
ar
X

iv
:1

60
5.

01
21

1v
1 

 [c
s.

IT
]  

4 
M

ay
 2

01
6

1

An Upper Bound for the Capacity of
Amplitude-Constrained Scalar AWGN Channel

Borzoo Rassouli and Bruno Clerckx

Abstract—This paper slightly improves the upper bound in
Thangaraj et al. for the capacity of the amplitude-constrained
scalar AWGN channel. This improvement makes the upper bound
within 0.002 bits of the capacity for Eb

N0
≤ 2.5 dB.

Index Terms—Capacity, upper bound, amplitude constraint

I. I NTRODUCTION

The capacity of the point-to-point communication system
subject to amplitude and variance (or equivalently, peak and
average power) constraints was investigated in [1] for the
scalar Gaussian channel where it was shown that the capacity-
achieving distribution is unique and has a probability mass
function with a finite number of mass points. Consequently,
the capacity and its achieving distribution can be evaluated
numerically where the number, position and probabilities of
the mass points are obtained by means of computer programs.

In [2], an analytic upper bound is provided for the capacity
which reduces the computational burden of numerical methods
significantly. Recently, the bound in [2] was refined in [3]. In
this paper, this bound is further refined by means of increasing
the number of optimization parameters. In other words, we
observe that using a test density whose tails decay as those of
a Gaussian distribution with a variance slightly less than one
can tighten the upper bound.

The paper is organized as follows. Section II provides some
preliminaries helpful for the remainder of the paper. The main
result of this paper is given as a theorem in section III. A
comparison of the bounds is provided in section IV followed
by section V which concludes the paper.

II. PRELIMINARIES

For a memoryless channel with inputX , outputY , input
Cumulative Distribution Function (CDF)FX(x) with support
S and the channel densityfY |X(y|x), we have

C = sup
FX (x)

I(X ;Y )

= sup
FX (x)

∫

D
(
fY |X(.|x)||fY (.)

)
dFX(x) (1)

≤ sup
FX (x)

∫

D
(
fY |X(.|x)||qY (.)

)
dFX(x) (2)

≤ sup
x∈S

D
(
fY |X(.|x)||qY (.)

)
(3)
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Fig. 1: The optimal output density asA increases.

where in (1),D(a||b) denotes the relative entropy between
the densitiesa and b. The inequality in (2) is a direct
consequence of the non-negativity of relative entropy, i.e.
D (fY (.)||qY (.)) ≥ 0 in which qY (y) is an arbitrary test
density. Note that, the more similarqY (y) is to fY (y), the
tighter becomes the upper bound in (2).

For the scalar AWGN channel, we have

Y = X +N (4)

whereN ∼ N (0, 1) is a Gaussian noise independent of the
input. The amplitude-constrained capacity of this channelis

C = max
FX(x):|X|≤A

I(X ;Y ) (5)

whereA denotes the amplitude constraint.
It was shown in [1] that the capacity-achieving distribu-

tion F ∗
X(x) has a finite number of mass points in[−A,A].

McKellips proposed an analytic upper bound forC based on
bounding the entropy ofY in [2]. In [3], the upper bound
for the capacity is further refined. The main idea is to find a
simple test densityqY (y) that looks quite similar to the optimal
output densityf∗

Y (y), which results from the optimal input
F ∗
X(x), and plug it into (2) to get a tight upper bound. Since,

as mentioned before, the more similarqY (y) is to fY (y), the
tighter becomes the upper bound in (2).

Figure 1 shows the optimal output densityf∗
Y (y) for three

values of the amplitude constraint (A1 < A2 < A3). As it can
be observed, it is intuitive to take a test densityqY (y) which is
uniform on [−A,A] and has Gaussian tails towards infinity1.

1According to figure 1, this choice of test density is more acceptable in
small or very large values ofA.
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The following functions are frequently used throughout the
paper

ψ(x) =
1√
2π
e−

x2

2

Q(x) =

∫ +∞

x

ψ(t)dt

g(u) , u2Q(u)− uψ(u).

For the capacity in (5), a trivial upper bound is the capacity
with average power constraint, i.e.12 log(1 + P ), in which
P = A2. Therefore, the bounds proposed in literature have
the general form of

C ≤ min

{

T (P ),
1

2
log(1 + P )

}

(6)

where in [2], we have

T (P ) = log

(

1 +

√

2P

πe

)

(7)

and in [3], it was tightened further forP ≤ 6.303 dB as2

T (P ) = β(P ) log

√

2P

πe
+H(β(P )) (8)

in which β(P ) = 1
2 −Q(2

√
P ) andH(x) = −x log(x)−(1−

x) log(1− x).3

In the following section, we further tightenT (P ) for the
whole SNR regime.

III. M AIN RESULTS

Theorem. The capacity in (5) has the following upper
bound

C ≤ min

{

R(P ) +W (P ),
1

2
log(1 + P )

}

(9)

where

W (P ) =
1

2

(

log σ2(P ) +
1

σ2(P )
− 1

)(
1

2
+Q(2

√
P )

)

+
g(2

√
P )

2σ2(P )
(10)

in which

σ2(P ) = 1 +
2g(2

√
P )

1 + 2Q(2
√
P )
, (11)

and

R(P ) =







log
(

1 +
√

2P
πe

)

P ≥ 6.303dB

β(P ) log
√

2P
πe

+H(β(P )) otherwise
.

(12)
Note that in the very small/large SNR regimes (i.e.,P ≪ 0.1
or P ≫ 0.5), σ2(P ) ≈ 1 andg(2

√
P ) ≈ 0 which makes the

bound boil down to (7) and (8).

2This is the RHS of (17) in [3].
3Throughout the paper, the logarithms are in basee.

Proof: Consider the following family of test densities

qY (y) =

{
β
2A |y| ≤ A

1−β√
2πσ2

e−
(|y|−A)2

2σ2 |y| > A
(13)

where σ2 and β(∈ [0, 1]) are parameters to be optimized.
With this choice of test density, the relative entropy in (3)
is evaluated as

D
(
fY |X(.|x)||qY (.)

)

=

∫ +∞

−∞
ψ(y − x) log

ψ(y − x)

qY (y)
dy

= log
2A

β
√
2πe

+ log
β
√
2πe

(1− β)2A
[Q(A− x) +Q(A+ x)]

︸ ︷︷ ︸

RHS of (10) in [3]

+
1

2

(

log σ2 +
1

σ2
− 1

)

[Q(A− x) +Q(A+ x)]

+
1

2σ2
[g(A− x) + g(A+ x)]. (14)

We first find the maximum of (14) overx ∈ [−A,A] and then
minimize this maximum value over the parametersβ andσ2.
In other words,

C ≤ min
β,σ2

max
−A≤x≤A

D
(
fY |X(.|x)||qY (.)

)
. (15)

As it can be observed, (14) is an even function ofx which
makes the region of interest asx ∈ [0, A]. Also, the optimiza-
tion of the first two terms in (14) was done in [3]. Therefore,
we focus on the remaining terms.

Lemma. The following inequality holds for∀x ∈ [0, A]

g(A− x) + g(A+ x) ≤ g(2A). (16)

Proof: The proof is provided in Appendix.
It can be easily verified thatQ(A − x) + Q(A + x) is an

increasing function ofx ∈ [0, A] and log x + 1
x
− 1 ≥ 0 for

x > 0. Therefore, using the lemma, we can write

1

2

(

log σ2 +
1

σ2
− 1

)

[Q(A− x) +Q(A+ x)]

+
1

2σ2
[g(A− x) + g(A+ x)]

≤ 1

2

(

log σ2 +
1

σ2
− 1

)(
1

2
+Q(2A)

)

+
1

2σ2
g(2A).

(17)

The RHS of (17) is minimized by settingσ2 as in (11) and
the minimum is equal toW (P ) in (10). This completes the
proof.

Note that the lemma is the key part in allowing to addσ2 to
the optimization parameters, since if the trivial upper bound
of zero is used instead of (16), the optimal value ofσ2 would
be one (as used in [2] and [3]).

IV. N UMERICAL RESULTS

Figure 2 compares the bounds in literature with the one
proposed in this paper. Note that all the bounds are obtainedby
considering the minimum of two curves as in (6). We observe
that the addition ofσ2 to the optimization problem results in a
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Fig. 2: Comparison of the bounds.

tighter bound. This small improvement of is mainly visible in
the range[1.5, 2.5] dB (SNR per bit) as shown in the figure.

V. CONCLUSION

In this paper, the capacity of a scalar AWGN with
amplitude-constrained input was considered and a further re-
finement of the upper bound in Thangaraj et al. was proposed.
We observe that by optimizing over the variance of the test
density, a tighter bound can be obtained.

Although the improvement is small, it can serve as a first
step for looking at tighter bounds for the general vector AWGN
channels which is of interest in optical communications.

APPENDIX A
PROOF OF LEMMA

Let

fA(x) , g(A− x) + g(A+ x) , x ∈ [0, A].

For the functiong, we can obtain the following properties

g(u) ≤ 0 , u ≥ 0 (18)

g′(u) ≥ 0 , u ≥ 1. (19)

(18) is obtained as

g(u) = u2Q(u)− uψ(u)

< uψ(u)− uψ(u)

= 0

where we have used the inequalityxQ(x) < ψ(x). (19) is
obtained as

g′(u) = 2uQ(u)− ψ(u)

>
u2 − 1

u2 + 1
ψ(u)

≥ 0 , for u ≥ 1

where we have used the inequalityQ(x) > xψ(x)
1+x2 .

Therefore, forA ≥ 1, we have

fA(x) < g(A+ x) (20)

< g(2A) (21)

where (20) and (21) are due to (18) and (19), respectively.

ForA ≤ 1, we proceed as follows. The fourth derivative of
g is given by

d4

du4
g(u) = u(5− u2)ψ(u)

Hence, foru ∈ [0,
√
5), d4

du4 g(u) > 0 which indicates that
d3

du3 g(u) is strictly increasing. This results in

d3

dx3
fA(x) =

d3

du3
g(A+ x)− d3

dx3
g(A− x) ≥ 0 (22)
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for A ≤ 1. (22) results in

f ′′
A(x) ≥ f ′′

A(0)

= 2g′′(A)

= 2[2Q(A)−Aψ(A)]

>
2A(1−A2)

1 +A2
ψ(A) (23)

> 0 (24)

where in (23), we have used the inequalityQ(x) > xψ(x)
1+x2 .

Therefore, forA ≤ 1, we havef ′′
A(x) > 0 which results in

f ′
A(x) > f ′

A(0) = 0. Finally, having an increasingfA(x)
confirms

fA(x) < fA(A) = g(2A).

This completes the proof.
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