
Collective Adaptation of Socio-Technical Systems

Antonio Bucchiarone∗, Naranker Dulay†, Anna Lavygina†, Annapaola Marconi∗, Heorhi Raik∗, Alessandra Russo†
∗Fondazione Bruno Kessler, Trento, Italy - {bucchiarone,marconi,raik}@fbk.eu
† Imperial College, London, UK - {n.dulay,a.lavygina,a.russo}@imperial.ac.uk

Abstract—Socio-technical systems are systems where au-
tonomous humans and distributed computational entities col-
lectively collaborate with each other and with the environment
in order to satisfy their goals. To be resilient, socio-technical
systems need to be able to adapt to the unexpected behaviours
of humans as well as to exogenous changes in the environment. In
this paper, we describe a novel framework for the development
of social-technical systems where system adaptation is itself a
collective process that is driven by awareness of the capabilities,
goals, constraints and preferences of humans and entities, as
well as knowledge of the environment. Our adaptation process
is controlled by a multi-criteria decision making function that is
combined with an analytic hierarchic process (AHP) to select best
adaptation alternatives. The paper presents the formal model of
our approach to collective adaptation and illustrates it for a smart
mobility scenario supporting dynamically formed collectives of
passengers, drivers, means of transportation, with service-based
transportation providers.

Index Terms—Socio-Technical Systems, Ensembles, Collective
Adaptation, Multi-criteria Decision Making.

I. INTRODUCTION

Socio-technical system has recently been introduced to
denote systems that support humans as first-class entities and
are capable of adapting to the subtle cause/effect loops that
arise between computational behaviors and human behaviors
[?],[?]. They are able to support entity self-adaptation, but
also collective-adaptation where entities “opportunistically”
join one or more ensembles that define how groups of entities
should collectively adapt. This is essential in situations where
the results of entity self-adaptions can adversely affect other
entities. Ensembles provide a collective design-pattern that
aims to ensure that collective adaptations lead to outcomes
that are better than if each entity was left to self-adapt.

The work presented in this paper starts from the realisa-
tion that while collectiveness and adaptability are interesting
when considered in isolation, they bring new challenges and
better outcomes when considered together. Our concept of
ensembles implies several key properties that include (i) the
emphasis on supporting collaborations between human and
computational entities, and (ii) the heterogenous nature of
entities with respect to their capabilities, goals, preferences and
behaviours. These properties distinguish our Socio-technical
approach from other types of collective adaptive systems like
swarms, where all elements of a community have a uniform
behavior and a global shared goal [?], [?], and multi-agent
systems [?], where there may be several distinct roles, but
their behaviors are known and often predictable in advance.

In the paper we present a new approach to collective
adaptation of socio-technical systems. An adaptation protocol

is triggered within affected ensembles whenever an adaptation
issue arises and results in entities, affected by the issue, to
adapt with minimal impact on their own preferences. The
ensembles issue adaptation protocol discovering which entities
have the means the solve the issue and applies a distributed
multi-criteria decision making function that is combined with
an analytic hierarchic process (AHP) to select best adaptation
alternatives, taking into account the individual preferences of
the entities involved in the adaptation. The paper presents
the formal model and algorithm used of our approach and
illustrates it for a smart mobility scenario supporting dy-
namically formed ensembles of passengers, drivers, means
of transportation, with service-based transportation planners
and providers. This paper is organised as follows. Section II
motivates the need for distributed and collective adaptation
and discusses the challenges. Section III presents our solution
which is based on the Ensemble concept. In Section IV we
present the formal framework and the algorithm for collective
adaptation that is applied and evaluated in Section V using a
scenario in the urban mobility domain. We conclude the paper
positioning it with respect to the related works in Section VI
and discussing future work in Section VII.

II. MOTIVATING SCENARIO AND RESEARCH CHALLENGES

Modern cities attempt to flexibly integrate transportation
options for residents and visitors to use buses, trains, taxis,
bicycles and cars. They play an important role in the economy
of the city and the quality of life of its residents. In this paper
we consider a simplified urban mobility system (UMS), that
comprises several means of transportation that are collectively
managed. We focus on the aspect of adaptivity and are inter-
ested in situations where computational entities and affected
human (e.g passengers, drivers) collectively reach adaptation
decisions. In the following we describe the scenario and
demonstrate the challenges it poses to collectively adapting
socio-technical systems like UMSs.

A. Urban Mobility System

The UMS consists of the following means of transportation:
Regular bus service, a network of fixed bus routes with
fixed timetable; Flexible Bus (FB), a service that collects trip
requests from customers and organises on-demand routes that
efficiently serve the requests; Car Pool, a service to share car
journeys so that more than one person travels in a car, and
Taxi, a conventional taxi service. Each means of transportation
has a complex internal substructure. For example the FB
service allows third party minibus owners to register their

availability for serving trips, and customers to register trip
requests (e.g., location, time). The service dynamically creates
routes on the basis of time and location of the trips requested
and the availability of vehicles. Each FB route is essentially
an ensemble composed of the vehicle (or FB driver) that is
supposed to serve the route and passengers travelling within
the same (or close) time and location span. A FB route is
supervised by the FB company that provides all necessary
infrastructure. It is easy to see that a FB route is a good
example of collaborative behaviour: passengers “sacrifice” part
of their flexibility in order to travel cheaper, compared to a
taxi, and quicker compared to conventional buses.

The following situations illustrate when a running FB route
could trigger adaptation: one of its passenger is late for the
bus; one of its passenger decides to no longer travel; the bus
is damaged in an accident; the FB company decides to change
the route in order to adapt to traffic conditions.

Even though, the cases above seem to be quite natural for
any on-demand transportation service, tackling them is not
always trivial. For example let us to consider the case when a
bus is damaged or it is in a strong delay. In this case all pas-
sengers must be proposed alternatives and/or compensations.
The solutions could be any or a combination of the following
cases: 1) reassign passengers to other routes; or 2) reassign
(groups of) passengers to other means of transportation (e.g.,
recombine the passengers into small groups and assign them
to taxis or car pools).

B. Challenges

Even though entities are generally autonomous, they dy-
namically form collaborative groups, called ensembles, to gain
benefits that otherwise would not be possible. The example
of such an ensemble is a FB route: which coordinates the
adaptation behavior of multiple entities (FB driver, passengers,
and FB company) and in return gives them certain benefits
(e.g., cheap and fast way of travelling).

Membership of an ensemble may temporarily reduce the
flexibility of its entities. Within this context, isolated entity
self-adaptation is not effective. We can easily imagine what
happens if a passenger books a trip with a FB and then
silently changes its mind and decides not to travel. It is likely
to cause unnecessary delay for the route (e.g. the bus will
have a redundant stop) and raise the cost of the trip for the
remaining passengers, including probably extra charges for the
cancelling passenger. Even more serious consequences arise
if a bus gets damaged: isolated adaptation by the bus driver
could totally break the passengers’ travel plans. Adaptation
has to take into account not only customers trip requests
but also customers constraints and preferences. For example,
a particular passenger may want to avoid travelling through
unsafe areas in the city, but a possible re-planned route may
pass through such area.

In adaptive systems with collective behaviour new ap-
proaches for adaptation are therefore needed that allow (i)
multiple entities to collectively adapt with (ii) negotiations to
decide which collective changes are best.

Collective adaptation also raises a second important chal-
lenge: which parts of the system should be engaged in an
adaptation. This is not trivial at all, since solutions for the same
problem may be generated at different levels. For instance,
a passenger’s delay may be resolved in the scope of a FB
route, by re-planning the route, or in the wider scope of the
FB company, with the engagement of other routes, or even in
the scope of the whole UMS, with the engagement of other
means of transportation such as a car pool. The challenge
here is to understand these levels, formalize them and create a
mechanism that decides the right scope for an adaptation for
a given problem.

III. OVERVIEW OF THE APPROACH

A. Modeling Entities and the Ensemble LifeCycle

Our approach is based on the concepts of entities and
ensembles. Entities (see Figure 1) are basic building blocks
representing the different actors and components of the system
(e.g. passengers, bus drivers, flexibus company). They have a
repository of task models for the goals they may accomplish
(e.g., meeting, trip, for the entity person). Task models may
run in parallel creating sometimes also dependencies (e.g., the
meeting task is related to the trip to reach the meeting point).
Moreover, some goals are local (blue tasks inside Person
entity), and others are achieved in collaboration with other
entities (orange nodes) in the scope of the ensemble (e.g., joint
trip using a FB Route) to which they belong.

Fig. 1: Entity and Ensemble

In our view an ensemble defines a set of roles that can be
played by participating entities, and an adaptation protocol that
defines how conflicting goals are resolved in the scope of the
ensemble.

The ensemble is created by some entity (the creator) when-
ever a need for collaboration emerges (e.g., FB route creation
by the FB Company). It includes the specification of the
different roles (i.e., passenger, FB driver and FB company)
in terms of tasks that entities participating in it can execute.
After creation, entities may dynamically join the ensemble
taking any of the specified roles. Entities remain autonomous,
that is, largely preserve their freedom of action, and continue
operation within the ensemble, trying to achieve their goals.
When an adaptation issue arises, it can be done autonomously

or can involve multiple entities that must adapt all together
and transactionally. To avoid this last point some kind of
negotiation must take place to decide on the changes to be ap-
plied on each side. Finally, entities exit the ensemble instance
when their goals are achieved or when the participation in the
ensemble is no longer beneficial.

B. Collective Adaptation

Although entities are autonomous and can self-adapt at any
time, as participants in an ensemble they are able to adapt
more efficiently or effectively by leveraging the adaptation
capabilities of the other entities.

We extend the definition of an ensemble role presented
in [?] introducing two concepts: issue and solver. An issue
is used to define a critical situation that can happen to a
role of an ensemble (i.e., flexibus delay for the role FB
Company), while a solver reflects the ability of a role to
handle certain types of issue (i.e., find a new means of
transportation for the role FB Company). To resolve an issue
our approach uses a procedure that includes two activities:
issue resolution performed internally at an ensemble role, and
issue communication performed by an ensemble role when it
asks to other roles to resolve an issue.

The issue resolution protocol consists of four steps: (1)
find a solution internally at the originating role; (2) see if
the solution requires participation of other roles; (3) if so,
communicate issues to all relevant roles and collect solutions
from them; (4) if the solution does not require external activ-
ities, apply it, while if it requires external activities, commit
only the best solution derived from the different roles. Looking
at an example in the UMS scenario (see Figure 4), when
the FB company must solve an issue (e.g., AssignPassengers)
using its FindNewTransport solver, an issue communication
com3 is created. It detects all solvers (ChangeRoute from two
alternative FB Drivers and FindRide from a CP company) that
can handle the issue and sends them it. As soon as the solvers
find a solution and send it back, the issue sender will decide
which one is better and will commit it.

The issue resolution happening later in the FB2 Driver is
more complex. When it receives the issue (i.e., AssignPassen-
gers) via its ChangeRoute solver, it does the following: (1)
issue resolution IR4 is instantiated; the solution is calculated
internally within FB2 Driver role (e.g., the new route); (2)
the solution is interpreted in terms of issues to be raised: two
passengers (PA and PB) are asked to change their FlexiBus
assignment while the other two (PC and PD) are asked to
change their trip details in terms of pickup point and scheduled
time; (3) for each of these issues, an issue communication is
created (from com4 to com7); (4) as soon as solutions are
received from issue targets, the best solution is determined by
the FB Company; finally (5) if the FB Company commits the
solution, then the FB Company runs its own solution internally
and it also commits the solutions for all the other roles.

To summarize, while most of the proposed solutions for
collective adaptation work under the assumption that all the
knowledge used to adapt a system is fully specified at design

time (i.e., a predefined set of issues) and is centrally controlled
by a specific component (i.e., a set of predefined solvers),
our approach addresses collective adaptation problems in a
decentralized fashion, at run-time, with new solvers that can
be introduced at any time. At the same time, in highly dynamic
and distributed environment, our approach provides a way to
dynamically understand which parts of the system should be
selected to help solve an adaptation issue while guaranteeing
the highest utility for the roles involved.

C. Multi-criteria Decision Making

As mentioned in Section II one of the challenges of collec-
tive adaptation is the decision of collective changes that are
beneficial to the participants involved in an adaptation process.
In our approach, given a set of adaptation solutions and the
preferences of the participants involved, the problem of finding
the “best” adaptation solution is treated as a multi-objective
problem where each objective (criteria) is the utility value of a
solution for a participant. Utility of a solution for a participant
are based on its preferences. For example, during delay issue
resolution, the utility of a new trip for a passenger (PA or PB)
can be defined by criteria like total travel time, trip price and
walking distance.

A multi-objective function problem is typically solved by
using a composite function that is a weighted sum of all
objectives. This approach would, however, suffer of two major
drawbacks [?]: (i) the values of the composite function are of-
ten difficult to interpret for complex problems with many crite-
ria; and (ii) solutions are very much dependent on the weight-
vectors and in different circumstances different weight-vectors
have to be used. In this paper we use a different approach for
solving a multi-objective function problem: we consider all
objectives separately and use an Analytic Hierarchy Process
(AHP) (see Section IV-B) for ranking alternative solutions [?].
The use of AHP allows evaluations to be performed for both
qualitative and quantitative criteria, based on either subjective
user opinion or actual objective measurements, and taking the
relative importance of the criteria into account.

IV. FORMAL MODEL

A. Formal Model

Our model of collective adaptation is built around the
concept of ensemble: it is a collection of autonomous entities
which collaborate to perform certain tasks.

We introduce the notion of entity as a representation of a
computational or human actor that can play multiple roles in
different ensembles (i.e., a person entity can be a passenger
of a FB Route ensemble or a driver in a CP Ride ensemble).

Definition 1 (Entity): An entity is defined by a set of roles
it can play y = 〈R〉;

A role that an entity can play in an ensemble is primarily
determined by the ways it collaborates with other roles.
Collaboration consists in managing issues and responding to
issues raised by others. As such, a role includes a set of issue
types it can produce, and a set of solvers it provides. Issues
generally correspond to different critical situations that can

happen to a role of an ensemble. Each issue type includes a
set of parameters describing it:

Definition 2 (Issue Type): An issue type is defined by a set
of parameters u = uP .
For example in the case of a FB driver, it can trigger an issue
type busDelay = {delayT ime, delayReason}.

Solvers reflect the ability of a role to handle certain issues.
A solver defines a set of issue types it can handle and a
set of constraints on issue parameters restricting the solver’s
capabilities:

Definition 3 (Solver Type): A solver type is a set of tuple
s = {〈u1, uC1〉, . . . , 〈un, uCn〉}, where ui is an issue type this
solver is compatible with and uCi is a set of solver constraints
(restricting parameters of acceptable issue type).

In our scenario the FB Company is able to find
alternative transportation means (i.e., another FB route
or a CP ride) when for example a FlexiBus is in delay.
For this it has a solver type FindNewTransport =
{〈busDelay, {NumOfDelayedPassengers}〉} where
busDelay represents the issue type it is able to solve, while
NumOfDelayedPassengers is a parameter that expresses
the number of delayed passengers needed to solve the issue.

Each role is also able to express a set of preferences that
will be taken into account during any collective adaptations
where it is involved.

Definition 4 (Role Type): A role type is a tuple r =
〈U, S, rS, rP 〉, where:

• U is a set of issue types that can be produced by a role;
• S is a set of solvers that are offered by a role;
• rS is a set of parameters that define the current state of

a role,
• rP is a list of preferences available for a role.

In the UMS scenario, we can distinguish different
roles: Passenger, FB Driver, FB Company, CP Company,
etc.. Moreover, as we mentioned in Section II, passenger
role may report delay and trip cancellation, this means
U = {Delay, Cancellation}. Additionally, in order to
realize the behavior described in the scenario, it is im-
portant for the passenger to provide solvers that would
allow her to handle changes in their FB trip. S =
{ChangeP ickUp,ChangeT ime} is about asking the pas-
senger to approve changes in the assigned pickup point and
in the scheduled time of her flexibus trip. The state of a
passenger role can be described by the following parameters:
rS = {DeparturePoint, Arrival Point,Departure T ime,
Arrival T ime,Current Position}, and the following
preferences are available for passenger role rP =
{travel time, travel cost, walking distance}.

To represent collaboration of multiple roles we introduce
the notion of ensemble. It describes a certain type of collective
behaviour that may take place in the domain of interest.

Definition 5 (Ensemble Type): An ensemble type e is a set
of role types R.
In our scenario the FB route and the CP ride are
two examples of ensemble where FB Route =

{Passenger, FBDriver, FBCompany} and CP
Ride = {Passenger, CPDriver, CPCompany}.

For most introduced concepts (i.e., issues, solvers, roles,
ensembles), an instance can be defined as an object that is
bound to a particular type and that additionally retains its state.

An issue instance corresponds to a particular situation
occurring in an ensemble (e.g., flexibus delay that happened
to a particular flexibus at a particular moment in time with
a certain number of passengers waiting or already onboard).
The issue instance belongs to an issue type and its state is
determined by values assigned to issue parameters:

Definition 6 (Issue Instance): An issue instance is a tuple
ui = 〈u, Lu〉, where u is an issue type, and Lu : u.uP → V
is an assignment function for issue parameters.
Each role, collaborating in an ensemble, can provide one or
more solvers. When it is invoked to solve a specific issue it
runs a dedicated solver instance defined as follows:

Definition 7 (Solver Instance): A solver instance is a tuple
si = 〈s, ui, Ls〉, where:
• s is the solver type;
• ui is the issue instance that the solver instance will solve

and ui.u ∈ s.U ;
• Ls : s.uC → V is an assignment function for solver

parameters and V are all possible values that solver
parameters can be assigned with;

A role instance is bound to a certain role type within an
ensemble and its state is determined by its data (i.e., param-
eters and preferences) and by any ongoing issue resolution
activities.

Definition 8 (Role Instance): A role instance is a tuple ri =
〈riid, r, Lri, P,⇑r〉, where:
• riid is the role instance identifier;
• r is a role type;
• Lri : rS → V is a function that assigns values to the

state parameters;
• P represents preferences of a role instance: P =
〈riP,C〉, riP ⊆ rP is a list of preferences of a role
instance, C is a pairwise comparison matrix of the relative
importance of pairs of preferences (see section IV-B for
more details);

• ⇑r is a set of active issue resolutions;
Finally, an ensemble instance is bound to some ensemble

type and consists of role instances:
Definition 9 (Ensemble Instance): An ensemble instance is

a tuple ei = 〈eiid, e, RI〉, where eiid is the ensemble instance
identifier, e is an ensemble type and, RI is a set of role
instances.
In our framework we have two types of activities that a role
instance can execute during a collective adaptation problem
resolution: issue communication and issue resolution. Issue
communication is used to send an issue instance to a target
role instance (see definition below) that is supposed to resolve
it. The issue instance may be sent to multiple partners at a
time in attempt to find a better solution. Issue communication
comprises a few steps: 1) the issue is sent to all target roles;
2) the replies are received from the partners able to resolve the

issue; 3) the preferable solution is chosen; 4) the preferable
solution is committed. Formally, a target role instance and
issue communication are defined as follows:

Definition 10 (Target Role Instance): A target role is a tuple
t = 〈riid, si, p〉, where:
• riid is the target identifier (role instance id);
• si is the solver instance invoked to solve the issue si.ui;
• p is the solution proposed by the target. It is a process

that the target role will execute if it will become part of
the overall issue resolution.

Definition 11 (Issue Communication): An issue communi-
cation is a tuple ↑u= 〈ui, T 〉, where ui is an issue instance
communicated, and T is a set of target roles;
While the issue communication is a way to propagate resolu-
tion activities between partners, issue resolution corresponds to
the high-level model of internal elaboration being done by role
instances. In particular, we assume that the issue instance may
either arise internally (when the issue originally occurs in this
role instance) or is received by one of the role instance solvers.
As soon as the issue instance is raised, the role instance may
either resolve it locally or propagate issues to the other roles
as a part of the resolution procedure. The issue resolution is
formally described as follows:

Definition 12 (Issue Resolution): An issue resolution is a
tuple ↑r= 〈riid, ui,Ψ〉, where:
• riid is the identifier of the role instance, from which the

issue instance arrived (null if the issue aroused internally);
• ui is an issue to be resolved;
• Ψ is a set of alternative solutions, each is a tuple ψ =
〈ui,⇑Ou , pext, pint〉 where ui is the issue to be resolved,
⇑Ou is a set of outgoing issue communications, pext is a
process (solution) that is supposed to be sent to the role
instance associated with riid, while pint is the internal
process (solution) for the specific issue instance arrived.

If the resolution is fully local, in each solution ψ ∈ Ψ the
set of ⇑Ou of the outgoing issue communications is empty. Oth-
erwise, ⇑Ou correspond to the communication of all subissues
that must be resolved in order to resolve the original issue.

Following the previous example, in Figure 4 we show that
the issue resolution procedure within an ensemble can be
represented as a tree, which we call issue resolution tree.
Indeed, the resolution procedure always starts from creating an
issue resolution. It may instantiate further issue communica-
tions to resolve subissues. In turn, each issue communication
may target a few role instances, each of which consequuently
initiates an issue resolution and so on. In the figure rectangle
nodes with blue balloons correspond to issue resolutions
(AND and OR diamonds are internals of issue resolution and
are not separate nodes), yellow rectangle nodes correspond
to issue communications and edges correspond to relations
between them (children of an issue resolution are its issue
communications and children of an issue communication are
issue resolutions initiated by its targets).

Definition 13 (Issue Resolution Tree): An issue resolution
tree is a tree T = 〈nr,Nr,Nc,L〉 (where N = Nr ∪ Nc
are tree nodes made up by issue resolutions (Nr) and issue

Fig. 2: AHP hierarchy

communications (Nc) such that Nr∩Nc = ∅, nr ∈ N is a tree
root and L ⊆ N × N are parent-child links between nodes)
that has the following properties:
• nr ∈ Nr, i.e., root is issue resolution;
• n ∈ Nc → ∃(n, l, n′) ∈ L, i.e., leaves are always issue

resolutions;
• n ∈ Nc → ∀(n, l, n′) ∈ L : n′ ∈ Nr and n ∈ Nr →
∀(n, l, n′) ∈ L : n′ ∈ Nc, i.e., all children of an issue
resolution are issue communications and all children of
an issue communication are issue resolutions;

An issue resolution tree is a very intuitive abstraction for
understanding and analyzing how our approach works.

B. The Analytic Hierarchy Process

During the issue resolution process, the role instance that
triggers the issue collects alternative solutions provided by
the issue solvers (i.e., target role instances). Once alternative
solutions are obtained, the role instance has to evaluate and
rank them according to a number of criteria in order to find
the best alternative, which will be used as an issue resolution.

We use the Analytic Hierarchy Process (AHP) in [?] for
issue solutions ranking. AHP is a multi-criteria decision
making approach that allows ranking and decisions to be
made based on priorities using pairwise comparisons. The
AHP works as follows. Given n evaluation criteria, and m
alternative solutions that have to be ranked according to these
criteria. First, weights of criteria are defined; higher weights
correspond to more important criteria. Weights are calculated
based on pairwise comparisons of the importance of criteria.
Then, all alternatives are compared pairwise with respect to
each criterion separately. Finally both weights of criteria and
alternatives are synthesised to give final scores of alternatives
that allows them to be ranked. The alternative with the highest
score is used as the problem solution.

1) Criteria Evaluation: The first step in the AHP involves
decomposition of the problem into a hierarchy of criteria and
alternatives.

For the problem of finding the best issue solution we
consider the utilities of the solution for each involved role
instance as criteria for decision making. Each utility criterion
can be broken down into a set of subcriteria that reflects
preferences of the role instance - parameters that the role

Intensity of importance Definition
1 Equal importance
3 Moderate importance
5 Essential or strong importance
7 Very strong importance
9 Extreme importance (the highest possible)

2, 4, 6, 8 Intermediate values
1.1, 1.2,1.3,... Very close importance

TABLE I: Scale of relative importance of preferences

instance wants to maximize or minimize. Each role instance
can define its own set of preferences as a subset of preferences
available for its role. For example, for the “Find new transport”
issue of the UMS scenario described above, the utility of a
new trip for passenger A can be defined by such preferences
(criteria) as total travel time, travel cost and walking distance,
and utility of passenger B - by travel time and travel cost only.

Figure 2 shows the AHP hierarchy for issue “Find new
transport”, where the goal is to find the best journey alternative
for passenger A and passenger B when their FlexiBus cannot
proceed with the current trip. The utilities of passenger A,
passenger B and the FlexiBus Company are taken into account
as criteria when trying to find the best issue solution.

Once the hierarchy is built, the weights of the utilities of
the participants and their preferences have to be defined.

Local weights of the role instance preferences represent the
relative importance of the preferences for the role instance.
To compute the local weights of the preferences, a matrix C
of pairwise comparisons of preferences must be created. The
matrix C = (cjk) is of dimension n×n, where n is the number
of preferences and each element cjk is the importance of the
jth preference relative to the kth preference. The elements cjk
satisfy the constraint

cjk × ckj = 1, (1)

where cjk > 1 indicates that the jth preference is more
important than the kth preference. Consequently, in the case
where the jth preference is less important than kth preference,
we have cjk < 1, and if the two preferences are indifferent
we have cjk = 1; which also implies that cjj = 1. Saaty
[?] suggests a numerical scale between 1 and 9 to express the
importance of one decision criterion over another (see Table I)
that we use to define the relative importance of the preferences.

Each role instance specifies its own list of preferences and
the comparison matrix of preferences importance as specified
in Definition 8.

Once the matrix C has been established, it can be used to
derive the local preference weight vector for the role instance
w using the equation

wj =

∑n
l=1 c̄jl
n

(2)

where c̄jl = cjl/
∑n
k=1 ckl is the normalized relative impor-

tance.
Similarly, if any role instances involved in issue resolution

are more preferable than the others, different weights can be
assigned to the utilities of the role instances. In this case, the

role instance that triggers the issue (e.g. FlexiBus Company
for issue “Find new transport”) has to calculate these weights.

Once weights of the utilities and local preference weight
vectors for all role instances are defined, the global weights
of all preferences used in issue resolution can be calculated
by multiplying their local weights by the weight of the
corresponding utility:

g = (w0
1 ·w1

1, w
0
1 ·w1

2, ..., w
0
1 ·w1

m1
, w0

2 ·w2
1, ...w

0
n ·wnmn

) (3)

where g is the global preference weight vector, w0 = (w0
i), i ∈

[1, n] is the weight vector of utilities, n is the number of role
instances, wi = (wij) is the local preference weight vector of
the ith role instance, mi is the number of preferences of the
ith role instance.

For example, let us assume that the preferences of passenger
A include travel time, cost and walking distance. Passenger A
defines cost as much more important than both travel time and
walking distance, travel time as equally important to walking
distance:

C =

 1 1/7 1
7 1 7
1 1/7 1


According to equation 2, the local preference weight vector

of passenger A is w1 = (0.11, 0.78, 0.11).
Assuming the local preference weight vector of passenger

B is w2 = (0.75, 0.25) (travel time is slightly more important
than cost), for the FlexiBus Company is w3 = (1), and
the weight vector of utilities is w0 = (0.43, 0.43, 0.14)
(utilities of passengers are slightly more important than utility
of the FlexiBus Company, but equally important to each
other). Given this, the global preference weight vector g =
(0.048, 0.333, 0.048, 0.321, 0.107, 0.143).

2) Solution Ranking: At this stage we calculate the scores
of the alternative issue solutions with respect to each prefer-
ence defined for the issue. To derive these scores we calculate
a matrix of pairwise comparisons of alternatives Bj = (bj

ih),
where bj

ih is the evaluation of the ith alternative compared to
the hth alternative with respect to the jth preference.

Let xji and xjh be the values of the jth preferences (e.g. travel
time or cost) for issue solution alternatives i and h respectively.

If the jth preference must be maximized, then for all
alternatives i and h with xji ≥ x

j
h, the element bjih is computed

by

bjih = 8
xji − x

j
h

xjmax − xjmin
+ 1 (4)

where xjmax and xjmin are the maximum and minimum values
of the jth preference.

Similarly, if the jth preference has to be minimized, then
for all alternatives i and h with xji ≤ xjh, the element bjih is
computed by

bjih = 8
xjh − x

j
i

xjmax − xjmin
+ 1 (5)

Similar to the matrix C, the elements of Bj have to satisfy
the constraint

bjih × b
j
hi = 1 (6)

Having obtained Bj, we can now calculate the score vectors
yj of trip alternatives with respect to each criteria j ∈ [1, n].
This calculation is done using Equation 2 but replacing the
terms cjl with bjih.

The score vectors are then used to create the score matrix
Y = [y1, y2, ..., yn].

Finally, the vector of global scores v = (vi), i ∈ [1, n], can
be calculated by

v = Y · g (7)

The issue solution alternative with the highest global score
is used as the overall solution of the issue resolution problem.

C. Issue Resolution Algorithm

To evaluate the feasibility of our approach, in Figure 3 we
abstractly define an algorithm that covers the procedures for
issue resolution and commitment (functions resolve and
commit respectively). Function resolve is used recursively
to trigger a distributed resolution procedure across multiple
role instances within an ensemble. It takes as input a target
role (Definition 10). The function is called locally by the role
instance that originally detected a problem. Further recursive
calls are propagated using a Remote Procedure Call (line 9).
The function includes the following important steps:
Lines 2-3. The resolution issue is instantiated and its solutions
generated. Function build_solutions is beyond the scope
of this paper but may generally exploit various role-specific
and domain-specific solvers;
Lines 4-9. For each solution returned, a set of subissues is
identified (function derive_coms derives all subissues that
must be resolved for a given solution in form of corresponding
issue communications). For each issue communication, the
set of potential solvers is identified across all reachable role
instances (function find_targets). Finally, to understand
how well the targets can handle subissues, the resolve
function is called remotely on the targets (line 9);
Line 10. Once the solutions to subissues are obtained from the
remote role instances, the Analytic Hierarchy Process (Section
IV-B) is executed to identify the best solution ψbest;
Lines 11-17. If the current role instance is not the resolution
tree root (i.e., t0.riid is not null), the issue resolution is
stored locally (function store) and the calling role instance
(ψbest.pext) is returned. If the current role instance is the
resolution tree root (line 15), commit is executed locally
(target t0). Function commit enacts a distributed commit of
the best solution. It takes as input the target role corresponding
to the issue to be resolved. It includes the following steps:
Line 18. Function retrieve is the opposite to function
store on line 12;
Line 19. Function extract_best_targets extracts tar-
get roles corresponding to a given solution (best solution ψbest
in our case);
Lines 20-21. Commit is called for each of the target roles
corresponding to the best solution. Commits are asynchronous,
so as not to impede the solution execution on line 22;
Line 22. Role instance executes the internal process corre-
sponding to the best solution.

1 f u n c t i o n r e s o l v e (t0)
2 ↑r = <t0.riid , t0 .ui , ∅>
3 ↑r .Ψ := b u i l d s o l u t i o n s (↑r)
4 foreach ψ ∈↑r .Ψ.solutions :
5 ψ. ⇑Ou := de r ive coms (ψ)
6 foreach ↑u∈ ψ. ⇑Ou
7 ↑u .T := f i n d t a r g e t s (↑u)
8 foreach t ∈↑u .T
9 t.ψ = r p c (t.riid , r e s o l v e , t)

10 ψbest := AHP(↑r)
11 i f t0.riid != n u l l
12 s t o r e (t0 , ψbest)
13 re turn ψbest.pext

14 e l s e
15 commit (t0)
16

17 f u n c t i o n commit (t0)
18 ψbest := r e t r i e v e (t0)
19 Tbest := e x t r a c t b e s t t a r g e t s (ψbest)
20 foreach t ∈ Tbest

21 commit (g e t m y r i i d () , t)
22 e x e c u t e (ψbest)

Fig. 3: Issues Resolution Algorithm.

V. EVALUATION

A. UMS Scenario Execution

In this section we show how our approach to collective
adaptation works in the case of the UMS scenario. Figure
4 depicts the overall issue resolution tree. FB route and the
CP ride are ensembles FB1 is an instance of FB Route and
includes two passenger role instances PA and PB traveling
from Trento to Verona airport and the FB1 Driver. FB2 and
FB3 are two more FB Route ensemble instances with the same
destination but different starting points and different routes.
FB2 (with driver FB2 Driver) starts from Merano and arrives
at Verona Airport collecting passengers PC and PD. FB3 (with
driver FB3 driver) starts from Rovereto and arrives at Verona
airport collecting passenger PE. Finally we have an instance
of a car pool ride ensemble composed of a driver CP1 and
passenger PG. The preferences of the various roles used in
this example are depicted in Table II.

When a FB1 Driver experiences a delay, that compromises
the trip requirements of its passengers (PA and PB), she instan-
tiates two issues: busDelay1 and TrafficReport1. While in
the first issue PA and PB are strongly related, the second issue
does not involve any role instance and can be resolved inter-
nally to the UMS System (i.e., traffic info report). To resolve
the busDelay1 issue, the FB1 Driver will create an issue res-
olution structure like IR1 = 〈{}, busDelay1, {com1}, init〉.

At this point, the system has to perform the issue commu-
nication. For that purpose, all ensemble partners are examined
for the solvers that can resolve this type of issue with this
parameters. These solvers are checked not only for functional
compatibility but also for parameter compatibility (e.g., the
delay time constraint of the solver should be greater that
the actual delay time for the issue). Let’s assume that the
relevant solver is found in the FB Company, and so the
communication is specified like this: com1 =
〈busDelay1, {〈FBC1, F indNewTransport, null〉}〉.
FB1 Driver waits unitil it recieves the solution from

its target. After the solution is received, FB1 Driver

Fig. 4: Collective Adaptation Resolution in the UMS

makes decision and commits it (communicates the decision
to the target selected). In the case of com1 the resolu-
tion is more complex. The FindNewTransport solver of
the FBCompany will build an internal solution from it
internal adaptation procedure to manage the issue and an
issue that it triggers. In this case the FBC1 will trigger
an issue AccommodatePassengers1. The related Issue res-
olution IR2 instantiated looks like this: IR2 = 〈{FB
Company}, AccommodatePassengers, {com3}, ∅〉.

At this point, the system has to perform the issue com-
munication com3 and its relevant solvers are found in FB2
Driver, FB3 Driver, and CP Company.

The ChangeRoute solvers of the FB2 Driver and FB3
Driver and the FindRide solver of the CP Company
will build their internal solution. Both FB2 Driver and
FB2Driver will produce two alternative solutions, re-
spectively for IR4 and IR5 while CPCompany only
one for IR6. Each solution will trigger other issues that
will be used to propose to each passenger involved in
the collective adaptation, that they change the scheduled
time (i.e., PD:ChangeTime), the assigned pickup point (i.e.,
PC:ChangePickUP) or the flexibus assigned (i.e., PB:Change).

When the issues in the bottom part of the tree are resolved,
each corresponding solution will be sent to the upper layer
(i.e., IR4) that will decide what its the best solution. This
process will continue up to the root node that will decide and
commit its overall solution. As we have seen in this example
we can have multiple points in the tree where a decision should
be taken among possible alternative solutions.

B. Decision Making

In this section we show how the Analytic Hierarchy Process
is used in our algorithm for each specific issue resolution
in the UMS scenario. The FB2 Driver:ChangeRoute solver
generates two alternative solutions (new routes) in IR4 . The
first route (solution 1) requires Passenger PC to change the

pickup location (IR7) and passenger PD to change time of the
trip (IR8). The second route (solution 2) requires changing the
time of the trips for both passengers PC and PD (IR 11 and
IR12). In both cases FBCompany gives passengers PC and PD
some compensation (e.g. a discount, free future trip).

Preferences of passengers PA, PB, PC and PD (see Table II
for preferences) have to be taken into account when deciding
which resolution out of these two is more preferable than
the other. For FB2 Driver the utilities of its passengers
are 5 times more important than the utilities of passengers
PA and PB (see Table I), and the utility weight vector is
w0 = (0.083 0.083 0.417 0.417) based on Equation 2.

Scores of the solutions with respect to the preferences of
the passengers were calculated based on Equation 5. Corre-
sponding parameters of the solutions are given in Table III.

The final vector of global scores is calculated based on
Equation 7. The global scores of solution 1 and solution 2 are
0.539 and 0.461, respectively. Therefore, solution 1 is more
preferable, thus is returned as resolution of IR4 issue by solver
FB2 Driver:ChangeRoute.

FB3 Driver:ChangeRoute. This solver generates solution
3 (requires passenger PE to accept the trip time change
(IR15)) and solution 4 (requires passenger PE to change the
pickup point (IR18)). In both cases passenger PE is offered
compensation.

This solver has to consider preferences of passengers PA,
PB and PE. Similar to FB2 Driver:ChangeRoute, the util-
ity of the passenger PE is more important than the utility
of passengers PA and PB, and the utility weight vector is
w0 = (0.143 0.143 0.714) .

The vector of global scores of solutions 3 and 4 is
g = (0.679 0.321). FB3 Driver:ChangeRoute thus returns
solution 3.

CP Company: Find Ride. Generates one solution (solution
5), thus no decision making is needed and solution 5 is used
as a resolution of IR6 issue.

Role Preferences PInstance
PA riP={time,cost,walking}, C=(1 0.143 1; 7 1 7; 1 0.143 1)
PB riP={time,cost}, C=(1 3; 0.333 1)
PC riP={time,cost,walking}, C=(1 7 3; 0.143 1 0.333; 0.333 3 1)
PD riP={cost,walking}, C=(1 1; 1 1)
PE riP={time,cost,walking}, C=(1 1 0.2; 1 1 0.333; 5 3 1)
FBCompany riP={compensations}, C=(1)

TABLE II: Preferences of role instances

Solver Solutions Solution parameters

FB2Driver:
ChangeRoute

Solution 1

PA: time=30min, cost=0e , walking=500m
PB: time=30min, cost=0e
PC: time=30min, cost=-1e , walking=500m
PD: cost=-1e , walking=400m

Solution 2

PA: time=20min, cost=0e , walking=100m
PB: time=20min, cost=0e
PC: time=40min, cost=-1e , walking=250m
PD: cost=-1e , walking=400m

FB3Driver:
ChangeRoute

Solution 3
PA: time=15min, cost=0e , walking=500m
PB: time=15min, cost=0e
PE: time=15min, cost=-1e , walking=0m

Solution 4
PA: time=20min, cost=0e , walking=100m
PB: time=20min, cost=0e
PE: time=10min, cost=-1e , walking=500m

FBCompany:
FindNew-
Transport

Solution 1
PA: time=30min, cost=0e , walking=500m
PB: time=30min, cost=0e
FBCompany: compensation=2e

Solution 3
PA: time=15min, cost=0e , walking=500m
PB: time=15min, cost=0e
FBCompany: compensation=1e

Solution 5
PA: time=15min, cost=5e , walking=0
PB: time=15min, cost=5e
FBCompany: compensation=10e

TABLE III: Solution parameters for role instances preferences

FB Company: Change Route. Collects resolutions from
solvers FB2 Driver:ChangeRoute, FB2 Driver:ChangeRoute
and CP Company: Find Ride. It has to choose the best solution
from solution 3,5 and 7 taking into account the utilities
of Passengers PA and PB and the FB Company. It defines
utilities of passengers as slightly more important (intensity of
importance = 3) than the utility of the FB Company, thus
w0 = (0.429 0.429 0.143).

The final vector of global scores for solutions 1, 3 and
5 is g = (0.285 0.470 0.245). Therefore, FB Company:
Change Route returns solution 3 as the most prefereable with
Passengers PA and PB assigned to FB3 and passenger PE
asked to change the time of her trip.

C. Algorithm Complexity

In this section we evaluate the complexity of the solution
search algorithm and outline general ways to optimize it. We
use the following conventions: R – the total number of role
instances; E – the average number of role instances in an
ensemble; S,C, T – the average number of solutions per issue,
subissues per solution and targets per subissue respectively;
M the average cost of a peer-to-peer communication between
role instances. The further discussion relies on the concept of
issue resolution tree (Def. 13, Fig. 4) and the issue resolution
algorithm (Section IV-C).

The first important observation that we make is that the issue
resolution tree may grow infinitely. Even if R is finite, a single
role instance may run infinite number of issue resolutions

within the same tree. For instance, A sends an issue to B,
and while resolving it B triggers subissue and sends it back to
A, and so on, thus forming a cycle. A natural (and reasonable)
way to prevent this behaviour is to restrict the number of issue
resolutions per role instance per issue resolution tree to one
or, alternatively, to introduce cycle detection (e.g., by tracing
the ID of the root issue). This restrict the tree size and also
makes it easier to guarantee consistent behaviour for a role
instance (multiple cross-dependent issue resolutions executed
by a single role instance for the same tree make it hard to
ensure solution consistency).

To make an issue resolution tree simpler to analyze, we
collapse together every issue resolution node with its issue
communications. In the resulting tree, a node corresponds
to a single role instance, and its children correspond to
role instances immediately targeted by this node to resolve
subissues (edges are communications between nodes). The
number of nodes in such a tree is O(R) (linear to the total
number of role instances). Similarly, each role instance (tree
node) has to be communicated by a parent role instance exactly
once (except for the root), so the number of communications
is also O(R). To evaluate the overall solution search time, we
have to evaluate the time complexity of a single inter-node
communication, and of a single run of an issue resolution.
While the first is initially defined as C, the second is obtained
by analyzing function resolve in issue resolution algorithm.

At this point, it is important to notice that the average
size of an ensemble (E) generally does not depend on the
total number of role instances (R) (indeed, the number of
passengers in the route does not depend on the popula-
tion of the city and the number of means of transportation
changes insignificantly with the size of the city). Since,
the functions build_solutions, derive_coms, AHP,
find_targets always operate on the scale of a single
ensemble, thier worst case running complexity can be treated
as constant on the scale of the whole system (even if these
functions have exponentioal complexity O(2E) and for rea-
sonable systems E << R, the overall complexity can be
evaluated to some constant maximum X). Consequently, the
number of calls to build_solutions is O(1) (constant),
to derive_coms is O(S), to find_targets is O(S ∗C),
to rpc is O(S ∗ C ∗ T) and to AHP is O(1). Since the O-
notation eliminates the constant factor, the overall complexity
of resolve is O(S ∗C ∗T) or O(B), where B = S ∗C ∗T
equals the average number of children in our tree with col-
lapsed nodes, and is known as a tree branching factor.

With total number of nodes O(R) and the need to perform
one issue resolution calculation and one communication per
node, the overall calculations needed to run an issue resolution
tree is O(R ∗ (B + C)). However, in systems with virtually
unlimited computing and networking capacities (such as an
elastic cloud or a network of nodes posessing computing
power, e.g., a network of smartphones), the real delay between
a problem detection and the moment when a solution is found
is much less. Indeed, the branches of the issue resolution tree
may be explored simultaneously: if a node sends subissues to

several targets, the communication and the calculations on the
target nodes go in parallel. And so, the overall delay dependes
on the height of the tree O(logBR) rather than its size. The
search delay is then O(logBR ∗ (B + C)), which proves the
system to be highly scalable (degraded trees with B ≈ 1 are
very unlikely and can be eliminated from consideration).

We remark that since constant factor X may be big it may
still make search delays too long (although the complexity
class remains the same). One way to treat it is to restrict the
tree height. In our preliminary experiments with the smart
mobility domain suggest that it does not make sense to
consider a resolution tree beyond level 5, since this involves
too many role instances in resolving an issue and such a
solution is unlikely to be acceptable.

VI. RELATED WORK

Notions of collective adaptive systems have been presented
in the literature in various different forms. In [?] Agents
can participate to several coalitions at the same time and an
adaptation mechanism is in charge of adjusting agents in a
current coalition to minimise the agent penalty when it joins
new coalitions. This approach is somewhat similar to our
approach where role instances can be members of multiple
ensemble instances. In our approach, any role instance can
triggers adaptations and alternative collective adaptations are
automatically identified to maximise the preferences of role
instances involved in a current ensemble.

A coalition of coordinating agents can also be seen as
a choreography. Several work have faced the problem of
adaptation in service choreography [?], [?]. Choreography
reconfigurations correspond to the addition or removal of some
interactions or a simplification of the original choreography.
Although these existing work provides a mechanism for de-
ciding when the reconfiguration can take place, it does not
suggest how to synthesize the new choreography in order to
deal with the changes of the environment. Moreover, contrary
to our approach the adaptation solution are defined at design
time. Closely related to our approach is the notion of ensemble,
as group of interacting agents, presented in [?]. In this work a
formal language, called SCEL, supports abstractions for auto-
nomic systems in terms of behaviors, knowledge, aggregation
and policies. In SCEL it is possible to define an ensemble
as a set of components, and the choice of which components
to include at runtime is based on the satisfaction of certain
predicates. [?] presents an ensemble based component model
in which components can bind and communicate only via an
ensemble. [?] gives instead a formal foundation for ensemble
modelling, according to which an ensemble is defined in terms
of roles and role connectors. A role can be seen as a meta-
component (or a type) that can be instantiated by components
of different types. Runtime behaviours of an ensemble is given
by means of an automaton.

VII. CONCLUSION AND FUTURE WORK

We have presented an approach for the collective adaptation
of socio-technical systems. We have defined an algorithm to
solve adaptation issues within an ensemble, which discovers

which entities have the means to solve an issue and to apply
adaptation with minimal impact on their own preferences.
Finally we have evaluated the complexity and applicability of
the algorithm using a scenario in the smart mobility domain.
An important element of our near-term future work is the
implementation of the UMS example as an ensemble system,
which can be experimented with and evaluated. We will
pursue that example towards a comprehensive case study and
demonstrator in field conditions. To improve the approach
further, the following aspects can be considered: (i)Limiting
response time: this will allow to speed up the adaptation
process by terminating branches of the resolution tree that
require much time for evaluation, (ii)Setting expiration time
of the resolutions: this will prevent the cases of the adaptation
failure when the resolutions become unavailable if the decision
maker takes too long to make a decision, and (iii) Using the
”common good” concept as an additional criteria to compare
solutions received from the solvers.

ACKNOWLEDGMENT

This work is partially funded by the 7th Framework EU-
FET project 600792 ALLOW Ensembles.

REFERENCES

[1] A. Bucchiarone, C. Mezzina, M. Pistore, H. Raik, and G. Valetto.
Collective adaptation in process-based systems. In SASO 2014, pages
151–156, 2014.

[2] C. Pinciroli et al. Argos: A modular, multi-engine simulator for
heterogeneous swarm robotics. In IROS, pages 5027–5034, 2011.

[3] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. A formal approach
to autonomic systems programming: The SCEL language. TAAS, 9(2):7,
2014.

[4] Mila Dalla Preda et al. Developing correct, distributed, adaptive
software. Sci. Comput. Program., 97:41–46, 2015.

[5] T. Bures et al. DEECO: an ensemble-based component system. In CBSE
2013, pages 81–90, 2013.

[6] Leonardo A. F. Leite etl al. A systematic literature review of service
choreography adaptation. Service Oriented Computing and Applications,
7(3):199–216, 2013.

[7] B. H. Far, T. Wanyama, and S. O. Soueina. A negotiation model for
large scale multi-agent systems. In IRI, pages 589–594, 2006.

[8] R. Hennicker and A. Klarl. Foundations for ensemble modeling - the
helena approach - handling massively distributed systems with elaborate
ensemble architectures. In Specification, Algebra, and Software - Essays
Dedicated to Kokichi Futatsugi, pages 359–381, 2014.

[9] J. Hillston, J. Pitt, M. Wirsing, and F. Zambonelli. Collective Adaptive
Systems: Qualitative and Quantitative Modelling and Analysis (Dagstuhl
Seminar 14512). Dagstuhl Reports, 4(12):68–113, 2015.

[10] William Ho and et al. Multi-criteria decision making approaches for
supplier evaluation and selection: A literature review. European Journal
of Operational Research, 202(1):16–24, 2010.

[11] M. Holzl, A. Rauschmayer, and M. Wirsing. Engineering of software-
intensive systems. In Software- Intensive Systems and New Computing
Paradigms, volume 5380 of LNCS, pages 1–44. Springer, 2008.

[12] P. Levi and S. Kernbach. Symbiotic-Robot Organisms: Reliability,
Adaptability, Evolution, volume 7. Springer Verlag, 2010.

[13] Thomas L Saaty. What is the analytic hierarchy process? Springer,
1988.

[14] N. Srinivas and K. Deb. Muiltiobjective optimization using nondomi-
nated sorting in genetic algorithms. Evolutionary computation, 2(3):221–
248, 1994.

[15] D. Ye, M. Zhang, and D. Sutanto. Self-adaptation-based dynamic
coalition formation in a distributed agent network: A mechanism and
a brief survey. IEEE Trans. Parallel Distrib. Syst., 24(5):1042–1051,
2013.

