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Summary:  23 

Greater understanding about the functions of host gene products in response to infection is 24 

required. Whilst many of these genes enable pathogen clearance, some enhance pathogen growth 25 

or contribute to disease symptoms. Many studies have profiled transcriptomic and proteomic 26 

responses to infection, generating large datasets, but selecting targets for further study is 27 

challenging. Here we propose a novel data-mining approach; combining multiple, heterogeneous 28 

datasets to prioritise genes for further study, using respiratory syncytial virus (RSV) infection as 29 

a model pathogen with a significant healthcare impact. The assumption was that the more 30 

frequently a gene was detected across multiple studies, the more important its role. A literature 31 

search was performed to find datasets of genes and proteins that change after RSV infection. The 32 

datasets were standardized, collated into a single database, and then panned to determine which 33 

genes occurred in multiple datasets, generating a candidate gene list. This candidate gene list was 34 

validated using both a clinical cohort and an in vitro screen. We identified several genes that 35 

were frequently expressed following RSV infection with no assigned function in RSV control, 36 

including IFI27, IFIT3, IFI44L, GBP1, OAS3, IFI44, IRF7 and ISG15. Drilling down into the 37 

function of these genes, we demonstrate a role in disease for interferon regulatory factor 7 (IRF7) 38 

which was highly ranked in the list; but not IRF1, which was not. Thus we have developed and 39 

validated an approach for collating published datasets into a manageable list of candidates, 40 

identifying novel targets for future analysis. 41 

Importance: 42 

Making the most of “Big Data” is one of the core challenge of current biology. There is a large 43 

array of heterogeneous datasets of host gene responses to infection, but these datasets do not 44 

inform us about gene function and require specialized skill sets and training to utilise. Here we 45 

describe an approach that combines and simplifies these datasets, distilling this information into 46 

a single list of genes commonly upregulated in response to RSV infection, as a model pathogen. 47 

Many of the genes in the list have unknown function in RSV disease. We validated the gene list 48 

with new clinical, in vitro and in vivo data. This approach allows the rapid selection of genes of 49 

interest for further more detailed studies, thus reducing time and costs. Furthermore, the 50 

approach is simple to use and widely applicable to a range of diseases. 51 

Tweet: From great complexity comes forth simplicity: combining datasets to find novel gene 52 

targets for Respiratory Syncytial Virus (RSV) research.  53 
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Introduction 54 

The interpretation of large datasets – Big Data – is one of the challenges of modern biology (1). 55 

Several powerful approaches have been developed to derive functional correlates from these 56 

large datasets, but they all have some limitations. Analysis of correlated or functionally related 57 

groups of genes en bloc simplifies analysis (2, 3), however this approach loses gene-level detail, 58 

particularly for genes with unknown roles. Systems biology approaches to identify key genes 59 

within pathways have been applied to vaccination (4) and infection (5) studies, but there is still a 60 

requirement to select individual genes for further analysis. High throughput screens enable the 61 

rapid identification of gene functions in an in vitro context (6-8), but these screens only 62 

investigate the role of genes in the context of individual cells, not in relation to the system as a 63 

whole. Recently, programs of work have been developed to systematically target every gene in 64 

the mouse genome to define their function (9, 10), nevertheless cost and ethical considerations 65 

require a focused selection of the targets of interest. The plethora of data available makes the 66 

prioritization of genes for further analysis challenging and often requires specialized skill sets 67 

and costly software. We propose a novel and simple approach to integrate published datasets to 68 

rapidly identify genes for their function in the control of infection, using freely available 69 

software.  70 

We used this novel approach to identify genes involved in the host response to respiratory 71 

syncytial virus (RSV) infection as a proof of principle. RSV is a ubiquitous infection in early life 72 

and a significant cause of disease (11). Whilst the majority of children are infected with RSV 73 

during infancy, only a small proportion (2%) require hospitalization, of whom many have known 74 

risk factors including prematurity, congenital heart disease or immunodeficiency. However, the 75 

majority of hospitalized children (73-85%) have no known risk factor (12, 13). This phenotypic 76 
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variability in host response may reflect the role of host genetic polymorphisms in protection 77 

against or potentiation of severe disease (14). Severe RSV disease is associated with perturbation 78 

of normal airway function in the lower respiratory tract, but the events leading to the perturbation 79 

of airway function after RSV infection are not clear. Indeed the cause of disease may be 80 

heterogeneous with viral induced cell death causing disease in some infants and excess local 81 

inflammation having a role in others. The broader cellular immune response to RSV has been 82 

well dissected, with protective and pathogenic roles assigned to many cell types including 83 

macrophages (15, 16), NK (17, 18) and T cells (19, 20), but the molecular immune profile has 84 

not been fully explored. A number of studies in the last decade have published host ‘omics 85 

profiles of RSV disease, identifying signatures of RSV infection, which enable discrimination 86 

between RSV and other respiratory viral infections (21, 22). Published associations of genes with 87 

the response to RSV are derived from a diverse range of systems, both in vitro and in vivo, in 88 

human and mouse, and based on RNA, DNA and protein data (Table S1). However whilst these 89 

studies have identified genes that change in response to infection, they have not defined the 90 

functional role of individual genes in RSV disease.  91 

The aim of the current study was to integrate multiple published datasets to prioritise the genes 92 

associated with RSV infection and to dissect their function in RSV disease. To achieve this, we 93 

employed a combination of in silico, in vitro and in vivo approaches. Our conclusions were 94 

consistently supported by a new clinical study. Integrating multiple studies in this fashion 95 

increases the confidence in the role of the genes identified. Utilizing this approach we identified 96 

IRF7 as a key gene in the control of RSV. Here, we demonstrate that integration of published 97 

‘omic datasets with high throughput studies generates insights into the genetic control of 98 

infection.   99 
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Results 100 

Meta-analysis of RSV datasets reveals functional pathways in the control of RSV 101 

We developed a novel approach to mine the mass of published gene and protein profile data in 102 

order to prioritize genes for functional profiling (Fig. 1). A literature search was performed to 103 

identify studies using ‘omics tools to analyse the response to RSV infection. Data was collected 104 

from multiple published studies of RSV disease, selecting studies that included accessible lists of 105 

genes and/ or proteins that were detectable following RSV infection in either human or mouse 106 

(Table S1) or identified as significant in genetic studies or genome wide association studies. Due 107 

to the heterogeneity of the approaches, when multiple datasets were available in a single study 108 

we focused on the 24 hour after infection time points, in primary infection (rather than re-109 

infection) and set an arbitrary cut off at 2-fold increase or decrease in gene expression for 110 

transcriptomic studies. Studies were collated in a single database and we then used a custom Perl 111 

script (countIDs: https://sourceforge.net/projects/countids/) to parse the file to find genes that 112 

were present in multiple studies. Genes were ranked according to their frequency of occurrence 113 

and weighted based on the type of study they appeared in: genetic association studies, ex vivo 114 

human, in vitro human or mouse, with more weighting on the human than the murine studies. 115 

This subjective weighting score was based on perceived relevance to human infection. 116 

Weighting reflected the nature of the input study, not specific data layers, which were treated 117 

equally: genes, mRNA and proteins were given equal weight. A candidate list of genes was then 118 

generated (Table 1). Using the weighted analysis, the genes that were most commonly reported 119 

as being up-regulated were IFI27, IFIT3, GBP1, IFI44L, OAS3, IFI44 and CXCL10 (Table 1). 120 

No functional role has been previously described for these genes in the control of RSV infection. 121 

Fewer genes were down-regulated after RSV infection and they were less uniformly represented 122 
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between studies, downregulated genes included CLC, NDUFS1, and PFDN5 (Table 2). For 123 

comparison, an unweighted analysis was also performed (Table S2 and S3), these analyses 124 

identified similar patterns of genes, with IRF7 relatively higher in the unweighted than in the 125 

weighted analyses. Thus we can take published datasets and condense them into a single list, 126 

interestingly despite the heterogeneous nature of the input studies, we identified a large overlap 127 

in the genes identified. 128 

 129 

To visualize the genes and interactions, we plotted the list using the Ingenuity software platform 130 

(Fig. 2). Genes with a score of 6 or more were included. The analysis identified a mixture of 131 

secreted factors (cytokines and chemokines) and intracellular factors (transcription factors and 132 

interferon stimulated genes). Based on our previous experience and published literature, it was of 133 

interest to note that extracellular proteins upregulated in response to RSV are often associated 134 

with enhanced disease (15, 23-25), whereas intracellular proteins are associated with disease 135 

control (26). To simplify the presentation of the interactions, we focused on the interactions of 136 

the top 16 upregulated and the top 5 downregulated genes, looking at direct interactions which 137 

have been observed experimentally. The main observation from this was that IRF7, which was 138 

observed to be upregulated in 9 independent studies (7, 27-32), interacted with several of the 139 

other most commonly identified genes. IRF7 was also central when the same data was analysed 140 

for canonical pathways: overall, the genes tended to fall into pathways associated with the 141 

inflammatory response to viral infection (Table 3).  142 

 143 

Clinical validation of bioinformatic list 144 

 145 



7 
 

Since the list of candidate genes was generated using a literature mining approach, we sought 146 

validation using whole blood gene expression data from patients with RSV. We compared the 147 

transcriptomic profile of children hospitalized with RSV to age matched healthy controls, using 148 

microarrays. The list of genes derived from the literature (Table 1) was compared to the genes 149 

that were significantly differentially expressed (SDE) in children with RSV vs. healthy controls 150 

and an overlap of 73 out of 130 genes was observed. Of the genes identified as upregulated in the 151 

literature derived list, 66 were observed to be significantly upregulated in the clinical study, 45 152 

were not significantly differentially expressed and only 2 were SDE but in the opposite direction 153 

(Fig. 3a). The downregulated gene list from literature was smaller but also had a lower 154 

proportion of agreement with the clinical study – only 5 of 17 genes were present in both studies 155 

(Fig. 3b). These data was then mapped onto the network built using the literature derived list 156 

(Fig. 3c), demonstrating that many of the top ranking genes from the literature list, including 157 

IRF7, OAS2, RSAD2, HERC5, ISG15, IFI44, IL1RN, ARG1 and IFIT3 were in agreement 158 

between both methods. 159 

 160 

Validation of gene list using in vitro assay 161 

Of note, a number of the genes that we identified as commonly upregulated have no known role 162 

in the control of RSV infection. We wished to screen the identified genes for their effect on RSV 163 

infection, using a flow cytometry based screen, described by Schoggins et al (7). We screened 39 164 

interferon stimulated genes (ISG) identified from our in silico screen and we also included 165 

receptors and transcription factors identified as upstream regulators by pathway analysis in 166 

previous studies (IL28RA, IRF1, IRF2, SOCS1, SOCS2, STAT3, TLR3 and TLR7). The epithelial 167 

cell line, HEp-2, was used as it represents the cell lineages that RSV first encounters during an 168 
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infection. HEp-2 cells were transduced with lentiviral vectors expressing each ISG and red 169 

fluorescent protein (RFP) in the same vector prior to infection with RSV expressing green 170 

fluorescent protein (33). PKR, IFI6 and OASL overexpression reduced GFP expression level 171 

(and therefore infection) by more than 75% of the control (Fig. 4). Of the genes identified with 172 

the most hits in the in silico studies (score >12), reduction in infectivity was as follows: IFI27 173 

(65.6%+/- 26.6), IFIT3 (62.5%+/-10.6%), IFI44L (67.3%+/-39.7%), GBP1 (Not in panel), OAS3 174 

(66.3%+/-36.0%), IFI44 (74.5%+/-25.5%) and ISG15 (58.3%+/-11.5%). IRF7 overexpression 175 

led to a 76.7 +/- 11.7% reduction in RSV replication, which demonstrates that in addition to 176 

being centrally located in the predicted gene networks from in silico analysis, IRF7 has a role in 177 

the control of RSV infection. The in vitro data supports a role in viral control for genes identified 178 

using our novel screen. 179 

 180 

Validation of gene list using in vivo infection model 181 

The overarching aim of the study was to identify new genes of interest for further study: the 182 

informatics and in vitro analysis identified IRF7 as being involved in the response to RSV and it 183 

has not previously been studied in the context of RSV infection. To validate our screening 184 

approach, we compared RSV infection in mice deficient for IRF7, a gene identified in our list, 185 

with one that is associated with anti-viral responses, but not identified in the list (IRF1). Irf7-/- 186 

and Irf1-/- mice were intranasally infected with 5×105 PFU of RSV-A (A2 strain) and were 187 

monitored daily for weight loss for seven days post-infection. Cohorts of mice were sacrificed on 188 

days four and seven post-infection to quantify viral burden and immunological changes over the 189 

course of the challenge. Mice were compared to wild type controls on the same background. Irf7-190 

/- mice showed significant weight loss on days six and seven post-infection compared to wild 191 
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type littermates (p < 0.01) (Fig. 5A). There was no difference in weight loss between Irf1-/- and 192 

wild type controls in (Fig. 5B). RSV viral load was significantly greater in both Irf7-/- and Irf1-/- 193 

mice on day four (p<0.05, Fig. 5C, D) but not at day seven post-infection. Cellular infiltrate was 194 

quantified over the course of infection, which showed a significant increase in total cells resident 195 

in the lungs on day seven post-infection in Irf7-/- mice but not Irf1-/- (p < 0.05, Fig. 5E, F). Flow 196 

cytometry revealed an increase in all cellular sub-populations in Irf7-/- mice relative to wild type 197 

on day seven post-infection. In particular, numbers of total NK cells (p < 0.05) were significantly 198 

higher in the lungs (Fig. 5G, H), there was no significant difference in the Irf1-/- mice. Analysis 199 

of inflammatory cytokines present in the lungs revealed differences on day seven post-infection 200 

(Fig. 5I, J), with significantly higher levels of IL-1β (lung: p < 0.05,) in Irf1-/- mice relative to 201 

wild type controls. 202 

 203 

Discussion 204 

 205 

Here we used a novel, integrative approach to identify and characterize genes that are 206 

upregulated in response to RSV infection for further analysis. Previous studies have explored 207 

genetic signatures to discriminate RSV infection from other viral infections (21, 22). Our 208 

approach enabled identification of relevant genes in a hypothesis-free fashion identifying genes 209 

with both known and unknown function. We used a novel algorithm that permitted integration of 210 

multiple large genetic, gene expression and protein datasets to identify genes consistently 211 

upregulated after RSV infection, across multiple model systems. Using this approach we were 212 

able to distil down multiple heterogeneous studies into a single list of candidate molecules, 213 

generate testable hypotheses and then demonstrate functional relevance. Whilst we focused on 214 
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RSV, this approach is broadly applicable to other pathogens for which large sets of gene 215 

expression data are available and the data mining program is available as an open source 216 

program. 217 

 218 

We identified a number of genes with no known function in RSV disease as potential targets for 219 

future investigation including IFI27, IFIT3, IFI44L, GBP1, OAS3, IFI44 and ISG15. Several of 220 

these have reported roles from other infections, but a role has not been reported for RSV 221 

infection: IFI27 (also called ISG12) has a pro-inflammatory role by inducing the nuclear export 222 

of an anti-inflammatory nuclear receptor NR4A1 (34) and recently has been related to 223 

proliferation and cell cycling of human epidermal cells (35), GBP1 is a GTPase with a possible 224 

role in actin remodelling (36), IFI44 is anti-proliferative, OAS3 interacts with RNAseL (37) and 225 

ISG15 is a ubiquitin like modifier (38), which has been shown to reduce viral growth in vitro 226 

(39). However some of the most frequently upregulated genes for example IFI44L have no 227 

assigned molecular function. We took some of these genes forward into an in vitro assay and 228 

observed that there was a partial reduction of viral replication for all of the top hits tested (GBP1 229 

was not included as not in the lentiviral panel). We focused on IRF7 for the in vivo studies 230 

because it gave a strong knockdown in vitro and was central to the predicted in silico network. 231 

IRF7 is an amplificatory molecule responding to pattern recognition receptor detection of viral 232 

infection inducing a further cascade of interferons (40) and is identified as the master regulator 233 

of type-I interferon-dependent immune responses (41). Previous studies have shown a role for 234 

IRF7 in human metapneumovirus (hMPV) (42) and influenza (43) virus infections. A recent 235 

study has demonstrated a role for IRF7 in the upregulation of RIG-I in response to RSV infection 236 
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in vitro (44) but the present study is the first to demonstrate a central role for IRF7 in the control 237 

of RSV infection both in vivo and in vitro. 238 

 239 

There are some limitations to this study. First, expression profiling of cells in the peripheral 240 

blood has limitations in terms of be representative of responses in the respiratory epithelium, 241 

where RSV infects and most of the studies are based on peripheral blood signatures. Due to the 242 

heterogeneous nature of the available databases and publications about genes associated with 243 

RSV infection, we had to make inclusion decisions which have led to a slight skewing of the 244 

gene list. Where multiple gene sets were available we chose to include genes upregulated at 24 245 

hours after infection which may have skewed the gene set to the interferon α/β response. Where 246 

reported, a cut-off fold change of 2 was used, but this data was not reported in several studies, 247 

likewise not all published data had gene lists that could be incorporated into the current study. 248 

We chose a system to weight the data for the analysis giving priority to genetic association 249 

studies and in vivo human data over in vitro data and mouse data. This weighting score was a 250 

subjective decision based on a perception of the relevance of different data types to human 251 

infection. Whilst it over-simplifies the differences both between and within different study types, 252 

once the data has been collated, other scoring systems could easily be applied to the same meta-253 

data due to the simplicity of the analysis tools used. It is of note that weighted and unweighted 254 

analysis gave similar lists. This demonstrates the power of this tool, because it can be adapted to 255 

different questions, integrating heterogeneous datasets, furthermore, the simplicity of the 256 

approach means that this can be performed quickly and easily. The in vitro screen only contains 257 

interferon stimulated genes, which restricted the analysis of genes that were identified but not in 258 

this family; for example GBP1. Finally there was only a limited disease phenotype in the control 259 
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mice because they are C57BL/6, which are relatively resistant to RSV infection, these mice were 260 

used to match the gene knockout animals. One limiting factor for the data mining from our 261 

experience is lack of standardization of published data sets: different papers have gene and 262 

protein lists in different file formats, with different nomenclatures and many only had lists in 263 

tables. Therefore transcription of the data had to be done by hand. A more uniform approach to 264 

these datasets would enable more studies to be included in meta-analyses. 265 

 266 

Understanding more about the functions of the genes that are most commonly upregulated 267 

following RSV infection may give us insight into pathways to control disease after infection. A 268 

number of papers have proposed genetic signatures of RSV infection; here we show that the 269 

genes that are commonly upregulated as a result of RSV infection are characteristic of 270 

inflammation and viral control. There is an ongoing debate as to whether inflammation or viral 271 

mediated pathology is the primary cause of disease after RSV infection. In the context of this, 272 

one of the striking features of the pathway analysis was a divergence in effect on disease 273 

outcome of the gene products localized to the extracellular space and those found in the nucleus 274 

and cytoplasm. Animal studies suggest that the extracellular proteins enhance disease following 275 

RSV infection (45) by increasing inflammation, whilst the intracellular proteins reduce disease 276 

by decreasing viral replication. In support of this we have recently shown that the anti-viral gene, 277 

IFITM3, is important in the prevention of RSV infection (26, 46). In the in vitro studies over-278 

expression of IFITM3 led to a 68 +/- 20.6 % reduction in RSV replication. Furthermore, 279 

overexpression of the chemokines CCL4, CCL5 and CCL8 had little effect on viral replication. 280 

This would suggest that boosting the anti-viral response without increasing inflammation would 281 

be a good strategy to control RSV disease. One potential target to achieve this would be the type 282 
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I IFN response, which if boosted may increase the transcription of anti-viral genes. However, 283 

recent studies have shown for RSV (47) and influenza (48) type I IFN contribute to inflammation 284 

and disease after viral infection, suggesting a sweet spot of IFN production where either too little 285 

or too much can both lead to a disease state. Targeting the host response may be particularly 286 

beneficial as it is not necessarily specific to the pathogen and is less likely to induce anti-287 

microbial resistance. 288 

 289 

There several are other approaches for integrating heterogeneous data for immunology research 290 

(49). Tool selection to use depends on the desired outcome, ranging from analysis of TCR and 291 

antibody repertoire analysis to network analysis and visualization. Some tools enable the 292 

integration of gene expression data with DNA variation (eQTL) (50) or against epigenetic status 293 

of the same gene (51), both of which enable greater understanding of the processes underpinning 294 

gene regulation and expression in the immune response. For higher level analysis, data can be 295 

merged using network analysis tools to see novel interactions between genes (52). These are 296 

sophisticated models underpinned by statistical techniques, requiring specialized skill sets and 297 

data analysis software to perform rigorously. Our approach is not. It requires no specialist 298 

informatics skills or software (a how to guide is in Fig S1): it uses excel, but would work using 299 

any spreadsheet program, and a free Perl script. Additionally, it performs a different function 300 

prioritizing genes for further study: this tool generates a hypothesis free, candidate list which can 301 

be investigated further. That the genes were biologically plausible and affected RSV infection in 302 

vitro and in vivo validates it as a down-selection tool. In conclusion here we describe a novel 303 

literature data mining approach for candidate gene prioritization. It has the benefit of simplicity 304 

and is broadly applicable to a range of infectious diseases.  305 
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Materials and Methods 306 

Meta-analysis of papers and in silico analysis  307 

We selected papers published prior to July 2015, using the search terms “RSV AND Microarray 308 

OR transcriptome OR genetic or proteome” on PubMed; other studies were also included from 309 

previous literature searches (Table S1). Papers were not included if the data set described in the 310 

study, with fold change and time point data was not easily accessible. Individual genes were 311 

included for analysis if they were reported to have a greater than 2 fold change than the reference 312 

group in the specific study. Gene lists were harvested from the published literature and collated 313 

in a single excel file. For analysis, genes were given a subjective weighting score based on the 314 

type of study they were collated from (in brackets): human genetic studies (4), human in vivo 315 

transcriptomic studies (3), human in vitro studies (2), murine studies (1). A custom Perl script: 316 

countIDs (available at: https://sourceforge.net/projects/countids/) was written to parse the gene 317 

list file generated, to assign a weighted score to each gene, generating an output gene list. Fig. 1 318 

has a flowchart of the process and a step by step guide to the approach is in Fig S1. For 319 

visualization genes with an assigned score of 6 or more were included for Ingenuity pathway 320 

analysis (IPA – Qiagen). 321 

 322 

Validation in Clinical Cohort 323 

We established a case-control group comprising 27 RSV patients and 80 healthy controls. Whole 324 

blood (2.5ml) was collected into PAXgene blood RNA tubes (PreAnalytiX, Germany), incubated 325 

for 2 hours, frozen at -20°C within 6 hours of collection, before storage at -80°C. RNA was 326 

extracted using PAXgene blood RNA kits (PreAnalytiX, Germany) according to the 327 

manufacturer’s instructions. The integrity and yield of the total RNA was assessed using an 328 
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Agilent 2100 Bioanalyser and a NanoDrop 1000 spectrophotometer. After quantification and 329 

quality control, biotin-labelled cRNA was prepared using Illumina TotalPrep RNA 330 

Amplification kits (Applied Biosystems) from 500ng RNA. Labelled cRNA was hybridized 331 

overnight to Human HT-12 V4 Expression BeadChip arrays (Illumina). After washing, blocking 332 

and staining, the arrays were scanned using an Illumina BeadArray Reader according to the 333 

manufacturer’s instructions. Using Genome Studio software the microarray images were 334 

inspected for artefacts and QC parameters were assessed. Data was analysed using ‘R’ Language 335 

and Environment for Statistical Computing (R) 3.1.2 (53). Mean raw intensity values for each 336 

transcript were transformed to a logarithmic scale (base 2), corrected for local background 337 

intensities and normalized using robust spline normalization. We identified the transcripts that 338 

were significantly differentially expressed between the RSV infected children and the healthy 339 

control group with an adjusted P-value < 0.05, using a linear model for transcript expression. 340 

The functions lmFit and eBayes in the R package limma were used to calculate statistics. 341 

 342 

Validation In vitro 343 

The ISG library and screen were performed using a modified version of the assay described 344 

previously (7). 2x105 HEp-2 cells were seeded into 96 well plates overnight prior to transfection 345 

with 105 of the individual Red-fluorescent protein Interferon Stimulated Gene (RFP-ISG) 346 

lentiviruses in DMEM supplemented with 20 mM HEPES and 4 mg/ml polybrene by 347 

spinoculation at 1,000 rpm for 1 hour. Twenty four hours later the cells were infected with green 348 

fluorescent protein expressing RSV (RSV-GFP) (33) and 24 hours after that the cells were 349 

harvested for analysis by flow cytometry. Live/dead discrimination was performed by the 350 

addition of live/dead fixable Aqua dead cell stain kit (Molecular probes) prior to acquisition of 351 
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data on an LSRFortessa (BD). Viral infection was determined based on the percentage of GFP: 352 

RFP double positive cells, relative infectivity in each well was normalized to the samples 353 

transfected with control lentivirus only. Data was analysed using CyAn ADP Summit 4.3. 354 

 355 

Validation in vivo using gene knockout mice 356 

Sex matched 8-10 week old wild type C57bl6N, Irf1tm1a(EUCOMM)Wtsi and Irf7tm1(KOMP)Wtsi mice (54) 357 

(Wellcome Trust Sanger Institute), were maintained in accordance with UK Home Office 358 

regulations, UK Animals Scientific Procedures Act 1986 under the project license PPL 80/2596. 359 

Animals were supplied with food and water ad libitum and were monitored daily for signs of 360 

illness. Founder mice were phenotyped through pipelines at the Wellcome Trust Sanger Institute 361 

as described previously (9, 10). 362 

 363 

RSV in vivo studies 364 

RSV strain A2 (from Prof P. Openshaw, Imperial College London) was grown in HEp-2 cells 365 

and viral titre determined by plaque assay. Mice were infected intranasally (i.n.) with 5 x 105 366 

PFU in a volume of 100µl under isoflurane anaesthesia. Weight was measured daily to monitor 367 

disease severity. Lungs were removed, the smaller lobe was snap frozen in liquid nitrogen for 368 

RNA extraction and the remainder was homogenized by passage through 100-μm cell strainers 369 

(Falcon). Red blood cells in the lung sample were lysed in ammonium chloride buffer, and the 370 

remaining cells resuspended in RPMI medium with 10% fetal calf serum. Viable cell numbers 371 

were determined by trypan blue exclusion and lung cell types were differentiated by flow 372 

cytometry as described previously (55). In brief, cells were suspended in Fc block (Anti-373 

CD16/32, BD) in PBS-1% BSA and stained with surface antibodies CD3-FITC (BD, Oxford 374 
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UK), CD4-APC (BD), CD8-APC Alexa750 (Invitrogen, Paisley, UK) NK1.1-PerCP-Cy5.5 (BD) 375 

and CD19-eflour450 (eBioscience, Hatfield, UK). Cells were run on a BD FACS Aria II. Singlet, 376 

lymphocyte cells were defined based on their size, side scatter and doublet discrimination, and 377 

then analysed for immune phenotype based the cell surface markers. RSV viral load was 378 

measured by quantitative RT-PCR for the RSV L gene using primers and probes previously 379 

described (19), with L gene copy number determined using a RSV L gene standard and presented 380 

relative to μg lung RNA. The cytokines IL-1β and IFNγ in lung were quantified using duosets 381 

from R and D systems. 382 

 383 

Statistics 384 

Analysis was performed by weighted Student’s t-tests using GraphPad Prism 6.0. 385 

 386 

Data availability 387 

Data from the clinical study has been uploaded to http://www.ncbi.nlm.nih.gov/geo/ with the 388 

accession number GSE80179. 389 
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Fig. Legends 597 

Fig. 1. Flowchart of gene selection method. 598 

Fig. 2. Pathway analysis of genes upregulated after RSV infection. The top 130 genes 599 

identified by literature search shown by predicted function and sub cellular location. Top 600 

candidates indicated by bold outline, upregulated genes in red, downregulated in green. 601 

Interactions between the top 16 upregulated and top 5 downregulated genes based on known 602 

interactions in the Ingenuity Pathway Analysis (IPA) knowledgebase. 603 

Fig. 3. Validation of bioinformatic screen in patient cohort. Significantly differentially 604 

expressed (SDE) genes from the clinical cohort were compared with the literature derived gene 605 

list. Overlaps between the gene lists expressed as pie charts, with directionality of agreement 606 

indicated for genes upregulated (A) or downregulated (B) in the literature derived list. Relative 607 

expression data from RSV infected patients overlaid on gene network derived from literature list 608 

(C), upregulated genes in red, downregulated in green, shading represents differential expression, 609 

bold outline from literature gene list. 610 

Fig. 4. Flow cytometry confirmation of inhibitory function of genes identified in silico. HEp-611 

2 cells were transduced with lentiviral vectors expressing genes of interest from the in silico 612 

screen. 24 hours later the cells were infected with RSV expressing GFP. Cells were harvested at 613 

48 hours post infection and expression relative to control lentiviral transfected wells was 614 

assessed. Bars represent mean of n=3 +/- SEM. Red bars represent the top upregulated genes 615 

from the literature gene list. 616 

Fig. 5. IRF7 but not IRF1 is important in the control of RSV infection. IRF7-/- (A, C, E, G, I) 617 

or IRF1-/- (B, D, F, H, I) were infected with 5x105 PFU RSV A2 and compared to wild type 618 
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controls on the same background. Mice were weighed daily and weight changes recorded as a 619 

percentage of original weight (A, F). Lungs were excised and viral load calculated by qPCR on 620 

days 4 and 7 post-infection (B, G). Total cell counts from lung (C, H) were calculated, along 621 

with totals of CD3, CD4 and CD8 (T cells), CD19 (B cells) and DX5+ (NK cells) (D, I) 622 

measured in lung by flow cytometry on day 7 post infection. Levels of the inflammatory 623 

cytokines IL-1β and IFNγ in lung (E, J) were measured by ELISA on day 7 post infection. 624 

Results show means ± S.E.M. (n > 5). Statistical significance was assessed by Student’s t-test (* 625 

p<0.05, ** p<0.01, *** p<0.001).  626 

Supplemental Table Captions 627 

Table S1. Datasets mined for study. Papers published prior to July 2015 were selected, using 628 

the search terms “RSV AND Microarray OR transcriptome OR genetic or proteome” on 629 

PubMed. Table incorporates subjective weighting score based on the type of study they were 630 

collated from (in brackets): human genetic studies (4), human in vivo transcriptomic studies (3), 631 

human in vitro studies (2), murine studies (1). Sample type, time point and analysis method also 632 

included. 633 

Table S2 Unweighted analysis – upregulated genes. Genes were collated from multiple studies 634 

of RSV; a two fold increase in expression compared to reference group in the study data was 635 

collated from, was used as a cut off, where available. Genes were analysed for multiple hits by a 636 

custom PERL script.  637 

Table S3 Unweighted analysis – downregulated genes. Genes were collated from multiple 638 

studies of RSV; a two fold decrease in expression compared to reference group in the study data 639 
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was collated from, was used as a cut off, where available. Genes were analysed for multiple hits 640 

by a custom PERL script. 641 

Fig. S1. Try this at home. Step by step guide to using our analysis approach. 642 
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Table 1. Most frequently upregulated genes following RSV infection. Genes were collated 

from multiple studies of RSV; a cut-off of a two fold increase in expression, compared to 

reference group in the study from which the data was collated, was used where available. Genes 

were weighted on the basis of the study they were collated from - Human Genetic Studies (4), 

Human in vivo Microarray studies (3), Human in vitro microarray (2), Mouse studies (1). After 

weighting, genes were analyzed for multiple hits by a custom PERL script.  

Weighted Score Gene 
24 IFI27 
23 IFIT3 
18 GBP1 
16 IFI44L 
15 OAS3, IFI44, CXCL10 
14 HP 

12 ADAM33, OAS2, IL1RN, IFIT2, HERC5, RSAD2/Viperin, 
ARG1, ISG15 

11 CXCL11, STAT2, TNF, FCER1A, IRF7, FCGR1A, CA1, STAT1 
10 IFNG, IFIT1, CCL5, EPSTI1, MX2 

9 CEACAM6, C3, CCL8, CXCL9, TRAC, IFI35, MX1, MPO, 
LCN2, OTOF 

8 
VDR, BPGM, IFI6, IL10, ANXA3, OLFM4, SAMHD1, 
SERPING1, DEFA1, IFNA13, RTP4, NOS2A, AIM2, JUN, 
OASL, GBP4 

7 SCGB1A1, ISG20, CHI3L1, OAS1A, MUC5AC, PRIC285, IL6 

6 
IFITM3, IL20, MMP8, DEFA4, OASL2, ATF3, CXCL2, TMC5, 
TF, HBBP1, FCGR1B, IFIH1, CXCL8, CCL4, IL15, PRF1, 
ALAS2, NFKBIA, MSP, ELA2, KLRD1, IL7, MMP9, CD14 

5 

DEFA3, THOC4, CEACAM8, IFIT5, LAMP3, ERAF, IFNA, 
ALDH1A1, LGALS9, GZMB, LTF, CCL7, HBM, OAS1, 
CTNNAL1, WARS, LY6E, HBD, IGTP, S100A12, PSMB8, 
DHX58, IFI1, IFI47, CCL2, PSMB9, GNLY 

4 

EIF2AK2, MYD88, BATF2, CMPK2, GMPR, LILRB4, OSMR, 
IIGP1 TNFSF13B, DAXX, HLA-G, HSPA8, IL18BP, NMI, 
HLA-B, SAMD9L, CD177, IIGP2, LAP3, GBP2, USP18, 
PLAC8, MS4A6D, FCGR1, IFITM1, PARP9, AIF1, 
SERPINA3G, IFI202B 
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Table 2 Most frequently downregulated genes following RSV infection. Genes were collated 
from multiple studies of RSV; a cut-off of a two fold decrease in expression was used where 
available. Genes were weighted on the basis of the study they were collated from - Human 
Genetic Studies (4), Human in vivo Microarray studies (3), Human in vitro microarray (2), 
Mouse studies (1). After weighting, genes were analyzed for multiple hits by a custom PERL 
script.  
 
Weighted Score Gene 
9 CLC 
6 NDUFS1, PFDN5 
5 RTN1, CAT, FCER1A, TSPAN8, ALOX15, GPR56, KLRB1 
4 XRCC5, LMNA, UBD, CCT3, HSPA8, GARS 
 
 
Table 3. Canonical Pathways. Ingenuity pathway analysis was applied to the top scoring genes  
 
 Ingenuity Canonical Pathways Molecules 
1 Interferon Signaling OAS1,IFIT1,IFNG,IFITM1,STAT1,IFNA1/IFNA13,

IFIT3,STAT2,MX1,IFI35,IFITM3,PSMB8 
2 Activation of IRF by Cytosolic Pattern Recognition 

Receptors 
JUN,DHX58,STAT2,IFIT2,IL6,NFKBIA,IRF7,STA
T1,TNF,IFNA1/IFNA13,ISG15,IFIH1,IL10 

3 Communication between Innate and Adaptive 
Immune Cells 

IL15,TNFSF13B,IFNG,CCL5,CXCL10,HLA-
G,IL6,CXCL8,IL1RN,TNF,IFNA1/IFNA13,IL10,H
LA-B,CCL4 

4 Role of Hypercytokinemia/hyperchemokinemia in 
the Pathogenesis of Influenza 

IL15,IL1RN,IFNG,CCL5,CXCL10,TNF,IFNA1/IFN
A13,CCL2,CCL4,IL6,CXCL8 

5 Role of Pattern Recognition Receptors in 
Recognition of Bacteria and Viruses 

EIF2AK2,OAS1,IFNG,C3,MYD88,CCL5,OAS2,IL
6,CXCL8,IRF7,TNF,IFNA1/IFNA13,OAS3,IFIH1,I
L10 

6 Granulocyte Adhesion and Diapedesis CXCL9,CCL8,CCL7,CCL5,MMP9,CXCL10,CXCL
2,CXCL8,CXCL11,IL1RN,TNF,CCL2,MMP8,CCL
4 

7 Agranulocyte Adhesion and Diapedesis CXCL9,CCL8,CCL7,CCL5,MMP9,CXCL10,CXCL
2,CXCL8,CXCL11,IL1RN,TNF,CCL2,MMP8,CCL
4 

8 Role of Cytokines in Mediating Communication 
between Immune Cells 

IL15,IL1RN,IFNG,TNF,IFNA1/IFNA13,IL20,IL10,
IL6,CXCL8 

9 Differential Regulation of Cytokine Production in 
Intestinal Epithelial Cells by IL-17A and IL-17F 

IFNG,CCL5,TNF,CCL2,IL10,CCL4,LCN2 

10 Dendritic Cell Maturation FCGR1B,IL15,MYD88,FCGR1A,STAT2,IL6,NFK
BIA,IL1RN,STAT1,TNF,IFNA1/IFNA13,IL10,HL
A-B 
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