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Fig. 2. Illustration of the dynamic consensus-based cooperative merging rule for emotion prediction on arousal.
The left and right plots represent two consecutive segments each of 20 s of duration. The red curve represents
the gold standard (speaker P19), the black curve is the unsmoothed prediction obtained after averaging the most
concordant predictions (the magenta curves, i. e., those that fall below the 60th-percentile) and excluding the
less concordant ones (the green curves). The blue curve is the final prediction obtained after applying a moving
average sliding window for smoothing purpose. On the top of the figure, the magenta circles indicate the speakers
that were included in the cooperation process for each of the two segments whereas green circles indicate those
that were excluded. The magenta arrows indicate the process of inclusion of the SSRMs (speakers P62 and
P64) and the green ones the process of exclusion (speakers P25, P26 and P28) when in the second segment.

Algorithm 2 Implementation of the CRM
1: for t = 0 to Nt step t0 = 200ms do
2: for w = 0 to 80 s step 2 s do
3: application of each SSRM at time t
4: y(t, spx, spp)  prediction of spx provided by

the pth-SSRM
5: ρc(w, p)  average pair-wise ρc of pth-

prediction in each w
6: ρc(w)  average over ρc(w, p) in the 60th-

percentile
7: end for
8: wopt  argmaxw(ρc(w))
9: average prediction values in the optimal win-

dow wopt
10: end for
11: return y(t)  average predictions collected for

each time step
12: return output smoothing by moving average with

time lag of 8 s

At each time t (step 1 in Algorithm 2) and for a
given temporal window w, (step 2 in Algorithm 2), the

pth-SSRM is first applied to the unlabelled speech se-
quence spx producing a response y(t, spx, spp) (step 4
in Algorithm 2). We emphasize that the range of [0 �
80]s where to select the most concordant responses
has been chosen to let the approach have a wide
range of possibilities to choose the optimum interval
of concordance. Then, for each SSRM, the average
pair-wise CCC is computed considering its prediction
with the others ρc(w, p) (step 5 in Algorithm 2). A
global concordance factor ρc(w), for the duration w,
is obtained by averaging only the ρc(w, p) that falls
in the 60th-percentile (step 6 in Algorithm 2). This
value has been selected after running experiments
using values in the range [50 � 70]th-percentile and
selecting the optimal trade-off between the number of
predictions merged on average and the performance
in the prediction. The optimal window duration wopt
and the most concordant predictions are defined by
the arguments that maximises the value of ρc, (step 8
in Algorithm 2). The most concordant responses are
then averaged which produces the final prediction in
wopt (step 9 in Algorithm 2). Continuous monitoring
can be achieved by implementing a sliding window-
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ing procedure with a time lag t0 = 200 ms. Due to
the optimal duration selection (wopt) and to the used
sliding window there can be overlapping predictions
that are finally averaged time by time (step 11 in
Algorithm 2). Finally, a moving average procedure
over 8 s is applied to produce a smoothed response
in the final prediction (step 12 in Algorithm 2).

The described procedure illustrates how the most
concordant predictions are selected according to the
average pair-wise CCC computed on a dynamically
changing window. This implementation choice is mo-
tivated by the fact that it is not a priori known which is
the duration of consensus or of disagreement of each
predictor with the majority. As a consequence, the
composition of the cooperation changes dynamically
over time as it is shown in Fig. 2.

3 RESULTS AND DISCUSSION

The proposed method has been tested using the
RECOLA database which contains 23 publicly avail-
able emotion speech sequences of five minutes length
each that were annotated in terms of arousal and
valence. To assess the performance of the CRM we
implemented a leave-one-speaker-out (LOSO) cross-
validation strategy to ensure speaker independence
in testing the system.

In the following, we describe each test that has been
performed to evaluate system performance.

3.1 Training and optimization of SSRM
We first evaluated the performance obtained during
the training and the optimisation of the SSRM. The
CCC, CC, and root mean square error (RMSE) be-
tween the gold standard and the prediction, as well
as the average CFS (i.e., over the two CFS computed
in the two quadrants of the same dimension) com-
puted during the optimisation step are given in Fig. 3
and 4 for arousal and valence, respectively. Results
show that arousal is significantly better recognised
from the acoustic features than valence. This result
is in agreement with the literature, where acoustic
features have always been shown to present a stronger
correlation with the arousal dimension in comparison
with valence [21], [25], [26], [30], [37]. The values of
CCC and CC are most of the time almost identical,
as the RMSE is quite low; we obtained an average
RMSE of 0.068 for arousal and of 0.128 for valence
over a range of 2.

3.2 Overall performance of the CRM
We tested our system on the RECOLA database by
applying the CRM on the predictions provided by
each SSRM with a LOSO evaluation framework. The
performance obtained for each speaker is combined in
the box-plot in Fig. 5 for CCC (top) and CC (bottom)
and for arousal (left) and valence (right) dimensions.
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Fig. 3. Performance obtained during the training of
each SSRM for the arousal dimension (from top to bot-
tom): concordance correlation coefficient (CCC), Pear-
son’s correlation coefficient (CC), root mean square
error (RMSE), and correlation-based feature selection
(CFS).
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Fig. 4. Performance obtained during the training of
each SSRM for the valence dimension (from top to bot-
tom): concordance correlation coefficient (CCC), Pear-
son’s correlation coefficient (CC), root mean square
error (RMSE), and correlation-based feature selection
(CFS).

Results confirm that the prediction of arousal from
acoustic features provides significantly better results
than for valence. The combination of weak predictors
(PLS) in the CRM, which is similar to a boosting strat-
egy [50], provides a performance that is comparable
with the one obtained with more complex machine
learning methods that are trained on a full set of
speakers [26], [37].

3.3 Inclusion of SSRM in the CRM
Since our system dynamically adapts the ensemble
of SSRM used in the cooperation strategy to perform
emotion prediction, we have analysed the frequency
of inclusion (i. e., the number of times the SSRM of a
speaker is included in the cooperation over the num-
ber of observation windows) of each speaker in the
model. Fig. 6 illustrates two bar diagrams (the upper
for arousal and the lower for valence), representing
the frequency with which each speaker is included in
the cooperation. The x-axis reports the speaker labels.
The graphical results highlight that some speakers
such as P16, P17, and P21 (for arousal), P17, P34,
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Fig. 5. Box-plots of CCC and CC values of the co-
operative regression model applied to each speaker in
testing phase for arousal and valence.

and P62 (for valence), marked by the black arrows
and represented by red bars, are rarely selected in the
cooperative rule. Indeed, if one speaker generally pro-
duces emotion in such a specific way that his/her data
cannot be used to predict efficiently another speaker’s
affective behaviour, then these data are not included
in the cooperation rule. In addition, we observed that
the gold standard annotation of these speakers (in
terms of arousal, valence, or both) exhibit a very small
total variation (the sum of the absolute first derivative
over the entire period), meaning that the annotations
remain almost stable except for a few small time
intervals. This strong heterogeneity in terms of de-
picted emotions is another possible explanation for
the exclusion of the corresponding SSRM from the
consensus rule. Therefore, the system autonomously
solves this aspect by the dynamic selection of the
members of the cooperation, assuring that speakers
with low generalization capabilities do not deteriorate
the overall prediction performance.

3.4 Further comparison results
To further quantify the performance of the proposed
method (i.e., SSRM combined with CRM) with respect
to standard regression approaches, we also imple-
mented two other emotion recognition strategies.

The first one, labelled as AVERAGE, consists in
averaging predictions from all the SSRMs without
using the cooperation rule. Such test allows to verify
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Fig. 6. Bar diagrams showing the frequency of inclu-
sion of the SSRM in the CRM. Bars corresponding
to the SSRM that are rarely involved in the CRM are
coloured in red and indicated with a descending black
arrow.

the improvement achieved by the proposed adaptive
merging procedure.

The second comparative approach, labelled as
GLOBAL, is based on a global training of a unique
PLS model performed on the entire training dataset.
Such test allows to highlight the advantage of using
an ensemble of SSRM in a modular architecture with-
out taking into account the benefits of the CRM for
adaptive merging. Note that the learning of the global
model is much more computationally demanding
than the other two approaches, because all speakers
are used to compute the PLS model. Moreover, such
approach is not flexible to the on-line addition of new
speech sequences.

Performance is quantified through the median CCC
value and the corresponding inter-quartile range (i.e.,
the distance between the 75th and the 25th per-
centiles), and is given in Fig. 7 for each of the
three comparative methods, i. e., CRM, AVERAGE
and GLOBAL.

Results show that the performance obtained with
the CRM approach is significantly higher than the
two other strategies (i. e., AVERAGE and GLOBAL)
for both arousal (p < 0.001) and valence (p < 0.05).
Although the performance is slightly higher for AV-
ERAGE in comparison to GLOBAL, for both arousal
and valence, the differences are not statistically sig-
nificant.
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Fig. 7. Comparison of the performance (median and
inter-quartile range of CCC) obtained with the pro-
posed CRM, the average of all SSRM (AVERAGE)
and a single PLS model learned on all the training
data (GLOBAL) for arousal (top) and valence (bottom).
The p-values obtained by a t-test on the CCC values
between CRM and the two other methods are also
indicated.

3.5 Gold standard and features synchronization
by the estimated RL

An important novelty proposed in this paper is the
synchronization of the gold standard for the construc-
tion of each SSRM, performed using the reaction lag
estimated separately for arousal and valence. To prove
the importance of such procedure, we compare the
CCC values computed on the predictions achieved by
the proposed approach with those obtained without
the synchronization and the RL estimation proce-
dures. In the latter case, features are selected without
shifting back the gold standard of a quantity equal to
the estimated reaction lag.

Fig. 8 shows the box-plots of the CCC values ob-
tained in the two experiments for arousal (top) and
valence (bottom).

The statistical significance of the improvements
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Fig. 8. Box-plots of the performance in terms of
CCC values obtained with (left - labelled as SYNC)
or without (right - labelled as NO-SYNC) the shifting
back of the gold standard by the estimated reaction
lag for each dimension, for arousal (top) and valence
(bottom). The p-values of a paired t-test between the
CCC values obtained on those two approaches are
reported.

obtained with the inclusion of the synchronization
procedure is verified by a paired t-test for both arousal
and valence; we obtained p < 0.001 for both the
experiments, demonstrating the importance of the
synchronization procedure for constructing the SS-
RMs that cooperate in the CRM.

3.6 QBTD-optimisation of the SSRM

One of the novelty proposed in this paper is the
use a QBTD-optimisation for the construction of each
SSRM. To demonstrate the importance of the QBTD
procedure, we performed a global optimisation of the
SSRM by using all the quadrants of a given emotional
dimension, i.e., passive and active for arousal and
negative and positive for valence. This global opti-
misation is labelled as ALL in the following. Related
results, comparing the QBTD and the ALL procedures
in terms of CCC values obtained for arousal (top) and
valence (bottom), are collected in the box-plots shown
in Fig. 9.

The statistical significance of the improvements
obtained with the QBTD procedure over the global
optimisation (ALL), is verified with a paired t-test
for both arousal and valence; we obtained p < 0.001
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Fig. 9. Box-plots of the performance in terms of
CCC values obtained with (left - labelled as QBTD) or
without (right - labelled as ALL) the use of the QBTD
procedure for the construction of the SSRM for arousal
(top) and valence (bottom). The p-values of a paired
t-test between the CCC values obtained on those two
approaches are reported.

and p = 0.027 for arousal and valence respectively,
demonstrating the importance of the QBTD procedure
for constructing the SSRM. Indeed, the QBTD allows
to select the acoustic features that are well correlated
with each quadrant of the 2D arousal-valence space.
Further, the analysis of the selected acoustic feature
sets show that they strongly depend on the quadrant,
especially for valence, cf. Appendix A.

3.7 Correlation between inter-rater agreement
and prediction performance
According to our preliminary statements on the im-
portance given to the perceived emotions we also
show that on average, the prediction performance in
terms of CC is positively correlated with the mean
inter-rater agreement (evaluated through the average
pair-wise CC of the ratings for each speaker), cf.
Fig. 10. This fact demonstrates how concordance can
be considered as a very promising merging principle,
both for the design of the cooperation of the models
and for the collection of the gold standard. Note that
there is a good linear correlation (with ρ equal to
0.75 and 0.61 for arousal and valence, respectively)
among the two metrics, especially for arousal, that
also presents higher average inter-rater agreement as
expected.
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Fig. 10. CC values of the prediction for each speaker
during testing versus the average CC value of the
evaluators: (top) arousal and (bottom) valence. Colours
identify female subjects (magenta) and male subjects
(cyan).

As the plots suggest, and it is confirmed by ANOVA
analysis performed on the CC values grouped ac-
cording to the gender of speakers, we did not find
any statistically significant difference, proving that the
system is both gender and speaker independent.

3.8 Comparison between PLS and SVR
We investigate here the benefit of using a PLS re-
gression approach to perform adaptive boosting as
proposed with the CRM. The generalisation capabil-
ity of the CRM system based on PLS regression is
compared with the use of a predictor based on SVR,
with default settings, i.e., a complexity value of C = 1,
and a Gaussian kernel with σ = 1/fsel [51], being
fsel the number of features selected in each SSRM.
The results reported in Fig. 11 illustrate two kind of
experiments. The first two columns, labeled as SSRM-
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Fig. 11. Box-plots of the CCC values for the CRM
applied using PLS regression compared with the CRM
based on SVR. First and second column report the
CCC values obtained during subject-dependent vali-
dation of each SSRM (SSRM-PLS and SSRM-SVR),
third and fourth column indicate the CCC values during
testing (CRM-PLS and CRM-SVR): p-values obtained
by running paired t-test on the CCC values obtained for
the CRM-PLS and the CRM-SVR are also indicated.
Results are presented separately for arousal (top) and
valence (bottom).

PLS and SSRM-SVR respectively, are the box-plots of
the CCC values obtained by subject-dependent cross-
validation of each SSRM in the corresponding speaker
speech sequence, comparing PLS and SVR regression
methods. In addition, the third and fourth columns,
labeled as CRM-PLS and CRM-SVR respectively, rep-
resent the box-plots of the CCC values obtained by
merging the responses of all the SSRMs in the train-
ing set and estimating the response in the test set,
using a LOSO subject-independent cross-validation
technique. Results are presented separately for arousal
(top) and valence (bottom). Results show that even
though the SVR provides the best performance in the
validation of each SSRM for both arousal and valence,
the PLS algorithm is more robust to overfitting and
thus produces significantly improved performance.
Our conclusion is that weak predictors are indeed
more suitable to perform boosting than more sophis-
ticated algorithms [50].

3.9 Dynamic evaluation of the prediction perfor-
mance
As a final consideration, and due to the large duration
of the recorded speech signal (5 minutes for each
sequence) it is interesting to quantify the tightness
of the prediction. To this regard, after we collect the
prediction for each speaker, we apply a sliding win-
dowing with observation time frame wo in the range
[5, 300]s on each prediction in testing, and computed
the corresponding CCC and the CC values achieved in
that segment with respect to the corresponding gold
standard. Given a wo, the maximum CCC and the
maximum CC values computed over all segments of
the same length wo are extracted. Then, by collecting
these values for all the 23 speakers we have a single
box-plot related to a given wo. By repeating for each
wo we derive the graph in Fig. 12. Such further test
allows us to emphasize the fact that for each window
length there is at least a segment for each speaker
exhibiting very high CCC and CC values in both
dimensions.

The results indicate that as long as the window
length wo decreases, then performance metrics in-
crease. This fact can be motivated by the consideration
that it is more probable for the prediction to reach
an high concordance level with the gold standard in
a small interval than in very long ones. However,
from a preliminary analysis, we also noted that the
significance of the metrics CCC and CC decreased
on very short segments (i.e., less than 4s), since the
reliability of the computation of CCC and of CC
values depended on the size of the data used for the
calculus. For this reason, we decided not to consider
meaningful the observation windows of duration less
than 4s.

4 CONCLUSION

In this paper, we presented a new strategy for con-
tinuous speech emotion estimation in the domain
of valence and arousal. New paradigms have been
presented concerning single speaker and cooperative
regression models. A novel quadrant-based decom-
position of speech sequence is used for model opti-
misation to achieve emotion-related feature selection.
Concepts like evaluator’s reaction lag and concor-
dance for aggregation have been addressed and em-
bedded in the whole method, fostering the paradigm
of perception to achieve a realistic estimation of the
affective content of an unlabelled speaker. The novel
strategy confers robustness to inter-rater agreement
variability. Moreover, the addition to the coopera-
tion of speech sequences of new speakers is now
expected using the single speaker model construction,
as well as the inclusion of additional affective contents
of the same speaker by single speaker model re-
learning. The proposed system presents important
potential implications. First of all, new speakers can
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Fig. 12. Box-plots of the maximum CCC and CC values computed over all the possible segments of the same
length wo and distributed over the 23 speakers: (top) arousal and (bottom) valence. The graph is obtained by
varying the window length wo in the range [5, 300] s.

be added to the cooperative system simply by training
a new SSRM using the speech sequence along with
the relative annotations for the new speaker. Second,
new affective contents of a speaker already present
in the system may be included in the cooperation
simply by performing re-learning of the SSRM of
that speaker adding a new speech sequence with
a strong reduction of the required learning time.
Consequently, system updating can be seen as a
parallel procedure that does not influence the nor-
mal functioning and, in addition, it does not require
time consuming re-learning of the whole prediction
system. For this reason, the proposed architecture is
perfectly suitable for mobile applications, thanks to
the easiness and flexibility to develop single models
separately trained on distinct speech sequences with
different emotional contents. Web-based applications
could offer the possibility to everyone to upload to

the cloud his/her speech sequence along with the
corresponding annotation. Finally, the introduction of
the QBTD paradigm suggests future developments
based on modular architecture in which each SSRM
is trained and optimised on each quadrant and then
merged using a cooperative rule based on different
machine learning scenarios and other databases of
emotional speech.
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APPENDIX

In this section, we provide additional results concern-
ing features selection based on the QBTD procedure.
Table 2 lists for each quadrant the most selected
features along with the corresponding LLD name;
the reader is referred to [43] for more information
on the computation of the features. These results
clearly show that the sets of features selected for the

two partitions of arousal and of valence are almost
totally disjoint, especially for valence, enforcing the
importance of a quadrant-based selection. Addition-
ally, spectral based acoustic features appear to be
the most robust ones for emotion prediction of both
arousal and valence.

TABLE 2
Most selected acoustic LLD in each quadrant; R-PLP
stands for RASTA-PLP psychoacoustic filtering; for the

purpose of readability, only the minimum and
maximum value of frequency band are given for

consecutive spectral related features (this case is
indicated by a parenthesis including the number of

consecutive features).

Negative valence
Energy in R-PLP spectrum [547− 801]Hz

Energy in R-PLP spectrum [945− 1279]Hz

Energy in R-PLP spectrum [1469− 1911]Hz

Positive valence
Zero crossing rate
Energy in R-PLP spectrum [5865− 7203]Hz

Spectral roll off point at 90%

Negative arousal
Loudness (sum of all R-PLP coefficients)
Root mean square energy
Energy in R-PLP spectrum [799− 3077]Hz (9)
Energy in R-PLP spectrum [3074− 4280]Hz (2)
Energy in R-PLP spectrum [4277− 5870]Hz (3)
Energy in spectrum [250− 650]Hz

Energy in spectrum [1000− 4000]Hz

Spectral flux
Spectral slope

Positive arousal
Probability of voicing
Loudness (sum of all R-PLP coefficients)
Root mean square energy
Energy in R-PLP spectrum [4277− 5291]Hz

Energy in spectrum [250− 650]Hz

Energy in spectrum [1000− 4000]Hz

Spectral flux
Spectral variance
Energy in 1st MFCC [17− 163]Hz


