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ABSTRACT Greater understanding of the functions of host gene products in re-
sponse to infection is required. While many of these genes enable pathogen clear-
ance, some enhance pathogen growth or contribute to disease symptoms. Many
studies have profiled transcriptomic and proteomic responses to infection, generat-
ing large data sets, but selecting targets for further study is challenging. Here we
propose a novel data-mining approach combining multiple heterogeneous data sets
to prioritize genes for further study by using respiratory syncytial virus (RSV) infec-
tion as a model pathogen with a significant health care impact. The assumption was
that the more frequently a gene is detected across multiple studies, the more im-
portant its role is. A literature search was performed to find data sets of genes and
proteins that change after RSV infection. The data sets were standardized, collated
into a single database, and then panned to determine which genes occurred in mul-
tiple data sets, generating a candidate gene list. This candidate gene list was vali-
dated by using both a clinical cohort and in vitro screening. We identified several
genes that were frequently expressed following RSV infection with no assigned func-
tion in RSV control, including IFI27, IFIT3, IFI44L, GBP1, OAS3, IFI44, and IRF7. Drilling
down into the function of these genes, we demonstrate a role in disease for the
gene for interferon regulatory factor 7, which was highly ranked on the list, but not
for IRF1, which was not. Thus, we have developed and validated an approach for
collating published data sets into a manageable list of candidates, identifying novel
targets for future analysis.

IMPORTANCE Making the most of “big data” is one of the core challenges of cur-
rent biology. There is a large array of heterogeneous data sets of host gene re-
sponses to infection, but these data sets do not inform us about gene function and
require specialized skill sets and training for their utilization. Here we describe an
approach that combines and simplifies these data sets, distilling this information
into a single list of genes commonly upregulated in response to infection with RSV
as a model pathogen. Many of the genes on the list have unknown functions in RSV
disease. We validated the gene list with new clinical, in vitro, and in vivo data. This
approach allows the rapid selection of genes of interest for further, more-detailed
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studies, thus reducing time and costs. Furthermore, the approach is simple to use
and widely applicable to a range of diseases.

KEYWORDS: host response, immunity, respiratory syncytial virus, viral immunity

The interpretation of large data sets— big data—is one of the challenges of modern
biology (1). Several powerful approaches have been developed to derive functional

correlates from these large data sets, but they all have some limitations. Analysis of
correlated or functionally related groups of genes en bloc simplifies analysis (2, 3);
however, this approach loses gene level detail, particularly for genes with unknown
roles. Systems biology approaches to identify key genes within pathways have been
applied in vaccination (4) and infection (5) studies, but there is still a requirement to
select individual genes for further analysis. High-throughput screenings enable the
rapid identification of gene functions in an in vitro context (6–8), but these screenings
only investigate the role of genes in the context of individual cells, not in relation to the
system as a whole. Recently, programs of work have been developed to systematically
target every gene in the mouse genome to define its function (9, 10); nevertheless, cost
and ethical considerations require a focused selection of the targets of interest. The
plethora of data available makes the prioritization of genes for further analysis chal-
lenging and often requires specialized skill sets and costly software. We propose a novel
and simple approach to integrate published data sets to rapidly identify genes for their
functions in the control of infection by using freely available software.

We used this novel approach to identify genes involved in the host response to
respiratory syncytial virus (RSV) infection as a proof of principle. RSV is a ubiquitous
infection in early life and a significant cause of disease (11). While the majority of
children are infected with RSV during infancy, only a small proportion (2%) require
hospitalization, of whom many have known risk factors, including prematurity, con-
genital heart disease, or immunodeficiency. However, the majority of hospitalized
children (73 to 85%) have no known risk factor (12, 13). This phenotypic variability in
host response may reflect the role of host genetic polymorphisms in protection against
or potentiation of severe disease (14). Severe RSV disease is associated with perturba-
tion of normal airway function in the lower respiratory tract, but the events leading to
the perturbation of airway function after RSV infection are not clear. Indeed, the cause
of disease may be heterogeneous, with virus-induced cell death causing disease in
some infants and excess local inflammation having a role in others. The broader cellular
immune response to RSV has been well dissected, with protective and pathogenic roles
assigned to many cell types, including macrophages (15, 16) and NK (17, 18) and T cells
(19, 20), but the molecular immune profile has not been fully explored. A number of
studies in the last decade have published host omics profiles of RSV disease, identifying
signatures of RSV infection, which enable discrimination between RSV and other
respiratory viral infections (21, 22). Published associations of genes with the response
to RSV are derived from a diverse range of systems, both in vitro and in vivo, in humans
and mice, and based on RNA, DNA, and protein data (see Table S1 in the supplemental
material). However, while these studies have identified genes that change in response
to infection, they have not defined the functional roles of individual genes in RSV
disease.

The aims of the present study were to integrate multiple published data sets to
prioritize the genes associated with RSV infection and to dissect their functions in RSV
disease. To achieve these goals, we employed a combination of in silico, in vitro, and in
vivo approaches. Our conclusions were consistently supported by a new clinical study.
Integrating multiple studies in this fashion increases confidence in the role of the genes
identified. Utilizing this approach we identified IRF7 as a key gene in the control of RSV.
Here, we demonstrate that integration of published omic data sets with high-
throughput studies generates insights into the genetic control of infection.

McDonald et al.

Volume 1 Issue 3 e00051-16 msystems.asm.org 2

 on N
ovem

ber 10, 2016 by guest
http://m

system
s.asm

.org/
D

ow
nloaded from

 

msystems.asm.org
http://msystems.asm.org/


RESULTS
Meta-analysis of RSV data sets reveals functional pathways in the control of RSV.
We developed a novel approach to mine the mass of published gene and protein
profile data in order to prioritize genes for functional profiling (Fig. 1). A literature
search was performed to identify studies using omics tools to analyze the response to
RSV infection. Data were collected from multiple published studies of RSV disease,
selecting studies that included accessible lists of genes and/or proteins that were
detectable following RSV infection of either humans or mice (see Table S1 in the
supplemental material) or identified as significant in genetic studies or genome-wide
association studies. Because of the heterogeneity of the approaches, when multiple
data sets were available in a single study, we focused on the 24 h after infection time
points in primary infection (rather than reinfection) and set an arbitrary cutoff of a
2-fold increase or decrease in gene expression for transcriptomic studies. Studies were
collated in a single database, and we then used a custom Perl script (countIDs;
https://sourceforge.net/projects/countids/) to parse the file to find genes that were
present in multiple studies. Genes were ranked by frequency of occurrence and
weighted on the basis of the types of studies they appeared in: genetic association
studies, ex vivo human studies, or in vitro human or mouse studies, with more
weighting on the human than the murine studies. This subjective weighting score was
based on perceived relevance to human infection. Weighting reflected the nature of
the input study, not specific data layers, which were treated equally; genes, mRNA, and

FIG 1 Flowchart of the gene selection method used in this study.
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proteins were given equal weight. A list of candidate genes was then generated
(Table 1). Using the weighted analysis, the genes that were most commonly reported
as being upregulated were IFI27, IFIT3, GBP1, IFI44L, OAS3, IFI44, and CXCL10 (Table 1).
No functional roles in the control of RSV infection have been previously described for
these genes. Fewer genes were downregulated after RSV infection, and they were less
uniformly represented between studies; the downregulated genes included CLC,
NDUFS1, and PFDN5 (Table 2). For comparison, an unweighted analysis was also
performed (see Tables S2 and S3 in the supplemental material); this analysis identified
similar patterns of genes, with interferon the gene for (IFN) regulatory factor 7 (IRF7)
relatively higher in the unweighted analyses than in the weighted analyses. Thus, we
can take published data sets and condense them into a single list. Interestingly despite
the heterogeneous nature of the input studies, we identified a large overlap in the
genes identified.

To visualize the genes and interactions, we plotted the list by using the Ingenuity
software platform (Fig. 2). Genes with scores of �6 were included. The analysis
identified a mixture of secreted factors (cytokines and chemokines) and intracellular
factors (transcription factors and IFN-stimulated genes [ISGs]). On the basis of our
previous experience and the published literature, it was interesting that extracellular
proteins upregulated in response to RSV are often associated with enhanced disease
(15, 23–25), whereas intracellular proteins are associated with disease control (26). To
simplify the presentation of the interactions, we focused on the interactions of the top
16 upregulated genes and the top 5 downregulated genes, looking at direct interac-
tions that have been observed experimentally. The main observation from this was that
IRF7, which was found to be upregulated in nine independent studies (7, 27–32),

TABLE 1 Genes most frequently upregulated following RSV infectiona

Weighted score Gene(s)

24 IFI27
23 IFIT3
18 GBP1
16 IFI44L
15 OAS3, IFI44, CXCL10
14 HP
12 ADAM33, OAS2, IL-1RN, IFIT2, HERC5, RSAD2/Viperin, ARG1, ISG15
11 CXCL11, STAT2, TNF, FCER1A, IRF7, FCGR1A, CA1, STAT1
10 IFN-�, IFIT1, CCL5, EPSTI1, MX2
9 CEACAM6, C3, CCL8, CXCL9, TRAC, IFI35, MX1, MPO, LCN2, OTOF
8 VDR, BPGM, IFI6, IL-10, ANXA3, OLFM4, SAMHD1, SERPING1, DEFA1, IFN-A13, RTP4, NOS2A, AIM2, Jun, OASL, GBP4
7 SCGB1A1, ISG20, CHI3L1, OAS1A, MUC5AC, PRIC285, IL-6
6 IFITM3, IL-20, MMP8, DEFA4, OASL2, ATF3, CXCL2, TMC5, TF, HBBP1, FCGR1B, IFIH1, CXCL8, CCL4, IL-15, PRF1, ALAS2, NFKBIA, MSP,

ELA2, KLRD1, IL-7, MMP9, CD14
5 DEFA3, THOC4, CEACAM8, IFIT5, LAMP3, ERAF, IFN-�, ALDH1A1, LGALS9, GZMB, LTF, CCL7, HBM, OAS1, CTNNAL1, WARS, LY6E, HBD,

IGTP, S100A12, PSMB8, DHX58, IFI1, IFI47, CCL2, PSMB9, GNLY
4 EIF2AK2, MYD88, BATF2, CMPK2, GMPR, LILRB4, OSMR, IIGP1 TNFSF13B, DAXX, HLA-G, HSPA8, IL-18BP, NMI, HLA-B, SAMD9L, CD177,

IIGP2, LAP3, GBP2, USP18, PLAC8, MS4A6D, FCGR1, IFITM1, PARP9, AIF1, SERPINA3G, IFI202B
aGenes were collated from multiple studies of RSV. A cutoff of a 2-fold increase in expression, compared to the reference group in the study from which the data
were collated, was used when available. Genes were weighted as follows on the basis of the studies from which they were collated: human genetic studies, 4;
human in vivo microarray studies, 3; human in vitro microarray studies, 2; mouse studies, 1. After weighting, genes were analyzed for multiple hits by a custom Perl
script.

TABLE 2 Genes most frequently downregulated following RSV infectiona

Weighted score Gene(s)

9 CLC
6 NDUFS1, PFDN5
5 RTN1, CAT, FCER1A, TSPAN8, ALOX15, GPR56, KLRB1
4 XRCC5, LMNA, UBD, CCT3, HSPA8, GARS
aGenes were collated from multiple studies of RSV. A cutoff of a 2-fold decrease in expression was used
when available. Genes were weighted as follows on the basis of the studies from which they were collated:
human genetic studies, 4; human in vivo microarray studies, 3; human in vitro microarray studies, 2; mouse
studies, 1. After weighting, genes were analyzed for multiple hits by a custom Perl script.
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interacted with several of the other most commonly identified genes. IRF7 was also
central when the same data were analyzed for canonical pathways: overall, the genes
tended to fall into pathways associated with the inflammatory response to viral
infection (Table 3).

Clinical validation of the bioinformatic list. Since the list of candidate genes
was generated by a literature-mining approach, we sought validation by using whole

FIG 2 Pathway analysis of genes upregulated after RSV infection. The top 130 genes identified by a literature search are organized
on the basis of their predicted functions and subcellular locations. Top candidates are indicated by bold outlining, upregulated genes
are red, and downregulated genes are green. Interactions between the top 16 upregulated genes and the top 5 downregulated genes
are based on known interactions in the IPA knowledge base.
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blood gene expression data from patients infected with RSV. We compared the
transcriptomic profile of children hospitalized because of infection with RSV to that of
age-matched healthy controls by using microarrays. The list of genes derived from the
literature (Table 1) was compared to the genes that were significantly differentially
expressed (SDE) in children infected with RSV versus healthy controls, and an overlap
of 73 out of 130 genes was observed. Of the genes identified as upregulated in the
literature-derived list, 66 were observed to be significantly upregulated in the clinical
study, 45 were not SDE, and only 2 were SDE but in the opposite direction (Fig. 3A). The
list of downregulated gene from the literature was smaller but also had a smaller
proportion of agreement with the clinical study— only 5 of 17 genes were present in
both studies (Fig. 3B). These data were then mapped onto the network built by using
the literature-derived list (Fig. 3C), demonstrating that many of the top-ranking genes
from the literature-derived list, including IRF7, OAS2, RSAD2, HERC5, ISG15, IFI44, IL-1RN,
ARG1, and IFIT3, were in agreement between the two methods.

Validation of the gene list by in vitro assay. Of note, a number of the genes
that we identified as commonly upregulated have no known role in the control of RSV
infection. We wished to screen the genes identified for their effects on RSV infection by
the flow cytometry-based screening method described by Schoggins et al. (7). We
screened 39 ISGs identified by our in silico screening, and we also included receptors
and transcription factors identified as upstream regulators by pathway analysis in
previous studies (IL-28RA, IRF1, IRF2, SOCS1, SOCS2, STAT3, TLR3, and TLR7). The HEp-2
epithelial cell line was used, as it represents the cell lineages that RSV first encounters
during an infection. HEp-2 cells were transduced with lentiviral vectors expressing each
ISG and red fluorescent protein (RFP) in the same vector prior to infection with RSV
expressing green fluorescent protein (GFP) (33). PKR, IFI6, and OASL overexpression
reduced the GFP expression level (and therefore infection) by more than 75% of the
control (Fig. 4). Of the genes identified with the most hits in the in silico studies (score
of �12), the reductions in infectivity were as follows: IFI27, 65.6% � 26.6%; IFIT3,
62.5% � 10.6%; IFI44L, 67.3% � 39.7%; GBP1, not in panel; OAS3, 66.3% � 36.0%; IFI44,
74.5% � 25.5%; ISG15, 58.3% � 11.5%. IRF7 overexpression led to a 76.7% � 11.7%
reduction in RSV replication, which demonstrates that, in addition to being centrally
located in the predicted gene networks from in silico analysis, IRF7 has a role in the
control of RSV infection. The in vitro data support a role in viral control for the genes
identified by our novel screening method.

Validation of the gene list by an in vivo infection model. The overarching aim
of this study was to identify new genes of interest for further study. The informatic and

TABLE 3 Canonical pathwaysa

Ingenuity canonical pathway Molecules

IFN signaling OAS1, IFIT1, IFN-�, IFITM1, STAT1, IFN-A1/IFN-A13, IFIT3, STAT2, MX1, IFI35, IFITM3, PSMB8
Activation of IRF by cytosolic pattern recognition

receptors
Jun, DHX58, STAT2, IFIT2, IL-6, NFKBIA, IRF7, STAT1, TNF, IFN-A1/IFN-A13, ISG15, IFIH1, IL-10

Communication between innate and adaptive
immune cells

IL-15, TNFSF13B, IFN-�, CCL5, CXCL10, HLA-G, IL-6, CXCL8, IL-1RN, TNF, IFN-A1/IFN-A13,
IL-10, HLA-B, CCL4

Role of hypercytokinemia/hyperchemokinemia
in pathogenesis of influenza

IL-15, IL-1RN, IFN-�, CCL5, CXCL10, TNF, IFN-A1/IFN-A13, CCL2, CCL4, IL-6, CXCL8

Role of pattern recognition receptors in
recognition of bacteria and viruses

EIF2AK2, OAS1, IFN-�, C3, MYD88, CCL5, OAS2, IL-6, CXCL8, IRF7, TNF, IFN-A1/IFN-A13,
OAS3, IFIH1, IL-10

Granulocyte adhesion and diapedesis CXCL9, CCL8, CCL7, CCL5, MMP9, CXCL10, CXCL2, CXCL8, CXCL11, IL-1RN, TNF, CCL2,
MMP8, CCL4

Agranulocyte adhesion and diapedesis CXCL9, CCL8, CCL7, CCL5, MMP9, CXCL10, CXCL2, CXCL8, CXCL11, IL-1RN, TNF, CCL2,
MMP8, CCL4

Role of cytokines in mediating communication
between immune cells

IL-15, IL-1RN, IFN-�, TNF, IFN-A1/IFN-A13, IL-20, IL-10, IL-6, CXCL8

Differential regulation of cytokine production in
intestinal epithelial cells by IL-17A and IL-17F

IFN-�, CCL5, TNF, CCL2, IL-10, CCL4, LCN2

Dendritic cell maturation FCGR1B, IL-15, MYD88, FCGR1A, STAT2, IL-6, NFKBIA, IL-1RN, STAT1, TNF, IFN-A1/IFN-A13,
IL-10, HLA-B

aIngenuity pathway analysis was applied to the top-scoring genes.
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FIG 3 Validation of bioinformatic screening of a patient cohort. SDE genes from the clinical cohort were compared
with the literature-derived gene list. Shown are overlaps between the gene lists expressed as pie charts, with

(Continued)
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in vitro analyses identified IRF7 as being involved in the response to RSV, and it has not
previously been studied in the context of RSV infection. To validate our screening
approach, we compared RSV infection in mice deficient in IRF7, a gene on our list, with
one that is associated with antiviral responses but is not on our list (IRF1). IRF7�/� and
IRF1�/� mice were intranasally infected with 5 � 105 PFU of RSV-A (A2 strain) and
monitored daily for weight loss for 7 days postinfection. Cohorts of mice were sacrificed
on days 4 and 7 postinfection to quantify viral burdens and immunological changes
over the course of the challenge. Mice were compared to wild-type controls on the
same background. IRF7�/� mice showed significant weight loss on days 6 and 7
postinfection compared to their wild-type littermates (P � 0.01) (Fig. 5A). There was no
difference in weight loss between IRF1�/� and wild-type controls (Fig. 5B). RSV loads
were significantly greater in both IRF7�/� and IRF1�/� mice on day 4 postinfection (P �

0.05, Fig. 5C and D) but not on day 7 postinfection. Cellular infiltrate was quantified
over the course of infection, which showed a significant increase in total cells resident
in the lungs on day 7 postinfection in IRF7�/� mice but not in IRF1�/� mice (P � 0.05,
Fig. 5E and F). Flow cytometry revealed an increase in all cellular subpopulations in
IRF7�/� mice relative to those of wild-type mice on day 7 postinfection. In particular,
the total numbers of NK cells in the lungs were significantly higher (P � 0.05) (Fig. 5G
and H); there was no significant difference in the IRF1�/� mice. Analysis of inflammatory
cytokines present in the lungs revealed differences on day 7 postinfection (Fig. 5I and
J), with significantly higher levels of IL-1� in the lungs of IRF1�/� mice than in those of
wild-type controls (P � 0.05).

DISCUSSION

Here we used a novel integrative approach to identify and characterize genes that are
upregulated in response to RSV infection for further analysis. Previous studies have
explored genetic signatures to discriminate RSV infection from other viral infections (21,
22). Our approach enabled the identification of relevant genes in a hypothesis-free
fashion, identifying genes with both known and unknown functions. We used a novel
algorithm that permitted the integration of multiple large genetic, gene expression,
and protein data sets to identify genes consistently upregulated after RSV infection
across multiple model systems. Using this approach, we were able to distill multiple
heterogeneous studies into a single list of candidate molecules, generate testable
hypotheses, and then demonstrate functional relevance. While we focused on RSV, this
approach is broadly applicable to other pathogens for which large sets of gene
expression data are available, and the data mining program is available as an open-
source program.

We identified a number of genes with no known function in RSV disease as potential
targets for future investigation, including IFI27, IFIT3, IFI44L, GBP1, OAS3, and IFI44.
Several of these have reported roles from other infections, but a role in RSV infection
has not been reported. IFI27 (also called ISG12) plays a proinflammatory role by
inducing the nuclear export of an anti-inflammatory nuclear receptor, NR4A1 (34), and
recently has been related to proliferation and human epidermal cell cycling (35); GBP1
is a GTPase with a possible role in actin remodeling (36); IFI44 is antiproliferative; OAS3
interacts with RNase L (37); and ISG15 is a ubiquitin-like modifier (38) that has been
shown to reduce RSV viral growth in vitro (39). However, some of the most frequently
upregulated genes, for example, IFI44L, have no assigned molecular function. We took
some of these genes forward into an in vitro assay and observed that there was a partial
reduction of viral replication with all of the top hits tested (GBP1 was not tested, as it

Figure Legend Continued
directionality of agreement indicated for genes on the literature-derived list that are upregulated (A) or downregu-
lated (B). Also shown are relative expression data from RSV-infected patients overlaid on the gene network derived
from the literature-derived list (C). Upregulated genes are red, downregulated genes are green, genes identified in
bioinformatic study but not clinical study are white, shading represents differential expression, and genes on the
literature-derived list are indicated by bold outlining.
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FIG 4 Flow cytometry confirmation of inhibitory functions of genes identified in silico. HEp-2 cells
were transduced with lentiviral vectors expressing genes of interest identified by in silico screening,

(Continued)
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was not in the lentiviral panel). We focused on IRF7 for the in vivo studies because it
gave a strong knockdown in vitro and was central to the predicted in silico network.
IRF7 is an amplificatory molecule responding to pattern recognition receptor detection
of viral infection, inducing a further cascade of IFNs (40), and is identified as the master
regulator of type I IFN-dependent immune responses (41). Previous studies have shown
a role for IRF7 in human metapneumovirus (42) and influenza virus (43) infections. A
recent study has demonstrated a role for IRF7 in the upregulation of RIG-I in response
to RSV infection in vitro (44), but the present study is the first to demonstrate a central
role for IRF7 in the control of RSV infection both in vivo and in vitro.

There are some limitations to this study. First, expression profiling of cells in the
peripheral blood has limitations in terms of representativeness of responses in the
respiratory epithelium, which RSV infects, and most of the studies are based on
peripheral blood signatures. Because of the heterogeneous nature of the available
databases and publications about genes associated with RSV infection, we had to make
inclusion decisions that led to a slight skewing of the gene list. Where multiple gene
sets were available, we chose to include genes upregulated at 24 h after infection,
which may have skewed the gene set to the IFN-�/� response. Where reported, a cutoff
change of 2-fold was used, but these data were not reported in several studies; likewise,
not all published data had gene lists that could be incorporated into the present study.
We chose a system to weight the data for the analysis giving priority to genetic
association studies and in vivo human data over in vitro and mouse data. This weighting
score was based on a subjective decision about the perception of the relevance of
different data types to human infection. While it oversimplifies the differences both
between and within different study types, once the data have been collated, other
scoring systems could easily be applied to the same metadata because of the simplicity
of the analysis tools used. It is of note that weighted and unweighted analyses gave
similar lists. This demonstrates the power of this tool, because it can be adapted to

FIG 5 IRF7, but not IRF1, is important in the control of RSV infection. IRF7�/� (A, C, E, G, I) or IRF1�/� (B, D, F, H, I) mice were infected with 5 � 105 PFU
of RSV strain A2 and compared to wild-type controls on the same background. Mice were weighed daily, and weight changes were recorded as
percentages of the original weight (A, F). Lungs were excised, and viral loads were calculated by quantitative PCR on days 4 and 7 postinfection (B, G).
Total lung cell counts (C, H) were calculated, along with the total numbers of CD3, CD4, and CD8 (T); CD19 (B); and DX5� (NK) (D, I) cells measured in
the lungs by flow cytometry on day 7 postinfection. Levels of the inflammatory cytokines IL-1� and IFN-� in the lungs (E, J) were measured by
enzyme-linked immunosorbent assay on day 7 postinfection. Results are mean values � the standard error of the mean (n >5). Statistical significance
was assessed by Student t test (*, P < 0.05; **, P < 0.01; ***, P < 0.001).

Figure Legend Continued
and 24 h later, the cells were infected with RSV expressing GFP. Cells were harvested at 48 h
postinfection, and expression relative to that of control lentivirus-transfected wells was assessed.
Each bar represents the mean value of three experiments � the standard error of the mean. Red bars
represent the top upregulated genes on the literature-derived list.
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different questions, integrating heterogeneous data sets; furthermore, the simplicity of
the approach means that this can be performed quickly and easily. The in vitro
screening contained only ISGs, which restricted the analysis of genes that were iden-
tified but not in this family; for example, GBP1. Finally, there was only a limited disease
phenotype in the control mice because they were C57BL/6 mice, which are relatively
resistant to RSV infection; these mice were used to match the gene knockout animals.
One limiting factor in the data mining, in our experience, is a lack of standardization of
published data sets; different papers have gene and protein lists in different file formats
with different nomenclatures, and many only had lists in tables. Therefore, transcription
of the data had to be done by hand. A more uniform approach to these data sets would
enable more studies to be included in meta-analyses.

Understanding more about the functions of the genes that are most commonly
upregulated following RSV infection may give us insight into pathways to control
disease after infection. A number of papers have proposed genetic signatures of RSV
infection; here, we show that the genes that are commonly upregulated as a result of
RSV infection are characteristic of inflammation and viral control. There is an ongoing
debate as to whether inflammation or virus-mediated pathology is the primary cause
of disease after RSV infection. In the this context, one of the striking features of the
pathway analysis was a divergence in the effects on disease outcome of the gene
products localized to the extracellular space and those found in the nucleus and
cytoplasm. Animal studies suggest that the extracellular proteins enhance disease
following RSV infection (45) by increasing inflammation, while the intracellular proteins
reduce disease by decreasing viral replication. In support of this, we have recently
shown that antiviral gene IFITM3 is important in the prevention of RSV infection (26, 46).
In the in vitro studies, overexpression of IFITM3 led to a 68% � 20.6% reduction in RSV
replication. Furthermore, overexpression of the chemokines CCL4, CCL5, and CCL8 had
little effect on viral replication. This suggests that boosting the antiviral response
without increasing inflammation would be a good strategy to control RSV disease. One
potential target to achieve this would be the type I IFN response, which, if boosted, may
increase the transcription of antiviral genes. However, recent studies have shown that
in RSV (47) and influenza virus (48) infections, type I IFN contributes to inflammation
and disease after viral infection, suggesting that there is a sweet spot of IFN production
and either too little or too much can lead to a disease state. Targeting the host response
may be particularly beneficial, as it is not necessarily specific to the pathogen and is less
likely to induce antimicrobial resistance.

There are several other approaches for integrating heterogeneous data for immu-
nology research (49). Selection of the tool to use depends on the desired outcome,
ranging from analysis of T cell receptor and antibody repertoire analysis to network
analysis and visualization. Some tools enable the integration of gene expression data
with DNA variation (eQTL) (50) or against the epigenetic status of the same gene (51),
both of which enable greater understanding of the processes underpinning gene
regulation and expression in the immune response. For higher-level analysis, data can
be merged by using network analysis tools to see novel interactions between genes
(52). These are sophisticated models underpinned by statistical techniques requiring
specialized skill sets and data analysis software to be performed rigorously. Our
approach is not. It requires no specialist informatic skills or software (for a how-to guide,
see Text S1 in the supplemental material); it uses Excel (but would work with any
spreadsheet program) and a free Perl script. Additionally, it performs a different
function prioritizing genes for further study. This tool generates a hypothesis-free
candidate list that can be investigated further. That the genes were biologically
plausible and affected RSV infection in vitro and in vivo validities it as a downselection
tool. In conclusion, here we describe a novel literature data mining approach for
candidate gene prioritization. It has the benefit of simplicity and is broadly applicable
to a range of infectious diseases.
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MATERIALS AND METHODS
Meta-analysis of papers and in silico analysis. We selected papers published prior to July 2015 by
using the search terms “RSV AND Microarray OR transcriptome OR genetic or proteome” in PubMed;
other studies from previous literature searches were also included (see Table S1 in the supplemental
material). Papers were not included if the data set described in the study with fold change and time point
data were not easily accessible. Individual genes were included for analysis if they were reported to have
a �2-fold difference from the reference group in the specific study. Gene lists were harvested from the
published literature and collated in a single excel file. For analysis, genes were given subjective weighting
scores based on the types of studies from which they were collated, as follows: human genetic studies,
4; human in vivo transcriptomic studies, 3; human in vitro studies, 2; murine studies, 1. A custom Perl
script, countIDs (available at https://sourceforge.net/projects/countids/), was written to parse the gene
list file generated to assign a weighted score to each gene, generating an output gene list. Figure 1 is
a flowchart of the process; for a step-by-step guide to the approach, see Text S1 in the supplemental
material. For visualization, genes with assigned scores of �6 were included for Ingenuity Pathway
Analysis (IPA; Qiagen).

Validation in a clinical cohort. We established a case-control group comprising 27 RSV patients and
80 healthy controls. Whole blood (2.5 ml) was collected into PAXgene blood RNA tubes (PreAnalytiX;
Germany), incubated for 2 h, frozen at �20°C within 6 h of collection, and then stored at �80°C. RNA was
extracted with PAXgene blood RNA kits (PreAnalytiX; Germany) according to the manufacturer’s instruc-
tions. The integrity and yield of the total RNA were assessed with an Agilent 2100 Bioanalyzer and a
NanoDrop 1000 spectrophotometer. After quantification and quality control, biotin-labeled cRNA was
prepared with Illumina TotalPrep RNA amplification kits (Applied Biosystems) from 500 ng of RNA.
Labeled cRNA was hybridized overnight to HumanHT-12 v4 Expression BeadChip arrays (Illumina). After
washing, blocking, and staining, the arrays were scanned with an Illumina BeadArray Reader according
to the manufacturer’s instructions. With Genome Studio software, the microarray images were inspected
for artifacts and quality control parameters were assessed. Data were analyzed in the R language and
environment for statistical computing (version 3.1.2) (53). Mean raw intensity values for each transcript
were transformed to a logarithmic scale (base 2), corrected for local background intensities, and
normalized by robust spline normalization. We identified the transcripts that were SDE between the
RSV-infected children and the healthy control group with an adjusted P value of �0.05 by using a linear
model for transcript expression. The functions lmFit and eBayes in the R package limma were used to
calculate statistics.

Validation in vitro. ISG library creation and screening were performed with a modified version of the
assay described previously (7). A total of 2 � 105 HEp-2 cells was seeded into 96-well plates overnight
prior to transfection with 105 of the individual RFP-ISG lentiviruses in Dulbecco’s modified Eagle’s
medium supplemented with 20 mM HEPES and 4 mg/ml Polybrene by spinoculation at 1,000 rpm for 1 h.
Twenty-four hours later, the cells were infected with GFP-expressing RSV (RSV-GFP) (33), and 24 h after
that, the cells were harvested for analysis by flow cytometry. Live/dead discrimination was performed by
addition of the LIVE/DEAD Fixable Aqua Dead Cell Stain kit (Molecular Probes) prior to the acquisition of
data on an LSRFortessa (BD). Viral infection was determined on the basis of the percentage of GFP-RFP
double-positive cells, and the relative infectivity in each well was normalized to the samples transfected
with control lentivirus only. Data were analyzed with CyAn ADP Summit 4.3.

Validation in vivo with gene knockout mice. Sex-matched 8- to 10-week-old wild-type C57BL/6N
IRF1tm1a(EUCOMM)Wtsi and IRF7tm1(KOMP)Wtsi mice (54) (Wellcome Trust Sanger Institute) were maintained in
accordance with United Kingdom Home Office regulations and United Kingdom Animals (Scientific
Procedures) Act 1986 under project license PPL 80/2596. Animals were supplied with food and water ad
libitum and monitored daily for signs of illness. Founder mice were phenotyped through pipelines at the
Wellcome Trust Sanger Institute as described previously (9, 10).

RSV in vivo studies. RSV strain A2 (from P. Openshaw, Imperial College London) was grown in HEp-2
cells, and viral titers were determined by plaque assay. Mice were infected intranasally with 5 � 105 PFU
in a volume of 100 �l under isoflurane anesthesia. They were weighed daily to monitor disease severity.
Their lungs were removed, the smaller lobe was snap-frozen in liquid nitrogen for RNA extraction, and
the remainder was homogenized by passage through 100-�m cell strainers (Falcon). Red blood cells in
the lung sample were lysed in ammonium chloride buffer, and the remaining cells were resuspended in
RPMI medium with 10% fetal calf serum. Viable cell numbers were determined by trypan blue exclusion,
and lung cell types were differentiated by flow cytometry as described previously (55). In brief, cells were
suspended in Fc block (anti-CD16/32; BD) in phosphate-buffered saline–1% bovine serum albumin and
stained with surface antibodies CD3-fluorescein isothiocyanate (BD, Oxford United Kingdom), CD4-
allophycocyanin (APC; BD), CD8-APC Alexa 750 (Invitrogen, Paisley, United Kingdom), NK1.1-peridinin
chlorophyll protein-Cy5.5 (BD), and CD19-eFluor 450 (eBioscience, Hatfield, United Kingdom). Cells were
run on a BD FACS Aria II. Singlet lymphocyte cells were defined on the basis of their size, side scatter, and
doublet discrimination, and then their immune phenotypes were analyzed on the basis of cell surface
markers. RSV loads were measured by quantitative reverse transcription-PCR for the RSV L gene with
primers and probes previously described (19), and L gene copy numbers were determined with an RSV
L gene standard and expressed relative to the amount (micrograms) of lung RNA. The cytokines
interleukin-1� (IL-1�) and IFN-� in the lungs were quantified with DuoSet kits from R&D Systems.

Statistical analysis. Statistical analysis was performed with weighted Student t tests in GraphPad
Prism 6.0.
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Microarray data accession number. The microarray data from the clinical study have been
uploaded to the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) and assigned
accession number GSE80179.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSystems.00051-16.

Text S1, DOCX file, 0.01 MB.
Table S1, DOCX file, 0.1 MB.
Table S2, DOCX file, 0.01 MB.
Table S3, DOCX file, 0.01 MB.
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