian evidence works both as the poste-
rior’s normalization at a given level and as the likelihood function at the next level up. Whilst
raising no objections to the standard application of the procedure at the two lowest levels,
we argue that it should receive a considerable modification when evaluating paradigms, when
testability and fitting data are equally important. By considering toy models we illustrate
how models and paradigms that are difficult to falsify are always favoured by the Bayes fac-
tor. We argue that the evidence for a paradigm should not only be high for a given dataset,
but ezceptional with respect to what it would have been, had the data been different. With
this motivation we propose a measure which we term predictivity, as well as a prior to be
incorporated into the Bayesian framework, penalising unpredictivity as much as not fitting
data. We apply this measure to inflation seen as a whole, and to a scenario where a specific
inflationary model is hypothetically deemed as the only one viable as a result of information
alien to cosmology (e.g. Solar System gravity experiments, or particle physics input). We
conclude that cosmic inflation is currently hard to falsify, but that this could change were
external/additional information to cosmology to select one of its many models. We also
compare this state of affairs to bimetric varying speed of light cosmology.
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1 Introduction

As the cosmological data continues to improve with its inevitable twists, it has become evident
that whatever the observations turn out to be they will be lauded as “proof of inflation”.
This was poignantly brought to the fore when the BICEP2 data was released [1], in the

wake of Planck’s initial cosmological papers [2-5].

Even though the two datasets taken at



face-value contradicted each other, they were both advertised as proof of inflation. With the
demise of the BICEP2 claim no one seems to have noted the flaw subjacent to this attitude:
inflation can in fact predict a large range of values for observables. Interesting sociology will
no doubt be reenacted when Planck’s polarisation data makes its mark, in the hopefully not
too distant future.

Independently of where the correct observations end up settling, matters such as model
selection and paradigm evaluation will have to be addressed before any proper scientific
conclusions are drawn. We should quantify the fact that if inflation seen as a whole (i.e. as
a paradigm) were indeed to “fit anything”, then, reciprocally, it would not be possible to
disprove it. Penalisation schemes for models which fit the data due to an abundance of free
parameters do exist, but transposing these schemes to paradigms is far from obvious. In this
paper we address this problem.

The Bayesian framework has been the preferred tool for assessing the performance of
different models in cosmology and astrophysics [6]. In its standard use, the Bayes factor
is employed to compare models or for finding the best-fit parameters for a specific model.
This Bayes factor includes an automatic Occam’s razor that penalises unpredictive models
(with large number or range of parameters), and thus it considers them to be less likely.
However, it penalises far more harshly for not fitting well data. If we insist on testability
being equally important as fitting data, the use of the Bayes factor is still perfectly adequate
for the standard use because the various options under comparison are usually roughly equally
predictive. However, limitations will arise when the options have very different predictive
powers, which will be the case when comparing paradigms.

In Section 2, we show that the Bayes’ theorem may be used in nested chains involving
qualitatively very different levels, such as parameter estimation (within a given model), model
selection (within a paradigm), and paradigm evaluation. This last chain on paradigm evalu-
ation is used in the following sections to assess the performance of the inflationary paradigm
(thought as the collection of inflationary models).

In Section 3, by means of a number of toy models, we show that the Bayes factor is
more suited to playing the lottery than to paradigm testing, since it regards winning as more
important than being predictive. In fact, missing the jackpot is penalised exponentially by
the Bayes factor, whereas being unpredictive is only penalised as a power-law. We argue that
a modification of the standard Bayesian calculations is required for paradigm testing, given
that a successful paradigm should not only fit well the data, but do so having taken the full
brunt of the risk of failure. In Section 4 we use these toy models to motivate a measure of
predictivity which can be incorporated into the Bayesian framework when testing paradigms.
Using this definition of predictivity, in Section 5 we construct a penalty factor which fines
theories for being unpredictive as much as the Bayes factor penalises them for not fitting
data. We present specific examples illustrating the issues at stake.

The rest of the paper is devoted to the application of the formalism to a collection
of 85 single-field inflationary models, selected for numerical convenience. In Section 6 we
examine the evidences and predictivities of these models, confirming that at the level of
model selection there is little point in correcting the Bayes factor. In Section 7 we compute
an upper bound for the predictivity of the inflationary paradigm, to find a rather low value.
However, this would change dramatically should information external to cosmology become
available, something we illustrate with an hypothetical situation where Higgs inflation is
deemed a priori as the only viable inflationary model.

The situation is somewhat different with alternative paradigms, such as the cyclic Uni-



verse and bimetric varying speed of light, as explained in Section 8. In Section 9, we sum-
marise our findings and comment on their meaning within the bigger picture.

2 Parameters, models and paradigms

At its most schematic Bayes’ theorem reads:

P(D[T)x(T)

P(TID) = =g,

(2.1)
where D denotes “data” and T' “theory”, with T often standing for a variable (discrete or
continuous) labelling a class of theories. To establish terminology we recall that P(DI|T) is
also referred to as the “likelihood” of the theory (denoted £(T')), m(T') as its “prior” (i.e. the
prior probability of the theory before data D is considered), and P(T'|D) as its “posterior”
(i.e. the posterior probability of the theory after the data was considered). The denominator
P (D) normalises the posterior distribution and can be obtained from

P(D) = / dT P(D|T)x(T). (2.2)

This is also the probability of the data given the whole class of theories {T'}, and so forms
the Bayesian evidence for this class:

E=P(D). (2.3)

Bayes’ theorem is frequently applied in chains; for example as new datasets are consid-

ered we may recycle the posterior resulting from previous datasets into the prior to be used

in the analysis of the new dataset. Here we shall consider a different type of chain, resulting

from assessing the effects of the same dataset D at the three successive, qualitatively different
levels:

e Level 1. Finding the best parameters for a given model.
e Level 2. Comparing the relative merits of different models.

e Level 3. Assessing the value of whole paradigms, seen as collections of models.

In this hierarchy the Bayesian evidence at a given level acts both as the posterior’s normal-
ization at that level and as the likelihood function for the next level up. For example, at
Level 1 we fix parameters (here collectively denoted by ) for a model M by maximising
their posterior. Bayes’ theorem reads:

L(0)7(0)
Pu(D)’

where £(0) = P(D|0) is the likelihood of the parameter §. The normalization of the posterior
P(0|D) is enforced by the denominator, which is also the evidence of M (i.e. P(D|M):

P(0|D) = (2.4)

E(M) = P(D|M) = Py(D) = / L(0)7(6) db. (2.5)

At the next level up (Level 2) we compare the relative merits of different models. Bayes’
theorem now yields the posterior for model M within a paradigm P:

P(DIM)r(M)

PP ==, (D)

(2.6)



As we see, at this level, the likelihood function (i.e. the likelihood of the model £L(M) =
P(D|M)) is also the evidence of the model obtained from the preceding stage:

L(M) = P(D|M) = EM). (2.7)

This can be computed from level 1 according to Eq. (2.5).

Before proceeding to the next level up, we note that at this stage it is customary to
evaluate the relative merits of two models, M; and My, within the same paradigm and given
data D, by the ratio of their posteriors '. This can be written as:

P(My|D) — EWMy) m(My) m(My)

P(Ma|D)  E(Ma) n(Ma) 2 (My)’

where Bjo is the Bayes factor (the ratio of the evidences of models M; and Ms). When
indifference between models is assumed (i.e. when 7(M) = m(M2)) the ratio of the posterior
probabilities is simply the Bayes factor.

At Level 3 we evaluate the value of paradigm P by considering the whole set of models
contained inside it. In fact, part of this exercise must be carried out if we want to normalise
the posterior probability of its models, Eq. (2.6), although this is not needed for the evaluation
of the ratio given by Eq. (2.8). The normalising denominator in Eq. (2.6) is given by:

(2.8)

Pp(D) = /P(D|M)7r(/\/l) dM = P(DIP), (2.9)

where the integral is made over all the models within paradigm P, and the model priors are
normalised to 1, i.e. [ m(M)dM = 1. This is also the evidence of the paradigm, and it can
be written as:

£(P) = P(D|P) = /S(M)W(M) dM = Pp(D). (2.10)

Once again, the evidence of the paradigm acts as a normalization factor for the posterior
probabilities of its models, but also as a likelihood function for the paradigm, should we want
to compute its posterior probability. Indeed applying Bayes’ theorem at the Level 3 gives us:

P(D|P)r(P) _ E(P)n(P)
P(D) P(D)

P(P|D) = (2.11)
We could speculate on the meaning of the normalization P(D) at this stage but this is not
necessary. As with models, we may assess the relative merits of two paradigms by considering
the ratio of their posterior probabilities (from which P(D) drops out):

P(P1|D) _ E(P1) m(P1)

P(Po|D) ~ &(Py) 7(Pa) (212)

This would reduce to the Bayes factor between the paradigms were we to accept indifferent
priors. However, as we shall now show, this is most inappropriate if we insist on predictivity
being as relevant as fitting data. Bayesian evidence does penalise models for having too
many parameters, but at the level of paradigm evaluation the penalty it imposes on lack of
predictivity is not as harsh as the penalty for failing to fit data.

We summarise the results of this section in Table 1.

!The ratio can also be used if the models belong to different paradigms, but in this case the two posteriors
have different normalization factors and normalization of the priors, so that Eq. (2.8) does not hold anymore.



Levels Likelihood Posterior norm
Parameters P(D|6) E(M) = P(DIM)
Models EM)=P(D|M) || E(P)=P(D|P)

Paradigms || £(P) = P(D|P) P(D)

Table 1. Summary of likelihoods and posterior normalizations for three levels: parameters, models
and paradigms. Colours show how the evidence is recycled into the next level up.

3 An illustrative extreme situation

Let us consider a simple “toy” situation. Although the set up will seem a problem of model
selection, we intend it as an illustration of the issues at stake in paradigm comparison. In
fact, the concerns raised here are seldom relevant at Level 1 and 2 of the application of Bayes’
theorem.

3.1 Paradigm testing vs. playing the lottery

Consider two models dependent only on one parameter #: model M predicting its exact
value, 0 = 0,,, and model Ms leaving it entirely indeterminate. Let us assume that previous
data or theoretical information require that #; < 6 < 62, so that My posits a uniform
probability in this range. Within the Bayesian framework the two models are defined by
priors upon 6, with M; associated with:

1 (6) = (0~ ), (3.1)
and My with:
(1A 6 <6< 6
m2(0) = {O otherwise ’ (3.2)

where A0 = 09 — 0.
Let us assume for clarity that the data d results from signal 6 and additive Gaussian
noise n:

d=060+n, (3.3)

and that O']2V is the noise variance, but note that in general the data d need not be linear in
the model parameters 0 (e.g. the inflationary models considered in 6). Then, the likelihood
of parameter 0 is:

e N
V2mon ’

which peaks on # = d with variance UJQV. Let us further assume that oy < A6, that is,
the data (given the experimental sensitivity) is discriminative between models (if oy >
Af models M; and My will be indistinguishable). The evidence for the two toy models,
according to Eq. (2.5), is:

L(6) = P(d]§) = (3.4)

_ (a-0p)?
e 20’?\]
£ =EM,) = N zom (3.5)
1
€= E(M2) ~ 1. (3.6)



where the last approximation is valid as long as d is comfortably in the range 6; < d < 65
(an approximation we shall drop later, but which is good enough here). The relative merits
of these two models (posing here as “toy paradigms”) are therefore assessed by the Bayes
factor:

_ (a-0p)?
P(My|D) e N Af
=Bg=—nu—0, 3.7
POMGID) 22T " Jaron (3.7)

where we have assumed indifference, 7(Mj) = m(Ms), an assumption not to be confused
with priors 7;(0) defining the models themselves.

Of course, how well the models fare depends on the vicinity of d to ¢,. However, the
concept of evidence gives a softer penalization to lack of predictivity than to wrong predictions
- in fact, it pays off to be un-predictive. If model M gets its prediction wrong it is penalised
exponentially. In contrast, model My is penalised for not making a prediction merely as a
power-law. We emphasise that this difference in penalisations is not related to the fact that
one model has a Gaussian prior while the other has a flat prior. As we will see in Section
3.3, the same behaviour is observed for an intermediate model, and thus we conclude that
this penalisation behaviour is the same regardless the particular form of the priors.

These results are sensible from the point of view of probability theory: “if you want to
have a high probability of winning, then hedge your bets”. However, testing a paradigm is not
about playing the lottery and winning, but instead about winning given that you have bore
the full brunt of potential loss, by taking full chances of not winning a priori. In other words,
we insist that testability of a paradigm should be considered as important as its capacity in
fitting the data when assessing its success as a scientific theory. In particular, we want to
propose an analysis procedure that can quantify how much of a paradigm’s success in fitting
the data is due to its capacity to adapt to any outcome of measurements and how much is
instead due to it actually providing a correct description of the physical framework. This
is not well incorporated into the Bayesian evidence because the framework is designed for
other ends, those of model selection rather than paradigm evaluation. Usually most models
within a paradigm are equally predictive, so the issue need not arise at Level 2 (although
this should be checked, e.g. for inflation).

3.2 Identifying predictivity

In this paper we argue that within the framework of Bayesian evidence the issue of predictivity
should be addressed by asking how well the theory would have fared had the data been
different. It should not be enough for a successful theory to exhibit a higher evidence than its
competitors. The evidence should also be exceptional with respect to what it would have been,
had the data been different. To quantify predictivity we propose to compute the probability
distribution of the evidence given sampled randomly distributed data with given experimental
noise. We illustrate this procedure with the two toy models introduced above.

Let us assume that the sampled data d is within a “reasonable” range d; < d < da,
and that we have a uniform distribution for d in this range, i.e. P(d) = 1/Ad. We want
to evaluate the induced probability distribution of the evidence &; of the two models, given
such randomly distributed hypothetical data (do not confuse these probabilities with those
described in Section 2, arising from the application of Bayes’ theorem). For a fixed model
the evidence is only a function of the data, &€ = £(d), called the prior predictive distribution.
This will vary in a given range Emin < €& < Emax as the data varies in d; < d < ds. The



induced probability distribution of £ is given by:

1

P(€) = 5|z

5’(d)" (3.8)

when Enin < € < Emax, and by zero otherwise. Here, the prime corresponds to a derivative
with respect to d. Notice that Eq. (3.8) is true if £(d) is a bijective function. However,
most of the time £(d) will be a double-valued function, in which case Eq. (3.8) can be easily
generalised as shown in Appendix A.1.
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Figure 1. The evidence as a function of the data for model M;, assuming a prior with 6, = 0.5,
and a noise variance oy = 0.02. As previously mentioned, the evidence will be high if the data is
near the theoretical value 6,, but it will decay exponentially if the data is further away.

As an illustration, we calculate explicitly the probability distribution of the evidence
for the toys models described in Section 3. In order to obtain simple expressions, we will
assume that the priors of both toy models are centred within the range of the sampled data.
For model M1, we have plotted in Fig. 1 the evidence as a function of the data (with fixed
variance). Assuming that 6, is centred in the sampled data range, we will have for M:

gmin = min(é’(dl),g(dg)), (3.9)

1
gmax - 5 3.10
V2o N ( )

where now oy is the noise of the sampled data (hypothetical experimental data). Thus, given
Eq. (3.5), for Emin < € < Emax we find:

V20N
Ad £/—In(€/Emax)

P&) =

(3.11)

with P(&1) = 0 outside this interval. The probability distribution is shown in Fig. 2 for the
particular case of dj = 0 and da = 1. We can see that P(&;) has two peaks, at the edges of
the interval. The smaller the on the higher the & .x, but also the smaller the percentage of
the population living around the high evidence peak. As oy — 0 almost all of the population
lives at the low evidence peak, the hallmark of an ideal predictive theory.
For model My we replace Eq. (3.6) by the exact expression:
d—o d—o.
52 — erf <\/§0'11\7> B erf <\/§0'J2V> (3 12)
2A60 ’ '
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Figure 2. The distribution P(£) for model Mj, assuming an interval 0 < d < 1 for the sampled
data, a prior with 8, = 0.5, and noise variance oy = 0.1 (top) and o = 0.02 (bottom). As we see, as
the noise decreases not only the maximal evidence increases but also the percentage of the population
living near the high peak decreases (in fact, proportionally to o).
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Figure 3. The evidence as a function of the sampled data for model M5, assuming 0 < d < 1, and
oy = 0.02. As oy decreases the evidence becomes more and more a constant within the interval,
with a shaper step-function-like fall-off at the edges.

which includes the fact that when d is close to the edges of the admissible range the evidence
does vary, as illustrated in Fig. 3. Assuming that the range of the prior A6 is centred in the
range Ad, the evidence is such that:

Emin = min(&(dy), E(de)), (3.13)
1
gmax = Ea (314)

and so the probability distribution for Enin < € < Emax i given by:

2v/2monAG
P(&;) = C@p? @62 | (3.15)
Ad e 20']2\] —e 20'12\]

with P(&2) = 0 outside this interval. This expression is to be understood as a parametric
expression for P(&;) (with d the parameter) when taken in combination with Eq. (3.12). Fig. 4
shows the probability distribution for the particular case of dj = 6; = 0 and do = 05 = 1,



i.,e. A = Ad = 1. We can see that the distribution has a single peak at its maximal value
1/A#, which becomes sharper and sharper as oy — 0. This is the hallmark of a totally
unpredictive theory: the evidence does not depend much on the data; most of the population
clusters at the high evidence peak.
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Figure 4. The distribution P(€) for model My, assuming the same sampled data range as the prior
0<d<1,and oy = 0.1 (top) and oy = 0.02 (bottom). As we see in this extreme case only a high
evidence peak exists, which becomes sharper and sharper as oy — 0.

3.3 Intermediate model

In this subsection we set up a class of models with a parameter dialling between two extreme
cases. If we add a theoretical noise o to model My, we get what we call M3 described by
the following prior:

(0—6p)?
e_ 20‘%
m3(0) = ——, 3.16
3( ) \/%O'T ( )
which gives the following evidence, when the likelihood is given by Eq. (3.4):
_ (a—6p)?
[ 20_t20t
Es (3.17)

N vV 27['O'tot ’
2

where 02, = 0% + 0%. From Eq. (3.17) we observe the same penalisation previously men-
tioned. There is an exponential penalisation for not fitting well the data (i.e. when 6, is
far from d). On the contrary, being unpredictive is penalised at most as a power-law (for
example when the theory fits the data very well, so that (d — 6,) < o4,t). We notice that
these two penalisations are not simply due to a gaussian likelihood and a normalised prior, in
fact, these two effects are hard to disentangle, and in some cases unpredictivity can even be
rewarded, when the fit to the data is not perfect ((d —6,) > on). Given the previous results
for models M7 and Msy, we conclude that the fact that there is a more severe penalisation
for not fitting data than for being unpredictive in the standard Bayesian framework is quite
general.

As for the previous models, we can find the probability distribution of the evidence
for this model. First, we observe that in the range of the sampled data, the minimum and



maximum evidences will be:

<5‘min = min(g(dl)v 5(d2)),
1

& = —
max /727'(0'15013 3
with a probability distribution of evidence for Enin < € < Enax given by:

P(E) _ ﬂﬁtot
Ad &\/—In(E/Emax)’

—~

3.18)
3.19)

—~

(3.20)

and P(€) = 0 outside this interval. Notice that these expressions are the same as for model
M, but now the noise present includes a theoretical noise opr. Thus, the behaviour of the
probability distribution is the same, i.e. has two peaks at the edges of the interval. The more
predictive the theory (i.e. smaller or), the smaller the fraction of the population clustering
around the high evidence peak.

Notice that the hypothetical experimental noise oy plays a similar role in determining
the probability distribution. In fact the percentage of population around the high-evidence
peak is of order o4,¢/Ad, as we will rigorously show in the next section. So, if experiments
provide bad-quality data (o > o) all theories will be similarly (un)predictive, even if the
theoretical uncertainty is small, as the data does not allow falsifying models. Only with low
experimental noise (o < or) predictivity will be determined by the theoretical uncertainty.
As a consequence, the smaller the theoretical uncertainty, the better the data needs to be to
pay justice to the model’s predictive power.

In closing we note that we are developing a formalism for a concrete situation: paradigm
testing given a continuous parameter and data variable, as well as non-vanishing noise. Sev-
eral things might become ill-defined in other situations. Take for example testing whether a
coin is fair or not with N throws, which might seem like a counterpart of toy models 1 and
2, respectively. The evidence is exactly constant for the unfair coin model (counterpart of
model 2), which renders the formalism degenerate. Noise is essential in removing pathologies
from our framework: even though the situation described does have a continuous approx-
imation, due to the central limit theorem in the large N limit, in this approximation the
likelihood is a Gaussian with noise given by 1/N and regrettably the noise vanishes at the
same level of approximation where we can go to the continuous data limit. This is reflected
in the fact that there are no edge effects in the discrete equivalent of model 2, whatever the
value of V. These are essential in removing pathologies. We note that the motivation for
our formalism is quite different from the problem just mentioned, so it is not surprising that
we do not cover it. We are focusing on one specific problem: testing inflation and alternative
paradigms using noisy CMB data.

4 Predictivity defined

As the previous section shows, we can measure the predictivity of a model (or paradigm) by
examining the distribution of the Bayesian evidence assuming uniformly distributed data.
We want a predictive theory to have high evidence very rarely: we want high evidence to be
exceptional. One might think of employing a “chi-squared measure” for this feature, but the
double-peaked nature of P(£) advises us against it. We propose instead using the percentage
of the population living around the high peak as a measure of unpredictivity; the reciprocal
population is then a measure of predictivity, P,.

~10 -



4.1 A formula for the predictivity

In general, we define the predictivity as:

Emax
P=1- / P(&)dE, (4.1)
&

where the integral represents the population living between £ and Emax. The predictivity
varies between zero (perfectly unpredictive) and one (perfectly predictive), with the limiting
cases found in the situations mentioned at the end of last section. The specific value of £ is
arbitrary, and different values represent different measures of predictivity. In particular, for
the choice € = Epax/e, this can be computed for model M3 as:

2v/20701

Ad
Note that the last equation is a non-trivial result, and its derivation assumes that oy, o7 <
Ad, and that 6, is not close to the edges of the sampled interval. For model M; the

predictivity is given by:
2\@0 N

Ad
where we have assumed oy < Ad, and that 6, is not close to the edges of the sampled
interval.

Naively, one might have expected this model to have the maximum predictivity, as its
prior was a delta function. However, predictivity is a quantity that can only be defined
after comparing with experimental uncertainty on data. For model Mj the predictivity is
Eq. (4.3), which can be close to one or zero, depending on oy. This happens because the
experimental noise renders the high evidence region wider than expected from the prior (only
a point in this case), making the model less predictive. This is a general feature. As data is
improved, or new data becomes available, the predictivity of a model is expected to grow.

For model My we get the following predictivity:

A — QTLUN
Ad
where n is a factor such that £(61 + noy) = E(02 — noy) = Emax/e. In this expression

we have assumed that the range Af is centred around the range Ad. Note that for more
unpredictive models, for example for a model M3 with

Ad
Otot > ——=, 4.5
tot 2\/5 ( )
according to Eq. (4.1), the predictivity will always be zero.
We note that alternative definitions for predictivity could be defined other than Eq. (4.1).
For example, the information gain T (or Kullback-Leibler divergence) [7] measures the dif-
ference between the prior predictive distribution, given a model M, relative to an assumed

prior on the data P(d):
EM)
IT=[EM)n | ——=")dd, 4.6
Jewonm(55) o)
where it is implicitly assumed that £(M) depends on the data d. One might then define
predictivity as a monotonic function of the information Z, e.g. P, = 1 — e~Z. This form is
motivated by the observation that the information gain measures the logarithmic ratio of the
prior to posterior volumes.

Py=1- (4.2)

Pyp=1- (4.3)

Pp=1- (4.4)

- 11 -



4.2 Alternative interpretation

Let us consider a 1-dimensional case with a bijective prior predictive distribution. As previ-
ously stated, then, P(€)|dE| = p(d) |dd|, in which case predictivity can be re-written as:

gmax
11:1—/ P(E)dE,

&
Omax
:1_L P(d)dd,
11— [ P@HEQ) - &)da, (4.7)

where @ is such that £(6) = €. In the last step we have introduced the function H(z), which
corresponds to the Heaviside step function such that H(z) = 1 if z > 0 and H(x) = 0 if
x < 0. In addition, if the sampled data is assumed to be uniformly distributed in the range
Ad, then P(d) can be written as:

H(dy —d) — H(d; — d)

P(a) = Ad (4.8)
By replacing this into Eq. (4.7) we get:
3:1(/ A(dz =d) = A1 =d)] ) — g)aq,
oo Ad
1 (% .
=1—-— H(&() — d. .
Ag [, HE@ -8 (49)

This expression for the predictivity is much simpler to calculate than that of Eq. (4.1), as it
is not necessary to find P(€). It also has a very clear interpretation: the predictivity of a
model is the complement of the ratio of the range of data d (within the sampled data) giving
evidence between &y, and £ and the full range of the sampled data. For instance, when
E = Emax /e, for model M, it is clear that the range of the data d giving an evidence between
Emax and Enax/e is 2v/20n (with the assumptions previously mentioned). The predictivity
of the model is then that given by Eq. (4.3).

Equation (4.9) is general, and its derivation can be found in Appendix A.2 for a 1-
dimensional case with a double-valued prior predictive distribution, and in Appendix B for
N dimensions.

5 Folding predictivity into bayesian framework

We now return to Section 2 to re-assess the priors that should be inserted into Eq. (2.8) and
Eq. (2.12) in order to incorporate predictivity into the Bayes factor for models and paradigms.
When using modified priors, we will be ultimately interested in the ratio of posterior prob-
abilities given the data. We want to use a prior that gives due value to predictivity. In
general, any function of the predictivity could be used as prior. In this paper we propose to
give at least the same importance to predictivity as to goodness of fit, i.e. to penalise lack
of predictivity at least as severely as the Bayesian evidence penalises models for failing to fit
the data.
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Let us return to the toy models presented in Section 3 and note how model M is
penalised exponentially for not-fitting the data. We thus argue that model My should be
exponentially penalised for its lack of predictivity. One way to enforce this is to select the
prior:

(M) = % e~ (=P?/P? (5.1)

where N is a normalization factor such that >, m(M;) = 1. We can see that for a perfectly
unpredictive model, (P, = 0) this prior is zero, while for a perfectly predictive model (P, = 1)
it becomes % As required, as P, — 0 the prior vanishes exponentially.

We can easily compute the prior for model Mj:

2
89%ot

1 8o
T(M3) = N (Ad-2V20401)% | (5.2)

As we see, m(M3) — 0 exponentially as oy — Ad/(2v/2), in the same way as £ — 0
when |d — 6| — oo. Therefore, with this prior we give the same penalisation for not being
predictive as for not fitting the data. Analogously, model M receives the prior:

1 8% 1
For model My we get:
2
1 _ (A0—2n0 )2 e_<4(’ﬁ’9137)2

-0, (5.4)

T(Mg) = e [BamanizmonT? ~

N

where we have assumed that A6 > oy, and that (Ad — Af) ~ 2non. Then, the ratio of the
posterior probabilities between models M7 and Mo is:
P(M,|D) (292

—— * ~ B (4nopn)? 5.5
P(Mo|D) ~ P12 (5:5)

As it was already noted in the previous sections (see also appendix E), the prior we are
proposing depends on the experimental errors. Even though this is unusual for priors, the
fact that this prior is meant to assess how predictive a theory is makes the noise dependence
a necessary feature: the level of predictivity of a theory is determined from what can be
reasonably expected to be measurable. In the same way, predictivity will also depend on what
the observables are, and if experimental advances allow access to a new set of observables,
theories will have to be confronted with these as well. We stress though that predictivity does
not depend on the data, as the level of experimental noise and possible set of observables can
be known when an experiment is set up, before getting any data.

We also remark that in [8, 9] it was also argued that for assessing the performance of
a model not only the value for the evidence should be considered, but the distribution of
the evidence for hypothetical data as well. It was shown that the Bayes factor is a noisy
statistic, as it is strongly affected by the signal to noise ratio in the data and the assumed
priors. Thus, it was concluded that even though the Bayes factor expresses our knowledge
of the relative odds on different models, we need to consider more than a single numerical
value for making a final decision.

Finally, we stress that our formalism adds a new, distinct level of subjectivity to the
usual one, frequently recognised within the Bayesian framework. The usual problem concerns
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the ambiguity in the choice of measure (and concomitant priors) over the space of parameters
associated with theoretical models. In setting up our predictivity prior we do require a
model-independent measure on the space of the data itself, and this carries with it a separate
ambiguity. The two problems formally mimic each other, yet it is important to stress that we
are indeed adding a new layer of subjectivity, because the data measure is model-independent,
and so independent of the priors placed upon the model parameters themselves.

5.1 A toy numerical example

Let us consider a numeric example drawn from the two toy models M; and Ms. Let the
data be d = 0.4, with noise variance oy = 0.02. If the prior of the models are such that
0, = 0.5 and Af = 1, then the Bayes factor By is:

In(B12) = —9.5, (5.6)

which corresponds to a strong evidence for model My over My, according to the Jeffrey’s
scale shown in Table 2. To be unpredictive pays off, if we rely solely on the Bayes factor.

In(Bi2) Odds Strength of evidence
< 1.0 <S3:1 Inconclusive

1.0-3.0 3:1-20:1 weak evidence

3.0-5.01{20:1—-150:1| moderate evidence
> 5.0 2 150:1 strong evidence

Table 2. Jeffreys’ scale for translating values of Bayes factors into strengths of evidence, when
comparing two models Mj versus Mo.

Let us now calculate the posterior probabilities of the models when including the prior
given by Eq. (5.1). If the range of the sampled data for calculating the predictivity is
Ad =1+ 100y (with the range of model My prior inside this range), then the predictivities
become:

P =0.953; Py = 0.054. (5.7)

As expected, model M is very predictive as Pr1 ~ 1, while model My is much less predictive.
The ratio of the posterior probabilities become:

PMiID)\ _
m(Pm&M»>_2W4, (5.8)

resulting in a strong evidence for model M; over My, according to Jeffrey’s scale. We can
see that by giving due importance to predictivity, the preference of a model can change
dramatically. In this example, model Ms fits better the data than model M1, because it
has a higher evidence. With only this factor in consideration, we would prefer model M.
However, this model is considerably less predictive, resulting in a preference over model Mo
on the final posterior probabilities.

It is important to mention that this result depends highly on the range of sampled data
considered for calculating the predictivities. The larger the range, the better the predictivi-
ties, as seen in Eq. (5.3) and (5.4). This is why it is important to choose a reasonable sampled
data range. This ambiguity is analogous to that present in the standard Bayesian formalism
where some reasonable range for flat priors on parameters must be placed and chosen on a
case-by-case basis.
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5.2 Paradigm vs model comparison

In this subsection we illustrate how the issue of predictivity may be strongly contextual
and change radically between Level 2 (model comparison) and 3 (paradigm comparison).
When comparing models, flat priors are usually employed, in line with expected comparable
predictivities. However, the fact that paradigms are collections of models does not preclude
the relevance of predictivity, even when the individual models are roughly equally predictive.

In general we would like to impose the same philosophy regarding predictivity to models
and paradigms. Thus, priors for paradigms and models should have the same form:

n(P) = & e (PIIRE, (5.9)
where N is some normalization, and the predictivity P, is now calculated using the evidence
of the paradigm given by Eq. (2.10). In principle, the form of the prior for paradigms, 7(P),
and for models, (M), could be different. However, we shall not consider this possibility
here.

We now show with a numerical example how the issue of predictivity may be irrelevant at
Level 2 (model selection) but not at Level 3 (paradigm evaluation). Consider two paradigms
each made up of two models: P; = { M1, Mz} and Py = { M3, My}, where the four models
result from flat priors upon their free parameter 6 given by:

1/A0if 0<0<1
m(8) = m3(6) = { 0/ otherwise ’ (5.10)
_J1/Af 1<6<2
ma(6) = { 0 otherwise ’ (5.11)
_[1/A0if 05<60<15
ma(0) = { 0 otherwise ) (5.12)

The salient feature is that all four models have the same Af = 1, but in different regions of
0. Therefore all the models have the same predictivity, and so the ratio of their posterior
probabilities is simply the corresponding Bayes factor. Now, let us calculate the predictivity
of each paradigm when the sampled data lies in d = [—0.5,2.5], with a fixed noise variance
on = 0.02. In Figures 5 and 6 we plot the evidence as a function of the data for paradigms
P and Pa, respectively. In this numerical example we obtain:
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Figure 5. The evidence as a function of the data for paradigm P;, assuming o = 0.02.
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Figure 6. The evidence as a function of the data for paradigm P,, assuming on = 0.02.

Pop, =033 Pp, =051, (5.13)
and using Eq. (5.9), this gives:
m(P1) -2
=4x107". 5.14

Therefore, according to Eq. (2.12), the ratio of the posterior probabilities of the paradigms
changes by two orders of magnitude if we do take predictivity into account. And yet all the
models considered, making up the paradigms, have the same predictivity, P, = 0.62. This
example shows clear that even when the standard procedure of ignoring predictivity at Level
2 is correct, this is no reason to forego a more thorough analysis when assessing paradigms,
at Level 3.

We finally remark that since model priors are always normalised to 1, the evidence of a
paradigm is not determined by the number of models within it, and hence nor its predictivity.
Instead, the predictivity of a paradigm will depend on the overall spread of predictions made
by its models. For this reason, we can compare all kind of paradigms regardless the number
of models within them.

6 Predictivity of inflationary models

In this section we apply the concepts developed in the previous sections to inflationary mod-
els. We consider a large set of inflationary models, find their Bayes factors when compared to
a reference model, evaluate their predictivities, and compute their ratios of posterior prob-
abilities once the predictivity is incorporated into the priors. We stress that in defining
the predictivity a choice of data “D” is assumed. In general, for different choices of “D”
(i.e different sets of observables), there will be different distributions for the evidence, and
thus different predictivities. Since we are focusing on inflationary models, we will assume the
observables to be the tensor-to-scalar ratio amplitude of primordial perturbations 7, and the
spectral index for primordial scalar perturbations ns.

This is an important assumption as, in principle, we could have used a completely
different set of parameters as data, such as the power spectrum multipole moments of the
Cosmic Microwave background (CMB) temperature Cy. This ambiguity mimics that found
when deciding on what parameters a prior should be assumed when calculating the evidence
of a model in the Bayesian framework.
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In fact, when in Section 2 we examined chains of applications of Bayes’ theorem, we
neglected to point out that a level 0 (and several sub zero levels) could have been added to
the chain, since quite often what is seen as a “parameter” at one level becomes “data” at
another. This is a common situation in data reduction: no one ever compares the theory
with raw data (presumably the time-ordered series in CMB temperature experiments). This
is converted into a chain going from the time-ordered series, to a map (or agy,), to the Cy and
to the cosmological parameters. We could have called “data” the input from any of these
levels. Since we are working in the same Bayesian framework, we carry this ambiguity to
the definition of predictivity. For simplicity, we will consider only two observables, r and nyg,
with all the other parameters marginalised?.

6.1 Inflationary models

For simplicity, we consider only the 1D and 2D single-field slow-roll inflationary models de-
scribed in [10] (see also [11] for details). Thus, we consider a total of 85 models out of the 193
described in [10]. Throughout this section we use the same choice of priors and terminology
(including model initials) as in [10]. Each model is defined by a particular inflationary po-
tential and parameter priors. This way, two models can have the same inflationary potential
and differ only in the priors choice for its parameters.

Specifically, the 85 models in our analysis all have a reheating parameter and at most
one relevant potential parameter. For instance, one 1D model is Higgs inflation (HI). This
model has the following potential:

V(o) = Mt (1 - e VM) (6.1)

where ¢ is the inflaton field, M is some mass scale for the potential and M, is the Planck
mass. We say that this model is 1D as we are interested, as observables, in the tensor-to-
scalar ratio r and the scalar spectral index ng, which do not depend on the mass scale M,
but only on a reheating parameter?. This reheating parameter will be defined as:

1/4
_ P d Gend Pend
R = R d 1 7 RI‘ d — < > 5 62

ra Mp ¢ Gyeh Preh ( )

where pren and peng correspond to the energy density at the end of the reheating era and the
end of inflation, respectively. Similarly, a,en and aeng correspond to the scale factor at the
end of the reheating era and the end of inflation, respectively. Notice that R is dimensionless.

As we stated, a model is also defined by the choice of prior. Following [10], we choose
the prior for the reheating parameter R to be uniform in the logarithm of R:

7 (In(R)) = U(—46, 15). (6.3)

This prior covers all reheating histories satisfying that the mean equation of state wen during
reheating is —1/3 < wyen < 1, and puue < preh < Pend, Where puyc is the energy density at

2The amplitude of primordial scalar perturbations is not a discriminative observable, as all inflationary
models considered here have the same dependence on this parameter, and the same prior. Thus, if we added
this parameter as data, all the predictivities would change in the same way. However, by adding CMB non-
Gaussian observables as data, we might see a difference in the relative predictivity of models, but we do not
add them here as the computational effort would increase considerbaly.

31f we were to consider the primordial scalar perturbation amplitude as an observable, we would also have
to include M as a relevant free parameter in the model, as the two are directly related. However, since we
are only interested in r and ns, M is marginalized in calculations.
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Big Bang nucleosynthesis (i.e. it satisfies pi{é = 10MeV). Eq. (6.3) will be the prior on R
for all models.

Two-dimensional models have an extra relevant parameter, related to the the inflation-
ary potential, and a flat prior will be assumed on it. As an example, consider R + R?*"
inflation 3 (RPI3). This model has the following potential:

V(§) = Me 2V 2/3¢/Mp |/ 2/3¢/ My _ 1 2p/(2p=1) (6.4)

where ¢ is the inflationary field, M is some mass scale, M, is the Planck mass, and p some
free index determining the shape of the potential. In this case, the observables r and ng
depend on two parameters: the reheating parameter R, and the index p. Notice that the
case with p = 1 corresponds to HI. RPI3 is defined by the prior choice given by Eq. (6.3),
and a flat prior on p in the range:

n(p) = U(0.8,1). (6.5)
For details on other models and their priors, we refer the reader to [10] and [11].

6.2 Methodology

We calculate the Bayesian evidence for all 1 and 2 parameter models in the ASPIC inflationary
model library [11], given the Planck 2015 data [2]. As explained, we choose prior 7 on R
according to Eq. (6.3) and a flat prior on the potential parameter 6., if relevant. We
calculate the likelihood on a high-resolution grid in this parameter space by calculating the
corresponding (r,ng) pair, given the potential and reheating parameters, and substituting
this into a marginalised Planck likelihood L[r, ns|. The evidence is then simply calculated as:

€= / ARA0unc L[ (R, Ot ), e (R, Oin) |7 (R) 7 (G- (6.6)

The marginalised Planck likelihood L[r, ng] is constructed by building a histogram in the
(r,ns)-plane of the publicly-available Planck likelihood samples (the MCMC chain) [3]. This
procedure implicitly marginalises over all other ACDM parameters, including the primordial
scalar perturbation amplitude As. For simplicity and computational speed we make a normal
approximation to the likelihood by fitting a Gaussian to this histogram. We find the best-fit
parameters

F=—0.077; 7ns=0.964, (6.7)

and covariance such that
o, = 0.075; oy, = 0.007;  prp, = 0.196, (6.8)

where o, o, is the Gaussian width on r and ng, respectively, and p,,, their correlation
coefficient. Our results on the evidence of models compare closely to [10] (see Appendix C),
as expected given the Planck 2015 likelihood in r, ng is very similar to the 2013 likelihood.
We use Higgs Inflation (HI) as the reference model for ease of comparison.

In addition, we calculate the predictivities for each model M; as follows. The prior
predictive distribution &(r,ns|M;) is computed for each (r,ns) pair on a grid defined over
r € [0,0.45] and ng € [0.92,1.01], corresponding to ~ 7o from the best-fit Planck values.
This amounts to recomputing the Bayesian evidence where now the data are a translated
version of the Planck likelihood: each (r, ng) pair defines hypothetical data which are a priori
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plausible and replace the best-fit values in Eq. (6.7). We fix the covariance matrix of the
sampled data to be given by Eq. (6.8). This produces a density plot of the prior predictive
distribution for each model (e.g. Fig. 7 for HI). The predictivity is then given by Eq. (4.9):
the ratio of the area of the data plane such that & > Eax/8e to the full area. Models with
diffuse prior predictive distributions result in a posterior evidence which is weakly-dependent
on the data and hence are assigned low predictivities, and vice versa.

Finally, we incorporate predictivity into the Bayesian paradigm by inserting the predic-
tivities into Eq. (5.1) to define a model prior probability which encapsulates the predictivity
of each model. This allows us to calculate the posterior probabilities for each model using
Eq. (2.8) (with HI as the reference model).

To close this subsection, we briefly justify some of our technical assumptions, referring
the reader to the Appendices for more detail. We use a Gaussian approximation of the
Planck likelihood because the computation of the prior predictive distribution requires a full
parameter-space integral at each node in the (7, ng)-plane, and the approximation allows for
this to be an efficient calculation. However this assumption could in principle be relaxed.

The threshold £ = Enax/8e was chosen such that the predictivities of inflationary models
and the inflationary paradigm do not change considerably if we lower this value. In other
words we selected this threshold empirically from the criterium that the predictivity values
stabilise with this choice; we refer the reader to Appendix D for more details. Notice that,
according to the Jeffreys’ scale, with this threshold, predictivity is calculated considering
events that are inconclusive or only weakly disfavoured compared to the event with maximum
evidence Enax- These events will be what we call events with high evidence. This choice could
be changed on a case by case basis.

We finally remark that, as seen in our toy models, different experimental noises result
in different predictivities. In Appendix E we show how the predictivity changes with the
noise for some inflationary models. Fixing the covariance of the sampled data to be given
by Eq. (6.8) corresponds to assuming Planck-like uncertainties for hypothetical experiments
resulting in different data. Therefore, the predictivities reported here are to be understood
as estimations of testability when observing r and ng with current experiments. As the
predictivities presented are inherently dependent on the experimental precision, they should
be revised for future, lower noise experiments.

6.3 Results

We report our results on the selected 85 inflationary models on Table 3 and 4. The first
column indicates the acronym assigned in [10] to the models, the second column shows the
Bayes factor with HI as reference model, the third column shows the predictivity of each
model, and the fourth column shows the ratio of posterior probabilities after considering
predictivities in model priors.

For Higgs inflation, we show the prior predictive distribution in Fig. 7. Darker regions
are those having a larger evidence, and the blue contour bounds the region with a high
evidence, i.e with & > &ax/8e. As previously explained, the predictivity is calculated as
the complement of the area inside the contour over the total area in the plot. We find
the predictivity of Higgs inflation to be P, = 0.726. Notice that this value already gives
information about the model. It means that if we observed any value within the range of
the sampled data, there is 73% probability of HI having a low evidence (in the sense of an
evidence smaller than &« /8¢) for that data, and therefore of being disproved.
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Figure 7. Prior predictive distribution for Higgs Inflation (HI). Darker regions have higher evidence,
and the blue contour bounds the region with £ > Epax/8e. From this plot we find a predictivity of
P, =0.726 for HI.

Fig. 8 shows the corresponding results for RPI3. This is the least predictive model within
our set, with P, = 0.285. In this case, the Bayes evidence is such that In(Erprs/Emr) = —2.289,
which, according to Jeffreys’ scale, gives a weak evidence of HI over RPI3. We also find that
the posterior probability is such that In(Prp1s/Puar) = —8.44, which corrects the logarithm of
the Bayes factor on 269%. This correction changes the conclusion of weak evidence to strong
evidence, as unpredictive models are highly penalised.
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Figure 8. Prior predictive distribution for RPI3. Darker regions have higher evidence, and the blue
contour bounds the region with & > Eyax/8e. The large area encompassed within this high evidence
region corresponds to RPI3 being the least predictive model considered here, with a predictivity of
P, =0.285.

When comparing the 85 models to HI we find that most of them have comparable predic-
tivities and therefore the incorporation of predictivity into the ratio of posterior probabilities
does not change the conclusions on preferences of models. However, there are some excep-
tions that correspond to very unpredictive models such as: RPI3 (P, = 0.285), GMLFI, 3
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(P, =0.362), LFI (P, = 0.363), GMLFI,; 5 (P = 0.382), LPI14; (P, = 0.414), among others.
In Appendix C we also mention the models with highest predictivities and discuss how they
would change with a different sampled data range.

7 Predictivity of the inflationary paradigm

We are now ready to estimate the predictivity of the inflationary paradigm, and assess how it
impacts on its posterior probability. We first estimate the evidence of inflation and compute
its Bayes factor relative to an hypothetical paradigm formed by one model only: Higgs
inflation (HI). This assumes that information external to cosmology hypothetically selected
this model a priori as the only one viable. We then calculate the predictivity of inflation and
incorporate it into the priors to find the ratio of posterior probabilities for these paradigms.
We calculate the evidence of the inflationary paradigm by means of Eq. (2.10), weighting
each model with the corresponding prior given by Eq. (5.1). Following this procedure we find
that the Bayes factor of the inflationary paradigm with respect to that of HI is:
Ennt

In(B =1
n( InﬁHI) n<g

) = —0.914, (7.1)
HI

corresponding to a inconclusive evidence for HI over inflation. This is not altogether surpris-
ing, since HI seen as a model is part of the inflationary paradigm, so that its data fitting
prowess is included in the inflationary paradigm. The Bayes factor penalises only mildly the
fact that the inflationary paradigm also includes models which do not fit the data.
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Figure 9. Prior predictive distribution for the inflationary paradigm. Darker regions have higher
evidence, and the blue contour bounds the region with £ > &,.x/8e. The predictivity of inflation is
found to be P. = 0.31.

However this changes dramatically when the predictivity is taken into account. In
Fig. 9 we show how the evidence for the inflationary paradigm changes as the data is varied.
This was derived in complete analogy with the procedure followed in the previous section.
From this plot we can infer that the predictivity of inflation is P, = 0.31. This means that
were we to observe any random value within the range of the sampled data, there would be
31% probability of inflation having a low evidence (in the sense of an evidence smaller than
Emax/8¢€) for that data. This estimates the difficulty in testing the inflationary paradigm.
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We incorporate the predictivities of inflation and HI paradigms into their priors accord-
ing to Eq. (5.9). This leads to the ratio of posterior probabilities:

PInf)
In — 5707, 7.2
(o (7.2)

corresponding to a correction of 524% to the logarithm of the Bayes factor. There is a
now strong evidence of HI over inflation. As our toy models suggested, the incorporation of
predictivity into the Bayesian framework can give considerable changes in the preferences of
paradigms.

We should stress that the figure quoted for the predictivity of inflation is a very rough
lower bound. We have restricted ourselves to the simplest single-field slow roll models. We
considered only one and two parameter models, for numerical reason. We neglected fast roll
scenarios. We have also discounted multi-field models (for which the consistency conditions
become inequalities). Inclusion of these would degrade inflation’s predictivity further and
raise the ratio between the posterior of HI over inflation.

Lowering noise levels would improve the predictivity of inflation, but this would also be
true for its competitors, so that its relative status as a scientific theory might not change.
One thing that would improve inflation status is the inclusion of information external to
cosmology to select a priori one of its may models, as the HI example shows. We should not
forget, however, that what we have presented here is an hypothetical situation. We do not
currently have arguments external to cosmology favouring a priori HI within all inflationary
models. In fact we have selected HI a posteriori, having seen the data, which is precisely what
cannot be done given that almost anywhere in the space of observable there is an inflationary
model.

8 Comparison with an alternative paradigm

Let us now examine how inflation fares when compared to alternative paradigms, specifically
those making the hard prediction that no primordial gravity waves are produced. There
are at least two such possibilities: the cyclic scenario [13, 14] and the bimetric varying
speed of light cosmology [15-17]. We focus on the latter. We remark that bimetric and cyclic
scenarios probably fare differently between themselves, because although they make the same
prediction this is done at the expense of different sets of parameters (and thus natural priors).

In bimetric varying speed of light (BVSL) models there are two metrics or “frames”:
metric g,,, which generates the gravitational action (labelled the “gravity” metric or the
“Einstein frame”), and metric g, to which matter is minimally coupled (the “matter” metric
or frame). Brans-Dicke (varying G) theory has a similar set up, but the two metrics are
conformally related. In BVSL models the two metrics are disformally related, according to:

gw/ = Guv T B(a;ﬂs) (au¢) (8'1)

In the simplest scenario the dynamics of ¢ is induced by a cosmological constant in the
matter frame (possibly balanced by a cosmological constant of opposite sign in the Einstein
frame, so as to obtain a trivial low-energy limit). This leads to Klein-Gordon dynamics in the
matter frame and (anti-)DBI dynamics in the Einstein frame [16, 18]. A power-law potential
V(¢) must then be present and is fully specified by the Bianchi identities, should we require
background scaling solutions to exist. If B is constant, V(¢) should be a mass potential.
The cuscuton model[19] is a limiting case of this model.
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Because the null cones for gravity and for matter are not coincident we have a theory
with different speeds of propagation for light (and all massless matter particles) and gravity.
If B > 0 (with signature (4, —, —, —)) the speed of light is larger than the speed of gravity.
For this reason the model implements the VSL scenario [20]. However, whilst the horizon
problem is solved for scalar modes, it remains unresolved for tensor modes. This is why the
bimetric VSL model (as opposed to DSR realisations [21-24]) predicts exactly r = 0.

In the minimal bimetric model the dimensionful factor B is a constant and exact scale
invariance is predicted. However, more general models can be built if we allow B to be a
power-law in ¢. Then ng # 1 can be accommodated, but r = 0 remains a solid prediction.
The bispectrum is also distorted away from an equilateral shape (associated with ng = 1)
and a consistency condition involving ng and the bispectrum is found [16]. This consistency
condition contains the bulk of the predictive value of the theory, but it shall be ignored in this
paper and left for a further publication. Suffice it to say here that: (1) we are discarding the
most predictive part of the theory; (2) the levels of non-Gaussianity generated are consistent
with observations [16]; (3) they could be observable in the future.

With this proviso in mind, we consider the predictive value of BVSL restricted to ob-
servables ng and 7. In such a set up we do not expect the model to differ substantially from
any sub-class of inflationary models satisfying a linear consistency condition between ng and
r, except for the issue of how the priors upon the model feature. In the Einstein frame the
salient features of the model boil down to the one-parameter family of functions for B and

V:
B(¢) = @_PM<AZ)B (8.2)
V(g) = %(&)2_5 (8.3)

where the only relevant parameter is 3, as we shall see. The equation of state associated with
scaling solutions is an integration constant, and within a minimal model we should choose
radiation (w = 1/3) to avoid the complications of reheating and phase transitions. With
these assumptions we have [16]:

ng—1=—— (8.4)
r = 0. (8.5)

The model has other parameters (relevant for fixing, e.g. the amplitude) but these can be
ignored here.

Just as with inflationary models, a natural choice of prior, failing other information, is
uniformity in B in the range of the sampled data:

7(B) = U(—0.117,0.015). (8.6)

It is interesting to see that a flat prior on § translates into a prior for ng and r that can be
obtained from the inverted function:

6(ng — 1)

5 —ng

B = (8.7)
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Thus the prior translates into:

dp
= dnsé(r). (8.8)

For ng € [0.92,1.01] this prior is nearly uniform on ng with a peak at the highest ns. In fact,
in this range the probability varies by less than 5%.
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Figure 10. Prior predictive distribution for BVSL. Darker regions have higher evidence, and the
blue contour bounds the region with £ > &,.x/8¢. The predictivity of this paradigm is found to be
P. =0.591.

Figure 10 shows the prior predictive distribution of BVSL and the contour bounding
the high evidence region (£ > &pax/8¢). From this plot the predictivity of this paradigm
is found to be: P, = 0.591. When comparing this BVSL paradigm to inflation, the Bayes
factor is found to be:

&
ln(BInf’BVSL) =In ( Inf > = —0.145, (89)
EBVSL

which corresponds to an inconclusive evidence for BVSL over inflation. After considering
predictivity in the priors of each paradigm we find the ratio of posterior probabilities to be:

P
ln< nf ) = —4.602, (8.10)
PgvsL

which translates into a moderate evidence for BVSL over inflation, according to the Jeffreys’
scale. Similarly to the results previously found with HI, there is a large change of 3079% in the
logarithm of ratio of probabilities, after introducing predictivity into paradigm comparison.

As in the previous Section, we should stress that this figure is necessarily a very rough
lower bound. Not only is the real predictivity of inflation lower than quoted here (as explained
in Section 7), but the words of caution presented in this Section should be borne in mind:
most of the predictive value of non-minimal BVSL involves the bispectrum and this has been
ignored here.

9 Conclusions

As the recent hiccups in CMB polarisation observations demonstrated [1, 25, 26], whatever
the data turns out to be it will be paraded as proof of inflation. This is because for any
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observation there is an inflationary model fitting it. Concomitantly, there is a trend in
parroting the death of inflation’s alternatives (such as cyclic models [13, 14], string gas
cosmology [27, 28] and varying speed of light models [16, 20, 21]).

Putting aside sociology, these perceptions may derive from an important scientific issue.
We argued here that the oft-used concept of Bayesian evidence, as applied to paradigms, fails
to adequately capture the tenet that paradigms should be predictive. Whilst the standard use
of the concept of Bayesian evidence may be perfectly appropriate for comparing models within
a paradigm, it fails to suitably penalise the whole paradigm for not making a prediction that
could rule it out. In this paper we took a first stab at the problem by proposing a measure
which we termed “predictivity” encoding the view that a predictive theory should not only
have a higher evidence than its competitors: its evidence should be exceptional with respect to
what it would have been had the data been different. The proposed “predictivity”, P,, varies
between 0 and 1, and is the percentage of data space producing evidences lower than a given
fraction of the maximal evidence. We then proposed priors leading to posteriors such that
failure to fit the data and failure to be predictive are both exponentially penalised, putting
them on an equal footing.

We applied our formalism to 85 single-field inflationary models, and found that most
of them have similar predictivities. Therefore there is not a significant difference between
the Bayes factor and the ratio of posterior probabilities when selecting best-fit models within
inflation. However, we found that predictivity is crucial in evaluating the success of inflation
seen as a whole. We calculated a very rough upper bound based on this collection of models:

P, < 0.31. (9.1)

This means that had we made a random observation in the range r € [0,0.45] and ns €
[0.92,1.01], there would have been at least a 69% of probability for this observation to have
had a high evidence, and thus of favouring inflation. This number estimates the difficulty in
ruling out, and thus in testing the inflationary paradigm with present experiments. It also
affects drastically the ratios of posteriors between inflation and other paradigms.

We made this point first by considering an hypothetical scenario in which information
external to cosmology led to the selection of one of its many models as the only one viable,
namely Higgs inflation. We stress that this remains an hypothetical situation. We do not
currently have arguments external to cosmology favouring HI within all inflationary models.
In fact we have selected HI a posteriori, having seen the data, which is precisely what cannot
be done and is borderline fraudulent, given that whatever the observations there would have
been an inflationary model fitting them. Nonetheless this hypothetical situation allowed us
to make an important point: whereas the Bayes factor gives inconclusive evidence of HI seen
as a paradigm over inflation seen as a whole, the ratio of posterior probabilities gives strong
evidence of HI over inflation. Inclusion of predictivity into the priors corrects the Bayes
factor by 524%, stressing its importance when evaluating paradigms.

We then compared inflation to the bimetric varying speed of light cosmology (BVSL),
when the latter is restricted to its predictions regarding ng and r. We should not forget that
most of the predictive power of BVSL involves the bispectrum, as explained in [17], and this
has not been factored into our analysis. Nonetheless we can make a point similar to that
made for HI regarding the importance of predictivity: this time we found a correction of
3079% in the Bayes factor, after incorporating predictivities into the priors. Furthermore,
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we derived the upper bound on the ratio of the posteriors

In <Plnf> < —4.602, (9.2)
PpysL
revealing at least moderate evidence of BVSL over inflation. This is a lower bound both
because the value used for inflation’s predictivity is an upper bound (Eq. (9.1)) and because
we have not used the full predictive power of BVSL.

We stress that Eq. (9.1) could be a very rough upper bound indeed, with the real pre-
dictivity of inflation much lower. We have restricted ourselves to one and two parameter
models for numerical reason, but these are precisely the most predictive single-field inflation-
ary models. We have also discounted multi-field models (for which the consistency conditions
become inequalities), and fast-roll models (which cover a larger portion of observable space).
Inclusion of these would strongly degrade inflation’s predictivity. It would also raise the pos-
terior of HI and BVSL relative to inflation. We conclude that cosmic inflation is currently
hard to falsify. However, as the example of HI seen as a paradigm shows, this would change
were information external to cosmology select one of its many models as the only one viable.

The inference issues raised in this paper are compounded by the problems concerning
the probability and naturalness of inflation. This has been argued in [29, 30], counter-argued
n [31], and further argued in [32]. And yet theoretical matters may end up being far more
relevant than any probabilistic issues, of whatever nature. The fact that inflation is not an
unavoidable part of any quantum gravity framework may prove to be its greatest undoing.
Indeed, inflation was historically built to insulate the observable universe from what was felt
to be the speculative physics of quantum gravity. By doing so, inflation unwittingly created a
situation where such physics is almost certainly forced to remain speculative, if inflation did
indeed occur. The quest for quantum gravity continues, with the belief that an observational
clue is essential before a viable theory is found. Planck scale physics should be embraced by
cosmology, rather than bypassed.
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A Probability and predictivity with double-valuation

A.1 Probabilty with double-valuation

For a given model we want to calculate the probability of the evidence P(€) within a range
of sampled data d € [d1,dg]. Within this range there is going to be a maximum &y and
minimum &y, of the evidence. The probability of the evidence will be such that P(£) =0
for £ > Enax and € < Emin.

On the other hand, in general, the evidence as a function of the data will be a 1-peaked
double valued function £(d) in the range of the sampled data 4. In this case the evidence

4The arguments appearing in this section can also be straightforwardly generalised to the case of a multi-
peaked evidence
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can be broken up into two 1-1 functions around a value 0,,x:

£(d) = {Sl(d) dif dy < d < Omax

E(d) 1if Opax <d <dy’ (A1)

where Opax is such that £(Omax) = Emax. In each piece we define the probabilities P; and P,
such that:

Pi(&)|dE| = Pi(d)|dd];  P(E2)[dEs| = Pa(d)|dd], (A.2)
and therefore the probabilities P; and P, can be calculated separately as:
dgl(d) -1 d52(d) B
P (€)= Pi(a i Py(E) = Py(d A3
e = @) G| ) = muca)| (A3
The total probability will be:
P(€) =Pi(&) + P(E). (A4)
A.2 Predictivity with double-valuation
The predictivity of the model will be:
gmax
P=1- / P(&)dE, (A.5)
&
but this integral can be re-written as:
max max gmax
/_ £)dE = / £)de + / Py(E)dE
E I
emlx 91’11'1)(
- / Pi(@)ldd] + / Py(a)|dd|
dy d2
9max da
= / Pi(d)dd +/ Py(d)dd,
dy max
= / Pi(d)H(E(Q) — E)dd + / Py(d)H (£(d) — &)da, (A.6)

where £ = £(d;) = £(dz), and H(x) is the Heaviside step function: H(z) = 1 if z > 0, and
H(z) =0if x < 0. For a flat prior on the sampled data, we use a similar expression to that
given by Eq. (4.8):

H(emax - d) - H(dl - d)

Pi(@) = - , (A7)
H(d2 — d) — H(fmax — 4)
P. = A.
2(d) Aq : (A.8)
where Ad = dg — d;. Using these equations, Eq. (A.6) becomes:
1 (H(emax —d)— H(d; —d)) H(E(d) — €)da
/ Ad H(d2 —d) — H(Omax — d)) H(E(A) — &)dd
Omax _ 1 do —
= / H(E@ ~ Edd+ 55 | H(E() ~E)da
1 (% . A
= — H(E(A) — d. .
Ag [, HE@ - (A9)
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Therefore, the predictivity can be written as:

d2 B
-1 = ~ &)da. (A.10)

dy

We conclude that the predictivity is going to be the complement of the ratio of the
range of data (within the range of the sampled data) giving an evidence larger than £ over
the whole sampled data range.

B Probability and predictivity in N dimensions

In general, let us consider a model such that its evidence is a function of N observables
E(61,...,0n). The probability density function of £ can be written as:

PE)= | do..diy P(0:)..P(ON)(E — (01, ., 0x)), (B.1)

where the range of the integrals corresponds to the range of the sampled data, denoted

generically by an N-volume Vj, because outside this range P(f;) = 0. Notice that this

formula is always true no matter if there are multiple valuations in the function £(64, ..., 0n).
The predictivity of the model will be:

gmax
P=1- / P(£)dE, (B.2)
E

but using Eq. (B.1) we can rewrite this last integral as:

/ d6y...d0x P(6,)...P(0) /Emax 5(E — E(01, ... On))dE. (B.3)
Vs &

On the other hand, this last integral in d€ can be written as:

/gmax 5(5 5(9177 ))d(‘:
&
= H(Emax — E(01,...,0N)) —

N
= H(é_’—g(el,...,GN)), (B.4)

where we have used that by construction, £(01, ...,0n) < Emax. Then, Eq. (B.3) becomes:

d9:...d0N P(01)...P(ON)H(E — E(61,...,0N)),
Vs
11

=i [ dby..dON H(E — E(61,....,0 B.
Aoy Ay ), o HE = €0r,...0n)) (B5)

which is the same result that we obtained for the 1-dimensional case. We conclude that
the predictivity is always going to be the complement of the ratio of the N-volume of data
(within the N-volume of the sampled data V;) giving an evidence larger than € over the whole
N-volume sampled data.
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C Predictivity of inflationary models

In this section we report the results on predictivities for 85 inflationary models described in
[11].

Table 3 continues in Table 4. Tables 3 and 4 show the ratios of evidences when using
Higgs inflation as the reference model (second column), the predictivity for each model (third
column), and ratios of posterior probabilities as in Eq. (2.8) when the prior for each model
is considered to be given by Eq. (5.1) (fourth column). The names of models are in the first
column of the tables, and correspond to the initials given in [11].

Model In(E/Eur) Pr In(P/Pyr) Model In(E/Eur) Pr In(P/Pyr)
Al -0.172 0.726 -0.171 GMLFIy /3 1/3 -1.39 0.565 -1.841
Blis -0.194 0.715 -0.21 GMLF12/374 3 -1.871 0.45 -3.227
Blas -0.073 0.73 -0.067 GMLFI; 1 -2.092 0.486 -3.064
Blss -0.021 0.728 -0.018 GMLFI; 2 -2.811 0.382 -5.277
Blys 0.006 0.738 0.022 GMLFI; 3 -4.068 0.362 -7.042
Blss 0.021 0.736 0.035 GMLFI3 1 -3.518 0.472 -4.627
Blgs 0.031 0.736 0.045 GMLFI3 3 -6.039 0.522 -6.738

CNAI -2.177 0.44 -3.654 GMLFI3 1 -5.649 0.515 -6.392

CNBI -1.888 0.499 -2.752 GMLFI3 2 -6.523 0.539 -7.11

CWI; -1.373 0.782 -1.307 GMLF1I3 3 -9.102 0.632 -9.298

CWI, -1.365 0.781 -1.301 HF1I -2.997 0.493 -3.914
DWI -2.563 0.432 -4.149 HI 0 0.726 0
ESI 0.027 0.725 0.026 IMI1 -13.268 0.899 -13.138
ESI -0.531 0.57 -0.959 IMI2 -13.247 0.891 -13.119
ESI, 0.043 0.725 0.041 IMI3 -13.096 0.891 -12.968

ESI 5 0.034 0.738 0.05 IMI4 -12.725 0.894 -12.597

ESIM 0.018 0.725 0.017 IMI5 -12.572 0.896 -12.442

Table 3. Values for ratio of evidences, predictivities, and ratio of posterior probabilities for 85
single-field slow-roll inflationary models. Results continue on Table 4.

As we can see in the tables, most of the models have a similar predictivity, and therefore
the preferences for models do not change significantly after considering predictivity. There
are some exceptions of very unpredictive models such as: RPI3 (P, = 0.285), GMLFI; 3
(P, = 0.362), LFI (P, = 0.363), GMLFIL, 5 (P, = 0.382), LPIly; (P, = 0.414), among
others.

The least predictive model is RPI3 with P. = 0.285, and its prior predictive distribution
is shown in Fig. 8. The most predictive model is RCHI, with P, = 0.976. Model RCHI, is
defined by the radiatively corrected Higgs inflationary potential:

vt (1 g—E@M,) . A b
V()= M (1 % +16W2%Mp>, (C.1)

where A is the only free relevant potential parameter. The prior choice for A; is a flat prior
m(A1) = U(—48,—20). As it can be seen from Table 4, RCHI, is the most predictive model
but it is highly disfavoured by data, as it has a low evidence compared to HI. Fig. 11 shows
the prior predictive distribution for this model.

From this plot we conclude two things: first, this model does not fit well the data as
it favours low values for ny compared to the best-fit from Planck. Second, it is clear that
the high predictivity is due to the choice on the sampled data, and that a larger data range
might give a lower relative predictivity, as the region contained inside the blue contour is
expected to grow for this model, but not for other models. For this reason we also mention
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Model ln(S/EHI) Pr IH(P/PHI)
IMI6 -12.769 0.896 -12.64
KMII 0.043 0.728 0.046
KMIIy ¢ 0.023 0.73 0.028
LFI -2.491 0.363 -5.423
LFIy -1.718 0.546 -2.269
LFI -3.026 0.493 -3.943
LFI3 -5.021 0.507 -5.822
LFI4 -8.027 0.574 -8.433
LFI, /3 -1.317 0.579 -1.702
LI -0.259 0.554 -0.767
Lla<o -1.896 0.531 -2.532
Lla>o -0.476 0.738 -0.46
LPI14 1 -3.595 0.414 -5.449
LPI14 2 -5.032 0.496 -5.921
LPIly 3 -7.181 0.563 -7.639
MHI -0.292 0.541 -0.87
MHI, 0.048 0.742 0.07
MHIs -0.789 0.48 -1.82
MLFI -4.309 0.458 -5.571
MSSMI, -4.607 0.824 -4.51
MSSMI, -3.87 0.464 -5.062
NI -2.608 0.43 -4.217
OSTI -2.123 0.456 -3.404
PLI -8.472 0.856 -8.357
PLI, -8.373 0.47 -9.497
RCHI -1.611 0.621 -1.842

Table 4. Values for ratio of evidences, predictivities, and ratio of posterior probabilities for 85
single-field slow-roll inflationary models. This table is a continuation of Table 3. We note that for
numerical reasons the prior of model SFI; was set to: m(log(p/M,)) = U(0,2).

Figure 11.

another model with one of the highest predictivities, Llo~o with P. = 0.738. This model is

0.45

Model ln(S/SHI) Pr IH(P/PHI)
RCHI, -88.064 0.976 -87.922
RCMI -2.673 0.434 -4.237
RCQI -6.692 0.424 -8.395
RGI -0.365 0.565 -0.816
RGI, /16 -0.096 0.725 -0.098
RGI; -0.758 0.501 -1.609
RGIs -0.075 0.725 -0.076
RIPI, -5.038 0.83 -4.937
RIPI, -2.842 0.4.88 -3.782
RIPIsugra -1.128 0.53 -1.774
RPI1 -3.619 0.714 -3.64
RPI3 -2.289 0.285 -8.453
SBla,im -1.703 0.778 -1.642
SFIy -2.404 0.533 -3.03
SFI, -1.974 0.554 -2.482
SFIy -1.574 0.554 -2.081
SFI3 -1.515 0.611 -1.777
SF13 -1.119 0.584 -1.484
SFI3s -5.583 0.83 -5.482
SFI4 -0.784 0.648 -0.936
SFIy -0.615 0.624 -0.836
SF1ys -1.239 0.778 -1.178
TI; /o -1.255 0.778 1194
WRI, -1.252 0.467 -2.41
WRI, -1.179 0.587 -1.531
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described by the loop inflationary potential:
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V(p) = M* [1 + aln (J\Z)} ,

Prior predictive distribution for RCHI,. Darker regions have higher evidence, and the
blue contour bounds the region with £ > &,.x/8e. This model is the one with the highest predictivity,
with P. = 0.976.
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where o > 0 is the only free relevant potential parameter. The prior defining this model
is given by 7(log(a)) = U(log(3 x 1073),1log(3 x 1071)). Fig. 12 shows the prior predictive
distribution for this model, and the contour bounding the high evidence region. Contrary to
RCHI,, from Fig. 12 we can see that the region inside the blue contour would not change
with a larger sampled data (assuming r > 0).
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Figure 12. Prior predictive distribution for LI,~q. Darker regions have higher evidence, and the
blue contour bounds the region with & > &,,ax/8e. The predictivity of this model is P. = 0.738.

D Predictivity threshold

In Eq. (4.1) we have to assume a threshold £ for evaluating the predictivity. As previously
mentioned, this value is arbitrary, and in this section we make an analysis for finding an
appropriate value for this threshold.

Predictive models have a sharp prior predictive distribution, and therefore we do not
expect a considerable change in their predictivities as we change the threshold. An example
of this kind of models is RCHIo, which is introduced in Appendix C, and has the highest
predictivity among the 85 models considered in this paper. Fig. 13 shows the contours
bounding regions with an evidence above & = Epax/ne, with n = 1 (blue), 2 (green), 4 (red),
6 (cyan), 8 (magenta), 10 (yellow), and 12 (black). The predictivity of RCHIo ranges between
P, =0.982 (n=1) and P, =0.974 (n = 12), which corresponds to a change of 0.8%.

It is important to notice that lowering the threshold always generates a lower predictivity
as it increases the high evidence region (bounded region in Fig. 13). In this sense the value
of predictivity itself can be quite arbitrary, although it has a particular meaning as % of
population with evidence higher than the threshold. However, when we lower the threshold
for all models, we can see that the high evidence region of models with a spread prior
predictive distribution will change more than those with a sharp distribution.

To show this point we analyse the predictivity for HI for different thresholds. Fig. 14
shows the contours bounding regions with an evidence above € = Epax/ne, with n = 1 (blue),
2 (green), 4 (red), 6 (cyan), 8 (magenta), 10 (yellow), and 12 (black). The predictivity of HI
ranges between P, = 0.923 (n = 1) and P, = 0.701 (n = 12), which corresponds to a change
of 24%. As expected, there is a bigger change in the predictivity of HI than for RCHIo, as
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Figure 13. Prior predictive distribution for RCHIo. Darker regions have higher evidence. We also
show the contours bounding regions with evidence higher than £y, /ne, with n =1 (blue), 2 (green),
4 (red), 6 (cyan), 8 (magenta), 10 (yellow), and 12 (black). As we lower the threshold, the predictivity
decreases as the bounded region increases.

from the plots we could see that the prior predictive distribution of HI is more spread, as it
covers a larger grey area.
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Figure 14. Prior predictive distribution for HI. Darker regions have higher evidence. We also show
the contours bounding regions with evidence higher than Enax/ne, with n = 1 (blue), 2 (green), 4
(red), 6 (cyan), 8 (magenta), 10 (yellow), and 12 (black). As we lower the threshold, the predictivity
decreases.

A sensible choice of threshold would be one that is able to take into account the spread
of the distributions. As we can see from Fig. 13 and 14, as we lower the threshold we take into
account the spread of the distribution and the high evidence regions can grow considerably,
but the contours start becoming closer and closer, as the distributions start decaying faster.
At some point, the contours stabilise and there is no relevant change in the predictivity if we
lower the threshold. From this point of view, with these two models as the only information,
a good choice for the threshold could be £ = Epayx/6e (cyan curve).
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Figure 15. Prior predictive distribution of the inflationary paradigm. Darker regions have higher
evidence. We also show the contours bounding regions with evidence higher than Eyax/ne, withn =1
(top) and n = 2 (bottom).

However, other factors can come also into play when deciding the threshold value.
Particular attention is needed if a prior predictive distribution has many peaks, as a high
threshold might leave out some peaks of the distribution. An example of this is the inflation-
ary paradigm. Fig. 15 shows the prior predictive distribution of the inflationary paradigm
for thresholds Emax/ne, with n =1 (top) and n = 2 (bottom).

As we can see in Fig. 15, when we set n = 1 (what we used for the toys models) we leave
outside two peaks around (ns = 0.93,7 = 0) and (ns = 0.95,r = 0.2). For this reason, when
lowering the threshold to n = 2 a big change occurs. The predictivity goes from P, = 0.818
to P. = 0.608. Again, a sensible choice of threshold would be one where the contours stabilise
and get close enough to each other to not generate any considerable change in the predictivity.
This will happen when all the peaks are included.

Fig. 16 shows the contours for the inflationary paradigm bounding regions with an
evidence above £ = Epax/ne, with n = 1 (blue), 2 (green), 4 (red), 6 (cyan), 8 (magenta),
10 (yellow), and 12 (black). In this plot we do not show the prior predictive distribution
but only the contours as the former one changes with different thresholds because the prior
of each model changes. We can see that the contours stabilise from € = Epax /8e (magenta
curve). For this reason we finally choose this threshold to use throughout the paper. Notice
that with this value of threshold, according to the Jeffreys’ scale, a high evidence region is
one that includes only events that are inconclusive or weakly disfavoured compared to event
with the maximum evidence Epax.
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Figure 16. Contours for the inflationary paradigm bounding regions with evidence higher than
Emax/ne, with n = 1 (blue), 2 (green), 4 (red), 6 (cyan), 8 (magenta), 10 (yellow), and 12 (black). As
we lower the threshold, the predictivity increases.

E Experimental noise

The value of predictivity is contingent on the experimental noise. That is clear from the
definition in Eq. (4.1), as the evidence depends on the experimental noise. In this section
we would like to quantify the change on the predictivities of some inflationary models as the
noise changes.

For HI we show the prior predictive distribution and the high evidence contour in Fig. 17,
when the experimental noise is reduced to a quarter of the best-fit Gaussian Planck noise
showed in Eq. (6.8). The predictivity of HI increases from P, = 0.726 (with Planck noise) to
P, =0.935 (with a quarter of Planck noise), which corresponds to a 29% of change.
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Figure 17. Prior predictive distribution for HI and contour bounding region with evidence higher
than Enax/8e (blue), when experimental noise is reduced to a quarter of the best-fit Gaussian Planck
noise. Darker regions have higher evidence. The predictivity in this case is P. = 0.935.

For more unpredictive models such as RPI3, we find that the predictivity increases
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from P, = 0.285 (with Planck noise) to P, = 0.676 (with a quarter of Planck noise), which
corresponds to a 137% of change. Fig. 18 shows the prior predictive distribution of RPI3
and the high evidence contour, when the experimental noise is reduced to a quarter of the
best-fit Gaussian Planck noise given by Eq. (6.8).
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Figure 18. Prior predictive distribution for RPI3 and contour bounding region with evidence higher
than Enax/8e (blue), when experimental noise is reduced to a quarter of the best-fit Gaussian Planck
noise. Darker regions have higher evidence. The predictivity in this case is P, = 0.676.

As we can see with these two examples, as we lower the noise, the predictivities improve,
and the change of predictivities can be considerably large. Due to the dependence of the
predictivities on the experimental noise, it is important to clarify that the results of this
paper estimate the testability of models or paradigms today, i.e. with measurements of r and
ng with a Planck-like experiment. However, in the future, more accurate or new measurements
would improve all the predictivities.
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