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Statement of translational relevance 

Cyclin-dependent kinase 7 (CDK7) is a critical regulator of cell cycle progression and 

gene expression, processes that are frequently deregulated in cancer. As such, inhibition 

of CDK7 activity has been proposed as a therapeutic strategy for the treatment of 

cancer, an aim that is supported by the recent development of selective CDK7 inhibitors 

with potent anti-cancer activities. Since CDK7 is centrally involved in key cellular 

processes in all cells, the use of CDK7 inhibitors could be limited by a toxicity associated 

with its function in normal tissues. Using mRNA expression profiling and 

immunohistochemistry, we find that expression of CDK7, as well as the associated co-

factors CyclinH and MAT1, are all elevated in breast cancer, suggesting that this tumour 

type may be especially sensitive to CDK7 inhibition and that the CDK7 over-expression 

may allow mitigation of any toxicity seen in normal tissues.  

 

 

  



 3

ABSTRACT 

 

Purpose: CDK-activation kinase (CAK) is required for the regulation of the cell-cycle and 

is a trimeric complex consisting of Cyclin Dependent Kinase 7 (CDK7), Cyclin H and the 

accessory protein, MAT1. CDK7 also plays a critical role in regulating transcription, 

primarily by phosphorylating RNA polymerase II, as well as transcription factors such as 

estrogen receptor-α (ER). Deregulation of cell cycle and transcriptional control are 

general features of tumor cells, highlighting the potential for the use of CDK7 inhibitors 

as novel cancer therapeutics.  

 

Experimental Design: mRNA and protein expression of CDK7 and its essential co-factors 

cyclinH and MAT1, were evaluated in breast cancer samples to determine if their levels 

are altered in cancer. Immunohistochemical staining of >900 breast cancers was used to 

determine the association with clinicopathological features and patient outcome.  

 

Results: We show that expression of CDK7, cyclinH and MAT1 are all closely linked at the 

mRNA and protein level and their expression is elevated in breast cancer compared with 

the normal breast tissue. Intriguingly, CDK7 expression was inversely proportional to 

tumour grade and size and outcome analysis showed an association between CAK levels 

and better outcome. Moreover, CDK7 expression was positively associated with ER 

expression and in particular with phosphorylation of ER at serine 118, a site important 

for ER transcriptional activity.  

 

Conclusions: Expression of components of the CAK complex, CDK7, MAT1 and Cyclin H 

are elevated in breast cancer and correlates with ER. Like ERα , CDK7 expression is 

inversely proportional to poor prognostic factors and survival. 
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INTRODUCTION 

 

Cyclin dependent kinases (CDKs) control cell proliferation by regulating entry into and 

passage through the cell cycle (1). The appropriate action of cell cycle CDKs is ensured 

by regulation of their activities through the availability of partner cyclins, interaction 

with CDK inhibitors (CDKi) and through their phosphorylation. Phosphorylation at a key 

threonine residue in the activation (T) loop facilitates and/or stabilizes the CDK-cyclin 

complex (2). In metazoans, T-loop phosphorylation is mediated by the CDK-activation 

kinase (CAK), a trimeric complex consisting of CDK7, CyclinH and the accessory protein, 

MAT1. Importantly, CDK7 is also required for transcription by phosphorylating the C-

terminal heptapeptide repeat domain (CTD) of RNA Polymerase II (PolII), a step that is 

required for gene promoter release and transcription initiation by PolII. Importantly, 

CDK7 also modulates regulated gene expression by phosphorylating transcription 

factors, including p53 (3), retinoid receptors (4, 5), androgen receptor (6, 7) and ER (8). 

Ligand-dependent phosphorylation of serine 118 (Ser118), important for ERα function 

and turnover, is mediated by CDK7 (8). 

 

Deregulation of CDK activity by multiple mechanisms, for example, cyclin upregulation 

and mutation, silencing or loss of genes encoding CDK inhibitors or Rb, commonly 

feature in cancer (9, 10). Hence, the development of inhibitors of cell cycle CDKs for 

cancer treatment has received considerable attention and numerous small molecule 

inhibitors have been described (11). Surprisingly, genetic studies have indicated that cell 

cycle CDKs, with the exception of CDK1, are not essential for most cell types (12, 13). 

Nevertheless, following an initial disappointment with several candidate drugs, newer 

CDK-selective inhibitors have offered renewed optimism in the utility of these targets. In 

particular, CDK4/6 selective inhibitors have shown promise against a broad range of 

cancers, including breast cancer, but can be ineffective, for example where Rb is absent 

or inactivated (14, 15). Additionally, CDK4/6 inhibitors are efficacious in combination 

with hormone therapies, for the treatment of ERα-positive advanced breast cancer (16). 



 5

 

Transcription inhibition appears to be important for the anti-tumour activities of several 

broad range CDK inhibitors, such as flavopiridol and seliciclib, which inhibit CDK7 and 

CDK9 (phosphorylation of PolII by CDK9 is needed for transcription elongation), in 

addition to inhibiting other CDKs. The action of these drugs has been linked to a 

reduction in PolII phosphorylation and reduced expression of short-lived anti-apoptotic 

proteins such as Mcl-1 and XIAP, to promote apoptosis (15). The dual role of CDK7 in 

transcription and the cell cycle means that CDK7 inhibitors potentially provide a potent 

means of blocking cell cycle progression, together with the promotion of apoptosis by 

transcription inhibition in cell lines from a variety of cancer types, including breast, 

leukaemia, neuroblastoma and lung (17-20). In the latter tumor types, the effects of 

CDK7 on RUNX1 and MYC expression and function are critical factors in the action of 

CDK7 inhibition. A further reason for CDK7 as a cancer target is that, although required 

for early embryonic development, CDK7 was not found to be essential in adult tissues 

with low proliferative indices (21), indicating that CDK7 selective inhibitors might not 

show general toxicity in cancer patients.  

 

 

 

 We have investigated the expression of CDK7 in breast cancer, since this might further 

support the case for the use of CDK7 selective inhibitors for cancer therapy, particularly 

in this tumour type. By profiling expression of the components of the CAK complex, 

CDK7, CyclinH, and MAT1 in the normal and malignant breast, we demonstrate that 

their expression is coordinately elevated in breast cancer, especially in ER-positive 

tumours, compared with normal breast tissue. We also show that CDK7, cyclinH and 

MAT1 expression is correlated with ER levels and is related to a good patient prognosis.  
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MATERIALS AND METHODS  

 

Breast Cancer Samples 

Tumour and surrounding normal tissue: Tissue samples (snap frozen) were obtained 

from patients undergoing breast surgery between 2011 and 2013; all patients gave their 

consent according to the tissue bank protocol (see below). Samples of tumour tissue 

and surrounding morphologically normal tissue, taken >5cm from the tumour, were 

obtained from each patient.  All samples were obtained from the Barts Cancer Institute 

Breast Tissue Bank and were covered by Research Tissue Bank Ethics Approval. RNA was 

also prepared from tumours from 74 patients who presented with primary, operable 

breast cancer to the Dundee Cancer Centre between 1997 and 2012 and provided 

written, informed consent for research use of their tissues; the Tayside Tissue Bank 

under delegated authority from the Tayside Local Research Ethics Committee approved 

the use of the clinical material and data. ER immunohistochemical staining and scoring 

was carried out as described (22). TMAs were prepared from a series of primary 

operable breast cancer carcinoma cases from 1986-1999 aged 70 years or less at the 

Nottingham Breast Unit. Patient selection and treatment details have been reported 

previously (23, 24).  

 

RNA preparation and quantitative RT-PCR (qRT-PCR) 

50-100mg of frozen tissue was homogenised using TissueLyser (Qiagen, Germany) with 

stainless steel ball bearings (5mm) in 0.7 ml of lysis/binding buffer and the total RNA 

extracted using an RNeasy kit (Qiagen), according to the manufacturer’s instructions. 

RNA purity and concentration was measured using a NanodropTM 1000 

spectrophotometer (Nanodrop Technolodies, Wilmington, DE, USA). cDNA was 

prepared by reverse transcription of 2.0μg of total RNA, in a final volume of 20μl using 

RevertAid M-MuLV reverse transcriptase (Fermentas, York, UK) and random hexamer 

oligonucleotide priming. Quantitative gene expression analysis was carried out using 

real-time PCR and Taqman gene expression assays for CDK7 (Hs00361486_m1), CyclinH 
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(Hs00236923_m1), MAT1 (Hs01041574_m1) and GAPDH (Hs99999905_m1) (Life 

technologies). Gene expression was normalized to GAPDH expression using the 2-ΔΔCT 

method (25).  

 

Gene expression and correlation analysis of microarray data 

Expression of CDK7, CyclinH and MAT1 was analysed in normal breast (n=144) and 

breast cancer (n=1556) samples from the METABRIC dataset using Oncomine (26). For 

the expression of ER, CDK7, CyclinH, MAT1 and PGR in the METABRIC dataset of patient 

samples (n=1959), median expression was used as the cutoff in a Cox regression 

analysis. Kaplan-Meier survival plot, and hazard ratio with 95% confidence intervals, 

logrank p-value and correlation scores (Pearson and Spearman) were calculated and 

plotted in R using Bioconductor packages. 

 

Immunohistochemistry  

Mouse monoclonal antibodies for CDK7 (ab115181, Abcam) and cyclinH (ab54903, 

Abcam) and MAT1 (sc-135981, Santa Cruz Biotechnology) were used for 

immunohistochemistry (IHC) at a working dilution of 1:100 in Leica antibody diluent. The 

staining methodology has been described previously (24). Immunohistochemical 

detection of ER phosphorylated at serine 118 (P-Ser118) was carried out as detailed 

before (27). Immunostaining was assessed using the H-scoring method and the X-tile 

software (28) was used to produce cut-off points for low and high expression levels, as 

described (24). In brief, this involved random assignment of the patient cohort into two 

separate training and validation groups ranked by the patient follow-up time. Checking 

the obtained cut-off points to the validation set tested statistical significance. IHC and 

scoring for all other proteins has previously been described (29, 30).  

 

Statistical analyses 

Statistical analysis of IHC scores for the breast cancer TMAs was performed using SPSS 

21 software (SPSS Inc, Chicago, IL, USA). The association between CDK7, CyclinH and 
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MAT1 and clinicopathological parameters was determined using the Pearson’s chi-

squared test. Survival curves were estimated by the Kaplan-Meier method with a log-

rank test to assess the significance. Multivariate Cox proportional hazard regression 

models were used to determine independent prognostic effect of variables.   

 

siRNA transfections  

MCF-7 cells were transfected with siRNA using the lipofectamine RNAiMAX reverse 

transfection protocol (Life technologies), as described previously (31). siRNAs for CDK7 

(s2829, s2830), CyclinH (s2537 and s2538), MAT1 (s8898 and s8900) and non-targeting 

(control) siRNA (4390844) were obtained from Life Technologies, UK. Forty-eight hours 

post-transfection, cells were lysed in RIPA buffer. Immunblotting was carried out using 

antibodies for CDK7 (ab9516), CyclinH (ab54903) and ß-actin (ab6276), purchased from 

Abcam (UK), as described previously (31). Antibodies for MAT1 (sc-13598), TBP (sc-421) 

and P-Ser118 (sc-12915) were purchased from Santa Cruz (USA) and ER (VP-E614) from 

Vector laboratories. For performing RT-qPCR, MCF-7 cells were transfected with siRNAs 

for CDK7, CyclinH and MAT1, purchased from Dharmacon, USA. Total RNA was prepared 

using the RNeasy kit, according to manufacturer’s methods (Qiagen). 
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RESULTS 

 

CDK7, CyclinH and MAT1 are overexpressed in breast cancer  

 

To compare CDK7 expression in normal and malignant breast tissue, we prepared total 

RNA from 20 breast cancers and matched adjacent normal breast tissue (Fig. 1A-C, 

Supplementary Fig. 1A-C). CDK7 was detectable in all samples at the mRNA level. 

Interestingly, the majority of tumours were characterised by higher CDK7 expression, 

compared with the matched adjacent normal tissue. Mean CDK7 expression was 2.2-

fold higher in tumours, compared with the adjacent normal tissue (p=0.006). CyclinH 

and MAT1 expression was similarly elevated in breast cancer, CyclinH (p=0.0061) and 

MAT1 (p=0.0057) levels in tumours being 1.9 and 2.1 fold higher respectively, than in 

the normal breast. EpCAM is an epithelial marker, the expression of which can be 

elevated in breast cancer (32). EpCAM mRNA levels were not significantly different in 

our samples (Supplementary Fig. 1D), indicating that the elevated CDK7 expression in 

this series is unlikely to be due to lower epithelial cellularity of the adjacent normal 

tissue. IHC of a small series of breast cancer samples showed that nuclear CDK7 

immunostaining intensity was consistently higher in tumor cells, compared with CDK7 

levels in adjacent normal elements (Supplementary Fig. 1E, F). Cyclin H levels were also 

elevated in tumor cells compared with adjacent normal elements. However, MAT1 

levels were not different between normal and cancer cells.  

 

We next analysed CDK7, CyclinH and MAT1 expression in the METABRIC microarray 

dataset of 1,556 breast cancers and 144 normal breast samples (33). As observed by 

qRT-PCR in our samples, CDK7 (p = 1.49x10-38), CyclinH (p = 9.41x10-4) and MAT1 (p = 

9.06x10-10) expression was also elevated in breast cancer, compared to expression in 

normal breast in this data set (Fig. 1D).  
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Interestingly, these analyses indicated that expression of CDK7, CyclinH and MAT1 may 

be co-regulated (for example, see patient samples 1, 2, 10 and 11; Supplementary Fig. 

1A-C). Pair-wise comparison using Pearson correlation coefficient analysis showed that 

the expression of CDK7 and CyclinH is indeed strongly associated in this tumour series 

(r2=0.861; p<0.0001), as is the expression of CDK7 and MAT1 (r2=0.879; p<0.0001) and 

CyclinH and MAT1 (r2=0.862; p<0.0001) (Supplementary Fig. 2A-C). In agreement with 

this, Pearson correlation coefficient analysis of the 1,959 samples in the METABRIC 

cohort showed evidence of a relationship between expression of CDK7 and CyclinH 

(r2=0.28), CDK7 and MAT1 (r2=0.25) and an especially strong association between 

CyclinH and MAT1 expression (r2=0.69) (Supplementary Fig. 2D). The difference in 

strength of associations in our cohort and METABRIC may reflect, at least in part, 

differences in proportions of different breast cancer subtypes. Indeed, whereas 63% 

(47/74) of tumors in our cohort are ER-positive, compared with 77% (1489/1928) of the 

samples in METABRIC. Analysis of TCGA and other breast cancer data sets showed that 

mutations, amplification and/or deletion of the CDK7, cyclinH and/or MAT1 genes are 

uncommon (Supplementary Fig. 2E), so their elevated expression and/or co-regulation 

are unlikely to be the result of gene rearrangement.   

 

To determine if co-regulation of the CDK7, CyclinH and MAT1 genes can be confirmed 

experimentally in breast cancer cells, we performed siRNA for CDK7 in MCF-7 cells. 

Efficient CDK7 knockdown was achieved at both the mRNA and protein levels (Fig. 1E, 

1H). Additionally, siCDK7 transfection also resulted in CyclinH and MAT1 down-

regulation at the mRNA and protein levels (Fig. 1F-H). Similarly, transfection of MCF-7 

cells with CyclinH siRNA led to reductions in CyclinH, but also reductions in the levels of 

CDK7 and MAT1 mRNA and protein. Finally, MAT1 siRNA reduced MAT1, but also CDK7 

and CyclinH expression. By contrast, expression of the TFIIH p62 subunit was unaffected, 

as were TBP and ER levels, suggesting that the siRNA mediated lowered CAK expression 

is specific. In agreement with our findings, reduction in protein levels of all three CAK 

subunits have been reported for CDK7 and MAT1 knockout mice (21, 34). What is 
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striking from our results is that knockdown of one CAK subunit not only results in 

reduction in protein levels of the other subunits, which might be attributable to 

disruption of the CAK complex; rather mRNA levels of the other subunits are reduced, 

implicating transcriptional or post-transcriptional mechanisms in the co-ordinate 

regulation of CAK subunit mRNA levels. Finally, immunoblotting of MCF7 cells sorted by 

flow cytometry showed similar expression patterns for CDK7, cyclinH and MAT1 through 

the cell cycle, with highest levels of each subunit in G1 and G2/M (Supplementary Fig. 

3A-B). siRNA mediated knockdown of CDK7 was not associated with cell cycle arrest, but 

resulted in apoptosis (Supplementary Fig. 3C), as has been described for CDK7 inhibitors 

BS-181 and THZ1 (17, 18).    

 

 

CDK7, CyclinH and MAT1 expression is associated with better patient outcome in 

breast cancer   

 

In order to determine expression of the CAK complex proteins in breast cancer and to 

analyse associations with clinical features, we carried out IHC of breast cancer TMAs for 

CDK7 (n=945), CyclinH (n=1218) and MAT1 (n=910) (Fig. 2A). Differential staining was 

evident for different samples, so the H-scoring method and cut-off H-scores were used 

to segregate tumours into high and low expression groups. Spearman Rank correlation 

of protein levels for the CAK subunits (H-scores) showed that expression of CDK7, 

CyclinH and MAT1 is strongly associated (p<0.001; Fig. 2B), as was observed for mRNA 

levels, further evidence for an important relationship between expression of the three 

CAK subunits in breast cancer.  

 

There was a suggestion of an association of CDK7 expression with age in patients aged 

between 51-60 (p=0.042), but not with menopausal status (p=0.39) (Table 1). High 

MAT1 levels were also weakly associated with age (p=0.044), but not with menopausal 

status (p=0.22). Importantly, elevated expression of CDK7, CyclinH and MAT1 was 
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associated with markers of better prognosis. Hence, patients with high grade and larger 

tumors, or those who developed recurrent disease, featured low CDK7, CyclinH and/or 

MAT1 expression. As expected from the association of high levels of the CAK 

components with low tumor grade and reduced recurrence, high CDK7 expression was 

associated with longer breast cancer specific survival (BCSS) (log-rank = 4.11, p = 0.04) 

(Fig. 2C). Multivariate Cox hazard analysis including tumour stage, size, grade and lymph 

node (LN) status showed an increased significance of CDK7 with longer BCSS (HR=0.65 

(0.41-0.84), p=0.001) (Table 2). Multivariate analysis also showed a benefit for high 

CDK7 expression for time to distant metastasis (TTDM) (Supplementary Table 1). High 

CyclinH (log-rank = 7.32, p = 0.007) and MAT1 (log-rank = 8.43, p = 0.004) were also 

associated with longer BCSS. Univariate analysis for low or high expression of all three 

CAK subunits maintained the survival benefit (log rank = 6.09, p=0.014). In the 

multivariate analysis model tumour size, LN status and HER2 status,  along with BCSS 

were significantly associated with high CyclinH (p = 0.003) and MAT1 expression (p = 

0.016), as was high expression of all three proteins (CAK) (p=0.001) (Table 2, 

Supplementary Table 1).  

 

 

Expression levels of the CAK subunits are associated with ER expression in breast 

cancer 

 

Interestingly, CDK7 (p=0.001), CyclinH (p<0.001) and MAT1 (p<0.001) levels were higher 

in ER-positive than in ER-negative breast cancer (Table 3) and there was a positive 

association of CDK7 (p=0.002), CyclinH (p<0.001) and MAT1 (p<0.001) levels with PGR 

positivity, together indicative of higher CAK levels in luminal breast cancer. This was 

further confirmed by the fact that CDK7, cyclinH and MAT1 levels were associated with 

androgen receptor (AR) positivity, as AR expression is strongly associated with ER (35, 

36). There was also a significant association with the luminal A marker, GATA3 (37), 

although there was an inverse relationship with FOXA1, another important marker of 
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luminal A breast cancer. Indeed, CDK7, CyclinH and MAT1 levels were lower in HER2-

positive than in HER2-negative breast cancer and in triple-negative (TN), compared with 

non-TN breast cancer.  

 

Real-time RT-PCR analysis of RNAs prepared from 74 independent breast cancers 

showed that CDK7 mRNA levels are also positively associated with ER mRNA levels (r2 = 

0.56, p < 0.0001) (Supplementary Fig. 4A), as are CyclinH (r2 = 0.46, p < 0.0001) and 

MAT1 (r2 = 0.44, p < 0.0001) mRNA levels. As expected, a relationship between ER and 

PGR mRNA levels (r2 = 0.63, p < 0.0001) was also observed in this patient series. The 

association was also evident when comparing CDK7, CyclinH and MAT1 mRNA levels 

with immunohistochemically defined ER status in this sample set (supplementary Fig. 

4B, C). Further confirming this association, CDK7, CyclinH and MAT1 mRNA expression 

was also positively associated with ER mRNA levels in the METABRIC dataset 

(Supplementary Fig. 4D). Analysis of the CAK expression in the PAM50 breast cancer 

subtypes showed slightly higher expression in luminal B than in luminal A breast cancer; 

p=0.03, 0.02 and <2.2e-16 for CDK7, cyclinH and MAT1, respectively (Supplementary Fig. 

4E-G). Moreover, CAK expression was significantly higher in luminal A/B than in HER2+ 

or in basal breast cancer. Interestingly, expression of each of the CAK subunits was also 

higher in HER2-positive than in basal breast cancer.  

 

Taken together, the simplest explanation for the high expression of CAK in ER-positive 

breast cancer is that ER regulates their expression. However, treatment of MCF-7 cells 

with estrogen did not affect expression of any of the subunits (supplementary Fig. 5A). 

ER knockdown also did not alter CAK levels (supplementary Fig. 5B) and examination of 

ER ChIP-seq for MCF-7 cells (38) did not identify ER binding regions within the genes nor 

within 50 kb 5’ or 3’ to the CDK7, CyclinH or MAT1 genes, indicating that the association 

between expression of these genes and ER expression is not due to direct regulation of 

their expression by ER. Interestingly, high expression of the CAK complex in our TMA 
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series was associated with longer time to distant metastasis (TTDM) (log rank = 6.68; 

p=0.01) and BCSS in ER-positive breast cancer (log rank = 5.61; p=0.018) (Fig. 2D-E).  

 

Evidence for a role of CDK7 in phosphorylation of ER at serine 118 in breast cancer 

 

Phosphorylation of ER at serine 118 (Ser118) promotes ER activity and CDK7 has been 

shown to mediate ligand-dependent phosphorylation of Ser118 (8, 39) and CDK7 

knockdown resulted in reduction in Ser118 phosphorylation (Fig. 1H). To determine if 

Ser118 phosphorylation is related to CDK7 expression in breast cancer, we performed 

IHC for ER phosphorylated at Ser118 (P-Ser118). In agreement with previous findings 

linking Ser118 phosphorylation with better prognosis (40), Ser118 phosphorylation was 

associated with better BCSS and TTDM and BCSS, high P-Ser118 levels being correlated 

with better survival, patients with intermediate P-Ser118 have worse prognosis and 

patients with very low/absent P-Ser118 having the poorest survival (TTDM Log rank = 

19.9, p<0.001; BCSS Log rank = 13.0, p=0.005) (Supplementary Fig. 3).  

 

More than half (54.1%) of the CDK7-low breast cancers were negative or were weakly 

positive for P-Ser118, compared with just 26.2% of the CDK7-high tumours (p < 0.001; χ2 

= 56.3) (Table 4). As expected, similarly strong associations were obtained for P-Ser118 

and CyclinH (p <0.001; χ2 = 43.8), and P-Ser118 and MAT1 (p <0.001; χ2 = 66.5).  
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DISCUSSION 

 

The importance of CDK7 in cell cycle regulation and transcription has highlighted this 

kinase as a potential therapeutic target for cancer treatment. In line with this, recently 

described CDK7 selective inhibitors show anti-tumour activity in several cancer models 

(17-20). Importantly, these studies show that transcriptional drivers that are especially 

important in specific cancer types, for example, RUNX1 in leukaemia, are particularly 

sensitive to CDK7 inhibition (18). Similarly, hypersensitivity of the MYCN 

(neuroblastoma) (20) and MYC (lung cancer) (19) genes to CDK7 inhibition has been 

described and appears to be due to hypersensitivity of super-enhancers that drive 

expression of these factors. Given this diverse range of tumour types that potentially 

respond, we wanted to determine if CDK7 expression is altered in cancer, as expression 

and activity may be important factors in the utility of CDK7 inhibitors in the clinic. We 

chose to investigate CDK7 expression in breast cancer, since we have previously shown 

that a selective CDK7 inhibitor, BS-181, inhibits breast cancer cell growth in vitro and in 

vivo (17). Moreover, CDK7 directly regulates the transcriptional activity of ER by 

phosphorylating Ser118 (8, 39); thus CDK7 inhibitors might be especially effective in ER-

positive breast cancer featuring elevated Ser118 phosphorylation.  

 

Comparison of breast cancers with matched adjacent normal tissue showed that CDK7 

mRNA levels are elevated in this tumour type. This was confirmed by analysis of 

microarray datasets and is in agreement with previous reports which suggested that 

CDK7 protein levels are higher in cancer compared to the normal breast (41, 42). It is 

possible that these observations reflect differences in epithelial cell content. However, 

real-time RT-PCR for EpCAM, as well as comparison of CDK7 IHC for normal breast with 

CDK7 levels in tumor samples indicates that CDK7 levels are indeed elevated in breast 

cancer. Mutations and gene rearrangements at the CAK gene loci are uncommon, so this 

is unlikely to represent a major mechanism for high expression in breast cancer. 

Interestingly, the CDK7 and CyclinH genes are located 18 Mb apart on human 
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chromosome 5 and, are also linked in the genomes of several other vertebrates, 

including Zebrafish, chicken, rodents and man, making co-regulation through  common 

gene regulatory elements  possible.  

 

Remarkably, we observed that mRNA and protein levels of CyclinH and MAT1, both of 

which are required for CDK7 activity, are also increased in breast cancer, indicative of 

up-regulation of CAK activity in breast cancer. siRNA experiments also showed that 

knockdown of any one CAK subunit resulted in reduced expression of the other 

subunits, implying co-regulation of the expression of the CAK complex at the 

transcriptional level. Whilst the exact mechanisms underlying this co-regulation remain 

unclear, treatment with the CDK7 inhibitor BS-181 resulted in reduced CDK7 protein 

levels (17) and THZ1, a covalent CDK7 inhibitor inhibits PolII recruitment to gene 

promoters (18), indicating that expression of the CAK complex is strongly linked to CDK7 

activity. It is possible that this co-regulation is due to loss of CAK subunits in apoptotic 

cells. Notwithstanding, IHC staining of >900 breast cancers also demonstrated a 

significant association between levels of CDK7, CyclinH and MAT1, which together with 

the association for mRNA expression of the CAK subunits, provides strong evidence for 

co-regulation of CAK subunit expression in breast cancer.  

 

Interestingly, high-level expression of each of the CAK subunits was associated with 

longer survival in univariate and multivariate analyses. The relationship between CDK7 

and prognosis in breast cancer seems analogous to the relationship between ER and 

prognosis, in that ER confers a good prognosis, but is at the same time a suitable target 

for therapy. Moreover, the majority of tumours with high CDK7 levels were ER-positive, 

as were tumours with high levels of CyclinH and MAT1. In agreement with this, real-time 

RT-PCR and analysis of the METABRIC microarray datasets showed positive associations 

between mRNA levels of each CAK subunit with ER mRNA levels, as well as ER status. In 

ER-positive breast cancer, CAK expression was also associated with better prognosis. 

This does not appear to be due to higher CAK expression in luminal A compared to 
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luminal B breast cancer. Indeed, in METABRIC, CAK transcript levels are similar to, or 

higher in luminal B than in luminal A breast cancer. The mechanisms underlying the 

association between CDK7, CyclinH and MAT1 expression and ER are unclear, but it is 

interesting to note that CAK levels were strongly associated with ER phosphorylation at 

Ser118, which provides in vivo evidence for the previously described role of CDK7 in 

phosphorylating this residue (8). Ser118 phosphorylation is important not only for 

stimulating ER activity, but also regulates ER degradation and consequently ER levels 

(43, 44). This might afford a potential explanation for the relationship between levels of 

CAK and ER protein in breast cancer. Moreover, ER positively regulates its own gene 

expression, at least in part through a positive cross-regulatory loop with GATA-3 mRNA 

levels (45). CDK7 may thus promote ER gene expression by promoting its activity 

through phosphorylation of Ser118. Alternatively, transcription of the ER gene may be 

particularly sensitive to CDK7 activity, as demonstrated by the sensitivity of the RUNX1 

and MYC genes in other cancers (18).  

 

We previously reported the first specific, small molecule CDK7 inhibitor, BS-181 (17). We 

showed that BS181 promotes p53-dependent and independent apoptosis, at least in 

part by inhibiting the expression of short-lived transcripts for genes encoding inhibitors 

of apoptosis. The additional work presented here shows that CAK siRNA reduces ER 

phosphorylation, in line with its known action on ER phosphorylation at Ser118 (8). Our 

findings, therefore, offer some explanation as to why CDK7 expression carries a good 

prognosis in patients with ER positive breast cancer, in that in our sets, these patients 

have been treated with adjuvant endocrine therapy, where improved survival, is 

dependent on a functioning ER, for which Ser118 phosphorylation is critical.  

 

In summary, CDK7, CyclinH and MAT1 mRNA and protein levels are elevated in breast 

cancer, particularly in ER-positive breast cancer. Given the important role of CDK7 in 

regulation of transcription, as well as its role in the direct regulation of ER activity 

through phosphorylation of Ser118, our findings support the potential use of CDK7 
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inhibitors in the treatment of ER-positive breast cancer, either as a single agent, or in 

combination with hormonal therapy, with perhaps the most suitable group for 

treatment being ER-positive breast cancer patients with high CDK7 and P-Ser118 levels.  
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Figure legends 

 

Fig. 1. CDK7, CyclinH and MAT1 mRNA levels are elevated in breast cancer and show 

evidence of coordinate regulation. (A-C) CDK7, CyclinH and MAT1 mRNA levels, 

determined by real-time RT-PCR analysis, were normalised to the expression of GAPDH 

for RNA prepared from 20 paired tumour and adjacent normal tissues. (D) Analysis of 

microarray data from the METABRIC samples for expression of CDK7, CyclinH and MAT1 

in normal breast and breast cancer samples. (E-G) MCF-7 cells were transfected with 

two independent siRNAs for CDK7, CyclinH and MAT1. Real-time RT-PCR was performed 

using RNA prepared 48 hours after transfection. CDK7, CyclinH and MAT1 expression is 

shown relative to expression of GAPDH for three independent samples. Expression of all 

three genes was significantly reduced (p<0.001) for each siRNA when compared with 

the control siRNA. (H) Immunoblotting was performed using protein lysates prepared 

following siRNA transfection as above.  

 

Fig. 2. Immunohistochemical analysis of CDK7, CyclinH and MAT1 expression in breast 

cancer. CDK7, CyclinH and MAT1 antibodies were used to immunostain breast cancer 

TMAs. The sections were scored as CDK7 low (H-score: 0-160), CDK7 high (H-score: 161-

300), CyclinH low (H-score: 0-194), CyclinH high (H-score: 195-300), MAT1 low (H-score: 

0-179) or MAT1 high (H-score: 180-300). Negative controls were performed by omitting 

the primary antibody. (A) Staining representative of low and high H-scores is shown. (B) 

Pearson’s correlation analysis is shown, together with r2 values for each pair-wise 

comparison. (C) Kaplan-Meier plots showing breast cancer specific survival (BCSS) for 

CDK7, CyclinH and MAT1 expression in breast cancer. (D) COX regression analysis for 

time to distant metastasis (TTDM) and breast cancer specific survival (BCSS) for ER-

positive breast cancer samples only. (E) KM Plot of high versus low CAK levels in ER-

positive breast cancer.  
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Table 1. CDK7, CycH and MAT1 expression and clinic-pathological associations 

Variable  

CDK7  Expression (%) CycH  Expression  (%) MAT1  Expression  (%) 

Low High 
p-value 

Low High 
p-value 

Low High 
p-value 

(0-160) (161-300) (0-194) (195-300) (0-179) (180-300) 

Age                   

<40 16 (5.9) 65 (9.7) 

0.042 

59 (9.7) 46 (7.6) 

0.34 

38 (8.6) 40 (8.7) 

0.044 
41-50 72 (26.8) 172 (25.6) 159 (26.2) 167 (27.6) 111 (25.2) 130 (28.1) 

51-60 100 (37.2) 198 (29.5) 198 (32.6) 182 (30) 158 (35.8) 126 (27.3) 

>60 81 (30.1) 236 (30.1) 192 (31.6) 211 (34.8) 134 (30.4) 166 (35.9) 

Menopausal Status                   

Pre- 100 (37.6) 259 (38.9) 
0.39 

237 (39.4) 238 (39.5) 
0.97 

162 (37.1) 189 (41.1) 
0.22 

Post- 166 (62.4) 407 (61.1) 365 (60.6) 365 (60.5) 275 (62.9) 271 (58.9) 

Tumour Size (cm)                   

< 2.0 121 (44.8) 326 (48.9) 
0.28 

273 (45) 307 (50.6) 
0.051 

185 (42) 246 (53.7) 
<0.001 

≥ 2.0 149 (55.2) 341 (51.1) 334 (55) 300 (49.4) 255 (58) 212 (46.3) 

Grade                   

1 36 (13.4) 98 (14.7) 

0.16 

84 (13.9) 109 (18) 

<0.001 

53 (12.1) 85 (18.6) 

<0.001 2 82 (30.5) 239 (35.9) 174 (28.7) 229 (37.9) 118 (26.9) 176 (38.4) 

3 151 (56.1) 328 (49.3) 348 (57.4) 266 (44) 268 (61) 197 (43) 

Lymph Node                    

Negative 186 (68.9) 382 (57.2) 
0.001 

382 (62.9) 363 (59.8) 
0.26 

286 (65) 264 (57.5) 
0.021 

Positive 84 (31.1) 286 (42.8) 225 (37.1) 244 (40.2) 154 (35) 195 (42.5) 

Local Recurrence                   

No 210 (79.2) 555 (84.3) 
0.07 

501 (84.1) 486 (82.5) 
0.48 

355 (81.8) 376 (83.2) 
0.59 

Yes 55 (20.8) 103 (15.7) 95 (15.9) 103 (17.5) 79 (18.2) 76 (16.8) 

Regional Recurrence                   

No 212 (80) 576 (77.5) 
0.003 

510 (85.6) 516 (87.6) 
0.3 

351 (80.9) 399 (88.3) 
0.002 

Yes 53 (20) 82 (22.5) 86 (14.4) 73 (12.4) 83 (19.1) 53 (11.7) 

Distant Metastasis                   

No 149 (55.2) 417 (62.4) 
0.04 

373 (61.6) 388 (64.1) 
0.35 

251 (56.9) 304 (65.9) 
0.005 

Yes 121 (44.8) 251 (37.6) 233 (38.4) 217 (35.9) 190 (43.1) 157 (34.1) 

 



Table 2. Multivariate Cox Regression Analysis for Breast Cancer Specific 
Survival (BCSS) 
 

Variable 
 

P-value HR 95% CI 

Tumour size 0.002 1.48 1.15 1.90 

Stage <0.001 1.97 1.65 2.35 

Grade <0.001 1.78 1.45 2.19 

HER2 <0.001 1.69 1.26 2.26 

CDK7 0.001 0.65 0.51 0.84 

 
 

Variable 
 

P-value HR 95% CI 

Tumour size 0.001 1.49 1.18 1.88 

Stage <0.001 1.91 1.65 2.23 

Grade <0.001 1.85 1.54 2.23 

HER2 <0.001 1.67 1.28 2.20 

CycH 0.003 0.72 0.58 0.90 

 
  

Variable 
 

P-value HR 95% CI 

Tumour size 0.049 1.28 1.01 1.63 

Stage <0.001 1.82 1.53 2.16 

Grade 0.001 1.38 1.15 1.66 

HER2 0.001 1.66 1.24 2.23 

MAT1 0.016 0.75 0.59 095 

 
 

Variable 
 

P-value HR 95% CI 

Tumour size 0.002 1.82 1.25 2.65 

Stage <0.001 1.95 1.50 2.53 

Grade 0.10 1.29 0.95 1.76 

HER2 0.002 2.09 1.32 3.32 

CAK 0.001 0.53 0.37 0.78 

 
 



Table 3. Relationship between CDK7, Cyclin H and MAT1 expression and breast cancer subtypes       

    CDK7     Cyclin H     MAT1   

 Variable Low High p-value Low High p-
value Low High p-value 

  (0-160) (161-300) ( 2) (0-194) (195-300) ( 2) (0-179) (180-300) ( 2) 
ER                   
Negative 87 (32.2) 148 (22.2) 0.001 194 (32.1) 117 (19.4) <0.001 151 (34.2) 93 (20.3) <0.001 
Positive 183 (67.8) 520 (77.8) (10.4) 410 (67.9) 486 (80.6) (25.5) 291 (65.8) 365 (79.7) (21.9) 
PGR                   
Negative 128 (49.2) 248 (38.3) 0.002 292 (49.6) 191 (33) <0.001 214 (49.7) 157 (35.7) <0.001 
Positive 132 (50.8) 400 (61.7) (9.2) 297 (50.4) 388 (67) (33.1) 217 (50.3) 283 (64.3) (17.4) 
ER/PGR Status                   
ER+/PGR+ 132 (50.8) 400 (61.7) 0.003 295 (50.3) 387 (67.1) <0.001 217 (50.3) 282 (64.4) <0.001 
ER+/PGR- 46 (17.7) 108 (16.7) (11.4) 104 (17.7) 80 (13.9) (35.4) 68 (15.8) 71 (16.2) (25.6) 
ER-/PGR- 82 (31.5) 140 (21.6)   187 (31.9) 110 (19.1)   146 (33.9) 85 (19.4)   
AR                   
Negative 125 (52.7) 199 (33.2) <0.001 249 (46.5) 155 (28.9) <0.001 179 (46.9) 120 (29.3) <0.001 
Positive 112 (47.3) 400 (66.8) (27.3) 287 (53.5) 381 (71.1) (35.1) 203 (53.1) 290 (70.7) (26.0) 
FOXA1                   
Negative 67 (34.7) 209 (48.5) 0.001 154 (37.6) 199 (52.5) <0.001 119 (36.1) 150 (52.8) <0.001 
Positive (≥10) 126 (65.3) 222 (51.5) (10.3) 256 (62.4) 180 (47.5) (17.8) 211 (63.9) 134 (47.2) (17.4) 
GATA3                   
Negative/Low (<60) 154 (87.5) 277 (71.9) <0.001 310 (83.8) 229 (70.2) <0.001 245 (86) 177 (67.3) <0.001 
Positive (≥60) 22 (12.5) 108 (28.1) (16.4) 60 (16.2) 97 (29.8) (18.2) 40 (14) 86 (32.7) (26.9) 
HER2                    
Negative 212 (81.2) 566 (87.5) 0.015 506 (86.3) 500 (86.8) NS 350 (81.4) 394 (90) <0.001 
Positive 49 (18.8) 81 (12.5) (5.9) 80 (13.7) 76 (13.2)   80 (18.6) 44 (10) (13.0) 
Triple negative (TN)                   
Non-TN 207 (87.7) 554 (84.6) 0.033 453 (76.3) 523 (88.5) <0.001 329 (76.3) 390 (87.1) <0.001 
TN 56 (21.3) 101 (15.4) (4.6) 141 (23.7) 68 (11.5) (30.5) 102 (23.7) 58 (12.9) (16.9) 

 



Table 4. Phosphorylation levels of ER Serine 118 are associated with CDK7, 
CycH and MAT1 levels        P-Ser118-ER   
 Variable Negative Low Moderate High p-value 
  (0-50) (51-100) (101-200) (201-300) (�  2) 
CDK7           
Low (0-160) 64 (43.8) 15 (10.3) 51 (34.9) 16 (11.0) <0.001 
High (161-300) 63 (15.3) 45 (10.9) 182 (44.1) 123 (29.8) (56.3) 
CycH           
Low (0-194) 81 (36.0) 31 (13.8) 74 (32.9) 39 (17.3) <0.001 
High (195-300) 68 (15.3) 47 (10.6) 197 (44.4) 132 (29.7) (43.8) 
MAT1           
Low (0-179) 84 (35.7) 30 (12.8) 97 (14.3) 24 (10.2) <0.001 
High (180-300) 38 (13.6) 27 (9.6) 109 (38.6) 106 (37.9) (66.5) 
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P-value HR 95% CI 

Tumour size 0.002 2.14 1.31 3.49 
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Grade 0.03 1.50 1.03 2.18 

HER2 0.025 2.11 1.10 4.05 

CAK 0.016 0.55 0.33 0.89 

Variable 
TTDM 

P-value HR 95% CI 

Tumour size 0.007 1.81 1.18 2.79 

Stage 0.021 1.43 1.06 1.93 

Grade 0.157 1.25 0.92 1.71 

HER2 0.002 2.63 1.44 4.80 

CDK7 0.047 0.65 0.43 0.99 
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