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ABSTRACT
We present an optimized variant of the halo model, designed to produce accurate matter
power spectra well into the non-linear regime for a wide range of cosmological models. To
do this, we introduce physically motivated free parameters into the halo-model formalism
and fit these to data from high-resolution N-body simulations. For a variety of � cold dark
matter (�CDM) and wCDM models, the halo-model power is accurate to � 5 per cent for
k ≤ 10h Mpc−1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to
account for the effects of baryonic feedback on the power spectrum. We demonstrate this by
fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations)
hydrodynamical simulation suite via parameters that govern halo internal structure. We are able
to fit all feedback models investigated at the 5 per cent level using only two free parameters,
and we place limits on the range of these halo parameters for feedback models investigated by
the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and
these halo parameters could be considered nuisance parameters to marginalize over in future
analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how
lensing observables predicted by our model compare to those from simulations and from
HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which
these effects become important. Code to calculate power spectra from the model presented in
this paper can be found at https://github.com/alexander-mead/hmcode.

Key words: gravitational lensing: weak – cosmology: theory – dark energy – large-scale struc-
ture of Universe.

1 IN T RO D U C T I O N

In the standard theory of cosmological structure formation, all large-
scale structure in the Universe forms via the gravitational collapse
of small-amplitude initial seed fluctuations. This process results in a
non-linear network of haloes, filaments and voids that is comprised
of dark matter and baryons. One of the goals of modern cosmology
is to probe these density fluctuations in the late Universe and to
use them to constrain models of the cosmos. In the early Universe,
or at very large scales today, the density fluctuations are small in
magnitude and can be analysed using linear perturbation theory,
which can be calculated precisely as a function of cosmological
parameters – including both baryonic and dark-matter components
(e.g. Seljak & Zaldarriaga 1996; Lewis et al. 2000; Blas, Lesgour-
gues & Tram 2011). As structures evolve in the later Universe,

� E-mail: alexander.j.mead@googlemail.com

they grow and become non-linear. Various perturbative schemes
have been developed in cosmology to analyse these fluctuations
(see reviews by Bernardeau et al. 2002; McQuinn & White 2015),
which give insight into the onset of non-linear structure formation.
However, the most successful cosmological probes to date focus
on the regime of linear perturbations, for example baryon acoustic
oscillations (BAO; e.g. Padmanabhan et al. 2012) or the cosmic mi-
crowave background (e.g. Planck Collaboration et al. XIII 2015).
In future surveys, the Universe will be mapped in finer detail and
in principle it will be possible to extract a great deal of information
from non-linear perturbations.

Unfortunately, perturbative schemes fail as larger non-linearities
develop, due to the inability of perturbation theory to model mat-
ter shell-crossing (see McQuinn & White 2015 for a 1D discus-
sion). Bound structures in the Universe today consist of matter that
has undergone many crossings and can represent large departures
from the mean density. Currently, these extreme non-linearities
can only be accurately modelled by running large cosmological
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simulations, which commonly assume collisionless matter, so-
called dark-matter-only simulations. However, even accurate pure
dark-matter simulations are computationally expensive and prohibit
the wide space of possible cosmological parameters to be explored
quickly. Furthermore, it can also be difficult to understand which
physical processes are at work in yielding a given simulation out-
put. Thus, an analytic model for the evolution of structure can be
invaluable, both in terms of speed and of insight. In this paper, we
use the halo model (Peacock & Smith 2000; Seljak 2000; Cooray
& Sheth 2002). This has become established as an important tool
for explanation, but it is known not to provide the accuracy required
for the interpretation of current data.

A key measure of scale-dependent inhomogeneity, which can be
calculated via perturbation theory or from the halo model, but also
measured in simulations, is the power spectrum of the density field.
Based on analytical insights, calibrated with N-body simulations,
various approximate formulae for the non-linear power spectrum
have been generated. The most widely used of these to date has been
the HALOFIT method of Smith et al. (2003), revised by Takahashi et al.
(2012), which uses ideas from the halo model. This fitting formula
has been expanded by various authors; to include massive neutrinos
(Bird, Viel & Haehnelt 2012) and f(R) modified gravity models
(Zhao 2014).

A different approach that is used to make predictions for the non-
linear spectrum is that of the ‘emulator’ code based on the ‘Coyote
Universe’ suite of simulations (Heitmann et al. 2009, 2010, 2014;
Lawrence et al. 2010): the COSMIC EMU. Sets of high-resolution sim-
ulations are run at key points in cosmological parameter space
(so-called ‘nodes’) so as to cover the space evenly. The emulator
then interpolates between the measured power spectra as a function
of cosmology, yielding predictions for any set of parameters within
the space. Heitmann et al. (2014) show that their emulator produces
the power spectrum to an accuracy of 1 per cent for k ≤ 1 Mpc−1

and 5 per cent for k ≤ 10 Mpc−1 and it covers a small, but interest-
ing, range of cosmological parameter space for flat universes and
dark energies with constant equation of state. However, COSMIC EMU

makes no predictions for k > 10h Mpc−1 or z > 4 and it would
be useful to expand the range of cosmological parameters that it
currently encompasses.

Even if one were in possession of a perfect model of non-linear
gravitational clustering, it is difficult to compare this theory di-
rectly with the total matter field in the Universe. Instead, one typi-
cally views the matter field via its gravitational light-bending effect,
specifically in how bundles of light from a distant galaxy are sheared
as they pass density perturbations between the galaxy and a tele-
scope. This gravitational shearing induces a correlation in apparent
galaxy shapes on the sky, as light from galaxies that are close on the
sky is distorted coherently. This ‘weak’ gravitational lensing (see
the review by Kilbinger 2015) has been used to place constraints
on cosmological models, for example COSMOS (Schrabback et al.
2010) or CFHTLenS (Heymans et al. 2013; Kilbinger et al. 2013)
and there are many forthcoming surveys designed to measure this
effect in finer detail. Weak lensing measures a projected version of
the total matter distribution in the Universe, in which the same shear
correlations at a given angle can be caused by a smaller scale density
fluctuation close to the observer, or a larger scale fluctuation further
away. This mixing of scales means that theoretical predictions for
2D weak-lensing observables require predictions for the clustering
of the full 3D matter distribution over a wide range of scales and
redshifts [although see the 3D lensing of Heavens (2003) and Kitch-
ing et al. (2014) for ways to avoid this]. Current lensing analyses
that work at the level of shear correlations either employ HALOFIT

(e.g. Schrabback et al. 2010; Heymans et al. 2013; Kilbinger et al.
2013), emulator-based strategies (Liu et al. 2015; Petri et al. 2015)
or the technique of simulation rescaling (Angulo & White 2010;
Angulo & Hilbert 2015) to provide predictions for the matter spec-
trum for the required scales; these predictions are then converted to
predictions for shear observables.

In this paper, we take a completely different approach to mod-
elling the full non-linear spectrum; we present an optimized variant
of the halo model that is able to predict the matter power spectrum
accurately to wavenumbers of interest for current and future lens-
ing surveys (k � 10h Mpc−1). Our first goal is to provide accurate
halo-model fits to dark-matter-only simulations across a range of
cosmological parameters; our approach is to identify parameters in
the halo model that can be made to vary in a physically motivated
way and then to fit these to high-resolution simulated power spectra
from the emulator presented in Heitmann et al. (2014). This ap-
proach is distinct from that of HALOFIT (Smith et al. 2003; Takahashi
et al. 2012), which is an empirical fitting formula motivated by the
principles of the halo model, but one which does not use the halo
model directly. Although we focus on weak-lensing observables,
we stress that our optimized version of the halo model is general,
and useful for any cosmological analysis that currently uses HALOFIT.
Our approach is also distinct from recent work aimed at improv-
ing the halo model by Mohammed & Seljak (2014) and Seljak &
Vlah (2015). These authors do not use the full apparatus of the halo
model in order to provide accurate matches to the power spectrum,
instead opting to employ a combination of perturbation theory and
a series expansion, aimed primarily at an accurate modelling of the
quasi-linear regime.

An additional source of uncertainty is the impact of baryonic
feedback on the total matter distribution in the Universe. Most
treatments of non-linear evolution ignore any interactions other than
gravitational, except in the initial conditions. Work with perturba-
tion theory at large scales (e.g. Shoji & Komatsu 2009; Somogyi &
Smith 2010) has shown that including the distinct physics of dark
matter and baryons offers small improvements (∼0.5 per cent in
power) compared to the approximation of treating ‘matter’ as being
a single component. This has also been tested in simulations by
Angulo, Hahn & Abel (2013), where it was shown that including
distinct transfer functions for dark matter and baryons leads only to
small differences in the eventual measured non-linear matter power
spectrum – below 1 per cent at late times around the BAO scale. In
contrast to these small effects at large scales, early semi-analytical
treatments (White & Vale 2004; Zhan & Knox 2004) and recent
work using hydrodynamical simulations together with prescriptions
for feedback (e.g. Jing et al. 2006; Rudd, Zentner & Kravtsov 2008;
Schaye et al. 2010; Martizzi et al. 2014) have shown that the re-
distribution of matter caused by non-linear processes such as gas
cooling, active-galaxy feedback and supernova explosions can have
a large impact on the total mass distribution, but details regarding
the magnitude of feedback are uncertain. We show that we are able
to accurately capture the effects of a variety of feedback recipes us-
ing our optimized halo model by varying only two parameters that
govern halo internal structure. We constrain these parameters and
suggest limits for these that may form a prior. In forthcoming weak-
lensing analyses, these could either by constrained, to learn about
feedback, or marginalized over to provide unbiased cosmological
constraints.

This paper is structured as follows. In Section 2 we first discuss
our conventions for measures of inhomogeneity, then go on to dis-
cuss the halo model, including the specifics of the particular model
that we employ. Next, in Section 3 we compare the original halo
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model to accurate N-body simulations to display its shortcomings
and then discuss our modifications to the model. In Section 4, we
present our main result; the power spectra of the modified model
which best fits the emulator of Heitmann et al. (2014). We address
baryonic feedback in Section 5 and demonstrate that our approach
can be easily adapted to account for feedback in a variety of mod-
els. Finally in Section 6 we show how our predictions for the matter
spectrum translate into lensing observables and show differences
between our approach, that of HALOFIT, and simulations. Our work
is then summarized in Section 7. Appendix A is dedicated to show-
ing the response of the halo-model power spectrum to variations in
cosmological parameters while Appendix B details the operation of
our publicly available halo-model code.

2 TH E H A L O M O D E L

2.1 Descriptions of inhomogeneity

We will use the following notation: the matter density field, ρ, is
given in terms of comoving position, x, and time, t, by

ρ(x, t) = ρ̄(t)[1 + δ(x, t)] , (1)

where ρ̄(t) is the mean matter density and δ(x, t) is the density
fluctuation about the mean. We will be interested in the Fourier
space overdensity δk, which is defined via the Fourier convention
of Peebles (1980) for a periodic volume V:

δk = 1

V

∫
δ(x)e−ik·x d3x ; (2)

δ(x) =
∑

k

δkeik·x . (3)

The power spectrum of statistically isotropic density fluctuations
depends only on k = |k| and is given by

P (k) = 〈|δk|2〉 , (4)

where the average is taken over modes with the same modulus but
different orientations. We find that it is more convenient to use the
dimensionless quantity �2:

�2(k) = 4πV

(
k

2π

)3

P (k) , (5)

which gives the fractional contribution to the variance per logarith-
mic interval in k. If the field is filtered on some comoving scale R,
the variance is

σ 2(R) =
∫ ∞

0
�2(k) T 2(kR) d ln k , (6)

where the window function is

T (x) = 3

x3
(sin x − x cos x) (7)

in the case of smoothing with a spherical top-hat.

2.2 Halo-model power spectra

The halo model is an entirely analytic model for the non-linear
matter distribution in the Universe that takes inspiration from the
results of N-body simulations. The basic idea here goes back to
Neyman, Scott & Shane (1953) but has been given a modern guise
(Peacock & Smith 2000; Seljak 2000), as reviewed in Cooray &

Sheth (2002). The great power of the method is that it can encap-
sulate the clustering of galaxies by the choice of an appropriate
halo-occupation number, specifying the number of galaxies as a
function of halo mass. But the present application is simpler, since
we are considering only the overall mass distribution.

We now summarize the main features of the method, following
most closely the presentation in Peacock & Smith (2000). The
density field is described as a superposition of spherically symmetric
haloes, with mass function and internal density structure that are
accurately known as functions of cosmology from simulations. In
the simplest case of randomly distributed spherical haloes, the power
spectrum has the form of shot noise, moderated by the density profile
of the haloes:

�2
1H(k) = 4π

(
k

2π

)3 1

ρ̄2

∫ ∞

0
M2W 2(k, M)F (M) dM . (8)

Here the power spectrum is calculated as an integral over all halo
masses, of mass M, where F(M) is the halo mass function (comoving
halo number density in dM) and W(k, M) is the normalized Fourier
transform of the halo density profile:

W (k,M) = 1

M

∫ rv

0

sin(kr)

kr
4πr2ρ(r,M) dr , (9)

where rv is the halo virial radius. On large scales, haloes are not
randomly distributed and displacements of haloes with respect to
one another require us to consider a ‘two-halo’ term to the power.
For the matter distribution, this is approximately the linear-theory
power spectrum

�2
2H(k) = �2

lin(k) . (10)

An expression for the full halo-model power spectrum is then given
by a simple sum of the terms

�2(k) = �2
2H + �2

1H . (11)

2.3 Ingredients of the halo model

To implement this model, we need to know the halo mass function
and density profiles in order to evaluate the one-halo integral in
equation (8).

The halo density profile is commonly described via the Navarro,
Frenk & White (1997, NFW)) profile:

ρ(r) = ρN

(r/rs)(1 + r/rs)2
, (12)

where rs is a scale radius that roughly separates the core of the halo
from the outer portion and ρN is a normalization; in order to have
a finite mass, this profile must be truncated at the virial radius rv,
within which the mean overdensity of the halo is �v. More recent
work (Navarro et al. 2004) has shown that halo profiles can be better
fitted with Einasto profiles, which differ from NFW near the halo
centre. However, the halo-model power calculation (equation 8)
depends on a self-convolution of the profiles and this smears out
details of the halo centre. Thus, we prefer to use the simpler NFW
fit.

Simulated haloes need to be identified in a particle distribution
and this is usually determined via a user-set overdensity threshold.
Typically, a value of �v = 200 is taken, which is loosely based on
predictions from the spherical collapse model in an �m = 1 universe,
although some authors use a value of �v that varies with cosmo-
logical parameters in accordance with spherical model predictions
(e.g. Bryan & Norman 1998). Once the overdensity threshold has
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been set and the halo mass measured, the virial radius is no longer
an independent parameter, and in order to conserve mass

rv =
(

3M

4π�vρ̄

)1/3

. (13)

Note that this means that in general the rv given by equation (13) will
be different from the halo radius one may independently measure
from halo particles in a simulation. The normalization, ρN, is set by
the requirement that the spherical integral of equation (12) gives the
halo mass. The only free parameter in a fit to simulations is then rs,
or equivalently the halo concentration c ≡ rv/rs. An implication of
this is that the value of c measured for simulated haloes depends on
the halo definition used – particularly the �v criterion, the algorithm
used to identify haloes and the scheme used for breaking up spurious
haloes or unbinding particles (e.g. Knebe et al. 2011).

Since the genesis of the NFW profile a large number of relations
between the concentration and mass of haloes have been developed.
The general trend is that haloes of higher mass are less concentrated
than those of lower mass, attributed to the fact that larger haloes
formed in the more recent past and that the central density of a halo
retains a memory of the cosmological density at its formation time.
The original c(M) relation proposed by Navarro et al. (1997) was
shown to produce an incorrect redshift evolution by Bullock et al.
(2001), who provided an updated relation based around the concept
of halo formation time. Around the same time a similar model by
Eke, Navarro & Steinmetz (2001) was introduced, which was in-
tended to predict the correct c(M) relation in the case of models
with the same background cosmological parameters but different
linear spectra, for example warm dark matter models compared to a
cold dark matter (CDM) model. Lately focus has shifted to produce
extremely accurate concentration–mass relations for the standard
�CDM cosmological model (e.g. Neto et al. 2007; Gao et al. 2008)
but these relations do not allow for general variations in cosmology.
More recently, Prada et al. (2012) and Klypin et al. (2014) have sug-
gested c(M) relations that are ‘universal’, in that they do not depend
on cosmology other than via the function σ (M) (equation 6). These
relations predict that models with identical linear spectra should
share a c(M) relation, at odds with results from the concentration
emulator of Kwan et al. (2013), which produces a different relation
for models with identical linear spectra but different growth histo-
ries (e.g. a �CDM model compared to a wCDM model at z = 0
with identical σ 8).

We choose to use the relations of Bullock et al. (2001) because it
was derived by fitting to a wide variety of cosmologies and also be-
cause their haloes were defined with a cosmology-dependent over-
density criterion, and therefore naturally adapt to the changes that
we plan to make to the halo model in Section 3. The c(M) for-
mula relates the concentration of a halo, identified at redshift z, to
a formation redshift, zf, via

c(M, z) = A
1 + zf

1 + z
, (14)

where the parameter A is deduced by fitting to simulated haloes.
The formation redshift is calculated by finding the redshift at which
a fraction (f, also derived from simulated haloes) of the eventual
halo mass has collapsed into objects, using the Press & Schechter
(1974) theory:

g(zf )

g(z)
σ (f M, z) = δc , (15)

where g(z) is the linear-theory growth function normalized such
that g(z = 0) = 1, σ 2 is the variance of the linear density field

filtered on the scale of a sphere containing a mass M (equation 6; M
is the mass enclosed in a sphere with radius R in the homogeneous
universe) and δc is the linear-theory collapse threshold. The value
of δc is calculated from the spherical collapse model: δc � 1.686
for �m = 1, with a very weak dependence on cosmology (see Eke,
Cole & Frenk 1996 for flat models with � and Lacey & Cole 1993
for matter-dominated open models). In Bullock et al. (2001), the
parameters A = 4 and f = 0.01 were found from fitting the c(M)
relation to halo profiles over a range of masses and cosmologies.

For very massive haloes, equation (15) can assign a formation
redshift that is less than the redshift under consideration, suggesting
that the halo formed in the future. In our calculations, we remedy
this by setting c = A if zf < z, although it makes very little practical
difference to our power-spectrum calculations.

It was shown in Dolag et al. (2004) and Bartelmann et al. (2005)
that the c(M) relations proposed in Navarro et al. (1997), Bullock
et al. (2001) or Eke et al. (2001) failed to reproduce the exact vari-
ations in concentration seen in models with identical linear-theory
power spectra but different models of dark energy. Differences in
concentration arise because haloes form at different times in these
models, despite having matched linear theory at z = 0, and the
exact form of this hysteresis was not being captured by existing
relations [although the general trend is captured by Bullock et al.
(2001)]. Dolag et al. (2004) proposed a simple correction scheme
that augments the �CDM concentration for a model by the ratio of
asymptotic (z → ∞) growth factors of the dark-energy cosmology
to the standard �CDM one:

cDE = c�

gDE(z → ∞)

g�(z → ∞)
, (16)

and we implement this correction in our incarnation of the halo
model. The effect of dark energy on halo concentrations can be
seen at the level of the power spectrum in McDonald et al. (2006),
in fig. 10 of Heitmann et al. (2014) and also in our Fig. A1. It
can be seen at the level of measured halo concentrations using the
c(M) emulator or Kwan et al. (2013). Because halo concentration
affects small-scale power (equation 8), a corollary of this is that
the full non-linear spectrum will be different at small scales in
different dark-energy models, even if they share an identical linear
spectrum. Any scheme in which the calculation of the non-linear
power depends solely on the linear power will thus fail to capture
this detail.

The mass function of haloes (the fraction of haloes in the mass
range M to M + dM) has been measured from simulations (e.g.
Sheth & Tormen 1999; Jenkins et al. 2001) and has been shown
to have a near-universal form, almost independent of cosmology,
when expressed in terms of the variable

ν ≡ δc

σ (M)
. (17)

The mass function can be expressed as a universal function in f(ν),
which is related to F(M) that appears in equation (8) via

M

ρ̄
F (M) dM = f (ν) dν . (18)

This universality was predicted in an approach pioneered by Press
& Schechter (1974) whereby the mass function was calculated ex-
plicitly by considering what fraction of the density field, when
smoothed on a given mass scale, is above the critical threshold for
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collapse (δc) at any given time. The expression that they calculated
for the mass function is the Gaussian

f (ν) =
√

2

π
e−ν2/2 , (19)

but this is not a good fit to the mass function as measured in simu-
lations; therefore we use the improved formula of Sheth & Tormen
(1999), which was an empirical fit to simulations:

f (ν) = A

[
1 + 1

(aν2)p

]
e−aν2/2, (20)

where the parameters of the model are a = 0.707 and p = 0.3. A
is constrained by the property that the integral of f (ν) over all ν

must equal one, therefore A � 0.2162. In Sheth & Tormen (1999),
δc was taken to be 1.686, independent of the cosmology.

Universality in the halo mass function is an approximation, and
the Sheth & Tormen (1999) mass function is only accurate at the
� 20 percent level (e.g. Warren et al. 2006; Lukić et al. 2007;
Reed et al. 2007; Tinker et al. 2008; Courtin et al. 2011). However,
we do not attempt to use an updated non-universal mass function
prescription because we value the large parameter-space coverage
of Sheth & Tormen (1999) over a more accurate mass function tuned
to only a small region of cosmological parameter space.

3 O P T I M I Z I N G T H E H A L O M O D E L

3.1 COSMIC EMU

In this paper, we create an accurate halo model by fitting the halo
model to data from high-resolution cosmological simulations. The
simulation data we use come from the COSMIC EMU originally de-
scribed in Heitmann et al. (2010) and updated in Heitmann et al.
(2014). In these works, the authors ran a suite of high-resolution cos-
mological N-body simulations and measured the power spectrum in
each. The simulations encompass a range of cosmological param-
eters (ωb, ωm, ns, h, w, σ 8) given in Table 1 and were constructed
to fill the parameter space in an ‘orthogonal Latin hypercube’ de-
sign to ensure that interpolating between models was as accurate as

Table 1. COSMIC EMU ranges for the six cosmological param-
eters that are allowed to vary. Note that ωi = �ih2. �b and
�m are the cosmological densities of baryons and all matter,
respectively, ns is spectral index of primordial perturbations,
h is the dimensionless Hubble parameter, w is the constant
dark energy equation of state and σ 8 is the standard deviation
of perturbations measured in the linear field at z = 0 when
smoothed with a top-hat filter of radius 8 h−1 Mpc. Note that
each model is kept flat, so that a change in ωm at fixed h
entails a change in �w (the cosmological density in dark en-
ergy with equation of state w). The currently favoured Planck
cosmology (Planck Collaboration et al., XIII 2015) lies close
to the ‘node 0’ values and the COSMIC EMU parameter space
encompasses at least 5σ deviations about this. Power spectra
can be produced by the emulator between z = 0 and 4 and
for scales from k � 0.002h to 10h Mpc−1.

Parameter Fiducial Minimum Maximum Node 0

ωb 0.0225 0.0215 0.0235 0.0224
ωm 0.1375 0.120 0.155 0.1296
ns 0.95 0.85 1.05 0.97
h 0.7 0.55 0.85 0.72
w −1 −1.30 −0.70 −1
σ 8 0.755 0.616 0.9 0.8

possible while still allowing only a small number (37) of simula-
tions to be run. COSMIC EMU is the code released by the collaboration
and allows the power to be produced at any point in their parameter
cube from z = 0 to 4. The full spectra produced by COSMIC EMU are
combinations of second-order Eulerian perturbation theory calcula-
tions at large scales and measured non-linear power at small scales.
Extensive simulation resolution testing was conducted (Heitmann
et al. 2010, 2014), and an accuracy of their simulations of 1 per cent
in �2(k) to k = 1h Mpc−1 and 5 per cent to 10h Mpc−1 is quoted.
Note that this is different from the accuracy of the interpolation
scheme, which in the h-free version discussed in Heitmann et al.
(2014) can be seen to be ∼3 per cent accurate to k = 1h Mpc−1

(degraded from the original 1 per cent at k = 1h Mpc−1 when
h is set free; see their figs 8 and 9) and ∼5 per cent accurate
to 10h Mpc−1.

Should we trust the accuracy stated for COSMIC EMU? Note that in
answering this question, it is important to specify whether one is
comparing to the accuracy of the node simulations or of the emu-
lator interpolation method. The nodes of COSMIC EMU are compared
to simulations in Takahashi et al. (2012) where it is shown that a
subset of the simulations of COSMIC EMU (M001 to M009 in Lawrence
et al. 2010) seem to have systematically ∼2 per cent less power
at k = 1h Mpc−1 when compared to the simulations presented in
Takahashi et al. (2012). However, the authors do not present their
own resolution tests, and resolution issues may plausibly be the
origin of this small discrepancy. In Smith et al. (2014) the accu-
racy of power-spectrum predictions was investigated as a function
of ‘non-physical’ simulation parameters (such as force and mass
resolution). The authors report that changing the PMGRID parameter
in GADGET-2 (the code used for the COSMIC EMU simulations; Springel
2005) can have the surprisingly large effect of ∼3 per cent power
differences at k = 1h Mpc−1. This parameter was not investigated
in the resolution testing of Heitmann et al. (2010). More recently,
Skillman et al. (2014) and Schneider et al. (2015) have shown dis-
agreements around the 3–5 per cent level when comparing their own
simulations to COSMIC EMU for the Planck cosmology (not one of the
emulator nodes) for k ≤ 10h Mpc−1, but their claims are based on
their own simulations of a single cosmological model and the error
is within that quoted for the h-free Heitmann et al. (2014) extended
emulator. Given this discussion, we err on the side of trusting the
stated simulation accuracy in the COSMIC EMU papers with the caveat
that the PMGRID claim of Smith et al. (2014) warrants further in-
vestigation and that additional comparisons to different suites of
simulations would be beneficial.

We also note the existence of another power-spectrum prediction
code, PKANN (Agarwal et al. 2012, 2014), which uses neural networks
to carry out interpolation between simulation nodes. We choose not
to use this because the simulations it was trained on are not as high
resolution as those of COSMIC EMU (limited to k ≤ 1h Mpc−1). In
addition, the PKANN simulations contain some hydrodynamics and
we wanted to initially focus only on dark matter. However, PKANN

does allow the user to vary neutrino mass, which may be useful in
further work.

Although having accurate power spectra is extremely useful, three
obvious limitations of the COSMIC EMU method are: How to extend the
predictions to k > 10h Mpc−1 or z > 4? How to extend beyond the
emulator cosmological parameter space? And how to account for
baryonic feedback? The first question arises in weak-lensing stud-
ies where predictions for lensing observables technically require
integrals of �2 over all k (see Section 6) but the main challenge
in extending to smaller scales is to include the complications of
baryon feedback. However, modelling these scales is necessary if
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Figure 1. A comparison of the original halo model, described in Section 2.2,
to node 0 of COSMIC EMU (�m = 0.25, �b = 0.043, ns = 0.97, w = −1,
σ 8 = 0.8, h = 0.72) at z = 0 (upper; solid red) and z = 1 (lower; solid blue).
The spectrum from COSMIC EMU is shown as black crosses. One can see that
the halo-model power spectrum is qualitatively correct in shape, but under-
predicts the true power at the tens of per cent level at scales k � 0.2h Mpc−1

at both redshifts. This is exactly the scale at which the one-halo term comes
to dominate over the linear power (short-dashed lines in the top panel). The
long-dashed lines show a preview of the final fits we are able to produce
in this work, which agree with COSMIC EMU at the 5 per cent level across
all scales. In the top panel, our model seems to track the simulation almost
exactly and is hard to distinguish.

weak lensing is to achieve its claimed future precision. Additionally,
in Monte Carlo Markov chain (MCMC) analyses, the chains will
inevitably wish to explore outside the parameter range of COSMIC

EMU and it is unclear how to proceed in this case. In this paper, we
fit a variant of the halo model to data from the ‘nodes’ of COSMIC

EMU, which are the exact locations within the cosmological parame-
ter space where the simulations were run. This has two advantages.
The accuracy of the emulator is likely to be highest at the nodes,
because there is no interpolation taking place. Secondly, in using
the nodes we are taking advantage of the Latin hypercube deign of
COSMIC EMU. Our resulting halo-model fits can be used to extend the
simulations to higher k, or higher z, in a physical way because they
are motivated by theoretical arguments. Additionally, we show in
Section 5 that the halo model can be adapted to account for the influ-
ence of baryons on the matter power spectrum, by fitting parameters
relating to halo internal structure to data from hydrodynamical sim-
ulations. We also suggest that a successful fitting recipe can be used
directly to explore models outside the COSMIC EMU parameter space.

In Fig. 1, we show a comparison of the power spectrum predicted
by our original incarnation of the halo model (NFW haloes; Bullock
et al. 2001 concentrations; Sheth & Tormen 1999 mass function;
�v = 200; δc = 1.686) to the power spectrum of COSMIC EMU node
0, which is vanilla �CDM near the centre of the parameter space,
at z = 0 and 1. It is immediately obvious that the halo-model
prediction is qualitatively reasonable in form, but deviates in detail

from the simulations showing an underestimate of power of �
30 per cent for k > 0.5h Mpc−1. There are several possible reasons
for the relatively poor performance of the halo model. Halo-finding
algorithms tend only to assign half of the particles in a simulation
into haloes (Jenkins et al. 2001; More et al. 2011) so the non-
linear distribution of half of the mass in the simulation is treated
by the halo model via an extrapolation of the formula for the mass
function. There are also clearly unvirialized objects in the quasi-
linear regime that are not taken into account in our halo-model
formalism, which also neglects halo substructure and asphericity
as well as non-linear material that may lie outside the halo virial
radius. In addition, a scatter in any halo property at fixed mass will
change the halo-model power spectrum prediction. For example,
Cooray & Hu (2001) investigate a halo model with a scatter in
c(M), which typically boosts the power, while Giocoli et al. (2010)
also include the power due to halo substructure via a substructure
mass function. How the measured power spectrum is altered under
various assumptions can also be seen in recent simulation work by
van Daalen & Schaye (2015) or Pace et al. (2015).

Other problems are visible at large scales, where the halo-
model power can be seen to overpredict the simulations for
k < 0.1h Mpc−1. At these scales, the power is mildly non-linear
and the two-halo term is in error, as well as the two- to one-halo
transition. Attempts to accurately model quasi-linear scales using
the halo model have been made by Valageas & Nishimichi (2011),
Mohammed & Seljak (2014) and Seljak & Vlah (2015), who use
perturbation theory results as a two-halo term, and by Smith, Scoc-
cimarro & Sheth (2007) who includes non-linear halo bias in the
two-halo term. Accurate modelling of mildly non-linear power is
an active field of research due to the importance of these scales for
BAO measurements.

3.2 Fitting a general halo model

Rather than attempting to improve the halo model by adding miss-
ing ingredients (e.g. Smith et al. 2007; Giocoli et al. 2010), thus
making it more complicated, in this paper we take a more prag-
matic approach: it is possible that part of the inaccuracy of the
power-spectrum calculation stems partly from incorrect parame-
ter choices. The model contains quantities such as �v, which are
round numbers motivated by analytic arguments. We may there-
fore hope that improved results may be obtained by fitting the halo
model to simulated power spectra using these quantities as physi-
cally motivated free parameters. Our proposed changes represent a
prescription for producing effective haloes whose power spectrum
mimics the true one, even if these haloes differ from those measured
directly in simulations. The hope is that we can trade off inaccura-
cies in e.g. halo concentration against issues that are neglected in
the standard halo model (asphericity, substructures, scatter in halo
profiles), such that the two-point predictions are improved.

Nevertheless, we wish to retain the large amount of tested the-
oretical input that goes into the halo model. For example: changes
in cosmological parameters alter the linear power spectrum, which
in turn affects the mass function through the variance and the halo
density profiles through the concentration and size relations. In ad-
dition, the linear growth rate will change, which also affects the
concentration relations directly as well as the amplitude of the
linear power spectrum. Since all of these ingredients have been
tested against simulations, there are grounds for hoping that a small
amount of parameter readjustment may allow the halo model to
produce robust predictions for the non-linear power spectrum that
are of useful accuracy for a wide range of cosmological parameters.
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The dotted lines in Fig. 1 give a preview of how fruitful this ap-
proach is in providing an accurate model of the non-linear matter
power spectrum.

3.2.1 Adapting the two-halo term

The two-halo term governs power on large scales and is given in its
original form in equation (10). Linear theory slightly overpredicts
the matter power spectrum around the quasi-linear scale and does
a particularly poor job of modelling damping of the BAO peaks
at z = 0, which are damped by the quasi-linear effect of small-
scale displacements. Modelling of the minutiae of the damping of
the BAO peaks is beyond the scope of this work, but we treat the
damping around these scales based on a model for the damping pre-
dicted from perturbation theory by Crocce, Pueblas & Scoccimarro
(2006), where

�2
lin(k) → e−k2σ 2

v �2
lin(k) , (21)

and σ 2
v is the 1D linear-theory displacement variance given by

σ 2
v = 1

3

∫ ∞

0

�2
lin(k)

k3
dk . (22)

The derivation of this expression assumes that the scales of interest
are large compared to σ v, such that the damping factor cannot be
trusted when kσ v is large. We found that the best fit to numerical
data at this scale required an expression equal to equation (21) to
quadratic order, but without the extreme high-k truncation:

�
′2
2H(k) =

[
1 − f tanh2 (kσv/

√
f )

]
�2

lin(k) , (23)

where f is a free parameter in our fit. In the kσ v � 1 limit, equation
(23) reduces to �2

2H = (1 − f )�2
lin.

3.2.2 Adapting the one-halo term

We add freedom to the canonical form of the one-halo term in
equation (8) in a number of ways. The first concerns the behaviour
of the one-halo term at large scales, where the Universe tends to
homogeneity faster than predicted by Poisson shot noise. At large
scales, the one-halo term in equation (8) decays as �2 ∝ k3, whereas
the linear power decays approximately ∝ k4, so it is inevitable that
the one-halo term becomes greater than linear theory on very large
scales, which is unphysical. This effect arises because haloes are
treated as randomly placed in the standard halo-model formalism,
when in fact they are clustered and distributed more smoothly than
uniform random on very large scales. It has been suggested that a
large-scale cut-off in the one-halo term can be physically explained
as ‘halo exclusion’ (Smith et al. 2007), an effect that arises because,
by definition, haloes cannot exist within each other. This is not
captured by the standard halo-model power calculation because
that calculation assumes that haloes are randomly placed, so that the
probability of haloes overlapping is non-zero. Accounting for halo
exclusion damps the halo-model power on large scales. Regardless
of the exact details of exclusion, we modify the one-halo term so
that it decays more rapidly than linear theory at large scales:

�
′2
1H = [1 − e−(k/k∗)2

]�2
1H , (24)

where �2
1H is the same as in equation (8) and k∗ is a free parameter.

Within the one-halo term, parameters that we allow to vary are
the virialized overdensity of a halo, �v, defined in equation (13),
and the linear collapse threshold, δc, defined in equation (17). Both
of these parameters derive from the spherical model (e.g. p. 488 of

Peacock 1999) and rely on a somewhat arbitrary definition of the
exact time of halo collapse. The variation of �v can be predicted
theoretically from the spherical model, and Bryan & Norman (1998)
provide a fitting formula1 for a �CDM cosmology

�v = 18π2 + 82[�m(z) − 1] − 39[�m(z) − 1]2

�m(z)
. (25)

This suggests that �v increases as the universe deviates from
�m = 1.

In standard theory, δc � 1.686 but we allow this number to
be a free parameter in our fit to power-spectrum data. Note that
changing δc changes the relationship between ν and the halo mass
(equation 17). This means that the ‘effective’ mass function we
invoke to improve �2(k) predictions will not necessarily accurately
represent the mass function that might be measured in simulations.

Fitted halo relations, such as the mass function and mass–
concentration relation, depend upon how haloes are defined when
identified in simulations. Therefore, the variations of �v in our fit-
ted halo model may not follow the simple theoretical variation in
equation (25) exactly, but we assume that the trend of increased �v

as the universe deviates from �m = 1 will serve as a useful initial
guide when we explore parameter space. In addition, for flat models
with a single component of dark energy, it is expected that �v would
be a function of �m(z) only and this will be a useful principle in
parametrizing fitting formulae. Increasing �v has the effect of in-
creasing the internal density of haloes and thus decreases the virial
radius of a halo of a fixed mass, thus increasing small-scale power.
Increasing δc means the linear density field has to reach higher
values before collapse can occur [in the Press & Schechter (1974)
approach], the result of which is that the density field is dissected
into more haloes of lower mass, which will reduce the amplitude
of the shot-noise component of the one-halo term and thus reduce
power.

One further free parameter is η, which we use to alter the halo
window function via

W (k,M) → W (νηk, M) , (26)

changing the halo profile in a mass-dependent way but leaving ν = 1
haloes unaltered and the individual halo masses unchanged. For
η > 0 higher mass (ν > 1) haloes are puffed out, while lower mass
haloes are contracted, both at constant virial radius: η > 0 decreases
the power whereas η < 0 increases it. This extra ingredient was
introduced to control the curvature of the power spectrum beyond
k ∼ 1h Mpc−1, where the filtering effect from the typical haloes has a
major effect on the shape of the one-halo term. As we move to higher
k values, the properties of lower mass haloes become increasingly
important. It is difficult for the one-halo term to track to the smallest
scales, and correcting this requires an empirical perturbation of the
halo profiles. Additionally, we allow ourselves to vary the amplitude
of the concentration–mass relation: A in equation (14).

3.2.3 Full power

A well-known defect in the halo model is in the transition between
the one- and two-halo terms, the so-called quasi-linear regime. In
the standard halo model, the transition is modelled by a simple
sum of the one- and two-halo terms (equation 11), but this is ob-
viously deficient. At z = 0, this transition scale is approximately

1 Equation (25) differs slightly from that in Bryan & Norman (1998) because
we work with respect to the matter density, rather than critical density.
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Table 2. Halo-model parameter descriptions and values before and after fitting.

Parameter Description Original value Fitted value Equation in text

�v Virialized halo overdensity 200 418 × �−0.352
m (z) 13

δc Linear collapse threshold 1.686 1.59 + 0.0314 ln σ 8(z) 17
η Halo bloating parameter 0 0.603 − 0.3 σ 8(z) 26
f Linear spectrum transition damping factor 0 0.188 × σ 4.29

8 (z) 23
k∗ One-halo damping wavenumber 0 0.584 × σ−1

v (z) 24
A Minimum halo concentration 4 3.13 14
α Quasi-linear one- to two-halo term softening 1 2.93 × 1.77neff 27

k = 0.1h Mpc−1 corresponding to physical scales of the order of
tens of Mpc. On these scales, contributions to the density field will
include, but are not limited to, large structure at the turn-around
radius, sheets, filaments and voids. It would be rather surprising
if the complexity of non-linear evolution on these scales could be
accurately modelled by a simple sum of crude one- and two-halo
terms. In testing, we noted that the halo model performed most
poorly around these transition scales and we address this problem
by modelling the transition via

�2(k) = [(�
′2
2H)α + (�

′2
1H)α]1/α , (27)

where α is the final parameter that we adjust to match simulations.
Values of α < 1 soften the transition between the two terms whereas
α > 1 sharpen it. The power at these scales is quite smooth, so fitting
the transition via α is sufficient.

4 R ESULTS

We fit the parameters introduced in the previous section to data
from all 37 nodes of COSMIC EMU at redshifts z = 0, 0.5, 1, 1.5
and 2 with equal weight given to each redshift and node and k
weighted equally in logarithmic space from 0.01 to 10h Mpc−1. We
use a least-squares method to characterize goodness of fit and use
an MCMC-like approach to fit all parameters simultaneously. Our
best-fitting parameters are given in Table 2 where there are a total of
12 parameters that are fitted to simulations, which can be compared
with 34 for the Takahashi et al. (2012) version of HALOFIT. The
cosmological dependences of each of our parameters was inferred
by some experimentation. In Table 2, we see that α depends on neff,
which is the effective spectral index of the linear power spectrum at
the collapse scale, defined in Smith et al. (2003):

3 + neff ≡ −d ln σ 2(R)

d ln R

∣∣∣∣
σ=1

. (28)

However, our neff is slightly different from that in Smith et al. (2003)
because we define σ (R) using a top-hat filter, rather than a Gaussian.

The accuracy of this model is demonstrated in the upper row of
Fig. 2, which shows a ratio of the halo model to COSMIC EMU at z = 0,
0.5, 1 and 2. One can see that our fitted halo-model predictions are
mainly accurate to within 5 per cent across all redshifts for the range
of scales shown. We call this calibrated halo model HMCODE and refer
to it thus throughout the remainder of this work. We also tested our
model at z = 3, a redshift to which it was not calibrated, and
found that errors rarely exceed 10percent. Takahashi et al. (2012)
use the framework of the original HALOFIT of Smith et al. (2003),
but obtain improved accuracy by fitting to modern simulation data
with superior resolution, extending to k = 30h Mpc−1. The authors
also focus their attention on models close to the current �CDM
paradigm, rather than more general models (such as those with

power-law spectra or curved models). Takahashi et al. (2012) used
simulations of 16 different cosmological models around the best fits
from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite
(WMAP7 – Komatsu et al. 2011; WMAP9 – Hinshaw et al. 2013)
and include models with w �= −1. One can see how well Takahashi
et al. (2012) compare to COSMIC EMU in the lower row of Fig. 2
where HALOFIT can be seen to be comparable to our halo model but
there is more high-k spread at z = 0 and a systematic overprediction
of the power around k = 1h Mpc−1 that worsens with increasing
redshift. The stated accuracy of this version of HALOFIT is 5 per cent
for k < 1h Mpc−1 and 10 per cent up to 10h Mpc−1, which is
consistent with what is seen here. A similar plot for the original
Smith et al. (2003) version of HALOFIT shows large underpredictions
for k > 0.5h Mpc−1. From this point onwards, we only compare to
the revised Takahashi et al. (2012) version of HALOFIT.

In Fig. 3, we show how our model fares for cosmological pa-
rameters derived from recent data sets (see Table 3). Once again we
compare to COSMIC EMU and show results for both our calibrated halo
model and for the Takahashi et al. (2012) HALOFIT at z = 0.5. One
can see that the error from the halo-model approach rarely exceeds
2 per cent for k < 10h Mpc−1 for these cosmologies, with the worst
error being an overprediction of the amplitude of the BAO peaks
around k = 0.2h Mpc−1. This arises because we did not attempt to
model the exact non-linear damping of this feature in the power
spectrum, and so our prediction here is very close to the undamped
linear prediction. That our errors are better here than for the more
general models shown in Fig. 2 is because these models all lie close
to the centre of the COSMIC EMU parameter space (see Table 1). The
Takahashi et al. (2012) HALOFIT model works better at BAO scales,
but overpredicts the power at k > 0.5h Mpc−1 systematically at
around the 4 per cent level.

The model presented here performs similar to, but slightly better
than, the Takahashi et al. (2012) version of HALOFIT and has several
advantages. Foremost, because we retain the apparatus of the halo
model in our calculation, it means we can produce �2(k) to arbitrar-
ily high k in a physically motivated way. Even though such extreme
scales receive a small weight in lensing, they can be important if the
modelling is badly wrong in this regime (e.g. Harnois-Déraps et al.
2015). A polynomial-based fitting formula such as HALOFIT risks
generating pathological results when moving beyond the regime
constrained by simulations and it is not at all obvious how to extend
COSMIC EMU. In Fig. 4, we show a comparison of the power spectrum
predicted out to k = 100h Mpc−1 with different models, simply to
illustrate the range of behaviour at k > 10h Mpc−1. Given that no
simulations exist that could claim to accurately predict the matter
power spectrum to k = 100h Mpc−1 at z = 0, we cannot make any
quantitative statements about the accuracy of either model at these
extreme scales, although both perform comparably. The grey shaded
region in Fig. 4 delimits these extreme scales and it is interesting to
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Figure 2. Halo-model fits to all 37 nodes from COSMIC EMU at z = 0 (left) 0.5, 1 and 2 (right) are shown in the top row, while the bottom row shows the
predictions from the Takahashi et al. (2012) revision of HALOFIT. The average fit is shown as the thick black line, whereas each individual thin coloured line
shows a specific node. The range of the coloured lines in each panel give an idea of how the accuracy of the model varies with cosmological parameters. The
two models are of comparable accuracy for these cosmological models shown, although the halo-model approach performs slightly better. The halo-model
fitting formula performs worst at z = 2 where the high-k power becomes systematically inaccurate and at z = 0 where there is a spread in power at high k
values and a systematic underprediction in power around k = 0.3h Mpc−1. However, it is mainly accurate at the 5 per cent level for all models and all scales
shown. COSMIC EMU itself is claimed to be accurate at the 1 per cent level at k = 1h Mpc−1 and 5 per cent at 10h Mpc−1, so our fit is mainly within this error
around k � 10h Mpc−1.

note that the maximum deviation between our model and HALOFIT is
only ∼10percent.

Recently, an approach related to ours has been pursued by
Mohammed & Seljak (2014) and Seljak & Vlah (2015); these au-
thors use a combination of perturbation theory for a two-halo term
and a polynomial series expansion for a one-halo term, constrained
to contain only even powers of k by theoretical considerations.
These authors obtain remarkable fits to the matter power spectrum
and correlation function, but at the cost of fitting each term in the
one-halo series expansion to simulations up to k � 1h Mpc−1. In
Mohammed & Seljak (2014), it was shown that fits accurate at
the 2 per cent level were possible to the COSMIC EMU nodes up to
k = 0.3h Mpc−1 but their fit degrades at smaller scales; it was tested
out to 0.7h Mpc−1 and it is not obvious how to extend predictions to
smaller scales. Our approach utilizes the full apparatus of the halo
model and can therefore be extrapolated with a degree of robust-
ness to the smaller scales that are required to make predictions for
weak-lensing observables, which we show in Section 6. We are also
in a position to be able to model the effects of baryonic feedback
in a physically motivated way, and we now turn the attention of the
reader to this subject.

5 BA RYO N I C PH Y S I C S

Whilst 5 per cent accuracy across a range of cosmologies and scales
is an important achievement of this work, it is clear that baryonic
processes can have a much larger impact on the non-linear mass
distribution than incorrect modelling of the dark-matter-only spec-
trum (e.g. White & Vale 2004; Zhan & Knox 2004; Zentner, Rudd
& Hu 2008; Casarini et al. 2011; Semboloni, Hoekstra & Schaye
2013; Zentner et al. 2013; Eifler et al. 2014; Harnois-Déraps et al.
2015). Baryonic physics is not normally accounted for in numerical
simulations and baryons can undergo processes such as radiative
cooling where they collect in sufficient density. The gas then con-
tracts, which alters the dark-matter distribution via gravitational
interactions, and so the total matter distribution is altered because
neither the baryons nor dark matter is where they would be if only
gravitational interactions were considered (e.g. Jing et al. 2006;
Duffy et al. 2010). Alternatively, supernova explosions or energy
released by active galactic nuclei (AGN) can heat gas, which can
then expand outside of the virial radius of haloes (Schaye et al.
2010; van Daalen et al. 2011; Martizzi et al. 2014; van Daalen &
Schaye 2015), and as a consequence the total matter distribution
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Figure 3. A comparison of the power spectrum at z = 0.5 of HMCODE and
HALOFIT to that of COSMIC EMU for several commonly used cosmological
models (see Table 3) that derive from recent data sets. The error for each
model is very similar because the cosmological models are all relatively
similar. The HMCODE error rarely exceeds 2 per cent, with the exception
being around the BAO peak, which stems from our not modelling the non-
linear damping of the BAO. The HALOFIT error rises to around 4 per cent for
k > 1h Mpc−1 for all models.

Table 3. Cosmological parameters inferred from various data analyses. In
all cases, we quote the best fit with w = −1 and flatness enforced.

Cosmology �b �m ns h σ 8

WMAP7 0.0457 0.275 0.969 0.701 0.810
WMAP9 0.0473 0.291 0.969 0.690 0.826
CFHTLenS 0.0437 0.255 0.967 0.717 0.794
Planck EE 0.0487 0.286 0.973 0.702 0.796
Planck All 0.0492 0.314 0.965 0.673 0.831

Figure 4. The predictions of HMCODE compared to the two commonly used
HALOFIT schemes up to k = 100h Mpc−1 for a Planck cosmology at z = 0.5.
The upper panel shows �2(k), while the lower panel shows the ratio of
HMCODE to Takahashi et al. (2012); we cannot show a comparison with
COSMIC EMU because it makes no predictions beyond k = 10h Mpc−1. The
range outside the bounds of COSMIC EMU is marked by the grey region.
The HMCODE and Takahashi et al. (2012) models make predictions within
5 per cent to k = 10h Mpc−1 but this discrepancy increases to 10 per cent
for k < 100h Mpc−1. Note that the power at these small scales is certainly
strongly influenced by baryonic physics. The general level of agreement
between these two models for a range of cosmologies can be inferred from
Fig. 2.

within a halo can be altered significantly. AGN feedback can re-
duce the baryon fraction in the centres of haloes by a factor of 2 in
the most extreme models (Duffy et al. 2010).

An advantage of the approach advocated in this work is that one
might attempt to capture the influence of baryons on the matter
power spectrum simply by varying parameters that control the in-
ternal structure of haloes. This is possible because we retain the
theoretical halo-model apparatus in HMCODE. Physically, one can re-
gard baryonic processes as altering the internal structure of haloes,
while not affecting their positions or masses to the same degree (e.g.
van Daalen et al. 2014). It has been demonstrated that the effect of
baryons can be captured by altering the halo internal structure re-
lations, using information that is measured in baryonic simulations
(Zentner et al. 2008, 2013; Duffy et al. 2010; Semboloni et al. 2013;
Mohammed et al. 2014). The general trend is that gas cooling in-
creases the central density of haloes whereas violent feedback, such
as that from AGN, decreases the concentration. How this translates
into the matter power spectrum in simulations is considered in van
Daalen et al. (2011) where it was shown that per cent level changes
in �2(k) can arise at k = 0.3h Mpc−1 as a result of strong AGN feed-
back. Semboloni et al. (2011), Eifler et al. (2014) and Mohammed
et al. (2014) all showed that failing to account for feedback would
strongly bias cosmological constraints from the weak-lensing Dark
Energy Survey if the most extreme feedback scenarios apply to our
Universe and constraints from Euclid would be severely biased for
any feasible feedback scenario. Duffy et al. (2010), Semboloni et al.
(2011) and Mohammed et al. (2014) also showed that the main ef-
fects of baryonic feedback could be captured using a halo-model
prescription, considering how feedback would alter the internal
structure of haloes.

We use power spectra from the OverWhelmingly Large Simula-
tions (OWLS; Schaye et al. 2010; spectra from van Daalen et al.
2011) of a dark-matter (DMONLY) model; a model that has prescrip-
tions for gas cooling, heating, star formation and evolution, chemical
enrichment and supernova feedback (REF); a model that is similar to
REF but with the addition of active galactic nuclei (AGN) feedback
(called AGN); and a model similar to REF but which additionally has
a top-heavy stellar initial mass function and extra supernova energy
in wind velocity (DBLIM – called DBLIMFV1618 in van Daalen et al.
2011). It was shown in van Daalen et al. (2011) that the difference
in power between the DMONLY and AGN models is particularly large.

We fit the power spectra from the OWLS simulations using our
calibrated halo-model approach with a halo profile that is altered
to reflect baryon bloating and gas cooling. Again, our new fitted
halo profiles may not match those of simulated haloes exactly but
our aim is to match the power spectrum accurately. However, we
would expect the trends observed in the profiles of simulated haloes
to be respected by any modification to halo profiles in HMCODE. For
example, if we require an enhanced concentration to fit data for
a particular model in OWLS, then haloes measured in this bary-
onic model should display enhanced concentrations relative to their
DMONLY counterparts. This approach differs from that presented in
Semboloni et al. (2013), Fedeli (2014), Fedeli et al. (2014) and
Mohammed et al. (2014) in that we do not attempt to add accurate
profiles for the gas and stars into the halo model, but instead look
for a more empirical modification that is able to match data at the
level of the power spectrum for k < 10h Mpc−1.

Given the above discussion, we might expect that two parameters
would suffice: one to capture the increased concentration as gas
cools in halo cores and one to capture the puffing up of halo profiles
due to more violent feedback. To fit the baryonic models, we allow
ourselves to vary the parameter A in the c(M) relation (equation 14)
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Figure 5. Best-fitting halo-model power to the power spectra of the
OWLS simulations for the DMONLY (black; solid), AGN (purple; long-dashed),
REF (green; medium-dashed) and DBLIM (red; short-dashed) models up to
k = 10h Mpc−1 at z = 0.5. These are obtained by fitting both A and η0

(equations 14 and 26) to each model at this redshift. In the top panel we
show �2, while in the middle panel we show the ratio of each spectrum to
the emulator DMONLY case (black crosses in the top panel); one can see that
the freedom introduced by allowing these parameters to vary is able to cap-
ture both the up- and down-turn in power that feedback introduces relative
to the dark-matter-only case. Any residual differences for k �1h Mpc−1 are
due to residual errors in our fitting across a range of cosmologies that can
be seen in Fig. 2. Our accuracy is best appreciated in the lower panel, in
which we show the ratio of each halo-model prediction to the corresponding
simulation.

and the parameter η0, where η is defined in equation (26) and η0 is
the first parameter in the full expression for η in Table 2, explicitly

η = η0 − 0.3 σ8(z) . (29)

All other parameters are fixed to their values in Table 2, and the
redshift evolution in the second half of the expression for η is pre-
served from the best fit to the COSMIC EMU nodes. We vary η0 and
A to best fit the OWLS data from simulations DMONLY, AGN, REF

and DBLIM. We construct these power spectra by taking ratios of
the publicly available OWLS baryon models to the DMONLY mod-
els (which produces a smooth curve because the simulations have
matched initial conditions) and then multiplying this ratio by the
COSMIC EMU prediction for the baseline WMAP3 cosmology used for
the OWLS simulations. We do this because the OWLS simulations
are small in volume and the power spectrum would be too noisy
to use in its raw form. The best fits to OWLS power spectra are
shown in Fig. 5 where it can be observed that the freedom permitted
by fitting A and η0 allows the power spectrum of HMCODE to trace
the residual displayed by the OWLS simulations accurately over
the range of scales shown. Particularly, note that the variation is
able to reproduce both the up-turn due to gas cooling, enhancing
clustering around k = 10h Mpc−1, and the down-turn due to mass
being expelled from the halo, which can impact the relatively large
scale of k = 0.3h Mpc−1.

Figure 6. Best matches to the power spectrum from the OWLS simulations
found by varying halo structure via A and η0 (equations 14, 26 and 29)
from z = 0 to 1. The contours enclose regions of parameter space that
match the power spectra with an average error of 2.5 per cent (inner) and
5 per cent (outer) from k = 0.01 to 10h Mpc−1 and the crosses mark the best-
fitting point. We show contours for the DMONLY (black; solid), AGN (purple;
long-dashed), REF (green; medium-dashed) and DBLIM (red; short-dashed)
cases. These ranges can be used to place a prior on the range of η0 and
A to be explored in a cosmological analysis as they encompass the range
of behaviour expected from plausible feedback models. The dashed line
(equation 30) shows a relation between η0 and A that could be used to
provide a single-parameter fit to all models. The grey cross is the best-fitting
value to all the COSMIC EMU simulations, whereas the black cross is the best
match to the specific cosmology used in the DMONLY model.

Table 4. Parameter combinations of η0 and A that best fit
OWLS data from z = 0 to 1 via the halo-model approach
described in the text. These parameters are those at the
centres of the ellipses in Fig. 6. The OWLS simulations
can be matched at the 5 per cent level over the redshift
range. That the values of η0 and A differ in the case
of ‘all COSMIC EMU simulations’ compared to DMONLY is
because a slightly improved fit is possible in the case of
dealing with a specific cosmology, which in the case of
OWLS is the slightly outdated WMAP3 (�m = 0.238,
�b = 0.0418, σ 8 = 0.74, ns = 0.951, h = 0.73).

Model η0 A

All COSMIC EMU simulations 0.60 3.13
DMONLY (WMAP3 from OWLS) 0.64 3.43
AGN 0.76 2.32
REF 0.68 3.91
DBLIM 0.70 3.01

In Fig. 6, we show how the goodness of fit varies as parameters
A and η are varied for the various feedback recipes. The contours
enclose regions of parameter space in which the average error is
2.5 per cent (inner) and 5 per cent (outer), where the average is
taken over all scales between k = 0.01 and 10h Mpc−1, binned
logarithmically. One can see that these parameters distinguish well
between the simulated AGN model and the other models, DBLIM is
marginally distinguished, but parameters that fitted DMONLY and REF

best are nearly identical. The distinguishability is directly related
to the magnitude of the effect that each model has on the power
spectrum (for k < 10h Mpc−1), which can be seen in the middle
panel of Fig. 5. Our best-fitting parameters for each model are
given in Table 4. The AGN model clearly favours less concentrated
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haloes, which is expected given that AGN blow gas out of the central
portions of haloes. The range of acceptable parameter combinations
of A and η0 that are able to fit the OWLS data, shown in Fig. 6, could
be used to form a prior in future weak-lensing analyses that aim to
constrain or marginalize over baryonic feedback. This is acceptable
because it is not clear which, if any, of the OWLS models is the
correct one. The most conservative assumption is that the recipes
give a range of plausible feedback effects and this is what the range
we suggest in Fig. 6 encapsulates. Additionally, the dashed line
shows a relation between η0 and A that could be used to provide a
single parameter fit to all models:

η0 = 1.03 − 0.11A . (30)

This relation exists because there is some degeneracy between the
effects of varying η and those of varying A. Applying this relation
would mean that the REF model could not be distinguished from
DMONLY, but all other models could be distinguished. A further ad-
vantage of the halo-model approach is that it should also capture any
coupling between cosmological parameter variation and feedback
processes. This effect is ignored in any polynomial- or template-
based approach to modelling feedback (e.g. Eifler et al. 2014).

6 W E A K G R AV I TAT I O NA L L E N S I N G

The origin of the late-time accelerated expansion of the cosmos is
uncertain. To test different models, it is necessary to measure the
expansion rate together with the growth of perturbations around the
present day. The weak gravitational lensing of galaxies has emerged
as one of the premier tools to probe perturbations, which can dis-
criminate between models with similar background expansion rates.

However, the matter power spectrum is not a directly measurable
quantity. With the notable exception of Brown et al. (2003) and the
3D lensing of Kitching et al. (2014), the majority of weak-lensing
analyses have measured real-space angular correlations of the shears
of galaxy images. Shear is typically expressed in terms of the spin-2
quantity γ , which can be split into tangential (γ t) and cross (γ ×)
components with respect to a pair separation vector. Correlation
functions ξ± are defined as combinations of two-point correlations
of tangential- and cross-shear as a function of angular separation:

ξ± = 〈γtγt〉 ± 〈γ×γ×〉 . (31)

These can be related to the harmonic coefficients, C(�), of the spher-
ical Fourier transform of a weighted, projected matter field (Kaiser
1992),

ξ±(θ ) = 1

2π

∫ ∞

0
C(�)J±(�θ )� d� , (32)

with harmonic wavenumber �. Here J± is the zeroth (ξ+) and fourth
(ξ−) Bessel functions, respectively. In the Limber (1954) approxi-
mation, the C(�) are then related to integrals over all scales of the
matter power spectrum (Kaiser 1992):

C(�) =
∫ ωH

0

g2(ω)

a2(ω)
P (k = �/fK (ω), z(ω)) dω , (33)

where ω(z) is the comoving distance to redshift z, defined via the
metric convention of Bartelmann & Schneider (2001) and g(ω) is
the lensing efficiency function:

g(ω) = 3H 2
0 �m

2c2

∫ ωH

ω

n(ω′)
fK (ω′ − ω)

fK (ω′)
dω′ . (34)

Here fK(ω) is the comoving angular-diameter distance, ωH is the
comoving distance to the horizon and n(ω) is the normalized dis-

Figure 7. Lensing correlation functions predicted by various methods are
shown divided by the correlation functions predicted using HMCODE with no
k-cut imposed. ξ+(red) is shown in the upper panel and ξ− (orange) in the
lower panel. Source galaxies are all taken to be fixed at zs = 0.7, the effective
median lensing redshift of CFHTLenS. We show the cases of taking the
HMCODE matter power spectrum to be sharply cut at k = 10h (short-dashed)
and 50h Mpc−1 (long-dashed) and correlation functions from HALOFIT (dot–
dashed) and COSMIC EMU (solid; where �2 = 0 for k > 10h Mpc−1). For the
range of angular scales shown, all models agree for ξ+ at the � 3 per cent
level, a k-cut at k = 10h Mpc−1 only starts to impact upon ξ+ at the per cent
level for θ < 0.◦03 and a cut at 50h Mpc−1 has almost no impact for angles
shown; the agreement between HMCODE and COSMIC EMU is � 2 per cent across
the range of angles. For ξ−, HMCODE and COSMIC EMU agree to � 2 per cent
until the k-cut becomes important, around θ = 0.◦2. HALOFIT is discrepant
at the 4 per cent level for θ < 0.◦5. For ξ−, the impact of k-cuts is felt at
larger angular scales than for ξ+ – a cut at 50h Mpc−1 makes its impact at
the per cent level around θ = 0.◦02.

tribution of source galaxies. Finally, P(k) is the power spectrum
of matter fluctuations, defined in equation (4), and is exactly what
HMCODE provides. Thus, to make contact with lensing observables,
it is necessary to investigate how the accuracy of the predictions
of HMCODE at the level of the matter power spectrum translates into
accuracy for ξ±.

Several methods are commonly used to deal with the fact that 2D
lensing correlation functions depend on integrals over all k of the
matter spectrum. Either fitting formulae are extrapolated beyond the
regime to which they were fitted, in the hope that they still provide
the required accuracy, or P(k) is set to zero for regions where the
power is unknown, a so-called k-cut. As previously stated, one of the
benefits of our halo-model approach is that we have more reason to
trust the predictions of the halo model at small scales, due to the large
amount of theoretical input that goes into the model. In Fig. 7, we
show the lensing ξ± correlation functions as predicted by integrating
over P(k) from HMCODE, HALOFIT and from COSMIC EMU (where we
set �2(k) = 0 for k > 10h Mpc−1). These are computed by taking
the source galaxies to all be fixed at zs = 0.7, the effective median
redshift for lensing of CFHTLenS (Heymans et al. 2012), and using
the best-fitting cosmology from the Planck Collaboration et al., XIII
(2015). The three models for ξ+ agree at the � 3 per cent level for at
all angular scales shown with predictions from HMCODE and COSMIC

EMU agreeing at the per cent level for all angles shown. We also show
HMCODE ξ± predictions for k-cuts at 10 and 50h Mpc−1. If the theory
were perfect, a cut-off in �2 at k = 10h Mpc−1 provides per cent
level accuracy only for θ > 0.◦03; if the power spectrum is cut at
50h Mpc−1, then the predicted ξ+ does not deviate from per cent
level agreement for all angles shown. For ξ− if no k-cut is imposed,
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Figure 8. As Fig. 7 but for the C(�) coefficients. Each model shown is
divided by the HMCODE prediction with no k-cut imposed. We see that a cut
in �2 at k = 10h Mpc−1 induces per cent level deviations around � = 103

and a cut at 50h Mpc−1 increases this to � = 104. HMCODE and COSMIC EMU

agree at the per cent level until the finite k-range of COSMIC EMU becomes
important. HALOFIT disagrees by as much as 5 per cent around � = 103 and
this disagreement increases to 7 per cent for higher harmonics.

the three models agree at the per cent level only for θ > 1◦, after
which predictions from Takahashi et al. (2012) deviate by as much
as 6 per cent at θ � 0.◦01. The effect of the finite resolution of
COSMIC EMU becomes important at the per cent level at θ = 0.◦2 and
the same deviation can be seen in the HMCODE prediction when it is
cut at k = 10h Mpc−1. Assuming perfect knowledge of the theory,
this accuracy extends to θ > 0.◦02 if the cut is taken at 50h Mpc−1.
We note that if we extend the matter spectrum from COSMIC EMU

using a power law for k > 10h Mpc−1, the predictions agree with
those of HMCODE to 2 per cent for both ξ±; this is probably due to
the fact that the halo-model prediction at k > 10h Mpc−1 involves
an integral over many quantities that are accurately power laws,
resulting in a close to power-law power spectrum.

In Fig. 8, we compare models at the level of their C(�) predictions.
When the finite k-range of COSMIC EMU is unimportant, it agrees with
the HMCODE prediction to 1 per cent. Discrepancies with HALOFIT at
the 5 per cent level arise from � = 500 with maximum deviations
of 7 per cent for � > 104. A cut in power at k = 10h Mpc−1 impacts
upon the C(�) at the per cent level around � = 103 and a cut at
50h Mpc−1 at � = 104.

Many authors have investigated how baryonic processes affect
weak-lensing observables. Early work (White & Vale 2004; Zhan
& Knox 2004) used the halo model to estimate how the matter
power would be altered by including gas cooling in haloes and
hot, diffuse intra-cluster gas, respectively. More recent work has
used hydrodynamic simulations with feedback recipes (e.g. Jing
et al. 2006; Semboloni et al. 2011; Casarini et al. 2012) to compare
weak-lensing observables to the case when no baryonic feedback
is included. The results are that for � > 1000, the C(�) are altered
at the per cent level with the alterations increasing with �, but the
details are strongly dependent on the feedback implementation.

In Fig. 9, we show the range of possible correlation function
predictions given by our power-spectrum fits to the baryonic feed-
back models, where the region enclosed by the curves is the region
that our fits to the OWLS feedback models occupy (the centres
of the ellipses in Fig. 6). We generate these using HMCODE pre-
dictions with parameters A and η0 taken from the centres of the
ellipses in Fig. 6. We also show data from the CFHTLenS anal-
ysis of Kilbinger et al. (2013) so that ignorance of the details of
feedback can be compared to the current errors in data. For cur-
rent data, we see that the effect of feedback is small compared to
the errors, but data that will be available in the near future will in-
crease in accuracy and feedback processes will have to be accounted
for. Fig. 9 also shows that baryonic feedback does little to allevi-
ate the tension between the best-fitting CFHTLenS cosmology and

Figure 9. ξ+ (upper panel) and ξ− (lower panel) correlation functions
predicted using HMCODE, with a width showing the spread that is obtained
from different feedback models. In each case, source galaxies are taken to
be fixed at zs = 0.7, approximately the effective median redshift for lensing
for CFHTLenS, and we show the correlation functions predicted using the
best-fitting Planck cosmology (upper curve) and the best-fitting CFHTLenS
(Heymans et al. 2013) cosmology (lower curve). For comparison, we also
show the measured ξ± from the CFHTLenS survey; it can be seen that
feedback fails to alleviate the tension between CFHTLenS and Planck data.
One can see that an ignorance of the details of feedback affects ξ− to much
larger angular scales than ξ+, a consequence of it probing more non-linear
regions of the matter distribution. Baryonic feedback has an impact at the
greater than per cent level for θ < 0.◦1 for ξ+ and θ < 2◦ for ξ−. In all cases,
the effects of baryonic feedback are small relative to the errors in current
data.

that of Planck. For our case of sources fixed at zs = 0.7, baryonic
feedback only has an effect at the greater than per cent level for
θ < 0.◦1 for ξ+ and θ < 1◦ for ξ−. In a forthcoming paper (Joudaki
et al., in preparation), constraints on A and η0, together with cosmo-
logical constraints when these parameters are marginalized over,
will be presented using the CFHTLenS together with that from
RCSLenS.

Alternative approaches have been investigated to model the im-
pact of feedback on weak-lensing observables, all of which use data
from the OWLS hydrodynamic simulations: Mohammed & Seljak
(2014) model the OWLS data by refitting the coefficients from their
power-series expansion of the one-halo term and advocate marginal-
izing over these coefficients to immunize against biases due to feed-
back. Harnois-Déraps et al. (2015) construct polynomial fits to the
ratio of power spectra from feedback models to the DMONLY model;
again the coefficients of these polynomials could feasibly be con-
strained by data. However, to fit each model over the scale redshift
range required 15 coefficients, compared to only 2 in our approach.
With a fixed (WMAP9) cosmology, Harnois-Déraps et al. (2015)
find a preference for feedback in the CFHTLenS data. MacCrann
et al. (2015) reanalysed the CFHTLenS survey but adding a sin-
gle parameter that governs the amplitude of AGN feedback, which
was taken to be given by the ratio of power from the AGN to DMONLY

simulations. They find only a weak preference for feedback, but find
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that this AGN feedback is insufficient to resolve tension between the
CFHTLenS data and that of the Planck satellite. An identical con-
clusion is reached by Kitching et al. (2014) using a similar method.
Eifler et al. (2014) propose using a principal component analysis
method, by which components of the power spectrum that are most
affected by feedback are removed. Assuming that feedback is inde-
pendent of cosmology, they show that the data could be fitted with
as few as four components removed. Our method may be preferable
to this as it potentially allows one to capture the coupling between
feedback and cosmological parameters, via their effects on the halo
profiles.

7 SU M M A RY A N D D I S C U S S I O N

We have shown that the halo model can be optimized so that it
accurately reproduces power spectra measured from dark-matter
N-body simulations across a range of cosmological models for
k ≤ 10h Mpc−1 and z ≤ 2, provided we are willing to introduce
a number of empirical modifications to its ingredients. We achieved
this by calibrating our model to the ‘node’ simulations of COSMIC EMU

of Heitmann et al. (2014). Our success reflects the fact that the halo
model is built on well-posed theoretical ingredients, which naturally
adapt to changes in cosmology in a sensible fashion. Our fits are ac-
curate at the 5 per cent level, which represents an improvement over
the currently used HALOFIT model of Takahashi et al. (2012). COSMIC

EMU itself is quoted to be accurate to 5 per cent at k = 10h Mpc−1

and so our fit is as good as possible at the current level of igno-
rance at this scale. Even in the dark-matter-only case, our accuracy
statement comes with the caveat that we have only tested a limited
range of plausibly interesting cosmologies. In particular, we have
concentrated on the parameter cube of the COSMIC EMU of Heitmann
et al. (2014), which contains cosmological parameters within the
5σ region of the Planck Collaboration et al., XIII (2015) results for
the standard cosmological model.

The advantage of the halo-model approach is that it can be simply
expanded beyond the parameter cube of COSMIC EMU. We demon-
strated that our model is able to produce reasonable power for
k > 10h Mpc−1 and it can also produce spectra for z > 4, greater
than allowed by COSMIC EMU. Given the large amount of tested the-
oretical input that goes into the halo-model calculation, we expect
that our model should produce sensible spectra for higher redshifts
and smaller scales. For small deviations from the standard cosmo-
logical paradigm, such as dark energy with time-varying equation
of state, or for models with small amounts of curvature, we also ex-
pect our answers to be accurate. If one were interested in the power
spectrum of radically different models, such as very curved models
or those qualitatively different linear power-spectrum shapes, we
would advise caution, as our model has not been tested to these
extremes.

Our approach differs from that of some authors (e.g. Cooray &
Hu 2001; Giocoli et al. 2010) who attempt to improve the basic
halo model by adding effects such as halo substructure and a scatter
in halo properties at a given mass. It may be that adding in these
ingredients would have reduced the number or magnitude of our
fitted parameters, but we make no attempt to quantify this. Our ap-
proach also contrasts with that employed by Mohammed & Seljak
(2014) and Seljak & Vlah (2015) who advocate replacing a theoret-
ically motivated one-halo term with a power-series expansion and
fitting this expansion term by term. Combining this approach with
perturbation theory produced excellent results in the quasi-linear (k
� 0.3h Mpc−1) regime. However, it is not obvious how to extend
their predictions to smaller scales than the smallest constrained by

these authors (k � 1h Mpc−1), as their empirical power series has
no physical requirement for sensible behaviour at smaller scales.
Given the necessity of these smaller scales in producing usable
weak-lensing predictions, we therefore prefer our approach. A fu-
ture avenue of fruitful research may be to combine the power of
our approach of a physically motivated fit to the one-halo term with
the perturbation-theory-inspired two-halo term advocated in these
works. Particularly, this may improve accuracy in the quasi-linear
regime and would certainly help in modelling around the BAO
scale, where our 5 per cent accuracy deviates from the per cent level
accuracy of COSMIC EMU.

Baryonic feedback has a large impact on the power at small
scales. We demonstrated that the halo model is able to capture the
influence of baryonic physics via only two redshift-independent pa-
rameters that govern halo internal structure. We also showed that
this can be reduced to one parameter, at the loss of a small amount
of discriminating power. Using these two parameters, we were able
to fit feedback recipes considered in the OWLS simulations at the
5 per cent level for z ≤ 1 and k ≤ 10h Mpc−1. Because these pa-
rameters are firmly rooted in the halo-model apparatus, their effects
are restricted to scales at which haloes affect the power spectrum.
This is not guaranteed by other approaches, such as polynomial
fits, which may produce unphysical effects. We also suggested that
our approach is more likely to reproduce the correct coupling be-
tween baryonic feedback and cosmology, because it is rooted in
halo properties. It is not obvious how to account for the cosmology
dependence of baryonic feedback using existing fitting formulae or
COSMIC EMU.

Finally, we showed how the power-spectrum predictions of HM-
CODE translate into the lensing C(�) and ξ± correlation functions
that are measured in a standard lensing analysis. For the dark-
matter-only case, we showed that HMCODE agrees with COSMIC EMU at
the per cent level for ξ+ and C(�) and 2 per cent for ξ− for all scales
where the finite k-range of COSMIC EMU is unimportant. We suggest
that HMCODE provides a reasonable way of extrapolating COSMIC EMU

to the smaller scales that are necessary to produce weak-lensing
predictions. Considering baryonic feedback, we showed how our
matter power spectra translate into lensing predictions and showed
that ignorance of the details of feedback is smaller than uncer-
tainty on current data. For a survey similar to CFHTLenS, baryonic
feedback impacts on ξ+ at the per cent level for θ < 0.◦1 and on
ξ− for θ < 2◦. In future lensing analyses (e.g. Joudaki et al., in
preparation), we advocate marginalizing over the halo parameters
that we used to fit to the OWLS feedback models in order to pro-
duce unbiased cosmological constraints; our range of fitted values
for these parameters may be used as a prior for this purpose. Al-
ternatively, one might accept a given cosmology and then use the
best-fitting baryon parameters as a means of learning about baryonic
feedback.

In summary, and given our accuracy, we suggest that COSMIC EMU

be used if one is interested in the non-linear, gravity-only induced
power spectrum for k ≤ 10h Mpc−1, and the required model is
within the COSMIC EMU parameter cube. However, if one is interested
in departures from the COSMIC EMU parameter space, accounting
for the effect of baryonic feedback physics, or producing accurate
lensing observables via a reasonable extrapolation, we then advocate
HMCODE. Although we focused on weak lensing in this paper, we
stress that HMCODE is useful for any application that currently uses
HALOFIT.

This last point emphasizes the potential of the approach described
in this paper. The halo model can readily be extended to take ac-
count of new physical processes and changes in the cosmological
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paradigm. One example for further work would be an application
of our method to cover modified gravity models (e.g. Schmidt, Hu
& Lima 2010; Barreira et al. 2014; Lombriser, Koyama & Li 2014)
where revised growth rates, collapse thresholds and internal halo
structures can be predicted in part on analytic grounds, and where
there is a growing effort on detailed simulations. Another such
example would be to look at the impact of massive neutrinos (e.g.
Massara, Villaescusa-Navarro & Viel 2014) on the matter spectrum.
In such cases, being able to produce accurate power spectra will be
important in order to distinguish standard and non-standard cosmo-
logical models. Moreover, exploration of a large parameter space
of models will inevitably be necessary, and there will therefore be a
strong motivation to explore rapid means of generating non-linear
power spectra.

The code developed as part of this paper is available at
https://github.com/alexander-mead/hmcode or at request from the
author. It is able to produce the matter power spectrum at 200 k
values for 16 different z values in � 0.5 s on a single core of a
standard desktop computer.
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APPENDIX A : POW ER-SPECTRU M R ESPONSE

In Fig. A1, we show the response of the matter power spectrum to
changes in cosmological parameters for the linear spectrum, and the
non-linear spectrum predicted by both HMCODE and COSMIC EMU. This
is shown for the cosmological parameters that COSMIC EMU allows one
to vary (ωm, ωb, ns, w, σ 8 h) over the range that COSMIC EMU allows
(see Table 1) via the ratio of the power as the cosmological parameter
is varied compared to the power for the ‘fiducial’ cosmology, given
in Table 1. This quantity says nothing about the absolute accuracy
of the HMCODE predictions, but allows us to assess if the response
of the power induced by changes in cosmological parameters is
accurate. Therefore, we also compute the ratio of the response of
the HMCODE and COSMIC EMU predictions (right-hand column). We

see that, in general, the matter power-spectrum response predicted
by HMCODE is in excellent agreement with the simulations of COSMIC

EMU, which is due to the large amount of well-tested theory in the
halo model. The most obvious small discrepancies arise around the
‘bump’ at k � 1h Mpc−1 produced by variations in σ 8 and the degree
of enhanced power at k > 1h Mpc−1 when w is increased. In each
case, the general trend is reproduced well by the halo model but the
exact magnitude of the response is not predicted quite correctly.

The accuracy of the predicted halo-model power spectrum de-
pends on the ingredients used. We used Fig. A1 to inform the
ingredients used for HMCODE in order to produce the correct power-
spectrum response, before we fitted halo parameters to make accu-
rate �2(k) predictions. This was particularly important in the case
of the response to variations in w, which enter our model partly
through the concentration–mass relation of Bullock et al. (2001)
and partly via the Dolag et al. (2004) correction to a c(M) rela-
tion. The vast majority of mass–concentration relations available in
the literature produce either no, or too little, response in the mat-
ter spectrum to changes in w when the linear-theory �2(k) is held
constant.

A P P E N D I X B : T H E H A L O - M O D E L
C A L C U L AT I O N

In this appendix, we discuss some of the practicalities of our ap-
proach of calculating the halo-model power spectrum. This ap-
pendix serves as a manual to the specific form of the halo-model
calculation that our public FORTRAN 90 code performs. The halo-
model code used in this work is available at https://github.com/
alexander-mead/hmcode.

HMCODE is written such that by default it uses the Eisenstein & Hu
(1998) approximation to the linear spectrum, which can be used if
accuracy at linear scales is not demanded, and then converts this to
a non-linear spectrum. If necessary, there is the option to read in a
tabulated linear spectrum, k versus P(k), as input (e.g. from CAMB).
Additionally, the cosmological parameters need to be specified be-
cause they are used in the fitting functions and in calculations of the
growth function. In all cases, the input linear spectra are renormal-
ized to give the desired σ 8.

For our calculation of the growth function, we explicitly integrate
the approximate expression for the logarithmic growth rate given
in Linder (2005) and derived in Linder & Cahn (2007),

d ln g

d ln a
= �γ

m(z) , (B1)

where g is the growth factor normalized to be 1 today, γ = 0.55
if w = −1 and γ = 0.55 + 0.02(1 + w) if w < −1 and γ = 0.55 +
0.05(1 + w) if w > −1. This fitting formula and subsequent inte-
gration to find the growth factor is valid at the sub-per cent level
even if w deviates significantly from −1.

B1 Two-halo term

The two halo term we use is

�2
2H(k) =

[
1 − f tanh2 (kσv/

√
f )

]
�2

lin(k) , (B2)

with f = 0.188 × σ 4.29
8 (z). The parameter σ v is calculated via

σ 2
v = 1

3

∫ ∞

0

�2
lin(k)

k3
dk , (B3)

and we do this by transforming the [0, ∞] interval in k to t ∈ [0, 1]
using the transformation 1 + k = 1/t.

MNRAS 454, 1958–1975 (2015)

 at Im
perial C

ollege L
ondon L

ibrary on M
ay 25, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/1503.05920
http://arxiv.org/abs/1407.2600
https://github.com/alexander-mead/hmcode
https://github.com/alexander-mead/hmcode
http://mnras.oxfordjournals.org/


1974 A. J. Mead et al.

Figure A1. The ratio of matter power at z = 0 as cosmological parameters are varied when compared to a ‘fiducial’ cosmological model of the COSMIC EMU

parameter space. We show comparisons of linear theory (left column), HMCODE (second column) and the COSMIC EMU prediction (third column). Comparing
the two central columns, one can see that in general HMCODE is able to reproduce the trends in power-spectrum response to cosmological parameter variation
accurately. The right-hand column shows a residual of the HMCODE power divided by that of the emulator (i.e. each curve in the second column divided by the
corresponding curve in the third column), which draws attention to the response of the power spectrum that is replicated best and least well by HMCODE. In each
case, the cosmological parameter in question is varied over the range that COSMIC EMU covers, while all other parameters are kept fixed, with the highest value
of the cosmological parameter shown in pink and the lowest in blue; the range of each parameter is given in Table 1. This plot is slightly different from similar
plots in Heitmann et al. (2014) because we use k/h rather than k on the x-axis.
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The σ v integral (and that of σ (R) in equation B5) requires knowl-
edge of �2 at very small or very large values of k. It is impractical to
provide a tabulated linear spectrum over such a large range of scales
and so we interpolate beyond the boundaries of the input linear spec-
trum using the scaling �2(k) ∝ k3+ns at small k and the approximate
scaling �2(k) ∝ kns−1 ln2(k) at high k. Extremely accurate values
of the power at each of these asymptotes are not necessary, because
they contribute quite negligibly to the integral, but it is necessary for
the linear power not to be badly wrong, or set to zero unphysically.

B2 One-halo term

The aim is to numerically evaluate the integral in equation (8). To
do this, we find it convenient to convert from an integral over M to
one over ν = δc/σ (M):

�2
1H(k) = [1 − e−(k/k∗)2

]4π

(
k

2π

)3 1

ρ̄

×
∫ ∞

0
M(ν)W 2(νηk, M)f (ν) dν . (B4)

Here k∗ = 0.584σ−1
v (z) and damps the one-halo term to prevent

one-halo power from rising above linear at the largest scales.
η = 0.603 − 0.3 σ 8(z) and bloats haloes while they maintain a
constant virial radius. We integrate over a finite range in ν that cap-
tures all haloes necessary to produce a convergent power spectrum
at the scales we investigate. In testing, we found that ν ∈ [0.3, 5]
was sufficient to produce convergent results to k = 100h Mpc−1 and
ν ∈ [0.1, 5] if one required power out to k = 104h Mpc−1. Conver-
gence at higher wavenumbers requires the minimum value of ν to
be reduced, because low-mass haloes contribute to the power only
at small scales.

The halo-model integral in equation (B4) requires knowledge
of rv, M, c and σ , all as a function of halo mass. In practice, we
tabulate these over the finite range in ν as an ‘initialization’ step to
the calculation. We optimized the number of points in ν in order to
produce convergent results up to k = 100h Mpc−1. σ (R) is computed
via

σ 2(R) =
∫ ∞

0
�2(k) T 2(kR) d ln k , (B5)

where

T (x) = 3

x3
(sin x − x cos x) . (B6)

We convert the [0, ∞] k-range of the integral in equation (B5) to
a finite range in t using 1 + k = 1/t with t ∈ [0, 1]. Since this
integral is relatively expensive to compute, we generate a look-up
table for σ (R) with R values logarithmically spaced between 10−4

and 103 h−1 Mpc. These radii correspond to all haloes of practical
interest at low z. If values of σ (R) are required outside this range,

then we interpolate beyond the table boundaries. This works ex-
tremely well because σ (R) is a very smooth function in log space
with the asymptotes approximating power laws to a very high de-
gree of accuracy for standard cosmological spectra. The radial scale
R is related to the mass scale via M = 4πR3ρ̄/3.

The halo window function in equation (B4), W(k, M), has an
analytical form for an NFW profile (Cooray & Sheth 2002):

W (k,M)f (c) = [Ci(ks(1 + c)) − Ci(ks)] cos(ks)

+ [Si(ks(1 + c)) − Si(ks)] sin(ks) − sin(cks)

ks(1 + c)
, (B7)

where f (c) = ln (1 + c) − c/(1 + c), Si(x) and Ci(x) are the sine
and cosine integrals, ks = krv/c, c is the halo concentration and rv is
the halo virial radius, related to the halo mass via M = 4πr3

v �vρ̄/3
and �v = 418 × �−0.352

m (z). The halo concentration is calculated
using the prescription of Bullock et al. (2001), augmented by that
of Dolag et al. (2004):

c(M, z) = A
1 + zf

1 + z

gDE(z → ∞)

g�(z → ∞)
, (B8)

where A = 3.13. The growth factor correction only applies if w

�= −1 and is the asymptotic ratio of growth factors. The formation
redshift is then calculated via

g(zf )

g(z)
σ (f M, z) = δc , (B9)

where f = 0.01. We numerically invert equation (B9) to find zf for
a fixed M. If zf < z, then we set c = A. The mass function we use
in equation (B4) is that of Sheth & Tormen (1999):

νf (ν) = A′
(

1 + 1

ν ′p

) (
ν ′

2

)1/2 e−ν′2/2

√
π

, (B10)

where ν ′ = aν, a = 0.707, A′ = 0.322, p = 0.3 and ν = δc/σ (M),
with δc = 1.59 + 0.0314 ln σ 8(z).

B3 Full power

The final expression for the halo-model power spectrum is then

�2(k) = [(�
′2
2H)α + (�

′2
1H)α]1/α , (B11)

where α = 2.93 × 1.77neff and

3 + neff ≡ −d ln σ 2(R)

d ln R

∣∣∣∣
σ=1

. (B12)

We calculate the derivative numerically from our σ (R) look-up table.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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