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Abstract. Let τ(x) be the first time that the reflected process Y of a Lévy process X crosses x > 0. The

main aim of this paper is to investigate the joint asymptotic distribution of Y (t) = X(t) − inf0≤s≤t X(s) and

the path functionals Z(x) = Y (τ(x)) − x and m(t) = sup0≤s≤t Y (s) − y∗(t), for a certain non-linear curve

y∗(t). We restrict to Lévy processes X satisfying Cramér’s condition, a non-lattice condition and the moment

conditions that E[|X(1)|] and E[exp(γX(1))|X(1)|] are finite (where γ denotes the Cramér coefficient). We

prove that Y (t) and Z(x) are asymptotically independent as min{t, x} → ∞ and characterise the law of the

limit (Y∞, Z∞). Moreover, if y∗(t) = γ−1 log(t) and min{t, x} → ∞ in such a way that t exp{−γx} → 0, then

we show that Y (t), Z(x) and m(t) are asymptotically independent and derive the explicit form of the joint weak

limit (Y∞, Z∞,m∞). The proof is based on excursion theory, Theorem 1 in [7] and our characterisation of the

law (Y∞, Z∞).

1. Introduction and main results

The reflected process Y of a Lévy process X is a strong Markov process on R+ equal to X reflected at

its running infimum. The reflected process is of great importance in many areas of probability, ranging from

the fluctuation theory for Lévy processes (e.g. [2, Chapter VI] and the references therein) to mathematical

statistics (e.g. [19, 22], CUSUM method of cumulative sum), queueing theory (e.g. [1, 20]), mathematical finance

(e.g. [11, 17], drawdown as risk measure), mathematical genetics (e.g. [14] and references therein) and many

more. The aim of this paper is to study the weak limiting behaviour of the reflected process Y = (Y (t))t≥0,

Y (t) = X(t)− inf0≤s≤t X(s), and the overshoot Z(x) and the centered running maximum m(t) of Y given by

(1.1) Z(x)
.
= Y (τ(x))− x, m(t)

.
= Y ∗(t)− y∗(t), t, x ∈ R+,

where y∗ is a specific non-linear curve to be specified shortly. Here τ(x) and Y ∗(t) denote the first entry time of

Y into the interval (x,∞), which is finite almost surely, and the supremum up to time t of the reflected process

respectively,

τ(x)
.
= inf{t ≥ 0 : Y (t) > x} (inf ∅ .

= ∞), Y ∗(t)
.
= sup

0≤s≤t
Y (s).

In this paper we restrict to Lévy processes satisfying the conditions:

Assumption 1. (i) Cramér’s condition, E[eγX(1)] = 1 for γ > 0, holds, (ii) E[|X(1)|] + E[eγX(1)|X(1)|] < ∞
and (iii) either the Lévy measure of X is non-lattice or 0 is regular for (0,∞).

Under Cramér’s condition, it is well-known that X tends to −∞ almost surely which yields by a classical

time reversal argument that the reflected process Y has a weak limit Y∞ equal in distribution to the ultimate

supremum supt≥0 X(t) (see e.g. [1, Chapter IX] or Section 2 below). The second functional, the overshoot

Z(x), also admits a weak limit Z∞ (the form of which is given in Proposition 8 below). The following result

addresses the question of the weak asymptotics of the vector (Y (t), Z(x)).
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Theorem 1. Y (t) and Z(x) are asymptotically independent, as min{t, x} → ∞, in the sense that

lim
min{x,t}→∞

E[exp (−uY (t)− vZ(x))] = E[exp (−uY∞)]E[exp (−vZ∞)]

= lim
min{x,t}→∞

E[exp (−uY (t))]E[exp (−vZ(x))],

for u, v ∈ R+. (Y (t), Z(x)) converges weakly to the law (Y∞, Z∞) determined by the Laplace transform

(1.2) E[exp (−uY∞ − vZ∞)] =
γ

γ + v
· ϕ(v)
ϕ(u)

, for all u, v ∈ R+,

where ϕ is the Laplace exponent of the ascending ladder-height subordinator of X which satisfies ϕ(0) > 0.

In particular, the law of the sum Y∞ + Z∞ is exponential with mean 1/γ.

We turn next to the weak asymptotics of the triplet (Y (t), Z(x), m(t)). To avoid degeneracies we specify

the centering curve to be given by

(1.3) y∗(t) = γ−1 log(t), t ∈ R+\{0}.

This choice is informed by Iglehart [12], where in the analogous random walk setting x(n) = γ−1 log n was

chosen as centering sequence, and by the main result in Doney & Maller [7], which implies that the running

maximum m(t) of Y after centering by the curve y∗(t) given in (1.3) converges weakly to a Gumbel distribution

(see [8, Chapter 3] for the form of the Gumbel distribution and Section 2.2 below for a simple derivation of the

distribution of m∞ deploying [7, Theorem 1]). A question of interest is if and when the asymptotic independence

of Y (t) and Z(x) extends to that of the triplet Y (t), Z(x) and m(t). A priori, it appears unlikely that Z(x)

and m(t) are asymptotically independent in general, for x and t tending to infinity in an arbitrary way. In the

next result we give a sufficient condition for such asymptotic independence to hold, namely that min{x, t} → ∞
such that

(1.4) x− y∗(t) → ∞, or equivalently t exp{−γx} → 0.

Since, by [7], the process Y ∗ has weakly convergent random fluctuations around the deterministic curve y∗, the

assumption x− y∗(t) → ∞ in effect forces the process Y to reach the level x for the first time after time t. The

result is as follows.

Theorem 2. Let min{t, x} → ∞ such that t exp{−γx} → 0. Then (Y (t), Z(x),m(t)) converges weakly and the

law of the weak limit (Y∞, Z∞,m∞) is determined by the Fourier-Laplace transform

E [exp (−uY∞ − vZ∞ + iβm∞)](1.5)

=
γ

γ + v
· ϕ(v)
ϕ(u)

· Γ
(
1− iβ

γ

)
· exp

[
iβγ−1 log

(
ℓCγ ϕ̂(γ)

)]
for all u, v ∈ R+, β ∈ R, where ϕ̂ is the Laplace exponent of the decreasing ladder-height process, L̂−1 is the

decreasing ladder-time processes with ℓ
.
= 1/E[L̂−1(1)] (see Section 2 for the definitions of ϕ̂ and L̂−1), Γ(·)

denotes the gamma function and the constant Cγ is given by

(1.6) Cγ
.
=

ϕ(0)

γϕ′(−γ)
,

where ϕ′(−γ) ∈ R+\{0}. In particular, Y (t), Z(x) and m(t) are asymptotically independent: for any a, b ∈ R+

and c ∈ R
P (Y (t) ≤ a, Z(x) ≤ b,m(t) ≤ c) = P (Y (t) ≤ a)P (Z(x) ≤ b)P (m(t) ≤ c) + o(1).1

The remainder of the paper is devoted to the proofs of Proposition 8 (in which the form of the law of the

asymptotic overshoot Z∞ is identified) and Theorems 1 and 2. Section 2 is concerned with preliminary results,

Proposition 8 is established in Section 3 and the proof of the asymptotic independence is given in Section 4.

The proofs of Theorems 1 and 2 draw on these results and are presented in Section 5.

1Here we use the definiton f(t, x) = o(1) if limmin{t,x−y∗(t)}→∞ f(t, x) = 0.
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2. Preliminaries

In this section we briefly define the setting and collect results that are deployed throughout. We refer to [2,

Chapter I] and [16] for background on the fluctuation theory of Lévy processes.

Let (Ω,F , {F(t)}t≥0, P ) be a filtered probability space that carries a Lévy process X satisfying Assumption 1.

Here Ω
.
= D(R+,R) is the Skorokhod space of real-valued functions that are right-continuous on R+ and have

left-limits on R+\{0}, X is the coordinate process, {F(t)}t≥0 denotes the completed filtration generated by X,

which is right-continuous, and F is the completed σ-algebra generated by {X(t)}t≥0. For any x ∈ R denote

by Px the probability measure on (Ω,F) corresponding to the Lévy process X shifted by x and let P
(γ)
x (with

P (γ) .
= P

(γ)
0 ) be the Cramér measure on (Ω,F), that is, the unique measure such that its restriction to F(t) is

given by

P (γ)
x (A)

.
= Ex[e

γ(X(t)−x)IA], A ∈ F(t), t ∈ R+,

where Ex is the expectation under Px and IA is the indicator of A. Under Assumption 1, P
(γ)
x is a probability

measure with P
(γ)
x (X(0) = x) = 1 and the convexity of the Laplace exponent θ 7→ logEx[exp(θ(X(1)− x))] on

[0, γ] implies

(2.1) Ex[X1 − x] ∈ (−∞, 0), E(γ)
x [X(1)− x] ∈ (0,∞).

As E[X(1)] is strictly negative and finite, X∗(t)
.
= sup0≤s≤t X(s) converges almost surely as t ↑ ∞ to X∗

∞
.
=

supt≥0 X(t), which is finite almost surely. Moreover, since X∗(t) and Y (t) have the same distribution for any

t > 0 (by the duality lemma for Lévy processes—see [2]), it follows that Y (t) converges in distribution to a limit

Y∞ that has the same distribution as X∗
∞. The distribution of the latter can be expressed explicitly in terms

of that of the ladder-height process H of X, as we recall below.

Let L be a local time2 at zero of the reflected process Ŷ = {Ŷ (t)}t≥0 of the dual process X̂
.
= −X, that

is, Ŷ (t)
.
= X∗(t)−X(t). The ladder-time process L−1 = {L−1(t)}t≥0 is equal to the right-continuous inverse

of L. Analogously, let L̂ be a local time of Y at zero, with inverse denoted by L̂−1. Denote by κ(q)
.
=

− logE[exp{−qL−1(1)}I{L−1(1)<∞}] and κ̂(q)
.
= − logE[exp{−qL̂−1(1)}I{L̂−1(1)<∞}] the Laplace exponents of

L−1 and L̂−1. For later reference we record that the mean of L̂−1(1) is finite.

Lemma 3. We have E(γ)[L−1(1)] ∈ R+\{0} and

(2.2) 1/ℓ
.
= E[L̂−1(1)] = 1/κ(0) ∈ R+\{0}.

Proof. From the Wiener-Hopf factorisation of X (see e.g. [16, p. 166]), we have that for some k ∈ R+\{0}

(2.3) q = k κ(q) κ̂(q), q ∈ R+\{0}.

Since Xt → −∞ a.s. under P , Ŷ is transient while Y is recurrent, so that we have P (L−1(1) < ∞) < 1 and

P (L̂−1(1) < ∞) = 1 and κ(0) > 0 = κ̂(0). Differentiating (2.3) at q ∈ R+\{0} and letting q ↘ 0 yields

1 = κ(0)κ̂′(0) ⇔ E[L̂−1
1 ] = 1/κ(0). By a similar argument it follows that E(γ)[L−1

1 ] = 1/κ̂(γ)(0) < ∞, where

κ̂(γ) denotes the Laplace exponent of L−1 under P (γ). �

By the strong law of large numbers and the fact that L̂−1 is a Lévy process (see e.g. [2, p.92]) we have that

(2.4)
L̂(t)

t
∼ t

L̂−1(t)
∼ ℓ a.s. as t → ∞,

where we denote f(x) ∼ g(x) as x ↑ ∞ if the functions f, g : R+ → R+\{0} satisfying limx↑∞ f(x)/g(x) = 1.

The ladder-height process H = {H(t)}t≥0 is given by H(t)
.
= X(L−1(t)) for all t ≥ 0 with L−1(t) finite and

by H(t)
.
= +∞ otherwise. Let ϕ : R+ → R be the Laplace exponent of H, with

ϕ(θ)
.
= − logE[e−θH(1)I{H(1)<∞}], θ ∈ R+.

2In the case 0 is not regular for [0,∞), only a finite number of maxima of X are attained in any compact time interval. In this

case we work with the right-continuous version of local time L.



4 ALEKSANDAR MIJATOVIĆ AND MARTIJN PISTORIUS

The Lévy-Khintchine formula for ϕ and an integration-by-parts imply

(2.5) ϕ(v) = ϕ(0) +

∫
R+\{0}

(1− e−vx)νH(dx) = ϕ(0) + v

(
m+

∫ ∞

0

e−vxνH(x) dx

)
, v ∈ R+,

where νH(x)
.
= νH((x,∞)) for x ∈ R+\{0} is the tail-function of νH , the Lévy measure of H, and

m
.
= lim

u→∞
ϕ(u)/u

denotes the drift of the ladder-height process H. Note that

(2.6) ϕ(0) = κ(0) ∈ R+\{0}.

The decreasing ladder-height process Ĥ is defined similarly, and its Laplace exponent is denoted by ϕ̂.

By analytical continuation, continuity and Assumption 1(i), the domains of definition of ϕ(θ), ϕ̂(θ) and the

characteristic exponent Ψ(θ) = − logE[exp{iθX(1)}], θ ∈ R, can be extended to {θ ∈ C : ℜ(θ) ∈ (−γ,∞)},
{θ ∈ C : ℜ(θ) ∈ [0,∞)} and {θ ∈ C : ℑ(θ) ∈ (−γ, 0]}, respectively. Denoting this extensions again by ϕ, ϕ̂ and

Ψ, the Wiener-Hopf factorisation of X [2, p. 166] implies that the following holds for some k′ ∈ R+\{0}:

(2.7) Ψ(−iθ) = k′ϕ(−θ)ϕ̂(θ), θ ∈ C, ℜ(θ) = 0.

By uniqueness of analytical extension, the validity of (2.7) extends to all θ ∈ C with ℜ(θ) ∈ (−γ, 0]. From

(2.7) we have in particular that the law of X∗
∞ and hence of Y∞ is characterised (see [2, p. 163]) by its Laplace

transform

(2.8) E[e−uY∞ ] = E[e−uX∗
∞ ] =

ϕ(0)

ϕ(u)
, u ∈ R+.

Furthermore, denoting by K(x)
.
= X(T (x)) − x the overshoot of X at T (x) on the event {T (x) < ∞}, the

second Wiener-Hopf factorisation of X (see e.g. [2, p.183]) implies

(2.9)

∫ ∞

0

qe−qxE
[
e−uK(x)

]
dx =

q

ϕ(q)
· ϕ(q)− ϕ(u)

q − u
, q, u > 0,

As the identity (2.7) holds for any θ ∈ C with ℜ(θ) ∈ (−γ, 0], we may define ϕ(−γ)
.
= limθ↘−γ Ψ(−iθ)/k′ϕ̂(θ).

The values of ϕ(−γ) and the right-derivative ϕ′(−γ) of ϕ at x = −γ are given as follows:

Lemma 4. The function ϕ is right-differentiable at −γ and we have

(i) ϕ(−γ) = 0, (ii) ϕ′(−γ) = E(γ)[H(1)] ∈ R+\{0}.(2.10)

Furthermore, the Laplace exponent ϕ(γ) of H under P (γ) satisfies ϕ(γ)(γ + u) = ϕ(u) for any u ≥ −γ and∫ ∞

0

eγyνH(y)dy =
ϕ(0)

γ
−m.(2.11)

Proof. (i) As Ĥ is a non-zero subordinator we have ϕ̂(γ) > 0 and hence ϕ(−γ) = 0 from (2.7) with θ = γ.

(ii) The concavity of ϕ, part (i) and (2.6) imply that the right-derivative ϕ′(−γ) is strictly positive, and

equal to ϕ′(−γ) = E[eγH(1)H(1)] = E(γ)[H(1)]. We next show that ϕ′(−γ) is finite. As ϕ̂(γ) and ϕ̂′(γ) are

strictly positive and finite, (left-)differentiation of (2.7) at θ = γ yields, by deploying by part (i) and the fact

E[eγX(1)] = 1,

(2.12) − E[X(1)eγX(1)] = kϕ(−γ)ϕ̂′(γ)− kϕ′(−γ)ϕ̂(γ) = −kϕ′(−γ)ϕ̂(γ).

As the left-hand side of (2.12) is finite (by Assumption 1(ii)) it follows that ϕ′(−γ) < ∞. By a change-of-

measure argument (see [16, Corollary 3.10]) and (2.10)(i) it follows that ϕ(γ)(u) = ϕ(u+ γ)−ϕ(−γ) = ϕ(u+ γ)

for u ≥ 0, while part (i) and (2.5) yield (2.11). �
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2.1. Asymptotic first-passage probabilities and overshoot distributions. We next turn to asymptotics

of first-passage probabilities and the distribution of overshoots for large starting values of X. Let T (x) and

T̂ (x) denote the first-passage times of X into the intervals (x,∞) and (−∞,−x) respectively for any x ∈ R+,

(2.13) T (x)
.
= inf{t ≥ 0 : X(t) ∈ (x,∞)}, T̂ (x)

.
= inf{t ≥ 0 : X(t) ∈ (−∞,−x)}.

It is shown in [3] that, under Assumption 1, Cramér’s estimate, which was first-established for random walks,

remains valid for the Lévy process X (with Cγ defined in (1.6)):

(2.14) P (T (y) < ∞) ∼ Cγe
−γy as y → ∞.

From (2.14) the following asymptotic results can be derived:

Proposition 5. (i) (Asymptotic two-sided exit probability) For any z > 0 we have

(2.15) P (T (x) < T̂ (z)) ∼ Cγe
−γx

(
1− E

[
eγX(T̂ (z))

])
as x → ∞,

where Cγ is given in (1.6).

(ii) (Asymptotic overshoot) Let u ∈ R+ and fix z > 0. Then E(γ)[e−uK(∞)] = ϕ(u− γ)/(uϕ′(−γ)) and we have

E
[
e−uK(x)I{T (x)<T̂ (z)}

]
∼ C(u)e−γx

(
1− E

[
eγX(T̂ (z))

])
, as x → ∞, with(2.16)

C(u)
.
=

γ

γ + u
· ϕ(u)
ϕ(0)

· Cγ .

Proof. (i) By the strong Markov property and spatial homogeneity of X it follows from (2.14) that

(2.17) P (T (x) < T̂ (z)) = P (T (x) < ∞)−
∫
(−∞,−z]

Py(T (x) < ∞)P (X(T̂ (z)) ∈ dy, T̂ (z) < T (x)).

The translation invariance of X and Cramér’s estimate imply the following equality

Py(T (x) < ∞) = Cγe
−γxeγy (1 + r(x− y)) for all x > y,(2.18)

where limx′→∞ r(x′) = 0. Equality (2.18) applied to the identity in (2.17) yields

C−1
γ eγxP (T (x) < T̂ (z)) = 1− E

[
eγX(T̂ (z))I{T̂ (z)<T (x)}

]
(2.19)

+ r(x)− E
[
eγX(T̂ (z))r(x−X(T̂ (z)))I{T̂ (z)<T (x)}

]
.

Since X(T̂ (z)) ≤ −z < 0 on the event {T̂ (z) < ∞}, which satisfies P (T̂ (z) < ∞) = 1 by Assumption 1, the

dominated convergence theorem implies E
[
eγX(T̂ (z))

]
= E

[
eγX(T̂ (z))I{T̂ (z)<T (x)}

]
+ o(1) as x → ∞. An appli-

cation of the dominated convergence theorem to the second expectation on the right-hand side of equality (2.19),

together with the fact that r vanishes in the limit as x → ∞, proves the first statement in the proposition.

(ii) Since by Assumption 1 and Lemma 4 H is a non-lattice subordinator with E(γ) [H(1)] ∈ R+\{0} and

the overshoot K(x) is equal to that of H over x, [4, Theorem 1] implies that the weak limit K(x)
D−→ K∞, as

x → ∞, exists under P (γ). Hence the continuity theorem [5, p. 16, Theorem 2.1] implies limx↑∞ E(γ)[e−uK(x)] =

E(γ)[e−uK∞ ] for any fixed u ≥ 0. Combining this limit, which is bounded, with the second Wiener-Hopf

factorisation (2.9) under the measure P (γ), which reads as∫ ∞

0

qe−qxE(γ)
[
e−uK(x)

]
dx =

q

ϕ(q − γ)
· ϕ(q − γ)− ϕ(u− γ)

q − u
, q, u > 0,

we have in the limit as q ↓ 0 that E(γ)[e−uK∞ ] = ϕ(u− γ)/(uϕ′(−γ)). Thus, changing measure from P to P (γ)

leads to the following for any u ≥ 0 (C(u) is defined in (2.16)):

(2.20) E[e−uK(x)I{T (x)<∞}] = e−γx · E(γ)[e−(γ+u)K(x)] ∼ C(u)e−γx as x → ∞.
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Furthermore, since the expectation in (2.20) is bounded as x → ∞, there exists a bounded function R : R+ → R,
such that E[e−uK(x)I{T (x)<∞}] = C(u)e−γx(1 + R(x)) for x > 0, and limx→∞ R(x) = 0. The strong Markov

property at T̂ (z) and an argument analogous to the one used in the proof of part (i) (cf. (2.19)) yields

C(u)−1eγxE[e−uK(x)I{T (x)<T̂ (z)}]

= 1− E[eγX(T̂ (z))I{T̂ (z)<T (x)}] +R(x)− E[eγX(T̂ (z))R(x−X(T̂ (z)))I{T̂ (z)<T (x)}],

which implies equivalence (2.16). �

2.2. Asymptotic distribution of m(t). To establish the existence and forms of the asymptotic distribution

of m(t) as t tend to infinity we draw on excursion theory. We refer to [2, Chapters O.5, IV], [16, Chapter 6]

and [6, 9] for treatments of excursion theory.

Let ϵ = {ϵt}t≥0 denote the excursion process of Y away from zero, with ϵt ∈ E = {ε ∈ Ω : ε ≥ 0} ∪ {∂},
where ∂ denotes an isolated state and where ϵt we recall is given by

(2.21) ϵt
.
=


Y

(
s+ L̂−1(t−)

)
, s ∈ [0, L̂−1(t)− L̂−1(t−))

0, s ≥ L̂−1(t)− L̂−1(t−)

 , if L̂−1(t−) < L̂−1(t),

∂, otherwise.

Since Y is a recurrent strong Markov process under P , Itô’s characterisation [13] implies that ϵ is a Poisson point

process under P , with intensity (or excursion) measure n defined on (E ,G), where G is the Borel sigma-algebra

on the Polish space E . Under P (γ), Y is transient (as E(γ)[X(1)] > 0), so that L̂∞
.
= limt∈∞ L̂(t) is finite

almost surely and furthermore L̂∞ is an exponential random variable independent of the killed Lévy process

{(L̂−1(t), Ĥ(t))}t∈[0,L̂∞). The process ϵ′ = {ϵ′t}t≥0, defined by ϵ′t
.
= ϵt for t < L̂∞ and by ϵ′t

.
= ∂ otherwise, is

under P (γ) a Poisson point process killed at an independent exponential random time with mean E(γ)[L̂∞]; we

denote by n(γ) its intensity measure.

For an excursion ε ∈ E and x ∈ R+\{0} let ρ(x, ε) and ζ(ε) be the first time that ε enters the interval (x,∞)

and the lifetime of ε respectively:

(2.22) ρ(x, ε)
.
= inf{s ∈ R+ : ε(s) > x}, ζ(ε)

.
= inf{t ∈ R+\{0} : ε(t) = 0}.

For brevity we sometimes write ρ(x) and ζ instead of ρ(x, ε) and ζ(ε). Note that ζ(ϵ(t)) is given in terms of

L̂−1 by ζ(ϵ(t)) = L̂−1(t)− L̂−1(t−) for any t ∈ R+ (with L̂−1(0−)
.
= 0).

The distribution of L̂(τ(x)) can be expressed in terms of n as follows.

Lemma 6. For any x ∈ R+\{0} the random variable L̂(τ(x)) is exponentially distributed under P (resp. P (γ))

with parameter n(ρ(x) < ζ) (resp. n(γ)(ρ(x) < ζ)).

Proof. The definition of the first-passage time ρ(x, ε) in (2.22) implies the equality L̂(τ(x)) = TA
.
= inf{t ≥ 0 :

ϵ(t) ∈ A} where A
.
= {ε ∈ E : ρ(x, ε) < ζ(ε)}. The statement follows since TA is exponentially distributed with

parameter n(A) (e.g. [16, Lemma 6.18(i)]). �
In [7, Theorem 1]3 it is shown that the following version of Cramér’s estimate holds under under the excursion

measure n (with Cγ defined in (1.6)):

(2.23) n(ρ(x) < ζ) ∼ Cγ ϕ̂(γ) e
−γx as x → ∞.

Using the estimate (2.23) the asymptotic distribution of m(t) may be identified as follows:

Proposition 7. If t → ∞ then m(t) converges in distribution to m∞, which follows a Gumbel distribution,

(2.24) P (m∞ < z) = exp
(
−ℓCγ ϕ̂(γ) e

−γz
)
, for all z ∈ R,

where ℓ = 1/ϕ(0) and Cγ is given in (1.6).

3[7, Theorem 1] is established under the same hypotheses as in Assumption 1. In particular, the condition E[|X(1)|] < ∞ is

used in the proof of [7, Theorem 1].
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Proof. We give a short proof of (2.24) based on [7, Theorem 1]. To establish (2.24) we show that the following

holds if min{x, t} → ∞ and te−γx → 1:

P (Y ∗(t)− x < z) = exp(−t ℓ n(ρ(x+ z) < ζ)) + o(1) for any z ∈ R.(2.25)

Since (2.23) implies tn(ρ(x+z) < ζ) → Cγ ϕ̂(γ)e
−γz as min{x, t} → ∞ and te−γx → 1, the limit in (2.24) follows

from (2.25). To complete the proof we now verify the claim in (2.25). Note that as τ(x) → ∞ P -a.s. as x → ∞,

the law of large numbers implies that L̂(τ(x))/τ(x) → ℓ P -a.s. as t → ∞, where ℓ ∈ R+\{0} (by (2.2), (2.4)

and (2.6)). In particular, for any δ > 0 and z ∈ R+, we have P (L̂(τ(x+ z))/τ(x+ z) ∈ (ℓ− δ, ℓ+ δ)) = 1+ o(1)

as x → ∞. Hence as min{x, t} → ∞ we have

P (Y ∗(t) < x+ z) = P (τ(x+ z) > t, L̂(τ(x+ z))/τ(x+ z) ≥ ℓ− δ) + o(1)

≤ P (L̂(τ(x+ z)) > t(ℓ− δ)) + o(1).

Similarly, it follows that as min{x, t} → ∞ we have

P (Y ∗(t) < x+ z) ≥ P (L̂(τ(x+ z)) > L̂(t), L̂(t) ≤ t(ℓ+ δ))

≥ P (L̂(τ(x+ z)) > t(ℓ+ δ), L̂(t) ≤ t(ℓ+ δ)) = P (L̂(τ(x+ z)) > t(ℓ+ δ)) + o(1).

By Lemma 6, L̂(τ(x+ z)) is exponentially distributed with parameter n(ρ(x+ z) < ζ) and hence we find

exp(−(ℓ+ δ)t n(ρ(x+ z) < ζ)) + o(1) ≤ P (Y ∗(t) < x+ z) ≤ exp(−(ℓ− δ)t n(ρ(x+ z) < ζ)) + o(1).

Since this result holds for any δ > 0, the equality in (2.25) follows. �

3. Limiting overshoot of the reflected process

In this section we prove the following result, which also plays a role in the proofs of Theorems 1 and 2.

Proposition 8. (i) The weak limit Z∞ of Z(x) as x → ∞ has Laplace transform

(3.1) E[e−vZ∞ ] =
γ

γ + v
· ϕ(v)
ϕ(0)

for all v ∈ R+.

(ii) The law of the asymptotic overshoot Z∞ is given by

(3.2) P (Z∞ > x) =
γ

ϕ(0)
e−γx

∫ ∞

x

eγy νH(y) dy, x ∈ R+, and P (Z∞ = 0) =
γ

ϕ(0)
m.

Remark. Note that Z∞ is continuous on R+\{0} and has a non-zero atom at zero precisely if the drift m of H is

strictly positive, in which case the probability of creeping of X is strictly positive if X is not a compound Poisson

process (see e.g. [16, Lemma 7.10]). In fact, as shown in [10], γ
ϕ(0)m is equal to the asymptotic (conditional)

probability limx→∞ P (X(T (x)) = x|T (x) < ∞) of creeping of X.

The formula in (3.1) of Proposition 8, which characterises the law of the limiting overshoot Z∞, is implied

by the main result in [18]. As this formula constitutes a key step in the proofs of Theorems 1 and 2, we give

in this section an independent proof of Proposition 8 based on excursion theory alone. This approach is in the

spirit of the present paper and should be contrasted with the result in [18], which crucially relies on the renewal

theorem.

The proof relies on the expression of the distribution of Z(x) in terms of the excursion measure n and on

representation results for random variables KF (x) that are defined for x ∈ R+\{0} and Borel-measurable and

non-negative functions F : E → R by

(3.3) KF (x)
.
=

∑
g

F (ϵL̂(g))I{g≤τ(x)<g+ζ(ϵL̂(g))},

where the sum runs over all left-end points g of excursion intervals. We write n(F ) = n(F (ε))
.
=

∫
E F (ε)n(dε) for

any Borel-measurable non-negative (or integrable) functional F : E → R. In this notation we have n(A) = n(IA)

for any A ∈ G.



8 ALEKSANDAR MIJATOVIĆ AND MARTIJN PISTORIUS

Lemma 9. (i) We have

P (Z(x) > y) = n(ε(ρ(x, ε))− x > y|ρ(x) < ζ) for any x, y ∈ R+,

where n(B|A) .
= n(B ∩A)/n(A) for any A,B ∈ G with n(A) ∈ R+\{0}.

(ii) Define V̂(x) .
= E

[
L̂(τ(x))

]
and V̂(γ)(x)

.
= E(γ)

[
L̂(τ(x))

]
and let G(ε)

.
= F (ε)I{ρ(x,ε)<ζ(ε)}. Then the

following hold:

n(G) = V̂(x)−1 E [KF (x)] , n(γ)(G) = V̂(γ)(x)−1E(γ) [KF (x)] .(3.4)

(iii) The following identity holds: n(γ)(F (ε)I{ρ(x,ε)<ζ(ε)}) = n(eγε(ρ(x,ε))F (ε)I{ρ(x,ε)<ζ(ε)}). Hence we have

(3.5) n(γ)(ρ(x, ε) < ζ(ε)) = n(eγε(ρ(x,ε))I{ρ(x,ε)<ζ(ε)}).

(iv) For any z ∈ R+\{0} we have as x → ∞:

(3.6) n(γ)(ρ(x, ε) < ζ(ε)) ∼ ϕ̂(γ) and eγxn(ε(ρ(z, ε)) > x, ρ(z, ε) < ζ(ε)) = o(1).

Proof of Lemma 9. (i) The assertion is a consequence of the fact that ϵ(TA) follows an n-uniform distribution

(that is, P (ϵ(TA) ∈ B) = n(B|A) for any B ∈ G, see e.g. [2, Sec. O.5, Proposition O.2]) and taking B to be

equal to {ε ∈ E : ρ(x, ε) < ζ(ε), ε(ρ(x, ε))− x > y}.
(ii) As the proof of the two identities (3.4) is identical, we derive only the left-hand side of (3.4). Since for

every ε ∈ E the process t → F (ε)I{ρ(x,ε)<ζ(ε)}I{L̂−1(t−)≤τ(x)} is left-continuous and F(L̂−1(t−))-adapted, an

application of the compensation formula to the Poisson point process ϵ (see e.g. [2, Chapter O.5] or [15]) yields

E[KF (x)] = E

[∑
g

I{g≤τ(x)} · F (ϵL̂(g))I{τ(x)−g<ζ(ϵL̂(g))}

]

= E

∑
t≥0

I{L̂−1(t−)≤τ(x)} ·
{
F (ϵt)I{τ(x)−L̂−1(t−)<ζ(ϵt}

} = I1 · I2,(3.7)

where I2 = n(F (ε)I{ρ(x,ε)<ζ(ε)}) and

I1 = E

[∫ ∞

0

I{L̂−1(t−)≤τ(x)}dt

]
= E

[∫ ∞

0

I{t≤L̂(τ(x))}dt

]
= E

[
L̂(τ(x))

]
= V̂(x),(3.8)

where we used that {L̂−1(t−) ≤ τ(x)} = {t ≤ L̂(τ(x))}. Inserting I1 and I2 in (3.7) and dividing by I1 yields

the left-hand side in (3.4).

(iii) Another application of the compensation formula yields

E(γ) [KG(x)] = E

[
eγX(τ(x))

∑
g

F (ϵL̂(g))I{g≤τ(x)<g+ζ(ϵL̂(g))})

]

= E

[∑
g

eγX(g)I{g≤τ(x)} · eγϵL̂(g)(ρ(x,ϵL̂(g)))I{ρ(x,ϵL̂(g))<ζ(ϵL̂(g))}

]

= E

∑
t≥0

{
eγX(L̂−1(t−))I{L̂−1(t−)≤τ(x)}

}
· eγϵt(ρ(x,ϵt))I{ρ(x,ϵt)<ζ(ϵt)}

 = J1 · J2,(3.9)

where J2 = n
(
eγε(ρ(x,ε))F (ε)I{ρ(x,ε)<ζ(ε)}

)
and, by an application of Fubini’s theorem,

J1 = E

[∫ ∞

0

eγX(L̂−1(t−))I{L̂−1(t−)≤τ(x)}dt

]
= E(γ)

[∫ ∞

0

I{L̂−1(t−)≤τ(x)}dt

]
= E(γ)[τ(x)] = V̂(γ)(x).

Combining the right-hand side in (3.4) with (3.9) and the forms of J1 and J2 yields the stated identity.
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(iv) Since L̂(τ(x)) under P (γ) follows an exponential distribution with mean 1/n(γ)(ρ(x) < ζ)) (see Lemma 6)

we have

n(γ)(ρ(x) < ζ) = − logP (γ)(L̂(τ(x)) > 1),

so that

lim
x↑∞

n(γ)(ρ(x) < ζ) = − logP (γ)(L̂−1(1) < ∞),

which is equal to ϕ̂(γ)(0) = ϕ̂(γ) (as ϕ̂(γ)(u) = ϕ̂(γ + u), u ≥ 0). Chebyshev’s inequality and part (ii) of the

lemma imply

eγxn(ε(ρ(z, ε)) > x, ρ(z, ε) < ζ(ε)) ≤ n(eγε(ρ(z,ε))I{ε(ρ(z,ε))>x,ρ(z,ε)<ζ(ε)})

= n(γ)(ε(ρ(z, ε)) > x, ρ(z, ε) < ζ(ε)).

As the latter tends to zero as x ↑ ∞, the second assertion in (3.6) follows. �

We next apply Lemma 9 to establish the asymptotic behaviour of certain integrals against the excursion

measure as x → ∞.

Lemma 10. Let u ≥ 0. Then, as x → ∞, we have

(3.10) n(e−u(ε(ρ(x))−x)|ρ(x) < ζ) −→ C(u) · C−1
γ =

γ

γ + u
· ϕ(u)
ϕ(0)

.

In particular, Z(x) converges weakly to a random variable Z∞ with Laplace transform E[exp(−uZ∞)] = C(u) ·
C−1

γ .

Proof of Lemma 10. Fix M > 0 and recall that, under the probability measure n( · |ρ(M) < ζ), the coordinate

process has the same law as the first excursion of Y away from zero with height larger than M . For any x > M ,

the following identity holds:

n(e−u(ε(ρ(x))−x)|ρ(x) < ζ) = n(e−u(ε(ρ(x))−x)I{ρ(x)<ζ}|ρ(M) < ζ)
n(ρ(M) < ζ)

n(ρ(x) < ζ)
.(3.11)

The strong Markov property under the probability measure n( · |ρ(M) < ζ), implies that ε ◦ θρ(M) has the

same law as the process X with entrance law n(ε(ρ(M, ε)) ∈ dz|ρ(M) < ζ) and killed at the epoch of the first

passage into the interval (−∞, 0]. We therefore find

n(e−u(ε(ρ(x,ε))−x)I{ρ(x)<ζ}|ρ(M) < ζ) = n
(
e−u(ε(ρ(M,ε))−x)I{ε(ρ(M,ε))>x}|ρ(M) < ζ

)
+

∫
[M,x]

Ez

[
e−uK(x)I{T (x)<T̂ (0)}

]
n(ε(ρ(M, ε)) ∈ dz|ρ(M) < ζ).(3.12)

By the second equality in (3.6) of Lemma 9, we have as x ↑ ∞:

eγxn
(
e−u(ε(ρ(M,ε))−x)I{ε(ρ(M,ε))>x}

∣∣∣ ρ(M) < ζ
)
≤ eγx

n (ε(ρ(M, ε)) > x, ρ(M, ε) < ζ(ε))

n(ρ(M) < ζ)
= o(1).

This estimate, spatial homogeneity of X and equations (3.11) and (3.12) yield as x → ∞:

n(e−u(ε(ρ(x,ε))−x)|ρ(x) < ζ)

= o(1) +

∫
[M,x]

E
[
e−uK(x−z)I{T (x−z)<T̂ (z)}

] n(ε(ρ(M, ε)) ∈ dz, ρ(M) < ζ)

n(ρ(x) < ζ)
.(3.13)

Formula (2.16) of Proposition 5 implies the following equality:

(3.14) E
[
e−uK(x−z)I{T (x−z)<T̂ (z)}

]
= C(u)e−γx (1−G(z) +R(x− z)) eγz,
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where G,R : R+ → R are bounded functions such that G(z) = E[eγX(T̂ (z))] and limx′→∞ R(x′) = 0. Therefore

the equality in (3.13), the asymptotic behaviour of n(ρ(x) < ζ) given in (2.23) and Lemma 9 (ii) imply the

following identity as x → ∞:

n(e−u(ε(ρ(x,ε))−x)|ρ(x) < ζ) = Aγ(u)n
(γ)(ε(ρ(M, ε)) ∈ [M,x], ρ(M, ε) < ζ(ε)) + o(1)(3.15)

+ Aγ(u)n
(γ)

(
[R(x− ε(ρ(M, ε)))−G(ε(ρ(M, ε)))] I{ε(ρ(M,ε))∈[M,x],ρ(M,ε)<ζ(ε)}

)
,

where Aγ(u)
.
= C(u)/(Cγ ϕ̂(γ)). By (3.15) the limit limx→∞ n(e−u(ε(ρ(x,ε))−x)|ρ(x) < ζ) exists and the domi-

nated convergence theorem yields

lim
x→∞

n(e−u(ε(ρ(x,ε))−x)|ρ(x) < ζ) = Aγ(u)
(
n(γ)(ρ(M) < ζ)− n(γ)

(
G(ε(ρ(M, ε)))I{ρ(M,ε)<ζ(ε)}

))
.

Since this equality holds for any M > 0 and the left-hand side does not depend on M , if the right-hand side

has a limit as M → ∞, then the equality also holds in this limit. Note that (3.6) of Lemma 9 (iii) implies

limM→∞ n(γ)(ρ(M) < ζ) = ϕ̂(γ). Since G(ε(ρ(M, ε))) ≤ e−γM on {ρ(M, ε) < ζ(ε)}, an application of the

dominated convergence theorem yields (3.10). By combining with Lemma 9(i) we find the stated form of

Laplace transform of Z∞. �
With the previous results in hand we complete next the proof of Proposition 8.

Proof of Proposition 8. (i) Equation (3.1) is established in Lemma 10.

(ii) Straightforward algebra, starting from (3.1), shows that the Laplace transform of x 7→ exp(γx)P (Z∞ > x)

is given by∫ ∞

0

e−vxeγxP (Z∞ > x)dx =
1

v − γ

(
1− γ

ϕ(0)

ϕ(v − γ)

v

)
=

γ

ϕ(0)

[
1

v

(
ϕ(0)

γ
−m

)
− 1

v

(
ϕ(v − γ)− ϕ(0)− (v − γ)m

v − γ

)]
, v > γ.

A direct Laplace inversion, based on the representation (2.5) of ϕ and (2.11) in Lemma 4, yields the left-hand

side of formula (3.2). The atom at zero is obtained by taking the limit in (3.1) of part (i) as v → ∞. �

4. Asymptotic independence

In this section we establish the asymptotic independence of Y (t), Z(x+ y) and M(t, x) as min{t, x, y} → ∞,

i.e. for any a, b ∈ R+ and c ∈ R

P (Y (t) ≤ a, Z(x+ y) ≤ b,M(t, x) ≤ c) = P (Y (t) ≤ a)P (Z(x+ y) ≤ b)P (M(t, x) ≤ c) + o(1), 4

where M(t, x)
.
= Y ∗(t)−x, t, x ∈ R+. From this we deduce (see Lemma 14 below) the asymptotic independence

of (Y (t), X(x),m(t)) as min{t, x} → ∞ and x−y∗(t) → ∞, described in Theorem 2. We start with the following

observations concerning the large-time behaviour of the local time L̂:

Lemma 11. The following statements hold true:

(i) As in Theorem 2 denote ℓ = 1/E[L̂−1(1)]. For any δ ∈ (0, ℓ/2) we have

lim sup
min{x,t}→∞

P (L̂(τ(x)) ∈ t[ℓ− δ, ℓ+ δ]) ≤ 4

eℓ
δ.

(ii) The following limit holds: P (L̂(t) = L̂(τ(x))) −→ 0 as min{x, t} → ∞;

(iii) For any δ1, δ2 ∈ [0, 1/4) we have

lim sup
min{x,t}→∞

P (L̂(t(1− δ1)) ≤ L̂(τ(x)) ≤ L̂(t(1 + δ2))) ≤
8

e
max{δ1, δ2}.(4.1)

For any fixed s ∈ R+\{0} it holds P (L̂((t− s) ∨ 0) ≤ L̂(τ(x)) < L̂(t)) −→ 0 as min{x, t} → ∞.

4Here again f(t, x, y) = o(1) (min{x, y, t} → ∞) if limmin{t,x,y}→∞ f(t, x, y) = 0.
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Proof of Lemma 11. (i) Recall ℓ is finite (Lemma 3). For any x, t ∈ R+\{0}, Lemma 6 implies P (L̂(τ(x)) > t) =

e−t n(B(x)) for all t ∈ R+\{0}, where B(x)
.
= {ρ(x) < ζ} with ρ defined in (2.22). Therefore for any δ ∈ (0, ℓ/2)

the following holds:

P (L̂(τ(x)) ∈ t[ℓ− δ, ℓ+ δ]) = e−t ℓ n(B(x))
(
eδ t n(B(x)) − e−δ t n(B(x))

)
.

The Mean-Value Theorem implies that there exists ξt,x ∈ (−δ, δ) such that

P (L̂(τ(x)) ∈ t[ℓ− δ, ℓ+ δ]) = 2δtn(B(x))e(ξt,x−ℓ)tn(B(x))

≤ 2δtn(B(x))e−tn(B(x))ℓ/2 ≤ δ4/(eℓ),

where the inequality follows from |ξt,x| < ℓ/2. Since t, x ∈ R+\{0} are arbitrary, this concludes the proof of

part (i).

(ii) As the ratio t/L̂−1(t) tends to ℓ almost surely (see 2.4), we have for any δ ∈ (0, ℓ/2),

(4.2) P
(
L̂(t)/t ∈ [ℓ− δ, ℓ+ δ]

)
= 1 + o(1), as t → ∞.

Equation (4.2) yields the following as min{x, t} → ∞:

P (L̂(t) = L̂(τ(x))) = P (L̂(t) = L̂(τ(x)), L̂(t) ∈ t[ℓ− δ, ℓ+ δ]) + o(1)

≤ P (L̂(τ(x)) ∈ t[ℓ− δ, ℓ+ δ]) + o(1).

Hence part (ii) yields lim supmin{x,t}→∞ P (L̂(t) = L̂(τ(x))) ≤ δ4/(eℓ). Since δ ∈ (0, ℓ/2) was arbitrary and

probabilities are non-negative quantities, the limit in part (ii) follows.

(iii) Note that for any α ≥ 0 the quotient L̂(tα)/t tends to ℓα P -a.s. as t → ∞. For any δ1, δ2 ∈ [0, 1/4) we

therefore find that the probability of the event

Aδ1,δ2(t, x) = {L̂(t(1− δ1)) ≤ L̂(τ(x)) ≤ L̂(t(1 + δ2))}

satisfies the following as min{x, t} → ∞:

P (Aδ1,δ2(t, x)) = P (Aδ1,δ2(t, x), L̂(t(1− δ1)), L̂(t(1 + δ2)) ∈ t[ℓ(1− δ), ℓ(1 + δ)]) + o(1)

≤ P (L̂(τ(x)) ∈ t[ℓ(1− δ), ℓ(1 + δ)]) + o(1),(4.3)

for any δ ∈ (2max{δ1, δ2}, 1/2). Since 0 < δℓ < ℓ/2, part (ii) of the lemma and inequality (4.3) imply that

lim supmin{x,t}→∞ P (Aδ1,δ2(t, x)) ≤ δ4/e. Therefore the first inequality in part (iv) is satisfied. The second limit

in part (iv) follows by noting that, for any s ∈ R+ and δ1 ∈ (0, 1/4), the inclusion {L̂((t− s) ∨ 0) ≤ L̂(τ(x)) <

L̂(t)} ⊂ Aδ1,0(t, x) holds for all (t, x) with large min{x, t}. Hence by (4.1) we have

lim sup
min{x,t}→∞

P (L̂((t− s) ∨ 0) ≤ L̂(τ(x)) < L̂(t)) ≤ δ18/e.

Since δ1 can be chosen arbitrarily small, this proves part (iv) and hence the lemma. �
Before moving to the proof of the asymptotic independence of Y (t), Z(x + y) and M(x, t), we establish the

asymptotic behaviour of certain convolutions that will arise in the proof.

Lemma 12. For a ∈ [0,∞) and any family of sets F (t) ∈ F , t ∈ R+, we have as min{y, t} → ∞

(4.4)

∫
[0,t]

P (F (t), L̂(τ(y)) < L̂(t − s))P (T (a) ∈ ds) = P (F (t), L̂(τ(y)) < L̂(t))P (Y (t) > a) + o(1), .

Proof of Lemma 12. The proof of this lemma is based on Lemma 11. Since Y (t) and sup0≤s≤t X(s) are equal

in law (by time reversal) and P (T (a) = t) → 0 as t → ∞5 (as Xt → −∞ by Assumption 1), it follows that

P (T (a) ≤ t) = P (Y (t) > a) + o(1) as t → ∞. Thus, to prove equality (4.4), it is sufficient to establish

(4.5)

∫
[0,t]

(
P (F (t), L̂(τ(y)) < L̂(t))− P (F (t), L̂(τ(y)) < L̂(t− s))

)
P (T (a) ∈ ds) = o(1)

5Note P (T (a) = t) = 0 if X is not equal to the sum of a compound Poisson process and a deterministic drift. Indeed, in this

case X(t) is continuous (see [21, Theorem 27.4]), so that P (T (a) = t) ≤ P (X(t) = a) = 0.
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as min{y, t} → ∞. Since the local time L̂ is non-decreasing, the integrand in (4.5) satisfies

|P (F (t), L̂(τ(y)) < L̂(t))− P (F (t), L̂(τ(y)) < L̂(t− s))| ≤ P (L̂(t− s) ≤ L̂(τ(y)) < L̂(t)).

Hence Lemma 11(iv) and the dominated convergence theorem imply that (4.5) holds. �
We move next to the asymptotic independence of Y (t), Z(x+ y) and M(t, x).

Lemma 13. For any t, x ∈ R+\{0}, a, b ∈ R+, c ∈ R, y ∈ [0, x] and Borel sets A,B,C ∈ B(R) with

A = (−∞, a], B = (−∞, b] and C = (−∞, c] denote

π1(t, A) = P (Y (t) ∈ A), π2(x,B) = P (Z(x) ∈ B), π3(t, y) = P (L̂(τ(y)) < L̂(t)).

We have as min{t, y, x− y} → ∞

P (Y (t) ∈ A,Z(x) ∈ B) = π1(t, A)π2(x,B) + o(1),(4.6)

P (Y (t) ∈ A,Z(x) ∈ B, L̂(τ(y)) < L̂(t)) = π1(t, A)π2(x,B)π3(t, y) + o(1),(4.7)

P (Y (t) ∈ A,Z(x) ∈ B,M(t, y) ∈ C) = π1(t, A)π2(x,B)P (M(t, y) ∈ C) + o(1),(4.8)

P (Y (t) ∈ A,Z(x) ∈ B,m(t) ∈ C) = π1(t, A)π2(x,B)P (m(t) ∈ C) + o(1).(4.9)

Proof of Lemma 13. Fix t, x ∈ R+\{0}, y ∈ [0, x], a, b ∈ R+ arbitrary, with A = (−∞, a], B = (−∞, b]. As

a first step we note that by a classical application of excursion theory6 involving G(τ(x)) = sup{s < τ(x) :

Y (s) = 0} = L̂−1(L̂(τ(x))−) the random elements A := {Y (s) : 0 ≤ s ≤ G(τ(x))} and A′ := ϵ(L̂(τ(x))) are

independent. Hence the sets {Z(x) ∈ B} and {L̂(τ(y)) > L̂(t), Y (t) ∈ A}, which are measurable with respect

to σ(A′) and σ(A) respectively, are independent, that is,

P (L̂(τ(y)) > L̂(t), Y (t) ∈ A,Z(x) ∈ B) = P (L̂(τ(y)) > L̂(t), Y (t) ∈ A)P (Z(x) ∈ B).(4.10)

Next we establish additional (asymptotic) factorisation. Let A′ ∈ B(R) arbitrary. Since s 7→ I{τ(x)<s≤t,Z(x)∈B}

is left-continuous and adapted an application of the compensation formula of excursion theory (see e.g. [2, Cor.

IV.11]) yields

P
(
L̂(τ(x)) < L̂(t), Y (t) ∈ A′, Z(x) ∈ B

)
(4.11)

= E

[∑
g

I{τ(x)<g≤t,Z(x)∈B} I{ϵL̂(g)(t−g)∈A′,t−g<ζ(ϵL̂(g))}

]

= E

[∫
[0,t]

I{τ(x)<s≤t,Z(x)∈B} n(ε(t− s) ∈ A′, t− s < ζ(ε))dL̂(s)

]
,

where the sum is over all left-end points of excursion intervals. Denote by e(q) an exponential random time

with mean 1/q, defined by extending the probability space to (Ω × Ω′,F ⊗ F ′, P × P ′). Replacing t by the

exponential time e(q) in (4.11) and denoting P = P ×P ′ we have by the lack of memory property of e(q) (taking

A′ = R and B = R, x = 0, respectively)

P
(
L̂(τ(x)) < L̂(e(q)), Z(x) ∈ B

)
= E

[∫
[0,e(q)]

I{τ(x)<s≤e(q),Z(x)∈B}dL̂(s)

]
E[n(e(q) < ζ(ε))],(4.12)

P (Y (e(q) ∈ A′) = E
[
L̂(e(q)

]
E[n(ε(e(q)) ∈ A′, e(q) < ζ(ε))](4.13)

=
E[n(ε(e(q)) > y, e(q) < ζ(ε))]

E[n(e(q) < ζ(ε))]
,(4.14)

6This can be seen to follow directly as a consequence of the splitting property [2, Sec O.5, Proposition O.2] of the Poisson point

process ϵ at the first entrance time HB′ = inf{s ≤ 0 : ϵ(s) ∈ B′} of ϵ into the set B′ = {ε ∈ E : ρ(x, ε) < ζ(ε)}.
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where the last equality follows by taking A′ = R+ in (4.13). Using (4.12) and (4.14) and again replacing t by

e(q) in (4.11) we have

P
(
L̂(τ(x)) < L̂(e(q)), Y (e(q)) ∈ A′, Z(x) ∈ B

)
= E

[∫
[0,e(q)]

I{τ(x)<s≤e(q),Z(x)∈B}dL̂(s)

]
E[n(ε(e(q)) ∈ A′, e(q) < ζ(ε))]

= E

[∫
[0,e(q)]

I{τ(x)<s≤e(q),Z(x)∈B}dL̂(s)

]
E[n(e(q) < ζ(ε))]

E[n(ε(e(q)) ∈ A′, e(q) < ζ(ε))]

E[n(e(q) < ζ(ε))]

= P
(
L̂(τ(x)) < L̂(e(q)), Z(x) ∈ B

)
P(Y (e(q)) ∈ A′).(4.15)

Dividing the left-hand and right-hand sides of (4.15) by q withA′ = Ac = (a,∞), inverting the Laplace transform

in q, noting q−1P(Y (e(q)) ∈ Ac) = q−1P(X∗(e(q)) > a) = q−1P(T (a) ≤ e(q)) =
∫∞
0

e−qtP (T (a) ∈ dt), and

deploying (4.4) in Lemma 12 we have

P (L̂(τ(x)) < L̂(t), Y (t) ∈ Ac, Z(x) ∈ B)(4.16)

= P (L̂(τ(x)) < L̂(t), Z(x) ∈ B)P (Y (t) ∈ Ac) + o(1), as min{x, t} → ∞.

Subtracting P (L̂(τ(x)) < L̂(t), Z(x) ∈ B) on the left-hand and right-hand sides of (4.16) shows that (4.16) is

also valid with Ac replace by A.

Taking note of the following equality for any y, t ∈ R+\{0} and set E ∈ F :

P(E, L̂(τ(y)) > L̂(t)) + P (E, L̂(τ(y)) = L̂(t))(4.17)

= P (E)− P (E, L̂(τ(y)) < L̂(t)),

and applying (4.10) and (4.16) with B = R+ yields as min{x, t} → ∞

P (Y (t) ∈ A,Z(x) ∈ B)

= π1(t, A)P (L̂(τ(x)) < L̂(t), Z(x) ∈ B) + P (L̂(τ(x)) > L̂(t), Y (t) ∈ A)π2(x,B)

+ P (L̂(τ(x)) = L̂(t), Y (t) ∈ A,Z(x) ∈ B) + o(1)

= π1(t, A)π2(x,B) +R(t, x) + o(1),

where R(t, x) = P (L̂(τ(x)) = L̂(t), Y (t) ∈ A,Z(x) ∈ B)− P (L̂(τ(x)) = L̂(t), Y (t) ∈ A)π2(x,B)− P (L̂(τ(x)) =

L̂(t), Z(x) ∈ B)π1(t, A) + π1(t, A)π2(x,B)P (L̂(τ(x)) = L̂(t)). Observing that R(t, x) = o(1) when min{x, t} →
∞ by Lemma 11(iii) the proof of (4.6) is complete.

Equation (4.7) follows similarly, by combining the equality (4.17) (with E = {Y (t) ∈ A,Z(x) ∈ B}) with

Lemma 11(iii) and the identities (4.6), (4.10), and (4.16) (with B = R+).

Finally, take C = (−∞, c] for an arbitrary fixed c ∈ R. In order to prove equality (4.8) note that the following

inclusions hold for any y ∈ R+:

{M(t, y) ∈ C} = {Y ∗(t) ≤ y + c} ⊂ {L̂(t) ≤ L̂(τ((y + c)+))} and

{L̂(t) ≤ L̂(τ((y + c)+))} ∩ {M(t, y) /∈ C} ⊂ {L̂(τ((y + c)+)) = L̂(t)}

(recall that τ(x) is defined for x ∈ R+). These inclusions, together with Lemma 11(iii), imply that the following

equality holds for any family of events E(t, x) ∈ F , t, x ∈ R+, as min{t, y, x− y} → ∞:

P
(
E(t, x), L̂(t) ≤ L̂(τ((y + c)+))

)
= P (E(t, x),M(t, y) ∈ C) + o(1).(4.18)

Since min{t, y, x − y} → ∞, for the fixed c ∈ R the inequalities 0 ≤ y + c ≤ x hold for all large y and x.

In particular (4.7), applied to the complement {L̂(τ(y + c)) < L̂(t)}c = {L̂(τ(y + c)) ≥ L̂(t)}, Lemma 11(iii)
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and (4.18) yield the following equalities:

P (Y (t) ∈ A,Z(x) ∈ B,M(t, y) ∈ C) = P (Y (t) ∈ A,Z(x) ∈ B, L̂(t) ≤ L̂(τ(y + c))) + o(1)

= P (Y (t) ∈ A)P (Z(x) ∈ B)P (L̂(t) ≤ L̂(τ(y + c))) + o(1)

= P (Y (t) ∈ A)P (Z(x) ∈ B)P (M(t, y) ∈ C) + o(1)

as min{t, y, x − y} → ∞, which establishes (4.8). Taking y = y∗(t) in (4.8) (recalling m(t) = M(t, y∗(t)) and

using (1.4)) yields (4.9), and the proof is complete. �

Lemma 14. (i) As min{x, t} → ∞, Y (t) and Z(x) satisfy

(4.19) E[exp(−uY (t)− vZ(x))] = E[exp(−uY (t))]E[exp(−vZ(x))] + o(1), for any u, v ∈ R+\{0}.

(ii) As min{x, t} → ∞ such that t exp(−γx) → 0, Y (t), Z(x) and m(t) satisfy

E[exp(−uY (t)− vZ(x)± βm(t))I{−m(t)∈R±}] = E[exp(−uY (t))]E[exp(−vZ(x))]×(4.20)

×E[exp(±βm(t))I{−m(t)∈R±}] + o(1), for any u, v, β ∈ R+\{0},

where R− = R\R+. In particular, we have

E[exp(−uY (t)− vZ(x)− β|m(t)| − b s(m(t)))] = E[exp(−uY (t))]E[exp(−vZ(x))]×(4.21)

×E[exp(−β|m(t)| − b s(m(t)))] + o(1), for any u, v, β, b ∈ R+\{0},

where s : R → (−∞,∞] is given by s(x) = ±1 for −x ∈ R∓.

Proof. (i) Fix u, v ∈ R+\{0} arbitrary. By integrating both sides of the identity in (4.6) in Lemma 13 over R2

against the measure IR+×R+(a, b)a b exp(−ua − vb)dadb we have (4.19) by noting that the integral of the o(1)

term in (4.6) tends to zero by the dominated convergence theorem (as it is bounded by one).

(ii) The proof is a modification of the argument in part (i). Note first that (4.9) in Lemma 13 also holds with

C replaced by its complement Cc = R\C. For given a, b, c ∈ R+ it follows from (4.9) in Lemma 13 (taking

C = (−∞, c] and C = (−∞, 0] and substracting)

(4.22) P (Y (t) ≤ a, Z(x) ≤ b,m(t) ∈ (0, c])

= P (Y (t) ≤ a)P (Z(x) ≤ b)P (m(t) ∈ (0, c]) + o(1), min(t, x) → ∞,

and similarly (taking C = (−∞,−c]c = (−c,∞) and C = (−∞, 0]c = (0,∞] and substracting)

(4.23) P (Y (t) ≤ a, Z(x) ≤ b,−m(t) ∈ [0, c))

= P (Y (t) ≤ a)P (Z(x) ≤ b)P (m(t) ∈ (−c, 0]) + o(1), min(t, x) → ∞.

Let next u, v, w ∈ R+\{0} be arbitrary. Integrating both sides of the identity in (4.22) over R3 against the

measure

µ(da,db,dc) = IR2
+×R+

(a, b, c)a b c exp(−ua− vb− wc)dadbdc

and applying the dominated convergence theorem shows that also the integral of the o(1)-term tends to zero,

which yields the ”− ”-version of (4.20). The ” + ”-version of follows similarly by integrating both sides of the

identity in (4.23) against µ. As (4.21) follows as direct consequence of (4.20), the proof is complete. �

5. Proofs of Theorems 1 and 2

Proof of Theorem 1. As Y (t) and Z(x) each admit a weak limit Y∞, Z∞ as t, x → ∞, given in (2.8) and

in Proposition 10, the joint Laplace transform of (Y∞, Z∞) follows from (4.19) in Lemma 14(i). Finally, the

factorisation of the exponential distribution is obtained by setting u = v in (1.2). �

Proof of Theorem 2. The asymptotic independence of Y (t), Z(x) and m(t) follows from (4.8) in Lemma 13. The

joint Fourier-Laplace transform then follows from a direct calculation using (4.21) in Lemma 14(ii) and the laws

of Y∞, Z∞ and m∞ given in (2.8) and Propositions 8 and 7, respectively. �
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