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An Upper Bound for the Capacity of
Amplitude-Constrained Scalar AWGN Channel

Borzoo Rassouli and Bruno Clerckx

Abstract—This paper slightly improves the upper bound in
Thangaraj et al. for the capacity of the amplitude-constraned
scalar AWGN channel. This improvement makes the upper bound
within 0.002 bits of the capacity for f,—g < 2.5 dB.

Index Terms—Capacity, upper bound, amplitude constraint

I. INTRODUCTION

The capacity of the point-to-point communication systel
subject to amplitude and variance (or equivalently, peak a
average power) constraints was investigated[in [1] for tt
scalar Gaussian channel where it was shown that the capac
achieving distribution is unique and has a probability ma:
function with a finite number of mass points. Consequentl
the capacity and its achieving distribution can be evathiat.
numerically where the number, position and probabilitiés o
the mass points are obtained by means of computer programs.

In [2], an analytic upper bound is provided for the capacity
which reduces the computational burden of numerical mesthqghere in ), D
significantly. Recently, the bound inl[2] was refined[in [3]. | the densities,a

this paper, this bound is further refined by means of incr@s'consequence of the non-negativity of relative entropy, i.e

the number of optimization parameters. In other words, V\ﬁ(fy(.)qu(.)) > 0 in which gy (y) is an arbitrary test
observe that using a test density whose tails decay as tioS§qin, Note that, the more similag- (y) is to fy(y), the
a Gaussian distribution with a variance slightly less thae Otighter becomes the upper bound [ (2) '
can tighten the upper bound. . For the scalar AWGN channel, we have

The paper is organized as follows. Secfidn Il provides some
preliminaries helpful for the remainder of the paper. Thémtma Y=X+N 4)
result of this paper is given as a theorem in secfioh Ill. A . . L

) : . X here N ~ N(0,1) is a Gaussian noise independent of the

comparison of the bounds is provided in secfiom IV foIIoweﬂput The amélitu?ﬂe-constrained capacity of tFr)ﬂs chaiel
by sectior 'V which concludes the paper. |

C= a I(X;Y 5
Fx(g)l5|§\SA ( ) ®)

“A2 -AL0AL A2

Fig. 1: The optimal output density a% increases.

(a||b) denotes the relative entropy between
and b. The inequality in [[R) is a direct

1. PRELIMINARIES
where A denotes the amplitude constraint.

For a memoryless channel with inpa, outputY, input ) ! o o
It was shown in[[l] that the capacity-achieving distribu-

Cumulative Distribution Function (CDF)'x (x) with support

S and the channel densitgy- x (y|z), we have tion F)*.((:c) has a finite numbgr of mass points ir A, A].
McKellips proposed an analytic upper bound fdrbased on
C = sup I(X;Y) bounding the entropy ot in [2]. In [3], the upper bound
Fx() for the capacity is further refined. The main idea is to find a

sup /D (fyix (o)l fv () dFx () (1) simple test densityy (y) that looks quite similar to the optimal
Fx (z) output densityfs(y), which results from the optimal input
F%(x), and plug it into [(R) to get a tight upper bound. Since,
< ;}?(I;)/D (frixCl)llay () dFx () (2) as mentioned before, the more similar(y) is to fy (y), the
) tighter becomes the upper bound [ (2).
< ZLES)D (FrixCla)llay () ) Figure[l shows the optimal output densjtj(y) for three
values of the amplitude constraim{ < A; < As). As it can
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The following functions are frequently used throughout the  Proof: Consider the following family of test densities

aper
o 1 .2 av (y) Z{ _ %ﬂy\—aﬂ =4 (13)
U(e) = —=e e >4
oo where o2 and 3(e [0,1]) are parameters to be optimized.
Q) = . W(t)dt With this choice of test density, the relative entropy [ (3)
g(u) A u2Q(u) — wip(w). is evaluated as

For the capacity in[{5), a trivial upper bound is the capacityD (fyixClo)llay ()

. . . . . JrOO _
with aVQerage power constraint, i.g.log(1 + P) in which _ Wy — ) log Yy — x) dy
P = A-. Therefore, the bounds proposed in literature have e ay (v)

the general form of /5=
. —log A +1og71ﬂ 2”28A [Q(A —2) + Q(A + )]
C < min {T(P),ilog(l—i-P)} (6) BV 2me (1-5)

RHS of (10) in{3)

where in [2], we have 1 1
+ 3 <log02 + pi 1> QA —z)+ QA+ x)]

2P
T(P)=log|14+14/— @) 1
e + E[Q(A—w)—FQ(A'F,T)] (14)
and in [3], it was tightened further faP < 6.303 dB af We first find the maximum of{24) over € [~ A, A] and then
op minimize this maximum value over the parametgrand 0.
T(P) = p(P)log | — H(B(P)) (8) In other words,
in which 3(P) = 1 —Q(2v/P) and H (z) = —a log(z) — (1 — C<min max D (FrixClo)llay (1)) - (15)

z)log(1 — )
In the following section, we further tightef (P) for the
whole SNR regime.

As it can be observed| (l14) is an even functionzofvhich
makes the region of interest as= [0, A]. Also, the optimiza-
tion of the first two terms in[{14) was done inl [3]. Therefore,
we focus on the remaining terms.

Lemma. The following inequality holds fol/z € [0, A]
I11. M AIN RESULTS

g(A—z)+ g(A+x) <g(24). (16)
Theorem. The capacity in[(b) has the following upper Proof: The proof is provided in Appendix. -
bound It can be easily verified thaD(A — z) + Q(A + x) is an
. 1 increasing function of: € [0, 4] andlogz + 1 —1 > 0 for
C < min {R(P) +W(P), ) log(1 + P)} ®) .S 0. Therefore, using the lemma, we can write
1 1
where 1 1 1 5 (10g02+ = 1) [Q(A—2) + Q(A + )
W(P) = 3 (log o?(P) + 2Py 1) (5 + Q(Qﬁ)) 1
o%(P) + 55 l0(A — 2) +g(A + )]
(o2
9(2VP)
+25 (10) 1 | 1 1
20 (P) §§ 10g0 +§—1 §+Q(2A) +F9(2A)
in which 17)
2 29(2\/ﬁ) . R . .
o (P)=1+ 15 202vP) (11) The RHS of [[IV) is minimized by setting? as in [I1) and
the minimum is equal td¥ (P) in (I10). This completes the
and proof. [
] 1 /2P P> 6.303dB Note that the lemma is the key part in allowing to acfdto
R(P) = Og( + ’Te) - ) the optimization parameters, since if the trivial upper fbu
B(P)log /22 + H(B(P))  otherwise of zero is used instead df({16), the optimal valueréfwould

(12) be one (as used inl[2] and[3]).
Note that in the very small/large SNR regimes (i.< 0.1

or P> 0.5), 0?(P) ~ 1 and g(2v/P) ~ 0 which makes the IV. NUMERICAL RESULTS
bound boil down to[([7) and{8). Figure[2 compares the bounds in literature with the one
proposed in this paper. Note that all the bounds are obtdiped
2This is the RHS of (17) in[3]. considering the minimum of two curves as [ih (6). We observe

3Throughout the paper, the logarithms are in base that the addition of2 to the optimization problem results in a
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Fig. 2: Comparison of the bounds.

tighter bound. This small improvement of is mainly visibfe i where we have used the inequalit)(z) < +(z). (I9) is
the rang€g/1.5,2.5] dB (SNR per bit) as shown in the figure. obtained as

g'(u) = 2uQ(u) — 9 (u)

V. CONCLUSION

u? -1
In this paper, the capacity of a scalar AWGN with > UQ—HWU)
amplitude-constrained input was considered and a further r >0 for u> 1

)

finement of the upper bound in Thangaraj et al. was proposed.
We observe that by optimizing over the variance of the teghere we have used the inequali(z) > ﬁ(;).
density, a tighter bound can be obtained.

Although the improvement is small, it can serve as a first
step for looking at tighter bounds for the general vector AWG

channels which is of interest in optical communications. Therefore, forA > 1, we have
falz) < g(A+x) (20)
APPENDIXA < g(24) 1)

PROOF OF LEMMA

Let where [20) and[(21) are due {0 {18) andl(19), respectively.

fa(@) 2 g(A—z)+g(A+2) , x€]0,A.

For the functiong, we can obtain the following properties For A < 1, we proceed as follows. The fourth derivative of

gu) <0 , u>0 (18) ¢ is given by
g @) >0, u>1 (19) .

4
(18) is obtained as du 4
2 Hence, foru € [0,V/5), -5g(u) > 0 which indicates that
glu) = v Q(u) —ui(u) f—;g(u) is strictly increasing. This results in
<utp(u) — ut(u)

a3 d? d?
e fa(x) e g(A+x) e g(A—z)>0 (22)

() = u(5 — u*)¢(u)



for A < 1. 22) results in
A(x) > fA(0)

= 24" (A)
= 2[2Q(A) — Ap(A)]
2A(1 — A2)
>0 (24)

where in [28), we have used the inequali®fz) > %(;2)
Therefore, forA < 1, we havef’{(x) > 0 which results in
fi(x) > f4(0) = 0. Finally, having an increasing4(z)
confirms

fA(ac) < fA(A) = g(2A).

This completes the proof.
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