
Reliability Analysis in Symbolic Pathfinder
Antonio Filieri1

Institute of Software Technology
University of Stuttgart

Stuttgart, Germany
antonio.filieri@informatik.uni-stuttgart.de

Corina S. Păsăreanu
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Abstract—Software reliability analysis tackles the problem
of predicting the failure probability of software. Most of the
current approaches base reliability analysis on architectural
abstractions useful at early stages of design, but not directly
applicable to source code. In this paper we propose a general
methodology that exploit symbolic execution of source code for
extracting failure and success paths to be used for probabilistic
reliability assessment against relevant usage scenarios. Under the
assumption of finite and countable input domains, we provide
an efficient implementation based on Symbolic PathFinder that
supports the analysis of sequential and parallel programs, even
with structured data types, at the desired level of confidence. The
tool has been validated on both NASA prototypes and other test
cases showing a promising applicability scope.

I. INTRODUCTION

Pervasiveness of software systems in critical applications is
stressing the need for methodologies and tools to do reliability
assessment. With the term reliability we generically refer to
the probability of the software to successfully accomplish its
assigned task when requested by the user [1]. In reality most
of the software we use daily is defective in some way, though
it can most of the time do its job. Indeed, the presence of a
defect in the code may never be realized if the input does not
activate the fault [2]. For this reason, even incorrect software
may be quite reliable under specific usage profiles.

Most of the available approaches for software reliability
analysis are based on formal models derived by architectural
abstractions [3], [4]. To deal with code, black-box [5] or some
ad-hoc reverse engineering approaches have been proposed,
e.g. [6]. Model-driven techniques have also been used to
keep design models synchronized with the implementation [4],
though their application scope is usually limited to specific
domains, e.g. embedded systems.

In this paper we propose the systematic and fully automated
use of symbolic execution to extract logical models of failure
and successful execution paths directly from source code. In
the past decade the use of symbolic execution as a means
to analyze programs have steadily increased and it is now
routinely used to find errors in code and to generate tests, see
for example [7], [8], [9]. In this work we show how to take
the path conditions generated by these tools and use them to
estimate the reliability of the implemented software.

1Part of this work has been done while the author was with the DEEPSE
group - DEI - Politecnico di Milano, Milan, Italy.

A path condition is a set of constraints on the inputs that, if
satisfied by the input values, will allow the execution to follow
the specific path through the code. We label each (terminating)
execution path with either success or failure. Since the set of
path conditions produced by symbolic execution is a complete
partition of the input domain, given a probability distribution
on the inputs we can compute the reliability of the software
as the probability of satisfying any of the successful path
conditions. The probability distribution on the input formalizes
the expected usage profile that accounts for all the external
interactions of the software, both with the user and with
external resources such as remote components.

To account for non-termination in presence of loops we use
bounded symbolic execution. In this case interrupted paths will
be modeled by path conditions labeled as grey. For an input
satisfying a grey path condition we cannot predict success
nor failure. The resulting uncertainty will be used to define
a precise confidence measure to assess the impact of the
execution bounds and the consequent reliability prediction.

Although our approach can be customized for any symbolic
execution system, we focus on Symbolic PathFinder (SPF) [9]
that works at the Java byte code level. As failures, we can con-
sider the typical errors reported by SPF (e.g. assert violations,
null-pointer exceptions, race violations or deadlocks) but also
more general properties of interest, not necessarily related to
low-level bugs present in the code (which presumably could be
corrected before code release). For example, in Section VIII-A
we describe the reliability analysis for a NASA software
component that monitors for flight-rule violations during flight.
The analyzed code has no software bugs, but we characterize
as failure the paths that lead to mission abort due to flight-rule
violations.

We focus on programs whose inputs range over finite
discrete domains. This restriction allows us to make use of
model counting procedures for general and efficient algorithms
to compute probabilities. Our implementation supports linear
integer arithmetic (which is the most common theory handled
by symbolic execution tools), complex data-structures, loops
and also concurrency. For multi-threaded programs the actual
reliability depends both on the usage scenario and on the
scheduling policy. In this case we identify the best and worst
schedule for a given usage profile, that lead respectively to the
highest and lowest reliability achievable for that usage.
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Fig. 1. Running example structure.

The main contributions of the paper are: (1) calculating
reliability for source code, (2) a confidence measure for results
computed from a bounded analysis, (3) support for multi-
threading, (4) support for complex data-structures, (5) an
efficient implementation and (6) an evaluation of the approach
on NASA’s Onboard Abort Executive.

In the rest of the paper we first define a running example
that we will use throughout the paper and in Section II we
give some background on symbolic execution and probability
theory. In the following three sections we will show how to
calculate reliability for non-looping (III), looping (IV) and
multi-threaded programs (V) each time elaborating on the
running example to illustrate the techniques. In Section VI we
then show how reliability can be computed when symbolic
data-structures are given as input followed by details of the
implementation of our general approach (VII). The paper
finishes with the validation of the reliability calculations on
NASA’s Onboard Abort Executive (VIII-A) and the example of
a broken Binary Tree container (VIII-B), followed by related
work (IX) and conclusions (X).

A. Example Analysis

We illustrate our reliability analysis on an example modeling
a simplified flap controller of an aircraft. The controller is
composed of two actuators and a safety check to avoid overrun
of the flap. The user sets the goal position for the flap and
the actuators move toward it from the current position. The
actuation power of each controller is hindered by the effect
of the wind, which could push on both head or tail. The high
level structure of the flap controller is shown in Figure 1.

The position of the flap is identified by an integer value
between 0 and 15. Goal is an integer value that states the next
flap position and is provided by the user (we assume that any
goal position can be requested with the same probability). The
wind effect represents the action of the wind and could be any
integer between −15 and 15, depending on wind direction.

An actuation step of Actuator A moves the position of the
flap toward the goal position by 10 units; Actuator B by 1
unit. We will refer to 10 and 1 as the actuator strengths of
A and B, respectively. The actual movement depends also on
the wind effect which is added to the effect of the actuator.
Safety check represents an invariant to be verified after each
actuation. The invariant asserts that the value of the output
position is actually between 0 and 15.

We will describe parts of this system along with the pre-
sentation of reliability analysis for different control structures
and for multi-threading. In the latter case, we will show how
concurrency can be managed with schedules leading to better
or worse reliability.
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Fig. 2. Wind effect profiles.

The effect of wind is uncertain and will be profiled through
a random variable resembling specific operation scenarios.
Figure 2 shows the two profiles we will use. The ranges of
values for the wind effect are reported on the x-axis, and the
corresponding vertical bars represent the probability of a value
in the range to be inserted as input. In this example, we assume
symmetric distributions for the two profiles. Weak wind is
more concentrated around zero, while strong wind is more
likely to produce extreme values. The analysis will estimate
the mission success probability of our toy system in the two
different wind conditions.

II. BACKGROUND

In this section we recall some basic notions concerning
symbolic execution [10] and probability theory [11]. Further
extensions will be provided in subsequent sections as they
are needed. For simplicity, in this section we will assume
all the variables in our program to be integers from a finite
domain and all the conditions appearing in a branch or a loop
statement to be expressed as linear constraints. We will later
show how to relax these assumptions to make our framework
more general. We will focus here on symbolic execution for
Java, as performed by Symbolic PathFinder (SPF).

A. Symbolic Execution

Symbolic execution is an extension of normal execution in
which the semantics of the basic operators of a language is
extended to accept symbolic inputs and to produce symbolic
formulas as output [10]. The behavior of a program P is
determined by the values of its inputs. Such a behavior can be
defined through a state transition systems where the execution
of an instruction identifies the next reachable states.

Definition 1 (State of a program). The state s of a sequential
program is defined by the tuple (IP,V,PC) where:

• IP represents the next instruction to be executed.
• V is a mapping from each variable vi of the program to

its symbolic value, i.e. a symbolic expression.
• PC is the path condition. PC is a boolean expression over

the symbolic inputs σi.A path condition is a conjunct of
terms plus the constants true and false = ¬true as short
form for a tautology and an unsatisfiable condition.

The current state s and the next instruction IP define the
set of transitions from s. Without going into the details of
every Java instruction, we informally define these transitions
depending on the type of instruction pointed to by IP.



Assignment. At bytecode level we consider an assignment
as setting the value of the area of memory corresponding
to the left hand side variable vi ∈ V , while at source code
an assignment requires also to evaluate the right hand side
statement. The execution of an assignment leads to a new state
where IP is incremented to point to the next instruction and
V is updated to map vi to its new symbolic value. PC does
not change.

Branch. The evaluation of an if-then-else instruction (on
condition c) introduces two new transitions. The first leads
to the state s1 where IP1 points to the first instruction of the
then block and PC1 = PC∧ c. The second leads to a state
s2 where IP2 points to the first instruction of the else block
and PC2 = PC∧¬c. If the PC associated with a branch is not
satisfiable, symbolic execution will not follow the branch.

Loop. A while loop is unfolded by SPF until its condition
evaluates to false or the exploration depth limit is reached1.
Analogous transformations are applied to the other loop con-
structs.

Method invocation. Method invocations are managed by
means of macro expansion, i.e. the execution jumps to the
invoked subprogram and executes it, making the necessary
assignments to represent method’s arguments. The state s1 will
have the same PC, IP1 will point to the first instruction of the
method and V 1 will contain now the new assignments to the
formal parameters of the method.

The initial state of a program is s0 = (IP0,V0,PC0), where
IP0 points to the first instruction of the main method, V0
contains the arguments of main, if any, and PC0 = true. A
program may have also one or more terminal states. They
represent terminal condition of the program such as the exit
of the program or an uncaught exception making the program
terminate abruptly.

In Section V we will extend the definition of symbolic
execution to the case of multi-threading.

B. Probability Theory

In this section we recall some fundamental notions of prob-
ability theory for finite spaces. For an extensive exposition,
the interested reader could refer, for example, to [11].

The possible outcomes of an experiment are called elemen-
tary events. For example, the rolling of a 6-sided dice may
produce the elementary events 1,2,3,4,5, and 6. Elementary
events have to be atomic, i.e. the occurrence of one of them
excludes the occurrence of any other. The set of all elementary
events is called a sample space. A set of elementary events
is called an event. In this paper, we consider only finite and
countable sample spaces, meaning that the underlying set of
elementary events is countable and finite.

Definition 2 (Probability distribution). Let S be the sample
space of an experiment. A probability distribution on S is any
function

Pr : P(S)→ [0,1]∩R

1The choice of an exploration depth limit and its refinement is further
investigated in Section IV

that satisfies the following conditions (probability axioms):
• Pr({x})≥ 0 for every elementary event x
• Pr(S) = 1
• Pr(A∪B) = Pr(A)+Pr(B) for all events A,B ⊆ S with

A∩B = /0
The pair (S,Pr) constitutes a probability space.

Definition 3 (Conditional probability). Let (S,Pr) be a prob-
ability space. Let A and B be events (A,B ⊆ S), and let
Pr(B) ̸= 0.

The conditional probability of the event A given that the
event B occurs is:

Pr(A|B) = Pr(A∩B)
Pr(B)

Pr(A|B) is also referred to as probability of A given B.

Given the definition of conditional probability, the following
law holds:

Definition 4 (Law of total probability). Let (S,Pr) be a
probability space and {Bn : n = 1,2,3, . . .} be a finite partition
of S. Then, for any event A:

Pr(A) = ∑
n

Pr(A|Bi) ·Pr(Bi)

The law of total probability can also be stated for condi-
tional probabilities:

Pr(A|X) = ∑
n

Pr(A|X ∩Bi) ·Pr(Bi|X)

where Bi are defined as in Definition 4 and X does not
invalidate the assumptions of Definition 3.

III. COMPUTING RELIABILITY

In this paper we consider reliability (Rel) as the probability
that the program accomplishes its execution without hitting
any failure, under specific usage assumptions. A failure could
be any observable error for SPF, such as a failed assertion or
an uncaught exception. Since SPF operates at Java bytecode
level, the definition of failure events can be very detailed and
flexible.

The main flow of our analysis chain is shown in Fig. 3.
The input of the process is the Java source code. This is
symbolically executed by SPF, whose output is a set of path
conditions (PCs); a path condition is a set of constraints
on the program inputs whose satisfaction leads either to the
occurrence of a failure event or to success (i.e. termination
without failures).

Java SPF Probabilistic 
AnalysisPCs

Reliability Analysis

Rel

Fig. 3. Reliability analysis chain.

Let us assume for now that the symbolic execution of
the program always terminates (we will relax this assump-
tion in the next section). We classify the PCs produced by



SPF in the two sets PCs = {PCs
1,PCs

2, . . . ,PCs
m} and PC f =

{PC f
1 ,PC f

2 , . . . ,PC f
p} according to the fact that they lead to

success or failure, respectively.
Note that all path conditions identified by SPF define

disjoint input sets and, because of the termination assumption,
they cover the whole input domain. Therefore, the path con-
ditions define a complete partition of the input domain [10],
[9].

We further assume that all the input variables range over
finite discrete domains, whose joining is generically indicated
as D. We profile the expected usage for the program through
a usage profile (UP). UP is a set of pairs ⟨ci, pi⟩ where ci is a
usage scenario defined as a (constraint representing a) subset
of D and pi (pi ≥ 0) is the probability that a user input belongs
to ci. We further require, for simplicity, {ci} to be a complete
partition of D, and thus ∑i pi = 1 (checked automatically by
our implementation). Intuitively, UP is the distribution over
the input space. Notice that ci could contain even a single
element of D, allowing for the finest grained specifications of
UP.

Throughout the paper we will use constraints and the sets
characterized by them interchangeably. For example if the
input domain of variable x is {0,1,2,3}, we may use the
constraints characterizing this set x ≥ 0∧ x ≤ 3.

Given the output of SPF, reliability can be redefined as
the probability of executing the program (P) with an input
satisfying any of the successful path conditions, given the
usage profile UP. This definition can be formalized as:

Rel = Prs(P) = ∑
i

Pr(PCs
i | UP) (1)

An analogous definition can be provided for failure probabil-
ity Pr f (P) and it is straightforward to prove that Prs(P) +
Pr f (P) = 1.

A. Computing Reliability using Model Counting

Let us now look more closely at how to compute the actual
value of Rel (or, conversely, the failure probability of P). Since
UP defines a partition of the input domain, from the law of
total probability [11]:

Pr(PC | UP) = ∑
i

Pr(PC | ci) · pi (2)

Furthermore, from the definition of conditional probabil-
ity: Pr(PC|ci) = Pr(PC∧ ci)/Pr(ci). In order to use model-
counting techniques (e.g. [12], [13]) for the computation of
the conditional probabilities, let us define for a constraint
c the function ♯(c) that returns the number of elements of
D satisfying c. ♯(·) is always a finite non negative integer
because we assumed D finite and countable. Under this same
assumption, Pr(c) is, by definition [11], ♯(c)/♯(D) (where ♯(D)
is the size of the domain that we implicitly assumed not null).

Applying the same argument to the combination of equa-
tions (1) and (2) we obtain:

Rel = Prs(P) = ∑
i

Pr(PCs
i | UP) =

=∑
i

∑
j

Pr(PCs
i | c j) · p j = ∑

i
∑

j

♯(PCs
i ∧ c j)

♯(c j)
· p j

(3)

The implementation of ♯(·) depends on D, that is on the
types of the input variables, and will be described in Sec-
tion VII, with some insight on its computational complexity.

B. Example

From our example of Section I-A, let us consider the safety
check. After every step of an Actuator, the position of the flap
is updated from its previous value adding the effects of the
actuator and the wind. After each update, the current position
is checked against the safety invariant, as in Listing 1.

Listing 1. Safety invariant.
flapPosition = flapPosition + actuatorEffect +

windEffect;
if (flapPosition > MAX_POSITION || flapPosition

< MIN_POSITION) {
throw new OverrunException();

}

The probability of raising an OverrunException depends
on both the actuator strength and the wind profile. Let us
assume that only actuator B (strength 1) operates a single
action according to listing 1. In case of weak wind (cf. Fig. 2),
the reliability of the system is 0.60197132; in case of strong
wind it drops down to 0.51881720. If instead of actuator B we
use actuator A (strength 10), the reliability for weak and strong
wind is 0.79247312 and 0.52204301, respectively. Notice that
none of our actuators can converge to the goal in a single
step for all the values of wind effect, but the stronger actuator
is more effective in keeping the flap position in a safe range
even for stronger wind (according to the invariant). In sections
IV-A and V-A we will first allow a single actuator to operate as
many actions as needed, and then we will study the complete
system involving the concurrent use of the two actuators.

IV. LOOPING CONSTRUCTS

In the previous section we assumed the termination of
symbolic execution. In general, the presence of loop constructs
may lead to infinite computation and requires convenient
analysis strategies. The solution provided by SPF is based
on bounded symbolic execution [9]: a bound is set for the
exploration depth (i.e. the number of transitions executed);
when the bound is reached the exploration backtracks. In
this setting the symbolic execution is no longer complete
and, besides success and failure paths, a new set of paths is
collected for executions interrupted before reaching an error
or completing the run. We call this set of paths grey and label
the corresponding path conditions as PCg

1,PCg
2, . . . ,PCg

q. For
the set of grey path conditions it is possible to define Prg(P)
analogously to the other sets:

Prg(P) = ∑
i

Pr(PCg
i |UP) (4)



The three sets {PCs}, {PC f }, and {PCg} are disjoint, and
constitute a complete partition of the entire domain D [10].
Hence it is straightforward to prove that Prs(P)+Pr f (P)+
Prg(P) = 1 . The intuitive meaning of Prg(P) is to quantify
the ratio of elements of D for which neither success nor
failure have been revealed at the current exploration depth.
This information is a measure of the confidence we can put
on our reliability estimation:

Confidence = 1−Prg(P)

Confidence= 1 means that the symbolic execution is complete,
i.e. for each element of D we can state if it leads to a success or
a failure. Smaller values of Confidence may reveal a too small
bound for the exploration depth and thus suggest the need for
a deeper analysis. Confidence can thus be used for iterative
refinement of symbolic execution. Indeed, this measure is
by construction a non decreasing function of the exploration
depth, hence the exploration depth can be increased until the
desired confidence goal has been reached. Notice that, if for
very large values of the exploration depth the confidence keeps
a steady value it could be the bad smell of an infinite loop that
should be further investigated by the designers.

A. Example
Let us now allow an Actuator to run as many actions as

possible, that is until the goal comes closer that its actuation
strength. The body of the loop is constituted by an actuator
action, defined as in Sect. III-B:

Listing 2. Actuator loop.
while (abs(goalPosition - flapPosition)>=

ACTUATOR_STRENGTH) {
actuatorEffect = sgn(goalPosition -

flapPosition)*ACTUATOR_STRENGTH;
flapPosition = flapPosition + actuatorEffect

+ windEffect;
if (flapPosition > MAX_POSITION ||

flapPosition < MIN_POSITION) {
throw new OverrunException();

}
}

The loop in Listing 2 may not terminate because of the
wind effect (i.e. a wind effect greater than the actuator strength
inhibits the ability to converge to the goal). The results of
the analysis using actuator A only (strength 10) with different
exploration depths is shown in Table I for the profiles of the
wind effect:

TABLE I
ANALYSIS CONFIDENCE.

Exploration depth Weak wind Strong wind

10 Conf = 0.87580646 Conf = 0.85806452
Prs = 0.59677419 Prs = 0.48387096

30 Conf = 0.97741936 Conf = 0.95483871
Prs = 0.65358422 Prs = 0.54623656

50 Conf = 0.98440861 Conf = 0.96881721
Prs = 0.65734767 Prs = 0.55376344

70 Conf = 0.98924731 Conf = 0.97849463
Prs = 0.65949820 Prs = 0.55806452

Increasing the exploration depth, the confidence grows
revealing more accurate reliability predictions. Notice that,

due to the possibility of infinite loops, the confidence cannot
reach 1 because in some cases the symbolic execution does
not terminate. Indeed, analyzing, for example, the weak profile
with exploration depth 500 still leads to Conf = 0.9892473118
with Prs = 0.6594982078853047.

V. MULTI-THREADING

Multi-threading introduces non determinism in the choice of
the next thread that could access the CPU. Different choices
may affect the occurrence of failures, and thus the reliability
of the program. Without making any assumption on the way
the next thread is chosen (i.e. without assuming a next-
choice distribution nor specific scheduling polices) we want
to identify the best possible sequence of choices, that is the
one leading to the highest reliability (and the worst one).
The benefit of our approach is twofold: first, any possible
thread scheduler will provide a reliability between the worst
and the best case; second, inspection of the best case could
possibly provide insights for the design of a scheduler able
to improve software reliability for specific usage profiles. The
latter research path is still under investigation and in this paper
we will focus on the identification of the best and worst cases.

First, we need to extend the definition of symbolic execution
provided in Sect. II-A by replacing IP with a set of pairs
⟨ti, IPi⟩, where each ti identifies an active thread and IPi
represents the next instruction to be executed by thread ti.
A schedule σ is a sequence ti, t j, . . . , tk defining the order of
access to the CPU for all the active threads. Notice that for
a given schedule the multi-threaded program is reduced to a
sequential one whose next instruction corresponds to the next
instruction of the next thread to be executed, according to
the schedule. SPF allows one to symbolically execute multi-
threaded programs and to produce a set of pairs ⟨σi,PCi⟩
where PCi are path conditions classifiable as success, failure,
or grey as in the previous sections, and σi is the schedule
associated with the specific execution.

Although for each schedule σi in the SPF output it is
possible to analyze the corresponding PCs to compute its Prs,
Pr f , and Prg it is not always true that their sum is equal to 1.
Indeed it could be the case that for some inputs the execution
terminates earlier than for others. For example, a specific value
of the wind effect may lead to the failure of actuator A and the
abort of the system, while another may allow a further move
to be performed, for example by actuator B (assuming the
actuators run concurrently). Though the two schedules would
be reported by SPF as different, it is the case that the first one
is a prefix of the second. Generalizing, certain input values
may lead to early termination of the program (either success
of failure) while others may let the execution continue. Based
on this observation we can record the schedules produced by
(bounded) symbolic execution into a prefix tree and define the
maximal schedules:

Definition 5 (Maximal schedule). A maximal schedule (Σ) is
a thread schedule that is not a prefix of any other schedule in
the paths reported by a (bounded) symbolic execution.



For a maximal schedule Σi we can define the set of path
conditions PC∗ = ∪σ j∈pre(Σi)PC j, where pre(Σi) is the set of
all the prefixes of Σi including the maximal schedule. The
intuition behind the construction of PC∗ is the assumption of
Σi as the “prescribed” schedule and then the accounting for
possible early terminations of the execution captured in the
PCs of its prefixes. For a maximal schedule it is immediate
to notice that PC∗ covers the entire domain D. Indeed, either
the execution has been terminated because of the exploration
bound or no more instructions can be executed by SPF.

For each maximal schedule Σi we can now define:

Prs(P,Σi) = ∑
j

Pr(PC∗s
j | UP) (5)

where PC∗s is the subset of PC∗ leading to success. Analogous
definitions can be stated for PC∗ f and PC∗g. Since PC∗ covers
the entire input domain, we have that Prs(P,Σi)+Pr f (P,Σi)+
Prg(P,Σi) = 1 for every Σi.

Maximal schedules can now be ordered according to their
reliability obtaining the best and worst schedules and the
corresponding reliability values. In the ordering, a special role
is played by the grey area. Indeed it can be seen either in an
optimistic or a pessimistic way: in the former we add the value
of grey to success while in the latter to failure. Notice that grey
area keeps its role of measuring the confidence we can entrust
in the analysis, hence the same considerations of Sect. IV
hold. Finally, it could be the case that there is no single best
(or worst) schedule, but more than one reach the maximum
possible reliability. In this case the designer might pick the
most suitable one, according to the application domain.

The main issue in dealing with multi-threading is the com-
putational complexity of both SPF and the probability analysis
because of the number of schedules to analyze is exponential
in the number of the active threads. This problem can be
alleviated by means of partial order reduction (POR)[14].
The idea behind POR it to exploit the commutativity of
concurrently executed instructions, which result in the same
state when executed in different orders. In particular, two
symbolic paths that are in the same partial order have logically
equivalent path conditions [15] and thus we conjecture they
lead to the same probability results.

A. Example

Concluding our flap controller example from Sect. IV-A,
let us now allow the two actuators to run in two concurrent
threads. The run method of both of them is the same as
Listing 2, with strength 10 for actuator A and 1 for actuator B.
We bound the analysis at exploration depth 20 and, in order
to rank the different schedules, we conservatively consider
the grey area as failure. The reason for this small value for
exploration depth lies in the complexity of symbolic execution.
Indeed, the number of paths to be stored in memory grows
exponentially with the number of threads, saturating our 4Gb
availability for depth 25. The PCs collected are 5234, with
SPF time of 3 minutes and probabilistic analysis of 10 seconds
(thanks to the high reuse of previous computations as will be

explained in Sect. VII). For the sake of space, we report the
results for the weak wind profile only; the case of strong wind
leads to analogous observations.

The best schedule is M,M,M,A,A,B (where M stands for
the main thread) with reliability 0.14854167 and confidence
0.5154166667. We reported only the shortest schedule, all
the equivalent ones show the same pattern: M, as many
actions of actuator A as possible and then as many actions
of B as needed. Notice that this pattern is known in control
allocation theory for aeronautics systems as Daisy Chain, and
is actually applied for flap control [16]. Hence, in this example,
our analysis did not only provide reliability estimation but
suggested also a scheduling policy for the two actuators that
corresponds to the one designed by control engineers.

The worst schedule is instead, for example,
M,A,M,A,B,A,A,B,A,B,A,B,A,A,M,A with reliability
0.0 and confidence 0.04166666667 (this is the shortest
worst case schedule). Our conservative assumption played a
significant role in the ranking because of the large grey area
assumed as failure. On the other hand, the worst scheduling
policy in this case keeps bouncing between actuators A and
B reducing the effectiveness of control. Indeed, beside the
role of grey area, within 20 exploration steps the flap never
reached the goal.

VI. INPUT DATA STRUCTURES

We now describe how the reliability analysis is extended to
also handle programs that take as input structured data types
(e.g., lists or trees).

A. Usage Profiles for Data Structures

Usage profiles for data structures are defined with the help
of Java predicates (i.e. boolean methods) that define data
structure properties that partition the input state space. For
example, for a program with an input list, the UP may specify
that the input list is acyclic 90% of the time (and cyclic 10%).
As before, we restrict ourselves to finite input domains, which
for data structures will also limit the number of possible heap
nodes in the input.

SPF can analyze programs with unbounded data structures
as inputs, using lazy initialization [9]. The result of symbolic
execution is a set of paths, each characterized by a path
condition that encodes both numeric and heap constraints.

Listing 3. swapNode Example
class Node {
int elem;
Node next;

Node swapNode() {
if (elem*elem > next.elem) {

Node t = next;
next = t.next;
t.next = this;
return t;

}
return this;

}
}



As an example, consider the Java code in Figure 3 that
declares a class Node implementing linked lists. The fields
elem and next represent, respectively, the node’s integer value
and a reference to the next node in the list. The method swapN-
ode destructively updates its input list, referenced by implicit
parameter this, according to a non-linear condition on the first
two nodes. Symbolic execution results in eight symbolic paths,
due to the condition and the different aliasing possibilities in
the input (e.g. PC1 : in.elem ∗ in.elem > in.elem ∧ in.next =
in∧ in ̸= null, PC2 : in.elem ∗ in.elem) ≤ in.elem∧ in.next =
in∧ in ̸= null, etc.). Seven paths are successful and one leads
to failure (null dereference for PC3 : in.next = null∧ in ̸= null).
There are no grey paths (since there are no loops).

B. Model Counting for Data Structures

Though the procedure described so far can be applied on any
finite and countable input domain, the case of data structures
deserves special attention in the definition of the counting
procedure ♯(·). Indeed, in the worst case a complete (and
expensive) enumeration of all the possible input instances
might be performed. To deal with this issue, we propose to use
Korat [17], a tool that performs constraint-based generation
of structurally complex test inputs for Java programs. Korat
provides efficient generation, and therefore also counting, of
input data structures that satisfy a complex predicate within
pre-defined bounds. The predicate is written as a boolean
method called repOk, whose body can embed any arbitrary
complex computation. The finitization of the input domain
is instead accomplished by specific Korat methods to specify
bounds on the size of input data structures as well as on the
domain of primitive fields. Thus we can encode the constraints
provided by symbolic execution together with the constraints
from the usage profile as a repOK predicate and run Korat
to count the data structures that satisfy the constraints for the
given finitization.
Reliability for the List example: As an example of the use of
Korat, let us compute the reliability of our list program. As-
sume a usage profile that specifies that the input list is acyclic
with probability 0.9 and it is cyclic with remaining probability
0.1. As there is only one failure symbolic path (revealed by
a null pointer exception in the evaluation of the if condition),
it is simpler to compute the failure probability and thus the
corresponding reliability. The path condition for the failure
path, as revealed by SPF, is input ̸= null ∧ input.next = null.

Since the path condition for the failure constraint is only
satisfiable for acyclic lists, we get the probability of failure
Pr f (P) as:

0.9 · ♯(input ̸= null ∧ input.next = null ∧acyclic(input))
♯(acyclic(input))

Korat computes ♯(input ̸= null ∧ input.next = null ∧
acyclic(input)) = 10 and ♯(acyclic(input)) = 1111111, for
lists having up to 6 nodes and elem between 1 and 10, giving
probability of failure 0.0000081. Thus, since the execution
always terminates due to finitization, the probability of success
is 1- 0.0000081= 0.9999919.

C. Non-linear and Floating-point Constraints

Korat can handle arbitrary numeric constraints on the fields
in the input data structures, including non-linear integer con-
straints and constraints involving floating point numbers, as in
the example above; for floating points, the finitization should
include discretization criteria. Thus Korat could be used as an
“universal” model counting procedure that can handle arbitrary
constraints expressed as Java predicates. On the other hand,
for special input domains more efficient procedures can be
substituted to Korat as will be discussed in the next section.

We also note that it is the responsibility of the user to write
the complex (Java) predicates in the usage profile and to ensure
that these predicates are disjoint. To ease this burden we have
defined patterns for some commonly used predicates (such as
acyclic and size for linked lists) that can be used and modified
easily. In the future we would like to explore established logics
to simplify the specification task.

VII. IMPLEMENTATION

Reliability analysis is performed in two phases (cf. Sect III).
First SPF collects path conditions leading to success, failure,
and grey conditions; second the probabilistic analysis is per-
formed. In this section we will describe the implementation
of probabilistic analysis (for SPF implementation see [9]).

The purpose of the probabilistic analysis phase is to com-
pute Pr(A), where A is a set of constraints on the input
variables of the program. The complexity is in terms of the
number of variables and the number of constraints composing
A. For large problems, in either of the two dimensions,
approaching the problem as a whole could be time consuming.
In this section we will show a divide and conquer strategy to
improve time efficiency.

The central idea is that constraints in A identify a depen-
dency relation (dep) among the constrained variables that can
be formalized as follows (let x, y, and z be variables in A):

• ∀x dep(x,x)
• ∀x,y if x and y appear in the same constraint, then

dep(x,y)
• ∀x,y,z dep(x,y)∧dep(y,z) =⇒ dep(x,z)
The intuitive meaning of the dep relation is that if dep(x,y)

then the values assumed by x affect the values that can be
assumed by y. For example, from {x > 5 ∧ y = x + 5} we
deduce that the value of y is affected by the values of x, and
vice versa. The relation dep is an equivalence relation, thus it
induces a partition on the set of variables appearing in A. For
this reason, we can rewrite A as the conjunction of the subsets
A[v], each of whom collects all the constraints involving a
variable in the equivalence class of dep represented by v. Such
conjuncts are logically separated, hence it can be proved that
Pr(A) = ∏v Pr(A[v]). For example, let A be {x > 2∧y < 5}, its
probability can be computed as Pr(A) = Pr(x > 2) ·Pr(y < 5).

If A[v] is a set of linear integer constraints, we add a
further normalization step to remove inequalities and redun-
dant constraints. The normal form obtained is composed by
the disjunction of non overlapping constraint sets describing



exactly the same event space of A[v]. For example, A = {x >
2 ∧ x > 4 ∧ x < 10 ∧ x ̸= 7} would be transformed into the
equivalent disjunction: {x ≥ 5 ∧ x ≤ 6} ∪ {x ≥ 8 ∧ x ≤ 9} .
This step allows to both simplify the set of constraints by
removing redundancies and to (possibly) split A[v] into a
number of smaller subsets (let us call them Ai

[v]). The sets
Ai
[v] are non overlapping by construction, hence we have

that: Pr(A[v]) = ∑i Pr(Ai
[v]) . This simplification is performed

through the external tool Omega [18].
Model counting is now used to compute the probability

value of each A[v] (Ai
[v], respectively), in the assumed domain,

as explained in Section III. This operation is performed
through the external tool LattE [12] for integer linear con-
straints because of its efficiency on this special case. For
more general constraints or data structures an analogous
simplification can be defined and the counting procedure can
be performed through Korat [17], as shown in Section VI.

The reduction of A into a set of sub-problems Ai
[v] has

three valuable benefits. First, the time complexity of LattE
is polynomial in the number of variables and for Korat it
is up to exponential in the same measure: each A[v] usually
involves a subset of the variables appearing in A, speeding
up the execution time of the external tools. Second, both the
split from A to A[v] and from each of them to Ai

[v] allow
a natural parallelization in a map-reduce fashion. Third, the
reduction of the constraints into sub-problems enhance the
reuse of previous computations through caching of the results;
indeed the same subset of constraints may appear in many
path conditions, because, for example, they share the same
prefix. Reuse can lead to a significant improvement in the
probabilistic analysis time (see Sect. VIII). The effect of
reuse is even more evident in case of multi-threading, where
different schedules may lead to similar path conditions, and
in case of large usage profiles, where several usage scenarios
may share a large set of constraints, as will be shown in the
next section.

In the worst case, simplification does not improve execution
time and the elements of A have to be counted all at once. But
in our experience, real software is far from the worst case and
simplification leads to a significant speed-up (cf. Sect. VIII).

As a final remark notice that the two phases are completely
independent. By replacing SPF with a symbolic execution
engine for another language it is possible to reuse our im-
plementation for the reliability analysis of programs written
in any other language.

Our tool implementation can be donwloaded from [19], as
well as the source code and usage profiles of our example.

VIII. VALIDATION

A. On-board Abort Executive (OAE)

We applied the reliability analysis to a Java model of a
NASA software component that was originally written as a
prototype for the Crew Exploration Vehicle’s ascent abort
handling, the Onboard Abort Executive (OAE)[20]. The OAE
monitors the status of the vehicle during the ascent phase of

flight and it checks a set of flight rules that are supposed
to be invariant during the ascent. Whenever a flight rule is
violated the OAE decides that an abort is required and it selects
the abort mode which is safest for the astronauts. The OAE
receives its inputs (e.g., current altitude, launch vehicle internal
pressures, etc.) from sensors and other software components.
The analyzed code is approximately 1400 lines of code, it
has a large input space (36 input variables) and complicated
logic. We note that the component did not have any errors,
so instead of computing the probability of reaching an error
(or conversely the probability of the component behaving cor-
rectly) we compute the probability of an abort (or conversely
the probability of mission success).

1) Domain: Some of the range restrictions on the inputs
were directly provided by the domain experts, while others
were determined from the simulation data used for testing the
flight software. For each input, we determined the minimum
(min) and maximum (max) values and we used these values to
encode the ranges [min−δ . . .max+δ ] as the domain for the
analysis. We used the extra quantity δ to increase the chances
that symbolic execution would analyze failure cases.

2) Usage Profile: Table II shows the results of analyzing
three different usage profiles for the OAE. The first profile
was to simply look at a uniform distribution of values for each
variable within its domain. To see how the analysis scales we
then considered a profile where for one variable (thrust) a
Gaussian (normal) distribution of values was used and lastly
a case where a Gaussian distribution for two variables (thrust
and tank pressure) was used. The Gaussians were produced
by discretizing the ranges into 5 segments for thrust and 4 for
tank pressure, which led to 5 and 20 usage profile constraints
for respectively the one and two variable cases.

3) Results: The analysis was run on a Red Hat Linux 64bit
machine with 3.7Gb of memory and a 2.8Ghz Intel i7 CPU.

From the results in Table II one should first notice that
since we run the reliability analysis after symbolic execution,
the total paths (“Paths”) and the paths that lead to an abort
(“Aborts”) doesn’t change for different profiles. Similarly the
time for symbolic execution (“SPF”) is essentially the same
for all runs (the small variance is natural in Java). Since
the number of profile constraints increase between the three
analyses (1, 5 and 20 respectively) the number of times we
need to get a model counting result also increase (“Counts”)
which in turn results in an increase in the time spent cal-
culating the probabilities (“Probs”). However, notice that the
time spent simplifying constraints with Omega and doing the
model counting with LattE is pretty much invariant for the
different profiles. This is due to the caching described in
Section VII. The number of times a reliability result would
need to be calculated will always be the number of paths times
the number of profile constraints, however, from Section VII
we know that we first split the total path constraint into
independent parts, then apply Omega for simplification and
only then call LattE. Caching is applied at all steps following
the dependency step, thus both Omega and LattE results can
be reused. Because of the nature of symbolic execution (where



TABLE II
ONBOARD ABORT EXECUTIVE PROFILES

Profile Paths Aborts SPF (ms) Counts Probs (ms) Omega (ms) LattE (ms) Reliability

Uniform (1) 3754 432 8329 27320 5991 1285 2488 0.99999998180802
1 Gaussian (5) 3754 432 8074 136600 7471 1229 2474 0.99999998180663
2 Gaussian (20) 3754 432 8176 546400 12298 1244 2537 0.99999997427198

prefixes to a path are shared) there is very high reuse of
previously calculated results (although not shown it is more
than 99.9% for both the Omega and LattE caches).

The actual chance of an abort happening is clearly extremely
small and the code seems to be very robust with regards to
the different profiles. It is interesting to note that the result
of our analysis could be further used to help estimating the
reliability not only of the OAE component but also of the
vehicle monitored by the OAE, since we essentially compute
the probability of a flight rule being violated, and the rules
should be invariant for the whole flight.

B. Binary Tree

For the next set of experiments we use the Binary Tree
implementation previously studied in [21] and [13]. This code
has an error in the delete operation, that is triggered when
non-leaf nodes are deleted. What we want to study here is
the reliability of the code, i.e. the probability of avoiding the
error, under different usage profiles. We limit the values in the
container to the range [0 . . .9]. The actions we can perform
are add and delete of an element. Lastly, we only look at
sequences of 5 actions after which we check an assertion to
determine if the error was triggered. Since our sequences are
of finite length, there cannot be any grey paths here, all paths
will be either correct or they will trigger the error.

TABLE III
BINARY TREE RELIABILITY PROFILES

Actions Values Reliability

Uniform Uniform 0.99459
75% Delete Uniform 0.99888
25% Delete Uniform 0.99174

No Delete Last Uniform 0.99850
No Delete Last 2 Uniform 1.00000

Uniform 1% Ordered 0.99280
Uniform 30% Ordered 0.99490
Uniform 50% Ordered 0.99636
Uniform 70% Ordered 0.99781
Uniform 99% Ordered 0.99992
Uniform 100% Ordered 1.00000

The usage profile can vary in the probability of the actions
being performed and the values being used. Table III shows the
reliability results obtained with various different usage profiles
for actions and values. Note that the examples are small and
as such we do not report timing (< 20 seconds in all cases).

The first case considered is if both the actions and the
values are chosen uniformly from their respective domains.
The reliability result is the same as reported by the tool2

from [13] where only uniform probabilities are considered.
Next, inspired by the fact that we know the error is within the

2Available from http://probsym.googlecode.com

delete action, we consider a case where we delete 75% of
the time (and therefore add 25% of the time) and then a case
where we delete only 25% of the time. Our intuition might
suggest that the former case should be more unreliable, but
in fact the more one delete the more reliable the code is. The
reason for this seeming anomaly is that the error is not just
due to delete, it is also when and how much you delete, as
shown by the case where we specify a profile that will never
have a delete action in the last entry, or the last two entries,
in the sequence. In the latter case, the reliability is 1.0.

Next we consider adjusting the profile of the values we
call add and delete with, but we keep the choice between
these two actions uniform (i.e. each with 0.5 probability).
Specifically we focus on how ordered the values are that we
call the actions with. We consider sequences of length 5, hence
if the value vi is the parameter to call i in the sequence (i : 1..5),
we can express the profile as (using the 30% ordered case):

usageProfile{
v1<=v2 && v2<=v3 && v3<=v4 && v4<=v5 : 3/10;

!(v1<=v2 && v2<=v3 && v3<=v4 && v4<=v5) : 7/10;
}

The results show that the code becomes more reliable
when the ordering of the values increases. In fact it will be
completely reliable if the values are ordered. The reason for
this is that in the ordered case, one will only delete the last
value added, and the actual error in this code is only triggered
when deleting a non-leaf node in the tree (and the last value
added will always be at a leave node).

IX. RELATED WORK

Reliability analysis is considered a key element in the
design of software systems. The high availability of monitoring
data allows, nowadays, to compute valuable and accurate
characterization of both the actual software behavior and the
usage profile. The original approaches tended to consider the
software system as a black-box and to observe its reliability
from the outside [22]. Most recent trends are focused on
modular or component-based systems [23] and assume an
architectural-level perspective [4]. With our work we further
open the view on the internal structure of the software, down
to source code. Previous approaches deal with code artifacts
passed through an intermediate abstract representation (e.g.
as sketched in [1] or applied in [6]). A number of architec-
tural styles can be mapped to analytical models (e.g. [24]);
there have been defined parametric contracts for software
architectures (e.g. [25]); the issues of error propagation and
transformation in complex architectures has been analyzed
([26]). The idea to extrapolate models from code is effec-
tive for a number of purposes. Nonetheless, the coherency
between models and code and among different models (e.g.,



concerning different measures of the same related phenomena)
could be hard to maintain. Models could also add a semantic
gap between the developer and the artifacts she is used to
reason on. Direct syntax-driven approaches have not been so
popular. In [27], a syntax-driven approach has been proposed
to deal with workflows specified by structured languages. This
methodology is based on attribute grammars LR parsing and
exploits attribute synthesis mechanisms to compose reliability
estimates provided for single tasks up through the entire
workflow.

On a technical level a closely related work is that of [13]
where model counting was used within an extension of SPF
to calculate path probabilities. However they did not consider
usage profiles and therefore cannot calculate reliability as
described here; they also didn’t consider multi-threading nor
structures. Although our approach is cast in terms of an
extension to SPF, it should be noted that it can be applied to
any symbolic execution approach (e.g. PEX [8] and KLEE [7])
where we have access to a path condition, thread schedule and
whether the path led to a failure, success or unknown.

Probabilistic model checking [28] is also related to what
we do here, with the main difference being that we calculate
probabilities for the system based on the usage profiles,
whereas for probabilistic model checking the input is a system
with the probabilities for each transition already provided.
Another difference is that we take as input Java code, whereas
probabilistic model checking tends to analyze models of real
systems. An exception is [29] and [30] that takes as input Java
code annotated with probabilities, but their goal is to determine
the progress of the model checking and not reliability analysis.

X. CONCLUSIONS AND FUTURE WORK

We presented an approach to calculate software reliability,
under a specific usage profile, directly from the source code.
The current implementation supports linear integer arithmetic
operations using the LattE model counter and an extension us-
ing Korat to count structures is under development. Many areas
for future work exist: (a) Section VI-C describes extensions to
the data-structure approach, (b) more failure properties (e.g.
temporal properties), (c) usage profiles for sequences where
probability distributions depend on previous events, (d) partial
order reduction for multi-threading, and (e) runtime analysis
to derive profiles directly from running systems.
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