The anatomy of clinical decision-making in multidisciplinary cancer meetings: a cross-sectional observational study of teams in a natural context

Abstract:

Background: In the UK, treatment recommendations for patients with cancer are routinely made by multidisciplinary teams in weekly meetings. However, their performance is variable.

Objective: To explore the underlying structure of multidisciplinary decision-making process, and examine how it relates to team ability to reach a decision.

Design, Settings and Participants: A cross-sectional observational study consisting of 1,045 patient reviews across four multidisciplinary cancer teams from teaching and community hospitals in London, UK from 2010 to 2014. Meetings were chaired by surgeons.

Measurements: We used a validated observational instrument (Metric for the Observation of Decision-making in Cancer Multidisciplinary Meetings) consisting of 13 items to assess the decision-making process of each patient discussion. Rated on a five-point scale, the items measured quality of presented patient information, and contributions to review by individual disciplines. A dichotomous outcome (yes/no) measured team ability to reach a decision. Ratings were submitted to Exploratory Factor Analysis and regression analysis.

Results: The exploratory factor analysis produced four factors, labelled 'Holistic and Clinical inputs' (patient views, psychosocial aspects, patient history, comorbidities, oncologists', nurses', and surgeons' inputs), 'Radiology' (radiology results, radiologists' inputs), 'Pathology' (pathology results, pathologists' inputs), and 'Meeting Management' (meeting chairs' and coordinators' inputs). A negative cross-loading was observed from surgeons' input on the fourth factor with a follow-up analysis showing negative correlation (r = -0.19, p < 0.001). In logistic regression, all four factors predicted team ability to reach a decision (p < 0.001).

Limitations: Hawthorne effect is the main limitation of the study.
Conclusions: The decision-making process in cancer meetings is driven by four underlying factors representing the complete patient profile and contributions to case review by all core disciplines. Evidence of dual-task interference was observed in relation to the meeting chairs' input and their corresponding surgical input into case reviews.
Dear Professor Wall,

Thank you for your detailed and positive evaluation of our manuscript, “The anatomy of clinical decision-making in multidisciplinary cancer meetings: a cross-sectional observational study of teams in a natural context” (MD-D-16-01188), and the decision to invite a revised version in accordance with the comments of the reviewers.

In what follows, we have summarized the points raised by the reviewers (in italics), and have described our response to them and the relevant amendments to the manuscript. All changes to the manuscript are highlighted in red font.

Reviewer #1

I really appreciate the opportunity to review the Manuscript # MD-D-16-01188 entitled: "The anatomy of clinical decision-making in multidisciplinary cancer meetings: a cross-sectional observational study of teams in a natural context". I commend the authors for describing this important and timely issue. The paper is very interesting and well written, and as reviewer I have no issues to highlight. Very good.

Thank you for the very positive reception of our study.

Reviewer #2

The submitted manuscript describes an interesting observational study on the topic of health care decisions within multidisciplinary care teams. The four factors discovered in this study are meaningful and informative in clinical decisions for cancer patients. Overall, this manuscript is of high quality but some concerns needed to be addressed before it is accepted for publication.

1) The biggest concern is the study design. The reviewer may miss the information, but the basic setup is one or two clinicians are serving as observers in each meeting. Do other team member aware of who the observer is or whether they’re being observed? Masking of such information will greatly reduce the Hawthorne effect. But it is not clearly stated.

This is a fair point, requiring clarification as requested. All observational research has the potential to suffer from the Hawthorne effect whereby the behavior of those being observed is affected by process of observation. We have acknowledged this in the limitations. All participants gave informed consent
to the observation of their MDT meeting. They were briefed on the nature of the study and the type of data that was being collected, therefore they were aware that they were going to be observed. However, MDTs in the UK rarely have the exact same composition every week as members have other commitments, might be on leave, etc. They are commonly attended by visiting clinicians, students, researchers, clinical auditors as well as interns and residents on rotation. This means that in practice being ‘observed’ in some way or other is rather common within these teams – and hence the presence of our study’s clinical observers did not in itself introduce an overwhelming bias. We therefore believe that the presence of the observer, discreetly positioned at the back of the MDT meeting, would have had minimal impact on the proceedings of the meetings, particularly as the study occurred over a number of meetings (and thus allowed for acclimatization of the teams to the observers), and the observer was a clinician (specialized in the cancer that they observed), the presence of whom within the MDT is natural. The manuscript has been adjusted to clarify this element (please see pages 6 and 9) – although the overall methodological limitation remains and has been fully acknowledged.

2) The medical decisions made by the same team are correlated even if we eliminate the effect of cancer type. In reality, some surgeons or clinicians or radiologists may prefer one type of care/procedure due to personal training background, availability of instruments or the financial situations of patients. As a result, the decisions made for different cases by one team are highly correlated. In this sense, traditional logistic regression fails because it assumes independent (uncorrelated) outcome measures. It’s highly recommended to use mixed effects modeling or hierarchical modeling to address the correlation issue.

This is a well-made point and an established limitation of the regression approach we took. We sought further advice from a statistician on this – and based on the datasets that we have the modeling suggested here would not be suitable. This is due to the relatively small number of specialists within the study – in relation to the number of cases analyzed – which would not have allowed the type of analyses suggested. We were thus advised to report the regression and acknowledge the lack of ability within the study to further explore this potential lack of independence – we have fully complied with this and discussed this issue accordingly (please see pages 9-10).

Having reflected further on this comment, we would suggest that this is a worthwhile hypothesis for further testing – i.e. are the decisions independent or not, and if not what are the factors that drive these conscious or unconscious preferences as expressed at the MDT? We have included this reflection within the discussion as well (please see pages 9-10).
3) The last sentence right before the discussion is intriguing. Do authors use probability of 0.5 as a cutoff for predicted yes/no decision?

We used probability of 0.05 as a cutoff for predicted yes/no decision. This is clarified at the end of the Methods/Statistical Methods section (please see page 6).

What’s more, the performance of a model should not be evaluated based on the data it was built. Instead, a new set of data should be used to assess the predictive power of the final model. Authors are recommended to conduct more studies for this conclusion.

This is a very good point which has mistakenly been overlooked in the reporting of our study – thank you for pointing it out. We fully agree, and the last sentence right before the discussion on page 9 has now been removed. More studies will be conducted in the future to assess the predictive power of our model on different datasets that we are compiling.

Please also submit high-quality graphs for Figure 1 and Figure 2.

This has been addressed in the revised manuscript.

Reviewer #3

This manuscript aimed to explore the underlying structure of multidisciplinary decision-making process, and examine how it relates to team ability to reach a decision. The manuscript is overall well-written, but there are issues that need to be addressed. The authors need to provide more details of the instrument, especially the scoring and their functions.

In the current manuscript, there is no indication as to how the authors implemented the tool that involve subjective scoring (did one author perform, or all, how were variations handled, etc).

- Please clarify whether training in the instrument is required to judge readability.
- It seems that in each independent cancer team, there is one of the authors in charge of the scoring.
- There is no inter-rater reliability on any of the items utilized.

Thank you for these points, which all required clarification. In summary:

- Training in the use of the instrument is required in order to be able to use it consistently. The surgeon evaluators had all been trained to use the instrument prior to the study (as part of our wider research and clinical improvement program for cancer teams).
Within each cancer team one of the authors conducted observations and scoring because that cancer team corresponded to their clinical specialty. Reliability in the scoring was assessed for each one of the surgeon evaluators via correlating their scoring with the scoring of a paired blinded assessor (i.e. one of the other surgeons in the team).

Both of these points have been addressed in the manuscript (please see pages 6 and 4, respectively).

- In terms of the inter-rater reliability - we included the aggregated data on this measure within the results to avoid an overload of technical information for the readership. Reporting all individual items inevitably results in a long table. To address this point we have now included the full reliability analyses as a supplementary data table (please see page 7).

Please show the heterogeneity of the actual data (not only the numbers or the results of exploratory factor analysis) is the important factor for readers to appreciate.

This is a good point, and we entirely agree that readers will find these data useful. We have now included a full table with descriptives across all MDT-MODe items and tumour types (see page 7 and Table 2 in the revised manuscript).

On page 5, “It allows the evaluator to rate the following variables in vivo on a five-point scale”

What does it mean by “in vivo”?

This has been changed into “in real-time” in the manuscript (see page 5) meaning live (as opposed to retrospective based on video recordings for example).

In the term “Exploratory Factor Analysis”, initial letters do not need to be all capitalized.

Please correct “P < .001” as “p < 0.001” also, “p < .01” should be “p < 0.01”.

Figure 1 is not clear enough to read.

These points have been addressed in the revised manuscript (see pages 2, and 6-8).

In Table 1, the authors present “No. of cases with a decision reached (%).” What about those “cases without a decision reached”? What are the main reasons for failing to make a decision?

This is a very good point and one that we regret not being able to explore in more detail within each of the four tumor groups since it was beyond the scope of our study. Ethical approvals for the original work in the breast, lung and colorectal teams precluded recording anything other than the behavioral
scoring of the team (i.e., MDT-MODE), and so detailed information on the reasons for failing to make a decision is unobtainable for these teams. However, the urology dataset did indeed look into this - Lamb et al (2013) revealed that the top 3 causes of decision failures were inadequate radiologic (39.3% decisions) and pathological (26.0%) information, as well as inappropriate patient referrals (10.7%). We suspect this may also be the case for other teams, however, we cannot confirm this across all the tumors within our dataset, and hence we have not reported this information.

Table 3 is so simple that it does not provide any meaningful results. Thus, it's hard to interpret.

Table 3, representing correlation matrix between extracted factors, has been removed from the manuscript.

On page 8, the authors state that in the multiple logistic regression analysis, “after adjusting for tumor type, all four factors were significantly related to the treatment decision”, and “The regression model accurately predicted 920 out of 1045 treatment decisions with a high prediction accuracy of 88%.” Did the authors use original scores in the regression model?

Original scores were used in the regression model, *and as per Reviewer #2 comments – “the performance of a model should not be evaluated based on the data it was built. Instead, a new set of data should be used to assess the predictive power of the final model. Authors are recommended to conduct more studies for this conclusion”, the sentence “The regression model accurately predicted 920 out of 1045 treatment decisions with a high prediction accuracy of 88%.” has been removed from the manuscript, and more studies will be conducted in the future to assess the predictive power of our model (see pages 8-9).*

Also, how did the authors define “high prediction accuracy”?

As per the above answer, this sentence has been removed from the manuscript.

How did the authors define “treatment decision” as variables in the model?

Variable “treatment decision” was defined as a categorical outcome variable with 0 indicating no decision reached, and 1 decision reached by the MDT. Table 4 and page 6 have been adjusted to reflect this.
We would like to thank again the editorial team and the reviewers for these insightful comments that helped us clarify the manuscript and significantly improve how we reported our findings. We do hope that, following these revisions, the manuscript is now acceptable for publication in Medicine.

Kind regards

Ms Tayana Soukup

(on behalf of all authors)

References

The anatomy of clinical decision-making in multidisciplinary cancer meetings: a cross-sectional observational study of cancer teams

Tayana Soukup MSca,c, Konstantinos V. Petrides PhDb, Benjamin W. Lamb MRCS PhDac, Somita Sarkar MRCSa, Sonal Arora MRCS PhDa, Sujay Shah MBBSa, Ara Darzi MD FRCSa, James S. A. Green LLM FRCS (Urol)de, Nick Sevdalis PhDf

Affiliations List
aNIHR Imperial Patient Safety Translational Research Centre, Surgery and Cancer, Imperial College London, UK.
bLondon Psychometric Laboratory, University College London, UK
cUniversity College London Hospital, London, UK
dWhipps Cross University Hospital, London, UK.
eFaculty of Health and Social Care, London South Bank University, London, UK.
fCentre for Implementation Science, King’s College London, UK.

Contact information for the corresponding author and reprint requests
ccMs Tayana Soukup, Imperial College London, St Mary’s Campus, Faculty of Medicine, Department of Surgery and Cancer, Norfolk Place, London W2 1PG, E-mail address: t.soukup@imperial.ac.uk
Tel.: +44 20 7594 3429.

Disclosures
Sevdalis is the Director of London Safety & Training Solutions Ltd, which provides team skills training and advice on a consultancy basis in hospitals and training programs in the UK and internationally. The other authors have no conflicts of interest to report.

Key words
Group decision-making; oncology; performance measurement; national health services; database analysis.

A list of abbreviations
MDT-MODE = Metric for the Observation of Decision-making in cancer Multidisciplinary Teams
MDT = Multidisciplinary team
MDM = Multidisciplinary team meeting
MTB = Multidisciplinary tumor board
Abstract

Background: In the UK, treatment recommendations for patients with cancer are routinely made by multidisciplinary teams in weekly meetings. However, their performance is variable.

Objective: To explore the underlying structure of multidisciplinary decision-making process, and examine how it relates to team ability to reach a decision.

Design, Settings and Participants: A cross-sectional observational study consisting of 1,045 patient reviews across four multidisciplinary cancer teams from teaching and community hospitals in London, UK from 2010 to 2014. Meetings were chaired by surgeons.

Measurements: We used a validated observational instrument (Metric for the Observation of Decision-making in Cancer Multidisciplinary Meetings) consisting of 13 items to assess the decision-making process of each patient discussion. Rated on a five-point scale, the items measured quality of presented patient information, and contributions to review by individual disciplines. A dichotomous outcome (yes/no) measured team ability to reach a decision. Ratings were submitted to Exploratory Factor Analysis and regression analysis.

Results: The exploratory factor analysis produced four factors, labelled ‘Holistic and Clinical inputs’ (patient views, psychosocial aspects, patient history, comorbidities, oncologists’, nurses’, and surgeons’ inputs), ‘Radiology’ (radiology results, radiologists’ inputs), ‘Pathology’ (pathology results, pathologists’ inputs), and ‘Meeting Management’ (meeting chairs’ and coordinators’ inputs). A negative cross-loading was observed from surgeons’ input on the fourth factor with a follow-up analysis showing negative correlation ($r = -0.19, p < 0.001$). In logistic regression, all four factors predicted team ability to reach a decision ($p < 0.001$).

Limitations: Hawthorne effect is the main limitation of the study.

Conclusions: The decision-making process in cancer meetings is driven by four underlying factors representing the complete patient profile and contributions to case review by all core disciplines. Evidence of dual-task interference was observed in relation to the meeting chairs’ input and their corresponding surgical input into case reviews.
Introduction

Background

As a mandatory part of cancer care services in the UK, multidisciplinary team meetings (MDM) comprise of diverse range of professionals – including surgeons, oncologists, radiologists, specialist cancer nurses and pathologists [1]. Their purpose is to provide expert reviews of patient cases and formulate treatment recommendations, thus improving patient experience and ensuring well-coordinated delivery of safe, high quality care. Although cancer guidelines support a multidisciplinary approach [1], the empirical evidence of its effectiveness in terms of patient survival remains unclear [2], and team performance across tumors is variable [3]. One pattern that keeps re-emerging in recent studies is the skewed contribution to case reviews towards senior physicians and biomedical aspects of the disease; in contrast, cancer nurses’ input, patients’ comorbidities, and their psychosocial circumstances are underrepresented [4-6]. In line with this pattern, evidence from patient experience studies shows suboptimal experience of care often due to psychosocial circumstances not being adequately addressed and a ‘holistic’ view of the patient not being considered by the healthcare providers [7-8]. Moreover, multidisciplinary team (MDT) members highlighted the importance of having a complete patient profile, as well as all participating disciplines in attendance, for effective decision-making [9]. Improving MDT working therefore is complex although highly important with the cancer incidence and costs of care being predicted to rise [10-11], while the significant financial pressures on the healthcare remain [12].

The National Cancer Action Team in England identified core domains essential for effective MDT working, including the team (e.g. attendance, team culture, training), infrastructure for meetings, organisation and logistics, team governance, and finally, clinical decision-making process [13] – the latter being the primary focus of this paper. Time pressures, cancer specialist non-attendance, lack of necessary information, poor consideration of patient wishes and comorbidities [9], as well as poor team climate [14] have all been reported to have negative impact on the team in MDMs. Correspondingly, the functional perspective of group decision-making posits that the internal factors coming from within the group (member composition, group size, interactions, culture, beliefs, attitudes, history among group members), and the external circumstances (time pressure, workload) both impact the way groups perform, with the group size and diversity being positively related to performance and range of abilities, and negatively related to effective processes and equality of participation [15-16]. This pattern is also evident in cancer MDMs.

More research is therefore needed to understand how the process of decision-making is currently structured in MDMs - whether this is at the service of promoting effective decision-making, and how it impacts team outcomes. For instance, evidence from MDMs shows that the chairing of the meeting tends to be led by one of the contributing disciplines, and predominantly by more senior surgical
members of the team [17]. This, however, may not be an optimal set up. Evidence from cognitive psychology shows that the competition in dual-task performance (in the case of the MDM, chairing whilst contributing to case reviews) is detrimental to one or both tasks that are being undertaken simultaneously [18], while evidence from patient safety and functional perspective shows that communication between healthcare professionals can be negatively affected by a steep authority gradient, which can emerge when a senior clinician chairs a MDM [15,19-22]. The latter finding is further supported by early social science research [23-24], the results of which were subsequently used to improve team effectiveness in many industries, including aviation [25].

Objectives
Our primary objectives were to 1) examine the underlying structure of team decision-making during case reviews, investigating how the different elements of the decision process cluster together, and 2) understand how it affects team outcome, i.e., the team ability to reach a treatment decision/plan.

To achieve this, we conducted a series of analyses on a large multi-tumor database that was compiled using a novel validated instrument for the observational assessment of decision-making in cancer MDMs - namely, Metric for the Observation of Decision-Making in cancer MDTs, also known as, MDT-MODE [4]. Although tools have been developed to evaluate various aspects of MDM performance, to our knowledge, this is the only instrument designed specifically to measure the process of multidisciplinary decision-making.

Methods

Study Design
This is a cross-sectional observational study that represents a secondary analysis of the data. Originally, the data were acquired through our centre’s ongoing research program in evaluating and improving MDT working across different tumors and was used to descriptively assess decision-making process within cancer teams using MDT-MODE. Since this was a secondary analysis, ethical approval was not required, however at the time of data collection ethical approvals were in place for all prospective evaluations.

Setting
The study recruited four independent cancer teams between 2010 and 2014 from one teaching university hospital (lung cancer team) and three large community hospitals (breast, colorectal and urology cancer teams) of the London (UK) metropolitan area. Observations were conducted in real-time over 10 consecutive meetings within each MDT by four trained surgeon evaluators (breast=SA, colorectal=SMS, lung=SS, urological=BWL) who assessed the cancer team that corresponded to their clinical specialty. Reliability was assessed by having four surgeon evaluators score a subset of cases in pairs. The evaluators were not members of the MDT they were assessing.
Participants and Study Size

Participants were 4 multidisciplinary cancer teams with a total of 52 members, and an overall of 1,045 individual case reviews discussed over a period of 10 weekly meetings respectively. Eligibility criteria for the study were defined as multidisciplinary cancer teams from the UK National Health Service (NHS) that represent four most common types of cancer (breast, lung urological and colorectal) and discuss patients referred to them for care planning recommendations. An availability sampling approach was used to identify teams that met eligibility criteria, while a set number of meetings within each team determined the number of case discussions for analysis.

Variables and Measurements

Case reviews within each meeting and across all four cancer teams were assessed in the same manner by assessors who were clinicians specialised in the cancer they observed, and trained beforehand in the use of the MDT-MODE, a quantitative observational assessment tool (Figure 1) [4]. Training in the use of the tool is essential in order to be able to use it – this is a general principle for instruments assessing human factors in clinical environments, such that the evaluations produced have a degree of accuracy and can be meaningfully used [29]. The tool has been validated, and previously used to assess various cancer MDTs [e.g. 26-28]. The instrument allows a trained evaluator (using the form shown in Figure 1) to provide for each case review carried out by the MDT a standardized score on a 1-5 behaviorally anchored scale of the following variables in real-time:

(i) **Quality of information presented** at the MDM as measured by six variables, namely, patient history, radiology results, pathology results, patient psychosocial aspects (i.e. psychological and social factors, including mental health difficulties, socio-economic issues, and personal circumstances), comorbidity (i.e., past medical history and performance status), and patients’ wishes or opinions regarding treatment.

(ii) **Quality of multidisciplinary case review** as measured by the contributions of seven core disciplines, namely, chairperson, surgeon, oncologist, nurse, radiologist, histopathologist and coordinator. Quality of MDT chairing is evaluated based on national guidelines for England [13], which outline the core competencies that are important for chairing: meeting management, listening and communication, interpersonal relations, managing disruptive personalities and conflict, negotiations, facilitating effective consensual decision-making and time management. Other MDT-members are rated on the basis of their clear contribution of their specialty to the case review.

The outcome measure is a dichotomous variable (yes/no) that allows recording whether or not a clear treatment decision was reached for a patient (Figure 1). In the statistical analysis, type of tumor was considered as a potential confounder. No other variables were included in the final model.
Bias
Efforts were made to address potential biases in the study. We addressed observer bias and had ensured reliability of evaluations on the MDT-MODe by having a subset of cases scored by the four clinical evaluators in pairs who were all trained and experienced in the use of the instrument. During data collection, each evaluator was blind to the other evaluators’ observations. All data were collated for analysis by a separate researcher (TS). We are aware that Hawthorne effect, i.e., teams changing their usual behavior due to being observed, is a natural limitation to observational studies, and in our study MDT members were aware that they were being observed. In England, MDMs are commonly attended by visiting clinicians, students, researchers, clinical auditors as well as interns and residents on rotation. This means that in practice being ‘observed’ in some way or other is rather common within these teams – and hence the presence of our study’s clinical observers would not be overwhelming to the teams. We therefore believe that the presence of the observer, discreetly positioned at the back of the MDT meeting, would have had minimal impact on the proceedings of the meetings, particularly as the study occurred over a number of weeks (and thus allowed for acclimatization of the teams to the observers), and the evaluators were clinicians (specialized in the cancer that they observed), the presence of whom within the MDT is natural. We return to the Hawthorne effect issue in the discussion.

Statistical Methods
Intra-class coefficient (ICC) analysis was initially used to assess reliability of evaluations. ICCs can range between 0 and 1, with higher values indicating better agreement between evaluators. A recent expert consensus has defined a reliability coefficient of 0.70 as a minimum value for data to be used for research purposes [29].

Exploratory factor analysis (EFA) and logistic regression were subsequently carried out to assess the underlying structure of decision-making process during case reviews. The variables that were included in the EFA were individual items of information and specialist contribution quality as assessed by MDT-MODe. EFA extracted factors (using a regression method) were then entered in a multiple logistic regression model as predictor variables to assess their relation to the outcome, i.e., team ability to reach a decision with 0 denoting no decision reached, and 1 decision reached. Variable representing individual teams within the sample (i.e., breast, lung, urology and colorectal cancer teams) was also entered in the regression model as a covariate to examine its’ potential confounding effect. Significance was set at $p < 0.05$.

Figure 1

All analyses were carried out using SPSS® version 20.0 software, and there were no missing data.

Results

Descriptive Analysis

The descriptive data for meeting characteristics are shown in Table 1. Representing the most common cancers in the UK, the sample consisted of overall 1,045 case discussions across 4 teams within a NHS setting. The composition of health care personnel in MDTs did not significantly vary across groups. All teams consisted of a coordinator (administrator), chair and senior (Consultant/Attending level) cancer specialists, i.e., surgeons, oncologists, radiologists, pathologists, and cancer nurses, with the exception of lung, where a chest physician was also present. Table 2 shows detailed descriptive data for the MDT-MODe variables across all four cancer teams.

Reliability of Evaluations: Intra-class correlation coefficients (ICCs)

Inter-evaluator agreement was assessed via ICCs on a randomly selected subset of the observed cases (N=273, 26% of the total cohort). High reliability was obtained across all tumors; breast: median ICC=0.92 (range 0.27-1.00); colorectal: median ICC=0.83 (range 0.69-0.96); lung: median ICC=0.86 (range 0.71-0.99); and urological: median ICC=0.71 (range 0.31-0.87). This finding means that all four surgeon evaluators were consistent in their use of the MDT-MODe instrument across evaluated cases. The full intrarater reliability matrix for all individual items across all four cancer teams is provided as the Supplementary data table.

Anatomy of Decision-Making: Exploratory Factor Analysis (EFA)

To assess the underlying structure of the decision-making process in MDM, an EFA was applied to the 13 MDT-MODe items. All the criteria for factor analysis were met – sample size was adequate (KMO = 0.67), and the variables sufficiently intercorrelated, (X^2(78) = 3329.18, $p < 0.001$), with none of the coefficients being particularly large or zero. Based on (i) Kaiser’s criterion (eigenvalues for the first six factors were 2.99, 2.11, 1.34, 1.19, 0.95, 0.89), (ii) Scree plot and (iii) clinical considerations, 4 factors were extracted and rotated to simple structure via the oblique Promax algorithm with the Kappa parameter set to 4. Oblique rotation was chosen because it is considered a more accurate, reproducible solution, allowing the factors to correlate [30]. The four factors together explained 59% of the variance in the 13 MDT-MODe items. All items were well represented in the extracted four factors, with an average communality of 0.59. The best represented items were radiologists’ input, $h^2 = 0.84$, pathologists’ input, $h^2 = 0.83$, radiological information, $h^2 = 0.83$, and pathological information, $h^2 = 0.84$, while the least well represented item was chair’s input $h^2 = 0.39$.
Table 3 presents the resulting factor pattern matrix. The highest-loading variables on the first factor were patient views on the treatment options (0.70), oncologists’ input into case discussion (0.67), nurses’ input into case discussion (0.65), and patient psychosocial aspects (0.60). Accordingly, this factor was labelled ‘Holistic and Clinical inputs’, representing patients’ holistic and clinical needs. The highest-loading variables on the second factor were patient radio logical information presented to the team (0.91) and radiologists’ input into case discussion (0.93). Accordingly, this factor was labelled ‘Radiology’, representing radiological profile of patients’ disease. The highest-loading variables on the third factor were patient pathological information presented to the team (0.90) and pathologists’ input into case discussion (0.96). Accordingly, this factor was labelled ‘Pathology’, representing pathological profile of patients’ disease. The highest-loading variables on the fourth factor were coordinator’s (0.68) and meeting chair’s (0.61) inputs into case discussion. Accordingly, this factor was labelled ‘Meeting Management’, representing the management of case discussions within the meeting (chair), and general management and organisation of cases for discussion (coordinator). Figure 2 shows a graphical representation of the four-factor model.

As evident from Table 3, one variable, namely, surgeons’ input, cross-loads positively (0.43) on ‘Holistic and Clinical inputs’, and negatively (-0.41) on ‘Meeting Management’. Since surgeons in our sample also chaired the meetings, thus undertaking two tasks simultaneously, we further explored the relationship between the two using Spearman correlational analysis. A significant negative association was found between surgeons’ and chairs’ inputs to case reviews (r = -0.19, p < 0.01), indicating that as the surgeons’ inputs increased, the chairs’ inputs decreased. In contrast, the relationship between surgeons’ and coordinators’ inputs was non-significant (r = -0.04, p > 0.05). It is reasonable to conclude, therefore, that the negative cross-loading in the EFA is driven by the negative surgeon-chair association. This finding is in line with the theory of dual task interference [18], as discussed later.

Factor inter-correlations were generally low at r = 0.26 or less. The full factor inter-correlation matrix is available upon request from the corresponding author.

Predictors of Outcome: Logistic Regression
To explore the relation between the four factors and the outcome variable, namely, the team ability to reach a treatment decision on first case review, we performed a multiple logistic regression analysis. After adjusting for tumor type, all four factors, including ‘Holistic and Clinical inputs’ (Wald(1) = 17.88, p < 0.001), ‘Radiology’ (Wald(1) = 12.01, p < 0.001), ‘Pathology’ (Wald(1) = 23.22, p < 0.001), and ‘Meeting Management’ (Wald(1) = 12.30, p < 0.001) were significantly related to the
treatment decision. To facilitate interpretation, we converted the odds ratios into probability percentages, using the following formula: odds/(odds+1) x 100 = probability % [31]. We found that ‘Holistic and Clinical’ inputs, ‘Radiology’ and ‘Pathology’ contributed the most to the probability of the team to reach a treatment decision for a patient (see Table 4).

Table 4

Discussion
Summary
The current study used multivariate statistical methods to gain a better understanding of the anatomy of group decision-making in cancer MDMs, and how it relates to team ability to reach treatment recommendation. We showed that the decision-making process in cancer MDMs is driven by four underlying factors – namely, ‘Holistic and Clinical inputs’, ‘Pathology’, ‘Radiology’, and ‘Meeting Management’. These were all significantly predictive of team ability to reach a treatment decision on first case review. The inputs of chairs (who were surgeons in our sample) were shown to compete with their corresponding disciplinary contributions to case reviews at the detriment of the meeting management – i.e., as surgeons’ input to case reviews increased, chair’s input decreased.

Limitations
We have used observational data with participants being aware that they were being evaluated, hence we cannot rule out observer biases and the Hawthorne effect. This is a natural limitation to all observational evaluations, and in our dataset, we used blinded clinical evaluators (the presence of whom within a MDT is natural) and a previously validated tool, ensuring satisfactory inter-assessor reliability. Further, the nature of MDT-MODE may not do justice to the complex roles of the MDT chairperson and coordinator. This is being addressed via a more detailed evaluation scale we are currently constructing for chairing skills [33]. Although we have made an attempt to control for the confounding effects of tumor type, we acknowledge that our data are derived from different institutions and MDTs, and that team culture including different values, beliefs and attitudes could influence outcomes [16]. This may have affected institutional versus team-specific or tumor-specific factors impacting on team decision-making. In a similar vein, conscious or unconscious preferences for treatment may be embedded into individual specialists’ decision-making; ideally, these should also be factored into the decision-making ‘model’ of the MDM as they are likely to be a stable feature of each individual physician’s decision style. Our study was not designed to address all of these complexities, which would have rendered its scope unfeasible. Future work should therefore explore a large stratified sample of cases across hospitals and tumors to further validate our findings, and also
the intra-individual physician preferences for treatment options. Such research would offer further understanding of how these differences affect multidisciplinary decision-making process.

Overall Interpretation

Previous research has shown that clinical decision-making process is an essential part of effective MDT working [13]. Our findings build on this by showing that the decision-making process in MDMs is driven by four underlying factors representing all core disciplines and the complete patient profile - both essential for the teams’ ability to reach a decision. In a recent study, MDT members reported the importance of member attendance, availability of patient information, considerations of patient comorbidities, patient choices and their current state of health for decision-making [9]. Our paper corroborates this finding by showing that in order for the team to be able to reach a treatment recommendation on first case review, all participating disciplines and the complete patient profile are necessary. This is also in line with the functional perspective of group decision-making, which links the diversity of groups with better performance and range of abilities, although at the expense of effective processes and equality of participation [15] – a pattern previously observed in MDMs [4-6]. Quality improvement efforts, therefore, could consider focusing on the factors identified by our study, and assessing them against team processes (e.g. social loafing, blocking, shared information bias), quality of decisions made, and patient satisfaction.

Moreover, our finding of negative surgeon-chair’s input association whereby the surgeons’ inputs into case review increase as the chairs’ inputs decrease, is in line with the theory of dual task interference, which shows that the competition in dual-task performance is at the detriment of one or both tasks [18]. In our sample, chairing was led by the surgical specialty that is also required to provide input into case reviews; these are both demanding cognitive tasks. Our study shows that providing both types of input at the same time appears to be at the expense of the coordination of the meeting. More specifically, when surgical input into case reviews increases, the chair’s input decreases. This is an important finding because such internal factors emanating from within the group can affect the way the team performs [15]. What is more, this finding can spur strategies for improving MDM practice. For instance, assigning a chairing role to a clinically non-contributing individual (e.g. MDT leads from other specialties, or cancer managers), trained in team management skills may allow the contributing members to focus solely on case reviews and clinical decision-making. Alternatively, rotating the chairing duty during a MDM could allow different team members to chair when their direct input is not required. Also, experienced specialist nurses could potentially take on this role [32].

Further Research

One question that was directly raised by our findings relates to chairing and dual-task interference. Studies should look specifically into the impact of having one of the contributing disciplines in the MDT chair the meeting, and test alternative options for meeting leadership that address the burden of
the chairing task to the clinical decision making. A second question for future research to address relates to the effects of authority gradients on team decision-making process. Authority gradients were first defined in aviation where it was observed that differences in seniority and authority impede effective communication between pilots and co-pilots [22], and the concept was subsequently introduced to medicine in the Institute of Medicine Report, To Err Is Human [21]. While dual-task interference is a valid and tested theory that should be investigated further within MDMs, one cannot ignore that meetings are attended by more than one person from each specialty. This begs the question as to what is the effect of the chair’s authority gradient on information exchange and contributions to case reviews from other members of the chair’s discipline. Additionally, this effect should also be explored in relation to the other disciplines within the team since nurses, for example, have traditionally lower team status. The negative impact of authority gradients on communication between healthcare professionals and on patient safety has been well-documented [15,19-22], and classic social science research had showed the detrimental effects of blind obedience that such gradients can create [23-24]. To illustrate, in a recent interview with MDT members regarding the effectiveness of their meetings, one doctor reported: “I am always amazed how very able staff can be so passive” [14]. Having an effectively trained leader, and respectful team climate that balance out the authority gradients and encourages inputs from all contributing members and disciplines may help improve the decision-making process and guard against potential team biases.

Generalizability

Although this is a large-scale study for its nature (based on in vivo observations), generalizability of our findings may be limited to the most common cancer MDTs within the NHS. Replication and assessment of the generalizability of the current findings to other cancer MDTs, in particular the lower-frequency cancers, needs to be examined to determine the extent of which they apply to them.

Conclusion

As our results demonstrate for the first time, MDT decisions in most common cancers are driven by four underlying factors encompassing all participating disciplines and a complete patient profile. It seems that all of these elements are necessary for the collective decision-making ability of a team. We also demonstrated a negative relationship between chairs’ inputs and their corresponding disciplinary clinical input, possibly indicating dual-task interference. Further research could profitably investigate how chairing and authority gradients affect team interactions and contributions to case review in MDMs with a view to improving service quality and group decision-making in a natural context.
Funding

Financial support for this study was provided entirely by the UK’s National Institute for Health Research (NIHR) via the Imperial Patient Safety Translational Research Centre. Sevdalis’s research is funded by the NIHR via the ‘Collaboration for Leadership in Applied Health Research and Care South London’ at King's College Hospital NHS Foundation Trust, London, UK. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Sevdalis is also a member of King’s Improvement Science, which is part of the NIHR CLAHRC South London and comprises a specialist team of improvement scientists and senior researchers based at King’s College London. Its work is funded by King’s Health Partners (Guy’s and St Thomas’ NHS Foundation Trust, King’s College Hospital NHS Foundation Trust, King’s College London and South London and Maudsley NHS Foundation Trust), Guy’s and St Thomas’ Charity, the Maudsley Charity and the Health Foundation. The funding agreement ensured the authors’ independence in designing the study, interpreting the data, writing, and publishing the report.

Acknowledgements

The authors thank all participating MDTs and their members for their time and commitment.

References

20 Francis R. Freedom to speak up. UK: Quality Commission; 2015.

Figure 1 Metric for the observation of decision-making used to assess case discussions in cancer multidisciplinary team meetings [4]

Figure 2 Diagram depicting the underlying components of decision-making processes in cancer multidisciplinary team meetings
Table 1 Descriptive data of multidisciplinary team meetings observed

<table>
<thead>
<tr>
<th>Cancer Team</th>
<th>Type of Hospital</th>
<th>No. of meetings observed</th>
<th>No. of core members present</th>
<th>No. of cases discussed</th>
<th>Average no. of cases discussed per meeting</th>
<th>No. of cases with a decision reached (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>Community</td>
<td>10</td>
<td>13</td>
<td>224</td>
<td>22</td>
<td>203 (91%)</td>
</tr>
<tr>
<td>Colorectal</td>
<td>Community</td>
<td>10</td>
<td>11</td>
<td>185</td>
<td>19</td>
<td>161 (87%)</td>
</tr>
<tr>
<td>Lung</td>
<td>Teaching</td>
<td>10</td>
<td>13</td>
<td>254</td>
<td>26</td>
<td>218 (86%)</td>
</tr>
<tr>
<td>Urology</td>
<td>Community</td>
<td>10</td>
<td>15</td>
<td>382</td>
<td>38</td>
<td>319 (84%)</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>40</td>
<td>52</td>
<td>1045</td>
<td>26</td>
<td>900 (86%)</td>
</tr>
</tbody>
</table>
Table 2 Descriptive data of the scores on the Metric for the Observation of Decision-making in cancer Multidisciplinary Teams (MDT-MODE) across cancer teams

<table>
<thead>
<tr>
<th>MDT-MODE items</th>
<th>Lung ((n=254))</th>
<th>Breast ((n=225))</th>
<th>Colorectal ((n=185))</th>
<th>Urology ((n=382))</th>
<th>Overall ((N=1045))</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFORMATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient history</td>
<td>3.50 (0.88)</td>
<td>4.43 (0.76)</td>
<td>4.02 (0.84)</td>
<td>3.34 (0.98)</td>
<td>3.73 (0.97)</td>
</tr>
<tr>
<td>X-Ray</td>
<td>4.69 (0.99)</td>
<td>4.67 (0.81)</td>
<td>4.04 (1.13)</td>
<td>2.59 (1.66)</td>
<td>3.80 (1.58)</td>
</tr>
<tr>
<td>Pathology</td>
<td>1.62 (1.32)</td>
<td>3.08 (1.69)</td>
<td>2.55 (1.75)</td>
<td>2.73 (1.21)</td>
<td>2.51 (1.44)</td>
</tr>
<tr>
<td>Psycho-social</td>
<td>2.18 (1.43)</td>
<td>2.44 (1.02)</td>
<td>2.34 (1.34)</td>
<td>1.59 (1.14)</td>
<td>2.05 (1.28)</td>
</tr>
<tr>
<td>Comorbidity</td>
<td>2.28 (1.33)</td>
<td>2.60 (1.05)</td>
<td>3.06 (1.23)</td>
<td>1.59 (1.14)</td>
<td>2.24 (1.31)</td>
</tr>
<tr>
<td>Patient view</td>
<td>1.21 (0.74)</td>
<td>2.47 (1.01)</td>
<td>2.45 (1.33)</td>
<td>1.24 (0.82)</td>
<td>1.71 (1.13)</td>
</tr>
<tr>
<td>CONTRIBUTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair</td>
<td>3.88 (1.32)</td>
<td>2.77 (1.54)</td>
<td>3.9 (1)</td>
<td>3.53 (0.68)</td>
<td>3.42 (1.08)</td>
</tr>
<tr>
<td>Surgeon</td>
<td>1.63 (1.32)</td>
<td>4.23 (1.17)</td>
<td>3.81 (1.02)</td>
<td>4.27 (1.36)</td>
<td>3.54 (1.67)</td>
</tr>
<tr>
<td>Oncologist</td>
<td>2.16 (1.57)</td>
<td>2.69 (1.57)</td>
<td>3.15 (1.72)</td>
<td>2.09 (1.66)</td>
<td>2.44 (1.67)</td>
</tr>
<tr>
<td>Nurse</td>
<td>1.95 (1.44)</td>
<td>3.23 (1.00)</td>
<td>3.48 (1.52)</td>
<td>1.18 (0.67)</td>
<td>2.21 (1.48)</td>
</tr>
<tr>
<td>Radiologist</td>
<td>4.3 (1.11)</td>
<td>4.57 (0.92)</td>
<td>3.81 (1.27)</td>
<td>2.17 (1.76)</td>
<td>3.50 (1.73)</td>
</tr>
<tr>
<td>Histopathologist</td>
<td>1.69 (1.46)</td>
<td>2.13 (1.47)</td>
<td>2.36 (1.59)</td>
<td>2.07 (1.71)</td>
<td>2.04 (1.59)</td>
</tr>
<tr>
<td>Coordinator</td>
<td>1.18 (0.63)</td>
<td>1</td>
<td>2.03 (1.24)</td>
<td>1</td>
<td>1.30 (0.94)</td>
</tr>
</tbody>
</table>

Note. \(N=1045\). Scores range from 1 to 5 - higher the scores, better the quality of information and contribution.
Table 3 Rotated factor loadings based on Exploratory Factor Analysis of 13 items of the Metric for the Observation of Decision-making in cancer Multidisciplinary Teams (MDT-MODe).

<table>
<thead>
<tr>
<th>MDT-MODe variables</th>
<th>Extracted factors</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Holistic & Clinical inputs</td>
<td>Radiology</td>
<td>Pathology</td>
<td>Meeting Management</td>
<td></td>
</tr>
<tr>
<td>Information quality</td>
<td>Patient views</td>
<td>0.70</td>
<td>-0.04</td>
<td>-0.06</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Psychosocial information</td>
<td>0.60</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>Patient history</td>
<td>0.51</td>
<td>0.27</td>
<td>0.09</td>
<td>-0.28</td>
</tr>
<tr>
<td></td>
<td>Comorbidities</td>
<td>0.51</td>
<td>0.16</td>
<td>0.12</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Radiological information</td>
<td>0.06</td>
<td>0.91</td>
<td>-0.02</td>
<td>-0.12</td>
</tr>
<tr>
<td></td>
<td>Pathological information</td>
<td>-0.03</td>
<td>-0.04</td>
<td>0.90</td>
<td>-0.10</td>
</tr>
<tr>
<td>Contribution quality</td>
<td>Oncologists’ input</td>
<td>0.67</td>
<td>-0.12</td>
<td>-0.19</td>
<td>-0.17</td>
</tr>
<tr>
<td></td>
<td>Nurses’ input</td>
<td>0.65</td>
<td>0.12</td>
<td>-0.05</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Surgeons’ input</td>
<td>0.43</td>
<td>-0.33</td>
<td>0.19</td>
<td>-0.41*</td>
</tr>
<tr>
<td></td>
<td>Radiologists’ input</td>
<td>0.02</td>
<td>0.93</td>
<td>0.01</td>
<td>-0.11</td>
</tr>
<tr>
<td></td>
<td>Pathologists’ input</td>
<td>-0.16</td>
<td>0.04</td>
<td>0.96</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Coordinator’s input</td>
<td>0.24</td>
<td>-0.15</td>
<td>0.10</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>Chair’s input</td>
<td>-0.10</td>
<td>-0.14</td>
<td>-0.07</td>
<td>0.61</td>
</tr>
</tbody>
</table>

*Note. N=1045. *Item negatively cross-loading.*
Table 4 Logistic regression predicting treatment decision from the extracted factors of the Metric for the Observation of Decision-making in cancer Multidisciplinary Teams (MDT-MODE)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Unadjusted</th>
<th>Adjusted for tumour type</th>
<th>Unadjusted</th>
<th>Adjusted for tumour type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B (SE)</td>
<td>OR</td>
<td>Lower - Upper</td>
<td>Probability</td>
</tr>
<tr>
<td>Pathology</td>
<td>0.57 (0.12)*</td>
<td>1.77</td>
<td>1.40 - 2.25</td>
<td>64%</td>
</tr>
<tr>
<td>Radiology</td>
<td>0.48 (0.10)*</td>
<td>1.62</td>
<td>1.33 - 1.96</td>
<td>62%</td>
</tr>
<tr>
<td>Holistic & Clinical Inputs</td>
<td>0.47 (0.11)*</td>
<td>1.60</td>
<td>1.28 - 1.99</td>
<td>62%</td>
</tr>
<tr>
<td>Meeting Management</td>
<td>0.37 (0.10)*</td>
<td>0.70</td>
<td>0.56 - 0.85</td>
<td>41%</td>
</tr>
<tr>
<td>Constant</td>
<td>2.17 (0.12)</td>
<td>8.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. N = 1045. OR = odds ratio. *p < 0.001. **p < 0.01. -2LL = 734.26. $R^2 = 0.18$ (Nagelkerke). The predicted variable is treatment decision with 0 signifying no decision reached, and 1 decision reached.
<table>
<thead>
<tr>
<th>#</th>
<th>Site</th>
<th>Point</th>
<th>Information</th>
<th>Contribution</th>
<th>OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hx</td>
<td>X-ray</td>
<td>Path</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

History

	5	Fluent, comprehensive case history.	S	Comprehensive first-hand knowledge of patients' personal circumstances, social and psychological issues.
	3	Partial case history.	S	Vague first-hand knowledge, or good second-hand knowledge of personal circumstances, social and psychological issues.
	1	No patient case history.	S	No knowledge of personal circumstances, social and psychological issues

x-ray

	5	Radiological images.	C	Comprehensive first-hand knowledge of patients' past medical history and performance status.
	3	Radiological information from a report/ account.	C	Vague first-hand knowledge, or good second-hand knowledge of past medical history or performance status.
	1	No provision of radiological information.	C	No knowledge of past medical history or performance status.

Pathology

	5	Histopathological information explained with slides/pictures.	P	Comprehensive first-hand knowledge of patients' wishes or opinions regarding treatment.
	3	Histopathological information from a report/account.	P	Vague first-hand knowledge, or good second-hand knowledge of patient's wishes or opinions regarding treatment.
	1	No provision of Histopathological information.	P	No knowledge of patient's wishes or opinions regarding treatment.

Chair

	5	Good leadership enhanced team discussion and decision making.	M	Clear contribution of speciality.
	3	Leadership neither enhanced nor impeded team discussion and decision making.	M	Contribution inarticulate or vague.
	1	Poor/inadequate leadership impeded team discussion and decision making.	M	No contribution.

Point

	Pre Rx	Pre-treatment.	D	Decision to defer to next MDT.
	Post Rx	Post treatment.	N	No decision/decision unclear.
	R	Recurrence/ surveillance.	Y	Clear decision about treatment(s) to be offered.
Anatomy of decision-making process in cancer multidisciplinary meetings

Holistic & Clinical Inputs
- Patient history
- Comorbidity
- Psychosocial Information
 - Patient views
 - Surgeons' input
 - Oncologists' input
 - Nurses' input

Radiology
- Radiological information
- Radiologists' input

Pathology
- Pathological information
- Pathologists' input

Meeting Management
- Chair's input
- Coordinator's input

Treatment Decision
STROBE Statement

Checklist of items that should be included in reports of observational studies

<table>
<thead>
<tr>
<th>Section/Topic</th>
<th>Item No</th>
<th>Recommendation</th>
<th>Reported on Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title and abstract</td>
<td>1</td>
<td>(a) Indicate the study’s design with a commonly used term in the title or the abstract</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Provide in the abstract an informative and balanced summary of what was done and what was found</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background/rationale</td>
<td>2</td>
<td>Explain the scientific background and rationale for the investigation being reported</td>
<td>3-4</td>
</tr>
<tr>
<td>Objectives</td>
<td>3</td>
<td>State specific objectives, including any prespecified hypotheses</td>
<td>4</td>
</tr>
<tr>
<td>Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study design</td>
<td>4</td>
<td>Present key elements of study design early in the paper</td>
<td>4</td>
</tr>
<tr>
<td>Setting</td>
<td>5</td>
<td>Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Case-control study—For matched studies, give matching criteria and the number of controls per case</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>6</td>
<td>Clear definition of all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable</td>
<td></td>
</tr>
<tr>
<td>Variables</td>
<td>7</td>
<td>For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group</td>
<td>5</td>
</tr>
<tr>
<td>Data sources/measurement</td>
<td>8*</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Bias</td>
<td>9</td>
<td>Describe any efforts to address potential sources of bias</td>
<td>5-6</td>
</tr>
<tr>
<td>Study size</td>
<td>10</td>
<td>Explain how the study size was arrived at</td>
<td>5</td>
</tr>
<tr>
<td>Quantitative variables</td>
<td>11</td>
<td>Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*(a) Describe all statistical methods, including those used to control for confounding</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*(b) Describe any methods used to examine subgroups and interactions</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*(c) Explain how missing data were addressed</td>
<td>6</td>
</tr>
<tr>
<td>Statistical methods</td>
<td>12</td>
<td>(d) Cohort study—If applicable, explain how loss to follow-up was addressed</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Case-control study—If applicable, explain how matching of cases and controls was addressed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*(e) Describe any sensitivity analyses</td>
<td>n/a</td>
</tr>
<tr>
<td>Section/Topic</td>
<td>Item No</td>
<td>Recommendation</td>
<td>Reported on Page No</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>13*</td>
<td>(a) Report numbers of individuals at each stage of study—e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Give reasons for non-participation at each stage</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Consider use of a flow diagram</td>
<td>n/a</td>
</tr>
<tr>
<td>Descriptive data</td>
<td>14*</td>
<td>(a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Indicate number of participants with missing data for each variable of interest</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Cohort study—Summarise follow-up time (e.g., average and total amount)</td>
<td>n/a</td>
</tr>
<tr>
<td>Outcome data</td>
<td>15*</td>
<td>Cohort study—Report numbers of outcome events or summary measures over time</td>
<td>6 (Table 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Case-control study—Report numbers in each exposure category, or summary measures of exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cross-sectional study—Report numbers of outcome events or summary measures</td>
<td></td>
</tr>
<tr>
<td>Main results</td>
<td>16</td>
<td>(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included</td>
<td>8 (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Report category boundaries when continuous variables were categorized</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period</td>
<td>n/a</td>
</tr>
<tr>
<td>Other analyses</td>
<td>17</td>
<td>Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses</td>
<td>n/a</td>
</tr>
<tr>
<td>Discussion</td>
<td>18</td>
<td>Summarise key results with reference to study objectives</td>
<td>8</td>
</tr>
<tr>
<td>Limitations</td>
<td>19</td>
<td>Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias</td>
<td>9</td>
</tr>
<tr>
<td>Interpretation</td>
<td>20</td>
<td>Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence</td>
<td>9-10</td>
</tr>
<tr>
<td>Generalisability</td>
<td>21</td>
<td>Discuss the generalisability (external validity) of the study results</td>
<td>11</td>
</tr>
<tr>
<td>Other Information</td>
<td>22</td>
<td>Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based</td>
<td>11</td>
</tr>
</tbody>
</table>

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

This LICENSE TO PUBLISH (this “License”), dated as of:
19/02/2016

DATE

(the “Effective Date”), is executed by the corresponding author listed on Schedule A (the “Author”) to grant a license to the Medical Research Division of Wolters Kluwer Health, Inc., a Delaware corporation, having its principal place of business at Two Commerce Square, 2001 Market Street, Philadelphia, PA 19103 (the “Publisher”, and together with the Author, each, a “Party”, and together, the “Parties”).

1. Grant of License
The Author hereby grants to the Publisher and its affiliates the exclusive, worldwide, royalty free, perpetual (for the duration of the applicable copyright) right and license to use the Work (as defined on Schedule A) for all commercial or educational purposes, including, but not limited to, publishing, reproducing, marketing, distributing (themselves and through distributors), sublicensing, and selling copies of the Work throughout the world for the Term. If the Author is a United States government employee, such license grant shall be limited to the extent the Author is able to grant such license.

2. Warranties, Indemnification, and Limitation of Liability
a. The Author represents and warrants to the Publisher that:

(i) the Author has the right and power to enter into this License, to grant the rights and licenses granted pursuant to this License, and to perform all of the Author’s other obligations contained in this License;

(ii) the Author has not previously assigned, transferred or otherwise encumbered the rights or licenses granted pursuant to this License; and that the person executing this License on the Author’s behalf is authorized to do so;

(iii) the Work and the licenses granted herein do not and will not infringe upon, violate or misappropriate any intellectual property rights or any other proprietary right, contract or other right or interest of any third party;

(iv) if the Work is a multi-authored Work, the Author has obtained written permission from each author of the Work to enter into this License on behalf such author, and each such author has read, understands and has agreed to the terms of this License;

(v) the Author has obtained any necessary releases and permissions to quote from other sources in the Work and to include any works and materials in the Work, including all releases from patients whose names or likenesses are submitted as part of the Work; all such releases and permissions are in full force and effect, and the Author will promptly provide any such release or permission to the Publisher upon request by the Publisher;

(vi) neither the Work nor any content contained in the Work, in whole or in part, has been published or is being considered for publication other than in the Journal (as defined in Section 3.a.);

(vii) the Author has disclosed to the Publisher, prior to or simultaneously with submission of the Work, all intellectual contributions, technical help, financial or material support, and all financial or other relationships that may constitute or lead to a conflict of interest;

(viii) the Work is not subject to any rights of copyright other than the copyright of the Author and each other author of the Work;

(ix) the Work does not and will not violate the publicity or privacy rights of any third party, or libel or slander any third party;

(x) the Work does not and will not contain any scandalous, obscene, or negligently prepared information;

(xi) the Work is not and will not be fraudulent, plagiarized, or incorrectly attributed;

(xii) no aspect of the Author’s personal or professional circumstances currently, or in the past 12 months, causes the Author to have a conflict of interest with respect to the Work;

(xiii) neither the Author, nor any member of the Author’s immediate family, nor any individual or entity with whom or which the Author has or has had a significant working relationship has received anything of value from a commercial party related directly or indirectly to the subject of the Work; and

(xiv) the Author has read and understands the statements on each of Schedule B and Schedule C and has completed both Schedule B and Schedule C in their entirety.

b. The Author hereby indemnifies the Publisher and its directors, officers, employees, agents, and representatives and agrees to defend and hold them harmless from and against any and all liability, damage, loss, costs or expenses (including reasonable attorney’s fees and costs of settlement) incurred by any such party arising out of, or relating to any misrepresentation in, or breach or alleged breach of the Author’s representations or warranties in this License. If the Author fails to promptly or diligently pursue any defense of any indemnified party, the indemnified parties, or any of them, may assume such defense at the Author’s expense. The obligations of this indemnification will survive any termination or expiration of this License.

3. Creative Commons License
a. If the Author has not selected either “Research Councils UK (RCUK)” or “Wellcome Trust” in Item 1 of Schedule B, the following shall apply:

The Author acknowledges and agrees that the Work will be published by the Publisher in Medicine (the “Journal”) and made freely available to users under the terms of one of the following Creative Commons Licenses, which license will be selected by the Author pursuant to Schedule B:
(i) Creative Commons Attribution 4.0 International Public License, as currently displayed at http://creativecommons.org/licenses/by/4.0/legalcode (the “CC BY”). The Author acknowledges and agrees that the Publisher is the exclusive “Licensor”, as defined in the CC BY, of the Work and that the Publisher may make the Work freely available to all users under the terms of the CC BY.

(ii) Creative Commons Attribution-NoDerivatives 4.0 International Public License, as currently displayed at http://creativecommons.org/licenses/by-nd/4.0/legalcode (the “CC BY-ND”). The Author acknowledges and agrees that the Publisher is the exclusive “Licensor”, as defined in the CC BY-ND, of the Work and that the Publisher may make the Work freely available to all users under the terms of the CC BY-ND.

(iii) Creative Commons Attribution-ShareAlike 4.0 International Public License, as currently displayed at http://creativecommons.org/licenses/by-sa/4.0/legalcode (the “CC BY-SA”). The Author acknowledges and agrees that the Publisher is the exclusive “Licensor”, as defined in the CC BY-SA, of the Work and that the Publisher may make the Work freely available to all users under the terms of the CC BY-SA.

(iv) Creative Commons Attribution-NonCommercial 4.0 International Public License, as currently displayed at http://creativecommons.org/licenses/by-nc/4.0/legalcode (the “CC BY-NC”). The Author acknowledges and agrees that the Publisher is the exclusive “Licensor”, as defined in the CC BY-NC, of the Work and that the Publisher may make the Work freely available to all users under the terms of the CC BY-NC.

(v) Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, as currently displayed at http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode (the “CC BY-NC-SA”). The Author acknowledges and agrees that the Publisher is the exclusive “Licensor”, as defined in the CC BY-NC-SA, of the Work and that the Publisher may make the Work freely available to all users under the terms of the CC BY-NC-SA.

(vi) Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, as currently displayed at http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode (the “CC BY-NC-ND”). The Author acknowledges and agrees that the Publisher is the exclusive “Licensor”, as defined in the CC BY-NC-ND, of the Work and that the Publisher may make the Work freely available to all users under the terms of the CC BY-NC-ND.

b. If the Author has selected either “Research Councils UK (RCUK)” or “Wellcome Trust” in Item 1 of Schedule 8, the following shall apply:

The Author acknowledges and agrees that the Work will be published by the Publisher in Medicine (the “Journal”) and made freely available to users under the terms of the Creative Commons Attribution 4.0 International Public License, as currently displayed at http://creativecommons.org/licenses/by/4.0/legalcode (the “CC BY”). The Author acknowledges and agrees that the Publisher is the exclusive “Licensor”, as defined in the CC BY, of the Work and that the Publisher may make the Work freely available to all users under the terms of the CC BY.

4. Royalties

The Author acknowledges and agrees that this License entitles the Author to no royalties or fees. To the maximum extent permitted by law, the Author waives any and all rights the Author may have to collect royalties or other fees in relation to the Work or in respect of any use of the Work by the Publisher or its sublicensees.

5. Miscellaneous

a. Assignment. This License may not be assigned or transferred, in whole or in part, by the Author. The Publisher may freely assign this License. This License will be binding upon and inure to the benefit of the Parties hereto and their respective successors and permitted assigns.

b. Execution. Facsimile or Portable Document Format (PDF) signatures will be deemed original signatures for purposes of this License.

c. Entire Agreement; Amendment. This License sets forth the entire agreement of the Parties on the subject hereof and supersedes all previous or contemporaneous oral or written representations or agreements relating to the rights and duties provided herein, and may not be modified or amended except by written agreement of the Publisher.

d. Governing Law. This License shall be governed in all respects according to the laws of the State of New York without giving effect to the principles of conflict of law thereof.

e. Headings. All headings are for reference purposes only and shall not affect the meaning or interpretation of any provision hereof.

f. Severability. If any provision of this License is held to be illegal, invalid, or unenforceable under the present or future laws, then such provision shall be revised by a court of competent jurisdiction to be enforceable if permitted under applicable law, and otherwise shall be fully severable. In any event, this License shall be construed and enforced as if such illegal, invalid, or unenforceable provision had never comprised a part of this License, and the remaining provisions of this License shall remain in full force and effect and shall not be affected by the illegal, invalid, or unenforceable provision or by its severance from this License.

h. Status of the Parties. The Parties are independent contractors. Nothing in this License is intended to or shall be construed to constitute or establish any agency, joint venture, partnership or fiduciary relationship between the Parties, and neither Party has the right or authority to bind the other Party nor shall either Party be responsible for the acts or omissions of the other Party.

i. Waiver; Amendment. The waiver by the Publisher of or the failure by the Publisher to claim a breach of any provision of this License shall not be, or be held to be, a waiver of any subsequent breach or affect in any way the further effectiveness of any such provision. No term or condition of this License may be waived except by an agreement by the Publisher in writing.

j. Waiver of Jury Trial. THE AUTHOR WAIVES THE AUTHOR’S RIGHT TO A JURY TRIAL IN CONNECTION WITH ANY DISPUTE OR LEGAL PROCEEDING ARISING OUT OF THIS AGREEMENT OR THE SUBJECT MATTER HEREOF.
SCHEDULE A

The Author must complete this Schedule A in its entirety. The Publisher is unable to publish the Work unless this Schedule A is completely filled out.

Article Title (the “Work”)
__
Tayana Soukup
Corresponding Author Name (the “Author”)
__
Medicine
Copyright Owner’s Name
__
Manuscript Number (Optional)

SCHEDULE B

☐ GOVERNMENT EMPLOYEES

If the Work or a portion of it has been created in the course of any author’s employment by the United States Government, check the “Government” box.

A work prepared by a government employee as part of his or her official duties is called a "work of the U.S. Government" and is not subject to copyright. If it is not prepared as part of the employee’s official duties, it may be subject to copyright.

If “Government” is chosen, please skip to Schedule C and do not choose a Copyright Clearance License. The work will be published with “Written work prepared by employees of the Federal Government as part of their official duties is, under the U.S. Copyright Act, a “work of the United States Government” for which copyright protection under Title 17 of the United States Code is not available. As such, copyright does not extend to the contributions of employees of the Federal Government.”
CREATIVE COMMONS LICENSE

Please select the Creative Commons License pursuant to which the Publisher will license the Work (a description of each license, and the license terms, can be reviewed at http://www.creativecommons.org/licenses):

Select one from the list below:

☐ Attribution CC BY. Creative Commons describes this license as follows: “This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials.”

☐ Attribution-NoDerivs CC BY-ND. Creative Commons describes this license as follows: “This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to you.”

☐ Attribution-ShareAlike CC BY-SA. Creative Commons describes this license as follows: “This license lets others remix, tweak, and build upon your work even for commercial purposes, as long as they credit you and license their new creations under the identical terms. This license is often compared to ‘copyleft’ free and open source software licenses. All new works based on yours will carry the same license, so any derivatives will also allow commercial use. This is the license used by Wikipedia, and is recommended for materials that would benefit from incorporating content from Wikipedia and similarly licensed projects.”

☐ Attribution-NonCommercial CC BY-NC. Creative Commons describes this license as follows: “This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.”

☐ Attribution-NonCommercial-ShareAlike CC BY-NC-SA. Creative Commons describes this license as follows: “This license lets others remix, tweak, and build upon your work non-commercially, as long as they credit you and license their new creations under the identical terms.”

☐ Attribution-NonCommercial-NoDerivs CC BY-NC-ND. Creative Commons describes this license as follows: “This license is the most restrictive of our six main licenses, only allowing others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.”
SCHEDULE C

The Author must complete this Schedule C in its entirety. The Publisher is unable to publish the Work unless this Schedule C is completely filled out.

Generic and Trade Names

Articles must give a balanced view of therapeutic options. Authors’ use of generic names will contribute to this impartiality. If trade names are used, those of several companies should be used rather than only that of a single support company. It is each author’s responsibility to disclose in the Work any commercial support related directly or indirectly to the subject of the Work. It is also each author’s responsibility to include the Food and Drug Administration clearance status of any device or drug requiring FDA approval discussed or described in their presentation or to describe the lack of FDA clearance for any “off label” uses discussed.

☑️ Please check box to affirm the preceding statement.

Unlabeled Uses of Products

When an unlabeled use of a commercial product, or an investigational use not yet approved for any purpose is discussed during an educational activity, the presenter is required to disclose that the product is not labeled for the use under discussion or that the product is still investigational.

Discussion of unlabeled uses:

☑️ The Work does not discuss unlabeled uses of products

☐ The Work discusses unlabeled uses of products. (If this option is selected, please provide in the space provided below a detailed description of the unlabeled uses of products discussed in the Work)

Description of unlabeled uses of products discussed in the Work:

IN WITNESS WHEREOF, the Author has executed this License, effective as of the Effective Date.

Tayana Soukup

PRINT NAME

Tayana Soukup

Digitally signed by Tayana Soukup
Date: 2016.02.19 14:49:00 Z

SIGNATURE

Important Note: Once you electronically sign this form, you will not be able to make any additional changes to it.
To electronically sign this form, click the signature field above and provide the information requested in the dialog boxes.