
Experimental Results on the use of
Genetic Algorithms for

Scaling Virtualized Network Functions

Windhya Rankothge
Universitat Pompeu Fabra

windhya.rankothge@upf.edu

Franck Le
IBM Research

fle@us.ibm.com

Alessandra Russo
Imperial College

a.russo@imperial.ac.uk

Jorge Lobo
ICREA-Universitat Pompeu Fabra

jorge.lobo@upf.edu

Abstract—Network Function Virtualization (NFV) is bringing
closer the possibility to truly migrate enterprise data centers into
the cloud. However, for a Cloud Service Provider to offer such
services, a key question is how and when to scale out/in resources
to satisfy dynamic traffic demands. In previous work [1], we have
proposed a platform called Network Function Center (NFC) to
study research issues related to NFV and Network Functions
(NFs). In a NFC, we assume NFs to be implemented on virtual
machines that can be deployed in any server in the network. In
this paper we present further experiments on the use of Genetic
Algorithms (GAs) for scaling out/in NFs when the traffic changes
dynamically. We combined data from previous empirical analyses
[2], [3] to generate NF chains and for getting traffic patterns of a
day and run simulations of resource allocation decision making.
We have implemented different fitness functions with GA and
compared their performance when scaling out/in over time.

I. INTRODUCTION

With Network Functions Virtualization (NFV) [4], the
possibility of outsourcing enterprise Network Function (NFs)
processing to the cloud has gained lot of attention. When the
NFs of an enterprise are outsourced to a cloud service provider,
the cloud service provider is responsible for: (1) where initial
virtual NFs should be instantiated, (2) what, when and where
additional virtual NFs should be instantiated to satisfy the
dynamic traffic demands (scaling); and (3) how to update the
network configurations to minimize latency, packet loss, and
the impact impact on network performance.

For cloud resource allocations, researchers have often relied
on mixed Integer Linear Programming (ILP) to optimize
VM allocation and network management [5]. However, this
approach can be applied only if adjustments to traffic demands
are made in the order of hours [1]. In addition, we can make
better resource allocations if both computing resources and
network configuration are managed concurrently [6]. Although
several works have considered both VM allocation and network
management jointly [7], [8], most of them have assumed
that only one of the two components could be modified. In
particular, several proposals [5], [7], [8], [9] assume that the
computing resources allocation can be updated but not the
network configuration. We can identify (at least) two obstacles
behind these assumptions. One has been the difficulty of
making dynamic updates to the network components. The
second one is that the complexity of the optimization model
increases by the addition of the parameters corresponding to
the network components. Software Defined Networks (SDN)

naturally arises as a tool to overcome the first obstacle, but we
need to look for suitable approximations for the optimization.
As such, we have been developing an experimental platform
that we call Network Function Center (NFC) to study issues
related to NFV and NFs management as a service. In particular,
we have proposed a new Genetic Programming based resource
allocation algorithm [1], and we have assumed a Software-
Defined/OpenFlow infrastructure [10] to have programmatic
control over the traffic flow and easy reconfiguration of the
physical network.

Our initial performance evaluation has shown encouraging
results [1]. However our initial experiments have several limi-
tations. First we evaluated the performance of our proposed re-
source allocation algorithm under a fixed network architecture,
k-fat trees. Second, we ran all our experiments under purely
synthetic data. And third, we did not fully analyse how fast
we could generate a new NFC configuration given a current
configuration and information about new traffic demands, nor
evaluated the quality of the configurations when we repeat
the procedure over time. This is perhaps the largest limitation
given that our main goal is to perform resource allocations
to satisfy dynamic traffic demands over time and given that
we are not working with optimal but approximated solutions.
Hence it is crucial to verify that the sub-optimality does not
deteriorate over time.

Extending our previous work [1], this paper explores the
results of the resource allocation algorithms over a full day
of traffic based on more realistic traffic data under three
different network architectures. We assume small data centers
having 64 servers with : (1) a k-fat tree architecture [11],
(2) a BCube architecture [12] and (3) a VL2 architecture
[13]. We focus on Genetic Programming based resource al-
location algorithms with fitness function that in addition to
reducing server and link utilization, also minimize the number
of changes in server allocation and links configuration. The
reason is that configuration changes (e.g., moving NFs) can
cause performance degradation. Public traffic data specifically
referring to NFs chains is not readily available. Hence, we have
combined the data about the use of NFs in different kinds of
enterprises from [2] and the HTTP traffic data observed by
an ISP [3] to create, although limited, a traffic model based
on real data. We study the quality of the solutions provided
by such fitness functions over time. We compare the results
with those of a fitness function that solely focuses on reducing
server and link utilization. The concern was that whether



trying to also minimize the number of changes in server and
link configurations would lead to local optima at each time
point, and gradually diverge over time from the global optimal
solution. However, our experimental results proved otherwise:
the difference between the quality of an optimization for
scaling that minimizes changes and the global optimization
solution, does not increase over time. In other words, the
quality of the scaling optimization solutions does not degrade
over time. In addition, we consider a fitness function that
solely tries to minimize server and link changes. Such solutions
should minimally disturb the traffic (e.g., packet drops, latency)
and can be used as a baseline for comparison. We found
that the proposed fitness function that simultaneously tries
to minimize server and link changes as well as minimizing
servers usage and links congestion provides solutions where
the the number of changes in the network required for scaling
is very close to those required by the fitness function that solely
tries to minimize server and link changes. In other words, the
approach produces solutions that are close to the optimal in
terms of minimally disturbing the network for scaling. We
explore the fitness functions behaviour for different data center
architectures over several days and our experimental results
show that the fitness function values and their changes, highly
depend on the network architecture, specially on the number
of links and paths of the network.

The rest of the paper is organized as follows. Section II
gives a brief description of our experimental NFV platform
and its management system. Section III describes the imple-
mentation of GA based NFs placement and dynamic scaling
out/in algorithms. Section IV presents the evaluation set-up and
Section V shows the results of the evaluation. Related work
is briefly described in Section VI. Our final remarks can be
found in Section VII.

II. EXPERIMENTAL PLATFORM

We are developing a Network Function Center (NFC) as
an experimental platform [1], to study research issues related
to NFV and NFs. We assume that NFC will deliver virtualized
NFs to clients on a subscription basis. To receive services
from our NFC, a client needs to provide the following two
specifications: (1) types of required NFs and interconnectivity
between them (policy chain) and (2) initial expected traffic
load to be processed by these NFs.

Figure 1 represents a snapshot of a NFC. It shows the
placement of NFs that implements the two policy chains in
Table 1. Table 2 shows the physical sequences of switches and
NFs the client’s traffic will go through. Client1 wants his traffic
coming from 10.1.0.0/24 to any destination to go through the
policy chain of Firewall-IDS-Proxy NFs. To satisfy his request,
a firewall and a IDS are implemented on two VMs at Server1
and a Proxy is implemented on a VM at Server2.

The NFC Management System is built around five key
modules: (1) Resource Manager, (2) Topology Manager, (3)
Flow Manager, (4) Elasticity Manager and (5) Rules Generator.

Once a new client request is submitted, the Resource
Manager takes decisions on the placement of NFs and paths
for the client’s traffic to follow inside the NFC. The Resource
Manager is also called by the Elasticity Manager. The Elastic-
ity Manager monitors the resources utilization. The Elasticity

Fig. 1: NFC Snapshot

Manager takes decisions on when to increase/decrease the
capacity of the instances of NFs and paths for the traffic
flows. The Resource Manager then determines the realloca-
tion of server and network resources to satisfy the demands.
The Topology Manager, Flow Manager, and Rules Generator
configure the network according to decisions taken by the
Resource Manager and Elasticity Manager. More details of
the architecture of our NFC can be found in [1].

III. RESOURCE MANAGER MODULE

The Resource Manager has two main responsibilities:

(1) New function provisioning: upon receipt of a new set of
policies, the Resource Manager takes into account the physical
network, servers constraints, and already allocated resources,
to identify the resources where to instantiate the new function.

(2) Scaling out/in: upon receiving requests from the Elas-
ticity Manager, the Resource Manager decides the reallocation
of resources in order to the satisfy the traffic demand changes.

Integer Linear Programming (ILP) optimization has been
a popular technique for VM allocation. However, our exper-
imental results with ILP show [1] that using ILP to find
an optimal configuration can take a long time even for a
small number of NFs. So as we have explained in [1], we
have explored finding approximations by means of finding the
best fitted solution according to a Genetic Algorithmic model
of the problem that explores a fixed amount of generations.
Genetic Algorithm (GA)s are a part of evolutionary computing
and were introduced as a computational analogy of adaptive
systems [14].

The GAs [14]:

1) Randomly generate an initial population F(0) with n

full solutions f

2) Compute and save the fitness u(f) for each individual
full solution f in the current population F(t)

3) Generate F(t+1) by selecting i full solutions from F(t)
4) Produce offspring by applying genetic operators to

population F(t+1)
5) Repeat step 2 until satisfying solution is obtained.



Following the GA terminology, a possible configuration
state (represented by servers and paths assignments) of
the NFC is considered as a full solution f , if it is an
allocation of resources for all the policies in the system.
The population F(t) consists of n full solutions which
represents different possible configuration states for the NFC.
If there are m policies in the NFC, then each full solution
contains m partial solutions, each partial solution representing
the allocation of resources (i.e., servers and paths) for a policy.

F1 = w1
1
M .Ts + w2

1
L .Ul + w3(1� 1

L .Tl)
+w4

1
M .Cs + w5

1
L .Cl

TABLE I: Fitness Function

M Total no. of servers
Ts No. of servers used
L Total no. of links
Tl No. of links used
Ul Avg. % of total links capacity used
Cs Total servers changed from previous state
Cl Total links changed from previous state
w1 to w5 Weighting factors

TABLE II: Parameters used in fitness functions

For new services provisioning, the Resource Manager uses
network’s traffic, topology data, server constraints and client
requirements as inputs. In step 1, the Resource Manager gener-
ates the initial population F(t). It performs a selection (we have
used Depth First Search (DFS)) for the initial assignment of
NFs and paths for each new policy request. The configuration
state (NFs and paths) that the Resource Manager comes up
with after the DFS for a new policy request is considered
a partial solution that combined with the partial solutions of
each of the existing policies form a full solution. After the
initial population is generated, the fitness function (F1) given
in Table I with weights w4 = w5 = 0 is used to measure
how good a full solution is (step 2). F1 can take into account:
servers capacity, links capacity, number of links not used and
number of servers used with respect to the total physical
usage of the network and network resources available. As
we are trying to maximize the server and network utilization,
fittest solutions are those for which the function returns the
smallest value. So full solutions that return smaller values are
preferred and in step 3 they are selected as the best solutions
for the next population generation. In step 4, the Resource
Manager performs mutations and crossovers for randomly
selected partial solutions of a full solution and generates a
new full solution. We have considered two types of genetic
operators to produce mutations:(1) Re-placement where we
try to place the NF in a different server and (2) Re-wiring
where we try to find a different path between given two NFs.
For crossovers, first we select two random full solutions and a
random partial solution from each selected full solution. Then
we try to check whether the configuration given in the first
partial solution can be applied to the second partial solution
and vise versa. If so, then the configurations of the partial
solutions will be changed accordingly. The newly generated
full solution is added to the existing set of full solutions, which

is known as the current population. This process is continued
for a fixed x number of generations. In the final generation,
the full solution with the best fitness value is selected as the
configuration for the new policy implementation.

For the optimization related to scaling, the procedure is
different since we care about changes. When the Elasticity
Manager decides that a NF or a path has to be scaled out/in
(i.e., a new VM needs to be created for the NF, or an existing
VM can be removed), the Resource Manager starts with the
current state and performs an initial selection using a DFS for
the re-assignment of resources (new servers and paths) of the
set of NFs and paths that are scaling. The partial solutions
relevant to the scaling are modified according to the results of
the DFS. The fitness function F1 with none zero values for at
least w4 and w5 is used to measure how good a full solution
is. Parameters related to w4 and w5 represent the changes
to the current system. While trying to maximize the server
and network utilization, we want to minimize the changes
to the current system because drastic re-arrangements of the
system configuration will cause unacceptable deterioration of
performances during the transition time. In contrast to the
“global optimization” performed during the initial resource
allocation process, when scaling out/in, the mutations and
crossovers are carried out only to the partial solutions which
were changed because of the scaling out/in. The process
is continued for x number of generations and the best full
solution is selected as the configuration for re-assignment of
the policy. The question then is, what is the effect of doing
local resource allocation optimizations that also minimizes
changes when compared with an optimization of resource
allocation that is done globally without regard to changes?
Does the allocation of resources drifts away from an optimal
allocation? As the experiments in the following sections show
this will not be the case.

IV. EVALUATION DATA

For the evaluation of the Resource Manager, we needed
data on: (1) potential NFs chains (policies), (2) traffic flows
passing through these NFs chains and (3) different data center
architectures for NFC. In the following section we describe
the data we used and assumptions we have made to conduct
the experiments.

A. Policies and traffic flows passing through them

We have combined a data set from a study about physical
middle-boxes in enterprises [2] to generate our policies and
a data set from a study about HTTP traffic [3] on internet to
generate our traffic, since there are no publicly available real
data sets on NF chains and traffic that might pass through
them.

The policies used in the following sets of experiments are
generated based on a study about physical middle-boxes used
in enterprise networks [2]. This paper includes figures about
types of enterprise networks, number and types of middle-
boxes used in them. Following [2], we have assumed large
enterprise networks with an average of 100 NFs and with each
policy having from 2 to 7 NFs in a chain. The number of NFs
in a policy follows a truncated power-low distribution with
exponent 2, minimum 2 and maximum 7.



The traffic load that each client is expecting is modelled
according to the applications [15]. We consider web based
applications and for the traffic, we rely on empirical data from
previous studies [3]. The data set includes an HTTP traffic
breakdown of 30,000 users for a day which is measured at
three different vantage points of an Italian ISP. The traffic
breakdown reports traffic for every 2 hours. We focus on
the traffic statistics of Megaupload, LeaseWeb, Level3 and
Limelight for our experiments.

In a data center, traffic changes happen throughout the day
and according to the amount of these changes, the NFs should
be scaled out/in to satisfy the dynamic demands. A limitation
of the HTTP traffic data we are using is that, information
was collected at every two hours. So the first challenge is
interpreting the pattern of traffic change over two hours. Other
studies (e.g., [16]) show that traffic changes on usual days
happen gradually over time. From times when traffic may
increase significantly, changes may still increase gradually over
15 minutes time periods [17]. As such, although sudden traffic
changes may occur within few minutes, we have assumed
a uniform traffic increase/decrease over the 2 hours time
intervals. To reflect scaling requirements of all situations, we
spread the increase/decrease of number of NFs (needed for the
full 2 hour traffic change) over 2 hours and increase/decrease
the capacity one NF at a time.

The second challenge is identifying the policies affected
by each enterprise traffic change. For each enterprise we have
x number of policies generated and each policy has a unique
traffic flow passing through its NFs. When there is a change in
the total traffic for that enterprise, it is very unlikely that traffic
passing through all the policies of that enterprise contributed to
the traffic change. So we select randomly a subset of policies
from that enterprise, as the policies affected by the traffic
change.

The third challenge is deciding which NF from each policy,
needs to be scaled out/in to satisfy the new traffic demands. [9]
shows that in general no two NFs will be simultaneously and
equally bottlenecked and scaling one NF in the policy at a time
is the best strategy. Hence assuming the conditions in [9], we
randomly select a NF from each policy as the bottlenecked NF
for which the resource allocation needs to be increase/decrease.

The fourth challenge is, from the identified NF instance to
scale, how many instances we should add/remove to satisfy
the new traffic demand. Here, we are making an assumption:
the traffic flowing through the NF instance is proportional to
the capacity of the NF instance and it is the same for all types
of NFs. [18] shows that if we add more than one instance
at a time, we are usually adding more than what is needed
and wasting resources. So we calculated a traffic change
threshold to find how many instances we should add/remove
to accommodate traffic change and add/remove one instance at
a time. This resulted in 36 significant events over the 24 hours
of traffic data. These are events where either the allocation of
resources for at least one NF needs to be increased or reduced,
or the traffic in at least one link needs to be modified.

B. Data center architectures for NFC

We evaluated the performances of the resource allocation
algorithm, assuming three different data center network archi-

tectures for NFC: (1) k fat tree, (2) VL2 and (3) BCube shown
in the Figure 2. We have assumed architectures of a small data
center having 64 servers.

A typical k-ary fat-tree network [11] has three layers: a
core layer, an aggregation layer and a Top-of-Rack (ToR)
layer. It consists of (k/2)2 core layer switches and k pods
of k switches, half of them aggregation switches and the other
half ToR. Each switch in pod has k ports. The ToR switches
are at the bottom of the pod, and the aggregation switches
in the middle. In one pod, each ToR switch is connected to
every aggregation switch and (k/2) servers. Each aggregation
switch connects to (k/2)2 switches on the core layer. We have
used a 4 fat-tree architecture which has 20 switches: 4 pods
of 4 switches, each with 8 servers in each ToR switch and 4
switches in the core layer. The network consists of 96 links
and 35776 paths connecting all source destination server pairs
with maximum number of hops for a path of 6.

The VL2 architecture [13] shares many features with an
k-ary fat-tree architecture, but the main difference is the core
tier and aggregation tier form a Clos topology [19], i.e., the
aggregation switches are connected with the core ones by
forming a complete bipartite graph. We have used a VL2
architecture with 12 switches. The network consists of 96 links
and 33760 paths connecting all source destination server pairs
with maximum number of hops for a path of 6.

In the BCube architecture [12], servers are considered part
of the network infrastructure, i.e., they forward packets on
behalf of other servers. A BCube is a recursively defined
structure. At level 0, BCube0 consists of n servers that
connect together with a n-port switch. A BCubek consists
of n BCube(k-1) connected with n

k
n-port switches. We have

used a BCube1 architecture where there are 8 BCube0s, each
connected to 8 switches in the next level switches and form the
BCube1. Each s server of BCube0s are connected to switch s

of BCube1. The network consists of 128 links and 7168 paths
connecting all source destination server pairs with maximum
number of hops for a path of 4.

K- Fat Tree BCube VL2 

Fig. 2: Architectures used for NFC

V. EVALUATION RESULTS

As described in Section III, once a new client request
is submitted, the Resource Manager takes decisions on the
initial placement of NFs and paths for the traffic. Then, after
the initial configuration, according to the dynamic changes
of traffic over time, the Resource Manager responds to the
requests from the Elasticity Manager to scale the resources
and decide a new set of NFs assignments and paths for
existing traffic flow. These two activities are implemented
using a GA with the fitness function given in Section III.
We explore the evolution of the solutions deriving from the
GA fitness function over a full day of traffic. In this section,
we describe the results of the experiments we conducted to



compare and understand the performances of different fitness
functions when continuously scaling out/in.

For VM allocation, an ILP can give us the best optimal
configuration solution. However, as we showed in previous
work [1], ILP takes a long time to find an optimal configuration
even for a small number of NFs. And, although GA may
not provide the optimal solution, GA approach can compute
configurations two to three orders of magnitude faster than ILP
[1].

Although global optimization may provide better resource
allocations, the solutions may require drastic re-arrangements
of the current configurations, hence making them impractical
in real scenarios. However, we can use this method to provide
us with a baseline of how the local optimization behaves. We
conducted experiments computing the results of both global
and local optimizations to compare their performances with
respect to how well resources are allocated. The comparison
is done by comparing the value of the fitness function of the
implemented allocations assuming that changes don’t count
(i.e., w4 = w5 = 0). For local optimization, we have used
different weights for parameters in the fitness function to find
allocation. Due to space limitation we will show the results for
2 different usages of fitness function as specified in Table 3.
We call global optimization the baseline, i.e. the minimization
of the parameters relevant to server and links usage. For local
optimization we show the 2 limited cases: (1) all parameters
are considered and (2) only parameters relevant to changes
are used. Since the second case tries to minimize the changes
to the servers and links, it represents the scaling solutions
that in theory minimally disturb the traffic (e.g., packet drops,
latency).

Fitness Function Usage w1 w2 w3 w4 w5
Global Optimization 1 1 1 0 0
Local Optimization 1 1 1 1 1 1
Local Optimization 2 0 0 0 1 1

TABLE III: Different usages of fitness function

Fig. 3: Fitness Value Comparison

A. Experiments with k-fat tree architecture

For the first set of experiments we have used the k-fat tree
as the architecture for NFC. Figure 3 shows a comparison of

fitness values of the baseline fitness function obtained from
configuration solutions given by (1) the global optimization,
(2) the local optimization 1 and (3) the local optimization 2
for dynamic traffic changes over the 36 events that Elasticity
Manager will report. As expected the global optimization
produces better resource allocations than the other two, but
the important observation is that the figure clearly shows that
optimizations (2) and (3), if we smooth the curves, will follow
essentially the same behavior (module a translation in the y
axis) that the behavior of the baseline (1).

Fig. 4: Server Changes Comparison

Figure 4 shows a comparison of server changes needed in
the configuration solutions given by (1) global optimization,
(2) local optimization 1 and (3) local optimization 2 after pro-
cessing each event. Again, as expected, the global optimization
is the one causing the largest number of changes. On the other
hand, since the local optimizations allows genetic operations
only on the partial solutions that are scaling, the solutions
given by the local optimization has fewer server changes from
their previous configuration. The interesting part is that both
local optimization methods have the same number of server
changes most of the time, making the two methods essentially
the same. We have observed that these server changes are not
necessarily caused by the genetic operations, but rather they
are the unavoidable changes due to the scaling requirements.

Fig. 5: Links Changes Comparison



Figure 5 shows a similar comparison to Figure 4 but for
links changes needed in the configuration solutions given by
(1) global optimization, (2) local optimization 1 and (3) local
optimization 2 from their previous configuration to current
configuration in the solution. Following the pattern in server
changes, the solutions given by the global optimization has
most links changes from their previous configuration. Both
local optimization methods have the same number of links
changes most of the time.

When it comes to the number of changes in servers and
links, there is no much difference between local optimization
1 and local optimization 2 methods. But as we have shown
earlier, local optimization 1 (which additionally minimizes
usage of servers and links congestion) gives better fitness
values than local optimization 2. Therefore, local optimization
1 leads to a better server and network resources utilization
without incurring in a larger number of changes. In the rest
of the experiments, we have used local optimisation 1 as the
method for local optimization, as it performs better than local
optimization 2.

B. Experiments with different architectures for NFC

After the initial set of experiments conducted with k-fat
tree architecture, we explored the fitness function behaviour
with global optimization and local optimization over different
data center architectures that we have described in the section
IV-B. In the same time, we wanted to check how the fitness
function would behave over several days, so we repeated the
data for single day for several times. Because of the space
limitations we have included the results for 2 repetitive days.

Figure 6 shows the fitness values for k-fat tree, BCube
and VL2 architectures for 2 repetitive days. As expected for
all three topologies, the global optimization produces better
resource allocations than the local optimization. Also they
follow essentially the same behaviour (module a translation in
space) of the baseline: global optimization. The fitness values
grow during most of the scaling events of each day, and this
is because, in the traffic model we are using, the traffic is
increasing until late night of each day.

We observed that for each architecture’s fitness values are
effected by different parameters of the fitness function. For all
three architectures, the number of servers used are very much
similar while the number of links used and the links utilization
make the difference in the fitness values.

In the BCube architecture, local optimization always uses
fewer links than global optimization and this creates the
difference between two optimizations. Since we are trying to
minimize number of server and links changes in the local
optimization, it hesitates to use more links where the global
optimization freely use more links over time. So the solutions
given by the global optimization are less congested than the
solutions given by the local optimization.

In the VL2 and k-fat tree architectures, for both the local
optimization and the global optimization, the number of links
used is similar while the link utilization makes the difference.
When comparing the fitness values increases for each day, the
VL2 architecture’s fitness values for the local optimization
increase fast with respect to k-fat tree and BCube. This is

because, in the VL2 architecture servers are more compact and
it has fewer paths between servers inside the same pod. This
makes the links more congested and when traffic is increasing,
links utilization also increases fast.

The k-fat tree architecture has more smooth effect on the
parameters of the fitness function. Since it has more paths and
servers are not compact, it tries to use more links and make
the links less congested.

Fig. 6: Fitness Values Comparison for Two Repetitive Days

VI. RELATED WORK

Initial work on the VM placement problem assumed that
VMs are assigned static shares of servers (CPU and/or mem-
ory). The placement of VMs onto servers was related to the
vector bin packing problem in [20] and heuristic algorithms
were discussed in [21]. Now a days, provisioning requests from
cloud users involve sets of VMs. So the placement is con-
strained by resource requirements and placement constraints
indicated by the cloud user [22], [23]. Bandwidth allocation
for communicating VMs have been modelled as a Stochastic
Bin Packing problem [24] and a Min Cut Ratio-aware problem
[25]. [5] uses an ILP apparoach, and takes in the order of
minutes to decide the placement of 1024 VMs in the data
center of 16 servers. [8] argues that it is important to optimize
the placement of VMs and routing between VMs jointly. They
have considered the VM placement as deciding the location
of a VM each time a request is received using a Markov
approximation technique. [7] focuses on network interface
of machines as the network resource to optimize with the
server resources. [26] proposes a heuristic based approach for
initial NFs placement and chaining problem with the goal of
minimizing number of NFs instances used in the cloud.

Following the initial placement, VMs can be rescaled as
demanded by the applications and agreements made with the



clients. [27] proposes a fuzzy-logic based controller, [28]
formulates multiple-knapsack problem in which the objectives
are to maximize the satisfied demand for the collection of VMs
and [29] brings a decentralized solution for VM placement,
using a round-based gossip protocol. AGILE [30] proposes a
distributed resource scaling system for IaaS clouds and uses
wavelets to provide medium-term performance predictions.

VII. FINAL REMARKS

In this paper, we have presented a summary of the GA
based resource allocation algorithm which we proposed in [1]
and going further, explored the evolution of the algorithm, over
a full day traffic patterns based on more realistic data.

We evaluated the behaviour of the resource allocation
algorithm when scaling out/in, over different fitness functions
and compared their performances. Even though for these
experiments, we have only considered the number of servers
used, links used, links congestion, number of server changes
and links changes in the fitness, we can change the fitness
function easily and add different factors to be considered
for the optimization. In fact we can add parameters to the
fitness function such as traffic lost, delay, cost of NFs software
license [26], power consumption etc. The biggest advantage
of using GA is, since the fitness function does not need to be
linear, we can introduce parameters which do not have linear
dependencies. So in the future we are planing to explore more
on factors that effect the NFC and evaluate fitness functions
more comprehensively.

We have evaluated the behaviour of the resource allocation
algorithm over two days assuming three different architectures
for NFC. We have observed that the architecture of the NFC
affects the fitness function heavily and therefore the parameters
and weights of those parameters in the fitness function should
be defined based on the architectures.

We must point out that, the traffic model we have used here
is limited to HTTP traffic and we have made many assumptions
with regard to deciding when to scale and how much to
scale. Also we have only looked at the NFs that are TCP/IP
based, but there are many other types of NFs. In particular,
NFs in the telecom networks are very different from the ones
reported in [2] and traffic going through a telecom network
can pass through more than 20 different NFs. Hence, building
a more realistic model is an open challenge, that needs to be
addressed.

ACKNOWLEDGMENT

This research was sponsored by the U.S. Army Research Labora-
tory and the U.K. Ministry of Defence and was accomplished under
Agreement Number W911NF-06-3-0001. The views and conclusions
contained in this document are those of the author(s) and should not
be interpreted as representing the official policies, either expressed or
implied, of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation here
on.

REFERENCES

[1] W. Rankothge, J. Ma, F. Le, A. Russo, and J. Lobo, “Towards making
network function virtualization a cloud computing service,” in IM 2015.

[2] J. Sherry, S. Hasan, C. Scott, and at el, “Making middleboxes some-
one elses problem: network processing as a cloud service,” in ACM
SIGCOMM’12.

[3] M. M. Vinicius G., Alessandro F. and at el., “Uncovering the big players
of the web,” in ICTMA 2012.

[4] ETSI, “Network functions virtualisation white paper,” SDN and Open-
Flow World Congress, 2013.

[5] X. Meng, V. Pappas, and at el, “Improving the scalability of data center
networks with traffic-aware virtual machine placement,” in GIIS’12.

[6] S. Jain, A. Kumar, S. Mandal, J. Ong, and at el, “B4: Experience with
a globally-deployed software defined wan,” in ACM SIGCOMM’13.

[7] F. Wuhib, R. Yanggratoke, and at el, “Allocating compute and network
resources under management objectives in large-scale clouds,” in JNSM
2013.

[8] J. Jiang, T. Lan, S. Ha, M. Chen, and at el, “Joint vm placement and
routing for data center traffic engineering,” in INFOCOM’12.

[9] A. Gember, R. Grandl, A. Anand, and at el, “Stratos: Virtual middle-
boxes as first-class entities,” TR1771, 2013.

[10] “Openflow 1.4 specifications,” https://www.opennetworking.org/sdn-
resources/onf-specifications/openflow.

[11] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient
supercomputing,” in IEEE Transactions on Computers, 1999.

[12] C. Guo, G. Lu, D. Li, and at el, “Bcube: a high performance,
server-centric network architecture for modular data centers,” in ACM
SIGCOMM 2009.

[13] A. Greenberg, J. R. Hamilton, N. Jain, and at el, “Vl2: a scalable and
flexible data center network,” in ACM SIGCOMM 2009.

[14] M. Melanie, An Introduction to Genetic Algorithms, 1999.
[15] S. Gebert, R. Pries, and at el, “Internet access traffic measurement and

analysis,” in ICTMA 2012.
[16] S. Kandula, S. Sengupta, and at el., “The nature of data center traffic:

Measurement and analysis,” in ACM SIGCOMM Internet measurements,
2009.

[17] Y. Tarui, “Analyzing impact of major social events on internet exchange
traffic,” 2009.

[18] X. C. Wenting Wang, Haopeng Chen, “An availability aware virtual
machine placement approach for dynamic scaling of cloud applications,”
in ICATC 2012.

[19] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks, 2003.

[20] G. Jung, Joshi, and at el., “Generating adaptation policies for multi-tier
applications in consolidated server environments,” in ICAC ’08.

[21] R. Panigrahy, K. Talwar, and at el, “Heuristics for vector bin packing.”
in Microsoft Research (2011).

[22] Z. A. Qazi, C.-C. Tu, L. Chiang, and at el, “Simple-fying middlebox
policy enforcement using sdn,” in ACM SIGCOMM’13.

[23] L. Shi, B. Butler, Botvich, and at el, “Provisioning of requests for virtual
machine sets with placement constraints in iaas clouds.” in IM 2013.

[24] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic band- width demand in data centers,” in Infocom 2011.

[25] V. Shrivastava, P. Zerfos, K. Lee, Jamjoom, and at el, “Application
aware virtual machine migration in data centers,” in Infocom 2011.

[26] M. Luizelli, L. Bays, L. Buriol, M. Barcellos, and L. Gaspary, “Piecing
together the nfv provisioning puzzle: Efficient placement and chaining
of virtual network functions,” in IM 2015.

[27] D. Gmach, S. Krompass, Scholz, and at el, “Adaptive quality of service
management for enterprise services,” in ACM Transactions:Web 2, 2008.

[28] C. Tang, M. Steinder, M. Spreitzer, and G. Paci
ci, “A scalable application placement con- troller for enterprise data
centers,” in International conference on World Wide Web, 2007.

[29] F. Wuhib and R. a. e. Stadler, “Gossip-based resource management for
cloud environments,” in CNSM 2010.

[30] H. Nguyen, Z. Shen, X. Gu, and et el, “Agile: elastic distributed resource
scaling for infrastructure-as-a-service,” in ICAC ’13.


