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Abstract. This article examines the role that the choice of a dislocation mobility

law has in the study of plastic relaxation at shock fronts. Five different mobility laws,

two of them phenomenological fits to data, and three more based on physical models

of dislocation inertia, are tested by employing Dynamic Discrete Dislocation Plasticity

(D3P) simulations of a shock loaded aluminium thin foil. It is found that inertial laws

invariably entail very short acceleration times for dislocations changing their kinematic

state. As long as the mobility laws describe the same regime of terminal speeds, all

mobility laws predict the same degree of plastic relaxation at the shock front. This is

used to show that the main factor affecting plastic relaxation at the shock front is in

fact the speed of dislocations.
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1. Introduction

The plastic shielding of a shock front is the fundamental process behind the attenuation

of the dynamic yield point. Gurrutxaga-Lerma et al. (2015) [1] showed that attenuation

of the dynamic yield point (otherwise known as the ‘elastic precursor decay’) is the result

the accumulated interference of elastic waves emanating from shielding dislocations that

are generated at the shock front.

This phenomenon is greatly affected by the motion of these dislocations.

Dislocations are generated in shielding and anti-shielding pairs. The shielding

dislocations move frontward, and as their speed approaches the transverse speed of

sound, the elastodynamic fields they radiate are magnified ahead of the dislocation

core in the direction of motion. The anti-shielding dislocations move in the direction

opposite to the front, and as their speed approaches the transverse speed of sound, the
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magnitude of their elastodynamic fields behind the core in the direction of motion is

weakened. This weakens the anti-shielding effect, and results in an enhanced plastic

shielding of the shock front [1]. Thus, the plastic relaxation of the shock front appears

to be greatly affected by the way in which dislocations move at the shock front.

In continuum elasticity descriptions of plasticity and dislocation dynamics,

dislocation motion is described in terms of mobility laws [2]. Mobility laws express

dislocation motion in their slip planes as a force or energy balance in which the action

of an external stimulus (typically, an external stress) is balanced by the crystalline

lattice’s natural resistance to its motion (the dislocation ‘drag’), and by the need to

change the dislocation’s own elastic self-energy.

Since dislocations move to minimise the elastic free energy of the system [3], the

mobility law usually expresses the effect of the external stimuli in terms of the Peach-

Koehler force [4]:

fi = εijkσljBlξk (1)

where fi ≡ fPK is the Peach-Koehler force, εijk the Levi-Civita tensor, σlj the external

stress tensor, Bl the Burgers vector, and ξk the direction of the dislocation line.

Equally, the effect of the lattice resistance is expressed as a drag force, the nature of

which depends on the speed the dislocation is moving at. At low stresses and low strain

rates, dislocation motion is naturally impeded by the Peierls barrier, and the motion is

governed by the thermally assisted probability of overcoming that barrier [5]. At higher

stress levels, dislocations are able to overcome the barrier and enter a free glide regime

where the drag force is said to resemble a viscous drag force[5], where the glide speed is

reported to be proportional to the applied resolved shear stress, τ :

vglide =
τB

d
(2)

where d is a drag coefficient and B = |B| the magnitude of the Burgers vector, both

dependent on the material.

This ‘free glide’ or ‘pure drag ’ regime and, consequently, eqn.2, neglect the

importance the dislocation’s self-energy may have in its own motion. It is known that

the latter increases with the dislocation’s speed [6, 5, 7], and that according to first order

linear elasticity, it diverges at the transverse speed of sound, which has led the latter to

be regarded as a limiting speed of dislocations[5]. This effect results in a well-attested

[6, 5, 8, 9] saturation of the speed a dislocation may achieve with respect to increasing

Peach-Koehler force; due to its similarity with the relativistic motion of electric charges,

this regime is often referred to as relativistic regime. Additional likely effects resulting

from the fast moving dislocations [10, 8], suggest that the intrinsic lattice resistance

may be different from the viscous drag given by eqn.2, which complicates the proposal

of a univocally clear mobility law valid in the relativistic regime.

This is particularly relevant for shock loading, where due to the magnitude of the

applied loads, most dislocations are believed to glide in either the pure drag regime

or, more usually, in the relativistic regime (cf.[8, 5]). Most of the proposed dislocation
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Type Name Equations References

Phenomenological Taylor Eqn.3 [16, 11, 17]

Phenomenological Power law Eqn.6 [18, 9, 8]

Inertial HZL Eqn.18 (with eqn.16 or 17) [19]

Inertial Pillon et al. Eqn.27 [20]

Inertial Pellegrini Eqn.29 [21]

Table 1: Summary of the mobility laws to be studied in this work.

mobility laws that can be employed in shock loading are therefore speculative at best.

Nonetheless, there seems to be a large consensus in that the dislocation’s speed should

saturate as it approaches the transverse speed of sound [11, 5, 9, 6, 12, 13, 14] or, in the

presence of free surfaces, the Rayleigh wave speed [5, 15].

This article examines the role mobility laws may have in determining the plastic

relaxation of a shock front propagating through FCC aluminium employing Dynamic

Discrete Dislocation Plasticity (D3P). Therefore, all results presented here apply for the

motion of pure edge dislocations in pure metals, thereby lacking impurities or any other

such defects that may affect the dislocation’s drag. In section 2, the mobility laws that

will be put to test are introduced. Section 3 presents the details of the D3P simulations

where the mobility laws will be tested, as well as their significance to the study of plastic

relaxation in shock loading. Section 4 presents the results of this study, and offers a

physical interpretation of the latter. Section 5 summarises the main findings of this

work.

2. Mobility laws of high speed dislocations

The requirement that the dislocation’s speed saturates as it approaches the transverse

speed of sound can be satisfied in a number of ways. On one hand, one can

simply fit experimental or atomistic simulations data to mathematical functions that

phenomenologically describe the speed of the dislocation as τ varies; hereafter, the

resulting mobility laws are called phenomenological mobility laws. On the other hand,

one can attempt to produce physically insightful models that attempt to capture,

partially at least, the physical effects that fast moving dislocations encounter; the

resulting laws, here termed inertial mobility laws, typically involve an inertia-like force.

This section will review a number of phenomenological and inertial models that

have been suggested in the past; table 1 summarises the models to be studied. This

work does not intend to be an exhaustive account of all the mobility laws that have been

proposed in the past. Rather, it intends to showcase the most characteristic features of

those that are deemed of relevance to shock physics simulations, where dislocations are

often expected to move at significant fractions of the transverse speed of sound.
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2.1. Phenomenological laws

Phenomenological laws are fits to experimental or atomistic simulations data. They

attempt to reproduce the observed relationship between the applied resolved shear stress,

τ , and the glissile velocity of the dislocation, v, via a best fit equation. Most draw their

data from experimental observations of dislocation mobility [9] or, more recently, from

molecular dynamics simulations of the mobility of dislocations [22, 23]. They tend to

describe only the terminal motion of dislocations, i.e., the stationary speed a dislocation

reaches under the application of a constant resolved shear stress; any possible transient

effect in the motion of the dislocation is generally missed.

2.1.1. Taylor’s model Gillis et al.[16] found that the empirically observed relativistic

behaviour of dislocations in many metals could be best described by modifying the linear

drag coefficient in eqn.2. The model, apparently originally due to JW Taylor (vid.[11]),

prescribes a drag coefficient of the form

d =
d0

1− v2/c2t
(3)

where d0 is the low speed drag coefficient and ct the transverse speed of sound.

Gillis and Kratochvil [17] and Gilman [11] further argued that although the

model neglected the acceleration time of dislocations, it was broadly valid because the

acceleration times of dislocations were invariably of the order of a few picoseconds. The

value of d0 can be obtained from empirical data, and corresponds to the drag coefficient

of dislocations moving in the pure drag regime, i.e., at small speeds compared to ct.

For historical limitations, most experimental data regarding the mobility of

dislocations is available only for the pure drag regime; the lack of experimental data

regarding dislocations moving at speeds close to the transverse speed of sound is

remedied using data obtained from molecular dynamics simulations. For instance, for

FCC aluminium, experimental data suggests that d0 = 2 · 10−5Pa·s [5, 9]; however,

experimental data for dislocations moving faster than ≈ 100m/s in aluminium seems

unavailable [8], and one must look for it in molecular dynamics simulations [22].

Nevertheless, it is found that when fitting Taylor’s model to molecular dynamics

data of the mobility of edge dislocations in aluminium (vid.[22]), the resulting d0 =

2.05 · 10−5Pa·s, showing good agreement between simulations and model. This value

will be employed in the following.

Employing Taylor’s model, the mobility law takes the form

d0
1− v2/c2t

· v = τB (4)

whereby

v =
d0c

2
t

2τB

(√
1 +

4τ 2B2

d20c
2
t

− 1

)
(5)

Equation 5 will be the one employed in the following discussion when referring to

‘Taylor’s model’.
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2.1.2. Power law Power law mobility laws have traditionally been favoured due to their

simplicity, and because they are related to the mobility laws obtained for the regime of

thermal activation of motion [18]. They take the form

v = v0

(
τ

τ0

)m
(6)

where m is the slope of the log v−log τ curve typically obtained from experimental data,

and τ0 and v0 some reference values, the latter usually being assumed to be v0 = 1. The

values of m for a number of materials can be found in Nix and Menezes [9].

The problem with power laws is that they fail to capture the existence of a

limiting speed to the motion of dislocations. A solution to this limitation was given

by Meyers[8], who argued that each mobility regime should be given a different m

exponent. Accordingly, for the pure drag regime mdrag = 1, for the thermal activation

of motion regime mactivation > 1, and for the relativistic regime mrelativistic < 1.

The material under consideration in this work is FCC aluminium. Using the MD

data obtained by Olmsted et al. [22] for FCC aluminium, one can produce a power law

fit of the MD data to eqn.6 where m ≈ 1 up to τ = 120MPa with τ0 = 0.035MPa. For

values of τ > 120MPa, two additional regions are defined: one for 120 ≤ τ ≤ 400MPa,

with m ≈ 0.85; and one for 400 ≤ τ ≤ 2260MPa, with m ≈ 0.6. Further increases in τ

are given a value of v = 0.98ct = cR (the Rayleigh wave speed), to prevent dislocations

from becoming supersonic or resonating with the free surfaces [15].

2.2. Inertial mobility laws

A moving dislocation radiates energy outwards from the core in the form of elastic

waves that are emitted as the dislocation moves [24]. This is reflected in changes in the

dislocation’s own self-energy, which is heavily dependent on the dislocation’s kinematic

state: as the dislocation’s speed increases towards the transverse speed of sound, ct, the

elastic self-energy of the dislocation tends to increase, diverging at ct.

The aim of inertial mobility laws is to capture theoretically the energy penalty

incurred in increasing (or decreasing) the dislocation’s speed in an elastic continuum.

Still, unlike phenomenological laws, inertial mobility laws explicitly account for the

change with speed of the elastic self-energy of the dislocation. This change is usually

translated into an additional force, called the inertia force acting on the dislocation,

the magnitude of which increases with the dislocation’s speed. The dislocation’s inertia

force is not an inertia force in the Newtonian sense. However, as with true inertia forces,

it can be shown [6, 19] that it is proportional to the dislocation’s acceleration (i.e., that

it opposes to changes in v, the dislocation’s glide speed):

finertia = m
dv

dt
(7)

The proportionality factor m is generally called the mass of the dislocation [19].
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The inertia force of straight dislocation is obtained by considering the Hamiltonian

(total energy) of an infinite elastic system:

H = T + V (8)

where T is the kinetic energy of the dislocation, and V its elastic energy. If x is

the canonical coordinate along which the dislocation glides, then Hamilton’s equations

require that

dp

dt
= −∂H

∂x
,

dx

dt
=
∂H

∂p
(9)

The inertia force is then simply defined as

finertia =
dp

dt
= −∂H

∂x
(10)

If v ≡ vglide is the dislocation’s speed, then it follows that

v =
dx

dt
=
∂H

∂p
=
∂H

∂t

dt

dp
=

1

finertia

∂H

∂t
=

1

finertia

∂H

∂v

∂v

∂t
, (11)

whereby the dislocation’s mass can be identified as

m =
1

v

∂H

∂v
, (12)

and the inertia force be

finertia = m
∂v

∂t
(13)

in direct analogy with Newton’s inertia.

The inertia force is a measure in changes in the self-energy of a dislocation. If

the kinetic and potential energies of the dislocation are described in a linear elastic

continuum, the inertia only measures changes in the energy of the system with respect

to the speed of the dislocation, and therefore disregards any effect that is not taken

into consideration by linear elasticity, including phonon wind and diffraction, etc, which

any inertial mobility law will still have to account for, often phenomenologically. Thus,

within linear elasticity inertial mobility laws will usually take the form

fPK = m
∂v

∂t
+ fdrag (14)

where fdrag still needs to be obtained from elsewhere.

The key for finding finertia is therefore to find H, the system’s total energy, which

is not a trivial task as it needs to account for the true kinematic state of the moving

dislocation. In the following, an account of some of the main proposals for an inertial

mass is given.
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2.2.1. Hirth-Zbib-Lothe (HZL) mass. Following the pioneering works of Frank[25],

Eshelby [26] and Weertman[27], Hirth, Zbib and Lothe [19] attempted to provide a

consistent definition of the mass of a dislocation, hereafter referred to as the HZL mass.

They relied on Weertman’s work in deriving the elastic energy of a dislocation that

has been moving with uniform speed v since t→ −∞. This work reached an expression

of the dislocation’s energy, which for edge dislocations is of the form [28],

H =
µb2

πM4
t

ln

(
R

rc

)[
4
√

1−M2
l

M2
t

2
− 4

1−M2
t /2

1−M2
t

+ (15)

+
(1−M2

t /2)2

2

(√
1−M2

t +
6√

1−M2
t

+
1√

1−M2
t

3

)
+

M6
l

2M2
t

√
1−M2

l

]
where Ml = v/cl and Mt = v/ct are the longitudinal and transverse Mach numbers, cl
and ct the longitudinal and transverse speeds of sound, µ the shear modulus, R and rc the

dislocation’s outer and inner core width, respectively (see [5]). A similar, albeit simpler

expression can be reached for screw dislocations (vid.[27, 19]). It is worth noticing that

this energy is not time dependent, as it refers to a uniformly moving dislocation.

Using such elastic self-energy invariably gives rise to the paradox that a uniformly

moving dislocation cannot experience an inertia force as specified by eqn.13 [28, 29].

However, a mass and a pseudo-inertial force may be defined by applying eqn.13 to the

elastic energy given by eqn.16; in that case, the inertia measures the energetic difference

between two different steady states when the dislocation is in motion.

This forms the basis of the HZL mass, which provides an informed estimate of the

amount the elastic self-energy of the dislocation must be increased when the latter is

accelerated. Combining a Lagrangian formulation akin to the one leading to eqn.11

above with the elastic energy of the uniformly moving dislocation (eqn.16), Hirth, Zbib

and Lothe [19] provided the following expressions for the mass of a dislocation, which

depend on the character of the dislocation:

mscrew =
µB2

4π
ln

[
R

r0

]
1

v2

[
− 1

γt
+

1

γ3t

]
(16)

medge =
µB2

4π
ln

[
R

r0

]
c2t
v2

[
−8γl −

20

γl
+

4

γ3l
+ 7γt +

25

γt
− 11

γ3t
+

3

γ5t

]
(17)

where γl =
√

1− v2

c2l
, γt =

√
1− v2

c2t
.

The corresponding mobility law will then be

Bτ = m
∂v

∂t
+ fdrag(v) (18)

where fdrag(v) is the natural lattice resistance to the motion of dislocations (typically,

fdrag = d · v from eqn.2), and m takes the forms given in eqns.16 or 17 depending on

whether the dislocation is of screw or edge character respectively.
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2.2.2. Fully time-dependent descriptions of the inertial force Although a good first

step towards a physically motivated description of inertial effects, the HZL mass seems

limited in that it relies on the kinetic energy of a dislocation that has been moving with

uniform speed since t → −∞, which is an approximation for describing changes in the

kinematic state of a dislocation.

Early models of fully time-dependent inertial forces. As a first step towards a more

complete description of inertial force, Markenscoff and Clifton [30] employed the fully

elastodynamic description of the fields of dislocation initially derived by Markenscoff

[31] and Markenscoff and Clifton [7] to obtain the inertia force of an elastodynamic

Volterra dislocation which jumps from rest at time t = 0 to a uniform speed v. They

did so by calculating the energy radiated by the dislocation through a surface Sd that

encloses the dislocation core:

Ḣ =

∫
Sd

[
σijnju̇i +

(
1

2
σijui,j +

1

2
ρu̇iu̇j

)
v

]
dS (19)

where repeated index denotes summation, σij is the stress tensor, ui the displacement,

ρ the density, u̇i the particle velocity, v the velocity of the dislocation, and Ḣ ≡ ∂H
∂t

for

brevity.

The integral in eqn.19 is a general expression of the energy release rate of a

dislocation, but it seemingly depends on the choice of Sd. However, for the case of

an initially quiescent dislocation that begins to move with uniform speed for t > 0,

Markenscoff and Clifton [30] showed that the integral is independent of the choice of

surface Sd (i.e., path independent), and the energy flux is uniquely determined. By

making the Sd surface infinitely small about the dislocation core‡, i.e.,

Ḣ0 = lim
Sd→0

Ḣ, (20)

they were able to derive an inertial force, defined as

finertia = −Ḣ0

v
(21)

This expression is analogous to the one given in eqn.11.

The expression for Ḣ0 depends on whether the dislocation is of screw or of edge

character, and is obtained from the elastodynamic fields of uniformly moving edge and

screw dislocations that were quiescent for t < 0 (see [31, 7, 28, 15]):

Ḣscrew
0 = −µB

2

2π

1

t

1− (1−M2
t )

1/2

(1−M2
t )

1/2
(22)

Ḣedge
0 = −µB

2

2π

1

t

[
12− 8M2

l

M2
t (1−M2

l )
1/2
− (2−M2

t )(6− 7M2
t )

M2
t (1−M2

t )3/2
− 2

(
1− M2

l

M2
t

)]
(23)

‡ N.B. This case differs from that of the uniformly moving dislocation analysed by Hirth, Zbib, and

Lothe in that in the latter the dislocation has been moving uniformly since t → −∞, whilst in the

latter the motion starts at t = 0.
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The inertial expression given in eqn.21 applies only for uniform motions, because

for non-uniformly moving dislocations the energy release rate is strongly dependent on

the past history of the dislocation [7, 32, 33] and, therefore, eqn.19 will depend on the

choice of Sd surrounding the core (see [29]). However, unlike the HZL inertia, the one

given in eqn.21 and eqns.22 and 23 is in fact a measure of the energy radiated by a

moving dislocation—the uniformly moving, elastodynamic dislocation radiates energy,

unlike the stationary one employed in the definition of the HZL mass.

More recently, employing a dynamic J-integral, Ni and Markenscoff [29], found an

explicit form of the inertial force for a non-uniformly moving screw dislocation. In order

to avoid the singularity at the dislocation core, they introduced a regularisation of the

core employing a ramp-like core and, alternatively, a mollifier. This led to an expression

of both the inertia and mass of a screw dislocation of considerable complexity. No

analogous expression for edge dislocations is available.

Radiative expressions of the dislocation inertia. Building on Clifton and Markenscoff’s

inertial force, Pillon et al. (2007) [20] extended the inertial force to account for

accelerated motion using a linear perturbative approach. Taking eqn.21 as a departure

point, they argued that if the dislocation’s speed were a function of time, v = v(t), then

the differential force arising from a variation in speed δv at some time t = ϑ should be

of the form

δfinertia = δv(ϑ)
∂finertia
∂v(ϑ)

=
µB2

2π
δv(ϑ)

1

t− ϑ
dg(v)

dv
(24)

where here the 1/(t− ϑ) ∼ 1/t simply accounts for a motion starting at a time ϑ other

than t = 0, and where

g(v) =
2π

µB2
Ḣ0

t− ϑ
v

with Ḣ0 taking either form shown in eqns.22 or 23 depending on whether the dislocation

is of screw or edge character, respectively.

With eqn.24 in mind, the total force experienced by the dislocation can then be

obtained by summing over each past contribution to δfinertia:

finertia =
µB2

2π

∫ t

−∞
dϑ
g′[v(ϑ)]

t− ϑ
dv(ϑ)

dϑ
, (25)

this has a 1/(t−ϑ) singularity they regularised by replacing it with 1/((t−ϑ)2 + t20)
1/2,

where t0 is approximately the time it takes for an elastic wave to leave the core of the

dislocation, to finally attain:

finertia =
µB2

2π

∫ t

−∞
dϑ

dv(ϑ)
dϑ

g′[v(ϑ)]

[(t− ϑ)2 + t20]
1/2

(26)

This inertial force is then combined with a drag force to achieve the resulting mobility

law:

µB2

2π

∫ t

−∞
dϑ
dv(ϑ)

dϑ

g′[v(ϑ)]

[(t− ϑ)2 + t20]
1/2

+ fdrag(v(t)) = Bτ (27)
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This defines a non-linear integral equation, which can be solved numerically via

Galerkin’s method. The main limitation of this equation is that it implicitly assumes

that the core structure remains unchanged with speed, which is an approximation that

breaks down as the dislocation’s speeds approach the transverse speed of sound [33, 29].

In order to better capture observed empirical behaviour, Pillon et al. invoked a

semi-phenomenological drag force produced by Rosakis [34]:

fdrag = v(t) · η0d√
A2(v) + α2

(
v
ct

) (28)

where

A(v) =


γt
2

for screw

1

2

(ct
v

)2(
4γl −

1

γt
− 2γt − γ3t

)
for edge

and η0 = 2m0ct
α
ζ0

, where ζ0 is the core width, and m0 = µB2

4πc2t
. This drag force has

a phenomenological component—corresponding to the linear viscous drag, d—, and a

radiative damping component which measures the energy loss due to the elastodynamic

waves emitted by the moving dislocation (i.e., the long wavelength phonons radiated by

the dislocation’s core); the latter can be verified to give the exact closed-form solution

for steady-state motion.

A more complex mobility law, which naturally resolves the core’s contractions

with increasing dislocation speed as well as radiative damping, was recently proposed

by Pellegrini [35, 21] employing the dynamic Peierls-Nabarro formulation previously

developed by Pellegrini [33]. In this case, the inertial term accounts for all radiated wave

effects by a core of varying width. The resulting inertial force is given as a complex-

valued equation,

finertia = 2

∫ t

−∞
dϑ
m(v̄)

∆t

dv̄

dϑ
+
w0

ct

˙̄ζ

Imζ
(29)

where z̄ denotes the complex conjugate of z, and ζ = ζ(t) ∈ C is a complex position-

width collective coordinate given by

ζ(t) = ξ(t) + i
a(t)

2
(30)

with ξ(t) the coordinate describing the position of the dislocation, and a(t) the core

width; where v̄(t) is a complex velocity defined as

v̄(t, ϑ) =
ζ(t)− ζ̄(ϑ)

t− ϑ
(31)

Pellegrini’s inertial model includes the radiative, long wavelength phonon damping effect

by construction, and it indeed recovers Rosakis’s drag force (eqn.28) in the steady state

[21]. Still, in order to account for the energy loss resulting from short wavelength phonon

emission and any other damping effects, this formulation needs to invoke the viscous
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Figure 1: Phenomenological mobility laws.

drag to capture the overdamped motion at low speeds. In this framework, the linear

viscous drag force is written as

fdrag = α
w0

ct

¯̇ζ

Imζ
(32)

where α = 2d0ct/µ, and w0 = µB2/(2π), and d0 the drag coefficient.

The details to solve this equation numerically are non-trivial, and can be found

in [21]. Within the limits of a linear elastic continuum, the inertial force provided

by Pellegrini [21] is the most complete, physically insightful description of this effect.

It must be mentioned that Rosakis’ drag and Pellegrini’s model allow for supersonic

motion. This article shall only concern itself with subsonic dislocation motion.

2.3. Comparison between mobility laws

The two sets of mobility laws under consideration here describe the motion of a

dislocation in radically different ways. Phenomenological laws only describe the terminal

speed, i.e., the final, steady-state speed that a dislocation acquires under the action of

an external applied resolved shear stress τ . Phenomenological models implicitly assume

that the terminal speed is reached instantaneously (i.e., with no acceleration). Figure

1 shows the two to be employed in the following; in either case the relativistic effects

are captured as a saturation of the dislocation speed with increasing τ as it approaches

the limiting speed (ct in this work). In turn, in inertial laws the terminal speed is

reached only after a finite, acceleration time. The specific definition of the inertia force

makes this time longer or shorter, and can potentially affect the dynamic behaviour of a

shocked material by making fast moving dislocations more easily available to relax the

structure.

In addition to the inertial force itself, all inertial mobility laws employed here require

the presence of a drag force. This becomes clear at low speeds, when the inertial effects

are negligible: without the drag force, the dislocation motion would be unstable [5].

Since the physical basis for the drag force (phonon emission[8, 5]) arguably remains
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being accelerated from rest.

Figure 2: Mobility laws for the HZL mass. All dislocations are accelerated from rest; as

can be seen, they reach terminal speeds at a relatively fast rate.

active at higher dislocation speeds, the presence of a drag force in the mobility law seems

justified. The balance between the inertial, drag and applied (Peach-Koehler) force

ought to lead to a stable solution, and following an acceleration time, the dislocation

ought to reach a terminal speed.

Consider for instance eqn.18 from the HZL model: it ascribes all inertial effects to

changes in the velocity of the dislocation. As the dislocation approaches its terminal

speed, the magnitude of the inertial force decreases, and the dislocation motion will

increasingly be governed by the drag force alone. When the terminal speed is reached,

the inertial force vanishes, so the terminal speed can be determined as a simple

balance between the Peach-Koehler force and the drag force (i.e., fdrag = fPK when

v = vterminal). This leads to two highly simplified regimes of motion for the terminal

speeds of the dislocation: if the applied force is such that the speed resulting from

balancing fdrag with fPK is lower than the transverse speed of sound, ct, then the

terminal speed is determined by fdrag = fPK ; however, if the resulting speed is higher

than ct, the inertial force will diverge at the transverse speed of sound, and the only

possible solution in eqn.18 is for the speed of the dislocation plateau at ct.

Fig.2 shows these two regimes of terminal speeds for the case of FCC aluminium

(ct = 3237m/s, cl = 6272m/s, ρ = 2700kg/m3, B = 2.85Å [1]). Following Zbib and

coworkers [36, 37, 38], the drag force is chosen to be viscous and linear, with fdrag = d ·v,

where d, the drag coefficient, is d = 2·10−5Pa·s. Both the screw (fig.2a) and edge (fig.2b)

cases are studied, for dislocations that are accelerated from rest under a given resolved

shear stress τ . Over relatively short times the numerical solutions invariably converge to

the situation described above, with a pure drag region and a region where dislocations

move at the transverse speed of sound irrespective of the applied stress.

This two-regime motion seems different from the one observed both in experiments

and molecular dynamics simulations of dislocation motion (vid.[8, 22]), and serves to

highlight that the choice of the drag force in mobility laws is crucial. In the HZL
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(d) 10ps, Taylor’s drag force.

Figure 3: Comparison of the behaviour of different inertial mobility laws with Rosakis’

and Taylor’s drag forces. The dislocation is always an edge accelerating from rest. At

1ps, the models of Pellegrini’s [21] and Pillon et al.[20] have almost converged to the

terminal speed, whilst the HZL model is observed to be slower to reach it. Pellegrini’s

model is unmodified; the drag law is linear, but it recovers the Rosakis drag in the

steady state. It is not combined with Taylor’s drag force to avoid double counting the

drag contributions.

model, the inertial force dominates the acceleration times, which are therefore related

to the dislocation’s own self-energy. However, the terminal speed arises from the balance

between the energy input (the Peach-Koehler force) and the energy dissipation within

the lattice (the drag), which at high speeds is probably different from that at low

speeds. Additional effects other than those causing the linear viscous drag behaviour at

low speeds, such as the radiative damping discussed by Rosakis [34] and Pellegrini [21]

are probably important in the relativistic regime, and should therefore be reflected in

the drag force itself.

The situation in the HZL model is in a sense also reproduced by the inertial laws

proposed by Pellegrini and coworkers (eqns.27 and 29): the magnitude of the inertial

acceleration force tends to decrease as the dislocation approaches the terminal speed, so

terminal speeds are dominated by drag effects. However, the drag force in these models

is not entirely phenomenological or empirical any longer, and these models produce more
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informed estimates of the acceleration times.

Aside from the improved physical motivation, these two laws invariably result in

shorter acceleration times compared to the HZL model’s (vid.[20, 21]), so the terminal

speed is reached faster; however, once the terminal speed has been reached, the

behaviour of the three models (HZL, Pillon et al. and Pellegrini) is the same when

employing Rosakis’ drag force. Figs. 3a and 3b compare the behaviour of the HZL,

Pillon’s and Pellegrini’s models when employing the Rosakis drag force; as stated above,

Pillon and Pellegrini’s models tend to converge to the terminal speed faster than the

HZL model, but once reached, the three models display the same behaviour.

Unlike the HZL and Pillon’s model, Pellegrini’s model fully accounts for radiative

damping by construction, and converges to the Rosakis’ drag [21], so it should not

be combined with a Taylor style drag force to prevent counting the same effect twice.

However, the HZL and Pillon’s models can be adapted to account for relativistic drag

employing Taylor’s drag force rather than Rosakis’. Thus, figs.3c and 3d compare the

behaviour of Pillon et al.’s and the HZL model when using Taylor’s drag force rather

than Rosakis’. As can be seen in figs.3c and 3d, the overall behaviour of the HZL and

Pillon models is similar to that observed when using Rosakis’ drag, with Pillon’s model

converging quicker to the terminal speeds prescribed by Rosakis’s drag force (this was

in fact noted by Pillon et al.[20]). However, it must be noted that Rosakis’ drag law

increases faster towards the limiting speed than Taylor’s; as commented in section 2.1.1;

the differences are likely caused because Rosakis’s drag law constrains more parameters

to be physically motivated variables, rather than to fitting parameters as does Taylor’s

model.

Nevertheless, employing Rosakis’ and Taylor’s phenomenological drag force instead

of the linear viscous drag leads to very similar behaviour. In both cases, all inertial

models reach the terminal speed determined by the corresponding drag forces in under

10ps: for dislocations accelerating from rest to a terminal speed in excess of Mt = 0.8,

typical acceleration times are of the order of picoseconds. If these acceleration times

are compared to those obtained for the case shown in fig.2, where the HZL model was

combined with a linear drag force, a considerable difference in the acceleration times is

observed; these are ascribed to the magnitude of the drag force itself, which in the case

of the Rosakis or Taylor drag is considerably weaker for the same applied stress than

the linear drag, so the inertia force dissipates more energy.

This highlights that the role of the inertial force is to impose an acceleration time

in achieving the terminal speed; however, the terminal speed itself is governed by drag,

be it phenomenologically described or via more physically insightful mobility laws such

as Pellegrini’s. The HZL models offers the slowest acceleration path; the acceleration

times of Pillon and Pellegrini’s models are shorter, and relatively similar to each other,

at least for low speeds. However, in all cases the acceleration times are below ≈ 10ps,

and that applies for dislocations being accelerated from rest to speeds close to the

transverse speed of sound; dislocations accelerated from a given high speed to another

will invariably accelerate within shorter time scales. This result is comparable to the
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Figure 4: Schematic of the physical system to be simulated using D3P.

one found by Gillis and Kratchovil [17] for mobility laws employing the inertial mass

defined by Frank [25]: the acceleration times prescribed by inertial forces are very small

compared with the rise time of most shock loads. It remains to be seen what differences

each of these models may entail in the plastic response of a shock loaded material.

3. A D3P study of the effect of dislocation mobility in shock loading

Dynamic Discrete Dislocation Plasticity (D3P) was originally proposed by Gurrutxaga-

Lerma et al.[32] as the elastodynamic extension to Discrete Dislocation Plasticity (DDP)

(vid.[39]). As in DDP, dislocations are treated as Volterra discontinuities in an elastic

continuum; only edge dislocations are considered, which are assumed to move under

plane strain conditions along preferential slip systems, which in the plane behave like

point-like particles gliding along preferential directions (the traces of those plane strain

slip planes with the planar system). Unlike DDP however, D3P describes dislocation

activity in an elastodynamic continuum, meaning that dislocation-dislocation and

dislocation-medium interactions satisfy the conservation of linear momentum equation

i.e., the Navier-Lamé equation for a linear elastic isotropic solid (see [40]). Time is

a true field variable, and all inertial effects are accounted for [32]. As in DDP, long

range interactions between dislocations are accounted for via the elastodynamic fields

of dislocations; short range interactions are accounted for via constitutive laws defined

in [28]. The details of D3P simulations are given in [28]. Of relevance here is that

dislocations move according to the mobility laws described in table 1.

In the present study, a system of size 1µm×10µm is subjected to a sudden

distributed load of P = 20GPa on its left side (see fig.4) with a strain rate of 1010s−1.

The opposite right side surface is subjected to a reflective boundary condition, whilst all

the rest of surfaces are left traction free. The simulated material is FCC aluminium, with

Young’s modulus E = 63.2GPa, shear modulus µ = 28.3GPa, density ρ = 2700kg/m3,

and Burgers vector 2.85Å. Following [41], the plane strain slip planes for an FCC crystal

are localised at ±57.6◦ and 0◦ with respect to the shock front’s direction of propagation.

As a result of the application of a sudden distributed load, a shock wave is launched

propagating at the longitudinal speed of sound. The shock wave triggers dislocation

activity. The sample is assumed to be initially free of any dislocations other than

those forming Frank-Read sources, which in this case are treated as point-like sources

(vid.[39]), and randomly distributed throughout the sample with a density of 100 sources
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per µm2. Frank-Read sources are activated when a given threshold stress, the source

strength, τFR, is overcome for a specific period of time, the source activation time, tnuc.

The source strength is inversely proportional to the length of the pinned dislocation

segment lFR [42], and directly proportional to the strain rate, ε̇[43, 44]:

τFR = τ0 + µBε̇tnuc (33)

where τ0 ∝ 1/lFR is the quasi-static source strength, inversely proportional to the source

length, which is assumed to follow a log-normal distribution [42] such that in the D3P τ0
follows a corresponding gaussian distribution of mean 100MPa and standard deviation

10MPa. The nucleation time tnuc is computed as described in [43], by solving the

following equation:

τ ·B =
d0

1− 1
c2t

(
dh
dt

)2 dhdt +
µB2

h(t)
2

+
l2FR

8h(t)

(34)

which is a line tension model that tracks the outermost segment of the bowing out

Frank-Read source segment via h(t), it’s height relative to the equilibrium unbowed

position. Eqn.34 is a force balance between the applied resolved shear stress, τB, that

is equated to the drag force, d0

1− 1

c2t
( dh

dt )
2
dh
dt

, which accounts for relativistic saturation

as the dislocation’s speed approaches the transverse speed of sound (cf.[5]), the line

tension, µb2

h(t)
2

+
l2
FR

8h(t)

, which accounts for changes in the dislocation’s elastic self-energy as

the Frank-Read source segment acquires curvature. The nucleation is obtained when

h(t) = lFR/2, which assumes that the Frank-Read source segment takes a semicircular

shape in its unstable position; this is an ansatz that Gurrutxaga-Lerma et al.[43] showed

not to prejudice the accuracy of the nucleation time, which was found to be too large

for Frank-Read sources to dominate the plastic response of the material at strain rates

higher than ≈ 107s−1.

Once activated, the Frank-Read source injects a dipole of edge dislocations, spaced a

distance LFR which is the minimum separation distance such that the mutual attraction

between the dislocations is balanced by the applied resolved shear stress. In D3P, it is

given by [43]:

LFR =
−3b4Bµ

√
d2 − a2 + 12b2Bd2µ

√
d2 − a2−

−2a2Bd2µ
√
d2 − b2 − πb2dτ

√
d2 − a2

√
d2 − b2 + 2Bd4µ

√
d2 − b2

+

−8a2Bd2µ
√
d2 − b2 − 12Bd4µ

√
d2 − a2 + 8Bd4µ

√
d2 − b2

−2a2Bd2µ
√
d2 − b2 − πb2dτ

√
d2 − a2

√
d2 − b2 + 2Bd4µ

√
d2 − b2

(35)

where a = 1/cl, b = 1/ct, d = 1/v with v the dislocation speed, and τ the applied

resolved shear stress.

Homogeneous nucleation follows the rules laid out in [45]. Any point along a slip

plane is allowed to be a homogenous nucleation site, albeit these are spaced a distance

of 10B to prevent newly injected dipoles from overlapping each other. Homogenous

nucleation is allowed to happen if the local shear stress is greater than the lattice shear

resistance, τhom = µ
4π

. Homogeneous nucleation is assumed to be instantaneous with
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Figure 5: Comparison of the behaviour of different inertial mobility laws with Rosakis’

and Taylor’s drag forces. The dislocation is always an edge accelerating from rest. At

1ps, the models of Pellegrini’s [21] and Pillon et al.[20] have almost converged to the

terminal speed, whilst the HZL model is observed to be slower to reach it.

respect to the simulation time step (∆t = 1ps). Newly nucleated dislocations will be

spaced following a Poisson distribution of λ = 5B [45].

The aim of the present study is to find the different response a D3P simulation

may display depending on the choice of a mobility law, following the four alternatives

presented in section 2. Unless otherwise stated, the value of the model constants are

those that have already been specified above.

4. Results and discussion

The data obtained from the D3P simulations is analysed by computing the stress field

components due to the dislocations over sections perpendicular to the shock front. The

stress profile over a given section is then averaged to reduce localisation effects, and

enable easier comparison between different simulations. In this study, the principal

averaging section is chosen to match the position of the elastic precursor peak, which

is then tracked throughout the simulation. Thus, the results presented here correspond

to the Lagrangian relaxation values over the precursor peak.

The simulation results are shown in fig.5, which compares the plastic relaxation

at the precursor peak attained in the simulation of aluminium for each mobility law

described in table 1. As can be seen, the degree of relaxation for each of the mobility

laws tested here is remarkably similar; the main differences are found in the internal

statistical variance of the results (i.e., the internal noise of the simulations), rather than
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in the averaged trends, which are similar enough that the differences between mobility

models can be attributed primarily to the natural statistical deviations to be expected

in this kind of simulations, rather than to intrinsic differences in the mobility laws. The

following is devoted to explore the reasons for this response.

The lack of significant variation in the results suggests that the choice of a mobility

law over another might be less important than other factors affecting the simulations. In

particular, the results of this work show that phenomenological laws, where acceleration

times are instantaneous (i.e., where dislocations go from one terminal speed to another

instantaneously) successfully track the more accurate inertial models, where acceleration

times are finite albeit brief. The fact that irrespective of the acceleration times the

results are broadly the same could lead one to conclude that in the shock front dislocation

motion is in fact dominated, within the timescales involved, by terminal speeds, rather

than by the transient motion of dislocations.

Although this is partially correct, the picture is more complex, as this effect is

directly related to the way the elastic precursor decay occurs. As was shown in [1], the

attenuation of the elastic precursor occurs as the result of the destructive interference

of the elastodynamic waves radiated by the dislocations that are generated at the front,

and that therefore act as shielding dislocations of the shock front. The magnitude of

the resulting plastic attenuation is sensitive to the speed at which the relevant plastic

contribution was radiated from the dislocation core. This is because as shown in [32],

the Doppler-like contractions displayed by the elastodynamic fields of dislocations with

increasing speed entail strong variations in the magnitude of the elastic precursor: the

faster the dislocations move in the shock front, the stronger the destructive interference

will be, leading to larger plastic relaxation of the shock front.

However, in the current simulations these destructive interferences are radiated at

similar speeds irrespective of the chosen mobility law. This is because the simulations

reported here, the dislocations at the shock front are observed to move with speeds in

excess of Mt = 0.8 for all the mobility laws tested. Any variation in the dislocation’s

speed, be it an acceleration or a deceleration, is bound to make an already fast

dislocation move slightly faster or slightly slower; the corresponding acceleration times

(if any) are small (of the order of picoseconds), and even if the dislocation’s speed

varies slightly differently depending on each mobility law, the external applied stress

is large enough that, irrespective of the mobility law chosen, this variation will be too

small to lead to significant variations in the magnitude of the Doppler contractions

of the dislocation’s elastodynamic fields. As a result, plastic shielding remains largely

unaffected.

This occurs irrespective of whether the dislocation has in fact achieved a terminal

speed (as would invariably be the case for phenomenological laws) or is experiencing

a transient acceleration or deceleration from one terminal speed to another (as would

happen for inertial laws). In either case the dislocation will move within a range of

speeds such that the resulting elastodynamic fields of the dislocations, and therefore

the amount of plastic relaxation, do not see their intensity significantly affected by the
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Figure 6: Degree of relaxation at the front due with different limiting speeds. The HZL

model is employed as a reference.

nature of the current kinematic state of the dislocation.

This also suggests that the choice of a mobility law could be of relevance in situations

where dislocations move at lower speeds, where finite acceleration times take place

over longer timescales or widespread variations in the applied stress level occur. Such

situations might be encountered in the shocked state of the material (i.e., well behind

the shock front), or in the plastic shielding of dynamic cracks.

This result also shows that the attenuation of the elastic precursor is dominated

mainly by fast moving dislocations at the front, since all mobility laws tested here lead

to similarly fast moving dislocations for the same range of applied stresses. This could

be further confirmed if the mobility laws were to provide radically different terminal

speeds in the high speed ‘relativistic’ regime; this is not the case for the mobility laws

employed in this work, as they all either quickly converge to the terminal speed, or

phenomenologically match the latter. In either case the dislocations achieve speeds

very close to the limiting speed in the region surrounding the elastic precursor wave’s

peak, so the impact these high speed dislocations have on the attenuation of the elastic

precursor can be tested by artificially varying the limiting speed of the dislocations

themselves. Here, this was done by capping the maximum speed dislocations might

achieve to 1000m/s (around Mt = 0.3). In all models the behaviour under 1000m/s

is almost linear, so a simple linear viscous drag mobility law (τB = dv), capped at

1000m/s, was employed to simplify the D3P calculations.

Figure 6 compares the capped mobility law’s results with the usual ones. As can

be observed, a significant drop in the amount of plastic relaxation achieved at the front
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when the speed of dislocations is capped at 1000m/s. This is a consequence of the weaker

contractions that the elastodynamic fields of the shielding dislocations experience ahead

of the core; these contractions would have magnified the elastodynamic relaxation of the

elastic precursor, but since here the maximum speed of dislocations has been limited to

a value too low for the Doppler contractions to be significant, the resulting attenuation

is weaker. Further effects, such as an increased homogeneous nucleation rate at the

front to compensate the weaker plastic relaxation, might play a role as the simulation

advances, but it does not seem sufficient to offset the results presented here.

In the D3P simulations reported here, the capping of the terminal speed affects

primarily the dislocations at the shock front itself; dislocations well behind the front

are unaffected by this change in the mobility law because they move at speeds below

1000m/s. In fact, the population of dislocations in all D3P simulations reported here is

divided between fast moving dislocations at the front, which as said above reach speeds

very close to the terminal speed itself; and slow moving or effectively locked dislocations

behind the front, where the speeds range in between 100−500m/s, and with a significant

part of dislocations effectively stopped (i.e., with speeds lower than 100m/s). This region

of slow dislocations arises because their density is so high that they hinder each other’s

motion in a way similar to soft pile-ups. By virtue of causality, the relaxation at the

front is produced solely by dislocations that have been generated at the front itself, so

it is reasonable to argue that if the terminal speed of those dislocations is decreased,

then as a result of a lessened dynamic magnification, the magnitude of the relaxation

at the front will decrease as well.

In light of this, and as can be observed in the figures, the effect choosing a

specific mobility law over another is found to be small, and in the simulations reported

here, statistically insignificant. The main difference in the models employed here is

not in the terminal speeds dislocation reach for a given applied stress, but on the

acceleration path, i.e., the time it takes and the way they reach the final speed. For the

phenomenological mobility laws, the acceleration time is instantaneous. For the inertial

laws, the acceleration time is finite but very small§ compared to the rise time of the

shock front. Most dislocations subjected to a given stress reach their terminal speed

almost instantaneously, and the role of the mobility law is limited to determining the 3

terminal speeds, which are governed by the semi-phenomenological drag forces alone.

Thus, the results presented here suggest that when studying the attenuation of an

elastic precursor in a shock front, the role of inertial forces in dislocations is dual. On

one hand, dislocation inertia introduces finite acceleration times, which in the previous

discussion, and for the strain rate and stress levels tested, was found to be too short

to impart significant differences between the response of inertial and phenomenological

mobility laws; however, these effects could be of relevance for later stages of the shock

front, where interlocking dislocations might lead to a regime where the applied stress

§ Of the order of < 10ps for accelerations from rest, but generally much shorter in the D3P simulations,

because dislocations transition between terminal speeds of similar magnitude, rather than experience

wide changes in speed.
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varies in magnitude significantly over short periods of time. On the other hand, as

done by Pellegrini [21] and Rosakis [34], dislocation inertia can be shown to explain

the radiative damping contribution which, added to the viscous drag, leads to the well-

known saturation of the dislocation’s terminal speeds as they approach the Rayleigh

wave speed (or the transverse speed of sound); phenomenological laws can only capture

these effects ad hoc. In this sense, the results presented here suggest that the role of

dislocation drag at high speeds, seen to dominate the plastic response of the shock front,

merits further studies.

5. Conclusions

This article has tested the role the choice of a mobility law may have in the

plastic relaxation of a shock front employing elastodynamic D3P simulations of

dislocation dynamics in aluminium. Five different mobility laws have been tested:

two phenomenological laws, based on data directly extracted from molecular dynamics

simulations, and three inertial laws, that combine a phenomenological drag force with

an inertial force measuring changes in the elastic self-energy of the dislocation as its

speed varies.

The main finding of this work is that the choice of a mobility law does not

significantly affect the decay of the elastic precursor, which is primarily influenced by the

fastest moving dislocations. It was found that the main factor contributing to the decay

is the presence of a limiting speed in the mobility law; unlike with changes of mobility

law, the moment the limiting speed was reduced from the transverse speed of sound

(3237m/s in the simulations) to 1000m/s, the decay rate diminished considerably. This

highlights that the elastic precursor decay is caused by the shielding effect of fast moving

dislocations, and that this shielding is all the more effective the faster the dislocations

move, because the elastodynamic fields of dislocations display a Doppler contraction

(magnification) ahead of themselves as they move towards the front. A decrease in the

dislocation speed, as artificially imposed when capping the maximum speed to 1000m/s,

decreases this Doppler magnification.

The similarities in the result displayed by the different mobility laws are attributed

to the terminal speeds each mobility law prescribes for the range of applied stress.

The terminal speed is reached either instantaneously for phenomenological laws; or,

for inertial laws, over a period of time too short to entail a substantial difference in

the mechanical response of the shocked material. In either case, the terminal speed is

determined by the drag force, which is a phenomenological component in every mobility

law explored here. As a result, all models display behaviours with little statistically

significant deviations. It is nonetheless likely that the finite acceleration time would

become relevant for establishing the shocked state; equally, inertial laws shed light on

fundamental questions such as the limiting speeds of dislocations, core effects and the

possibility of supersonic dislocations. Still, the fundamental role of the drag force over

the inertial force in determining the global behaviour of the shocked material highlights
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that experimental and atomistic observations of a saturation in the dislocation speed

towards the transverse speed of sound must be attributed primarily to drag effects (be

them viscous or radiative) in the motion of the dislocation through the crystalline lattice.
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