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ABSTRACT

Chemo-dynamical N-body simulations are an essential tool for understanding the formation and evolution of galaxies. As the number
of observationally determined stellar abundances continues to climb, these simulations are able to provide new constraints on the early
star formaton history and chemical evolution inside both the Milky Way and Local Group dwarf galaxies. Here, we aim to reproduce
the low α-element scatter observed in metal-poor stars. We first demonstrate that as stellar particles inside simulations drop below a
mass threshold, increases in the resolution produce an unacceptably large scatter as one particle is no longer a good approximation of
an entire stellar population. This threshold occurs at around 103 M�, a mass limit easily reached in current (and future) simulations.
By simulating the Sextans and Fornax dwarf spheroidal galaxies we show that this increase in scatter at high resolutions arises from
stochastic supernovae explosions. In order to reduce this scatter down to the observed value, we show the necessity of introducing
a metal mixing scheme into particle-based simulations. The impact of the method used to inject the metals into the surrounding gas
is also discussed. We finally summarise the best approach for accurately reproducing the scatter in simulations of both Local Group
dwarf galaxies and in the Milky Way.
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1. Introduction

Over the last decade new observing facilities have allowed ac-
curate measurements of elemental abundances in a large number
of individual stars not only in the Milky Way but also within its
satellites, specifically the Local Group dwarf spheroidal galaxies
(dSphs) and ultra-faint dwarfs (UFDs).

These measurements cover galaxies of very different mass
and star formation histories providing crucial constraints on
models of galaxy evolution (see Tolstoy et al. 2009, for a re-
view). Not only should these models reproduce the observed
dynamical properties of galaxies, but they should also be able
to account for their chemical properties. Unfortunately, these
chemical constraints are often neglected despite the fact that they
can lead to erroneous conclusions.

While the mean metallicities at a given mass or luminosity
is normally close to observations, the abundance ratios and their
corresponding scatter is often poorly reproduced. This discrep-
ancy suggests difficulties in accurately reproducing the number
of supernovae or their associated feedback which are the domi-
nant source of observable metals.

The yield of α-elements in Type II supernovae (SNeII)
strongly depends on the progenitors mass. Tsujimoto et al.
(1995) and Woosley & Weaver (1995) found that the ratio
[Mg/Fe] in SNII ejecta decreases by two orders of magni-
tude between stars with masses above 50 M� and stars lighter
than 10 M�. As the lifetime of massive SNII ranges from ∼3
to 30 Myr, one naturally expects that the local interstellar

medium (ISM) polluted by massive stars is different from that
polluted later by lighter stars even if the stars originated in
the same star-forming region. It was pointed out long ago by
Audouze & Silk (1995) that a small number of exploding su-
pernovae with varied masses sampling an initial mass function
(IMF) introduce some scatter in abundance ratios. Low scatter in
the observed abundances must then be a sign of continual pollu-
tion by successive supernovae and/or the sign of efficient mixing,
which must be reproduced in simulations.

In the Milky Way, above [Fe/H] > −3.5, using a semi-
analytical model, Karlsson (2005) found that the probability
of finding a star enriched by less than ten supernovae is very
low, explaining a possible mixing of the different yields of stars
with varied abundances. However, despite this mixing, stars with
[Mg/Fe] < 0 are still predicted to exist (Karlsson & Gustafsson
2005). The problem naturally worsens for dwarf galaxies, where
the rate of exploding supernovae is much lower. To efficiently
mix the ISM, not only dynamical effects like ISM turbulence
but also the motion of stars before they explode need to be con-
sidered. Both are present with a certain degree of precision in-
side N-body simulations. Recently, focusing on a small volume
(∼32 pc3) Feng & Krumholz (2014) showed that the star-to-star
variation in abundances within an open cluster may be consider-
ably reduced owing to the mixing of inhomogeneous gas during
the process of star formation. Similar conclusions have been re-
cently obtained by Petit et al. (2015).

Different chemo-dynamical simulations have been per-
formed since the 1990s to study the metal enrichment in
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cosmological contexts (Steinmetz & Mueller 1994; Mosconi
et al. 2001; Lia et al. 2002; Scannapieco et al. 2005;
Oppenheimer & Davé 2008; Wiersma et al. 2009; Few et al.
2012), in spiral galaxies (Raiteri et al. 1996; Berczik 1999;
Friedli et al. 1994; Friedli & Benz 1995; Lia et al. 2002; Samland
& Gerhard 2003; Stinson et al. 2006; Kobayashi & Nakasato
2011; Tissera et al. 2012; Few et al. 2012; van de Voort et al.
2015), in ellipticals (Kawata & Gibson 2003; Kobayashi 2004,
2005; Martínez-Serrano et al. 2008), and in dwarf irregular,
spheroidal or elliptical galaxies (Carraro et al. 2001; Ricotti &
Gnedin 2005; Marcolini et al. 2006, 2008; Kawata et al. 2006;
Valcke et al. 2008; Revaz et al. 2009; Okamoto et al. 2010;
Sawala et al. 2010; Schroyen et al. 2011; Revaz & Jablonka
2012; Schroyen et al. 2013). However, while a few authors
present [α/Fe] vs. [Fe/H] diagrams, very little discussion exists
on the scatter of α-elements.

Interestingly, it appears that in early works the scatter in
abundance ratios was not an issue, because of the artificial mix-
ing induced by the poor resolution used at that time (Raiteri
et al. 1996; Berczik 1999). As pointed out by Mosconi et al.
(2001), increasing the resolution of smoothed-particle hydrody-
namics (SPH) models increases the scatter in the chemical prop-
erties. This is indeed witnessed in recent high-resolution models
of dSphs (Sawala et al. 2010; Revaz & Jablonka 2012). In their
zoom-in simulation of a Milky Way-like galaxy, van de Voort
et al. (2015) predicted a subsolar [Mg/Fe] population that is not
observed. Similar cases also exist in elliptical models (Kawata
& Gibson 2003; Kawata et al. 2006; Marinacci et al. 2014).

This scatter in abundance ratios can be reduced by fixing
the size of the region in which metals are expelled (Kobayashi
& Nakasato 2011), because on average, particles receive more
ejecta with varied yields. A similar mixing is achieved by in-
creasing the number of SPH neighbours as the volume that
receives ejecta is increased, according to Revaz & Jablonka
(2012). Wiersma et al. (2009) introduced a natural SPH smooth-
ing over the volume into which metals are ejected.

An alternative solution consists in inserting a diffusion
mechanism for the heavy elements through the ISM. Following
a suggestion from Groom (1997), Carraro et al. (1998) added
a diffusive equation in their SPH implementation. However, the
impact of this term on the distribution of abundances was not
studied. Martínez-Serrano et al. (2008) proposed an implementa-
tion of the classical diffusion equation in their SPH code. A sim-
ilar approach has been followed by Greif et al. (2009) but only
applied to simulation of supernovae remnants. This technique
was improved by Shen et al. (2010) in the context of the inter-
galactic medium, where the diffusion coefficient results from a
turbulent mixing model. Similar diffusivity has been used in the
spiral galaxy simulations of Brook et al. (2012). and has resulted
in a considerable reduction of the oxygen abundance dispersion,
thereby overcorrecting the problem.

It is clear that the impact of the different possible
schemes used to distribute stellar ejecta into the ISM needs
to be thoroughly examined. This is particularly important for
the SPH technique, where metals issued from a supernovae are
usually distributed among neighbouring gas particles, using a
weight proportional to the SPH kernel. Consequently particles
at different radii receive differing amount of metals which may
generate an artificial scatter. Other schemes could help to reduce
this scatter, however, the final impact on stellar abundances is
not straightforward and detailed examinations are needed.

A supplementary source of scatter comes from the mod-
elling of the initial mass function (IMF) as resolutions increase.
Numerical techniques usually assume that a stellar particle

represents a single stellar population (SSP). However, with the
mass in the highest resolution simulations approaching that of
small clusters, serious concerns arise. These questions include:
how to deal with stellar particles of masses smaller than what is
required to ensure a full sampling of the IMF? and What happens
if the stellar particle mass goes below 1000 M�, approaching the
mass of the most massive stars? It is crucial to answer these ques-
tions and estimate the extent to which a poor IMF sampling may
bias the final stellar abundances and the star formation history.

The aim of this paper is to examine how chemo-dynamical
N-body simulations can reproduce the observed scatter of [α/Fe]
at galactic scales in dSph and Milky Way-like galaxies. We start
by presenting facts concerning the scatter observed in the stellar
abundance ratios. We then describe the schemes used in our code
GEAR, including recent improvements concerning the IMF sam-
pling, spreading of elements, and mixing schemes. We apply
our method to very simple cases, where only one or two super-
novae explode and pollute an initially homogeneous box. In ad-
dition to the verification that our code correctly reproduces the
Sedov-Talor solution, these tests allow us to understand the bias
that metal spreading techniques induce and to test the efficiency
of mixing schemes. In a following step, we simulate Fornax
and Sextans like dSphs. Based on the prediction of star forma-
tion histories and abundance scatters, the limitations of differ-
ent IMF sampling schemes and the necessity of mixing schemes
are discussed. Finally, we show that our choice of parameters
for dSphs also reproduces the star formation rate and α-element
abundances in a Milky Way-like galaxy.

2. Observational facts

As our aim is to properly reproduce the abundance ratio scatter
seen in observations, we start by presenting observational facts.
Figure 1 shows the compilation of 25 different samples in the
Milky Way and its satellites. The relation between [Mg/Fe] and
[Fe/H] arises from more than 1700 individual stars with abun-
dances derived from high-resolution spectroscopy (R ≥ 20 000).
All values have been scaled to the solar abundances of Asplund
et al. (2009). Three major conclusions can be drawn: (i) Stars
with [Fe/H] < −2.5 form a plateau around [Mg/Fe] ∼ 0.4 with
an error weighted standard deviation of about 0.2−0.3 dex. This
is illustrated by the yellow shaded region of Fig. 1 correspond-
ing to the 1σ deviation around the mean [Mg/Fe] value, com-
puted for all stars with a metallicty lower than −2.5. (ii) Very few
metal-poor stars ([Fe/H] < −2.5) are found at subsolar [Mg/Fe]
values. (iii) With the exception of the peculiar cases of ET0381
(Jablonka et al. 2015) and SDSSJ0018-0939 (Aoki et al. 2014),
none of these subsolar cases are found at [Mg/Fe] below −0.5.
This three major features guide our discussion and choices in the
following.

3. The code GEAR and its improvements

Our tests and analyses are conducted with the code GEAR, which
was developed by Revaz & Jablonka (2012). It is a fully parallel
chemo-dynamical Tree/SPH code based on Gadget-2 (Springel
2005). The code GEAR has been successfully used in the con-
text of dwarf spheroidal galaxies, ensuring good performance,
numerical convergence, conservation of the total energy budget
and reproduction of the main observable properties of dSphs.
In addition to the hydrodynamics of the gas, GEAR includes the
complex treatment of baryonic physics, namely gas cooling, star
formation, chemical evolution, and Type Ia (SNeIa) and Type II
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Fig. 1. [Mg/Fe] as a function of [Fe/H] obtained from high-resolution spectroscopy of individual stars in the Milky Way or in Local Group dSphs.
The yellow shaded region shows the 1 − σ dispersion around the mean [Mg/Fe] for stars with a metallicity below −2.5. The data are obtained
from high spectroscopy abundances determination: Fornax (Shetrone et al. 2003; Tafelmeyer et al. 2010; Letarte et al. 2010), Sculptor (Shetrone
et al. 2003; Tafelmeyer et al. 2010; Starkenburg et al. 2013; Jablonka et al. 2015; Hill, in prep.), Sextans (Shetrone et al. 2001; Aoki et al. 2009;
Tafelmeyer et al. 2010), Carina (Shetrone et al. 2003; Venn et al. 2012; Lemasle et al. 2012), ComaBer (Frebel et al. 2010), Bootes (Norris et al.
2010), LeoI (Shetrone et al. 2003), Hercules (Koch et al. 2008), Uma (Frebel et al. 2010), UMi (Shetrone et al. 2001; Cohen & Huang 2010),
Draco (Shetrone et al. 2001; Fulbright et al. 2004; Cohen & Huang 2009), and MilkyWay (Gratton et al. 2003; Cayrel et al. 2004; Venn et al. 2004;
Honda et al. 2004; Gehren et al. 2006; Reddy et al. 2006; Andrievsky et al. 2010; Cohen et al. 2013; Aoki et al. 2014). All values have been scaled
to the solar abundances of Asplund et al. (2009).

supernova feedback. Numerical codes are constantly improved
and we list and comment hereafter the recent changes compared
to the initial version, excluding the initial mass function, and
mixing schemes which we discuss in more depth in Sects. 4
and 5.

3.1. Pressure-entropy formulation of SPH

We have upgraded the SPH formulation of GEAR using the
pressure-entropy formulation described in Hopkins (2013). This
new formulation alleviates difficulties traditional methods have
had in the treatment of fluid mixing instabilities. This is partic-
ularly useful in the context of galaxy formation and evolution to
correctly treat the dynamics of the ISM when, for example, the
galaxy is subject to ram pressure stripping (Nichols et al. 2015).

3.2. Individual and adaptive timesteps

The individual and adaptive timesteps scheme now precisely fol-
lows the algorithm proposed by Durier & Dalla Vecchia (2012),
which extends the timestep limiter of Saitoh & Makino (2009).
The algorithm can be summarised as:

– Timestep limiter: each particle ensures that its timestep is
shorter than or equal to a multiple (here taken as four) of
any neighbouring particle.

– Timestep update: an inactive particle (one whose timestep
does not coincide with the current one) becomes instanta-
neously active if it is touched by the feedback energy of any
other particle.

– Timestep criterion: the default acceleration timestep criterion
of Gadget-2 involving the ratio between the gravitational
softening and the acceleration is supplemented by a restric-
tion including the SPH smoothing length (see Eq. (B3) in
Durier & Dalla Vecchia 2012).

These new features are necessary to correctly reproduce the blast
waves of a single supernova explosion within high-resolution
simulations (see Sect. 7.2).

3.3. Artificial viscosity

The artificial viscosity is an important ingredient in SPH meth-
ods designed to correctly capture shocks. Instead of using the de-
fault Gadget-2 artificial viscosity based on Monaghan (1997),
we now use the original formulation of Monaghan & Gingold
(1983) with the Balsara switch fi j (Balsara 1995) which allevi-
ates the spurious transport of angular momentum in the presence
of shear flows. The viscosity between two particles i and j, Πi j
is therefore written as

Πi j = −
(αci j + β µi j)µi j

ρi j
fi j, (1)

where α and β are two dimensionless parameters determining
the viscosity strength, ci j their averaged sound speed and µi j is
given by

µi j =
ui j · ri j hi j

|ri j|
2 + ε h2

i j

, (2)

where ri j and ui j are the differences in position and veloc-
ity of the two particles, respectively, hi j is the mean of their
SPH smoothing lengths, and ε = 0.01 is a small parame-
ter to avoid numerical divergence when the particles are close.
This formulation is similar to that implemented in Gadget-2
if we impose the parameter β = 3/2α and replace µi j by
ωi j = ui j · ri j/|ri j| as discussed in (Springel 2005). We show in
Section 7.2 that this modification improves the reproduction of
the blast waves in Sedov-Taylor experiments.

To prevent spurious dissipation even far away from shocks,
Morris & Monaghan (1997) and later Rosswog et al. (2000)
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introduced particle-based time dependent viscosity coefficients
αi(t). The value of αi(t) depends on a decay timescale and a
source term, making it maximal in the presence of a shock
and minimal away from it. This is further improved with the
approach proposed by Cullen & Dehnen (2010), which avoids
some problems related to the previous methods, such as the
damping of sound waves or the delay between the peak of the
αi(t) coefficients and the shock front. However, this last im-
provement occurs at unacceptable increase of CPU time for our
purposes.

In the present version of GEAR, we use individual time depen-
dent viscosity coefficients1 αi(t) as proposed by Rosswog et al.
(2000) and fix βi(t) = 2αi(t).

4. Initial mass function sampling

In most of the chemo-dynamical codes, each stellar particle is
considered a single stellar population (SSP) and its stellar mass
distribution at birth follows the shape of a given IMF. As time
passes, the energy and elements released by dying stars must be
spread over the ISM. There are various ways of modelling this.

The simplest approach, which is still widely used in N-body
simulations (see for example Rosdahl et al. 2015), is to calculate
the total energy and metals that are released over time by a full
stellar particle, given its mass and IMF. The energy and metals
are then ejected in the ISM at once. At the opposite end, pure
chemical models (e.g., Matteucci et al. 2009) precisely com-
pute the equations of chemical evolution (Tinsley 1980). In this
case ejecta are gradually released over a longer period of time,
the longest of which corresponds to the lifetime of the least mas-
sive star that ends its life as a supernova (or AGB when winds
are considered).

In GEAR, each newly formed stellar particle is treated along
the pure chemical evolution model approach. Energy and met-
als released by the SNeII and SNeIa are spread over the nearest
neighbouring particles (see Sect. 5 for more details). This proce-
dure requires accurate computation of, for each stellar particle i
and at every timestep, the number of exploding SNeIa (NSNIa,i(t))
and SNeII (NSNII,i(t)). These numbers are directly dependent on
the choice of IMF and its implementation.

Hereafter, we explore three different techniques to numeri-
cally sample the IMF. We study their impacts on the chemical
evolution of a galaxy, in particular on the scatter in abundance
ratios which are discussed in Sects. 8 and 9.

4.1. Continuous IMF sampling (CIMFS)

The continuous IMF sampling (CIMFS) method (e.g.,
Kobayashi et al. 2000; Revaz & Jablonka 2012) involves
discretising the Tinsley’s equations to obtain an analytic form of
the number of Type II and Type Ia supernovae, NSNIa,i(t,∆t) and
NSNII,i(t,∆t) (Poirier 2004; Revaz et al. 2009), which explode
within a timestep ∆t. In this formulation, both values are ‘real’
numbers that depend continuously on ∆t as well as on the
stellar particle mass considered, the smaller mass producing less
supernovae. This method works well for large stellar particle
masses. Though with the advent of high-resolution simulations,
it can lead to odd situations where NSNII,i or NSNIa,i are much
smaller than 1, i.e. fractions of a supernova explode during a
timestep. This is equivalent to the dilution of a single supernova
energy and elements over a large time interval. Precisely, the

1 For the usual symmetry necessary to ensure the conservation of inte-
grals in SPH, the mean value αi j = 1

2 (αi + α j) is taken in the viscosity
equations.

time interval over which one supernova fully explodes is the one
for which NSNIa,i(t,∆t) = 1 or NSNII,i(t,∆t) = 1. Diluting these
explosions over time has an obvious impact on the ISM both in
terms of dynamics and chemical enrichment.

For timesteps imposed by the Courant-Friedrichs-Levy con-
dition, the situation described above comes to a head for Type Ia
SNe at medium resolution, where the mass of a stellar particle
becomes smaller than 105 M�. As an example, for a gas density
of 0.1 atom/cm3 and a temperature of 106 K, the timesteps are
constrained to be of about 0.1 Myr. Assuming a Kroupa IMF
(Kroupa 2001) and the Kobayashi et al. (2000) SNIa model,
the typical number of type Ia supernovae exploding during this
timestep is 0.002. This corresponds to a dilution of the explo-
sion over 500 Myr. This problem is worse for smaller masses or
timesteps. Because Type II SNe explode at a higher rate, they
are less prone to this problem. However, for a stellar mass res-
olution of 103 M�, the dilution of the Type II supernova ejecta
can reach 50 Myr, a period larger than the longest SNII lifetime.

4.2. Random discrete IMF sampling (RIMFS)

In principle, one could randomly sample the IMF at particle cre-
ation to determine when and which stars would explode as su-
pernovae. However, such an approach would require unpractical
amounts of memory for any galaxy. An alternative is to follow a
stochastic approach that reproduces the discretisation of the IMF
without the requirement of storing information for each star.

At every timestep, one calculates, for each stellar particle i,
the number NSNx,i(t,∆t) of potentially exploding supernovae
(x standing for Ia and II). The integer part of NSNx,i(t,∆t) is as-
sumed to explode as supernova. The remaining fractional value
is compared to a random variable χ, taken from the uniform dis-
tribution over [0, 1]. If χ < Nfrac

SNx,i(t,∆t), the final number of dy-
ing stars is bNSNx,i(t,∆t)c+1 (where b·c corresponds to the largest
previous integer), otherwise it is bNSNx,i(t,∆t)c. In the following,
we refer to this method as the random IMF sampling (RIMFS)
method.

The drawback of this technique is that when the stellar par-
ticle mass is small, typically smaller than 104 M�, the number
of supernovae generated from the IMF is also small, resulting
in Poissonian noise. This is particularly pronounced at the high-
mass end of the IMF as massive stars are comparatively rare.
This is illustrated in the top panel of Fig. 2, which shows the
cumulative number of SNII and the number of exploding SNII
per timestep issued from a 2048 M� stellar particle. As stellar
masses are directly related to the chemistry via metal ejection, an
artificial scatter in masses induces a scatter in abundance ratios.

4.3. Optimal discrete IMF sampling (OIMFS)

The second choice for the discretisation of the IMF is the so-
called optimal IMF sampling (OIMFS), described by Kroupa
et al. (2013) and originally based on the work of Weidner &
Kroupa (2004). It aims to decrease the noise introduced by a
random discrete sampling of the IMF, i.e. it avoids gaps in the
initial stellar mass distribution.

Two important masses are introduced. First, m?
max, the abso-

lute upper mass limit for stars above which no stars may form.
It defines the absolute maximum stellar mass in the IMF. The
second mass is mmax, the maximal star mass of the actual sam-
pled IMF, i.e. the maximal star mass in the SSP. The OIMFS
formalism imposes that there is only one star of mass mmax, i.e.∫ m?

max

mmax

Φ(m)
m

dm = 1, (3)
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Fig. 2. Number of SNII explosions, upper panel a); cumulative number
of SNII, lower panel b), both as a function of time for a 2048 M� stellar
particle. The red lines correspond to the analytical IMF, (CIMFS), while
the black lines correspond either to the RIMFS a) or the OIMFS b).

where Φ(m)/m dm is the number of stars in the mass interval
[m,m + dm]. The lower stellar masses are determined iteratively
by ensuring the interval between [mi+1,mi] contains only one
star with a mass we set to be mi+1. The total mass of an SSP for
a given IMF and a maximum stellar mass mmax is therefore

MSSP(mmax) =

∫ mmax

mL

Φ(m) dm + mmax, (4)

where mL is the minimum stellar mass.
Pflamm-Altenburg & Kroupa (2006) developed an algorithm

to sample an IMF following this scheme, releasing a set of
C routines2. This algorithm has been implemented in GEAR fix-
ing the parameter m?

max to 50 M�, which is the upper mass limit
of our SNe nucleosynthesis tables. The mass MSSP is given by
the stellar particle mass and is directly related to the resolution
of the simulation. Figure 2 illustrates the reduction of noise in
the IMF obtained with the OIMFS (b) compared to the RIMFS
(a). The number of exploding SNeII per unit time is shown for
a 2048 M� stellar particle.

2 http://www.astro.uni-bonn.de/uploads/media/optimal_
sampling.tar.gz
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Fig. 3. Maximal stellar mass mmax that a SSP of mass MSSP may contain
in the OIMFS method when the absolute upper mass limit m?

max is set
to 50 M� (dashed line).

In the RIMFS approach, the individual stellar masses are un-
correlated, allowing multiple supernovae within short periods of
time or a long gap between two explosions. This results in a mo-
mentary change in the cumulative number of SNeII compared
to the CIMFS scheme. With the OIMFS scheme (panel b), these
deviations are erased, and the fit to the cumulative number of
SNeII in the continuous IMF sampling is clearly improved.

The OIMFS scheme is however limited in its application by
the direct relation given by Eq. (4) between the most massive
star in the SSP mmax as well as the SSP mass MSSP. This relation
shown in Fig. 3. Clearly, if the resolution is too high, for example
in the extreme case where MSSP = 100 M�, the maximal stellar
mass considered is only 7 M�, lower than the minimal mass of a
supernova. A more reasonable choice of stellar particle mass is
thus around MSSP = 104 M�. Further discussions are conducted
in Sect. 8.3.

4.4. An implicit limit in the mass resolution?

From the above description, one sees that each method presents
an implicit limitation in mass resolution: the CIMFS is no longer
reliable below a mass resolution of about 105 M�. For higher
resolutions, the ability to discretise the IMF is lost and en-
ergy and metals are diluted over unrealistic time intervals. The
OIMFS breaks down below 104 M� owing to its intrinsic formu-
lation that sets up a maximal star mass lower than the maximal
IMF mass. The RIMFS induces noise when the stellar particle
mass resolution is below about 104 M�.

One can argue that a stellar particle does not have to sample
a full IMF by itself, but instead a complete IMF should result
from different contributions of several stellar particles. In this
sense, the RIMFS method correctly samples the IMF as long
as enough mass/particles are considered and are close to each
other. However, as gravity quickly decorrelates stellar particles
in numerical simulations, this assumption is only correct as long
as 104 M� of stellar particles occupy a volume corresponding to
the zone where one particle injects energy and elements. This
corresponds to the volume defined by the SPH radius (rSPH = hi)
of the particle. Computing the ratio between rSPH and the size r4
of a region containing 104 M� is not trivial. To accomplish this,
we have extracted those values directly from simulations taken
from Revaz & Jablonka (2012), where a large range of mass res-
olutions were explored. rSPH is taken as the minimum SPH ra-
dius among the stellar particles and r4 is computed in the central
regions of the galaxies. The ratio rSPH/r4 is displayed on Fig. 4
as well as the ratio rSPH/r5 where r5 similarly defines a region
containing 105 M�. Despite the scatter, it appears that bellow
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Fig. 4. Ratios rSPH/r5 and rSPH/r4 as a function of the stellar mass.
Below the dashed curve, the assumption that several particles may ade-
quately sample an IMF begins to break down.

a stellar mass of 103 M�, the SPH volume of a stellar particle
contains fewer stars than that needed to correctly sample a full
IMF. While this allow us to extend the resolution over one order
of magnitude in mass when considering the RIMFS method, we
still face a mass resolution limit.

We further discuss the impact of this mass limit onto the
chemical evolution of galactic systems in Sect. 8.

5. Spreading of elements

For a given stellar particle, when a supernova explodes both the
energy and the synthesised elements must be ejected into the
surrounding gas. In practice, one wants to (i) choose Nngb neigh-
bouring gas particles j around a stellar particle i, and (ii) send to
each of them a fraction αi j of the total elements released by the
particle i. The fraction αi j can be written in a general form as

αi j =
Xi j∑Nngb

k=1 Xik

· (5)

Possible values for Xi j will be discussed below.

5.1. Setting the proper weighting

The most natural way of setting αi j is to use the SPH formulation

Xi j =
m jW(ri j, hi)

ρ j
, (6)

where, in addition to the kernel function W, which depends on hi
(the SPH smoothing length), and ri j (the distance between parti-
cles i and j), the amount of each element distributed to the parti-
cle j is weighted according to its volume V j = m j/ρ j. A simpler
alternative is to weight the kernel according to the particles mass

Xi j = m jW(ri j, hi). (7)

In both cases, the final metallicity inevitably traces the shape of
the kernel. As shown in Sect. 7, using a simple isolated super-
nova explosion, this radial dependency of the ejecta generates
an artificial abundance scatter in the gas. Its impact on the fi-
nal stellar abundances is discussed in Sect. 8 in the context of
dSph galaxies.

By default, the kernel function is a cubic spline (Monaghan
& Lattanzio 1985). A simpler alternative consists in using a step
function

W(ri j, hi) = Γi j =

{
1 if ri j ≤ hi,
0 otherwise, (8)

assuming that each particle within the SPH radius receive the
feedback independent of its distance to the source. Under this
Eqs. (6) and (7) then become

Xi j =
m j

ρ j
and Xi j = m j, respectively. (9)

Based on different simulations, we observe no statistically dis-
tinguishable difference in terms of star formation or final chem-
ical properties, when using either the particle volume or the par-
ticle mass-weighting recipe. This agrees with the results from
Tornatore et al. (2007) obtained in the context of galaxy clus-
ters, where only a few tenths of dex difference in the final
[Fe/H] of the intra cluster medium exists between the volume or
mass-weighting schemes. Hereafter, we use the mass-weighting.
However, the choice of the kernel is important in this case,
as illustrated both by simple supernovae explosion experiments
(Sect. 7) and more complex dSphs simulations (Sect. 8).

5.2. Choosing neighbouring particles

A natural way of choosing the number of neighbours affected
by a supernova is to follow the SPH weighting scheme. This
is our default choice where we have set Nngb = 50. However,
in the rigorous Lagrangian SPH formulation, such as that used
in Gadget-2, the number of particles is defined as (Springel &
Hernquist 2002; Hopkins 2013)

N̄ngbi
=

4
3
πh3

i

Nngbi∑
j=1

W(ri j, hi) or equivalently M̄i =
4
3
πh3

i ρi, (10)

ensuring that a fixed mass is contained within a given volume.
Here, Nngb,i is the effective number of neighbouring particles (an
integer number) and is not strictly equal to N̄ngb,i (a real num-
ber). It is important to emphasise that hi as well as Nngb,i are
affected by the mass distribution around the particle via their
kernel dependency. This is particularly important if the mass is
distributed in a ring-like structure, like it is, for example, after a
Sedov-Taylor explosion (see Sect. 7.2). In this case, the effective
number of neighbouring particles may be much larger than ex-
pected. For larger values of Nngb,i, each neighbouring gas particle
receives a lower mass of elements and induces a bias.

An alternative to this scheme is to fix the size of the neigh-
bouring region instead of setting a constant number of parti-
cles, where the ejecta is released into a given volume instead
of a given mass. The radius of the volume can be fixed as in
Kobayashi & Nakasato (2011) or set according to the propa-
gation of the supernova blast wave which depends on the lo-
cal properties of the gas. In the latter case, we have used the
blast radius RE (see Eq. (9) of Stinson et al. 2006) computed
by Chevalier (1974), McKee & Ostriker (1977), corresponding
to the size of a supernova bubble has reached when its internal
pressure drops to that of the ambient interstellar pressure.

An advantage of this method is that it is independent of the
resolution as the amount of mass affected by ejecta is approx-
imatively constant. The drawback is a drastic increase in the
CPU time, as, according to our tests, the number of neighbouring
particles is found to be on average larger.

We discuss the effect of these methods further in Sects. 7
and 8.
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6. Mixing of metals

In common SPH methods, star formation feedback transfers
metals amongst the nearest neighbours where the metals remain
for all time. Such a scheme ignores the natural mixing that oc-
curs as a reslut of small-scale turbulence or other unresolved pro-
cesses. In most cases the metal content of particles is assumed
to be constant until enriched by the next supernova. It also re-
sults in an artificial scatter as particles at different distances from
the source receive varying amount of metals. Furthermore, as
the number of neighbours is typically resolution dependent, this
scheme results in a strong resolution dependence with the scatter
becoming worse at higher resolutions.

These problems have been extensively discussed in the liter-
ature (Carraro et al. 1998; Okamoto et al. 2005; Tornatore et al.
2007; Martínez-Serrano et al. 2008; Greif et al. 2009; Shen et al.
2010), and two solutions have emerged: (1) the introduction of a
diffusion equation into the SPH scheme and (2) considering the
metallicity to be a smoothly varying function.

6.1. Metal diffusion

Including a classical diffusion equation in SPH has been
proposed by different authors (e.g. Carraro et al. 1998;
Martínez-Serrano et al. 2008; Greif et al. 2009; Wiersma et al.
2009; Shen et al. 2010). Hereafter, we use the approximate so-
lution of Greif et al. (2009). More precisely, we implemented its
Eq. (5). which predicts the time evolution of any scalar quan-
tity associated with a particle. This equation involves a diffusion
coefficient Di, which reads

Di = 2 d ρi hi ṽi, (11)

where hi is the SPH smoothing length of the particle i, ρi its
density, ṽi is an estimation of the RMS velocity at the position i
(Klessen & Lin 2003), and d is a free parameter used to calibrate
the diffusion. Diverging slightly from Greif et al. (2009) we use
the following estimation of ṽi described as

ṽ2
i =

1
ρi

Nngb∑
j=1

m j W(ri j, hi)
∣∣∣ui − u j

∣∣∣2 , (12)

where ui is the velocity of particle i and W(r, h) is the SPH ker-
nel function. Different values of the diffusion parameter d are
discussed in the context of isolated SN explosions (Sect. 7) and
dSph modellings (Sect. 8).

6.2. Smooth metallicity

In particle based simulations, any elemental abundance can be
computed as the ratio between the mass mX

i of the element X
and the total hydrogen mass mH

i for each particle i, namely,

[X/H]i = log10


(
mX

i /m
H
i

)(
mX

i /m
H
i

)
�

 , (13)

where (mX
i /m

H
i )� is the solar abundance ratio of an element X.

With an SPH scheme however, extensive physical quantities
linked to one particle are defined through a convolution running
over the nearest neighbours. Following Wiersma et al. (2009)3,
3 A similar technique has been used by Okamoto et al. (2005) and
Tornatore et al. (2007) to reduce the noise in the cooling function by
preventing close particles from having different metallicites and thus
different cooling rates.

Eq. (13) may be reformulated with the density ρX
i and ρH

i to
become

[X/H]s
i = log10


(
ρX

i /ρ
H
i

)(
mX

i /m
H
i

)
�

 , (14)

with ρX
i defined by

ρX
i =

Nngb∑
j=1

ρX
j

m j

ρ j
W(ri j, hi) =

Nngb∑
j=1

mX
j W(ri j, hi). (15)

This ratio [X/H]s
i is referred to as the smooth metallicity be-

cause it results from the weighted contribution of neighbouring
particles. This scheme smooths the metallicity gradient between
close particles, as would be expected by a turbulent ISM. Owing
to its definition, this method naturally takes the resolution of the
simulation into account.

6.3. Fundamental differences between the two schemes

Contrary to the diffusion scheme, the smooth metallicity scheme
does not explicitly redistribute metals among particles. Its effect
is local, extending the enriched region according to the size of
the SPH smoothing length, instantaneous, as it is performed at
every timestep; and static, as the enriched region does not change
if particles are not moving sensitively. In contrast, the diffusion
redistributes metals among particles and continuously extends
the enriched region with time as long as the velocity dispersion
is non-zero, which is always the case in practice. In this sense, it
is a dynamical process.

7. Isolated supernovae explosions

Simple tests provide the first steps to understanding the effect
of feedback and elemental dispersion inside numerical simula-
tions. Towards this purpose we perform a series of simulations of
isolated supernovae explosions inside a homogeonous gaseous
medium.

We look in particular at the impact of the resolution, the
adaptive timesteps, the artificial viscosity, and the method of
the metal deposition, including the smooth metallicity scheme
and/or the metal diffusion. We also take care to ensure the con-
servation of energy.

7.1. Initial conditions

In these scenarios a single supernova is detonated within a peri-
odic box of side 1 kpc filled with a pristine gas of uniform den-
sity. The initial density is set to 0.1 atom/cm3 and the temper-
ature to T = 104 K, which corresponds roughly to the ISM of
the first supernovae explosions in our dSph models (Revaz &
Jablonka 2012). The metallicity is set to a primordial abundance
of (by mass) 76% hydrogen and 24% helium. In order to avoid
undesired noise, the gas particles in the box are first relaxed to
form a glass-like structure.

To examine the impact of the resolution, these simulations
were run with five different number of particles between Ngas =

163 and 2563 (from 600 M� down to 0.15 M�, in terms of mass
resolution). The smallest resolution is of order the dSph simula-
tions of Revaz & Jablonka (2012) and the highest is for conver-
gence tests alone.

A21, page 7 of 23



A&A 588, A21 (2016)

Fig. 5. Density, temperature radial velocity, and surface density for two models with N = 2563 particles for different artificial viscosities. Top:
the classical formulation (Monaghan & Gingold 1983) (model “a”). Bottom: the formulation proposed by Monaghan (1997) and used as a default
in the Gadget-2 code (model “b”). In each panel, the blue dashed curve corresponds to the analytical Sedov-Taylor solution while the green
dashed curve is the average particle value. The particles indicated in red were directly assigned feedback energy. Because of the lower efficiency
of the standard Gadget-2 artificial viscosity (bottom), some gas particles can penetrate into the ISM through the supernova shell. This is visible
in anisotropies in the density behind the shock front.

Table 1. Details of parameters used for a single supernova explosion.

Name Art.visc. Adap. timesteps Diff. Smooth
improved improved coeff d metallicity

a yes yes – no
b no yes – no
c yes no – no
d yes yes – yes
e yes yes 0.001 no
f yes yes 0.003 no
g yes yes 0.0001 no
h yes yes 0.0003 no

Notes. Each model has been run with the five resolutions considered,
N = 163, 323, 643, 1283, 2563, corresponding to a gas particle mass of
600, 75, 9, 1.2, 0.15 M� respectively.

For each resolution, we explored the impact of the artificial
viscosity improvement (Sect. 3.3), the adaptive timesteps im-
provement (Sect. 3.2), and the diffusion or smooth metallicity
schemes (Sect. 6). The parameters used for each model are sum-
marised in Table 1.

7.2. Sedov-Taylor solution

We confirm that in our highest resolution simulation (top panel
of Fig. 5) the Monaghan (1997) artificial viscosity (see Sect. 3.3)
formulation in combination with the adaptive timestep improve-
ment proposed by Durier & Dalla Vecchia (2012, see Sect. 3.2),
reproduces the Sedov-Taylor solution. During the supernovas
expansion, a non-negligible amount of particles remain at low
densities inside the expanding bubble. The shell of this bubble
is sufficiently thin and dense, agreeing with the analytic den-
sity profile. This is also the case for other variables such as the

temperature and radial velocity. The total energy is conserved at
a 0.3% level.

At the lowest resolution, where gas particles have a mass
of 500 M� or higher, typically used for galaxy formation simu-
lations, the blastwave is not well recovered. As the SPH kernel
has approximately a fixed number of particles (Eq. (10)), the
total mass inside the kernel rises at low resolution. This natu-
rally results in the dilution of the feedback energy per unit mass
and consequently the increase of internal energy/temperature per
particle is weakened (Dalla Vecchia & Schaye 2012). The im-
pact of this can be up to two dex between the N = 163 and
the N = 2563 models. However the transfer of the internal en-
ergy to kinetic energy only depends weakly on the resolution (at
a 2% level). As a consequence, the net impact outside the kernel
remains similar, independent of the resolution.

When radiative cooling is considered in these Sedov-Taylor
experiments, the resolution dependence of temperature and den-
sity becomes important since the cooling function is directly
related to these quantities. At low resolution, the central parti-
cles do not reach the low density and high temperature regime
where the cooling is significantly reduced (Dalla Vecchia &
Schaye 2012). Following Stinson et al. (2006, and as in Revaz
& Jablonka 2012) we use an adiabatic time tad = 5 Myr, dur-
ing which the cooling of any particle that received energy from
the supernova is switched off. This fix avoids an instantaneous
cooling of the hot gas and improves the convergence.

7.2.1. Adaptive timesteps

Without the improved timestep scheme (model “c”) pro-
posed by Durier & Dalla Vecchia (2012), gas particles in the
ISM surrounding the explosion fail to be activated early on and
arbitrarily large errors can then occur.
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(b) N = 1283

Fig. 6. Effects of the resolution on the evolution of the metallicity profile of particles that received feedback in our fiducial model “a”, with a
resolution of N = 163 a) and N = 1283 b). Each curve corresponds to a different times, 0.6, 2.4, and 4.7 Myr after the supernova explosion. The
upper right panel shows the iron distribution function which, in this particular experiment, is independent of time.

7.2.2. Artificial viscosity

Figure 5 compares the two artificial viscosity schemes. The top
panel corresponds to the viscosity scheme adopted by GEAR
(model “a”) while the bottom panel represents the standard
Gadget-2 implementation (model “b”). At high resolutions and
using the standard Gadget-2 artificial viscosity, some gas par-
ticles can penetrate into the ISM through the supernova shell
(see the gas surface density) whereas this is not the case in the
Monaghan & Gingold (1983) formulation.

The difference between the two methods is explained by the
presence of the additional factor hi j/ri j in the definition of µi j
compared with the standard Gadget-2 viscosity (see Eq. (2)).
This factor increases as particles come closer and boosts the ef-
fect of the bulk viscosity4. At low resolution this difference is
negligible, however, as the shock is not strong enough for this to
become important. Finally, we stress that the total energy con-
servation remains very similar between the two schemes.

7.3. Metal distribution and the effect of smooth metallicity
or diffusion

7.3.1. Radial distribution of ejecta

The [Fe/H] ratio of gas particles as a function of time is shown
in Fig. 6 for model “a” with N = 163 and N = 1283 parti-
cles. Without the smooth metallicity scheme or a diffusion term,
only the particles that are directly touched by feedback contain
metals. Furthermore, the [Fe/H] profile directly traces the kernel
at the moment of the supernova explosion because the metal is
distributed according to the SPH kernel, and higher resolution

4 At very small pair separation, the divergence is softened by a ε h2
i j

term at the denominator.

models distribute metals over a smaller physical volume. This
reduced volume (and consequently reduced mass of gas that re-
ceives ejecta) means that higher resolution models end up with
much higher metallicities.

The width of the distribution however remains unchanged.
Owing to the fact that the energy transfer into a kinetic form is
resolution independent, the velocity of particles is on average
smaller in the low resolutions and the growth of the polluted re-
gion is subsequently three to four times slower in low-resolution
cases. This reduction in speed helps to reduce the size discrep-
ancy of the final polluted region between different resolution
models.

7.3.2. Effects of smooth metallicity and metal diffusion
schemes

In contrast to the standard enrichment schemes, both the smooth
metallicity scheme (model “d”) and metal diffusion scheme
(models “e” to “h”) allows particles initially outside the feedback
region to contain metals. Figure 7 shows the metallicity 5 Myr
after a supernova explosion for the standard SPH scheme, the
smooth metallicity scheme, and diffusions schemes (covering a
diffusion coefficient d of 0.003, 0.001, 0.0003 and, 0.0001).

Both methods reduce the strong metallicity gradient that ex-
ists in the standard SPH scheme. Particles outside the region
initially touched by feedback are now able to contain metals
produced from the supernova, and the level dependent is on the
model (and diffusion coefficient) used. Consequently, the metal-
licity within the inner region is reduced in both schemes either
because metals diffused outwards (diffusion scheme) or the pres-
ence of low-metallicity neighbours (smooth metallicity) in the
kernel of the central particles.

The major differences between the two methods occurs be-
cause of their fundamental nature, i.e. whether they are static
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(a) N = 163 (b) N = 1283

Fig. 7. Metallicity profile after 5 Myr, for three different schemes: normal SPH (model “a”), smooth metallicity (model “d”), and metal diffusion
(models “e” to “h”). The upper panel shows the metallicity distribution function (independent of time in this particular experiment) for the N = 163

and N = 1283 models.

and instantaneous or a dynamical process. At low resolutions
(N = 163, h � 0.15 kpc), the smooth metallicity scheme af-
fects a region approximately twice the size of the region initially
enriched; this region is much larger than that affected by diffu-
sion regardless of the diffusion coefficient. At high resolutions
(N = 1283, h � 0.035 kpc), the smooth metallicity scheme only
slightly broadens the initial polluted region. Meanwhile, the dif-
fusion scheme remains weakly affected by the resolution and at
high resolutions becomes the most efficient mechanism of metal
mixing.

In Fig. 7, the metallicity distribution function (MDF) for
each model considered is shown in the upper right corner.
Independent of the resolution, the difference of the two meth-
ods is clear. With the diffusion scheme, a lot of particles receive a
tiny fraction of elements, thus dominating the low-metallicity re-
gion of the MDF. Hence, the peak of the MDF is washed out. On
the contrary, the smooth metallicity scheme only slightly shifts
the MDF towards lower metallicity while keeping the peak of
the distribution at an intermediate metallicity.

We finally point out that the effect of both methods is, by
construction, resolution dependent, and the mixing is always
strongest at the lowest resolution.

7.4. Two supernovae and abundance ratio scatter

In the previous experiments where only a single supernova ex-
ploded in a box of pristine gas, the final abundance ratios of all
gaseous particles were strictly identical since they all received
the same ratio of elements. Studying the scatter in elemental
abundances requires simulations with multiple supernovae of
different yields.

Here, we study the impact of various processes on the scat-
ter in a dual supernovae scenario. First, an α-rich ([Mg/Fe] � 1)
40 M� supernova is exploded and then 5 Myr later, a second,

α-depleted ([Mg/Fe] � −0.35) 15 M� supernova explodes, en-
suring a large scatter in abundances ratio.

We performed 24 simulations, each a combination of (i) a
mixing scheme: the smooth metallicity, a strong diffusion (d =
0.003), a weak diffusion (d = 0.0001), or no mixing; and (ii) an
ejection scheme: the normal SPH kernel, no kernel dependence
(wi j = Γi j), a fixed radius (Rej = 0.125 kpc), or a blast radius
(Rej = RE), as described in Sect. 5. For each of these simulations,
we explored two resolutions: N = 163 and N = 643. In the fixed
radius scheme, the value Rej = 0.125 kpc corresponds to the blast
radius RE obtained for a medium with a density of 0.1 atom/cm3

and a temperature of 104 K. As we found only a small difference
between the fixed radius and blast radius, we only show results
for the former to avoid clutter.

Figure 8 shows the [Fe/H] of the gas as a function of the
distance to the centre of the explosion, and [Mg/Fe] of the gas
as a function of [Fe/H] for a subset of the most relevant models
with a resolution of N = 643. At the top right of each panel,
we also show the final metallicity distribution. For each simula-
tion, the abundance of the gas at four different times is indicated:
t1 = 0.6 Myr (black), just after the first explosion; t2 = 5.2 Myr
(blue), just before the second explosion; t3 = 5.3 Myr (green),
just after the second explosion; t4 = 9.4 Myr (red), at the end of
the run.

7.4.1. Normal SPH kernel, no mixing

With the normal SPH kernel and without mixing, 49 particles
are enriched by the first explosion, which is in agreement with
the choice of 50 neighbouring particles. As a result of the ab-
sence of mixing, the metallicity distribution traces the SPH ker-
nel with the central regions more heavily enriched than the other
regions. As each metal species are distributed identically, the
touched particles have a constant [α/Fe] value, forming the blue
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(a) normal SPH, no mixing
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(b) wi j = Γi j, no mixing
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(c) Rej = 0.125 kpc, no mixing
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(d) normal SPH, smooth metal.
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(e) normal SPH, diffusion (d = 3 × 10−3)
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(f) normal SPH, diffusion (d = 10−4)

Fig. 8. Evolution of the particles touched by the supernova feedback is shown for different element ejection schemes (see text). The upper parts of
the plots show the radius as a function of the metallicity. The lower parts indicate the [Mg/Fe] ratio as a function of [Fe/H]. The black dots show
particles at t1, just after the first explosion; the blue dots at t2, just before the second explosion; the green dots at t3, just after the second explosion;
and the red dots at t4, at the end of the run. The histograms on the upper right indicate the metallicity distribution function at t4.

horizontal line. Between the two explosions, the particles en-
riched by the first supernovae are overpressurised and travel out-
wards forming the supernovae blast wave. Interestingly, the sec-
ond explosion impacts 84 particles. As evoked in Sect. 5.2, such
a large deviation compared to the expected ±50 particles is a di-
rect consequence of the inhomogeneous medium generated by
the blastwave. In addition to the 49 particles enriched by the first
supernova, 35 particles comprised of pristine gas receive metals
and these all share the same α-depleted yields, that of the 15 M�
supernova (forming the red horizontal line at the bottom of the
[Mg/Fe] vs. [Fe/H] plot). In the central regions of the blast wave,
the initially enriched particles are mixed with α-depleted materi-
als and end up with a [Mg/Fe] of around 0.5. The resulting scat-
ter is large due to the presence of extreme α-rich and α-depleted
regions. As the number of particles touched by the second super-
nova increases, the ejecta are also more diluted.

7.4.2. Step function kernel (w ij = Γij ), no mixing

In this situation, all particles touched by one explosion receive
the same amount of ejecta. The radial [Fe/H] distribution is thus
perfectly flat until the edge of the kernel. The second explo-
sion simply shifts the metallicity upwards and all particles are
grouped in a small cluster on the [Mg/Fe] vs. [Fe/H] plot. The
scatter in abundance ratio is thus extremely low. As opposed to
the previous case, the particles touched by the feedback receive
equal amounts of energy and thus travel the same length and
maintain a similar density. Consequently, as the density is kept
constant and homogeneous at the time of the second explosion,
only the same 49 particles are touched by the ejecta of the second
supernova.

7.4.3. Fixed radius (r = 0.125 kpc), no mixing

When the ejection radius is fixed, the bias related to the adaptive
SPH radius is staved off. The second supernova only concerns
the particles that are still lying in 0.125 kpc and, thus, because
of the kernel, are the most enriched. This double enrichment re-
sults in the radial profile bump traced by the green line. As a
result of the α-depleted nature of the second supernova, these
particles see their [Mg/Fe] decreased. Further away (where par-
ticles have low [Fe/H]), the α abundances remain unchanged.
The low [Mg/Fe] floor present in the normal SPH simulation
without mixing is completely absent.

7.4.4. Normal SPH kernel, smooth metallicity

The smoothed metallicity dilutes the ejecta across a larger
number of particles, shifting the mean to a lower metallicity.
Interestingly, this mixing scheme does not avoid the large scat-
ter in [Mg/Fe] but only reduces it slightly by averaging some
extreme values.

7.4.5. Normal SPH kernel, diffusion

The addition of a strong diffusion coefficient (d = 0.003) allows
the transfer of metals from the inner metal-rich regions to the
outer metal-poor regions. When the second supernova explodes,
no pristine gas is affected by the α-depleted ejecta. Particles far
from the second supernova, which would be pristine if not for
diffusion, receive only a small fraction of ejecta relative to that
received via diffusion and consequently maintain a [Mg/Fe] ratio
around 1. On the contrary, in the central regions that have lost
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elements through diffusion, the impact of the second supernova
is stronger and makes the [Mg/Fe] ratio gradually decrease down
to around 0.

When the diffusion coefficient is decreased (d = 0.0001),
the result is intermediate between the normal SPH case and the
case with the strong diffusion. In this case the high-metallicity
regions follow the standard case, while the low-metallicity are
similar to the strong diffusion case.

8. Simulations of dwarf spheroidal galaxies

We simulate dwarf spheroidal galaxies (dSph) to study the effect
of the numerical schemes on observable properties. Here, we
systematically alter IMF modelisation (Sect. 4), how elements
are distributed after supernovae explosions (Sect. 5), and mix-
ing of metals via the smooth metallicity approach (Sect. 6.2) or
diffusion (Sect. 6.1).

We focus on star formation rates as well as on stellar abun-
dances, both of which are well constrained by recent observa-
tions (see Sect. 1). As dSphs form nearly all stars in situ with
only minimal accretions, they are more relevant for a direct
comparison than more massive galaxies. Furthermore, as dwarf
galaxies are small systems, their modelling is less CPU inten-
sive, which allows us to explore a large parameter space.

8.1. Initial conditions

The dSph models are based upon updated versions of the models
described in (Revaz & Jablonka 2012). The initial conditions are
based on a two-slope density spherical profile

ρ(r) =
ρ0(

r
rs

)a (
1 + r

rs

)b−a , (16)

where a is the slope of the inner profile, fixed to 0 to correspond
to a core favoured by observations of normal low brightness and
dwarf galaxies (Blais-Ouellette et al. 2001; de Blok & Bosma
2002; Swaters et al. 2003; Gentile et al. 2004, 2005; Spekkens
et al. 2005; de Blok 2005; de Blok et al. 2008; Spano et al. 2008;
Walker & Peñarrubia 2011; Oh et al. 2011), b is the slope of the
outer profile, fixed to 3, in agreement with the outer NFW pro-
file (Navarro et al. 1996, 1997) from ΛCDM simulations. rs, the
scale radius is set to 2 kpc. The models are truncated at a maxi-
mum radius rmax. Initially, the models only contain dark matter
and pristine gas both sharing the same profile with a respective
mass ratio of 0.15 in agreement with the standard cosmological
baryonic fraction.

The initial equilibrium of the halo is obtained by calculat-
ing the velocity dispersions derived from the Jean’s equations,
assuming a spherical symmetry. For the gas, these velocities
are transformed in thermal energy by multiplying by 0.5 such
that the gas sphere smoothly condenses when the simulation is
started.

8.2. Dwarf spheroidal models

Two different sets of initial conditions have been considered, as
much as possible both reproducing the observed properties of the
Local Group dSphs Sextans and Fornax, which are two galaxies
representative of the variety among dSphs. Fornax is expected to
be rather massive owning to it high luminosity (15.5 × 106 L�)
and metal-rich stellar population (〈[Fe/H]〉 = −1.07). It is
characterised by an extended star formation rate (Coleman &
de Jong 2008). At the opposite end, Sextans is substantially less

Table 2. Set of parameters for the initial conditions of dSph models like
Fornax and Sextans.

Galaxy name Mtot rmax rs a b
[108 M�] [kpc] [kpc]

Sextans 3.5 9 2.5 0 3
Fornax 8 9.5 2 0 3

luminous (L = 0.53× 106 L�) and characterised by a metal-poor
stellar population (〈[Fe/H]〉 = −2.02) dominated by old stars
(Lee et al. 2003). The parameters used for each one of these two
models are given in Table 2. Each of these two models is run
using different resolutions spanning nearly three orders of mag-
nitude in mass. The resolution is defined by an integer r. The
corresponding stellar mass m?,r and spatial resolution (gravita-
tional softening) εr, are computed using the relations

m?,r = m0/2r and εr = ε0 · 2−r/3, (17)

where m0 = 65536 M� and ε0 = 0.24 kpc correspond to the
poorest resolution considered (r = 0). With this definition, in-
crementing the resolution by 3 corresponds to dividing the mass
by a factor eight and the spatial resolution by two.

The complete set of simulations including their parameters
is given in Table 3, representing more than 80 simulations. A pa-
rameter set to “SPH” means that the default SPH setting is used
for both wi j and Rej. We also test additional parameters, such as
the adiabatic time (Sect. 7.2) applied to either SNIa or SNII. We
defined a fiducial set of parameters shown on the top of the table
to ease the comparison between the models and increase read-
ability. When the value of a parameter is not given, the one of
the fiducial model is used. For all models, the star formation pa-
rameter c? is fixed to 0.01 and the supernova efficiency εSN is set
to 0.3.

8.3. The effect of the IMF sampling

In Sect. 4 we presented different approaches to sample the IMF.
Briefly, these can be summarised as: continuous IMF sampling
(CIMFS, see Sect. 4.1), where each stellar mass contributes in
ratio to its proportion of the IMF (including fractional contri-
butions, if this is less than one); random sampling (RIMFS,
Sect. 4.2), where the IMF is treated as a probability distribution
and supernovae are generated stochastically; and “optimal” IMF
sampling (OIMF, Sect. 4.3), where the IMF is split into mass
bins such that each bin contains one supernova at the lower end
of the mass bin. The choice of IMF sampling method has a direct
impact on both the feedback energy and the elements injected as
supernovae go off inside the galaxy. Our aim here is to address
the impact of the IMF choice on the global chemical enrichment
of a galaxy. In Fig. 9, we delineate the star formation history
and evolution of the stellar mass for the three different schemes
as a function of the resolution from r = 4 (m? = 4096 M�) to
r = 6 (m? = 1024 M�). We analyse and compare these simula-
tions in detail below.

8.3.1. CIMFS and the SNIa adiabatic time

The first and foremost feature observed in the CIMFS method is
the quenching of star formation after about 3 Gyr, independent of
the resolution or the dSph model. Between 2 and 10 times fewer
stars are generated in the case of the CIMFS which drastically
impacts the final metallicity and abundances.
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Table 3. Complete set of dSph simulations including their proper parameters.

Resolution m? εgrav IMF tad,SNII tad,SNIa Smooth metal. Diff. coeff. d Rej wi j
r [M�] [kpc] sampling [Myr] [Myr] [kpc]

Fiducial models
9 128 0.030 RIMFS 5 5 yes 0 SPH SPH
6 1024 0.060 RIMFS 5 5 yes 0 SPH SPH
5 2048 0.076 RIMFS 5 5 yes 0 SPH SPH
4 4096 0.096 RIMFS 5 5 yes 0 SPH SPH
3 8192 0.120 RIMFS 5 5 yes 0 SPH SPH
0 65 536 0.241 RIMFS 5 5 yes 0 SPH SPH

IMF sampling schemes
9 128 0.030 OIMFS
6 1024 0.060 OIMFS
5 2048 0.076 OIMFS
4 4096 0.096 OIMFS
3 8192 0.120 OIMFS
0 65 536 0.241 OIMFS
9 128 0.030 CIMFS
6 1024 0.060 CIMFS
5 2048 0.076 CIMFS
4 4096 0.096 CIMFS
3 8192 0.120 CIMFS
0 65 536 0.241 CIMFS
9 128 0.030 CIMFS 0
6 1024 0.060 CIMFS 0
5 2048 0.076 CIMFS 0
4 4096 0.096 CIMFS 0
3 8192 0.120 CIMFS 0
0 65 536 0.241 CIMFS 0

Elements spreading schemes
6 1024 0.060 no 0.125
6 1024 0.060 no RE
6 1024 0.060 no Γi j

Mixing schemes
6 1024 0.060 no
5 2048 0.076 no
4 4096 0.096 no
6 1024 0.060 no 0.003
5 2048 0.076 no 0.003
4 4096 0.096 no 0.003
6 1024 0.060 no 0.001
5 2048 0.076 no 0.001
4 4096 0.096 no 0.001
6 1024 0.060 no 0.0003
5 2048 0.076 no 0.0003
4 4096 0.096 no 0.0003
6 1024 0.060 no 0.0001
5 2048 0.076 no 0.0001
4 4096 0.096 no 0.0001

Notes. Each simulation has been run for both for Fornax and Sextans model. When the value of a parameter is not given the value of the fiducial
model is used.

This quenching is a direct consequence of the heating of IMF
by the SNIa and may be understood as follows. For the r = 4 res-
olution runs (m? = 4096 M�), the typical timestep is 0.1 Myr.
According to the Kroupa IMF (Kroupa 2001) and the Kobayashi
et al. (2000) SNIa model, the number of SNIa exploding dur-
ing this timestep is about 10−4. This means that small fractions
of SNIa continuously explode over a long time interval, forcing
the adiabatic time switch to be always active. Consequently, the
gas cooling is artificially quenched along with the star formation
rate. The problem worsens with increasing resolution.

In contrast, only full SNe explode in the RIMFS and CIMFS
approaches, respecting the physical delay in time between all of
them (see Fig. 2). As tad = 5 Myr is small compared to the mean
time between two SNe, the cooling is still effective in maintain-
ing a continuous star formation rate.

In a fourth model (CIMFS + tad,SNIa = 0), we tested the
suppression of the adiabatic period only after the SNIa explo-
sions, since it is sometimes used in galaxy formation simula-
tions. Setting the adiabatic time for the SNIa to zero in the
CIMFS generates a star formation rate akin to the RIMFS and
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(b) Fornax : r = 5,m? = 2048 M�
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(c) Fornax : r = 6,m? = 1024 M�
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(d) Sextans : r = 4,m? = 4096 M�
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(e) Sextans :r = 5,m? = 2048 M�
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(f) Sextans :r = 6,m? = 1024 M�

Fig. 9. Comparison of the star formation history and cumulative stellar mass evolution between the different models of Fornax and Sextans in four
cases: random IMF sampling (RIMFS), optimal IMF sampling (OIMFS), and continuous IMF sampling with an adiabatic time tad,SNIa = 5 Myr
(CIMFS) and with tad,SNIa = 0 (CIMFS + tad,SNIa = 0). Each panel corresponds to a different resolution.

OIMFS. However, we still have the problem that SNIa dilute the
ejection of metals in time affecting the chemical evolution of
the system. As in this case, at every timestep all stellar particles
experimenting SNe explosions expel at least a fraction of ele-
ments, and the mixing is artificially boosted. However, it is clear
that CIMFS with tad,SNIa , 0 does not reproduce any feature
accurately and consequently, we will no longer consider those
models in the future.

8.3.2. The effect of the resolution

The second clear feature on Fig. 9 is the important effect of the
resolution on the star formation rate. As long as the resolution is
low (r ≤ 4, m? ≥ 4096 M�) all three sampling methods (RIMFS,
OIMFS and CIMFS + tad,SNIa = 0) nicely converge.

As resolution increases the cumulative stellar mass begins
to diverge, at the r = 5 resolution (m? = 2048 M�), the
RIMFS cumulative stellar mass deviates of about 10% from the
OIMFS and CIMFS + tad,SNIa = 0. For Sextans, with r = 6
(m? = 1024 M�), the RIMFS produces 40% more stars than
the CIMFS + tad,SNIa = 0 and 30% more that the OIMFS. That
the OIMFS is closer to the CIMFS because it represents a better
fit to the continuous solution, as seen in Fig 2.

The deviation of the three methods with increasing resolu-
tion is a direct consequence of the method chosen for IMF sam-
pling, a major problem for high-resolution simulations. As we
see in what follows, all of these methods bias the predictions of
the chemical abundances once a given resolution is reached.

8.3.3. Impact on the chemical abundances

In addition to its effect on the global star formation rate, we also
want to address the impact of the IMF sampling scheme on the
final abundances.

A reliable comparison between the different methods is not
straightforward, as they all generate slightly different star for-
mation histories that alter the final abundances. We firstly com-
pare the models at 1 Gyr when the amount of stars formed in
the Sextans models are all similar, according to the bottom of
Fig. 9. In Fig. 10, we show the magnesium abundance of the
gas ([Mg/Fe]), our tracer of the α-elements, as a function of
the metallicity of the gas ([Fe/H]). In Fig. 9, we indicate the three
different IMF sampling methods and the three resolutions. In
each panel, a point corresponds to one gaseous particle where the
ratios [Mg/Fe] and [Fe/H] is computed with the smooth metallic-
ity scheme (Eq. (14)). On top of that, the continuous and dashed
black lines indicate the 1σ dispersion of each sample. The val-
ues of the 1σ dispersions are also reported on the bottom of the
plot for a direct comparison between the models.

At low resolution (r = 4), all models display equivalent dis-
tributions with very low dispersions (1σ < 0.1). This arises be-
cause, at such low resolution, the neighbouring particles of a
stellar particle cover a large volume, subsequently, ejecta are ef-
ficiently spread over the entire galaxy resulting in an excellent
mixing. As expected, if the yields of all type II supernovae are
mixed altogether, a mean value of [Mg/Fe] = 0.5 is obtained,
forming a clear plateau.

With increasing resolution, the dispersion increases and the
differences between RIMFS, OIMFS and CIMFS + tad,SNIa = 0
become clear. Firstly, it is clear that in all cases, the dispersion
decreases with increasing [Fe/H]. This is the direct consequence
of the internal mixing that each particle experiments when it re-
ceives metals from successive supernovae. Secondly, the plots
clearly show that the RIMFS scheme always generates disper-
sions about a factor of two larger than both the OIMFS and the
CIMFS + tad,SNIa = 0 models. The mixing is obviously stronger
for the CIMFS+tad,SNIa = 0 because, in this particular scheme, at
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Fig. 10. Top: [Mg/Fe] for the gas component as a function of [Fe/H] for the Sextans model, at t = 1 Gyr. On top row, the RIMFS scheme is
compared to the CIMFS while on the bottom row it is compared to the OIMFS scheme. From left to right, the panels show the effect of the
resolution increase. Bottom: the 1σ dispersion of the upper distributions.

every timestep, each stellar particle that is older than the short-
est star lifetime spreads ejecta. A neighbouring gaseous particle
is therefore more likely to receive ejecta from the whole range
of stellar masses considered in the IMF. This is in contrast with
the RIMFS scheme where extreme cases, such as only a sin-
gle 50 M� SNe exploding for a stellar particle, may occur. In
such a case, neighbouring gaseous particles are biased towards
very high [Mg/Fe] ratios. Similar cases such as low-mass super-
novae exploding would bias the neighbouring particles towards
low [Mg/Fe] ratios. The final dispersion is then larger for RIMFS
than for the other schemes.

The OIMFS scheme, despite its discrete nature, aims to sam-
ple the IMF in a more continuous way, ensuring that a wide
range of supernova masses are represented. The dispersion ob-
tained is indeed very similar to the CIMFS + tad,SNIa = 0
dispersion. However, this method suffers from an important
bias. As described in Sects. 4.3 and 4.4, for a given resolution
(m?,r = MSSP), an upper local stellar mass mmax exists, and
stars with higher masses are ignored. For the models considered
here, r = 4, 5, 6, the corresponding maximal masses are respec-
tively 40.6, 34.5, and 26.9 M�. Hence, with increasing resolution
the OIMFS scheme misses the ejecta of the most massive stars,
which are those with a high α-element ratio. As clearly seen for
the r = 6 model, the low-metallicity plateau is offset towards
lower [Mg/Fe], with respect to the CIMFS + tad,SNIa = 0 and
RIMF schemes.

As observations only view the stars as they are today, we
show in Fig. 11 the [Mg/Fe] ratio for the Fornax models, at
t = 14 Gyr. Despite the fact that the quantity of stars formed
in these models is different, owing to different star formation
rates, these plots allow us to appreciate the effect of the differ-
ent IMF sampling schemes on the final abundances. For com-
parison, the observed dispersion in [Mg/Fe] extracted from all

stars of Fig. 1 is shown as a yellow curve on the bottom of each
plot. While the trends discussed in the gas abundances are less
pronounced in the stars, they all remain true: (i) at low reso-
lutions, the metallicity dispersion is low (even lower than that
observed) and the three methods converge; (ii) at higher reso-
lutions, the dispersion in the RIMFS scheme is always larger
than the CIMFS + tad,SNIa = 0 and OIMFS schemes; and (iii)
the [Mg/Fe] plateau is offset owing to the lack of massive super-
novae in the OIMFS case.

8.3.4. Convergence

We briefly discuss here some convergence issues related to the
resolution. Figure 12 shows the star formation and cumulative
stellar mass for the Fornax model with resolutions increasing
from r = 0 to 9, i.e, covering two dex in terms of mass resolu-
tion. Here, no convergence is obtained with the RIMFS scheme5,
which primarily occurs for two reasons.

Firstly, for the high-resolution model (r = 9), the mass
of one stellar particle is only 128 M� inevitably causing bias
in the randomly generated IMF as described in Sect. 4.2. We
found that the RIMFS simulation with a resolution lower that
r = 6 generates precisely 87 × 10−4 SNeII per solar mass
formed, in agreement with the choice of the IMF. For the high-
resolution model, this value can drop to 75 × 10−4 owing to in-
complete sampling. Consequently, the feedback associated with
high-resolution simulations is smaller, fostering a higher star
formation rate. The divergence between models is considerably
smaller for the CIMFS + tad,SNIa = 0 case. There, according to

5 As the divergence after a few hundreds of Myr is obvious and as
r = 9 simulations are strongly CPUs consuming, we stopped the latter
and did not run them up to 14 Gyr.
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Fig. 11. Stars [Mg/Fe] as a function of [Fe/H] for the Fornax model, at t = 14 Gyr. On top, the RIMFS scheme is compared to the CIMFS, while
on the bottom it is compared to the OIMFS scheme. From left to right, the panels show the effect of the increase in resolution. The yellow curve
shown on the bottom of each plot corresponds to the observed dispersion in [Mg/Fe] extracted from all stars of Fig. 1.

the definition of the CIMFS, the number of SNeII per solar mass
formed is always precisely the same, independent of the resolu-
tion. In addition, energy is released at every timestep, preventing
the runaway star formation.

Secondly, because the SPH radius is smaller for higher res-
olutions, energy is deposited into a smaller volume of gas, pre-
venting the (temporary) shutdown in star formation over large
sections of the galaxy seen in low-resolution models.

8.4. Reproducing the scatter in [α/Fe]

A fundamental point when simulating the chemical evolution
of a galaxy is to correctly reproduce the scatter in the element
abundance ratios. In this section we study the impact on the
dSph chemical evolution of the elements spreading scheme dis-
cussed in Sect. 5 along with the two mixing methods introduced
in Sect. 6, namely the smooth metallicity (Wiersma et al. 2009)
and diffusion process based on velocity dispersions (Greif et al.
2009).

8.4.1. The scatter without mixing

We first discuss our models in the absence of any additional mix-
ing, by focusing on the final stellar [Mg/Fe] vs. [Fe/H] distri-
butions for Fornax and Sextans. All three IMF sampling meth-
ods suffer from different issues at the resolution considered here
(r = 6, m? = 1024 M�). The CIMFS artificially boosts the
mixing of elements, the OIMFS induces a spurious offset in
the α-elements abundances ratio, and the RIMFS is subject to
Poissonian noise. We however found the RIMFS scheme to be
better suited to study the influence of different numerical tech-
niques on the scatter of elements abundances ratio. Thus for the

rest of the discussion, we only use the RIMFS scheme. The re-
sults are indicated in dark blue on panels (a) and (e) of Fig. 13,
with observed values overplotted in yellow (from Fig. 1). We
compare only the low-metallicity end of the stellar distribution
([Fe/H] < −2.5), where both Milky Way and dSph stars sit on
the same high [α/Fe] plateau, before they diverge because of dif-
fering star formation histories. This choice allows us to compare
the scatter with simulations without running into complications
arising from the small statistics in most dwarfs.

At low metallicity in the simulations, the scatter is
above 0.4 dex, about 2–3 times higher than that observed
in metal-poor stars. In particular, stars are found with ex-
treme [Mg/Fe] values, above 0.85 and below −0.5. As seen by
Fig. 1 very few metal-poor stars have been found with subsolar
[Mg/Fe] and only two have values below −0.5 (Aoki et al. 2014;
Jablonka et al. 2015). At high metallicity, the scatter decreases
as each star has had a higher number of supernovae enriching it,
however, many stars are still found with very low [α/Fe] ratios.
By examining the extreme stars we find that very low-metallictiy
stars are enriched either purely from low-mass M < 20 M� su-
pernovae or, in rare cases, by a single SNIa. Meanwhile α-rich
stars all contain at least the ejecta of one SNII more massive
than 25 M� and few if any below 20 M�. At higher metallicity,
the evolution is more complex but extremely low α abundances
at higher metallicity ([Fe/H] > −2) only occur because of the
presence of SNIa ejecta.

In all cases, stars with extreme α abundances result from the
pollution of an incomplete IMF. This is supported by the mean
number of SNII supernovae responsible for the abundances in
the Sextans model stars: only 13 for low-metallicity stars and
48 for the more metal-rich but extremely α-depleted stars, while
the mean values for all stars is about 70. The frequency of these
stars in simulations and the excessive scatter point to limitations
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Fig. 12. Star formation and cumulative stellar mass as a function of
time, for the Fornax models with different resolution, from r = 0 to 9.

in the metal ejection scheme and possibly insufficient mixing
in the standard SPH technique. We examine some proposed im-
provements of the method below.

8.4.2. Metal spreading schemes

Simple experiments involving two supernovae (Sect. 7.4) have
shown how the scatter in element abundance ratios in the gas
may be influenced by the method used to distribute metals
throughout the nearby gas. Here, we apply the same recipes to
our dSph models and check their impact on the final abundances
of stars.

With the first scheme explored (the step function distribu-
tion Γ), all neighbouring particles receive the same amount of
material, independent of their distance, avoiding any gradient re-
lated to the kernel (wi j = Γi j, Fig. 8b). The effect on our Fornax
simulation is shown in panel (b) of Fig. 13. In contrast to what
would be expected from the double supernovae experiments, the
scatter is not decreased. This lack of decrease suggests the scat-
ter does not originate in the kernel, but by stochastic supernovae
explosions having different masses and yields, as discussed in
Sect. 8.4.1. At high metallicity ([Fe/H] > −2.5), where the
stochastic effect is less important, the scatter is slightly lowered.

Panels (c) and (d) show the impact of fixing the ejection ra-
dius to either a constant value (Rej = 0.125 kpc) or to the blast

radius (Rej = RE). None of these two recipes is able to decrease
the scatter, which is in agreement that the scatter does not arise
because of the choice of the kernel. In the blast radius case, the
effect is even more dramatic, and the scatter is increased at all
metallicities. The constant ejected radius allows a better mix-
ing compared to the blast radius. The resulting scatter is simi-
lar to the default case, except above [Fe/H] > −2.0, where it
is slightly higher. In both cases, the mean value of the [Mg/Fe]
low-metallicity plateau is too high, lying well above the mean
observed value of around 0.5.

One can understand this through an examination of the su-
pernova test run with a fixed radius (r = 0.125 kpc) and no
mixing (Fig. 8). Using a fixed ejecta radius, the second super-
nova is only able to affect particles that still lie in Rej. The most
distant particles touched by the first massive supernova have
moved outwards and are only polluted by α-enhanced ejecta.
Consequently, these particles form an α-enhanced plateau at low
metallicity.

8.4.3. Smooth metallicity

The smooth metallicity technique is a simple and natural way
of mixing elements inside the SPH smoothing kernel. Its ef-
fect, in the context of dSphs, is shown in Fig. 13a and e for the
Fornax and Sextans models, respectively, where the [Mg/Fe] vs.
[Fe/H] distribution of the stars (in light blue) is compared to the
case where no mixing is applied (in dark blue). In these sim-
ulations, the star formation histories are similar, and the final
stellar masses are within 1% in the Fornax simulations and to
within 3% in the Sextans simulations. The reason for this small
impact is because only the local cooling function of the gas is
impacted and its impact on the global dynamics and star for-
mation history is minimal. This similar star formation history
allows us to reliably compare the simulations. As seen in Fig. 13
the smooth metallicity scheme, strongly decreases the scatter by
a factor of 2 to 3, becoming consistent with the scatter observed
in stars (shown in yellow). In particular, most of the stars with
extreme abundances are forced towards the mean, reaching real-
istic values.

The final metallicity distribution function (MDF) is only
slightly modified by the smooth metallicity scheme. With the
most metal-rich particles losing metals and the metal poorest
gaining, and this results in a metal-rich cut-off in the MDF, an
effect more pronounced in Sextans because of the small number
of stars formed.

8.4.4. Metal diffusion

Panels (f), (g), and (h) of Fig. 13 show the impact on the stellar
[Mg/Fe] abundances of the metal diffusion for diffusion coeffi-
cients of d = 0.003, d = 0.001, and d = 0.0003 compared to
the smooth metallicity scheme represented in light blue. We also
run a simulation with d = 0.0001, however in this case the effect
of the diffusion is very low compared to the fiducial case and,
hence, is not discussed here.

It is clear that the diffusion plays a similar role to the smooth
metallicity, and for the choice of 50 neighbours a nice agree-
ment is obtained for a diffusion coefficient of d = 0.001. Higher
values of the diffusion coefficient are able to reduce the scatter
even more, while lower values slightly increase the scatter. This
similarity is also confirmed by the MDF shown at the bottom of
each panel. A similar result is found in the case of the Sextans
simulations (Fig. 19).
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(a) smooth metallicity (Fornax)
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(b) wi j = Γi j (Fornax)
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(c) Rej = 0.125 kpc (Fornax)
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(d) Rej = RE (Fornax)
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(e) smooth metallicity (Sextans)
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(f) diffusion : d = 0.003 (Fornax)
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(g) diffusion : d = 0.001 (Fornax)
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(h) diffusion : d = 0.0003 (Fornax)

Fig. 13. Comparison of the final [Mg/Fe] stellar dispersion of the Fornax and Sextans (r = 6) models run with different schemes. As in Fig. 10
and 11, black curves show the 1σ dispersion around the mean and is also reported in the third section of each panel. The comparison of the
metallicity distribution function is shown on the bottom of each panel. For comparison, observations at low metallicity ([Mg/Fe] < −2.5) of
individual stars taken from Fig. 1, are shown in yellow. In the [Mg/Fe] vs [Fe/H] plot, the shaded region corresponds to the 1σ dispersion around
the mean. Individual measurements are shown with small stars. Panels a) and e) show the effect of the smooth metallicity scheme on Fornax
and Sextans. The model run with elements spreading independent of the distance to the source (wi j = Γi j) is indicated on panel b). The effect of
imposing a constant ejection radius (Rej = 0.125 kpc) or fixing it to the blast radius (Rej = RE) are shown on panels c) and d) respectively. The
diffusion effect is dhown on panels f) to h). In those latter plots, the dispersion is compared to the fiducial model run with the smooth metallicity
scheme, corresponding to the top of panel a).

8.4.5. Discussion

As both the smooth metallicity and diffusion produce similar re-
sults it is difficult to have a clear preference for one method over
the other. The disadvantage of the diffusion approach is the need
for an additional parameter. Its value may be approximately de-
rived with physical arguments, but at the galactic scale numer-
ical errors and resolution make this computation obsolete. This
requires the value of this coefficient to be calibrated as presented
here. On the other hand, the smooth metallicity approach appears
more natural for an SPH technique, where the information stops
at the scale of the SPH smoothing radius. It is important to point
out that both methods are sensitive to the resolution. This is il-
lustrated in Fig. 14; when the number of particles is multiplied
by 4, the scatter increases by about 0.05 dex at low metallicity.

Finally, it is also important to emphasise that the CPU time re-
quired for the two methods is identical and may not be used as
an argument that one has an advantage over the other.

9. Simulations of spiral galaxies

A mixing scheme should work across multiple resolutions and
galaxy sizes. As such, we test the effect of the smooth metallicity
and metal diffusion in much more massive Milky-Way like spiral
galaxies.

9.1. Initial conditions

The initial conditions of our models are inspired from the works
of Bullock et al. (2001) and Kaufmann et al. (2006), which
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Fig. 14. Dependence of the scatter in abundance ratio [Mg/Fe] as a func-
tion of the model resolution. Panel a) corresponds to the Fornax model
run with the smooth metallicity scheme, while b) is the same model
using the diffusion with a coefficient d = 0.001.

consist of an isolated halo containing a rotationally supported
gas component that gently flows towards the centre and forms a
rotating disk. Initially, both the gas and the dark matter follow an
NFW density profile with a concentration parameter c equal to 8.
The baryonic fraction is set to 10%. The total angular momen-
tum of the system is given by λ = 0.12 according to the notation
of Bullock et al. (2001). Its radial distribution is such that the
halo initially starts with a solid body rotation around the z-axis.
Both dark matter and gas are truncated at the virial radius. The
total mass is M = 9.14 × 1011 M�. We run the models using a
single resolution where the stellar mass is 105 M�.

We have explored three models. The first model is run with-
out any kind of mixing, the second uses the smooth metallic-
ity scheme and the last model uses the metal diffusion scheme
with a diffusion parameter of d = 10−3, corresponding to the
optimal value according to the dSph simulations (Sect. 8). All
of the models use the RIMFS scheme, which is, equivalent
to the OIMFS and the CIMFS schemes at this resolution (see
Sect. 8.3). The star formation parameter c? is fixed to 0.7, the
supernova efficiency εSN is 0.08 and, as in the dSph simulations,
an adiabatic time of 5 Myr is used.

9.2. Results

All three models (no mixing scheme, dispersion scheme, and
smooth metallicity scheme) present very similar morphological
and physical features.

Hence, in Fig. 15, we only show the smooth metallicity
scheme to illustrate these properties, where the galaxy is shown
after 14 Gyr of evolution. The first panel (a) shows the extended
gaseous disk together with its spiral structure. Its correspond-
ing temperature, computed in the plane z = 0 is given in panel
(b). The green regions indicate a dominant quasi-isothermal
gas component around 104 K. The red hot spots (T > 105 K)
trace the regions recently affected by supernovae explosions.

The metallicity map for the gas (c) exhibits a radial gradient
similar to that observed in spirals. The [Fe/H] ratio decreases
from about 1 at the centre, down to –4 at about 50 kpc. Panel
(d) shows the exponential stellar disk with a bar clearly present
at the centre. The last panel is an edge-on view of the gaseous
disk (top panel of (e)) as well as the stellar component (bottom
panel of (e)). Superheated low density bubbles are visible within
the gaseous disk, a consequence of supernova explosions. In ad-
dition to these features, the model presents realistic dynamical
properties given in Fig. 16. The total rotation curve shown in
black is nearly constant around 200 km s−1. The mean azimuthal
gas velocity (in green) slightly decreases in the central region
owing to the larger velocity dispersion (asymmetric drift effect).
The gas velocity dispersion is nearly constant between 10 and
20 km s−1. Figure 17 shows the star formation rate of the three
models, all of which are similar. Furthermore, the star forma-
tion history is in good agreement with that recently proposed by
Snaith et al. (2014), which reproduces the chemical abundances
of long-lived stars of the Milky Way; the majority of the stars are
formed between 0 and 5 Gyr. The resulting α-abundances for the
three models are shown in Fig. 18. The first three panels show
the [Mg/Fe] vs. [Fe/H] distribution of the stars at t = 14 Gyr.
We selected the stellar particles located 6 to 10 kpc from the
centre, in the disk plane, to compare with observations that take
place in the solar neighbourhood. We compare the distribution
with observational values (shown in yellow) obtained from high-
resolution spectroscopy of Milky Way stars only, as in Fig. 1.
Overplotted are lines corresponding to the mean [Mg/Fe] value,
and the 1σ deviation. As can be clearly seen, the three mod-
els result in different levels of scatter. The fourth panel directly
compares the scatter between the models and observations.

The base model (run without smooth metallicity or diffu-
sion) as well as the diffusion model are clearly inconsistent with
the observations. At very low metallicity [Fe/H] < −3, most
of the stars are found with high [Mg/Fe]. In the range −3 <
[Fe/H] < −1, a low [Mg/Fe] tail is present with stars having
[Mg/Fe] as low as −1.5. These two features which are not ob-
served are the direct result of a lack of gas mixing. Gas particles
initially located in these external regions are not affected by SNe
explosions. Eventually, such pristine particles may fall towards
the galactic disk and be impacted as the α-rich ejecta of a mas-
sive supernova (M > 30 M�). As the star formation rate is high
during the first few Gyr, the polluted gas particles may quickly
be transformed into stars. The opposite process can happen at
later time (and thus slightly higher [Fe/H]), when lower mass su-
pernovae explode, impacting the gas with low [Mg/Fe]. At low
metallicity, the resulting scatter is up to four times the observed
scatter of about 0.2 dex.

When smoothing the abundance on a scale corresponding to
the SPH resolution scale (the smooth metallicity scheme), all
these features are washed out and the scatter becomes very sim-
ilar to the observed scatter. The model still tends to be slightly
too metal rich, mainly due to an over-active stellar formation in
the last giga-years.

The diffusion scheme, while lowering the scatter compared
to the base model, is not sufficient to smooth out these features
and results in an exaggerated scatter.

10. Conclusions

Using self-consistent, N-body, chemo-dynamical models of
dSphs and Milky Way-like galaxies, we have investigated the
impact of different numerical schemes on the star formation his-
tory of galaxies and the chemical properties of stars therein;
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Fig. 15. Morphological and physical properties of our Milky Way model run with the smooth metallicity scheme, at t = 14 Gyr. The metallicity
and temperature maps are obtained in computing the physical quantities ([Fe/H] or T) in the z = 0 plane. The gas and stars surface density maps
are simple mass projections after particles have been convolved with the SPH kernel.
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run with the smooth metallicity scheme. The black line corresponds
to the total rotation curve while the green line is the mean azimuthal
rotation of the gas. The velocity dispersions of the gas and the stars are
given by blue and red curves, respectively.

these schemes are the IMF sampling schemes (Sect. 4), ele-
mental spreading schemes (Sect. 5), and metal mixing schemes
(Sect. 6). We focused in particular on the scatter in [α/Fe] ob-
served in metal-poor stars both in dSphs and Milky Way halo.

As feedback processes (both element and energy injection)
are at the heart of this work, we ensured the reliability of our
code GEAR in a simple case, where one supernova explodes in an
homogeneous medium. We nicely reproduce the Sedov-Taylor
solution at very high resolution when the individual and adap-
tive timestep scheme improvements of Durier & Dalla Vecchia
(2012) are used. Here we found that the artificial viscosity for-
mulation of Monaghan & Gingold (1983) produces superior re-
sults to that of Monaghan (1997) (the default Gadget-2 viscos-
ity formulation). Additional simple experiments involving two
supernovae led us to understand the effect of different metal
spreading schemes, that are essential to the understanding of pol-
lution in complex galactic systems.

10.1. The IMF sampling schemes

We have tested the influence of different IMF sampling methods:
a continuous scheme (CIMFS), an “optimal scheme" (OIMFS)
and a random scheme (RIMFS).
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Fig. 17. Comparison of the star formation rate of the three Milky Way-
like models. The black curve corresponds to the model run with no
additional mixing scheme; blue, with the smooth metallicity switched
on; and red, with a diffusion scheme where the diffusion coefficient is
d = 0.001. All models are run using the RIMFS method.

The most important result is that all schemes impose, at dif-
ferent levels, a limit to the stellar mass resolution of the simula-
tions. From theoretical considerations, we have found that:

– As the CIMFS continuously ejects metals and energy, below
a stellar mass resolution of about 105 M� the products of
SNeIa are diluted over unrealistic long periods of time, gen-
erating an artificial mixing. When coupled with the adiabatic
time method (Stinson et al. 2006), the cooling is strongly un-
derestimated, resulting in a severe quenching of star forma-
tion. Removing the adiabatic time within the CIMFS scheme
prevents this anomalous quenching, but the dilution problem
remains.

– The OIMFS is designed to reduce the noise in the IMF com-
pared to the random sampling. Unfortunately, it does not al-
low the use of a low particle mass (and subsequently high
resolution). Below about 104 M� the maximal stellar mass
is limited to about 30 M�. Ignoring the yields of the most
massive stars induces a bias that results in an offset in the
α-element abundance plateau at low metallicity.

– Because of its stochastic nature, the RIMFS induces noise
in the IMF when the stellar mass resolution reaches below
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Fig. 18. Comparison of the final [Mg/Fe] stellar dispersion of the three
Milky Way-like models. In the top three panels, the points correspond
to the [Mg/Fe] and [Fe/H] values of each stellar particle. The black
curves show the 1σ dispersion around the mean [Mg/Fe]. Those values
are also reported in the fourth panel for a direct comparison. The bottom
panel shows the metallicity distribution function of the three models. In
each plot, the yellow points and curves correspond to the observational
values of Milky Way stars only, taken from Fig. 1 (Cayrel et al. 2004;
Gratton et al. 2003; Venn et al. 2004; Gehren et al. 2006; Reddy et al.
2006; Andrievsky et al. 2010; Cohen et al. 2013). The yellow dashed
region corresponds to the observation 1σ dispersion.

about 104 M�. Assuming that the IMF is distributed among
neighbouring particles, the stellar mass resolution may be
decreased down to about 103 M�. The IMF may no longer
be considered complete for lower masses, with pockets of
enriched gas showing unrealistically high scatter.

In practice, based on simulations of Fornax and Sextans dSph,
we have found that for a low resolution (where the mass of stel-
lar particles is greater or equal to 4096 M�), the number of stars
inside a single stellar particle is large enough to allow for a good
sampling of the IMF regardless of the scheme used. This oc-
curs with all three schemes, which results in similar star forma-
tions and abundance patterns. However, the different schemes
severely diverge in our tests performed at even higher resolu-
tion. At a resolution of 1024 M�, the RIMFS is the most reliable
sampling method. At higher resolution (128 M�), the RIMFS
shows a lack of convergence owing to incomplete IMF sampling.

This incomplete sampling fails to inject enough energy across
the galaxy to counterbalance the cooling and effectively regulate
star formation.

Consequently, at very high resolution (<1024 M�), no
method is reliable. This is a severe limitation for the forthcoming
simulations of galaxies that approach or exceed this resolution.
Indeed, it is now well established that supernova feedback plays
a major role during the process of galaxy formation. However,
the precise supernova rate is directly dependent on the IMF sam-
pling. This is also true for gas cooling which directly depends on
its metal enrichment. Accurately reproducing the feedback and
consequently star formation and chemical enrichment at these
low masses will require the development of novel methods to
sample the IMF.

10.2. The scatter in abundance ratios

Focusing on the RIMFS scheme at the maximal reliable resolu-
tion of 1024 M�, we have demonstrated that the scatter in stellar
abundance ratios is about three times larger than that observed
in the metal-poor stars of dSph galaxies. This scatter is due to
the stochastic explosions of supernovae imprinting small pock-
ets of gas with markedly different and sometimes extreme abun-
dances. In a first attempt to reduce this scatter we have tested the
impact of the scheme used to spread metals into the ISM. We
found that

– no statistically distinguishable differences exist when com-
bining a classical SPH kernel with either a volume or particle
mass-weighting;

– replacing the classical SPH kernel with a step function (gas
particles receive ejecta independent of their distance to the
exploding supernova) does not reduce the scatter, which is
still dominated by stochastic explosions of supernovae; and

– using a constant radius (either fixed or equal to the blast ra-
dius) greatly worsens the problem.

In a second attempt, we tested the impact of introducing a mixing
scheme. We implemented both the smooth metallicity technique
(Wiersma et al. 2009) and metal diffusion (Greif et al. 2009).
Both are able to reduce the scatter to a realistic value inside
dwarf spheroidal galaxies. The smooth metallicity scheme has
the advantage that it is independent of any additional parameters
and very natural with regard to the SPH method. Metal diffusion
needs the introduction of a diffusion coefficient, a free parameter
set that reproduces the observations (d = 10−3).

As a final test, we simulated a Milky Way-like galaxy that
agrees with the star formation history deduced by Snaith et al.
(2014). The abundance of α-elements is only reproduced when
using the smooth metallicity technique. The diffusion scheme
with the same parameters calibrated in the context of dSphs is
not able to adequately reduce the number of stars with extreme
abundances.

We have shown that the current best practices in chemo-
dynamical simulations delivers reliable prediction concerning
the chemical properties of galaxies in restricted contexts only,
where the stellar mass resolution is limited to value below
(masses above) 103 M�. We found the smooth metallicity
scheme, combined with a random initial mass sampling scheme
(RIMFS) to be the best combination to reproduce the disper-
sion of abundances. Increasing the mass resolution in future N-
body chemo-dynamical modelling while avoiding any bias will
require a drastic redesign of the classical star formation recipes
presently used.
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(c) d = 0.0003

Fig. 19. Effect of the coefficient diffusion on the final [Mg/Fe] dispersion of the Sextans (r = 6) models. Each panel corresponds to a different
coefficient. The dispersion is compared to the fiducial model run with the smooth metallicity scheme. As in Figs. 10 and 11, the black curves show
the 1σ dispersion. For comparison, observations at low metallicity ([Mg/Fe] < −2.5) of individual stars taken from Fig. 1 are shown in yellow.
In each [Mg/Fe] vs. [Fe/H] plots, the shaded region corresponds to the 1σ dispersion around the mean. Individual measurements are shown with
small stars.
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