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Abstract 

Deer have been introduced outside their native ranges numerous times worldwide, causing significant 

economic and environmental impacts. The scale of problems caused by some introduced deer species 

is expected to increase, while others are relatively harmless and may be important for conservation as 

their numbers decline in native regions. This thesis examines the factors promoting invasion in non-

native deer, and investigates the population genetics of two deer species introduced to Great Britain. 

Factors hypothesised to predict invasion success were tested using a comparative analysis of the 

outcomes of introductions of non-native deer populations. Two modelling approaches were taken to 

account for confounding effects in species-level and population-level analyses, and different factors 

were found to explain success at different stages of the invasion process. 

Populations of roe deer expanding from refugia and reintroductions were examined, and differences in 

genetic diversity between core and peripheral populations, alongside a decline in diversity with rate of 

expansion from the core were found. High levels of differentiation between and among core and 

peripheral populations suggest that genetic drift is the major factor causing these patterns.  

Using a genome scan of British and European roe deer, loci potentially under selection were 

identified. Association between some of these loci and environmental variables suggests that climatic 

extremes may have a role in exerting selective pressures on roe populations. 

The Chinese water deer is severely declining in range and number in its native habitat, but rapidly 

expanding after being introduced to Great Britain. Relatively high levels of diversity in native Chinese 

populations, and significant differentiation between the Chinese and British populations were found. 

The source population of the British deer is likely to be extinct, and the level of genetic structuring 

indicates that conserving populations across both ranges is important to maintaining their diversity.  
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Chapter 1: General introduction 

 

The introduction of non-native species has resulted in enormous economic and environmental impacts 

(Pimentel 2002), and has important implications for the conservation of biological diversity (Allendorf 

2003). Some introduced species can cause significant damage to their recipient environment and 

require controlling or eradicating. Other introductions have proved beneficial from a conservation 

perspective, preserving species and genetic diversity while the populations in the native range have 

declined. Introduced deer species provide a good study system in which to examine both invasion and 

conservation scenarios in wild populations. 

 

1.1 Biological invasions 

While biotic translocations among continents have occurred repeatedly over geological time (Vermeij 

1991), the movement of species between continents happened at incomparably small rates and scales 

compared to the relatively recent human-mediated biotic interchanges. The creation of a discontinuous 

distribution of species caused by deliberate or accidental human activity is thought be one of the most 

important biogeographical processes in recent history (Guo 2006). With the potential to inflict 

significant environmental and economic damage upon the recipient environment, invasion by non-

native species ranks among the greatest threats to global biodiversity (Allendorf 2003). 

Changes in the composition and structure of native communities (e.g. Fritts 1998; Suarez 1998) and 

modification of ecosystem function (e.g. O'Dowd 2003) can occur as a result of environmental damage 

caused by non-native invasive species (Whitney 2008). The cost of biological invasions is estimated to 

be over $US394 billion annually for the ~120,000 non-native species introduced into the United 

States, United Kingdom, Australia, South Africa, India, and Brazil (Pimentel 2001). There has been an 

understandably large amount of scientific interest in the field of invasion biology, with the ultimate 

aim of applying the research to predict, control and manage species invasions.However, while some 
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species invasions can cause major damage to the recipient environment, the effects of many 

introduced species are neutral or sometimes even beneficial. 

 

1.1.1 Developments in invasion biology 

The application of systematic study methods to invasive species was prompted by Elton (1958) in his 

seminal book The ecology of invasions by animals and plants. He set forth the argument that invasions 

by non-native species “...are so frequent nowadays in every continent and island, and even in the 

oceans, that we need to understand what is causing them and try to arrive at some general viewpoint 

about the whole business”. Research in the field has developed from studies conducted on case 

histories of individual species into analyses of broad taxonomic groups (e.g. Rejmanek 1996) aiming 

to identify common attributes associated with invasive success (Reichard & White 2003). The ability 

to predict the propensity of a species to invade and its impact on the recipient ecosystem are major 

goals in ecology, driven in large part by the growing realisation of the rising ecological and economic 

costs of species invasions. 

 

1.1.2 Predicting invasive success 

The characteristics that predispose a species to invade are subject to much research, as identifying 

them could help improve predictions. Initial efforts to define a clear-cut set of predictive traits 

applicable across species were inconclusive (Williamson 1996). While some generalisations about the 

invasion process could be made, different characteristics of species were found to be important in 

different habitats, suggesting that the underlying factors behind successful biological invasions were 

highly idiosyncratic, with few commonalities between instances of successful invasions. The view of 

some ecologists became that the ecological behaviour of a non-native species may be nearly 

impossible to predict (Williamson 1999). Reasons for the failure to find features consistently 
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associated with invasive success may due to the qualitative nature of the available data, examining 

only one stage of the invasion, and lack of information on species that failed to become invasive 

(Kolar & Lodge 2001). Studies now tend to examine traits associated with invasive success using 

comparisons between and within broad taxonomic groups (Jeschke & Strayer 2006; Jeschke 2008; Sol 

et al. 2008a) 

Invasion biology integrates large-scale ecology and evolutionary biology (Hochberg & Gotelli 2005), 

and is now emerging as an interdisciplinary science, comprising many disparate subject areas from 

life-history studies to genetics and ecosystem dynamics. There is still little in the way of broad 

consensus in the field. Areas of agreement are that invasive species are one of the major causes of 

biodiversity loss, that prevention of introduction is more effective than eradication of established 

populations, and that more research is required to develop effective predictive and control measures 

(Allendorf 2003). 

 

1.1.3 Features of biological invasions 

Identifying the characteristics of a successful invasion could enable better understanding of the 

mechanisms responsible, inform efforts to control currently occurring invasions, and may enable the 

prevention of future impacts. It has been asked whether it is the characteristics of the species which is 

invading, or the attributes of the ecosystem being invaded that is responsible for invasive success (Guo 

2006). The true picture is likely to be both, with a complex interplay between the two sets of factors 

specific to a particular group of taxa. Factors affecting the success of species introduced to novel 

environments include the idiosyncrasies of the release event and the characteristics of the recipient 

environment (Duncan et al. 2003).Broadly, the types of characteristics with influence on invasion 

success can be categorised into 1) Event, 2) Region, and 3) Species specific effects (sensu Sol et al. 

2008a). 
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1) Event-specific effects relate to the introduction event. The most important event-specific effects 

relate to „propagule pressure‟ or introduction effort (Lockwood et al. 2005). Factors include frequency 

and number of individuals released, whether the release was deliberate or accidental, and to an island 

or mainland. However, in a meta-analysis Jeschke(2008) found that there is no significant difference 

in establishment successes between introductions to islands or continents.  

2) Region-specific effects relate to features of the recipient environment.  Habitats may exhibit 

differences in their „invasibility‟ due to biotic and abiotic factors. For example, biotic factors include 

the phylogenetic relatedness of the native species to the introduced species (Strauss et al. 2006). 

Abiotic factors include the degree to which features of the novel region are similar to the native region 

(e.g. climate and latitude). 

3) Species-specific effects may be genetic or phenotypic. Genetic factors of the introduced 

population(s) include having sufficient diversity to enable rapid evolution (Lee 2002; Dlugosch 2008), 

or the ability to hybridise with native species (Mallet 2005). Phenotypic factors of the species include 

population characteristics (e.g. range size), life-history, habitat generalism, diet and physiology. 

 

1.1.4 Current trends in mammalian invasion biology 

With improved ecological data and the application of rigorous quantitative methods, many large-scale 

studies examining the characteristics of species introductions into novel environments have been 

conducted on broad taxonomic groups (Sol et al. 2008b). Relative to other animals, mammal species 

are more likely to successfully establish themselves in novel environments (Clout & Russell 2008). 

The IUCN Red List classifies 2.6% of extant land mammals as „successful invaders‟ – with 

Artiodactyla containing the highest proportion (14.7%) of successful invaders. The family with the 

highest proportion of invasive species is Cervidae (deer), with 29.2% of the species having self-

sustaining non-native wild populations (Clout & Russell 2008). Of these, the red deer (Cervuselaphus) 
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is one of the few mammal species to have successfully established at more than 30 locations 

worldwide (Long 2003). 

Differences in relative brain size have been shown to be associated with establishment success of 

introduced mammals (Sol et al. 2008a). Species possessing large brains relative to body size are more 

likely to be successful in establishing themselves in a new environment than those with relatively 

smaller brain size, even after controlling for differences in propagule pressure and habitat generalism. 

Similar results were found in a study of introduced bird species correlating larger brain size with 

higher establishment success (Sol et al. 2005), and mechanisms underlying this correlation are better 

understood (Sol et al. 2007). However, in a review of six studies of ecological factors associated with 

invasive success, only three features were reported to be consistently associated with increased 

probability of establishment success for non-native mammal species (Clout & Russell 2008): a) 

Number of individuals released into the habitat, b) Natural range size and c) Climate temperateness in 

the novel environment. 

The only feature consistently shown to be strongly associated with invasive success is propagule 

pressure (Lockwood et al. 2005; Travis et al. 2005; Colautti 2006). The studies of other features of 

biological invasions are constrained by the data available for the ranges of taxa under examination and 

as such rarely analyse exactly the same sets of features, making broad-scale conclusions on features of 

biological invasions hard to draw at present. Assessing invasions at a taxon or region-specific level is 

likely to be more informative about the characteristics associated with the process. 

 

1.2 The genetics of introduced populations 

During establishment, genetic differentiation of an introduced population from its source population is 

expected due to founder effects, drift and natural selection (Nei et al. 1975). Strong natural selection is 

expected to act during the invasion process, due to differences between the native and novel 

environments (Lee 2002) and also because traits that are advantageous at one stage of the invasion 
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process may be disadvantageous at another (Kolar & Lodge 2001). In the case of introduced 

populations undergoing rapid range expansion, and vulnerable populations heading toward extinction 

in the wild, studies of genetic variation have the potential to contribute to management and 

conservation plans. In both instances, understanding the capacity of species to adapt to new 

environments is of great importance. 

 

1.2.1 Colonisation 

Sufficient genetic variation is required for adaptive evolution to occur, which may not be present in 

introduced populations below a certain size (Lee 2002). This corresponds with the demonstrated 

importance of propagule pressure in establishment success (Forsyth & Duncan 2001; Lockwood et al. 

2005; Travis et al. 2005; Colautti 2006; Jeschke & Strayer 2006), and relates to a paradox in invasion 

biology: how do introduced species with reduced genetic diversity and small population size succeed 

relative to native species well-adapted to their surroundings? The initial population dynamics of 

introduced species can determine levels of genetic diversity retained within and among populations. A 

population that increases in size rapidly will lose relatively little variation, whereas much variation can 

be lost when a population remains small over many generations (Nei et al. 1975). The history of 

introduced populations typically involves complex differences in number and size of founding 

propagules, and in some instances, admixture between populations introduced to different regions 

(Kolbe et al. 2004). Genetic approaches have been applied to identify the sources of introduced 

populations and routes of invasion (Estoup & Guillemaud 2010), and comparisons of native and 

introduced populations have attempted to quantify the loss of genetic diversity during the invasion 

process (Dlugosch & Parker 2008). 
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1.2.2 Range expansion 

Genetic studies have been highly informative about the phylogeography of post-ice age range 

expansions (e.g. Hewitt 2000). The methods employed in these studies were thought to be applicable 

to recent invasive events occurring over a much shorter timescale (Sakai 2001) with the potential to 

improve understanding of the processes involved in invasions. However, applying phylogeographic 

methodologies to the study of invasive species can be misleading. Analyses that examine concordance 

between geography and phylogenetic networks or trees require a sufficient number of generations to 

have elapsed for the effects of drift and mutation to impact upon the distribution genetic variation – a 

scenario that is highly unlikely to have occurred during the timescale of human-mediated introductions 

(Fitzpatrick et al. 2012).  

Population genetic methods can be applied to understanding post-establishment patterns of spread in 

introduced species. Modelling and simulation studies show that founder events during range expansion 

can involve genetic differentiation and loss of genetic variation from newly established areas 

(Austerlitz et al. 1997; Excoffier 2004). Where the population derives from a small number of 

individuals, the founder event is likely to involve a change in genetic composition (Hartl & Clark 

1997). Subdivision of populations generally results in the emergence of genetic structure (Slatkin 

1987), and differentiation from founder populations during range expansion may be significant (Le 

Corre & Kremer 1998). When demographic growth is high, range expansion can be accompanied by 

large rates of migration, which can act to decrease genetic differentiation between fragmented 

populations, thereby affecting genetic population structure. By developing a more comprehensive 

understanding of invasion processes, risk assessments can be better informed and prevention and 

control measures can be better implemented.  

Species that successfully establish populations when introduced into novel environments also provide 

a „natural experiment‟ (Sol et al. 2008b)that can be used to examine the influence of range expansions 

on population genetic parameters by analysing the distribution of genetic variation across the range. 

The central–marginal hypothesis, otherwise known as the „abundant centre‟ model (Sagarin & Gaines 
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2002; Eckert et al. 2008), assumes that a species is most abundant in the core of the range, and 

decreases in density towards the edge. Populations at the periphery of the range are expected to have 

smaller effective population sizes, and be more isolated and fragmented relative to core populations 

(Vucetich & Waite 2003). This hypothesis predicts the highest levels of genetic diversity and gene 

flow at core populations, and that these parameters will decrease towards the edge of the range. 

 

1.2.3 Adaptation 

Changing environmental conditions and colonisation of different areas can result in rapid adaptive 

evolution of wild populations to their new environment (Reznick & Ghalambor 2001), and in the case 

of introduced populations in new environments undergoing rapid range expansion, ecologically based 

selection could be occurring leading to local adaption (Sakai 2001; Lee 2002). Population expansion 

of introduced species is expected to be accompanied by local adaptation, where the rapidly increasing 

population size facilitates a response to strong directional selection (Whitney & Gabler 2008; Sexton 

et al. 2009). While neutral population genetic variation has been assumed as a surrogate for 

evolutionary potential (Reed & Frankham 2003), natural selection is likely to affect only a small 

number of loci in the genome (Nielsen 2005). Assessment of adaptive genetic diversity in wild 

populations using population genomic approaches (Luikart et al. 2003) has generated significant 

insights (Schoville et al. 2012). However, accurately identifying loci under selection and 

understanding which selective pressures are acting on non-model species in the wild is challenging 

(Nunes et al. 2011). Understanding the genetics of adaptation in introduced species is important for 

identifying candidate genes underlying traits involved in „invasiveness‟ (Prentis et al. 2008), 

predicting future distributions (Kawecki 2008) and ultimately understanding how species respond to 

new and changing environments (Manel et al. 2010). 
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1.2.4 Conservation 

Changing climate, coupled with increased habitat destruction and fragmentation pose major threats to 

the maintenance of biodiversity (Saunders et al. 1991). Genetic variation is fundamental to 

biodiversity, and its loss is expected to have negative effects on the survival of populations (Lande & 

Shannon 1996). Population genetic theory predicts that an increased frequency of deleterious alleles 

resulting from genetic drift and inbreeding can reduce short-term viability, while sustained loss of 

genetic variation is expected to have negative effects on long-term population viability, resulting in 

decreased adaptive potential (Frankham 1995). Furthermore, loss of genetic variation in small 

populations may increase extinction risk due to increased disease susceptibility, and decreased 

reproductive fitness and adaptive flexibility (Allendorf & Luikart 2007). In the context of rapid 

environmental change, determining the ability of threatened species to survive and adapt is critical, as 

isolated populations with low levels of dispersal are especially vulnerable to extinction (Lande 1993). 

Determining levels of genetic diversity in threatened species can therefore help inform suitable 

conservation strategies (Frankham et al. 2002). Non-invasive genetic sampling is very valuable for 

conservation genetic studies, enabling the generation of genetic data on species in the wild which 

would not otherwise be possible due to the limitations of conventional sampling techniques(Taberlet et 

al. 1999). 

 

1.3 Deer as a study system 

1.3.1 Family Cervidae 

Cervidae (deer) are a Family of ruminant mammals within the Order Artiodactyla. They have a global 

distribution, with native species extant in all continents except Australasia and Antarctica, and consist 

of a monophyletic group of 51 species within Ruminantia(Grubb 2005). The Cervidae have 

successfully colonised all continents but Antarctica, and exist in a wide variety of ecosystems (Putman 

1988; Geist 1999). 
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As a result of their aesthetic and economic appeal as exotic species, deer have been introduced 

numerous times outside their native range, and now comprise the largest proportion of all invasive 

mammal species (Clout and Russell 2008). The presence of non-native deer species has brought both 

benefits and costs to the recipient communities, yet there is increasing concern about their impacts 

(Gill 1992; Fuller & Gill 2001; Cote et al. 2004; Moriarty 2004; Ward 2005; Dolman & Waber 2008; 

Acevedo et al. 2010; Gill & Morgan 2010; Nunez et al. 2010). Through grazing and browsing, non-

native deer may have a significant economic impact on agriculture and forestry (Ratcliffe 1987; 

Chadwick et al. 1996; Putman & Moore 1998) as well as on the structure and dynamics of natural 

vegetational systems (Pollard & Cooke 1994; Cooke & Lakhani 1996; Cooke & Farrell 2001; Jaksic et 

al. 2002; Relva et al. 2010). They may also compete with native ungulate species (Keiper 1985; 

Chapman et al. 1993; Hemami et al. 2004, 2005; Feldhamer & Demarais 2009; Feldhamer & 

Armstrong 1993) or other native species, and in the extreme may impact upon native deer species 

through hybridisation (Lowe & Gardiner 1975; Simberloff 1996; Goodman et al. 1999; Senn & 

Pemberton 2009). 

Comparative studies between closely related taxa exhibiting differences in ability to establish and 

spread in novel environments holds the promise of identification of traits associated with invasive 

success and better understanding of the mechanisms underlying a successful invasion (Sol et al. 

2008b). The family Cervidae contains the highest proportion of invasive species of all mammalian 

families, and species within the Cervidae exhibit large interspecific variation in ability to become 

invasive (Clout & Russell 2008). Some are highly localised, whereas others are capable of rapid 

establishment and spread - invading numerous different habitats. For example, the red deer 

(Cervuselaphus) is one of the few mammal species to have successfully established at more than 30 

locations worldwide (Long 2003). 
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Phylogenetic relationships 

The family Cervidae consistently forms a monophyletic group in supertree analyses of 

Ruminantia(Fernandez & Vrba 2005) and Cetartiodactyla(Price et al. 2005), respectively. Views on 

the phylogenetic relationships within Cervidae have reached a broad consensus among molecular 

studies (Randi et al. 1998; Pitra et al. 2004; Gilbert et al. 2006). The findings of the most 

comprehensive molecular phylogenetic analysis of Cervidae to date (Gilbert et al. 2006) using DNA 

sequence data from 25 species for mtDNA and nuclear fragments are congruent with the results of an 

analysis conducted using only cytb sequence data from 11 cervid species (Randi et al. 1998). The 

results of a phylogenetic analysis using 18 characters defined from the vocal behaviour of 11 Cervid 

species (Cap et al. 2008) were congruent with the current molecular phylogenies (Randi et al. 1998; 

Pitra et al. 2004; Gilbert et al. 2006), having an identical topology to the Cervinae (a la Gilbert et al, 

2006) and forming (Rangifer, Odocoileus) and (Capreolus, Hydropotes, Alces) clades within the 

Capreolinae (Figure 1.1). 
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Figure 1.1 Cladograms of Cervid phylogenetic relationships. (A) mtDNAcytochrome b (cytb) data 

(Randi et al., 1998; Pitra et al., 2004); (B) cytb and CO2mtDNA and nuclear fragments: exon 2 of 

alpha-lactalbumin and intron 1 of the gene encoding protein kinase C iota data (Gilbert et al., 2006); 

(C) morphological data (Groves & Grubb 1987). From Cap et al. (2008). 
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These studies divide the Cervidae into two subfamilies defined by strongly supported clades: Cervinae 

and Capreolinae. These two clades correspond to the classical division of the family into 

Telenmetacarpalia or „New World Deer‟ (Capreolinae) and Plesiometacarpalia or „Old World Deer‟ 

(Cervinae). Within the Capreolinae, three tribes are defined: Odocoileni, Capreolini (containing the 

roe and Chinese water deer) and Alceini. Within the Cervidae, two tribes are defined: Muntiacini 

(containing the Reeves‟ Muntjac) and the Cervini (containing the Fallow, Red and Sika deer). These 

results contradict phylogenies constructed using morphological characters (Groves & Grubb 1987; 

Janis 1993), regarding the group containing Alcesalcesand Capreoluscapreolus, and the nesting of 

Hydropotes inermis within the Capreolinae rather than sister to the rest of the Cervidae (Fig. 1). 

Furthermore, following detailed examination, the internal taxonomy of the genus Cervus – which is 

based on morphological characters which are looking increasingly doubtful (Cap et al. 2008), seems to 

be in need of revision (Ludt et al. 2004; Pitra et al. 2004; Gilbert et al. 2006). 

 

1.3.2 The European roe deer 

The European roe deer (CapreoluscapreolusL.) is a small ungulate species in the subfamily 

Capreolinae (Figure 1.2). It is widely distributed across Europe except for Ireland, some 

Mediterranean islands including Corsica, Sardinia and Sicily, the tundra regions and northern Russia. 

Range limits are defined by the cold climate and associated snow accumulation in the north (Holand et 

al. 1998) and in the south by water requirements and high temperatures (Wallach et al. 2007). Roe 

have existed in Europe for at least 600,000 years (Lister et al. 1998), and are a typical faunal element 

of the Holocene epoch, from c.10, 000 BP to the present day (Sommer et al. 2009). The impacts of 

glaciations on roe distribution have been determined using phylogeographic analyses (Randi et al. 

2004; Lorenzini & Lovari 2006), with three mitochondrial clades being defined: Clade East (in Greece 

and the Balkans), Clade West (in Iberia) and central (across much of Northern, Central, Western and 

Eastern Europe). Populations in Europe experienced a severe decline due to deforestation and 

overhunting prior to the nineteenth century, but have greatly increased in range and density in recent 
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years, aided by numerous translocations (Andersen et al. 1998). In post-war Great Britain and Europe, 

agricultural intensification and woodland fragmentation produced substantial spatial heterogeneity in 

natural habitats (Robinson & Sutherland 2002; Stoate et al. 2009). Roe deer responded well to the 

changes in landscape features and have spread into a variety of habitats(Andersen et al. 1998; Ward 

2005; Morellet et al. 2011). The behavioural plasticity of the species has been largely credited with 

underlying this great ecological flexibility (Hewison et al. 2001), yet there may also be a role for other 

factors such as physiological responses and genetics in explaining the adaptation of roe deer to new 

environments.  
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Figure 1.2 European roe deer buck 

1.3.3 The roe deer of Great Britain 

The European roe deer is native to Britain. There was a severe reduction in distribution and abundance 

of the populations up to the eighteenth century due to habitat destruction and overhunting. The 

majority of populations in England and Southern Scotland were believed to have gone extinct 

(Whitehead 1964), with refugial populations surviving mainly in woodlands in Central and North-

western Scotland, and potentially in Northern England and lowland Scotland (Whitehead 1964; Prior 

1995; Baker 2011). All Southern English populations are thought to be descended from later 

reintroductions (Whitehead 1964; Hewison 1995, 1997; Ward 2005; Baker & Hoelzel 2013). The 

reintroductions to England occurred from Austria to Windermere, North-western England, from 

Germany to East Anglia, and from Scotland and unknown sources to Southern England (Whitehead 

1964; Prior 1995; Baker & Hoelzel 2013). Roe currently have the widest distribution of all deer in 
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Great Britain, and their numbers are estimated to range in the hundreds of thousands (Hewison & 

Staines 2008). They are now absent only from areas in Kent, the Midlands and Wales (Ward 2005) 

and most Scottish islands. Roe deer have a high capacity for demographic and range expansion 

(Andersen & Linnell 2000). Damage caused by roe deer has been recorded in commercial forestry, 

conservation woodlands, fruit and orchard trees and other horticultural crops, and it is anticipated that 

more damage will occur as the populations continue to expand (Putman & Moore 1998). Furthermore, 

roe deer account for approximately 29% of deer-vehicle collisions with reported species detail in 

England (Langbein 2011). 

Integrating genetic, environmental, and phenotypic data is a promising and powerful way of better 

understanding population demographic history, structure, and evolutionary patterns, and for detecting 

the selective forces acting upon the genome in wild populations. Roe deer are well suited to such 

analyses, with their abundance and rapid spread having been the focus of wealth of ecological studies 

(Andersen et al. 1998). Molecular work on the genetics of this charismatic deer has so far yielded 

insights into the phylogeography of the species (Randi et al. 2004; Lorenzini & Lovari 2006; Zachos 

et al. 2006a; Zachos et al. 2006b; Gentile et al. 2009), interactions with the landscape (Wang & 

Schreiber 2001; Coulon et al. 2004; Coulon et al. 2006), the influence of heterozygosity on fitness 

measures (Zachos et al. 2007; Da Silva et al. 2009; Baker & Hoelzel In press) and the effects of 

reintroduction (Hewison 1995; Zachos et al. 2006a; Gentile et al. 2009; Baker & Hoelzel 2013) on the 

distribution of genetic variation. 

 

1.3.4 The Chinese water deer 

The Chinese water deer (Hydropotes inermisSwinhoe 1870) is a small ruminant species in the 

subfamily Capreolinae and is native to East Asia. Its preferred habitats are reed-beds or tall, damp and 

undisturbed grasslands (Zhang et al. 2006). It is understood to be comparatively primitive (e.g.Randi 

et al. 1998) and like species of the genus Muntiacus, it retains tusks (Figure 1.3) which are used in 
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combat during the rut (Cooke & Farrell 1998). It is the only extant deer species that does not possess 

antlers (Haltenorth 1963), with the most likely evolutionary scenario being secondary loss (Randi et 

al. 1998; Gilbert et al. 2006). Outside the rutting season its behaviour is almost entirely solitary, quite 

unlike that of any other deer species and having more in common with the most primitive ruminant 

families of moschids and tragulids(Dubost et al. 2011). While a matriarchal system is often the 

foundation of social life in deer (Putman 1988) grouping in Chinese water deer is fleeting and 

unstable. Interactions between individuals are rare and limited to reproduction and rearing of young. 

After rearing, contact between Chinese water deer mothers and their young is minimal (Dubost et al. 

2011). 

In addition to such features, Chinese water deer also have a number of other „ancient‟ chromosomal, 

anatomical and reproductive characteristics. The species has an ancestral (2n = 70) diploid number 

(Yang et al. 1997), its brain size is intermediate between moschids and other old world cervids 

(Bützler 1988), and it has the highest reproductive capacity of all cervids with an average gestation 

length of 175 days, does bearing over three fawns (Cooke & Farrell 1998) which are weaned and grow 

more quickly than other deer, and take the shortest time (293 days) to reach sexual maturity (Dubost et 

al. 2008). 
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Figure 1.3 Chinese water deer buck 

Two subspecies are recognised: the Chinese water deer Hydropotes inermisinermis(Swinhoe 1870) 

and the Korean water deer Hydropotes inermisargyropus (Heude 1884). However, these country-

specific designations based on pelage colour are not consistent with molecular relationships, and 

pelage colour has been observed to change seasonally (Cooke & Farrell 1998). Two sympatric 

phylogroups based on mtDNAcytb and control region haplotypes have been found: a major clade 

containing individuals from China and Korea and a minor clade containing Korean individuals only 

(Koh et al. 2009). 

The historical distribution of the deer once stretched along the eastern part of China from Liaoning to 

Guangdong out to the lower Yangtze Basin, and the Korean Peninsula (Ohtaishi & Gao 1990). The 

population in China has reduced considerably in range and numbers recently due to habitat loss and 

poaching (Hu et al. 2006). It is currently restricted to fragmented populations in the eastern Yangtze 
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Basin and the Zhoushan Islands off the coast of Zhejiang Province. Published estimates of total 

numbers of the Chinese water deer in China have declined from 10,000-30,000 in 1993 to fewer than 

5000 in 2011 (M. Chen unpublished data). The two largest remaining mainland populations are in 

Jiangsu and Jiangxi Provinces. The estimated numbers in Jiangsu have reduced from 1200-1500 

(Ohtaishi & Gao 1990) to fewer than 400 (M. Chen, unpublished data). This is corroborated by studies 

finding that the populations within the Yancheng Nature Reserve in Jiangsu have reduced in range and 

become more fragmented (Zhu et al. 2004). The population on Jishan Island in Poyang Lake Nature 

Reserve, Jiangxi has more than halved in number from around 1000 (Ohtaishi & Gao 1990) to fewer 

than 500, and small, fragmented wild populations remain in eastern Anhui Province where poaching 

and habitat destruction are on the rise. The Zhoushan Islands are estimated to support 2000-3000 of 

the remaining deer (M. Chen, unpublished data). 

While there are no data on the populations in North Korea, the species is believed to be 'moderately 

widespread' along the west coast, with 'reasonable numbers' in the lowlands, and abundant in the 

demilitarised zone (Harris & Duckworth 2008). In South Korea the deer occur in most areas of the 

country, with greater abundance in rural regions. Their occurrence is negatively correlated with human 

population size, and density varies with habitat type and altitude (Kim et al. 2011). 

Chinese water deer were introduced to the UK in the 1870s, initially to London Zoo. Starting in 1896, 

the deer were sent gradually to Woburn Abbey in Bedfordshire. 19 individuals were imported to the 

park by 1913 (Chapman 1995). Assuming that no further introductions took place, all of the Chinese 

water deer in the UK are descended from this one population. 32 individuals were transferred to the 

nearby Whipsnade Park in 1929 (Cooke and Farrell 2008). During WW2 a number of Chinese water 

deer escaped from Woburn and established localised feral populations (Cooke 2009). In 1950 a small 

number of deer were released near Woodwalton Fen National Nature Reserve (Chapman 1995). Wild 

populations founded from escapes and deliberate releases since the 1940s are now discontinuously 

distributed across Bedfordshire, Cambridgeshire, Norfolk and Suffolk (Cooke & Farrell 1998), and 
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areas surrounding the Norfolk Broads contain the highest concentration of favoured habitat (Acevedo 

et al. 2010). 

Total estimated numbers in the UK stand at 7000 in the wild (A. Cooke pers. comm.) and >500 in 

semi-captivity. 300-400 of the semi-captive numbers are in Whipsnade Park (N. Lindsay pers. 

comm.). Natural rate of spread is estimated to be 1 km/yr (Cooke and Farrell 1998), but may have 

increased in recent years (Ward et al. 2008). Dispersal is likely to be limited by availability of suitable 

habitat and presence of other deer species, especially muntjac and roe (Acevedo et al. 2010). In 2010 

Defra included the Chinese water deer on Schedule 9 of the Wildlife and Countryside Act 1981, which 

bans unauthorised releases in the wild. In its native range the Chinese water deer has been reclassified 

on the IUCN Red List from LR/NT in 2000 to Vulnerable (Harris & Duckworth 2008). In China, 

habitat destruction and fragmentation looks set to continue at an accelerating pace. The Lower 

Yangtze wetlands, especially Dongting and Poyang Lakes are being degraded by pollution and 

sedimentation (Dudgeon 2010). 
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1.4 Thesis aim and objectives 

In this thesis I aim to determine the drivers of invasion success in introduced deer, and develop a 

better understanding of the population genetics of two introduced deer species in relation to their 

history and contemporary processes. 

The objectives of this thesis are to investigate: 

- The factors underlying establishment and spread in introduced deer species.  

- The influence of reintroduction and range expansion on the population genetics of the roe deer 

in Great Britain. 

- The genetic basis of adaptation to environmental conditions in populations of European roe 

deer. 

- The conservation genetics of the native and introduced Chinese water deer. 
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1.5 Outline of thesis 

In Chapter 2 I uncover the determinants of establishment and spread in introduced deer species. Using 

historical records on the outcomes of non-native deer introductions in conjunction with data on the 

species, region and introduction event, I employ comparative analyses to determine which factors 

explain success at two different stages of the invasion process. I also present the largest phylogenetic 

estimate of the deer, which was used to control for shared ancestry in the statistical tests.  

Chapter 3 focuses on range expansion from multiple reintroduced and remnant roe deer populations in 

Great Britain. I assess population genetic structure in the context of documented population history, 

compare levels of diversity at the core and periphery of the ranges and test for the effect of range 

expansion on differentiation between populations. In Chapter 4 I search for signatures of selection in 

expanding European roe deer populations. Combining genomic data with climatic and land cover 

variables, I examine the influence the environment has in shaping the distribution of genetic variation 

in the roe deer genome. 

Examining the effects of translocations in a conservation context, in Chapter 5 I study the conservation 

genetics of the Chinese water deer. Using non-invasive sampling, attempt to determine the source of 

the British populations, and compare levels of diversity and differentiation between introduced and 

native Chinese populations with a view to making recommendations for conservation in their native 

range and management in their introduced range. 
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Chapter 2: A comparative analysis of the factors promoting deer invasion 

 

A version of this Chapter has been published in Biological Invasions (Fautley, R., Coulson, T. and 

Savolainen, V. (2012) 'A comparative analysis of the factors promoting deer invasion', Biological 

Invasions, 14(11), 2271-2281). 
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Introduction 

With the potential to inflict significant economic and environmental damage upon host environments, 

invasion by non-native species is one of the greatest threats to global biodiversity (Walker & Steffen 

1997; Allendorf 2003). Increasing concerns worldwide about invasive non-native species have 

resulted in international and national commitments to assess the status and impact of non-native 

species, and to devise action plans for their control. There are initiatives at both the global (Boyle 

1996) and national levels aiming to achieve these goals. For example, in England the Non-Native 

Species Secretariat was established in response to the statutory obligations of signatory member states. 

It has set out the UK Government‟s approach to the sustainable management of wild deer in England 

in the Wild Deer Action Plan (Defra 2004). Policy based on risk assessments of non-native species 

requires objective and reliable information on the factors predictive of success at different stages of 

the invasion process.  

Invasions characteristically proceed through four stages: transport, introduction, establishment, and 

spread (Kolar & Lodge 2001). Intervention at the early stages of invasions is crucial for their control 

and prevention (Courchamp et al. 2003; Hulme 2006). Attempts to identify common attributes 

associated with invasive success have developed from studies conducted on case histories of 

individual species into analyses of broad taxonomic groups (e.g. Rejmanek 1996). However, lack of 

historical records on introductions that failed to establish has reduced the scope of many analyses to 

the later stages of invasion (Kolar & Lodge 2001). Relative to other animals, mammals are more likely 

to successfully establish in novel environments (Clout & Russell 2008). Invasive mammals are a 

major problem both from a conservation perspective and in their actions changing local ecosystems 

(Pimentel 2001; Courchamp et al. 2003; White et al. 2008; Forsyth et al. 2010; Nunez et al. 2010). 

The IUCN Red List classifies 2.6% of extant land mammals as invasive, with Artiodactyla containing 

the highest proportion of successful invaders (Clout and Russell 2008).  

There are various hypotheses to explain successful invasions, which may broadly be grouped into 

three categories (sensu Sol et al. 2008a): (1) species-level, i.e. life-history variables and reproductive 
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characteristics, (2) region-level, i.e. features of the recipient area, and (3) event-level, i.e. features of 

the introduction event (Table 2.1). An analysis of mammals introduced to Australia found successfully 

established species had greater numbers of introductions and numbers of individuals per introduced 

population, a larger area of suitable habitat available, and larger native ranges (Forsyth et al. 2004). In 

New Zealand, successfully established mammal species tend to have had greater introduction effort 

(i.e. propagule pressure) and have shorter maximum lifespans (Forsyth & Duncan 2001). Larger 

relative brain size is also correlated with establishment success in introduced mammals (Sol et al. 

2008a; Sol et al. 2008b). A meta-analysis by Clout and Russell (2008) found three factors consistently 

associated with increased probability of establishment success for non-native mammal species: a) 

number of individuals released, b) natural range size and c) climate temperateness in the novel 

environment. 

We attempt to determine which factors predict success at two stages of the invasion process in 

introduced deer. As a result of their aesthetic and economic appeal as exotic species, deer have been 

introduced numerous times worldwide. Deer comprise the largest proportion of all invasive mammal 

species (Clout and Russell 2008). The presence of non-native deer species has brought both benefits 

and costs to the recipient communities, yet there is increasing concern about their impacts (Gill 1992; 

Fuller & Gill 2001; Cote et al. 2004; Moriarty 2004; Ward 2005; Dolman & Waber 2008; Acevedo et 

al. 2010; Gill & Morgan 2010; Nunez et al. 2010). Through grazing and browsing, non-native deer 

may have a significant economic impact on agriculture and forestry (Ratcliffe 1987; Chadwick et al. 

1996; Putman & Moore 1998) as well as on the structure and dynamics of natural vegetational systems 

(Pollard & Cooke 1994; Cooke & Lakhani 1996; Cooke & Farrell 2001; Jaksic et al. 2002; Relva et al. 

2010). They may also compete with native ungulate species (Keiper 1985; Chapman et al. 1993; 

Hemami et al. 2004, 2005; Feldhamer & Demarais 2009; Feldhamer & Armstrong 1993) or other 

native species, and in the extreme may impact upon native deer species through hybridisation (Lowe 

& Gardiner 1975; Simberloff 1996; Goodman et al. 1999; Senn & Pemberton 2009). 
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Given this potential for non-native deer to have such a significant impact on native systems, better 

understanding of the factors predicting success at different stages of invasion will help efforts to 

prevent and manage future invasions. In our analyses we aim to determine: (1) which factors influence 

the outcome of introductions, that is, lead to established populations; and (2) which factors promote 

the spread of previously established populations. We expect that propagule pressure, native range size, 

relative brain mass and introductions within the same biome will be important factors in predicting the 

establishment of non-native deer. As for spread, we expect that introduction within the same biome 

and species-level traits associated with population growth rate to predict whether established 

populations will spread. We compiled a trait dataset for all introduced deer species, assembled a 

database of deer introductions and their outcomes, and reconstructed a species-level phylogenetic tree 

of deer for comparative analyses. Since closely related taxa may be more likely to have similar 

introduction outcomes because of traits shared through common ancestry, a phylogenetic framework is 

needed to control for evolutionary relatedness in the analyses. 
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Table 2.1 Event, region and species-level effects hypothesised to influence invasion success in 

mammals 

Category Variable Expected correlation with 

invasion success 

References 

Event Number of individuals 

introduced (propagule 

size) 

Higher (i.e. introduction 

effort or propagule pressure) 

(Forsyth and Duncan 2001; 

Sol et al. 2008a) 

 Number of introductions Higher (i.e. introduction 

effort or propagule pressure) 

(Forsyth and Duncan 2001; 

Forsyth et al. 2004; 

Lockwood et al. 2005; 

Jeschke and Strayer 2006) 

Region Biome introduced to Same biome (i.e. climate 

matching) 

(Forsyth and Duncan 2001; 

Forsyth et al. 2004; Sol et al. 

2008a) 

 Island or mainland 

introduction 

Islands more likely to be 

invaded 

(Elton 1958; Jeschke 2008; 

Sol et al. 2008a) 

 Biogeographical region Outside Eurasia (i.e. biotic 

resistance hypothesis) 

(Jeschke and Strayer 2006; 

Jeschke 2008; Sol et al. 

2008b) 

Species Body size (body mass, 

body length) 

Larger (Ehrlich 1989; Forsyth and 

Duncan 2001; Forsyth et al. 

2004; Jeschke and Strayer 

2006; Sol et al. 2008a) 

 Relative brain mass Higher (i.e. brain size 

environmental change 

hypothesis) 

(Jeschke and Strayer 2006; 

Sol et al. 2008a) 
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 Life history (number of 

litters per year, litter size, 

neonatal body mass, 

weaning age, weaning 

body mass, age at sexual 

maturity, age at first 

reproduction, inter-birth 

interval, gestation length, 

maximum lifespan) 

Higher number of litters per 

year and litter size, larger 

neonate mass, shorter 

maximum lifespan 

(Ehrlich 1989; Forsyth and 

Duncan 2001; Forsyth et al. 

2004; Jeschke and Strayer 

2006) 

 Population features 

(population density, 

home range, social group 

size) 

Higher population density; 

larger home range; 

gregarious 

(Ehrlich 1989; Jeschke and 

Strayer 2006) 

 Native range size; human 

population density in 

native range 

Larger native area; (Ehrlich 1989; Sol et al. 

2008a) 

 Diet breadth Higher (Ehrlich 1989; Forsyth et al. 

2004; Jeschke and Strayer 

2006) 

 Habitat breadth Higher (Ehrlich 1989; Sol et al. 

2008a) 
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Materials and Methods 

Trait dataset 

Our dataset of species attributes includes body mass, body length, neonate body mass, weaning body 

mass, relative brain mass, diet breadth, habitat breadth, maximum lifespan, age at sexual maturity, age 

at first reproduction, inter-birth interval, gestation length, weaning age, litter size, litters per year, 

population density, social group size, home range, home range of an individual, native area, human 

population density in native area and biogeographical region of origin. Data were extracted from 

extant databases and the literature, and Simon Reader shared data brain masses. Factors linked to the 

socioeconomics in the recipient area may also be important, but collecting these data was not possible 

given the nature and scope of our historical dataset. Predation effects are also not considered here due 

to lack of available data. Details and references are provided in Appendix 2.1. Variables were scaled 

in order to facilitate comparison, with time scaled to days, lengths to millimetres and areas to square 

kilometres. We calculated the relative brain mass as the average brain mass-to-body mass ratio for 

each species. Where the values of a variable were non-normally distributed, they were log10-

transformed. 

 

Introduction dataset 

We compiled a dataset of all recorded introduction events of deer outside their native ranges (i.e. 

excluding local translocations). Sven Bacher shared data on mammal introductions (details provided in 

Appendix 2.2). Data on the numbers of individuals introduced (propagule size), the biome introduced 

to, whether the introduction was to an island or mainland, and the outcome of the introduction were 

extracted from a global mammal introduction database (Sol et al. 2008a), as well as relevant literature 

(Chapman et al. 1994; Danilkin 1996; Cooke & Farrell 1998; Forsyth & Duncan 2001; Forsyth et al. 

2004). The resultant dataset was cross-checked with records in Lever (1985) and Long (2003), and the 

primary literature therein. All introduction events were then scored as either failed (population died 
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out, but not from eradication by hunting; scored as 0) or successfully established (if a self-sustaining 

wild population was derived from the initial introduction; scored as 1). Then, each event was further 

scored as successfully spread where self-sustaining populations had established beyond the area of 

initial introduction. Establishment and spread success rates of introduced species are often 

overestimated (Rodriguez-Cabal et al. 2009). However, for families of large mammals such as the 

deer, the under-reporting of introductions failing to establish or spread is likely to be less severe. We 

took a conservative approach and deleted all entries where the outcome of the introduction was 

uncertain or where the number of introduced individuals was unavailable. Multiple introductions in the 

same area at the same time were combined and counted as a single introduction event. 

 

Phylogenetic Analysis 

While phylogenetic estimates of certain groups within Cervidae already exist (Randi et al. 1998; Pitra 

et al. 2004; Gilbert et al. 2006), a comprehensive tree incorporating all existing DNA data for deer 

species was lacking. We aimed to increase the numbers of taxa sampled in order to: 1) obtain a 

reliable topology and branch length estimates for phylogenetic correlation tests, 2) gain a better 

understanding of the relationships within three unresolved genera (Cervus, Muntiacus and Mazama), 

and 3) determine the relationships of two of the rarest species (Axis kuhlii and Cervusalfredi) to the 

rest of Cervidae. Four ruminant species were used as outgroups: Antilocapraamericana, 

Gazellagranti, Moschusmoschiferus, and Tragelaphusimberbis. 

Appendix 2.3 provides the DNA accession numbers of all DNA data. We also obtained faecal samples 

for A. kuhlii and C. alfredifrom Edinburgh and Chester Zoos, respectively. For these two samples, 

DNA was extracted following Ball et al.(2007), and ~400bp of the cytochrome b gene (cytb) was 

sequenced using standard protocols and primers from Hassanin et al. (1998). Complementary strands 

were sequenced on an ABI 3130xl automated DNA sequencer (Applied Biosystems). For the other 

taxa, a total of six markers were selected for analysis. Four mitochondrial regions: cytb, cytochrome 
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Oxidase II (COII), 12S and 16S rDNA, and two nuclear regions: intron 2 of α-lactalbumin (αLAlb) 

and intron 1 plus two exonic regions of protein kinase C iota (PRKCι). Sequences were aligned with 

MacClade and MAFFT (Katoh et al. 2002; Katoh et al. 2005); the alignment is available from 

TreeBase accession 10993. In total, our matrix includes 43 species (out of 51 described deer species) 

and is 5,290 base-pairs long. 

MrMODELTEST v2.3 was used to infer the best-fit models of molecular evolution for each gene 

separately, and for the combined dataset. The models selected by hierarchical log-likelihood ratio tests 

were GTR+I+G for the mitochondrial DNAs, HKY+G for the nuclear regions, and GTR+I+G for the 

combined dataset. Maximum Parsimony (MP) and Bayesian analyses using MrBayes v3.1.2 (Ronquist 

& Huelsenbeck 2003) were conducted on the mitochondrial and nuclear datasets, concatenated 

separately and combined altogether. For the Bayesian search, we used two million generations and 

discarded 25% of trees as burn-in. 

 

Statistical analyses 

All statistical analyses were conducted in R v2.10.1 (R Development Core Team 2008). Initially, 

Generalised Linear Models (GLM) were fitted to the data to determine which factors explain 

establishment and spread success (Appendices 2.4-2.7). However, the outcomes of introduction events 

are likely to be correlated due to shared evolutionary ancestry of the introduced species, and because 

species and populations were not randomly introduced to different locations. Therefore, we used two 

modelling approaches to take into account for the non-independence of these data: Generalised Linear 

Mixed Modelling and Generalised Estimator Equations (GEE). Explanatory variables were entered 

into the model as linear terms. Intercept terms were included in the models. Generalised Linear Mixed 

Models (GLMMs) were fitted to determine factors that predict the establishment and spread of 

introduced populations, and GEE were used identify factors that explain variation in the establishment 

and spread success of introduced species. Chi-square tests on change in deviance were used to assess 
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goodness of fit for GLM. We took a frequentist hypothesis testing approach to inference from the 

GLMMs and GEE, comparing Wald test statistics to their expected distributions under the null 

hypothesis and estimating a p value to determine whether to reject the null hypothesis (Bolker et al. 

2009). For the GLMMs, Z values were compared; for GEE, t values were compared. Plots of predicted 

probability of establishment and spread were generated for all variables significantly associated with 

those outcomes (Appendix 2.8). 

GLMM 

GLMMs were employed to fit hierarchical taxonomic levels (genus and species; Appendix 2.3) and 

regions of introduction (Appendix 2.2) as random effects (Blackburn & Duncan 2001; Sol et al. 

2008a). The outcomes of introduction events at two stages of the invasion process (establishment and 

spread) were the binary response variables, and the remaining characteristics hypothesised to influence 

success were the explanatory variables (Appendix 2.1). The models were fitted with a binomial error 

distribution and the logit-link function. Minimal adequate models were fitted using forward selection 

then dropping and adding terms. Backward selection from a model containing all explanatory 

variables was not possible due to the large number of explanatory variables (causing the initial full 

model to fail to converge). The analysis was repeated excluding the three events where over 200 

individuals were introduced simultaneously (see Appendix 2.5). Significance levels were assessed 

using Wald test statistics (Z values). 

GEE 

GEE are extensions of GLM, which can be used to model correlated observations using a variance-

covariance matrix (Paradis & Claude 2002). In our case, we needed to control for the confounding 

effect of common ancestry on our tests of traits promoting invasiveness: i.e. we may expect closely-

related species to have similar invasion success due to traits shared via common ancestry. The 

variance-covariance matrix was computed from branch lengths in the phylogeny (the smaller the sum 

of branch lengths, the closer the species are related), with the Analyses of Phylogenetics and Evolution 
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(APE) (Paradis et al. 2004) package in R. Establishment and spread success was calculated as the 

proportion of times the outcome was positive. The response variables were arcsine-transformed, and 

models were fitted with a normal distribution. The COMPAR.GEE function in APE was used to fit 

models incorporating the phylogenetic data.  
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Results 

Deer phylogeny 

Although individual genes resolved different topologies, there were no hard incongruences between 

the mitochondrial and nuclear datasets; therefore we present here phylogenetic relationships depicted 

from all data combined in the Bayesian search. The phylogeny is presented in Figure 2.1. Cervidae are 

divided into two subfamilies: Cervinae (Posterior Probability [PP] =0.99) and 

CapreolinaesensuPocock (1910) (PP=0.99). The relationships within these subfamilies are congruent 

with previous studies with smaller sampling (Pitra et al. 2004; Gilbert et al. 2006). The inclusion of 

four species of Mazama that had not been included in a phylogenetic analysis before shows that this 

genus is polyphyletic. Cervus and Hipocamelus are also polyphyletic. Muntiacus is monophyletic if 

including Megamuntiacus; this latter genus is therefore unjustified. Axis kuhlii is found sister to Axis 

porcinus(PP=1). Cervusalfredi is found sister to Cervussensu Gilbert et al. (2006) (PP=0.73).  



46 

 

 

 

Figure 2.1 Bayesian phylogenetic analysis of deer using six molecular markers. 

Values above branches are posterior probabilities. 
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Establishment 

 

In Appendix 2.2, we document 146 introductions encompassing 4266 individuals from 16 species and 

at least nine genera. Of these, 100 resulted in successful establishment. Greater propagule size is 

positively correlated with the establishment success of introduced populations (GLMM Z = 3.97, p 

<0.001; [Z = 4.33, p < 0.001 excluding three outliers]; Table 2.2 and Appendices 2.4 and 2.8). This 

association holds with or without controlling for the non-independence of introduction events 

(Appendix 2.4). At the species level, lower age at sexual maturity is a significant predictor of 

establishment (GEE t =-4.25, p<0.01; Table 2.2 and Appendices 2.5 and 2.8). In addition, lower 

weaning age (GEE t =-3.99, p<0.01) and larger native area (GEE t =3.03, p<0.05) become significant 

predictive factors of establishment success once phylogenetic effects are taken into account (Table 2.2 

and Appendices 2.5 and 2.8). 

 

Spread 

Of the 100 successfully established populations, 58 of them spread (Appendix 2.2). Controlling for the 

non-independence of introduction events using GLMM, habitat breadth (GLMM Z = 2.93 to -2.76, 

p<0.01) and diet breadth (GLMM Z = 2.06 to -2.2, p<0.05) were significant when fitted singly (Table 

2.2 and Appendices 2.6 and 2.8). As habitat and diet breadth are categorical variables, the test 

statistics from the models have a range of values. The following explanatory variables predict spread 

in the minimal adequate model: diet breadth, litter size and biome match, with no significant 

interactions (not shown). When using GEE to incorporate phylogenetic information and control for 

common ancestry, species with greater weaning body mass had significantly higher spread success 

(GEE t = 1.57, p<0.01; Table 2.2 and Appendices 2.7 and 2.8).  
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Table 2.2 Factors associated with establishment and spread success in introduced deer.  

 

Outcomes of introduction were analysed at the population (introduction event) and species levels. Estimates and test statistics are presented for Generalised 

Linear Mixed Models (GLMMs) and Generalised Estimator Equations (GEE) fitted with outcome as the response variable and the hypothesised predictors of 

success as explanatory variables. 
a
As habitat and breadth diet breadth are categorical variables, we present the maximum and minimum values. Significance 

codes: p < 0.001 = „***‟; p < 0.01 = „**‟; p < 0.05 = „*‟, S.E.= standard error.

Estimate (±S.E.) GLMM Z Estimate (±S.E.)  GEE t Estimate (±S.E.) GLMM Z Estimate (±S.E.)  GEE t

Propagule 

size
0.84 (0.21) 3.97*** na na 0.29 (0.24) 1.24 na na

Weaning 

body mass
-0.61 (0.53) -1.15 -0.39 (0.05) 6.93 0.64 (0.68) 0.92 0.33 (0.21) 1.57**

Weaning 

age
0.00 (0.00) 0.84 -0.04 (0.01) -3.99** 0.00 (0.00) -1.922 -0.00 (0.00) -0.63

Age at 

sexual 

maturity

-0.47 (-0.89) -0.52 -0.75 (0.17) -4.25** -0.252 (1.05) -0.24 0.378 (0.328) 1.15

Native area 0.00 (0.00) 0.33 3.17 (1.04) 3.03* 0.00 (0.00) 0.447 -1.75 (1.45) -1.21

0.54 to  

-1.55

4.94 to  

-0.81

4.83 to  

-2.87

0.76 to  

-0.46

0.88 to -0.18 (0.40 to 

0.22)

2.06* to -2.2
0.94 to -0.66 (0.42 to 

0.2)

2.93** to -

2.76

Diet 

breadtha

0.64 to -0.4 (0.59 to 

0.41)

1.09 to -

0.28

1.69 to -0.68 (0.48 to 

0.23)
1.4 to -1.76 (0.8 to 0.68)

Habitat 

breadtha

0.66 to 0.16 (0.47 to 

0.3)

1.39 to 

0.12

1.59 to -0.7 (0.39 to 

0.21)

1.34 to -1.56 (1.48 to 

0.46)

ESTABLISHMENT SPREAD

Introduction events Species Introduction events Species



49 

 

Discussion 

Significant progress has been made in determining factors predicting successful invasions by 

quantitatively examining successful and failed introductions of different species (Sol et al. 2008b). 

Studies conducted across broad taxonomic groups attempt to find factors suitable for inclusion in risk 

assessment models (Bomford et al. 2009). However, better understanding is likely to come from 

examining specific groups of taxa across a broad range of hypotheses. Here we analyse data on the 

outcomes of introduction events of non-native deer at two stages of the invasion process in order to 

determine which characteristics are predictive of success. We obtain differing results from analyses at 

the species and population levels, and show that traits predicting success at one stage of invasion do 

not necessarily predict success at other stages.  

Which characteristics predict the establishment of exotic deer? Deer species natively distributed over 

larger areas had a higher establishment success rate, a finding which agrees with that of exotic 

ungulates introduced to New Zealand (Forsyth & Duncan 2001) and mammals introduced in Europe 

and North America (Jeschke & Strayer 2006). We also found that the life history characteristics of 

lower weaning age and age at sexual maturity are also associated with greater establishment success at 

the species level. While this appears to contradict results of other studies in mammals (Forsyth et al. 

2004; Jeschke & Strayer 2006; Sol et al. 2008a), these latter studies were conducted over a broader 

taxonomic range than our analysis on deer, which may explain these discrepancies. For example, 

factors affecting establishment and spread in deer may not be the same as for carnivores, and thus may 

explain instances where our results do not reflect findings from cross-family analyses of non-native 

mammal introductions.  

Below the level of the species, in assessment of the success or failure of an introduction in 

establishment of a population of that species, our analysis showed that only propagule size was 

associated with establishment success. This is in keeping with theoretical predictions (Lande 1993) 

and previous species-level comparative analyses of introduced vertebrates (Lockwood et al. 2005), 

birds (Blackburn & Duncan 2001; Duncan 2001; Sol et al. 2005) and mammals (Forsyth & Duncan 

2001; Kolar & Lodge 2001; Forsyth et al. 2004; Sol et al. 2008a). A larger founding population is 
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likely to be more resilient to extinction, and should contain higher levels of genetic diversity. Higher 

diversity, in turn, is likely to confer greater adaptive potential and reduce the deleterious effects of 

inbreeding depression (Reed & Frankham 2003; Theodorou & Couvet 2006). 

What about spread? Only higher weaning body mass out of all the species traits examined in the GEE 

analysis was significantly associated with spread success. In our population analysis, we found greater 

habitat and diet breadth and introduction within the same biome negatively correlated with spread 

success. The island invasibility hypothesis (Elton 1958) is not supported here. A potential explanation 

for this finding is that many of the islands where deer are introduced have high rainfall and therefore 

nutritionally poor foliage for herbivores e.g. New Zealand (Forsyth et al. 2002). This 'neutral 

resistance' may explain why we do not find any significant differences between the outcomes of deer 

introductions to island or continental habitats, as many islands may be just as tough for non-native 

herbivores to invade. 

Are there any deer species that are unable to invade outside their native range? Returning to the 

historical records (Appendix 2.2), there are two species that have failed to establish, however the very 

small number of introductions makes it difficult to draw any firm conclusions here. The Barasingha 

(Cervusduvaucelli) has failed to establish wild populations from two introductions to Australia. The 

first was by the Victorian Acclimatisation Society in Gippsland and the second in Port Essington 

(Long 2003). Assuming that they were not exterminated by humans, neither introduction resulted in a 

self-sustaining population becoming established in the wild. The Indian muntjac (Muntiacusmuntjak) 

also failed to establish after introduction to England, but this was due to them being deliberately shot 

out (Long 2003). The small sample size and lack of data on propagule size (three introductions; one 

with data on numbers introduced) make these records of limited utility. If there were numerous 

introductions of a species that failed everywhere, this would provide firmer evidence upon which to 

state that a species is intrinsically non-invasive. 

Comparative analyses of detailed species introduction records can predict which factors determine 

success at different stages of invasion, and generate useful results for quantitatively assessing the risk 

posed by past and present introductions. An ideal experiment would require random introductions of 
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species and populations to all climates, across islands and mainland habitats. This would eliminate 

biases towards successful outcomes in the data, and enable a greater level of confidence in stating that 

a particular characteristic is genuinely associated with an outcome. The data presented here are 

sourced from historical records of introduction events, and as such there are many external factors that 

may influence the outcome of the introductions. For example, successful introductions are likely to 

reflect the expertise of the people involved in the translocation and initial release (e.g. Beck et al. 

2007). This may bias the number of recorded successful establishments at the expense of failed 

introduction or establishment. The age and sex composition of the introduced propagule may also 

explain some of the variation in outcomes. Lack of data on these factors precludes the inclusion of 

them in our analysis. Additionally, socioeconomics and predation effects in the recipient area may also 

be important, but collecting information on these factors was not possible given the nature and scope 

of our historical dataset. 

This analysis examines many hypothesised determinants of success at different stages of the invasion 

process in a mammalian family with great economic importance and a key role in ecosystem 

functioning. A human-influenced characteristic of the invasion process, propagule pressure, predicts 

largely the successful establishment of a population. In contrast, characteristics of the region of 

introduction and of the introduced species are key to predicting spread in non-native deer populations. 

However, at the species level a larger native range size and traits associated with population growth 

rate predict establishment, and a life history characteristic predicts spread. These findings have 

applicability to the management of currently established deer populations, the control of established 

populations, and policy on the introduction of non-native deer species.  
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Chapter 3:The influence of range expansion on genetic variation and a test 

of the central-marginal hypothesis in British roe deer 

 

Introduction 

The distribution and demographics of species have a large influence on levels of genetic diversity and 

population structure (Frankham et al. 2002). Numerous species have undergone reductions in 

population size, and then recovered through demographic and range expansion. Geographical isolation 

and serial founder events during these processes can result in decreased genetic diversity in the new 

range (Hewitt 1996; Hewitt 2000). The genetic implications of demographic expansions are well 

studied (Slatkin & Hudson 1991; Beaumont 1999; Zhivotovsky et al. 2000), and recently attention has 

focused on the influence of range expansion on the distribution of genetic variation (Vucetich & Waite 

2003; Wegmann et al. 2006; Excoffier et al. 2009a; Slatkin & Excoffier 2012).  

Population abundance, individual density and reproductive output are expected to be highest in core 

populations, decreasing at the range limits (Sagarin et al. 2006), which influences population genetic 

parameters (Vucetich & Waite 2003; Eckert et al. 2008). Populations derived from the same source 

may become genetically differentiated due to drift and founder effects, with the strength of 

differentiation varying with migration rates (Austerlitz et al. 1997; Excoffier 2004; Arenas et al. 2012) 

and environmental heterogeneity (Wegmann et al. 2006). Where range expansion is driven by a small 

number of dispersing individuals, genetic diversity is expected to be lost due to passing through 

bottlenecks and founder effects (Broders et al. 1999; DeYoung et al. 2003; Excoffier et al. 2009a).  

There is broad support for expecting lower genetic diversity and increased genetic differentiation of 

populations near range limits (Eckert et al. 2008). However, as ranges expand genetic diversity can 

increase due to admixture if genetically diverged populations merge (Zenger et al. 2003; Kolbe et al. 

2004; Kolbe et al. 2008; Sakaguchi et al. 2011).  
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The roe deer of Great Britain, with their complex history of extirpation, reintroduction from multiple 

sources and rapid recent range expansion make a good study system with which to examine the 

influence of contemporary processes on the distribution of genetic variation. There was a severe 

reduction in distribution and abundance of roe deer in Britain up to the eighteenth century, with the 

majority of populations in England and Southern Scotland believed to have gone extinct (Whitehead 

1964). Refuge populations survived mainly in woodlands in Central and North-western Scotland, and 

potentially in Northern England (Whitehead 1964; Prior 1995). All Southern English populations are 

thought to be descended from later reintroductions (Whitehead 1964; Hewison 1995, 1997; Ward 

2005; Baker & Hoelzel 2013). The reintroductions to England occurred from Austria to Windermere 

in North-western England, from Germany to East Anglia, and from Scotland and unknown sources to 

Dorset and West Sussex in Southern England (Whitehead 1964; Prior 1995; Baker & Hoelzel 2013).  

Roe are currently widespread throughout mainland Britain (Figure 3.1), with the widest distribution of 

all deer in Great Britain, and their numbers are estimated to stand in the hundreds of thousands 

(Hewison & Staines 2008). Roe deer have a high capacity for demographic and range expansion 

(Andersen & Linnell 2000), and are now absent only from areas in Kent, the Midlands and Wales 

(Ward 2005) and most Scottish islands. Damage caused by roe deer has been recorded in commercial 

forestry, conservation woodlands, fruit and orchard trees and other horticultural crops, and it is 

anticipated that more damage will occur as the populations continue to expand (Putman & Moore 

1998).Furthermore, roe deer account for approximately 29% of deer-vehicle collisions with reported 

species detail in England (Langbein 2011). The impact of range expansions on population genetic 

parameters is important as information on population genetic parameters can contribute to 

conservation and management plans (King & Burke 1999; Nussey et al. 2006), and knowledge of 

genetic structuring can be employed in the definition of management areas or units (Zannese et al. 

2006) for roe deer. 

Here, I investigate the influence of range expansion on genetic diversity and population structure in 

several independent groups of reintroduced and remnant native roe deer populations, and use the 

results to test the predictions of the central-marginal hypothesis (Eckert et al. 2008).  
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Firstly, I examine how the average diversity of populations in a region varies with the overall recent 

range expansion rate in that region. I expect that in regions where range expansion is higher, overall 

levels of genetic diversity will be lower than in regions where range expansion has occurred more 

slowly. However, where expanding populations from multiple introductions in Southern England have 

overlapped, admixture may have resulted in an increase in overall diversity. Secondly, I test whether 

genetic diversity of peripheral populations correlates with their distance from the core population and 

rate of range expansion from it. I expect that diversity will decline with distance from the core, and 

that populations which have spread faster will have lower diversity.Thirdly, I investigate the influence 

that population history and range expansion has on population genetic differentiation. I test for 

Isolation-By-Distance (IBD) at different spatial scales, contrasting the patterns between regions of 

natural expansion following contraction, and regions where reintroductions occurred. I also examine 

the relationship between the rate of range expansion of peripheral populations with their pairwise 

genetic distance from core populations. Where populations are geographically isolated, differentiation 

between them is expected to arise under the classical model of IBD. However, in the case of multiple 

introduction events expanding at different rates into overlapping ranges in heterogeneous 

environments, patterns of IBD are expected to be disrupted (Wegmann et al. 2006; Excoffier et al. 

2009a) and the rate of expansion is expected to influence levels of differentiation.  

Alongside these analyses, I test the predictions made by the central-marginal hypothesis (Eckert et al. 

2008) of reduced genetic diversity and increased genetic differentiation of peripheral populations 

when compared with populations at the core of the range. I expect that there will be distinct structuring 

between peripheral populations that have expanded into new areas. Finally, I examine the underlying 

genetic structure of the populations using individual-based cluster analysis.  
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Figure 3.1 Roe deer distribution in Great Britain and sample sites. For site codes see Table 3.1. 

Black circles = core populations, grey circles = peripheral populations. 
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Materials and Methods 

Range expansion calculations 

At the regional level, the rate of range expansion was defined as the Compound Annual Growth Rate 

(CAGR) in 10 km
2
 cell occupancy between 1972 and 2007. CAGR was calculated from the raw data 

used to generate the map in Figure 3.1 (A. Ward pers. comm.) for regions where spread has occurred 

from reintroduction sites in England and south from Scotland. As the two range expansions in 

Southern England have overlapped, the cell counts were pooled for the CAGR calculation. Factors 

affecting the accuracy and precision of the data used to produce Figure 3.1 are described by Ward et 

al. (2008). Broadly, it is not possible to distinguish the difference between genuinely new sightings in 

10 km
2
 cells in some areas and improvements in coverage or better reporting from survey respondents. 

This may explain the patchy distribution in some areas, and means that measures of range expansion 

should be interpreted with some caution. Additionally, data on deer presence in some areas has only 

recently started being recorded, and therefore there are no data available for the distribution in 1972 to 

enable comparison with other regions. For these reasons, analysis of the CAGR of the Welsh region is 

not presented here. For the population level analyses, a population was coded as „core‟ if it was 

recorded in the 1972 distribution data and „peripheral‟ if it was recorded after 1972 (Figure 3.1, Table 

3.1). The rate of range expansion of was defined as the distance of a population from the core divided 

by years since the core population was founded. It was calculated using data from geographic distance 

matrices and historical records on roe deer introductions (Whitehead 1964). 

 

Sample collection and georeferencing 

A total of 350 roe deer samples were collected from 18 sites in Great Britain (Figure 3.1). Sites were 

selected to represent a diverse range of colonisation histories, geographic locations, and to cover the 

core and periphery of each range expansion. The vast majority of deer sampled (n=348) were shot in 

season as part of management programmes, with the remaining two samples taken from road-kill. 

Tongue tissue samples were preserved in 20% w/v DMSO in ddH2O saturated with NaCl, and stored 



57 

 

at -20°C before extraction. Six-figure grid references were recorded for the location of each individual, 

and converted to latitude/longitude using the UK Grid Reference Finder Batch Convert Tool 

(http://gridreferencefinder.com/batchConvert/batchConvert.htm). 
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Region Site name Site code Latitiude Longitude Type n PPL Hj S.E. (Hj) Hw S.E. (Hw)

Scotland Ayrshire AY 55.2105 -4.4816 C 24 46.2 0.211 0.014

Scotland Borders BOR 55.8118 -2.3487 C 8 72.5 0.166 0.012

Northern England Northumberland NUM 55.6224 -2.2889 P 25 28.6 0.131 0.012

Northern England Hamsterley HAM 54.8924 -1.9127 P 22 29.7 0.142 0.011

Northern England Kielder KL 55.4154 -2.1200 P 25 37.9 0.159 0.011

Northern England North Yorkshire NY 54.2935 -0.6449 C 28 71.4 0.251 0.013

Northern England Windermere WM 54.2670 -2.9085 C 6 13.2 0.099 0.010

East Anglia Thetford TH 52.5152 0.6852 C 24 37.4 0.157 0.013

East Anglia East Norfolk EN 52.8589 1.3079 P 4 34.7 0.129 0.012

Southeast England West Sussex WS 50.9226 -0.6910 C 19 32.4 0.180 0.014

Southeast England East Sussex ES 51.0654 -0.2646 P 18 30.2 0.153 0.013

Southeast England Windsor WIN 51.4702 -0.6916 P 4 58.8 0.180 0.012

Southeast England Romsey RO 50.9807 -1.4973 P 9 18.1 0.126 0.012

Southwest England Milton Abbas MA 50.8382 -2.2957 C 14 34.6 0.176 0.013

Southwest England Cranborne CR 50.9193 -1.9217 P 26 73.1 0.270 0.014

Southwest England Devon DV 50.8594 -3.2503 P 29 24.2 0.111 0.012

Southwest England Cornwall CW 50.8737 -4.4844 P 5 7.1 0.065 0.009

Wales Powys WA 52.2956 -3.1422 P 11 79.1 0.266 0.014

0.167 0.013

0.262 0.014

0.242 0.012

Table 3.1 Sampled regions and sites of roe deer in Great Britain. Latitude and longitude co-ordinates are midpoints of the sampled sites, C = Core, P = 

Peripheral locations, n = number of AFLP genotypes individuals, PPL = percentage of polymorphic loci at the 5% level, Hj = expected heterozygosity, Hw = 

average gene diversity S.E. = standard error. 
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DNA extraction 

Total genomic DNA was extracted from tissue samples using DNeasy Blood & Tissue Kits (Qiagen, 

UK) following the manufacturer‟s instructions. DNA was extracted from approximately half of the 

samples using the 96 Blood&Tissue kit with 96-well plates; the remainder of DNA extractions were 

conducted with Blood & Tissue Kits in batches of 24 individual extraction tubes. Some samples were 

coated with hair or soil, so were wiped clean with ethanol before the digestion step. For each sample 

~25mg of tissue was cut from the tongue and diced using sterilised forceps and a fresh scalpel 

blade. Each batch of extractions included one negative to check for contamination between 

wells/tubes. Subsets of tissue samples from each population were extracted twice independently, in 

order to allow estimation of genotyping error rates (Bonin et al. 2004). 1µl of each DNA extract was 

added to 4µl loading buffer and electrophoresed on 1.5% agarose gels in 1X TAE buffer for 90 min at 

~120V to examine the extract for degradation. Substantially degraded DNA extracts were excluded 

from further analysis. DNA concentration was then measured using a Nanodrop 2000 (Thermo 

Scientific). 

 

Genotyping 

Amplified Fragment Length Polymorphism (AFLP) profiles were obtained from the samples using a 

modified version of Protocol 2 described by Papa et al. (2005). The AFLP technique comprises 

restriction enzyme digestion of total genomic DNA followed by ligation of adaptors, then two rounds 

of selective PCRs which generate a set of polymorphic fragments (Vos et al. 1995). Potential 

combinations of selective amplification primers were trialled on a subset of samples representing most 

populations, in order to test the genotyping quality and select the best four with which to genotype the 

rest of the samples. Primers were selected on the basis of maximising the number of polymorphic 

peaks per sample, evenness of peak size distribution in the 50-500bp range, and repeatability. 30 

combinations of selective amplification primers were initially tested, and four were chosen for 
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subsequent analyses. Reactions were carried out as follows: ~500 ng of DNA was dried at 60°C in a 

vacuum oven then resuspended in 5.5 µl nuclease-free water (Sigma-Aldrich). Initial restriction 

enzyme digestion using 5 U TaqI (Thermo Scientific) per sample was carried out at 65°C in a buffer 

solution (10 mMTris-HCl [pH 8.0 at 37°C], 5 mM MgCl2, 100 mMNaCl, 0.1 mg/mL Bovine Serum 

Albumin [BSA]) for 90 min. Subsequent digestion with 10 U EcoRI (Applied Biosystems) was carried 

out at 37°C in the buffer solution described above for 2 h.Next, the TaqI adaptors (Ajmone-Marsan et 

al. 1997) were prepared in 100 μl batches at 50 pmol/μl by heating an equimolar solution of the two 

oligonucleotides TaqI top strand (5'-GACGATGAGTCCTGAC) and Taq1 bottom strand (5'-

CGGTCAGGACTCAT) to 95°C for 3 min and cooling slowly to room temperature. EcoRI adaptors 

came from the AFLP Regular Genome Plant Mapping Kit (Applied Biosystems). To ligate adaptors, a 

solution containing 5 pmolEcoRI adaptors and 50 pmolTaq1 adaptors, 1 U T4 DNA ligase (Promega), 

1X T4 DNA Ligase buffer (Promega), 50 ng/μl BSA and 1mM Adenosine 5′-triphosphate (ATP) 

(Sigma-Aldrich) was added to the digested DNA solution, mixed gently and the combined solution 

incubated at 16°C for 17 h. The resulting template mixture was diluted fourfold in nuclease-free water 

(Sigma-Aldrich). All pre-selective and selective amplifications were carried out with Fermentas 

(Termo Scientific) PCR mastermix, using a Veriti® 96-Well Fast Thermal Cycler (Applied 

Biosystems).A random subsample of the template fragments was obtained through pre-selective 

amplification using the primers E01 (5'-GAC TGC GTA CCA ATT CA) and T01 (5′-GAT GAG TCC 

TGA CCG AA) described by Ajmone-Marsan et al. (1997). 5 μl of the diluted DNA template mixture 

was added to 75 ng of each primer in a 20 μlPCR mix. PCR conditions were as described in Papa et al. 

(2005). The reaction products were diluted 20 times with nuclease-free water (Sigma-Aldrich). 

Selective amplifications used 5 μl of the diluted product with 10 – 15 ng of fluorescently labelled 

EcoRI (5′-GAC TGC GTA CCA ATT CNN NDYE [Applied Biosystems]) selective primer and 30 ng 

of TaqI (5′-GAT GAG TCC TGA CCG ANN N) selective primer in a 20 μlPCR mix. Touchdown 

PCR conditions were as described in Papa et al. (2005). The four EcoRIand TaqI primer combinations 

were: EcoRI-ACAFAM/TaqI-ACT, EcoRI-AAGJOE/ Taq1-CAT, EcoRI-AACNED/TaqI-CCA, EcoRI-

ACAFAM/TaqI-CCA. 1 – 1.2 μl of each selective PCR product from each sample was mixed with 10 

μlHi-Di formamide (Applied Biosystems) and 0.2 μl GeneScan-500 ROX size standard (Applied 
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Biosystems) in a single well for fragment analysis by capillary electrophoresis on an ABI 3130xl 

genetic analyser (Applied Biosystems). Samples with genotype failures were re-run once. They were 

re-amplified from genomic DNA and the undiluted pre-selective reaction products were 

electrophoresed on 1.5% agarose gels at 90V for 2 h to check for the presence of amplified fragments 

before selective amplification and capillary fragment analysis was re-run. 

AFLP electropherograms were visualised using GeneMapper v. 4.0 (Applied Biosystems). Profiles 

with poor PCR amplification (i.e. few peaks or peak strength declining rapidly with fragment size) or 

poor sizing were removed from the dataset. Bins within the range of 50 to 500 bp were manually 

identified. All bins had at least one peak of height ≥100 relative frequency units (rfu). In order to 

minimise the effect of size homoplasy(Caballero et al. 2008)on the results, bin widths were set at < 1 

bp and had to be non-overlapping. Bins in which peaks were > 0.3 bp apart were removed from the 

analysis, and different bins had to be separated by > 0.4 bp. Once the maximal bin set was created, 

tables of „sum of signal‟ normalised peak heights for each primer pair were exported from 

Genemapper. AFLPScore v. 1.4b (Whitlock et al. 2008) was used to optimise scoring parameters and 

create a binary genotype table for each primer pair.Locus and phenotype rfu selection thresholds were 

explored for permutations of scoring methods (i.e. filtered loci/absolute thresholds, unfiltered/absolute, 

filtered/relative and unfiltered/relative) in AFLPScore, with the aim of maximising the number of loci 

retained and minimising the mismatch error rate. A binary genotype table for each primer pair was 

then generated under the optimal threshold settings, and the four tables were concatenated. Mean 

mismatch error rate was 6.2 % (± 0.6 S.D.), which is slightly higher than the normal range of error 

rates using AFLPs (Bonin et al. 2004). Loci with zero allele frequencies, and those with a fragment 

present or absent in one individual only were then removed, giving a dataset comprising 168 

polymorphic loci for 301 individuals. As the aim here was to infer population genetic parameters 

based on neutral genetic variation the influence of non-neutral loci should be removed (Bonin et al. 

2006). Thirty-six loci identified as diverging from neutral expectations by DFDIST (Beaumont & 

Balding 2004; Antao & Beaumont 2011) and SAM (Joost et al. 2007; Joost et al. 2008) analysis (see 

Chapter 4 for details) were excluded from the dataset, giving a final dataset of 132 loci. 
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Population genetic analyses 

AFLP-based estimates of genetic diversity were calculated using AFLP-SURV v. 1.0 (Vekemans et al. 

2002). Allele frequencies were estimated using a Bayesian method with non-uniform prior distribution 

(Zhivotovsky 1999) assuming Hardy-Weinberg Equilibrium (HWE) (i.e. FIS = 0). Estimates of average 

gene diversity (Hw) were calculated for each region, and genetic diversity within populations was 

estimated using the percentage of polymorphic loci at the 5% level (PPL) and expected heterozygosity 

(Hj). To explore the relationship between range expansion and overall within-region diversity, Hw was 

plotted against CAGR of each region. To examine the influence of range expansion on within-

population genetic diversity, univariate linear regressions of Hj for peripheral populations against 

distance, and rate of range expansion from core populations were conducted in R v2.15.3 and plotted 

in Excel. The within-population analyses were repeated excluding the Welsh population (WA) from 

the dataset (as there is little evidence from the distribution map upon which to assign it to a core 

population), and the Romsey (RO) population was assumed to have descended from the introductions 

in West Sussex (WS), on the basis that RO was genetically and geographically closer to WS than the 

Milton Abbas (MA) population. The central-marginal hypothesis was tested by assessing differences 

in levels of diversity between the core and peripheral populations for the entire dataset and within 

regions using a Mann–Whitney U-test (Sokal & Rohlf 1995). 

Overall genetic differentiation (FST) was estimated for the entire dataset from allele frequencies using 

AFLP-SURV following Lynch and Milligan (1994). Significance was assessed using a permutation 

test with 10,000 pesudoreplicates. Pairwise population differentiation was estimated by Analysis of 

MOlecularVAriance (AMOVA) (Excoffier et al. 1992) using GeneAlEx v. 6.5 (Peakall & Smouse 

2012). AMOVA produces estimates of ΦPT (an analogue of FST which calculates a squared Euclidean 

distance matrix between AFLP genotypes). ΦPT is a band-based measure of pairwise population 

genetic differentiation that is recommended for the analysis of AFLP datasets (Bonin et al. 2007), and 

does not rely on assumptions which may lead to underestimation of genetic variability (Excoffier et 
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al.1992). Despite the complex population histories, expanding populations may show a classic pattern 

of IBD. Testing this hypothesis can be informative on how dispersal occurs at a national level and 

within regions. A strong pattern indicates that most dispersal events involve movement between 

geographically adjacent sites, while a very weak pattern can indicate either high levels of gene flow 

acting to reduce differentiation, or that an appreciable proportion of dispersal events are long distance. 

The hypothesis of IBD was tested among all populations and subsets of populations corresponding to 

range expansions within regions using matrices of pairwise ΦPT values and pairwise geographical 

distances. Pairwise geographical distances were calculated from the midpoint of each population on 

the WGS84 datum surface using a Mercator Projection in the Geographic Distance Matrix Generator 

(http://biodiversityinformatics.amnh.org/open_source/gdmg). Geographic distances were used 

unprocessed and log-transformed. The significance of the relationships between genetic and 

geographic distances was assessed by Mantel tests with 10,000 randomisations using IBDWS v. 3.23 

(Jensen et al. 2005). To examine the influence of range expansion on between-population genetic 

differentiation, univariate linear regressions of pairwise ΦPT between peripheral and core populations 

against rate of range expansion were conducted in R and plotted in Excel. To test the prediction that 

population differentiation is greater among peripheral populations than among core populations, 

pairwise ΦPT values were compared using a Mann–Whitney U-test (Sokal & Rohlf 1995). 

Individual-level Bayesian clustering analysis was conducted using STRUCTURE v. 2.3.4 (Pritchard et 

al. 2000; Falush et al. 2007) in order to analyse population structure, and to ascertain whether the 

sampled individuals group into distinct genetic lineages. The most plausible number of populations 

(K), and the probability of assignment for each individual to each population (Q) were assessed with 

and without admixture-based ancestry models, assuming independent and correlated allele frequencies 

(Falush et al. 2003). For each model, seven runs were conducted for each value of K between 2 and 

10, each using 100,000 Markov Chain Monte Carlo (MCMC) generations with 50,000 generations 

discarded as burn-in. The most probable value of K was approximated using two methods. The first 

determines the highest log-probability of the data Pr(X|K) as described in the STRUCTURE manual 

(Pritchard et al. 2000) using a plot of Pr(X|K) averaged across runs against K. The smallest value of K 
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where log-probabilities are similar was determined to be the value of K with the highest hierarchical 

level of population structure in these data. The second approach assessed the rate of change in log-

likelihood between successive values of K (i.e. ΔK) (Evanno et al. 2005). ΔK = |mL (K + 1) - 2mL 

(K) + mL (K - 1)| / sdL (K), where mL is the mean and sdL is the standard deviation of the likelihood 

value (L) across the seven independent runs. The number of populations described by the modal value 

in the ΔK distribution was determined to be the correct value of K. Results from the runs were 

summarised and plotted using STRUCTURE HARVESTER Web v. 0.6.93 (Earl &vonHoldt, 2012). 
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Results 

Rates of range expansion 

CAGR between 1972 and 2007 was highest in the East Anglian population at 7.25%, and lowest in 

Southern England at 3.67%. CAGR in Northern England was 5.10%. 

 

Genetic diversity and range expansion at the regional and population levels 

Estimates of Hw per region, and Hj and PPL for each population are presented in Table 3.1. The CAGR 

of roe deer distributions in the English regions and the average gene diversity in those regions are 

plotted in Figure 3.2. There was no significant relationship between the within-population diversity of 

all peripheral populations and a) distance from the nearest core population b) rate of range expansion 

measured in km/yr. However, when the Welsh population was excluded from the analyses, a 

significant negative relationship was observed between within-population diversity and both measures 

(Figure 3.3: a) r
2
 = 0.411, P < 0.05, b) r

2
 = 0.33, P < 0.05). Within each region the average diversity of 

core populations tended to be higher than peripheral populations (Table 3.1), but Mann–Whitney U 

tests showed no significant differences in diversity between all core and peripheral populations (U = 

26, P > 0.1). When the analysis was repeated excluding the Welsh population and populations in areas 

of overlap (CR and RO), the difference was marginally significant (U = 11, P < 0.1).
 

 

Isolation by distance at the national and regional levels 

The coefficient of genetic differentiation among populations (FST) estimated by partitioning the total 

gene diversity assuming HWE was 0.191 (tested using 10,000 permutations, P < 0.001), indicating 

substantial population structure across Great Britain. Testing for patterns of IBD, the correlations 

between genetic and geographic distances between populations at the national level was not 
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statistically significant (Figure 3.4). Additionally, no significant patterns of IBD were observed in the 

groupings of Southern English and East Anglian populations. However, a marginally significant 

correlation (r
2
 = 0.506, P < 0.1) in the Northern English group of populations was observed (Figure 

3.4).  
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Figure 3.2 Compound Annual Growth Rate (CAGR) and average gene diversity (Hw) in roe deer 

ranges by region. 
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Figure 3.3 Expected heterozygosity (Hj) of peripheral populations regressed against a) distance 

and b) rate of range expansion from their core population. Regression results are represented by 

coefficients of determination (r
2
). Dashed lines indicate trends when excluding the Welsh population 

(represented by a white diamond) from the analysis. 
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Figure 3.4 IBD relationships between pairwise genetic distance (ΦPT) values and log geographic distance (km). a) Great Britain, b) Southern Scotland 

and Northern England, c) Northern England, d) Southern England (pooled), e) SE England, f) SW England. Regression results are represented by coefficients 

of determination (r
2
) and their statistical significance according to the Mantel test. 
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Genetic differentiation and range expansion 

Estimates of pairwise genetic distance between populations varied widely, ranging from ΦPT = 0 to 

0.647 (Table 3.2). Within regions, the highest between-population ΦPT values were found in the 

grouping of Northern English and Scottish populations, with the Windermere (WM) population the 

most differentiated from all other populations in the region. ΦPT values were generally lower between 

populations in Southern England than between populations in Northern England and Scotland (Table 

3.2). High ΦPT values were observed between populations in the known reintroduction sites in the 

south (e.g. WS-TH: ΦPT = 0.331), suggesting significant historical differentiation and low levels of 

contemporary gene flow. There was no significant correlation between the rate of expansion of 

peripheral populations and the pairwise genetic distances from their core population, and the exclusion 

of Welsh population from the analysis did not alter this finding (Figure 3.5). The prediction of the 

central-marginal hypothesis that differentiation between pairs of peripheral populations is greater than 

between peripheral and core populations was not supported in southern populations with (U = 23, P > 

0.1) or without (U = 10, P > 0.1) the Welsh population included in the analysis. 

 

Genetic structure 

The mean posterior probabilities of the STRUCTURE runs suggested an optimal K = 8 under both 

models of admixture and no admixture. Assessing ΔK using the method of Evanno et al. (2005) 

confirmed that K = 8 was the most strongly supported value of K for both models (Figure 3.6). There 

was a clear division between clusters of individuals sampled from Scotland and Northern England, and 

those sampled in Southern England in the non-admixture model, while the admixture model 

highlighted the introduction of Scottish deer into Southern England. Exceptions to this trend are 

observed where some individuals from the SW English populations (WS and ES) cluster with the 

Scottish (AY and BOR), and some Northern English deer (from the NY population) cluster with the 

East Anglian (EN and TH) populations (Figure 3.7). 
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Table 3.2 Pairwise ΦPT values (below diagonal) and geographic distances in km (above diagonal) between populations. Significant ΦPT values are in 

bold (P < 0.01). 

AY BOR CR CW DV EN ES HAM KL MA NUM NY RO TH WA WIN WM WS

AY - 150 507 483 491 540 460 168 151 508 146 267 511 453 336 486 146 540

BOR 0.034 545 568 555 546 405 106 46.4 554 21.4 201 541 417 395 495 176 555

CR 0.102 0.177 - 180 93.5 117 310 442 501 27.8 524 385 31 253 175 105 379 86.4

CW 0.083 0.254 0.144 - 86.7 297 455 479 530 154 548 461 210 401 183 273 392 266

DV 0.109 0.160 0.182 - - 211 384 458 513 67.1 534 421 124 328 160 191 380 180

EN 0.100 0.325 0.032 0.497 0.377 - 227 440 500 145 525 360 86.8 174 241 54.0 399 33.9

ES 0.088 0.126 0.156 0.088 0.124 0.214 - 310 362 335 386 205 284 56.8 307 206 320 256

HAM 0.113 0.118 0.161 0.110 0.164 0.193 0.134 - 59.7 452 84.7 106 436 315 300 390 94.7 449

KL 0.080 0.103 0.150 0.082 0.130 0.166 0.105 0.023 - 510 25.4 157 495 371 354 449 137 509

MA 0.126 0.224 0.136 0.126 0.124 0.327 0.111 0.171 0.119 - 533 401 58.3 278 172 132 384 113

NUM 0.093 0.155 0.179 0.219 0.161 0.344 0.154 0.163 0.115 0.169 - 181 519 397 375 474 156 534

NY 0.081 0.159 0.048 0.166 0.217 0.001 0.160 0.157 0.153 0.204 0.188 - 373 217 278 314 147 375

RO 0.216 0.363 0.128 0.369 0.403 0.024 0.264 0.270 0.258 0.387 0.419 0.070 - 228 185 78.3 378 56.9

TH 0.283 0.469 0.177 0.520 0.492 0.000 0.385 0.365 0.350 0.465 0.452 0.135 0.140 - 261 150 308 201

WA 0.095 0.135 0.122 0.100 0.146 0.205 0.036 0.113 0.096 0.066 0.168 0.160 0.287 0.397 - 192 220 228

WIN 0.353 0.354 0.387 0.373 0.543 0.279 0.364 0.347 0.352 0.455 0.560 0.370 0.324 0.573 0.323 - 345 61.0

WM 0.443 0.483 0.479 0.508 0.599 0.462 0.426 0.409 0.432 0.550 0.616 0.436 0.452 0.647 0.441 0.095 - 401

WS 0.071 0.071 0.145 0.042 0.110 0.140 0.000 0.104 0.094 0.102 0.157 0.131 0.188 0.331 0.040 0.197 0.262 -
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Figure 3.5 Regressions of pairwise genetic distances between core and peripheral populations 

(ΦPT) against rate of range expansion from the core population. Regression results are represented 

by coefficients of determination (r
2
). Dashed lines indicate trend excluding the Welsh population 

(represented by a white diamond) from the analysis. 
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Figure 3.6 Summaries of STRUCTURE output. a) Mean posterior probabilities of the data averaged 

across runs against K. Error bars represent standard deviations after burn-in. b) Plots of ΔK against K. 

Upper plots represent models assuming admixture, lower plots represent models assuming no 

admixture. 
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Figure 3.7 Histograms of posterior assignment probabilities determined by STRUCTURE where 

K = 8. Models assuming a) admixture b) no admixture. Each vertical bar represents an individual and 

its assignment proportion into one of eight clusters. Individuals are arranged into regions, and 

subdivided by sample sites. 
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Discussion 

The scenario of recent range expansion from refugia and reintroductions in the roe deer of Great 

Britain can be thought of as a natural experiment which enables an examination of the influence on 

population genetic parameters by contemporary processes following documented historical 

bottlenecks. Populations in Scotland and Northern England were expected to have greater diversity 

than those derived from reintroductions in Southern England. Across all regions geographically 

peripheral populations were expected to be less diverse than core populations and more differentiated 

from each other than with their centre of abundance (Eckert et al. 2008). Many studies claim to find 

associations between genetic parameters and range expansion but do not explicitly test for a 

relationship (e.g. Pruett et al. 2011; Yang et al. 2012). Here, the availability of survey data on roe 

distribution allowed a rough estimation of the recent rate of range expansion in each region with which 

to test for correlations with population genetic diversity and differentiation. 

 

Range expansion and genetic diversity 

Of the three regions examined, the roe distribution in Southern England has the highest average gene 

diversity but the lowest spatial growth rate (Figure 3.2). Multiple introduction events and potential 

admixture in regions of overlap (e.g. CR, see Figure 3.1) may have contributed to the relatively high 

diversity in Southern England, while in Northern England the larger ancestral population size (Baker 

2011) may explain the comparable level of diversity. The regional variation in spatial growth rate is 

likely to be due environmental heterogeneity (Acevedo et al. 2010). Differences in habitat availability 

and latitude have been shown to influence the rate of dispersal into new areas in Swedish and 

Norwegian roe, with deer in marginal habitats spreading faster than those in more favourable 

conditions (Andersen et al. 2004) under a conditional dispersal strategy (Andersen & Linnell 2000). 

Roe dispersal in Southern England may also be affected by habitat fragmentation, presence of barriers 

as a function of greater urbanisation in the south (Baker & Hoelzel 2013), and possibly interspecific 



76 

 

competition with other deer (Hemami et al. 2005). In areas of high muntjac density, roe deer numbers 

are lower than expected (Chapman et al. 1993), and there is substantial overlap between the roe and 

muntjac distributions in the south of England (Acevedo et al. 2010). 

There was no clear north to south trend in levels of within-population diversity, in contrast to the 

findings of Baker &Hoelzel (2013). Rather, the peripheral populations within regions tended to have 

lower diversity than the core populations, with the notable exception of Windermere (Table 3.1). 

Direct comparisons of within-population diversity with previous genetic studies of the roe in Great 

Britain using allozymes(Hewison 1995), mtDNA and microsatellites (Baker & Hoelzel 2013) is likely 

to be misleading due to different rates of molecular evolution of these markers (Zachos et al. 2006a). 

However, when comparing results from microsatellite and AFLP markers, within-population expected 

heterozygosities estimated from AFLP data were lower than the values from microsatellites, and 

genetic distance values were larger, consistent with other comparisons (Mariette et al. 2001; Mariette 

et al. 2002; Alacs et al. 2011). Nevertheless, the hypothesis of Baker &Hoelzel (2013) that the 

Lancashire population has remained isolated is supported by these findings (using samples from 

forests in Windermere) of low genetic diversity in the WM population. However, it is also possible 

that the low sample size (unfortunately due to the majority of the WM samples yielding degraded 

DNA) may be giving an inaccurate measure of diversity. The higher diversity of the CR population 

relative to the two core populations in Southern England (MA and WS) suggests that admixture may 

have occurred in the area (Figure 3.1, Table 3.1). The central-marginal hypothesis of lower genetic 

diversity in peripheral populations is not supported when pooling both groups and comparing group 

differences. However, within-population diversity of peripheral populations had a significant negative 

correlation with both the distance from the site of introduction and the rate of range expansion (Figure 

3.3). These patterns are in line with the predictions of Excoffier et al. (2009a) that the most rapidly 

expanding populations will have the lowest diversities. In roe deer this may be due to founder effects 

from smaller numbers of dispersers (Andersen et al. 1998) colonising new areas. The expansion rates 

from the core populations are considerably lower than in Scandinavian roe deer (Andersen et al. 2004) 

where the rate varies between 4 and 8km/yr. However, this calculation was based on more accurate 
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data (hunting records dating back to 1850) and range expansion rates are very unlikely to be constant, 

and should be interpreted as approximate measures for comparisons. 

 

Range expansion and population structure 

The high levels of population differentiation observed at the national and regional levels, with 

significant pairwise genetic distances between almost all populations (Table 3.2), reflect the complex 

introduction histories of the expanding populations. During range expansion, differentiation can result 

from founder effects and limited migration (Austerlitz et al. 1997), especially in the case of leptokurtic 

(long distance) dispersal (Ibrahim et al. 1996; Excoffier et al. 2009a). In this instance, genetic 

distances were generally higher between core populationsthanamong core and peripheral populations, 

demonstrating stronger historical genetic structure in refugial and reintroduction sites than in newly 

founded peripheral populations. Pairwise genetic distances between the East Anglian populations and 

most other populations were some of the highest, strongly supporting the documentary evidence of an 

introduction of 12 individuals from Württemberg, Germany to Thetford Forest (Whitehead 1964). The 

WM population was also strongly differentiated from almost all other populations, even neighbouring 

ones in Northern England. Interestingly, the highest genetic distance was observed between TH and 

WM despite their source populations (Southern Germany and Austria, respectively) being 

geographically close and likely to belong to the same „Clade Central‟ of European roe deer (Randi et 

al. 2004), again suggesting a strong influence of founder effects during establishment.  

Finding weak support for IBD in northern populations fits with a history of expansions from long-

standing populations in Northern England and potential supplementary introductions into Ayrshire 

(Whitehead 1964), although it is likely to be disrupted by the presence of the introduced population in 

Windermere. This pattern is consistent with the findings of Baker &Hoelzel (2013) that northern 

populations in the area show a pattern of IBD, indicating philopatric behaviour (Nies et al. 2005). The 

majority of roe deer from Northern England in this study were sampled from woodland. IBD has 
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previously been observed in fragmented woodland habitat (Coulon et al. 2004), suggesting that gene 

flow is affected by landscape connectivity, although they could not rule out the effects of other land 

use types on gene flow. Additional support comes from a recent study of phenotypic and 

environmental correlates of roe deer dispersal finding that forest-dwelling populations have a lower 

dispersal probability than those inhabiting heterogeneous habitats (Debeffe et al. 2012). The rapid 

expansion of roe in East Anglia - where the open farmland habitat is suboptimal (Prior 1995) - lends 

support to the findings of Andersen et al. (2004)that roe tended to disperse further in unfavourable 

habitat. This conditional dispersal behaviour (Andersen & Linnell 2000) may underlie the very low 

levels of differentiation between the core and peripheral populations in the East Anglian area. 

The lack of a relationship between genetic differentiation and rate of range expansion is surprising, as 

populations further from the core are expected to be spatially isolated with small effective population 

sizes (Vucetich & Waite 2003), and the rate of expansion should intensify the effects of this on gene 

flow. As roe tend to be highly sedentary in their established ranges (Hewison et al. 1998; Pettorelli et 

al. 2003b), the rate of expansion may not influence gene flow significantly as migration between 

populations is very low. However, in regions where range expansion is happening the most rapidly, 

the pairwise genetic distances between neighbouring populations are lowest. ΦPT values between 

populations at the westernmost (CW-DV) and easternmost (ES-WS) areas of the Southern English 

region, along with East Anglia (EN-TH) were the lowest among all pairwise comparisons. An analysis 

of factors associated with roe deer presence (Acevedo et al. 2010) indicates that these areas have low 

favourability, lending support to the hypothesis that expansion is most rapid in unfavourable 

environments (Andersen et al. 2004). Rapid expansion may mean that the dispersed populations in 

these areas have founded so recently that differentiation has yet to occur, or that there are large 

numbers of migrants (Excoffier 2004). As the more peripheral populations tended to be the most 

genetically homogenous based on within-population diversity and population cluster analysis, the 

former explanation is the most likely in this scenario. These findings may reflect the huge variation in 

dispersal patterns of roe deer, where the majority of the individuals at the edge of the range disperse 

over much larger distances than those at the core (Wahlstrom & Liberg 1995). 
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In the Bayesian cluster analysis the 'no admixture' model showed a clear north-south divide between 

clusters, whereas strong signals of underlying Scottish ancestry were revealed in southern populations 

under the admixture model. Populations derived from the MA and WS cores exhibited similar patterns 

to the Scottish populations, comprising individuals from two main clusters. Approximately one third 

of the CR population appeared to be admixed. Northern populations also fell into two clusters, one 

local and one shared with the Scottish population, concordant with a southward spread from Scotland 

and natural expansion from refugia. The East Anglian populations clustered distinctly from the 

majority of the other regions, reflecting the historical differentiation between native British and 

introduced German deer. However, some individuals from NY and RO clustered with the East 

Anglian, mirroring the results of a craniometric study (Hewison 1997) which identified a separate 

morphotype in those areas
1
, indicating that relatively recent secondary translocations may have 

occurred.  

However, STRUCTURE has been found not to perform well when sampled populations deviate from 

HWE, which is the case in other roe populations (e.g. Coulon et al. 2006), and small sample sizes can 

affect the power to correctly assign individuals to the main genetic clusters (Evanno et al. 2005; 

Kalinowski 2011). Conducting a spatially-explicit analysis that accounts for admixture and does not 

require defining parental populations such as TESS (Durand et al. 2009) may be better able to describe 

population structure in the dataset(Francois & Durand 2010). These results lend tentative support to 

the existence of refugial roe populations in Northern England, documentary evidence of European roe 

being introduced in Windermere and East Anglia, and indicate that populations descended from 

multiple introductions in Southern England are admixing in areas of overlap. 

 

                                                             
1
 The sites of Romsey (RO) sampled here and Ringwood (sampled by Hewison(1997)) are less than 30 km apart, connected by 

the New Forest. 
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Implications 

The principal finding here is that while within-population diversity declines with distance and rate of 

expansion from core populations of roe deer, there is no corresponding increase in genetic 

differentiation. Genetic drift in founder populations is likely to be the main factor explaining these 

patterns. Overall, the findings provide mixed support for the central-marginal hypothesis. Genetic 

diversities tended to decline with distance from core populations, but there was no significant 

difference between core and peripheral diversities or genetic distances. Rates of expansion vary widely 

between regions, and differences in the current distribution of roe introduced from different sources 

appear in large part to be due to natural expansion, excepting potential secondary translocations from 

East Anglian stock into localised areas within the southern and northern regions. 

Incorporating population genetic information into wildlife management plans is a promising approach, 

particularly in the case of controlling invasive species (Hampton et al. 2004), and understanding 

population genetic structure is important for both conservation and management programmes 

(Zannese et al. 2006; Palsboll et al. 2007). Higher genetic diversity has been associated with 

establishment success (Gamfeldt et al. 2005; Lockwood et al. 2005; Crawford & Whitney 2010), and 

heterozygosity-fitness correlations have been demonstrated in a semi-captive roe deer population (Da 

Silva et al. 2009). As the reintroduced populations are currently significantly differentiated from each 

other, efforts could  focus on preventing connectivity between them, as admixture can increase the 

invasive potential of populations (Kolbe et al. 2007).  

Environmental factors associated with rate of spread in British roe deer populations have been 

investigated (Acevedo et al. 2010), calculating the rate of expansion as one figure for the entire 

country. Factors thatmay influence the rate and direction of past and future expansions of reintroduced 

or remnant native roe populations include the interaction between environment (such as availability of 

suitable habitat, barriers to dispersal, and presence of dispersal corridors) and population 

characteristics (such as population size, fecundity, and productivity). While this and other national-

level studies of deer (e.g. Haanes et al. 2010; Baker & Hoelzel 2013) can identify broad patterns of 
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diversity and structure and indirectly infer the influence of landscape features on population genetic 

parameters, it is desirable to directly determine how gene flow is affected by landscape features 

(Manel et al. 2003; Schoville et al. 2012). Small-scale studies have demonstrated higher correlation 

between genetic distance and geographic distance when taking landscape features into account 

(Coulon et al. 2004; Coulon et al. 2006; Perez-Espona et al. 2008). To better explain the variation in 

rates of range expansion at regional and national levels, environmental heterogeneity should be 

accounted for (Segelbacher et al. 2010). Determining how genetic parameters are associated with 

landscape features and rate of range expansion in roe deer could enable better planning of future 

management based on predictions of deer movements into new areas (e.g. Finnegan et al. 2012). A 

further extension of this work could focus on developing a predictive model using data on roe deer 

dispersal behaviour and environmental conditions, comparing the predictions of this model to the 

spatial genetic patterns described here in order to fully assess the contribution of information on 

genetic variation to local and landscape-level management plans. 
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Chapter 4: Detection of adaptive population divergence and associated 

environmental correlates in European roe deer 

Introduction 

Understanding the genetic basis of adaptation is a major goal of evolutionary genetics (Feder & 

Mitchell-Olds 2003). Changing environmental conditions and colonisation of different areas can result 

in rapid adaptive evolution of wild populations to their new environment (Reznick & Ghalambor 

2001), and adaptation has a crucial role in the extension of species ranges to new habitats (Kawecki 

2008). In the case of introduced populations in new environments undergoing rapid range expansion, 

ecologically based selection can lead to local adaption (Sakai 2001; Lee 2002; Schoville et al. 2012). 

Identifying adaptive genetic variation in wild populations is crucial to developing an understanding of 

species responses to environmental change (Holderegger & Wagner 2008; Manel et al. 2010), which 

has implications for conserving the adaptive potential of populations threatened with extinction 

(Allendorf et al. 2010) and controlling invasions (Allendorf 2003; Lavergne & Molofsky 2007; 

Dlugosch & Parker 2008). 

Identifying loci under selection and understanding which selective pressures are acting on non-model 

species in the wild is challenging (Manel et al. 2010; Nunes et al. 2011). Recently, population 

genomic approaches suitable for detecting loci influenced by selection in non-model species have 

emerged (Luikart et al. 2003). Genome scans can identify loci that appear to be under divergent 

selection. The underlying assumptions made by the genome scan approach are that population 

demographic and neutral evolutionary history will broadly affect all neutral loci in the genome 

similarly, whereas loci influenced by selection (and their neighbouring genomic regions) should 

exhibit distinct „outlier‟ patterns of variation (Luikart et al. 2003; Nielsen 2005). The application of 

AFLP genotyping enables numerous loci distributed randomly across the genome to be surveyed 

simultaneously in non-model organisms (Bensch & Akesson 2005), although comprehensive 

representation of the entire genome is not made. This outlier-based approach has been fruitful in 
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identifying candidate loci associated with adaptation to environmental variables such as altitude 

(Bonin et al. 2006) and temperature (Jump et al. 2006). In addition to identifying candidate loci under 

selection, it is also possible to determine the selective forces acting upon them (Joost et al. 2007). 

Methods of identifying adaptive genetic variants in natural populations have been developed and 

adapted for use with dominant markers such as AFLPs. Two main approaches have emerged: a) 

outlier-based locus detection and b) landscape genomic modelling. 

Outlier-based locus detection uses estimates of population differentiation to distinguish loci that 

deviate from expected neutral among-population differentiation relative to the genome-wide average 

neutral differentiation among populations (Beaumont & Nichols 1996; Beaumont & Balding 2004; 

Beaumont 2005; Foll & Gaggiotti 2008). Using stringent Confidence Interval (CI) and False 

Discovery Rate (FDR) (Benjamini & Hochberg 1995) thresholds alongside outlier replication can 

offer increased confidence that divergent selection is responsible for the result (Bonin et al. 2006; 

Nosil et al. 2009), due to the low probability that the FST of any given locus would repeatedly exceed 

its neutral expectation by chance. However, loci responding to selection pressures acting at smaller 

spatial scales than populations are designated at may be missed using a population-based analysis 

(Bothwell et al. 2013). Furthermore, outlier-based analyses are by themselves unable to demonstrate 

associations between environmental and genetic data. In such instances, landscape genomic modelling 

can be employed. This individual-based approach assumes that variation in environmental variables 

generate changes in allele frequencies at loci under selection (Endler 1977; Joost et al. 2007; Manel et 

al. 2010). The method is able to identify loci potentially linked to the targets of selection as well as 

generating new hypotheses regarding the environmental factors driving adaptation (Joost et al. 2007). 

Employing both analytical approaches and comparing the results allows for greater confidence that 

loci genuinely under selection have been detected (Manel et al. 2009; Nunes et al. 2011; Schoville et 

al. 2012). 

Even when both approaches are combined, the challenge of distinguishing associations between 

identified loci and environmental variables from associations with other spatially structured processes 
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remains (Manel et al. 2010; Segelbacher et al. 2010).Patterns of genetic variation that appear to be due 

to selection may also result from historical and spatial effects (Kawecki & Ebert 2004; Schmidt et al. 

2008). Restricted gene flow among populations will cause changes in allele frequency due to genetic 

drift (Wright 1938), but these effects should be genome-wide rather than restricted to specific loci. 

Analysing pools of populations from independent regions can help to mitigate the influence of 

confounding factors derived from historical and spatial processes (Poncet et al. 2010). By sampling 

multiple areas exhibiting a range of environmental variation, it should be possible to test for the 

generality of landscape genomic inference (Segelbacher et al. 2010). Europe is geographically 

complex, with a broad range of climates and habitat types. Identifying the same candidate loci in 

independent regions would provide strong support for a genuine association with a genomic region 

responding to selection from environmental conditions. 

The European roe deer (Capreoluscapreolus) has been present across most of Europe from c.10, 000 

BP to the present day(Sommer et al. 2009). Populations in Europe experienced a severe decline due to 

deforestation and overhunting prior to the nineteenth century, but have greatly increased in range and 

density in recent years, aided in some instances by active translocation (Andersen et al. 1998). Spread 

of populations has been assisted by an increase in availability of suitable habitat provided initially by 

woodland fragmentation and agricultural intensification, and subsequently by new woodland planting 

and agricultural set-aside (Robinson & Sutherland 2002; Stoate et al. 2009). Roe deer have responded 

well to the changes in landscape features and have spread into a variety of habitats(Andersen et al. 

1998; Ward 2005; Morellet et al. 2011). The behavioural plasticity of the species has been largely 

credited with underlying this great ecological flexibility (Hewison et al. 2001), yet there may also be a 

role for other factors such as physiological responses (e.g. changes in the digestive tract (Guilloteau et 

al. 2012; Serrano Ferron et al. 2012)) and genetics in explaining the adaptation of roe deer to new 

environments. Climate can directly affect behaviour and physiology, and indirectly affect habitat 

resource availability in roe deer. Variation in life history and population dynamics is observed in areas 

with mild climate (Gaillard et al. 1993; Gaillard et al. 1996; Hewison et al. 1996). Climate is also 

expected to play an important role at the range limits (Mysterud & Ostbye 2006), and in fawn survival 
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(Putman et al. 1996; Gaillard et al. 1997; Andersen & Linnell 1998) and body mass (Danilkin 1996; 

Kjellander et al. 2006). Roe deer allocate high levels of resources to reproduction, and are therefore 

very sensitive to variation in the availability of resources in spring (Pettorelli et al. 2003a). As income 

breeders, female roe rely more on current resource intake than fat reserves, to offset the costs of 

reproduction (Hewison et al. 1996; Andersen et al. 2000). Future changes in climate are predicted to 

have considerable effects on the distribution of deer in Europe (Irvine et al. 2007), and roe are 

predicted to increasingly move from forest to open habitat in response to resource availability 

(Gaillard et al. 2013). Recent studies of roe deer in Great Britain have identified both climatic and 

habitat structure variables associated with distribution and range expansion. Factors most strongly 

associated with roe deer presence were climate extremes: precipitation of the wettest month and 

temperature of the warmest month and the following habitat structures: broad-leaved woodland, 

mountainous/upland terrain, and arable horticultural land (Acevedo et al. 2010). Factors associated 

with range expansion were the landscape features of forest, mountainous/upland terrain and pasture, 

and biodiversity (Shannon index) (Putman & Ward, 2010).  

The questions I attempt to answer in this chapter are: 1) which AFLP loci are under selection in the 

roe deer genome? 2) are these loci affected by climate or habitat type? 3) if environmental variables 

are found to be associated with loci under selection, do they concur with the results of ecological 

models predicting roe distribution? Roe deer from expanding populations in three contrasting 

environments are examined: the Apennines in Italy, the lowlands in northern Germany and the oceanic 

wet and cold climate of Great Britain. This study design should help ameliorate the interference of 

differences in population history on the detection of adaptive genetic variants by isolating locus-

specific versus genome-wide patterns of variation, and capture a range of environmental variation. 

Despite the wide intra-specific variation of European roe (Andersen et al. 1998; Putman & Flueck 

2011), it is unlikely that these processes affecting the distribution of genome-wide variation would 

result in the same genetic patterns at a neutral locus in separate environmental conditions (e.g. Wark & 

Peichel 2010). Population-based analyses were conducted to search for outlier loci in each region, 

complemented by an individual-based landscape genomic exploratory analysis for loci associated with 



86 

 

climatic, altitudinal and land cover variables. Finally,the results of these analyses were compared with 

environmental variables found to predict roe deer distribution in order to identify loci potentially 

underlying the adaptation of roe deer to new environments. 
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Methods 

Sample collection and georeferencing 

Roe deer were sampled from 18 locations in Great Britain, five locations in Germany and two in Italy 

(Figure 4.1, Table 4.1). The regions sampled encompass a range of climatic variation, altitudes (1–

535 m above sea level), and habitat types. Tongue tissues from the British deer were preserved in 20% 

w/v DMSO in ddH2O saturated with NaCl, and stored at -20°C before extraction. Ear tissues from the 

Italian deer were dehydrated using 100% EtOH then dried before posting from Italy by Dr Massimo 

Scandura. DNA aliquots from the German populations were shared by Dr Frank Zachos. Six-figure 

grid references were recorded for the location of each British individual, and converted to 

latitude/longitude using the UK Grid Reference Finder Batch Convert Tool 

(http://gridreferencefinder.com/batchConvert/batchConvert.htm). Longitude and latitude co-ordinates 

for each European individual were converted from x/y location data using Batch Geocode 

(http://findlatitudeandlongitude.com/batch-geocode). 
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Figure 4.1 Maps of the sampled regions and sites of British and European roe deer. a) Great Britain, b) Northern Germany, c) Italy.Maps not to scale. 

Names and regions of sample sites are presented in Table 4.1.
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Environmental variables 

Variables are presented in Table 4.2. Altitude and 19 GIS-derived bioclimatic variables for current 

conditions (~1950-2000) at 2.5 arc-minutes resolution were sourced from the WorldClim database 

(Hijmans et al. 2005). These variables are derived from monthly temperature and rainfall values in 

order to generate more biologically meaningful variables representing annual trends, seasonality, and 

extreme or limiting environmental factors (http://www.worldclim.org/bioclim), falling into two broad 

categories – temperature and precipitation. To minimise the redundancy of bioclimatic variables in the 

analysis, correlation coefficients between each pair of variables were calculated. Where pairs of 

variables had a correlation coefficient > 0.8, the variable deemed to be less biologically-relevant (e.g. 

not a priori associated with species distribution, derived variables) was excluded from further 

analyses. Nine bioclimatic variables were retained in the dataset. Land cover data at 30 arc-seconds 

resolution was sourced from the Global Land Cover 2000 (GLC2000) Project 

(http://bioval.jrc.ec.europa.eu/products/glc2000/products.php). Three forest (Tree Cover, broadleaved, 

deciduous, closed; Tree Cover, needle-leaved, evergreen; Tree Cover, mixed phenology or leaf type) 

and three non-forest (Shrub Cover, closed-open, deciduous; Herbaceous Cover, closed-open; 

Cultivated and managed areas) GLC2000 Global Classes were represented in the dataset. These were 

classified into four habitat structure types: broad-leaved woodland (deciduous, mixed, open birch, 

scrub), coniferous forest (conifers, felled and new plantations), pastoral (grassland), 

arable/horticultural land (arable cereals, arable horticulture and non-rotational arable and horticulture) 

and recoded following Acevedo et al. (2010). Variables at the sampling location of each individual 

were extracted using DIVA-GIS 7.1.6.2 (http://www.diva-gis.org). 
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Table 4.1 Sampled regions and sites of British and European roe deer. GB = Great Britain, 

latitude and longitude co-ordinates are midpoints of the sampled sites, n = number of AFLP genotyped 

individuals. 

 

Region Site name Site code Latitiude Longitude n

Ayrshire AY 55.2105 -4.4816 24

Borders BOR 55.8118 -2.3487 8

Northumberland NUM 55.6224 -2.2889 25

Hamsterley HAM 54.8924 -1.9127 22

Kielder KL 55.4154 -2.1200 25

North Yorkshire NY 54.2935 -0.6449 28

Windermere WM 54.2670 -2.9085 6

Thetford TH 52.5152 0.6852 24

East Norfolk EN 52.8589 1.3079 4

West Sussex WS 50.9226 -0.6910 19

East Sussex ES 51.0654 -0.2646 18

Windsor WIN 51.4702 -0.6916 4

Romsey RO 50.9807 -1.4973 9

Milton Abbas MA 50.8382 -2.2957 14

Cranborne CR 50.9193 -1.9217 26

Devon DV 50.8594 -3.2503 29

Cornwall CW 50.8737 -4.4844 5

Powys WA 52.2956 -3.1422 11

Fehmarn FN 54.4601 11.1337 12

Föhr FO 54.7182 8.5031 12

Nordfriesland NF 54.8788 8.8485 11

Rantzau RA 53.7278 9.8497 15

Schleswig SL 54.5854 9.5113 13

Arezzo AR 43.5000 11.9570 8

Lucca LU 43.9600 10.4783 25

GB - North

Northern Germany

Italian Apennines

GB - South

GB - East Anglia
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Table 4.2 Bioclimatic, topographic and land cover variables extracted for the location of each 

individual sampled. Nine bioclimatic variables indicated in bold and all four habitat types were 

retained for use in the analyses. 

 

  

Variable Abbreviation / Habitat type

Topography  Altitude Alt

 Annual Mean Temperature BIO1

 Mean Diurnal Range (Mean of monthly (max temp - min temp)) BIO2

 Isothermality (BIO2/BIO7) (* 100) BIO3

 Temperature Seasonality (standard deviation *100) BIO4

 Max Temperature of Warmest Month BIO5

 Min Temperature of Coldest Month BIO6

 Temperature Annual Range (BIO5-BIO6) BIO7

 Mean Temperature of Wettest Quarter BIO8

 Mean Temperature of Driest Quarter BIO9

 Mean Temperature of Warmest Quarter BIO10

 Mean Temperature of Coldest Quarter BIO11

 Annual Precipitation BIO12

 Precipitation of Wettest Month BIO13

 Precipitation of Driest Month BIO14

 Precipitation Seasonality (Coefficient of Variation) BIO15

 Precipitation of Wettest Quarter BIO16

 Precipitation of Driest Quarter BIO17

 Precipitation of Warmest Quarter BIO18

 Precipitation of Coldest Quarter BIO19

 1. Tree Cover, broadleaved, deciduous, closed

 6. Tree Cover, mixed phenology or leaf type

 2. Tree Cover, needle-leaved, evergreen Coniferous forest 

12. Shrub Cover, closed-open, deciduous

13. Herbaceous Cover, closed-open

16. Cultivated and managed areas Arable/horticultural land 

Temperature

Precipitation

Pastoral

Broad-leaved woodland 

GLC2000 Global Class
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Genetic data 

DNA extraction and AFLP genotyping was carried out as described in Chapter 3. Roe deer samples 

from across Great Britain, Italy and Germany (Table 4.1) were genotyped and scored concurrently, 

with samples included on the same plates and using the same PCR machine in order to ensure 

comparability and repeatability among profiles. 

 

DNA extraction 

Total genomic DNA was extracted from tissue samples using DNeasy Blood & Tissue Kits (Qiagen, 

UK) following the manufacturer‟s instructions. DNA was extracted from approximately half of the 

samples using the 96Blood&Tissuekit with 96-well plates; the remainder of DNA extractions were 

conducted with the Blood & Tissue kits in batches of 24 individual extraction tubes. Some samples 

were coated with hair or soil, so were wiped clean with ethanol before the digestion step. For each 

sample ~25mg of tissue was cut from the tongue and diced using sterilised forceps and a fresh scalpel 

blade. Each batch of extractions included one negative to check for contamination between 

wells/tubes. Subsets of tissue samples from each population were extracted twice independently, in 

order to allow estimation of genotyping error rates (Bonin et al. 2004). 1µl of each DNA extract was 

added to 4µl loading buffer and electrophoresed on 1.5% agarose gels in 1X TAE buffer for 90 min at 

~120V to examine the extract for degradation. Substantially degraded DNA extracts were excluded 

from further analysis. DNA concentration was then measured using a Nanodrop 2000 (Thermo 

Scientific). 

 

Genotyping 

AFLP profiles were obtained from the samples using a modified version of Protocol 2 described by 

Papa et al. (2005). The AFLP technique comprises restriction enzyme digestion of total genomic DNA 



93 

 

followed by ligation of adaptors, then two rounds of selective PCRs which generate a set of 

polymorphic fragments (Vos et al. 1995). Potential combinations of selective amplification primers 

were trialled on a subset of samples representing most populations, in order to test the genotyping 

quality and select the best four with which to genotype the rest of the samples. Primers were selected 

on the basis of maximising the number of polymorphic peaks per sample, evenness of peak size 

distribution in the 50-500bp range, and repeatability. 30 combinations of selective amplification 

primers were initially tested, and four were chosen for subsequent analyses. Reactions were carried out 

as follows: ~500 ng of DNA was dried at 60°C in a vacuum oven then resuspended in 5.5 µl nuclease-

free water (Sigma-Aldrich). Initial restriction enzyme digestion using 5 U TaqI (Thermo Scientific) 

per sample was carried out at 65°C in a buffer solution (10 mMTris-HCl [pH 8.0 at 37°C], 5 mM 

MgCl2, 100 mMNaCl, 0.1 mg/mL Bovine Serum Albumin [BSA]) for 90 min. Subsequent digestion 

with 10 U EcoR1 (Applied Biosystems) was carried out at 37°C in the buffer solution described above 

for 2 h. Next, the TaqI adaptors (Ajmone-Marsan et al. 1997) were prepared in 100 μl batches at 50 

pmol/μl by heating an equimolar solution of the two oligonucleotides TaqI top strand (5'-

GACGATGAGTCCTGAC) and TaqI bottom strand (5'-CGGTCAGGACTCAT) to 95°C for 3 min 

and cooling slowly to room temperature. EcoRI adaptors came from the AFLP Regular Genome Plant 

Mapping Kit (Applied Biosystems). To ligate adaptors, a solution containing 5 pmolEcoRI adaptors 

and 50 pmolTaqI adaptors, 1 U T4 DNA ligase (Promega), 1X T4 DNA Ligase buffer (Promega), 50 

ng/μl BSA and 1mM Adenosine 5′-triphosphate (ATP) (Sigma-Aldrich) was added to the digested 

DNA solution, mixed gently and the combined solution incubated at 16°C for 17 h. The resulting 

template mixture was diluted fourfold in nuclease-free water (Sigma-Aldrich). All pre-selective and 

selective amplifications were carried out with Fermentas (Termo Scientific) PCR mastermix, using a 

Veriti® 96-Well Fast Thermal Cycler (Applied Biosystems). A random subsample of the template 

fragments was obtained through pre-selective amplification using the primers E01 (5'-GAC TGC GTA 

CCA ATT CA) and T01 (5′-GAT GAG TCC TGA CCG AA) described by Ajmone-Marsan et al. 

(1997). 5 μl of the diluted DNA template mixture was added to 75 ng of each primer in a 20 μlPCR 

mix. PCR conditions were as described in Papa et al. (2005). The reaction products were diluted 20 

times with nuclease-free water (Sigma-Aldrich). Selective amplifications used 5 μl of the diluted 
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product with 10 – 15 ng of fluorescently labelled EcoRI (5′-GAC TGC GTA CCA ATT CNN NDYE 

[Applied Biosystems]) selective primer and 30 ng of TaqI (5′-GAT GAG TCC TGA CCG ANN N) 

selective primer in a 20 μlPCR mix. Touchdown PCR conditions were as described in Papa et al. 

(2005). The four EcoRIand TaqI primer combinations were: EcoRI-ACAFAM/TaqI-ACT, EcoRI-

AAGJOE/TaqI-CAT, EcoRI-AACNED/TaqI-CCA, EcoRI-ACAFAM/TaqI-CCA. 1 – 1.2 μl of each 

selective PCR product from each sample was mixed with 10 μlHi-Di formamide (Applied Biosystems) 

and 0.2 μl GeneScan-500 ROX size standard (Applied Biosystems) in a single well for fragment 

analysis by capillary electrophoresis on an ABI 3130xl genetic analyser (Applied 

Biosystems). Samples with genotype failures were re-run once. They were re-amplified from genomic 

DNA and the undiluted pre-selective reaction products were electrophoresed on 1.5% agarose gels at 

90V for 2 h to check for the presence of amplified fragments before selective amplification and 

capillary fragment analysis was re-run. 

AFLP electropherograms were visualised using GeneMapper v. 4.0 (Applied Biosystems). Profiles 

with poor PCR amplification (i.e. few peaks or peak strength declining rapidly with fragment size) or 

poor sizing were removed from the dataset. Bins within the range of 50 to 500 bp were manually 

identified. All bins had at least one peak of height ≥100 relative frequency units (rfu). In order to 

minimise the effect of size homoplasy (Caballero et al. 2008) on the results, bin widths were set at <1 

bp and had to be non-overlapping. Bins in which peaks were >0.3 bp apart were removed from the 

analysis, and different bins had to be separated by >0.4 bp. Once the maximal bin set was created, 

tables of „sum of signal‟ normalised peak heights for each primer pair were exported from 

Genemapper. AFLPScore v. 1.4b (Whitlock et al. 2008) was used to optimise scoring parameters and 

create a binary genotype table for each primer pair.Locus and phenotype rfu selection thresholds were 

explored for permutations of scoring methods (i.e. filtered loci/absolute thresholds, unfiltered/absolute, 

filtered/relative and unfiltered/relative) in AFLPScore, with the aim of maximising the number of loci 

retained and minimising the mismatch error rate. A binary genotype table for each primer pair was 

then generated under the optimal threshold settings, and the four tables were concatenated. Mean error 

rate was 7.3% (± 0.4 S.D.) which is slightly higher than the normal range of error rates using AFLPs 
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(Bonin et al. 2004). Loci with zero allele frequencies, and those with a fragment present or absent in 

one individual only were then removed, giving a final dataset comprising 168 polymorphic locifor 397 

individuals. 

 

Population structure and historical effects 

Support for considering regional groupings of populations as independent regions with no recent 

admixture between them was assessed by individual-level Bayesian cluster analysis conducted in 

STRUCTURE v. 2.3.4 (Pritchard et al. 2000; Falush et al. 2007). The most plausible number of 

populations (K), and the probability of assignment for each individual to each population (Q) was 

assessed with and without admixture-based ancestry models, assuming independent and correlated 

allele frequencies (Falush et al. 2003). For each model, seven runs were conducted for each value of K 

between 1 and 20, each using 100,000 Markov Chain Monte Carlo (MCMC) generations with 50,000 

generations discarded as burn-in. The most probable value of K was approximated using two methods. 

The first determines the highest log-probability of the data Pr(X|K) as described in the STRUCTURE 

manual (Pritchard et al. 2000) using a plot of Pr(X|K) averaged across runs against K. The smallest 

value of K where log-probabilities are similar was determined to be the value of K with the highest 

hierarchical level of population structure in these data. The second approach assessed the rate of 

change in log-likelihood between successive values of K (i.e. ΔK) (Evanno et al. 2005). ΔK = |mL (K 

+ 1) - 2mL (K) + mL(K - 1)| / sdL(K), where mL is the mean and sdL is the standard deviation of the 

likelihood value (L) across the seven independent runs. The number of populations described by the 

modal value in the ΔK distribution was determined to be the correct value of K. Results from the runs 

were summarised and plotted using STRUCTURE HARVESTER Web v. 0.6.93(Earl & vonHoldt 

2012). Potentially admixed individuals can introduce uncertainty to landscape genomic analyses 

(Bothwell et al. 2013). In order to minimise the incidence of spurious associations between AFLP loci 

and environmental variables, all individuals with an average population membership probability <0.8 

were excluded from the dataset, resulting in a final dataset of 385 individuals. These were grouped 
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into regions on the basis of the Structure analysis and known population history in Great Britain. 

Pairwise genetic differentiation (ΦPT) among the five regions was estimated using a dataset with outlier 

loci removed in GeneAlEx v. 6.5 (Peakall & Smouse 2012). 

 

Outlier-based analysis 

To identify outlier loci, the regions were analysed separately taking the approach of Beaumont & 

Nichols (1996) and Beaumont & Balding (2004) using a modification of the FDIST2 

algorithm (Beaumont & Nichols 1996) for dominant markers (DFDIST) implemented in 

Mcheza (Antao& Beaumont 2011). DFDIST estimates FST values conditional on expected 

heterozygosity. Allele frequencies were estimated under a Bayesian method (Zhivotovsky 1999), and 

unbiased FST values with respect to sample size (Wier & Cockerham 1984) were estimated for each 

locus. The mean “neutral” FST was calculated and used in the simulations (Caballero et al. 2008). 

Coalescent simulations of 50,000 loci were performed to generate an FST null distribution. Loci with 

unusually high FST values relative to the null distribution are identified as outliers (potentially under 

divergent selection). Only outliers under divergent selection were considered, as the power of this 

method to detect balancing selection is low (Beaumont & Nichols 1996; Beaumont & Balding 2004). 

Analyses were conducted under the most stringent settings with a 99.5% CI and a 1% FDR to 

minimise the occurrence of false positives. All other parameters were kept at the default values with θ 

= 0.1, β-a andβ-b = 0.25 and a critical frequency = 0.99. 

 

Landscape genomic analysis 

The Spatial Analysis Method (SAM) is individual-based, and does not rely on assumptions regarding 

the structure of the sampled populations (Joost et al. 2008). The null hypothesis of the SAM - that 

there is no association between a locus and an environmental variable - is rejected when the model 



97 

 

containing the environmental variable better explains the allele frequency distribution better than a 

model containing only a constant (Joost et al. 2007). Multiple univariate logistic regressions between 

environmental variables at sample locations and allele frequencies at each locus were carried out using 

MatSAM v. 2 (Joost et al. 2008). Wald tests were used to estimate statistical significance of 

coefficients in the logistic regression models but not likelihood ratio (G) tests, as these do not allow 

for missing data. AFLP loci were considered to be significantly associated with environmental 

variables at a 99% CI after Bonferroni correction of the significance level for multiple comparisons 

(set to 2.59 × 10
−6

). 



98 

 

Results 

Outlier-based analyses 

A total of 168 polymorphic AFLPs were generated using four primer pairs from 397 individuals in 25 

populations (Table 4.2). 30 individuals retained in the dataset had < 50% missing genotype data. The 

mean posterior probabilities of the STRUCTURE runs suggested an optimal K = 9 under the 

admixture model (Figure 4.2). There was a clear division between clusters of individuals sampled 

from Germany, Italy and Great Britain (Figure 4.3). Within the British samples, the admixture model 

highlighted the introduction of Scottish deer into Southern England, while the East Anglian deer 

clustered distinctly. Based on the population demographic history of roe deer in Great Britain, with 

southern populations having been founded from multiple translocations while northern populations 

have expanded from refugia(Whitehead 1964; Baker & Hoelzel 2013) populations from these areas 

were pooled into separate regions for subsequent analyses. The Welsh population was assigned to the 

southern region on the basis of cluster membership from the Structure results. All five groupings of 

regional populations were significantly genetically differentiated from each other (Table 4.3). Out of 

168 AFLP loci analysed, 16 (9.52%) were identified as outliers by DFDIST analysis (99.5% CI; FDR 

= 0.01) in total across all regions. Four of these loci were identified in two regions (Table 4.4). 
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Table 4.3 Pairwise ΦPT values between the five regions below diagonal, and probabilities based a 

permutation test with 10,000 pseudoreplicates are above the diagonal. 

 

 

  

GB - North GB - East Anglia GB - South Northern Germany

GB - North - 0.002 0.000 0.000

GB - East Anglia 0.055 - 0.000 0.000

GB - South 0.148 0.160 - 0.001

Northern Germany 0.102 0.106 0.303 -

Italian Apennines 0.126 0.098 0.321 0.144
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Figure 4.2 Summaries of STRUCTURE output.a) Mean posterior probabilities of the data averaged 

across seven runs against K for K = 1 to K = 20. Error bars represent standard deviations after burn-in. 

b) Plots of ΔK against K. 

 

 

Figure 4.3 Histogram of posterior assignment probabilities determined by STRUCTURE where 

K = 9 assuming an admixture ancestry model. Each vertical bar represents an individual and its 

assignment proportion into one of nine clusters. Individuals are arranged into regions, and subdivided 

by sample sites. GB-N = Northern Great Britain, GB-S = Southern Great Britain, GB-EA = East 

Anglia in Great Britain, N Germany = Northern Germany, Italy = Italian Apennines. 
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Table 4.4 AFLP loci detected as outliers potentially under divergent selection by DFDIST, and 

loci with significant associations with environmental variables using SAM. An “x” indicates the 
locus was detected as an outlier under divergent selection at the 99.5% CI and a 1% FDR, and 

“xx”indicates that theoutlier status was detected in two regions. For SAM, environmental variables 

significantly correlated with a locus at a 99% CI after Bonferronicorrection are listed. Loci detected by 

both approaches are in bold.  
 

  

Locus DFDIST Environmental assocation

3 xx

4 x BIO13 BIO17 Precipitation

5 BIO4 BIO8 Temperature

7 x

10 x

11 Alt BIO1 BIO6 Altitude+Temperature

14 BIO1 Temperature

15 BIO6 Temperature

16 x

19 BIO6 Temperature

32 BIO1 BIO4 BIO5 BIO17 Temperature+Precipitation

41 BIO1 BIO5 Temperature

42 xx BIO12 BIO13 Precipitation

43 BIO13 Precipitation

44 x

45 BIO6 Temperature

46 x BIO12 BIO13 Precipitation

74 x BIO4 BIO6 BIO8 Temperature

77 BIO4 BIO6 BIO8 Temperature

82 x BIO13 Precipitation

83 BIO6 BIO13 Temperature+Precipitation

88 x Alt BIO13 BIO17 Altitude+Precipitation

89 xx

98 x BIO1 BIO4 BIO5 Temperature

99 BIO1 BIO4 BIO5 Temperature

119 BIO12 Precipitation

123 x BIO13 Precipitation

124 BIO13 Precipitation

127 Alt Altitude

136 xx

139 Alt BIO1 BIO4 BIO5 Altitude+Temperature

149 BIO1 BIO5 BIO6 Temperature

159 BIO4 Temperature

161 BIO4 Temperature

162 BIO4 BIO5 Temperature

165 x

SAM (associated variables)
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Loci-environment associations 

In the SAM analysis, 28 loci (16.7%) were identified as being associated with one or more 

environmental variables (Table 4.4). Eight bioclimatic variables and altitude were associated with at 

least one locus; however no associations with habitat type were detected. 11 loci were associated with 

temperature, 18 with precipitation and four with altitude. Two loci were associated with both 

temperature and precipitation, two had an association with both altitude and temperature, and one was 

associated with altitude and precipitation. One locus was associated with altitude only.  

 

Concordance with environmental variables predicting roe distribution 

Seven of the 28 loci associated with environmental variables were also detected as outliers by 

DFDIST. Of those seven, one locus was detected as an outlier in two regions and associated with two 

precipitation variables: Annual precipitation (BIO12) and precipitation in the wettest month (BIO13). 

Of the eight climatic variables associated with loci putatively under section, two have been found to 

predict roe deer presence in Great Britain (Acevedo et al. 2010). The variable most strongly associated 

with roe presence (BIO13) is linked to 9 loci, of which 6 were detected as outliers. The second most 

strongly associated variable: Maximum temperature of the warmest month (BIO5) is linked to 7 loci, 

of which only one was detected as an outlier. 
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Discussion 

Connection with environmental predictors of roe deer distribution 

These findings provide evidence for the association of loci under divergent selection with climatic 

variables. The association of variation in extremes of precipitation (BIO13) and temperature (BIO5) 

with roe deer presence in Great Britain and with loci under selection suggests that climatic extremes 

may be acting as selective pressures on roe deer populations. Spring rainfall is known to affect the 

summer survival of both male and female fawns (Gaillard et al. 1997). The effect may be acting 

directly through lower mortality due to overheating during droughts (or higher mortality in moist areas 

such as Scotland), or indirectly through effects on resource availability.  

The relationship between temperature and selective pressure is less clear. Severe winters result in 

higher mortality in roe deer (Gaillard et al. 1993). The minimum temperature of the coldest month 

(BIO6) was negatively associated with roe presence in Great Britain (Acevedo et al. 2010), and six 

loci (one identified as being under divergent selection in the Italian population) are associated here. 

Resource availability and nutritional quality are seasonally variable (Moser et al. 2006) and higher 

annual and maximum temperatures should also correlate with greater resource availability. A recent 

study found that higher spring temperatures around the birth of a female fawn have a negative effect 

on their adult body mass later in life, potentially due to environmental stress (Hamel et al. 2009a), and 

this impacts upon annual reproductive success of females (Hamel et al. 2009b). 

The lack of any genetic association with habitat type is likely to reflect the considerable behavioural 

plasticity of the roe deer in response to landscape structure (Hewison et al. 2001; Jepsen & Topping 

2004). Open-land roe deer populations show distinct differences in spatial and social behaviour, 

including larger group sizes (Putman 1988), compared with forest-dwelling roe deer populations 

(Jepsen & Topping 2004). Given the ability of roe to change rapidly from „solitary‟ forest-dwelling 

behaviour to grouping behaviour in open habitats, phenotypic plasticity or behavioural adaptation is 
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more likely to explain roe presence in these environments than natural selection (Putman & Flueck 

2011). 

 

Evidence for adaptation 

The proportion of outliers detected by DFDIST (9.52%) is within the range of most AFLP genome 

scans using the program across all species (5 – 10%) (Nosil et al. 2009) and for plants (0.2 – 17.1%; 

mean of ~5.5%) (Strasburg et al. 2012). However, direct comparisons can be misleading as the 

sampling, study designs, and stringency criteria intervals used by other studies vary widely (see Nosil 

et al. (2009) for a review). Number of outlier loci detected by DFDIST per region varied between 

seven in Italy and only one in Germany. Interestingly, the locus identified as an outlier in Germany 

(136) was also detected as an outlier in Italy. Applying the landscape genomic method (SAM analysis) 

to the data set detected a considerably higher proportion of outlier loci (16.7%) than the outlier 

analysis. Taken together, these results suggest that annual precipitation (associated with 5 variables in 

the SAM analysis, 4 of which are identified as candidate loci under divergent selection by the outlier 

analysis) and precipitation of the wettest month (associated with 4 variables in the SAM analysis, 3 of 

which are identified as candidate loci under divergent selection by the outlier analysis) are exerting a 

selective pressure on roe deer populations. 

Differing results from genome scans using different methods are common (Nosil et al. 2009; Nunes et 

al. 2011). The differences in number and identity of loci detected by DFDIST and SAM analysis may 

be explained by the different focus on tempo and mode of selection between the methods (Nielsen 

2005; Sabeti et al. 2006; Nielsen et al. 2007). DFDIST implemented in Mcheza(Antao & Beaumont 

2011) is population-based, while SAM is an individual-based method which performs analyses 

without reference to the population with which the individuals were sampled from (Joost et al. 2007; 

Joost et al. 2008). Only loci identified as being under divergent selection were reported from the 

DFDIST analysis due to its low power to detect balancing selection, while loci detected by the SAM 



105 

 

analysis may be under divergent or balancing selection (Joost et al. 2007). Additionally, a variety of 

additional biological and technical factors can have a role in causing false-positive and false-negative 

results in genome scans (Strasburg et al. 2012). For example, the Italian and German study sites have 

lower breadth of environmental variation than the British, which may have influenced the power to 

detect significant environmental associations in those regions. 

The pooling of populations with varying patterns of neutral differentiation from geographically 

distinct sites may violate the assumptions of the finite-island model used by the DFDIST outlier-based 

analyses, however simulations have shown that the method is robust to heterogeneous levels of gene 

flow between populations (Beaumont & Nichols 1996). Studies adopting a similar approach to pooling 

distinct populations and making comparisons between them for repeated outlier detection have yielded 

convincing results (Bonin et al. 2006; Nosil et al. 2008; Nosil et al. 2009; Buckley et al. 2012), and 

Mcheza implements an improved method for accurately approximating the simulated distribution of 

mean FST by applying a correction factor (Antao & Beaumont 2011). Nevertheless, these results ought 

to be cautiously interpreted as significant deviations from the model can result in a higher false-

positive rate (Excoffier et al. 2009b).  

While the outlier-based analysis should be robust to heterogeneous levels of gene flow between the 

pooled populations (Beaumont & Nichols 1996; Beaumont 2005), and the most stringent CI and FDR 

criteria were applied to the DFDIST analysis, the application of a different outlier-based method could 

help to confirm which outliers are most likely to be genuinely under divergent selection. Of particular 

concern here is the confounding factor of population structure within the regions analysed. Isolated 

populations and hierarchical structuring can lead to an increased rate of false-positive results from 

outlier-based approaches assessing allele frequency divergence (Excoffier et al. 2009b). The overall 

FST across sites varied between the regions analysed. The British regions had relatively high between 

population differentiation relative to the Italian and German regions studied. STRUCTURE has been 

found not to perform well when sampled populations deviate from HWE, which is the case in other 

roe populations (e.g. Coulon et al. 2006), and small sample sizes can affect the power to correctly 
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assign individuals to the main genetic clusters (Evanno et al. 2005; Kalinowski 2011). Conducting a 

spatially-explicit analysis which can account for admixture and does not require defining parental 

populations, such as TESS (Durand et al. 2009) may be better able to describe underlying population 

structure in the dataset. 

A population genetic study of the north German roe deer based on microsatellite and mtDNA control 

region data found that all populations were significantly differentiated from one another (Zachos et al. 

2006a), while population-level analysis of the AFLP data generated from a subset of the same DNA 

samples used in those studies did not find significant levels of between-population genetic 

differentiation (Appendix 4.2). The two island populations FO and FN, separated by the mainland 

have the highest level of differentiation (ΦPT = 0.031, P > 0.1). These island populations were founded 

by translocations and subsequently supplemented by additional introductions (Zachos et al. 2006a; 

Zachos et al. 2006b), which is likely to have reduced genetic differentiation between them and 

mainland populations. Zachos et al. (2006b) used highly polymorphic markers with many alleles to 

analyse differentiation. Discrepancies between AFLP and microsatellite markers are common, with 

AFLPs often finding different levels of differentiation between populations (Mariette et al. 2001; 

Mariette et al. 2002; Alacs et al. 2011). Bayescan(Foll & Gaggiotti 2008) allows for variable within-

population FST values, may have a lower false-positive rate than other outlier-detection methods 

(Narum & Hess 2011) and is the most conservative outlier-based method in a simulation study (Perez-

Figueroa et al. 2010). However, both methods are still susceptible to finding false-positives where 

allele frequencies are correlated between pooled populations (Robertson 1975; Excoffier et al. 2009b). 

Comparing results between different regions is therefore unlikely to be fruitful using this additional 

method. Given the recent expansion of the populations within the regions analysed here, some false-

positives are expected due to not taking population structuring into account. A new methodology 

which estimates the null FST distribution while accounting for population structure has recently been 

developed (Excoffier et al. 2009b), but unfortunately an implementation for dominant marker data is 

not yet available. 
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Limitations and future work 

This study is the first to apply population genomic methods to identifying loci under selection in 

European roe deer. The aim was to find candidate loci underlying adaptation to environmental 

conditions, some of which have been demonstrated a priorivia ecological modelling to be associated 

with roe distribution (Acevedo et al. 2010) and expansion (Putman & Ward, 2010). Examining more 

roe populations from different areas representing a broad range of environmental variation could give 

greater confidence in the results. Accounting for population structure could further reduce the false-

positive rate (Zhang et al. 2008) in the outlier based analyses. Finding a significant correlation when 

linearly regressing the allele frequencies of the candidate loci in each population analysed against the 

associated environmental variables would provide further support for their having a role in local 

adaptation(Narum et al. 2010). However, in some of the regions the populations are rapidly expanding 

their range, and under these conditions rare alleles can suddenly increase in frequency in peripheral 

populations at the leading-edge of the expansion (Excoffier 2004; Excoffier & Ray 2008; Excoffier et 

al. 2009a; Arenas et al. 2012). As a result, the false-positive rate may increase as loci swept up by a 

wave of increasing allele frequency are detected alongside loci under selection. 

This study is also limited by the influence of population structure on the study regions, the influence of 

spatial autocorrelation on patterns of genetic variation, the marker system used, and the statistical 

methods used. AFLPs are a reasonably cost-effective tool for characterising the genome of non-model 

species (Meudt & Clarke 2007), but are not capable of genome-wide coverage and are hampered by 

their dominant nature and difficulties with reliable scoring (Herrmann et al. 2010). Attention has 

recently turned towards developing statistical methods for next-generation population genomics, with 

strong advances being made in reducing the influence of underlying assumptions on the false positive 

rate in identifying loci under selection, such as incorporating genetic distances in measures of genetic 

differentiation (Gompert & Buerkle 2011). 
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The ideal markers for studying adaptation will be directly involved in the genetic mechanisms of 

adaptive traits, have a sequence of known function, and exhibit quantifiable variation. Characterising 

the candidate loci in roe deer is therefore the next step in determining their contribution to adaptation. 

Further studies could isolate and sequence the genomic regions identified as being under selection, 

then compare the sequences with the annotated bovid genomes. This approach can help to determine 

whether the identified genomic region has a functional or regulatory role (Nielsen 2005; Stinchcombe 

& Hoekstra 2008). 
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Chapter 5: Genetic structure and diversity of native and introduced 

Chinese water deer: implications for conservation 

Introduction 

Sufficient genetic variation is vital for the long-term survival of a population (Lande 1988), 

particularly in the case of rapid environmental change (Lande & Shannon 1996). The adaptive 

potential and reproductive fitness of a population is generally enhanced by greater levels of genetic 

diversity, while inbreeding is likely to occur in small populations with low levels of genetic diversity 

(Frankham 1995). Furthermore, loss of genetic variation in small populations may increase extinction 

risk due to increased disease susceptibility, and decreased reproductive fitness and adaptive flexibility 

(Allendorf & Luikart 2007). Determining levels of genetic diversity in threatened species can therefore 

help inform suitable conservation strategies (Frankham et al. 2002). The aim of this study is to 

investigate levels of genetic diversity and partitioning of genetic variation in native and introduced 

populations of Chinese water deer (Hydropotes inermis), in order to provide recommendations for the 

international conservation of the species.  

The Chinese water deer is a small ruminant species in the family Cervidae, and the only cervid species 

that does not possess antlers. Its preferred habitats are reed-beds or tall, damp and undisturbed 

grasslands (Zhang et al. 2006). The historical distribution of the species once stretched along the 

eastern part of China from Liaoning to Guangdong out to the lower Yangtze Basin, and the Korean 

Peninsula (Ohtaishi & Gao 1990). The population in China has reduced considerably in range and 

numbers recently due to habitat loss and poaching (Hu et al. 2006). It is currently restricted to 

fragmented populations in the eastern Yangtze Basin and the Zhoushan Islands off the coast of 

Zhejiang Province. Published estimates of total Chinese water deer numbers in China have declined 

from ~20,000 in 1993 to fewer than 10,000 in 2009 (Cooke 2009). The species is classified as 

Vulnerable on the IUCN Red List. In China, habitat destruction and fragmentation looks set to 
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continue at an accelerating pace. The Lower Yangtze wetlands, especially Dongting and Poyang Lakes 

are being degraded by pollution and sedimentation (Dudgeon 2010). 

Chinese water deer were introduced to Great Britain in the 1870s, initially to London Zoo. Starting in 

1896, individuals were sent gradually to Woburn Abbey in Bedfordshire. In 1929, 32 individuals were 

transferred to the nearby Whipsnade Zoo (Cooke & Farrell 1998). During World War II a number of 

Chinese water deer escaped from Woburn and established localised feral populations (Cooke 2009). In 

1950 a small number of deer were released near Woodwalton Fen National Nature Reserve (Chapman 

1995). Wild populations founded from escapes and deliberate releases since the 1940s are now 

discontinuously distributed across Bedfordshire, Cambridgeshire, Norfolk and Suffolk (Cooke & 

Farrell 2008). The most recent distribution map from the National Deer Survey conducted by the 

British Deer Society (Figure 5.1) shows continued range expansion of the Chinese water deer in Great 

Britain. Total estimated numbers in Great Britain stand at 7,000 in the wild (A. Cooke pers. comm.) 

and >500 in semi-captivity. This represents a significant proportion (over 40%) of the global numbers 

of this subspecies of Chinese water deer. Various zoological parks across Europe have been stocked 

with Chinese water deer from Whipsnade Zoo (N. Lindsay pers. comm.). 

Based on analysis of the mtDNA control region of the deer in China, Hu et al. (2006) showed 

significant differentiation between Zhoushan Islands and mainland populations and relatively high 

levels of genetic diversity in the mainland Chinese populations. These analyses however pooled very 

low numbers of samples per mainland population (1<n<6) collected up to 47 years apart across four 

provinces (some over 500km apart), and compared them with a sample from the Zhoushan Islands of 

which over one third were sourced from a captive breeding centre. The findings are unlikely to 

represent true levels of genetic diversity within mainland Chinese populations, nor to give an accurate 

estimate of differentiation of these populations from the Zhoushan Islands populations. A subsequent 

study using seven microsatellite loci to compare a mainland Zoo population (again containing 

individuals from different regions) with one wild and one captive population from the Zhoushan 

Islands also found high levels of genetic diversity in the mainland population, significant 
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differentiation between the mainland and Zhoushan Islands, and described the Zhoushan Islands 

population as “severely inbred” (Hu et al. 2007). Both studies recommend the establishment of a 

captive breeding programme for mainland populations. A programme aiming to reintroduce the deer to 

the suburbs and wetlands surrounding Shanghai was already underway at the same time. This 

programme has now established five captive breeding populations sourced from the Zhoushan Islands, 

and recently released two of these into the wild (M. Chen pers. comm.). 

This investigation of the population genetics of the Chinese water deer focuses on two main questions: 

1) how do levels of diversity and differentiation compare between native and introduced populations? 

2) what is the source of the British population? If the British populations are not significantly 

differentiated from the mainland Chinese populations, they may be able to supplement declining 

populations. Alternatively, if the British populations are significantly differentiated, or their source 

population has gone extinct they may have value as a „reservoir‟ of lost genetic variants which could 

be sourced for reintroduction to uninhabited areas of the historical range.  

In this study, mtDNA sequence data from the entire non-coding control region (926 bp) and protein-

coding cytb gene (1140 bp) were analysed for over 106 individuals from 10 locations in the native and 

introduced ranges. This is the first genetic study of Chinese water deer to examine populations in the 

introduced range. Both molecular markers show high levels of diversity in native Chinese populations, 

significant differentiation between and within the Chinese and British populations, and that very few 

haplotypes are shared between deer in the native and introduced ranges. 
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Figure 5.1 Chinese water deer distribution in Great Britain and sample sites. The occupied grid 

square from 1972 in North Yorkshire is now unoccupied. EN = East Norfolk, BM = Bure Marshes, 

YM = Yare Marshes, WS = Whipsnade Zoo, WWF = Woodwalton Fen. 
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Figure 5.2 Sample sites of Chinese water deer in the native range. JS = Jishan Island, Dongting 

Lake, YC = Yancheng Coastal Nature Reserve, DF = Dafeng Nature Reserve, ZS = Zhoushan Islands. 
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Materials and Methods 

In order to compare genetic variation within and between populations in China and those in Great 

Britain and France, a population genetic study of the Chinese water deer encompassing their native 

and introduced ranges was conducted. Samples collected from the introduced range were genotyped in 

this study, and combined with existing sequence data from the native range for the analyses. mtDNA 

control region and cytb sequences fromChinese populations (Figure 5.2) were obtained by Dr Min 

Chen from populations in three mainland sites: Jishan Island on Poyang Lake in Jiangxi Province, 

Yancheng and Dafeng coastal wetlands in Jiangsu Province, and an archipelago: Zhoushan Islands in 

Zhejiang Province using a combination of faecal and hair samples. 

 

Sample collection 

Samples from Great Britain were obtained from wild populations in Cambridgeshire and Norfolk, and 

from a semi-captive population in Bedfordshire (Figure 5.1). Samples from France were obtained from 

a semi-captive population in Rhodes (St. Croix). Sample collection locations and number are 

presented in Table 5.1. Muscle tissue was collected from deer shot in season (at East Norfolk and three 

from Woodwalton Fen) and post-mortems (St. Croix). Tissue samples were cut from tongue and stored 

in 20% w/v DMSO in water saturated with NaCl. In all other sites, samples were faecal material (5-10 

freshly deposited faecal pellets from each dropping encountered, collected using sterile toothpicks and 

stored in 95% ethanol). All faecal samples were collected between November and February from 

frozen ground, as the genotyping error rate has been demonstrated to be significantly lower from 

ungulate faeces collected in winter (Maudet et al. 2004). All samples were kept frozen at -20°C prior 

to analysis. 
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DNA extraction, PCR amplification and sequencing 

The mucosal layer containing intestinal cells was washed off the faecal pellets with lysis buffer (0.1 m 

Tris–HCl, 0.1 m EDTA, 0.01 m NaCl, 1% N-lauroylsarcosine, pH 7.5–8). One pellet from each 

sample was placed in a 15mL tube and washed in 2 mL of lysis buffer at room temperature for 20 

minutes on a rotary agitator. 250 µL was aliquoted into a 2 mL tube, 250 µL buffer AL and 55 µL 

protease were added and the mixture, which was then incubated at 55°C for two hours on a rotary 

agitator. Next, 250 µL of 100% EtOH was added and DNeasy Mini Spin Columns (Qiagen) were used 

for the wash and elution steps. Total DNA was eluted using 150 µL AE buffer heated to 70°C left to 

stand for 10 minutes in the column before elution. Tissue samples were finely chopped and digested 

for 16 hours with proteinase-K at 37°C before total DNA extraction using the DNeasy tissue kit 

(Qiagen, UK) following the manufacturer‟s instructions. DNA concentration was measured using a 

Nanodrop 2000 (Thermo Scientific). 

All amplification and sequencing reactions were conducted using a Veriti® 96-Well Fast Thermal 

Cycler (Applied Biosystems). The entire 926bp mtDNA control region was amplified using Lpro and 

Hphe primers (Table 5.2) under the PCR conditions described by Royo et al. (2007) from 100-200ng 

DNA extracted from tissue samples. For the DNA extracted from faecal samples the overlapping 

internal primers H493 and L362 (Table 5.2) were used in combination with Lpro and Hphe 

respectively to generate two shorter overlapping fragments. The PCR protocol for these reactions 

started with an initial activation step at 95°C for 5 min, followed by 35–40 cycles, with denaturation at 

94°C for 30 s, annealing at 50°C for 30 s, extension at 72°C for 60 s and final extension at 72°C for 

7 min. In some samples, amplification of the control region using the four published primers failed. 

Primer 3 (Rozen and Skaletsy 1998) was then used to design modified Chinese water deer-specific 

versions of the primers to amplify two shorter overlapping fragments of the control region (Table 5.2) 

using the PCR protocol mentioned previously. 

The entire 1140bp mtDNAcytb gene was amplified using two primer pairs (cytb_L14723F + 

cytb_H15350R, and cytb_L15171F* + cytb_H15915R) to amplify four overlapping fragments under 
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the PCR conditions described by Pitra et al. (2004) from 100-200 ng DNA extracted from tissue 

samples. For the DNA extracted from faecal samples all four cytb primer pairs in Table 5.2 were used 

to generate four overlapping fragments under the same PCR conditions. 5 µL of each PCR product 

was run on a 1% agarose gel stained with GelRed™ (Invitrogen) and the quantity and quality of the 

product was estimated. If there was a single, strong band signifying successful amplification, 2 µL of 

ExoSAP-IT® (Affymetrix) was used to clean the PCR product following the manufacturer‟s 

instructions. Where there was a single, weak band the PCR reaction was repeated for that sample, the 

products were pooled then cleaned using a Qiaquick PCR cleanup kit (Qiagen, UK) following the 

manufacturer‟s instructions. Where there were multiple bands, the entire PCR product was run 

separately on a 0.5% agarose gel for 2 hours, then the portion containing the fragment of interest was 

excised with a scalpel blade on a UV lightbox and purified using the Qiaquick gel extraction kit 

(Qiagen, UK) following the manufacturer‟s instructions but including an extra wash step before 

elution, then purifying the eluate using ethanol precipitation to remove excess salts. 

Sequencing reactions were carried out using the BigDyeTM Terminator Cycle Sequencing Ready 

Reaction Kit (v 3.1, Applied Biosystems). Both forward and reverse strands were sequenced for 

amplified fragments on an ABI 3130xl automated DNA sequencer (Applied Biosystems). DNA 

sequences were analysed in Geneious (Biomatters) and revised manually. For the poor quality 

samples, PCR amplification and sequencing were repeated several times. A negative control was 

included as standard to test for contamination and quality test controls were conducted by repeating 

PCRs and sequencing 10% of samples. Samples that did not show identical results in consecutive 

analyses were excluded from the dataset. Samples from the Whipsnade population were sequenced by 

Christian Miquel at the Laboratoired‟Ecologie Alpine, Université Joseph Fourier. 

All available complete sequences from Genbank for the control region of individuals from France 

(Branféré Park – JN632649), the USA (San Diego Zoo – Y08208), China (Yancheng - EU315254; 

NC_011821) and South Korea (Gyeonggi-do – JF802125), and for cytb from France (Branféré Park – 

AJ000028; JN632649), China (Yancheng - EU315254; NC_011821), and four South Korean regions 
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(Gangwon-do - EF139148; EF139149, Gyeongsangbuk-do - EF139150; EF139151; EF139152, 

Jeollanam-do - EF139153 EF139154; Gyeonggi-do - EF139155; JF802125) were included in the 

haplotype network dataset. The two Genbank sequences from Yancheng were pooled with the newly 

generated data in the population-level analyses. 
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Table 5.1 Sample sites and total number of samples collected, PCR amplified and sequenced for mtDNA control region and cytb.

 

Country County Site # samples collected # sequenced at control region control region PCR success rate (%) # sequenced at cytb cytb  PCR success rate (%)

Norfolk Bure Marshes 33 8 24.2 20 60.6

Norfolk East Norfolk 4 4 100 4 100

Bedfordshire Whipsnade 44 43 97.7 42 95.5

Cambridgeshire Woodwalton Fen 20 15 75 20 100

Norfolk Yare Marshes 4 3 75 4 100

France Rhodes St. Croix 5 4 80 5 100

Total 110 77 - 95 -

Average - - 75.3 - 92.7

Great Britain
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Table 5.2 Oligonucleotide primers used to amplify and sequence mtDNAcytb and control region sequences. # = Primers designed using Chinese water 

deer mtDNA genome reference sequence NC_011821.

 

 

mtDNA sequence Name Section Sequence Reference

L-pro - CGTCAGTCTCACCATCAACCCCCAAAGC
Jäger, F., Hecht, W. and Herzog, A. (1992). Untersuchungen an mitochondrialer DNS (mtDNS) von 

hessischem Rehwild (C. capreolus ). Z Jagdwiss , 38: 26–33.

Lpro_CWD21# - CCCACCATCAACACCCAAAGC Own design

H-493 - TGAGATGGCCCTGAAGAAAGAACC

Randi E., Mucci N., Pierpaoli M. & Douzery E. (1998) New phylogenetic perspectives on the Cervidae 

(Artiodactyla) are provided by the mitochondrial cytochrome )b gene. Proceedings of the Royal Society of 

London, series B 265 : 793-801

L-362 - AATCACCATGCCGCGTGAAACC

Randi E., Mucci N., Pierpaoli M. & Douzery E. (1998) New phylogenetic perspectives on the Cervidae 

(Artiodactyla) are provided by the mitochondrial cytochrome )b gene. Proceedings of the Royal Society of 

London, series B 265 : 793-802

H-phe - GGGAGACTCATCTAGGCATTTTCAGTG
Jäger, F., Hecht, W. and Herzog, A. (1992). Untersuchungen an mitochondrialer DNS (mtDNS) von 

hessischem Rehwild (C. capreolus ). Z Jagdwiss , 38: 26–33.

Hphe_CWD22# - ACTCATCTAGGCATTTTCAGTG Own design

cytb_L14723F 1 ACCAATGACATGAAAAATCATCGTT
Hassanin, A., Pasquet, E. & Vigne, J.-D. (1998) Molecular Systematics of the Subfamily Caprinae 

(Artiodactyla, Bovidae) As Determined From Cytochrome B Sequences J. Mamm. Evol. 5, 217–326.

cytb_H15152R 1 CCTCAGAATGATATTTGTCC
Hassanin, A., Pasquet, E. & Vigne, J.-D. (1998) Molecular Systematics of the Subfamily Caprinae 

(Artiodactyla, Bovidae) As Determined From Cytochrome B Sequences J. Mamm. Evol. 5, 217–326.

cytb_L14908F 2 GCCTATTCCTAGCAATACAC
Hassanin, A., Pasquet, E. & Vigne, J.-D. (1998) Molecular Systematics of the Subfamily Caprinae 

(Artiodactyla, Bovidae) As Determined From Cytochrome B Sequences J. Mamm. Evol. 5, 217–326.

cytb_H15350R 2 CCTGTDGGGTTGTTDGANCCTGTTTC
Hassanin, A., Pasquet, E. & Vigne, J.-D. (1998) Molecular Systematics of the Subfamily Caprinae 

(Artiodactyla, Bovidae) As Determined From Cytochrome B Sequences J. Mamm. Evol. 5, 217–326.

cytb_L15171F_CWD# 3 ATGAGGACAAATATCATTCTGAGG Own design

cytb_H15672R_CWD# 3 TATGCTGCGTTGTTTAGATG Own design

cytb_L15612F 4 CGATCAATYCCYAAYAAACTAGG
Hassanin, A., Pasquet, E. & Vigne, J.-D. (1998) Molecular Systematics of the Subfamily Caprinae 

(Artiodactyla, Bovidae) As Determined From Cytochrome B Sequences J. Mamm. Evol. 5, 217–326.

cytb_H15915R 4 TCTCCATTTCTGGTTTACAAGAC
Hassanin, A., Pasquet, E. & Vigne, J.-D. (1998) Molecular Systematics of the Subfamily Caprinae 

(Artiodactyla, Bovidae) As Determined From Cytochrome B Sequences J. Mamm. Evol. 5, 217–326.

control region

cytb
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Population genetic analyses 

Sequences downloaded from Genbank were aligned with the newly generated sequences using the G-

INS-I strategy in MAFFT v.7 (Katoh et al. 2005; Katoh & Toh 2008). The best fitting models of 

nucleotide substitution were determined using MEGA 5.0 (Tamura et al. 2011). The Bayesian 

Information Criterion (BIC) found that the T92 model with γ = 0.05 fitted the control region data best 

(BIC = 6450.7), and the HKY model with γ = 0.12 fitted the cytb data best (BIC = 9179.3). The T92 

model and rate heterogeneity correction were used in all population genetic analyses of the control 

region data. As ARLEQUIN v3.5 (Excoffier & Lischer 2010) does not feature the option to use the 

HKY model, the next best fitting model – T92 with γ = 0.10 (BIC = 9202.5) was used for analyses 

ofcytbdata.
 

Estimates of haplotype diversity (h; the probability that two randomly selected haplotypes are 

different), mean pairwise difference (k) and nucleotide diversity (π; the average number of nucleotide 

differences per site in pairwise sequence comparisons) were calculated using ARLEQUIN. To 

determine the partitioning of genetic variation among countries, among populations within countries, 

and within populations an Analysis of MOlecularVAriance (AMOVA) was conducted in ARLEQUIN 

using a framework of predefined geographical structure. AMOVAs were performed using both Φ-

statistics (which consider haplotype relationships using a model of genetic distance and a gamma 

parameter estimate), and conventional F-statistics (using haplotype frequencies). Significance values 

were obtained from a minimum of 10,000 permutations. Pairwise FST and ΦST values were estimated 

using ARLEQUIN and their significance was tested using a minimum of 1000 permutations. 

Haplotype relationships were calculated and depicted in NETWORK v4.2.0.1 (Fluxus Technology 

Ltd.) using a median-joining network approach (Bandelt et al. 1999). NETWORK calculates 

Minimum Spanning Trees (MST) from a haplotype distance matrix, and then combines the MST to 

form a single network with missing node haplotypes inferred using the parsimony criterion added to 

the network to reduce its total length. For the analysis of intraspecific genetic variation, haplotype 

networks give a more complete representation of relationships than tree algorithms as they explicitly 
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allow for the co-existence of ancestral and descendant alleles in a sample, instead of treating all 

sequences as terminal taxa (see Posada and Crandall (2001) for a review). DNAsp v.5 (Librado & 

Rozas 2009) was used to analyse haplotype distributions, and to prepare and construct files for 

analyses in ARLEQUIN and NETWORK. With the exception of the haplotype network analysis, 

population-level analyses were only performed for regions where four or more individuals were 

sampled.
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Results 

Out of 110 Chinese water deer samples that were collected in Great Britain and France, 77 yielded 

reliable sequence data for the mtDNA control region, and 95 for cytb. Chinese samples sequenced by 

Dr Min Chen yielded 24 control region and 34 cytb sequences, and a further five control region and 13 

cytb sequences were available from Genbank. 

  

mtDNA control region analyses 

Genetic variation 

Details on polymorphism in the 926 bp sequence in each country, and levels of genetic diversity in 

each sampling site are presented in Table 5.3. Excluding sample sites where n<4, the Chinese 

populations contained higher levels of diversity than those in Great Britain and France. In Chinese 

populations h ranges from 0.905 (±0.054) in the Zhoushan Islands to 1 (±0.177) in Dafeng and π x 

10
3
ranges from 6.95 (±3.91) in the Zhoushan Islands to 28.4 (±16.8) in Yancheng, while in Great 

Britain h ranges from 0.391 (±0.084) in Whipsnade Park to 0.893 (±0.111) in Bure Marshes and π x 

10
3
ranges from 2.4 (±1.68) in Bure Marshes to 3.88 (±2.22) in Whipsnade Park. 

  

Population structure of native and introduced Chinese water deer populations 

There is continued debate regarding the accuracy and reliability of comparing haplotype frequencies 

using F-statistics versus comparing genetic distances using Φ-statistics (Excoffier et al. 1992; Formia 

et al. 2006). AMOVA F-statistic results are presented in Table 5.4 for comparison with Φ-statistics, 

and pairwise FST values are presented in Appendix 5.1. As ΦST is likely to be more resilient to the 

effects of small sample size than FST, and Φ-statistics should represent more accurate estimates of 
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differentiation where the populations are distinguished by geographic separation rather than haplotype 

frequencies (O'Corry-Crowe et al. 1997), only ΦST values are presented in Table 5.5. 

 

AMOVA on five British and four Chinese populations showed that a significant amount of the total 

variation (~42%) occurs within populations (ΦST = 0.579, P < 0.001), and that a significant proportion 

(~11%) is also explained by differences among populations within countries (ΦSC = 0.208, P < 

0.001). AMOVAs performed on British and Chinese populations grouped by country confirmed that 

the majority of the total variation in control region sequences occurs within populations. Variation 

within Chinese populations explained ~78% of the total variance (ΦST = 0.211, P = 0.009), compared 

to ~82% within British populations (ΦST = 0.184, P < 0.001). 

  

Genetic differentiation among populations 

Pairwise genetic differentiation between Chinese, French and British populations was estimated using 

FST and ΦST values. Pairwise comparisons between the Chinese Zhoushan Islands population and all 

other populations were all highly significant. Differentiation from the two mainland Chinese 

populations (ΦST ranging from 0.239 to 0.253) was considerably lower than that of the French and 

British populations (ΦST= 0.660 for Whipsnade Park and ΦST= 0.764 for Woodwalton Fen). The 

Dafeng and Yancheng populations are also significantly differentiated from almost all others, but not 

from each other. The St. Croix Park population in France is significantly differentiated from Bure 

Marshes and Woodwalton Fen but not Whipsnade Park, with which it shares the lowest ΦSTvalue 

(0.202). Within Great Britain, Whipsnade Park is also significantly differentiated from Bure Marshes 

and Woodwalton Fen, but not from East Norfolk or Yare Marshes. 

  

Haplotype relationships 
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The haplotype network (Figure 5.2) shows a clear split between introduced and native populations of 

Chinese water deer, separated by a number of missing haplotypes. No haplotypes are shared between 

any British and Chinese populations, and all populations are characterised by unique haplotypes. Only 

one haplotype (CR-H_16) is shared between the French and British populations overall. Interestingly, 

it is shared between the Woodwalton Fen population rather than the documented source population in 

Whipsnade. 

  

  



125 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Median-joining network analysis of mtDNA control region haplotypes. Missing 

haplotypes are represented as black dots. Branch length is proportional to the number of mutational 

steps occurring between haplotypes. Grey filled circles are haplotypes present in introduced 

populations, white filled circles are haplotypes present in native populations. The size of circles is 

proportional to haplotype frequencies. 
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mtDNAcytb analyses 

Genetic variation 

Details on polymorphism in the 1140 bp sequence in each country, and levels of genetic diversity in 

each sampling site are presented in Table 5.3. Again, the Chinese populations contained higher levels 

of diversity than those in Great Britain and France, with h ranging from 0.891 (±0.063) in Yancheng to 

1 (±0.177) in Dafeng and π x 10
3
 ranging from9.17 (±4.97) in the Zhoushan Islands to 14.9 (±8.98) in 

Jishan, while in Great Britain h ranges from 0.361 (±0.083) in Whipsnade Park to 0.584 (±0.127) in 

Bure Marshes and π x 10
3
 ranges from 0.74 (±0.6) in Whipsnade Park to 1.13 (±0.82) in Bure 

Marshes. 

  

Population structure of native and introduced Chinese water deer populations 

AMOVA on the British and Chinese populations (Table 5.4) showed while that the majority of the 

variation (~ 65-67%) occurs within populations (FST = 0.348, P < 0.001; ΦST = 0.332, P < 0.001), a 

significant proportions are also explained by differences among populations within countries (~ 17-

21%), and among countries (14-16%). AMOVAs performed on British and Chinese populations 

grouped by country confirmed that the majority of the total variation in cytb occurs within populations, 

and that British populations are more differentiated than those that remain in China. Variation within 

Chinese populations explained ~87% of the total variance (i.e. ΦST = 0.13), compared to ~64% within 

British populations (ΦST = 0.360). 

  

Genetic differentiation among populations 

Pairwise comparisons of 10 populations using ΦST estimates are presented in Table 5.5, and FST 

estimates are presented in Appendix 5.1. The cytb dataset enables the inclusion of the Chinese 
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JishanIsland population in this analysis, as there is only one control region sequence for this 

population. For reasons mentioned above, only ΦST results are summarised here. Pairwise comparisons 

between the Chinese Jishan Island population and all other populations were all highly significant. 

Differentiation from the two mainland Chinese populations (ΦST ranging from 0.167 to 0.188) was 

lower than from the Zhoushan Islands, French and British populations (ΦST = 0.228 with ZS, ΦST = 

0.264 with St. Croix Park and ΦST ranges between 0.223 with Yare Marshes and 0.644 with 

Woodwalton Fen). In contrast to the control region results, the Chinese Zhoushan Islands population is 

not significantly differentiated from the Dafeng or Yancheng mainland populations. However, it is 

differentiated from all French and British populations except East Norfolk and Yare. The Dafeng 

population is differentiated from all other populations except for Yancheng and Zhoushan Islands. 

However the ΦST value with Zhoushan Islands is higher than with Yancheng (ΦST 0.083 compared to 

0.052). The St. Croix Park population in France is significantly differentiated from all Chinese 

populations except Yancheng, and all British populations except East Norfolk and Yare Marshes. For 

British populations, Whipsnade Park is also significantly differentiated from all other populations 

except East Norfolk or Yare. The deer in Bure Marshes are strongly differentiated from all of the 

Chinese, French and British populations. The small sample size of the East Norfolk and Yare 

populations regions may explain some of these unexpected results, especially as it tends to decrease 

the power of randomisation tests (Excoffier et al. 1992). A repeated analysis pooling these two 

neighbouring populations shows significant differentiation from all Chinese and French populations 

(not shown). 

  

Haplotype relationships 

The haplotype network (Figure 5.3) again shows a clear split between introduced and native 

populations of Chinese water deer, separated by a number of missing haplotypes. The most common 

haplotype (CYTB-H_6) is shared between the Whipsnade population and the Chinese Yancheng 

population. All populations are again characterised by unique haplotypes. There are a larger number of 
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mutational steps between haplotypes common in Chinese populations, and between Chinese and 

Korean haplotypes than there are between the British haplotypes. Only one haplotype (CYTB-H_1) is 

shared between the French and British populations, however on this occasion it is shared between St. 

Croix and the documented source population in Whipsnade. 
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Figure 5.4 Median-joining network analysis of mtDNAcytb haplotypes. Missing haplotypes are 

represented as black dots. Branch length is proportional to the number of mutational steps occurring 

between haplotypes. Grey filled circles are haplotypes present in introduced populations, white filled 

circles are haplotypes present in native populations. The size of circles is proportional to haplotype 

frequencies. Haplotype „CYTB-H_6‟ is present in both native and introduced populations, the circle is 

filled proportionally. 
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Table 5.3 Sample sites of native and introduced populations. Numbers of individuals examined (n), and measures of mtDNA diversity: haplotype diversity 

(h), mean number of pairwise differences (k), nucleotide diversity (π). GB = Great Britain. 

 

mtDNA sequence Country Location n # Haplotypes h k π x 10³

Dafeng 4 4 1 (±0.177) 15.8 (±9.00) 17 (±11.5)

Jishan 1 1 na na na

Yancheng 6 5 0.933 (±0.122) 26.5 (±13.6) 28.4 (±16.8)

Zhoushan Islands 15 9 0.905 (±0.054) 6.46 (±3.24) 6.95 (±3.91)

France St. Croix 4 3 0.833 (±0.222) 5.5 (±3.34) 5.93 (±4.3)

Bure Marshes 8 6 0.893 (±0.111) 2.36 (±1.43) 2.4 (±1.68)

East Norfolk 4 1 na na na

Whipsnade 43 4 0.391 (±0.084) 3.6 (±1.86) 3.88 (±2.22)

Woodwalton Fen 15 7 0.724 (±0.121) 2.76 (±1.55) 2.98 (±1.87)

Yare Marshes 3 3 1 (±0.272) 2 (±1.51) 2.16 (±2.03)

Dafeng 4 4 1 (±0.177) 12.1 (±6.97) 10.6 (±7.29)

Jishan 6 5 0.933 (±0.122) 17.1 (±8.87) 14.9 (±8.98)

Yancheng 11 6 0.891 (±0.063) 16.7 (±8.06) 14.6 (±7.98)

Zhoushan Islands 15 13 0.971 (±0.039) 10.4 (±5.05) 9.17 (±4.97)

France St. Croix 5 5 1 (±0.126) 2.88 (±1.81) 2.53 (±1.86)

Bure Marshes 20 7 0.584 (±0.127) 1.28 (±0.839) 1.13 (±0.82)

East Norfolk 4 2 0.5 (±0.265) 1.54 (±1.14) 1.35 (±1.19)

Whipsnade 42 3 0.361 (±0.083) 0.844 (±0.611) 0.74 (±0.6)

Woodwalton Fen 20 3 0.532 (±0.1) 1.16 (±0.78) 1.02 (±0.77)

Yare Marshes 4 1 na na na

control region

cytb

China

GB

China

GB



131 

 
Table 5.4 Hierarchical AMOVA results for Chinese water deer populations in China and Great Britain. 

 

  

mtDNA sequence Source of variation
Total 

variance (%)

Fixation indices based on 

haplotype frequencies
P  value

Total variance 

(%)

Fixation indices based 

on genetic distance
P  value

Among countries 13.7 F CT = 0.137 0.123 46.8 ΦCT = 0.468 0.127

Among populations within 

countries
20.0 F SC = 0.231 < 0.001 11.0 ΦSC = 0.208 < 0.001

Within populations 66.4 F ST = 0.336 < 0.001 42.1 ΦST = 0.579 < 0.001

Among populations within GB 29.7 18.4

Within GB populations 70.3 81.6

Among populations within China 6.8 21.2

Within Chinese populations 93.2 78.8

Among countries 13.5 F CT = 0.135 0.086 16.0 ΦCT = 0.160 0.014

Among populations within 

countries
21.3 F SC = 0.246 < 0.001 17.3 ΦSC = 0.206 < 0.001

Within populations 65.2 F ST = 0.348 < 0.001 66.8 ΦST = 0.332 < 0.001

Among populations within GB 34.6 36.0

Within GB populations 65.4 64.0

Among populations within China 5.8 13.1

Within Chinese populations 94.2 87.0

ΦST = 0.360 < 0.001

< 0.001 ΦST = 0.130 < 0.001

F ST = 0.346 < 0.001

F ST = 0.058

ΦST = 0.184 0.009

ΦST = 0.211 < 0.001

control region

cytb

F ST = 0.297 < 0.001

F ST = 0.06 0.024
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Table 5.5 Pairwise ΦST values between populations from control region (below diagonal) and cytb data (above diagonal). P values: * = significant 

at P < 0.05, ** = significant at P < 0.01, *** = significant at P < 0.001. 

 

 

1 2 3 4 5 6 7 8 9 10

1 China - Dafeng - 0.167 * 0.052 0.083 0.176 ** 0.535 *** 0.143 * 0.486 *** 0.556 *** 0.149 *

2 China - Jishan na - 0.188 * 0.228 ** 0.264 * 0.561 *** 0.222 * 0.538 *** 0.644 *** 0.223 *

3 China - Yancheng -0.070 na - 0.064 0.048 0.292 *** 0.010 0.233 *** 0.297 *** -0.010

4 China - Zhoushan Islands 0.239 ** na 0.253 *** - 0.141 * 0.362 *** 0.106 0.303 *** 0.339 *** 0.087

5 France - St. Croix 0.453 * na 0.167 ** 0.702 *** - 0.378 *** -0.066 0.182 * 0.199 * -0.060

6 GB - Bure Marshes 0.583 ** na 0.301 *** 0.735 *** 0.239 * - 0.403 ** 0.449 *** 0.463 *** 0.392 ***

7 GB - East Norfolk 0.519 * na 0.161 * 0.730 *** 0.348 0.491 *** - 0.185 0.151 0.000

8 GB - Whipsnade 0.526 ** na 0.354 ** 0.660 *** 0.202 0.213 ** 0.222 - 0.248 *** 0.097

9 GB - Woodwalton Fen 0.673 *** na 0.393 *** 0.764 *** 0.212 * 0.053 0.438 ** 0.131 * - -0.035

10 GB - Yare Marshes 0.411 * na 0.080 0.695 *** 0.214 0.278 * 0.727 * 0.096 0.168 -

Population
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Discussion 

Genetic diversity of native and introduced populations 

The Chinese populations contain higher levels of intra-population genetic diversity than the British 

populations for both mtDNA markers, whereas the Zhoushan Islands population tends to have higher 

haplotype but lower nucleotide diversity. Levels of haplotype and nucleotide diversity at the mtDNA 

control region are also comparatively higher in Chinese water deer than other rare deer in China e.g. 

the Chinese sika (Cervusnippon) (Wu et al. 2004; Lu et al. 2006), black muntjac 

(Muntiacuscrinifrons) (Wu & Fang 2005), and Siberian roe deer (Capreoluspygargus) in Northeastern 

China (Xiao et al. 2007). The total current number of native Chinese water deer is estimated at below 

5,000, while in the 1980s Sheng & Lu (1985) estimated the total number killed by hunting to be in the 

thousands. Variability is rapidly lost in small populations after a reduction in size, while in larger 

populations it takes a severe bottleneck to be maintained over a large number of generations to 

significantly reduce levels of diversity (Nei et al. 1975). The high levels of diversity despite relatively 

low numbers of present-day Chinese water deer suggest that there was a very recent sharp decline in 

population size in China. 

In Great Britain, lower levels of diversity are likely to be the result of a bottleneck during 

introductions. Chinese water deer in Great Britain were largely confined to two semi-captive sites until 

the 1940s. The fact that the Whipsnade population appears to have the lowest level of diversity in 

Great Britain is puzzling, as this park has been the source of translocations to other sites which now 

have higher levels of diversity (e.g. Woodwalton Fen). This may be explained by the smaller sample 

taken from Woodwalton Fen giving an inflated measure of diversity. Assuming that the sampling is 

representative, the low levels of diversity in Whipsnade Zoo may be explained by the finding that an 

isolated population of white-tailed deer (Odocoileusvirginianus) established from small translocations 

shows signatures of founder effects (DeYoung et al. 2003), in contrast to rapidly expanding mammal 

populations retaining higher levels of genetic diversity (Zenger et al. 2003). Additionally, Chinese 

water deer population sizes tend to increase rapidly then plateau in semi-captivity (Dubost et al. 2008). 
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These observations may help to explain the differing levels of diversity between the bevy of semi-

captive deer at Whipsnade and other wild British populations. 

 

Haplotype distribution 

No control region haplotypes are shared between any British or Chinese individuals (Figure 5.2). 

However, the major cytb haplotype (Figure 5.3) is central in the network, is distributed across the 

Chinese mainland, British and French populations, and is the most common haplotype in the 

Whipsnade population. This suggests that there has been an expansion from a single source, consistent 

with the records of introduction to Whipsnade followed by escapes from Woburn and a translocation 

to Woodwalton Fen. The lack of shared haplotypes and presence of inferred mutational steps in the 

haplotype network suggests that the source population of the Chinese water deer imported to Great 

Britain is unlikely to be directly descended from any of the locations sampled in China. Since these 

Chinese populations sampled represent the vast majority of the remaining mainland distribution, and 

according to the haplotype network British deer are more closely related to them than to Zhoushan 

Islands populations, it suggests the source of British populations is from mainland China, and the 

ancestral population is now extinct. Given the historical context of the introduction it is most likely 

that the deer were sourced from around Shanghai. 

  

Population structure and gene flow 

In China the connectivity between populations has been reduced either by urbanisation and habitat 

destruction on the mainland (Xu et al. 1998), or long-standing geographical separation in the case of 

the Zhoushan archipelago, which has been separated from the mainland for thousands of years. In 

Great Britain, the populations‟ foundation via secondary translocations means that the distance 

between most populations has been determined by human intervention rather than natural dispersal. As 
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such, it would be misleading to attempt to explain the degree of contemporary differentiation between 

populations with geographic distance.  

The control region results are consistent with the findings of Hu et al.(2006), showing significant 

differentiation between Zhoushan Islands and mainland populations. In contrast, the cytb results show 

no differentiation. This is unsurprising as the control region evolves much more rapidly than the 

protein-coding cytb gene. The lack of any shared haplotypes between the Zhoushan Islands and the 

mainland, combined with the highly significant ΦST value and the geographic isolation of the 

archipelago from the mainland strongly suggests that there is currently no gene flow between the 

mainland and island populations. The current reintroduction programme is releasing captive-bred 

CWD from the Zhoushan Islands in two areas near Shanghai. The results presented here, and from 

studies using polymorphic mtDNA and nuclear markers (Hu et al. 2006; Hu et al. 2007) indicate that 

mainland deer are significantly differentiated from Zhoushan Islands deer. The overall patterns of 

genetic diversity and differentiation in native and introduced ranges suggest a number of discrete 

populations that are isolated and could therefore be considered demographically independent. The 

habitat fragmentation and population decline are likely to be the key factors contributing to these 

patterns in China, while the secondary translocations and availability of suitable habitat are important 

in contributing to the observed patterns. 

  

Limitations 

Patterns of genetic structure observed from mtDNA data may be less strongly correlated with the true 

distribution if sex-biased dispersal occurs (Nussey et al. 2006). Examining nuclear loci should give a 

more accurate assessment of population structure, reveal a more nuanced picture of the partitioning of 

genetic variation within and between populations, and allow for a test of genetic bottlenecking in 

concordance with historical records. The recent discoveries of a large number of nuclear microsatellite 
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loci by two independent studies (Lee et al. 2011; Yu et al. 2011) make this is a feasible prospect 

provided that sufficient quantities of nuclear DNA could be extracted from non-invasive samples.  

Additionally, small sample sizes for some populations also meant that the power to estimate accurate 

measures of differentiation was low for some comparisons. For example, the Yare site samples did not 

differ significantly from any Chinese populations (ΦST = 0.080), yet were found to differ significantly 

from the neighbouring East Norfolk site (ΦST = 0.727*). 

Despite their limitations, these mtDNA sequence data reveal lower levels of genetic diversity in the 

British populations, significant differentiation between Chinese and British populations and among 

British populations, and that the source population of British deer is likely to be extinct. These 

findings are congruent with a rapid decline of population size and distribution in China, and reflect the 

expected outcome of a bottleneck during introduction to Great Britain and serial founder effects due to 

subsequent translocations. 

  

Recommendations 

On account of the high levels of genetic differentiation among the geographically separated Chinese 

populations and their sets of unique haplotypes, the mainland and Zhoushan Islands should be 

considered and managed as evolutionary significant units. However, caution should be exercised when 

defining conservation units using a neutral genetic marker, as genetic diversity at adaptive loci may 

not necessarily be predicted by variation at neutral loci (Fraser & Bernatchez 2001). 

It has been recommended that a special mainland breeding centre be established (Hu et al. 2007). This 

is likely to be impractical due to the remaining mainland populations being protected (Dafeng and 

Yancheng), or so rare in the wild as to have not been sighted during extensive population surveys (M. 

Chen unpublished data). In Great Britain, the deer are abundant in semi-captivity and expanding their 

range rapidly in the wild (Ward et al. 2008). Again, these populations are significantly differentiated 
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from mainland populations, but according to the haplotype networks more closely related to them than 

to Zhoushan Islands populations. This suggests that the Chinese water deer residing in Great Britain 

may be the descendants of a now extinct Chinese mainland population - a reservoir of genetic 

variation that has been lost in the native range. In addition to focusing conservation efforts on the 

remaining mainland populations, and the ongoing release of Zhoushan Islands-descended deer, the 

feasibility of introducing Chinese water deer from British stocks to supplement levels of adaptive 

genetic variation in mainland populations should be examined. 

Aside from the evidence that Chinese water deer have negligible commercial or environmental impact 

(Cooke 2011), calls for a cull of British populations should also be rejected on the basis that British 

populations are important for the international conservation of Chinese water deer. Populations are 

significantly differentiated from the rapidly declining native populations in China, could provide a 

viable source to supplement reintroduction efforts in the mainland. Additionally, the relatively low 

genetic diversity of British populations (many of which have undergone a series of recent bottlenecks) 

means that they should be given the time and space to recover without interference. A long term study 

of wolves recently demonstrated that population growth alone may not be sufficient to retain high 

levels of genetic diversity, especially when combined with low levels of gene flow (Jansson et 

al.2012). This is the scenario facing British populations, and highlights the importance of managing 

deer populations at a landscape level by promoting connectivity between isolated populations while 

minimising the occurrence of deer vehicle collisions (Corlatti et al. 2009). 

The Chinese water deer is an exception among cervid species, possessing numerous ancestral traits 

and behaviours (Dubost et al. 2011). The rapidly expanding British populations are less genetically 

diverse than the declining populations in China, and are significantly differentiated from them. All of 

the populations examined here are characterised by unique haplotypes. Given that the abundance of 

Chinese water deer is strongly determined by habitat preference (Cooke & Farrell 1998) and that 

habitat destruction and fragmentation is occurring at an alarming rate in China, maximising adaptive 

variation in the remaining Chinese populations must be a priority for their conservation. This can be 
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achieved by increasing connectivity between the Dafeng and Yancheng populations, protecting the 

Jishan and Zhoushan Islands populations, and exploring the feasibility of reintroducing genetically 

distinct individuals from Great Britain to separate regions. 

The reintroduction and maintenance of genetically diverse populations in the Chinese mainland, 

combined with appropriate management and stakeholder engagement, could help this primitive 

(Dubost et al. 2011), „Vulnerable‟ (Harris & Duckworth 2008) and seemingly harmless (Cooke 2009) 

species to flourish once more in its native range. 
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Chapter 6: General discussion 

Overview 

In this thesis I have investigated the factors driving invasion in non-native deer, and applied molecular 

methods to better understand the population genetics of two deer species introduced to Great Britain. 

Building and analysing a dataset of global introduction outcomes of non-native deer introductions, I 

discovered factors promoting invasion success. I then examined the relationship between range 

expansion and population genetic parameters using the British roe deer as a study system. Next, I took 

a genome scan approach to search for signatures of selection in British and European populations. 

Using the Chinese water deer as a second study system, I conducted a conservation genetic analysis 

investigating the distribution of genetic variation in the introduced and native ranges with a view to 

making recommendations for the conservation of the species in its native range.  

 

Invasion success of non-native deer species 

In Chapter 2, I determined that different factors are important at different stages of the invasion 

process in non-native deer. Examining the outcomes of introduction events at the species and 

population levels while controlling for the confounding effects of common ancestry gave differing 

results.At the species level, reproductive characteristics and native range size were predictive of 

establishment, while a reproductive characteristic predicted spread. At the population level 

establishment success is primarily determined by the number of introduced individuals whereas 

breadth of habitat and diet predicted spread. With the increasing global impact of deer invasions, these 

findings can help inform international-level policy on preventing and controlling the spread of non-

native deer into new areas. The factors examined here may not be the only ones associated with 

invasion, and future studies could look to include data on predation levels (Colautti et al. 2004) and 

socioeconomic factors in the analysis.  
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This approach of using historical records on introduction outcomes to determine which factors are 

predictive of success at different stages of the invasion process could be fruitfully applied to other 

species (Sol et al. 2008b). However, concerns about under-reporting of failed introductions 

(Rodriguez-Cabal et al. 2009) may limit the application to groups of taxa for which there are reliable 

records (e.g. large mammals). 

 

Range expansion of roe deer in Great Britain 

In Chapter 3, I investigated genetic structure and rates of range expansion in roe deer in Great Britain 

derived from refugia and reintroductions, and used these „natural experiments‟ to assess empirical 

support for hypotheses regarding the influence of spatial expansion on the distribution of genetic 

variation. I found that rates of expansion varied widely between regions, and contrasting patterns of 

genetic diversity and structure within the ranges of separate expansions. Genetic diversity tended to 

decline with rate of range expansion, suggesting that peripheral populations are founded by low 

numbers of dispersers (Austerlitz et al. 1997) although there is very limited evidence for dispersal 

between existing roe populations (Baker & Hoelzel 2013). Given this, it appears that the majority of 

roe dispersal is occurring into new areas rather than between established populations.However, in an 

area of overlap between populations expanding from different sources, I found evidence for admixture. 

While admixture has been inferred to drive invasion success, this hypothesis is rarely tested directly 

(Handley et al. 2011). Demonstrating that admixed individuals differ from their parental populations 

in life history traits underlying invasive success (e.g. dispersal, fecundity) is required to meet the 

criteria for validating the hypothesis (Wolfe et al. 2007). Outbreeding depression is generally observed 

only when highly divergent populations interbreed (Edmands 2007), and previous studies have 

suggested that admixture between native and introduced stocks has resulted in higher population 

growth in red deer (Haanes et al. 2013) and white-tailed deer (DeYoung et al. 2003). Should this be 

the case in roe deer, the implication for management would be to prevent merging of populations 

derived from separate introductions, focusing on areas in the overlap zones between the expanding 
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ranges in the south of England. I also found evidence for limited gene flow, even between 

geographically close populations, indicating that strong population structuring has occurred during 

range expansion (Excoffier 2004) and suggesting that low levels of dispersal occur between newly 

colonised areas, which over time may result in local adaptation (Dlugosch & Parker 2008). Adaptation 

can occur rapidly in invasive species in response to environmental change (Prentis et al. 2008) and 

selection for dispersal is expected to act during range expansions (Travis & Dytham 2002). 

This study forms a foundation for examining the genetic characteristics associated with range 

expansion of roe deer. I found a negative relationship between genetic diversity and rate of range 

expansion, although the explanatory power of the findings is limited by only being able to assess 

contemporary levels of genetic variation without taking into account how population genetic processes 

are affected by spatial and temporal environmental heterogeneity. Determining how the rate of 

environmental change influences range expansion and how rapidly adaptation can occur under such 

scenarios is important for predicting future colonisation patterns (Thomas et al. 2001; Hill et al. 2011). 

An extension to this work could identify barriers causing discontinuities and landscape features 

promoting connectivity between populations (Coulon et al. 2006; Storfer et al. 2010), but at a national 

level. Taking a landscape genetic approach could enable a more accurate assessment of the 

relationship between genetic variation and rate of range expansion, and better inform roe deer 

management plans (Zannese et al. 2006). 

 

Evidence for adaptation to climate in European roe deer 

In Chapter 4 I conducted a genome scan in European roe deer, finding loci potentially under selection 

in separate regions. Using multiple study sites and combining the use of different approaches 

(population and landscape genomics) I attempted to limit the proportion of false-positives detected 

from the data. Using outlier-based loci detection alongside regression analyses of AFLP allele 

frequency with environmental variables led to the identification of i) loci potentially under divergent 



142 

 

selection and ii) the selection pressures putatively acting upon this study system. The results provide 

evidence that adaptation to climate has occurred in the European roe deer, and identifies candidate loci 

which may be involved in the response to selective pressure. The lack of association of any loci with 

habitat types supports long-standing ecological evidence for behavioural plasticity (Hewison 2001), 

rather than adaptation or different genotypes, in explaining the ability of roe to rapidly colonise new 

habitats. However, there may be other biotic or abiotic factors contributing to the observed patterns 

(Manel et al. 2009; Segelbacher et al. 2010).  

This study serves as a basis on which to build research to identify functional variants underlying 

adaptation to novel environments by roe deer. Further work in this area could focus on isolating, 

cloning and sequencing the most strongly supported candidate loci identified in Chapter 4. However, 

the cost of applying next-generation sequencing (NGS) technologies to non-model organisms is falling 

rapidly (Ekblom & Galindo 2011). Using NGS to generate a much more dense and informative picture 

of genome-wide variation , and applying new statistical methods capable of further reducing the false-

positive rate may be a more valuable future direction to take in order to bridge the gap between 

detecting outlier loci identifying their functional significance in wild populations. The next step is to 

link genetic, phenotypic and environmental characteristics. This can be done by determining how the 

function of loci under selection affects the capacity of populations to respond to changing 

environmental conditions. With the ultimate aim of being able to predict how various populations will 

spread and respond to climate change, finding the genetic basis of traits associated with these traits is a 

major goal. Further investigation into adaptations in introduced and peripheral populations compared 

with ancestral and core populations, focused on characterising the most ecologically relevant loci 

(Stinchcombe & Hoekstra 2008; Poncet et al. 2010) will help improve predictions of future population 

growth and distribution, with important implications for management and conservation plans. 
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Conservation genetics of the Chinese water deer 

In Chapter 5, I conducted a conservation genetic analysis of the Chinese water deer, comparing levels 

of diversity and partitioning of variation in native and introduced populations, in order to provide 

recommendations for the international conservation of the species. Using mtDNA data from non-

invasively collected samples, I conducted the first population genetic study of Chinese water deer in 

their introduced and native ranges. I found high levels of diversity in native Chinese populations, 

significant differentiation between and within the Chinese and British populations, and that very few 

haplotypes are shared between deer in the native and introduced ranges. Taken together the results 

strongly suggest a severe and recent decline in numbers in the native range, and that there was a single 

source of introduction to Great Britain which is likely to be extinct. Given the context and timing of 

the introduction (in the 1870s from China to Britain), it is most likely that the deer were sourced from 

around Shanghai. Finding that the source population of the Chinese water deer in Britain is likely to be 

extinct should raise the profile of the semi-captive and wild populations in Britain as a valuable 

conservation resource. A reintroduction program aiming to establish wild populations in the areas 

around Shanghai is currently underway, using deer sourced from the Zhoushan Islands. I found that 

both introduced and Zhoushan Island populations have relatively low diversity and are differentiated 

from mainland populations. However, these results are based on maternally-inherited markers. The 

recent development of Chinese water deer-specific microsatellite markers (Lee et al. 2011) means that 

further studies with a more informative marker system are now viable. The next steps for this project 

are to assess whether the British or Korean populations are suitable for reintroduction, and if so 

whether they could supplement the existing reintroduction program or be used to found new 

populations in other parts of the ancestral range where the native deer are now extinct. 
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Conclusion 

An integrated knowledge of the history, ecology and genetics of introduced species is important for 

predicting invasive success, and determining the influence of introduction, range expansion and 

adaptation on local populations. These studies have identified factors associated with invasion by non-

native deer, and examined the genetics of introduced and expanding populations of two species in 

contrasting scenarios. The results of these investigations represent a basis upon which to advance our 

understanding of the roles of environmental and genetic variation in the establishment and spread of 

introduced deer species, and how this information can be used for the management of invasions and 

conservation of vulnerable species in a rapidly changing world. 
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Appendices 

 

Appendix 2.1 Trait data for introduced deer species 

 

 

Genus Species Adult Body Mass (g) Adult Length (mm)

Age at First 

Reproduction  (d) Diet Breadth*

Gestation Length 

(d) Habitat Breadth**

Home Range 

(km
2
)***

Alces alces 461901 2930 1217 1 235 2
e

71.75

Axis axis 69500 1850
c

450
c

4
c

227 4
e

0.67

Axis porcinus 37448 1225
c

300
c

3 220 4
e

0.52

Capreolus capreolus 22502 1230
c

730 4
c

196 4
e

0.52

Capreolus pygargus 41371 1320 - - 290 4
e

0.99

Cervus duvaucelii 171224 1500 1095 2 245 4
e

14.11

Cervus elaphus 240867 2137 994 5 236 5
e

58.42

Cervus nippon 53000 1201 1095 2 224 4
e

1.43

Cervus timorensis 66376 1635 630
f

2 250 4
e

-

Cervus unicolor 177523 2040 788 3 246 4
e

-

Dama dama 57225 1530
d

1095 2 230 3
e

0.71

Hydropotes inermis 12760 890
d

210
c

2
c

175 3
e

0.32
a

Muntiacus reevesi 13500 1070
c

168
f

2 214 2
e

0.12

Odocoileus hemionus 84561 1517 548 2 203 5
e

2.01

Odocoileus virginianus 75901 1514 463 4 201 5
e

1.99

Rangifer tarandus 109089 2224 855
c

3 223 3
e

2771.22
b

*Diet Breath: Number of categories eaten by a species.  Categories defined as: Vertebrate, invertebrate, fruit, flowers/nectar/pollen, leaves/branches/bark, seeds, grass and roots/tubers.

**Habitat Breath: Number of types of habitat occupied by a species.  Categories defined as: Grassland/scrubland; dense forest; desert; rocky; tundra; swamp.

***Home Range: Size of the area within which everyday activities of individuals or groups (of any type) are typically restricted.
a
Sheng, H. & Ohtaishi, N. (1993) The status of deer in China. In: Deer of China: biology and management (eds. N. Ohtaishi & H. Sheng) pp. 1-11.  Elsevier, Amsterdam.

b
Ernest S.K.M. (2003) Life history characteristics of placental non-volant mammals. Ecology, 84:3402

c
Long, J. L. (2003) Introduced Mammals Of The World: Their History, Distribution And Abundance. CSIRO Publishing, Collingwood, Victoria, Australia

d
Jeschke, J.M. & Strayer, D.L. (2006) Determinants of vertebrate invasion success in Europe and North America. Glob Change Biol, 12:1608-1619

e
Price, S. A. & Gittleman, J. L. (2007) Hunting to extinction: biology and regional economy influence extinction risk and the impact of hunting in artiodactyls. Proc R Soc B, 274:1845-1851

f
Animal Diversity Web http://animaldiversity.ummz.umich.edu

Genus Species

Home Range of 

Individual (km
2
)†

Interbirth Interval 

(d)†† Litter Size [Fecundity] Litters Per Year

Maximum Lifespan 

(m)

Neonate Body Mass 

(g)

Neonate Length 

(mm)

Alces alces 73.26 365 1.25 1.7 324 13000 -

Axis axis 2.67 426 1.01 1
c

250 3157 -

Axis porcinus - - 1 1
c

240 2483 -

Capreolus capreolus 0.49 365 1.79 1
b

204 1209 -

Capreolus pygargus 1.06 - 2 1
b

206 1924 -

Cervus duvaucelii 20 - 1 1
c

276
b

- -

Cervus elaphus 54.81 - 1.09 0.8
b

322 8256 -

Cervus nippon 0.62 - 1 1
c

305 4277 570

Cervus timorensis - 366 1 1
f

253
b

2532
f

-

Cervus unicolor - - 1 1
c

317 10270 -

Dama dama 0.61 365 1 1
b

300 4698 621

Hydropotes inermis - 365
a

3 1
c

144
b

1016 -

Muntiacus reevesi 0.11 215 0.98 1.5
b

236
b

1050 -

Odocoileus hemionus 2.85 365 1.61 0.9
b

264 3007 -

Odocoileus virginianus 2.29 304 1.57 1
b

276 2950 -

Rangifer tarandus 2599.89 365 2 1
b

242 5491 -

f
Animal Diversity Web http://animaldiversity.ummz.umich.edu

a
Sheng, H. & Ohtaishi, N. (1993) The status of deer in China. In: Deer of China: biology and management (eds. N. Ohtaishi & H. Sheng) pp. 1-11.  Elsevier, Amsterdam

c
Long, J. L. (2003) Introduced Mammals Of The World: Their History, Distribution And Abundance. CSIRO Publishing, Collingwood, Victoria, Australia

†Home Range of Individual: Size of the area within which everyday activities of individuals are typically restricted.

††Interbirth Interval: The length of time between successive births of the same female(s) after a successful or unspecified litter.

b
Ernest S.K.M. (2003) Life history characteristics of placental non-volant mammals. Ecology, 84:3402
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Genus Species

Population Density 

(n/km
2
)

Population Group 

Size
‡

Sexual Maturity Age 

(d)

Social Group 

Size
‡‡

Weaning Age (d)
‡‡‡

Relative Brain 

Mass

Weaning Body 

Mass (g)

Alces alces 0.4 - 668 1 99 0.00137
h

86300

Axis axis 6.69 - 544 16
c

122 0.00205
h

-

Axis porcinus 16.5 - 464 1.8 180
b

0.00473
h

-

Capreolus capreolus 7.61 - 401

1/ family groups (2-

10)
c

80 0.00669
h

8692.5
b

Capreolus pygargus 0.09
g

- 909 - 136 - 28750
b

Cervus duvaucelii 11.24 401 828 64.3 210
f

0.00107
h

-

Cervus elaphus 2.9 - 660 17.5 105 0.00454
h

43977

Cervus nippon 0.75 518 7.5 198 0.00124
h

28590
b

Cervus timorensis - - 666 6-100
c

227 0.00256
h

-

Cervus unicolor 4.89 - 621 1
c

210
b

0.00214
h

-

Dama dama 21.99 - 543 10.5 178 0.00518
h

16720

Hydropotes inermis - 1 293 1
c

60
c

0.00496
h

-

Muntiacus reevesi 0.67 - 295 1
c

60
f

0.00432
h

-

Odocoileus hemionus 16 - 527 up to 50
c

73 0.00394
h

23900

Odocoileus virginianus 17.32 - 365 2.3 80 0.00806
h

29986

Rangifer tarandus 2.55 100000 759 - 137 0.00346
h

24907

ffiPopulation Group Size: Number of individuals, adults or definition unspecified in a group that spends the majority of their time in a 24 hour cycle together, measured over any duration of 

time, using non-captive populations.

ffiffiSocial Group Size: Number of individuals, adults or definition unspecified in a group that spends the majority of their time in a 24 hour cycle together where there is some indication that 

these individuals form a social cohesive unit, measured over any duration of time, using non-captive populations.

ffiffiffiWeaning Age: Age when primary nutritional dependency on the mother ends and independent foraging begins.
g
Danilkin, A. (1996) Behavioural Ecology of Siberian and European Roe Deer. Chapman and Hall, London.

b
Ernest S.K.M. (2003) Life history characteristics of placental non-volant mammals. Ecology, 84:3402

c
Long, J. L. (2003) Introduced Mammals Of The World: Their History, Distribution And Abundance. CSIRO Publishing, Collingwood, Victoria, Australia

h
Pérez-Barbería, F. J. & Gordon, I. J. (2005) Gregariousness increases brain size in ungulates. Oecologia, 145:41–52

f
Animal Diversity Web http://animaldiversity.ummz.umich.edu
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Genus Species

Native Grid 

Referenced Area 

(million km
2
)

§

Mean Human 

Population Density 

(n/km
2
)

§§
Biogeographic region

§§§

Alces alces 18.75
i

- 1,2
c

Axis axis 2.04 361.5 3
c

Axis porcinus 2.02 144.4 3
c

Capreolus capreolus 6.78 101.8 1
c

Capreolus pygargus 9.82 26.6 1
c

Cervus duvaucelii 0.26 428.7 3
c

Cervus elaphus 14.17 60.8 1,2
c

Cervus nippon 2.71 331.6 1
c

Cervus timorensis 0.13 804.2 3
c

Cervus unicolor 7.05 218.9 3
c

Dama dama 3.08 128.4 1
c

Hydropotes inermis 1.14 373.9 1
c

Muntiacus reevesi 1.77 356.7 3
c

Odocoileus hemionus 6.31 14.4 2
c

Odocoileus virginianus 14.45 34.1 2,4
c

Rangifer tarandus 18.38 1.1 1,2
c

§
Native Grid Referenced Area: Total extent of a species range with a global equal-area projection 

(Mollweide).
§§

Mean Human Population Density: Mean human population density (persons per km
2
) using the 

Gridded Population of the World (GPW). 

§§§
Biogeographic Region: 1 - Palearctic; 2 -  Nearctic; 3 - Indo-malayan; 4 - Neotropical; 5 - 

Holarctic; 6 - Nearctic and Neotropical.

Base dataset compiled from Jones et al. (2009)
#
.

c
Long, J. L. (2003) Introduced Mammals Of The World: Their History, Distribution And 

Abundance. CSIRO Publishing, Collingwood, Victoria, Australia

i
Morrison, J., Sechrest, W., Dinerstein, E., Wilcove, D. & Lamoreux, J. (2007) Persistence of large 

mammal faunas as indicators of global human impacts. J Mammalogy, 88:1363–1380

#
Jones et al. (2009) PanTHERIA: a species-level database of life history, ecology, and geography of 

extant and recently extinct mammals. Ecology 90:2648
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Appendix 2.2 Deer introduction data 

 

Genus Species Recipient Biome Within same biome? Island Introduction? Propagule size
* Established? Spread?

Alces alces Australian no Yes 4 No NA

Alces alces Australian no Yes 10 Yes No

Axis axis Australian no Yes 5 No NA

Axis axis Australian no Yes 5 No NA

Axis axis Australian no No 4 No NA

Axis axis Australian no No 3 No NA

Axis axis Australian no Yes 3 No NA

Axis axis Australian no Yes 2 No NA

Axis axis Australian no Yes 7 No NA

Axis axis Oceanian no Yes 2 No NA

Axis axis Palaearctic no No 20 No NA

Axis axis Australian no Yes 7 Yes No

Axis axis Australian no Yes 7 Yes No

Axis axis Palaearctic no No 24 Yes No

Axis axis Palaearctic no No 21 Yes No

Axis axis Palaearctic no No 39 Yes No

Axis axis Palaearctic no No 24 Yes No

Axis axis Palaearctic no No 47 Yes No

Axis axis Palaearctic no No 19 Yes No

Axis axis Australian no No 22 Yes Yes

Axis axis Nearctic no No 8 Yes Yes

Axis axis Oceanian no Yes 12 Yes Yes

Axis axis Oceanian no Yes 9 Yes Yes

Axis axis Oceanian no Yes 8 Yes Yes

Axis porcinus Australian no No 4 No NA

Axis porcinus Australian no No 12 No NA

Axis porcinus Australian no No 2 No NA

Axis porcinus Australian no No 33 Yes No

Axis porcinus Australian no No 7 Yes No

Capreolus capreolus Nearctic no No 18 Yes No

Capreolus pygargus Palaearctic Yes No 60 No NA

Capreolus pygargus Palaearctic Yes No 59 Yes Yes

Capreolus pygargus Palaearctic Yes No 15 Yes Yes

Cervus duvaucelii Australian no No 2 No NA

Cervus elaphus Australian no No 2 No NA

Cervus elaphus Australian no Yes 3 No NA

Cervus elaphus Australian no Yes 2 No NA

Cervus elaphus Australian no Yes 2 No NA

Cervus elaphus Australian no Yes 2 No NA

Cervus elaphus Nearctic Yes Yes 8 No NA

Cervus elaphus Nearctic Yes Yes 8 No NA

Cervus elaphus Nearctic Yes Yes 3 No NA

Cervus elaphus Nearctic Yes Yes 24 No NA

Cervus elaphus Nearctic Yes No 18 No NA

Cervus elaphus Australian no Yes 3 Yes No

Cervus elaphus Nearctic Yes Yes 4 Yes No

Cervus elaphus Palaearctic Yes Yes 10 Yes No

Cervus elaphus Australian no No 9 Yes Yes

Cervus elaphus Australian no No 7 Yes Yes

Cervus elaphus Australian no No 4 Yes Yes

Cervus elaphus Australian no Yes 4 Yes Yes

Cervus elaphus Australian no Yes 17 Yes Yes

Cervus elaphus Australian no Yes 8 Yes Yes

Cervus elaphus Australian no Yes 9 Yes Yes

Cervus elaphus Australian no Yes 17 Yes Yes

Cervus elaphus Australian no Yes 18 Yes Yes

Cervus elaphus Australian no Yes 6 Yes Yes

Cervus elaphus Nearctic Yes Yes 8 Yes Yes

Cervus elaphus Nearctic Yes No 67 Yes Yes

Cervus nippon Nearctic no No 20 No NA

Cervus nippon Australian no Yes 3 No NA

Cervus nippon Palaearctic Yes No 6 No NA

Cervus nippon Australian no Yes 3 Yes No

Cervus nippon Palaearctic Yes No 40 Yes No

Cervus nippon Palaearctic Yes No 4 Yes No

Cervus nippon Palaearctic Yes Yes 7 Yes No

Cervus nippon Palaearctic Yes No 20 Yes No

Cervus nippon Australian no Yes 6 Yes Yes

Cervus nippon Nearctic no Yes 5 Yes Yes

Cervus nippon Palaearctic Yes No 18 Yes Yes

Cervus nippon Palaearctic Yes No 25 Yes Yes
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Cervus timorensis Australian no No 2 No NA

Cervus timorensis Australian no No 400 Yes No

Cervus timorensis Australian no Yes 4 Yes Yes

Cervus timorensis Australian no Yes 8 Yes Yes

Cervus timorensis Australian no Yes 12 Yes Yes

Cervus timorensis Australian no Yes 14 Yes Yes

Cervus unicolor Australian no Yes 7 Yes No

Cervus unicolor Australian no Yes 2 Yes No

Cervus unicolor Australian no Yes 2 Yes No

Cervus unicolor Australian no No 7 Yes Yes

Dama dama Australian no No 14 No NA

Dama dama Australian no No 2 No NA

Dama dama Nearctic no No 12 No NA

Dama dama Nearctic no No 85 No NA

Dama dama Nearctic no No 13 No NA

Dama dama Palaearctic Yes Yes 3 No NA

Dama dama Australian no No 6 Yes No

Dama dama Australian no No 6 Yes No

Dama dama Nearctic no No 20 Yes No

Dama dama Nearctic no No 51 Yes No

Dama dama Palaearctic Yes No 10 Yes No

Dama dama Palaearctic Yes No 20 Yes No

Dama dama Palaearctic Yes No 100 Yes No

Dama dama Palaearctic Yes No 67 Yes No

Dama dama Australian no No 20 Yes Yes

Dama dama Australian no Yes 18 Yes Yes

Dama dama Australian no Yes 18 Yes Yes

Dama dama Australian no No 3 Yes Yes

Dama dama Nearctic no No 40 Yes Yes

Dama dama Nearctic no No 60 Yes Yes

Dama dama Nearctic no No 73 Yes Yes

Dama dama Palaearctic Yes No 54 Yes Yes

Dama dama Palaearctic Yes Yes 90 Yes Yes

Hydropotes inermis Palaearctic Yes Yes 32 Yes Yes

Hydropotes inermis Palaearctic Yes Yes 19 Yes Yes

Muntiacus reevesi Palaearctic no Yes 28 Yes Yes

Odocoileus hemionus Australian no Yes 5 No NA

Odocoileus hemionus Australian no Yes 9 No NA

Odocoileus hemionus Palaearctic no Yes 4 No NA

Odocoileus hemionus Nearctic Yes Yes 7 No NA

Odocoileus hemionus Nearctic Yes No 2 No NA

Odocoileus hemionus Nearctic Yes No 50 No NA

Odocoileus hemionus Nearctic Yes Yes 13 Yes No

Odocoileus hemionus Nearctic Yes No 13 Yes No

Odocoileus hemionus Australian no Yes 2 Yes Yes

Odocoileus hemionus Australian no Yes 8 Yes Yes

Odocoileus hemionus Nearctic Yes Yes 12 Yes Yes

Odocoileus hemionus Nearctic Yes Yes 24 Yes Yes

Odocoileus hemionus Nearctic Yes Yes 11 Yes Yes

Odocoileus hemionus Nearctic Yes Yes 16 Yes Yes

Odocoileus hemionus Nearctic Yes Yes 7 Yes Yes

Odocoileus hemionus Oceanian Yes Yes 40 Yes Yes

Odocoileus virginianus Australian no Yes 5 No NA

Odocoileus virginianus Australian no Yes 9 Yes No

Odocoileus virginianus Australian no Yes 9 Yes Yes

Odocoileus virginianus Neotropical no Yes 5 Yes Yes

Odocoileus virginianus Palaearctic no No 5 Yes Yes

Rangifer tarandus Palaearctic Yes Yes 14 No NA

Rangifer tarandus Palaearctic Yes Yes 5 No NA

Rangifer tarandus Palaearctic Yes Yes 3 No NA

Rangifer tarandus Palaearctic Yes Yes 200 No NA

Rangifer tarandus Afrotropical no Yes 3 Yes No

Rangifer tarandus Nearctic Yes Yes 15 Yes No

Rangifer tarandus Nearctic Yes Yes 25 Yes No

Rangifer tarandus Neotropical Yes Yes 7 Yes No

Rangifer tarandus Palaearctic Yes Yes 23 Yes No

Rangifer tarandus Palaearctic Yes Yes 15 Yes No

Rangifer tarandus Palaearctic Yes Yes 10 Yes No

Rangifer tarandus Afrotropical no Yes 10 Yes Yes

Rangifer tarandus Nearctic Yes No 1280 Yes Yes

Rangifer tarandus Nearctic Yes Yes 24 Yes Yes

Rangifer tarandus Nearctic Yes Yes 29 Yes Yes

Rangifer tarandus Neotropical Yes Yes 10 Yes Yes

Rangifer tarandus Palaearctic Yes Yes 35 Yes Yes

Rangifer tarandus Palaearctic Yes Yes 35 Yes Yes

*Data on the age and sex composition of the propagules, the method of capture (from the wild or captive stock), and type of release ('hard' or 'soft') was not available

 for the vast majority of introduction events recorded in the literature.
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Appendix 2.3 Sources of DNA sequence data used in the phylogenetic analysis 

  

Family Subfamily Tribe Genus Species cytb COII 12S rRNA 16S rRNA PRKCI αLAlb

Antilocapridae Antilocaprinae Antilocaprini Antilocapra americana AF091629 U62571 U86969 U87019 AF165669 AY122014

Bovidae Antilopinae Antilopini Gazella granti AF034723 U18824 AY670652 EF033136 AF165749 AY122029

Bovidae Bovinae Strepsicerotini Tragelaphus imberbis AF036279 U18815 AF091697 M86493 AF165733 AY122025

Cervidae Capreolinae Alcinae Alces alces AJ000026 DQ379322 AY184437 DQ318382 DQ379338 DQ379360

Cervidae Capreolinae Capreolini Capreolus capreolus AJ000024 DQ365690 AY184439 AY122048 DQ365692 AY122021

Cervidae Capreolinae Capreolini Capreolus pygargus AJ000025 - - - - -

Cervidae Capreolinae Capreolini Hydropotes inermis AJ000028 DQ379323 EU315254 EU315254 DQ379340 AY122020

Cervidae Capreolinae Odocoileinae Blastocerus dichotomus DQ379306 DQ379324 - - DQ379341 DQ379361

Cervidae Capreolinae Odocoileinae Hippocamelus antisensis DQ379307 DQ379325 - - DQ379342 DQ379362

Cervidae Capreolinae Odocoileinae Hippocamelus bisculus DQ789178 - - - - -

Cervidae Capreolinae Odocoileinae Mazama americana DQ789222 DQ379326 Y08209 - DQ379343 DQ379363

Cervidae Capreolinae Odocoileinae Mazama bororo DQ789228 - - - - -

Cervidae Capreolinae Odocoileinae Mazama gouazoubira DQ379308 DQ379368 Y08570 - DQ379344 DQ379364

Cervidae Capreolinae Odocoileinae Mazama nana DQ789210 - - - - -

Cervidae Capreolinae Odocoileinae Mazama nemorivaga DQ789213 - - - - -

Cervidae Capreolinae Odocoileinae Mazama temama AJ000027 - AJ000030 - - -

Cervidae Capreolinae Odocoileinae Odocoileus hemionus AF091630 DQ379369 AF091708 DQ318369 DQ379345 AY122022

Cervidae Capreolinae Odocoileinae Odocoileus virginianus DQ379370 U18816 M35874 M35874 DQ379346 DQ379365

Cervidae Capreolinae Odocoileinae Ozotoceros bezoarticus DQ789198 - - - - -

Cervidae Capreolinae Odocoileinae Pudu puda DQ379309 DQ379327 - - DQ379347 DQ379366

Cervidae Capreolinae Odocoileinae Rangifer tarandus AJ000029 DQ379328 AY184438 DQ318374 AF165693 AY122019

Cervidae Cervinae Cervini Axis axis AY607040 DQ379310 DQ017832  AY391766 DQ379329 DQ379348

Cervidae Cervinae Cervini Axis kuhlii This study - - - - -

Cervidae Cervinae Cervini Axis porcinus DQ379301 DQ379311 AY775785 AY391768 DQ379367 DQ379349

Cervidae Cervinae Cervini Cervus albirostris AF423202 DQ379312 AY184429 - DQ379330 DQ379350

Cervidae Cervinae Cervini Cervus alfredi This study - - - - -

Cervidae Cervinae Cervini Cervus duvauceli AY607041 DQ379313 EU908275 EU084668 DQ379331 DQ379351

Cervidae Cervinae Cervini Cervus elaphus AY244490 DQ365689 DQ153244 EU144036 AY846793 AY122017

Cervidae Cervinae Cervini Cervus eldi AY157735 DQ379314 AY184432 AF108041 - DQ379353

Cervidae Cervinae Cervini Cervus nippon AY035876 DQ379315 AY184433 GU457433 DQ379332 DQ379352

Cervidae Cervinae Cervini Cervus schomburgki AY607036 - - - - -

Cervidae Cervinae Cervini Cervus timorensis AF423200 DQ379316 - - DQ379333 DQ379354

Cervidae Cervinae Cervini Cervus unicolor AF423201 DQ379317 AY184434 M35875 DQ379334 DQ379355

Cervidae Cervinae Cervini Dama dama AJ000022 DQ379318 AJ885203 DQ922639 DQ379335 DQ379356

Cervidae Cervinae Cervini Dama mesopotamica DQ379304 DQ379319 - - DQ379336 DQ379357

Cervidae Cervinae Cervini Elaphurus davidianus AF423194 DQ379320 AY397660 - DQ379337 DQ379358

Cervidae Cervinae Cervini Megaloceros giganteus AM072745 - - - - -

Cervidae Cervinae Muntiacini Elaphodus cephalophus DQ379305 DQ379321 AY184436 AF108040 DQ379339 DQ379359

Cervidae Cervinae Muntiacini Megamuntiacus vuquangensis AF042720 - - AF108034 - -

Cervidae Cervinae Muntiacini Muntiacus crinifrons DQ445735 AY239042 AY239042 AY239042 - -

Cervidae Cervinae Muntiacini Muntiacus feae AF042721 - - AF108036 - -

Cervidae Cervinae Muntiacini Muntiacus muntjak AF042718 NC_004563 AM778453 EF523639 - -

Cervidae Cervinae Muntiacini Muntiacus putaoensis    EF523669 - - EF523642 - -

Cervidae Cervinae Muntiacini Muntiacus reevesi AF042719 NC_004069 M35877 M35877 AF165677 AY122018

Cervidae Cervinae Muntiacini Muntiacus rooseveltorum    - - - AF108031 - -

Cervidae Cervinae Muntiacini Muntiacus truongsonensis    - - - AF108033 - -

Moschidae Moschus moschiferus AY121995 DQ365691 AY184428 AY122045 DQ365693 AY122033
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Appendix 2.4 Results of GLM and GLMM analyses of establishment at the population level 

  

Variable n GLM
*
 Δ deviance GLMM Z Value

Species 146 5.74 -

Genus 146 14.6 -

Introduction Effects Biome match 146 0.96 0.85

Propagule size (Log10) 146 19.9*** (23.4***) 3.97*** (4.33***)

Island introduction 146 0.07 0.31

Regional Effects Region of origin 146 2 0.91 to -0.3

Native area 146 0 0.33

Home Range (Log10) 140 0.06 0.19

Population density 146 0.01 -0.09

Human population density (Log10) 144 0.14 -0.38

Species Characteristics Habitat breadth 146 2.13 1.39 to 0.12

Diet breadth 146 2.1 1.09 to -0.28

Relative brain mass (Log10) 143 0.11 0.36

Social group size 146 3.53 0.69 to -1.07

Life History Traits Weaning body mass (Log10) 133 1.34 -1.15

Body mass (Log10) 146 1.02 -1.01

Weaning age 146 0.68 0.84

Maximum lifespan (Log10) 146 0.27 -0.52

Reproductive Traits Age at sexual maturity (Log10) 146 0.27 -0.52

Litters per year (Log10) 146 0.63 0.78

Litter size (Log10) 146 0.93 0.95

Interbirth interval (Log10) 137 1.86 -1.31

Gestation length (Log10) 146 0.13 -0.38

*GLM were fitted to the data, with the outcome of the introduction events as the binary response 

variable, and the characteristics hypothesised to influence success as the explanatory variables. 

The models were fitted with a binomial error distribution and the logit-link function.  Models were fitted using 

forward selection then dropping and adding terms.  The effect of adding each term alone to a null model was 

calculated, then the variable which caused the largest drop in deviance was added to the model until the addition 

of new variables explained no significant (p<0.05) additional variation.  Chi-square tests on the change in deviance 

resulting from the addition of a new variable to the model were used to determine significance. The GLM analysis 

was repeated excluding the three events where over 200 individuals were introduced simultaneously.  

The effects of variables in explaining establishment success at the population level.  n = Number of introduction events.

Values in brackets obtained from analysis excluding three outlying introduction events (>200 individuals introduced).  S ignificance code: p < 0.001 = ‘***’
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Appendix 2.5 Results of GLM and GEE analyses of establishment at the species level 

 

  

Variable n GLM Δ deviance GEE t value

Regional Effects Region of origin 16 0.15 -0.56 to -1.92

Native area 16 0.03 3.03*

Home Range (Log10) 15 0.31 -1.65

Population density 16 0.07 -3.8

Human population density (Log10) 15 0.00 0.46

Species Characteristics Habitat breadth 16 0.30 4.94 to -0.81

Diet breadth 16 0.10 4.83 to -2.87

Relative brain mass (Log10) 15 0.6* 2.3

Social group size 16 0.28 1.39 to -1.09

Life History Traits Weaning body mass (Log10) 11 0.28*** 1.57

Body mass (Log10) 16 0.23* -0.56

Weaning age 16 0.08 -3.99**

Maximum lifespan (Log10) 16 0.16 -0.15

Reproductive Traits Age at sexual maturity (Log10) 16 0.3* -4.25**

Litters per year (Log10) 16 0.29 -1.35

Litter size (Log10) 16 0.08 2.13

Interbirth interval (Log10) 14 0.32 -1.47

Gestation length (Log10) 16 0.16 -2.05

The effects of variables in explaining establishment success at the species level. n = Number of species included in analysis. 

S ignificance codes: p < 0.001 = ‘***’; p < 0.01 = ‘**’; p <0.05 = ‘*’
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Appendix 2.6 Results of GLM and GLMM analyses of spread at the population level 

  

Variable n GLM
^
 Δ deviance GLMM Z Value

Species 100 24.4* -

Genus 100 12.4 -

Introduction Effects Biome match 100 1.28 -0.60

Propagule size (Log10) 100 0.30 1.24

Island introduction 100 3.88* 1.90 .

Regional Effects Region of origin 100 5.14 -0.91 to -2.76

Native area 100 0.51 0.45

Home Range (Log10) 95 0.11 0.27

Population density 100 0.00 -0.01

Human population density (Log10) 99 0.26 -0.35

Species Characteristics Habitat breadth 100 8.78* 2.93** to -2.76

Diet breadth 100 8.72. 2.06* to -2.2

Relative brain mass (Log10) 98 3.54 . 1.71 .

Social group size 100 4.31 1.64 to 0.00

Life History Traits Weaning body mass (Log10) 91 1.82 0.92

Body mass (Log10) 100 0.10 -0.49

Weaning age 100 3.69. -1.92 .

Maximum lifespan (Log10) 100 0.15 -0.97

Reproductive Traits Age at sexual maturity (Log10) 100 0.01 -0.24

Litters per year (Log10) 100 4.50* -1.90 .

Litter size (Log10) 100 1.66 1.48

Interbirth interval (Log10) 94 3.89* -1.80 .

Gestation length (Log10) 100 0.09 -0.29

^GLM were fitted to the data with the success rate of the species as the response variable, and the 

characteristics hypothesised to influence success as the explanatory variables. 

The effects of introduction event, regional in explaining spread success at the population level.  n = Number of introduction events.

 S ignificance codes:  p < 0.01 = ‘**’; p <0.05 = ‘*’; p< 0.1 = ‘.’
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Appendix 2.7 Results of GLM and GEE analyses of spread at the species level 

  

Variable n GLM Δ deviance GEE t value

Regional Effects Region of origin 15 0.31 0.26 to 1.46

Native area 15 0.15 -1.21

Home Range (Log10) 14 0.17 -1.37

Population density 15 0.04 -0.33

Human population density (Log10) 14 0.00 -0.12

Species Characteristics Habitat breadth 15 0.56 0.76 to -0.46

Diet breadth 15 1.84 0.54 to -1.55

Relative brain mass (Log10) 14 0.21 1.57

Social group size 15 0.32 0.72 to 0.29

Life History Traits Weaning body mass (Log10) 11 0.42 1.57**

Body mass (Log10) 15 0.59 -1.87

Weaning age 15 0.27 -0.63

Maximum lifespan (Log10) 15 0.54 -1.91

Reproductive Traits Age at sexual maturity (Log10) 15 0.08 1.15

Litters per year (Log10) 15 0.12 -0.68

Litter size (Log10) 15 0.38 1.61

Interbirth interval (Log10) 13 0.51 -1.01

Gestation length (Log10) 15 0.00 2.02

The effects of variables in explaining spread success at the species level. n = Number of species included in analysis. 

S ignificance code:  p< 0.01 = ‘**’
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Appendix 2.8 Plots of predicted probability of establishment and spread 

  

Plots of predicted probability of 

success at two stages of the invasion 

process: establishment and spread. 

 

a-c Plots of fitted values of GLMM 

models against variables found to 

significantly predict success at the 

population level. 

d-g Plots of fitted values of GEE 

models against variables found to 

significantly predict success at the 

species level (see Table 2). 

a 

b 

c 

d 

e 

f 

g 
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Appendix 4.1 Pairwise ΦPT values between North German roe deer populations 

 

 

 

  

FN FO NF RA SL

FN - P > 0.1 P > 0.1 P > 0.1 P > 0.1

FO 0.031 - P > 0.1 P > 0.1 P > 0.1

NF 0.012 0.024 - P > 0.1 P > 0.1

RA 0.020 0.016 0.022 - P > 0.1

SL 0.015 0.026 0.008 0.008 -
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Appendix 5.1 Population pairwise FST values for Chinese water deer control region (below 

diagonal) and cytb sequences (above diagonal).  
P values: * = significant at P < 0.05, ** = significant at P < 0.01, *** = significant at P < 0.001 

 

1 2 3 4 5 6 7 8 9 10

1 China - Dafeng - 0.037 0.065 0.017 0.000 0.282 * 0.250 0.322 * 0.493 *** 0.5 *

2 China - Jishan na - 0.0901 * 0.045 * 0.035 0.285 *** 0.254 * 0.322 *** 0.482 *** 0.456 **

3 China - Yancheng 0.037 na - 0.067 *** 0.026 0.266 ** 0.144 0.214 ** 0.349 *** 0.302 *

4 China - Zhoushan Islands 0.058 na 0.083 * - 0.016 0.232 *** 0.197 ** 0.260 *** 0.402 *** 0.344 ***

5 France - St. Croix 0.083 na 0.111 0.122 * - 0.251 * 0.098 0.187 * 0.345 * 0.322 *

6 UK - Bure Marshes 0.062 na 0.088 0.101 ** 0.132 - 0.395 ** 0.403 *** 0.511 *** 0.520 **

7 UK - East Norfolk 0.5 * na 0.456 ** 0.382 *** 0.583 * 0.441 ** - -0.013 -0.010 0.000

8 UK - Whipsnade 0.465 ** na 0.457 *** 0.412 *** 0.511 *** 0.384 *** 0.675 *** - 0.098 * 0.059

9 UK - Woodwalton Fen 0.176 na 0.190 ** 0.186 *** 0.211 * 0.102 0.488 *** 0.079 * - -0.025

10 UK - Yare Marshes 0.000 na 0.040 0.063 0.092 0.026 0.579 * 0.257 -0.001 -

Population
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