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Abstract

This thesis builds upon the problem of sparse signal recovery from the Bayesian

standpoint. The advantages of employing Bayesian models are underscored, with

the most important being the ease at which a model can be expanded or altered;

leading to a fresh class of algorithms. The thesis fills out several gaps between

sparse recovery algorithms and sparse Bayesian models; firstly the lack of global

performance guarantees for the latter and secondly what the signifying differences

are between the two. These questions are answered by providing; a refined theoret-

ical analysis and a new class of algorithms that combines the benefits from classic

recovery algorithms and sparse Bayesian modelling. The said Bayesian techniques

find application in tracking dynamic sparse signals, something impossible under the

Kalman filter approach.

Another innovation of this thesis are Bayesian models for signals whose com-

ponents are known a priori to exhibit a certain statistical trend. These situations

require that the model enforces a given statistical bias on the solutions. Existing

Bayesian models can cope with this input, but the algorithms to carry out the task

are computationally expensive. Several ways are proposed to remedy the associated

problems while still attaining some form of optimality. The proposed framework

finds application in multipath channel estimation with some very promising results.

Not far from the same area lies that of Approximate Message Passing. This

includes extremely low-complexity algorithms for sparse recovery with a powerful

analysis framework. Some results are derived, regarding the differences between

these approximate methods and the aforementioned models. This can be seen as

preliminary work for future research.

Finally, the thesis presents a hardware implementation of a wideband spectrum

analyser based on sparse recovery methods. The hardware consists of a Field-

Programmable Gate Array coupled with an Analogue to Digital Converter. Some

critical results are drawn, regarding the gains and viability of such methods.
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f(t) A function f with argument t. Used in the text to denote a continuous-

time signal.

f [n] A function f with argument n. Brackets are used to indicate that

the argument is a discrete variable. Used in the text to denote a

discrete-time signal.

�{x},�{x} Denote the real and imaginary parts of x respectively.

F(ω) Calligraphic upper-case letters used to indicate a function with a spe-

cial meaning to the context. Usually used to denote a transform or a

cost-function.

O,o Calligraphic upper-case and lower-case Greek letter omicron, reserved

to denote the big-O and little-o asymptotic notation.

f Bold-face lower-case letters are used to denote vectors.

fI Used to denote a vector formed by the entries of vector f indexed by

the elements of set I .
bk Used to indicate a vector indexed by k in a set. Also used to indicate

the kth column vector of the corresponding matrix B.

〈a, b〉 The inner product of vectors a and b.

xt1:t2 Denotes the values of vector x taken from time instants t1 through

t2.

xi Denotes the ith entry of the corresponding vector x.

xa
b Subscripts and superscripts are used to describe a quantity x (scalar

or vector) based on the context. The values of a, b can indicate time,

iteration or context. In case a power index is used, a vector entry

index or for the sake of clarity then the notation is abused slightly.

‖a‖p The lp norm of vector a with 1 ≤ p < +∞.

‖a‖0 Counts the non-zero entries of vector a.

Aij Used to denote a single entry of the corresponding matrix at row i

and column j.

A Bold-face upper-case letters are used to denote matrices.
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based on the context.

diag(x) A zero matrix but with the entries of x on its main diagonal.

G Calligraphic upper-case letters are used to denote sets.

Gt Super-scripts on sets are used to denote the state of a set at iteration

t.

R The set of real numbers.

C The set of complex numbers.

R
n The n-dimensional real space.

R
+ The set of positive real numbers.

∅ The empty set.

A− B Denotes the set difference, {x : x ∈ A, x /∈ B}.
N (μ,Σ) The Normal distribution with mean μ and variance Σ.

CN (μ,Σ) The circularly-symmetric Complex Normal distribution with mean μ

and variance Σ.

Gamma(a, b) The Gamma distribution with shape and scale parameters a, b respec-

tively.

St(a, b) The non-standardised zero-mean Student-t distribution with param-

eters a, b respectively.

Γ(x) The Gamma function.

〈X〉 The expected value of random variable E(X). The two notations are

used interchangeably.
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Introduction

The tragic poet Euripides (480 – 406 BC) mentioned in his works; “To be suc-

cinct, is to be wise” and later on, the polymath Aristotle (384 – 322 BC) stated;

“Among equal demonstrations, the one which is derived from fewer postulates or

hypotheses is superior”. Equivalently, The Principle of Parsimony devises a philo-

sophical framework put forward originally by an English friar, William of Ockham

(AD 1287 – 1347); states in a nutshell that the fewer the better. From what has

been known as Ockam’s razor to the “K.I.S.S” (Keep It Simple, Stupid) motto of

the United States’ Navy in the 1960s; it always seems that primarily nature and

secondly the human reason which is part of the latter are amenable and attracted

to simple and plain explanations.

This simple principle about simplicity itself has found refuge in many applications

of physics, chemistry, biology and others, but also in the field of probability theory

which is akin to the subject of this thesis. Studies about it have been documented

through the years at first empirically, then philosophically and also mathematically

by Solomonoff’s theory of inductive inference. This thesis is also based on this

attribute, i.e., that the environment in which a process takes place is governed by a

probability distribution which can be computable or hopefully approximated.

In their journey from classic signal processing and into the not-so-long but, defi-

nitely plentiful era of digital signal processing, engineers have always been troubled

with samples. Quite common is the question of how many samples are required

and the answer is subjected to constraints such as digital memory, communication

bandwidth, power consumption and more. In the last decade, Shannon has met

Ockham in the works of Emmanuel Candès, David Donoho and Terrence Tao to

what is known in the community as Compressed Sensing and more generally in re-

cent years as Sparse Processing. Simply put, if a signal can be explained simply in

some domain then not many samples are required for its representation. Actually,

far less than what Shannon’s theorem suggests.
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1.1 Sparse Signals and Bayesian Learning

This thesis comes after Compressed Sensing has been studied and well-accepted

by the engineering field and ventures in the area that lies between Bayesian models

and sparse signal recovery. Bayesian methods provide useful intuition and scalability.

Usually a probabilistic model is constructed and then this model is trained using

available data for the purpose of prediction or extrapolation. Another close relative

is regression where usually the regression variables are taken to be the ones to be

inferred from the dataset. The quality of the solution is amenable to the model

mismatch, i.e., how the assumed model differs from the actual natural process that

generated the data, but also the inference algorithm used to carry out what basically

is an application of the Bayes theorem. In the particular case of sparse signal

recovery the framework of Sparse Bayesian Learning (SBL) encompasses models of

a specific structure that promotes sparsity in the inferred solutions.

Despite the existence of several flavours of the SBL shortly after the appearance

of Compressed Sensing, the discussion about the performance guarantees of such

models is limited and narrow, focusing on local guarantees and scenarios. Perfor-

mance guarantees complement a specific algorithm or principle for solving a class

of problems and provides the answer to the all-important question, which in our

case, is whether the number of samples is sufficient to recover a sparse signal. The

thesis puts one step forward into asking and answering this question for SBL; “Is

this number of signals sufficient to model a sparse signal ?”. In the main body of this

text it is shown that SBL has many close ties with traditional Compressed Sensing

algorithms and these connections are quantified exactly. Based on this innovation,

it is then possible not only to derive performance guarantees on SBL but also to

improve it without sacrificing the generality of the model.

1.1.1 Dynamic Sparse Signals

Quite close to the area of Bayesian estimation is that of Linear Dynamical Sys-

tems. In more loose terms this can be seen as sequential Bayesian estimation where

the required statistics (for example the mean and the variance) of a predetermined

model are updated upon each new sample. More specifically, this is an area in

which the Kalman filter has been considered to be the workhorse in uncountable

applications for many years. With the advent and gained popularity of sparse signal

recovery a gap is generated since there is enough knowledge to perfectly reconstruct

a sparse signal but not to track it in a temporal manner, since the Kalman filter

cannot support a sparse signal model.

In one of the chapters of this thesis this problem is exemplified and an elegant

way for its solution is presented. The solution is based on the SBL framework and
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the innovations on the latter. The existing techniques are also discussed in depth and

it is argued why the proposed methods are indeed novel. What has been discovered

is that the Kalman filter system model can be expanded (rather than supplemented

by external modifications which was the case with other approaches) with ideas from

SBL at very little computational expense while at the same time taking advantage of

the temporal correlation between the measurements to achieve lower reconstruction

error. Probably the most interesting of the empirical results is that of reconstruct-

ing the daily Ozone measurements from an experiment performed on a shuttle of

the United States’ National Aeronautics and Space Administration (NASA). The

proposed technique was employed in order to recover a damaged dataset due to a

sensory malfunction.

1.2 Informative Sparse Bayesian Models

Not diverting far from the same research ideas this part of the thesis deals with

a rather overlooked part of SBL. In most cases the sparse signal to be recovered is

assumed to be completely random with the only prior knowledge that it is sparse.

This aids in adopting a suitable model but the cases where additional statistical

bias is available are not studied adequately in the bibliography. Such prior biases

might come either from expert opinions or pure empirical knowledge and using such

knowledge can lead to improved performance of the model by minimising mismatch

with the actual system.

In SBL, such a mechanism exists but it is rarely exploited mostly due to the

simple fact that sparse recovery is the goal and the so-called uninformative SBL is

used. To be more dubious; the fact that the structure of the model is taken to be

uninformative has allowed fast inference algorithms to be constructed. In the thesis

it is argued that this is not the case when the model is subjected to a bias and the

whole “fast” machinery fails to perform. A careful study is performed and several

results are drawn that allow a statistical bias to be used in SBL but allowing at the

same time efficient inference algorithms to be drawn. The resulting algorithms are

optimal with respect to a certain metric.

1.2.1 Multipath Channel Estimation

Figure 1.1 shows the results from a private wireless over-the-air transmissions

experiment (more details in the main body of the text). The mean of the estimated

channel coefficients is drawn with red dots while the lines above and below are the

error bars for one standard deviation. The power-delay profile of this channel is

met in numerous cases and it is better known as a multipath fading channel. When
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Figure 1.1: Empirical channel response measurements.

viewed under the sparsity lens this class of signals can be described as compressible,

i.e., the number of significant components is small compared to the whole. Indeed,

from the empirical tests one observes that the strongest channel coefficients are

located closer to the receiver with an amplitude several classes of magnitude larger

than the rest. To be more pedantic it is evident that they follow an exponential

decay law.

Based on these two ingredients - sparsity and exponential trend of the signal -

the informative SBL is employed to improve the channel equalisation performance

of pilot-assisted Orthogonal Frequency Division Multiplex (OFDM) systems. The

uninformative SBL is able to model successfully a sparse signal but when it comes

to using the fact that there is a trend in the components the informative SBL has

to be employed so as to impose a certain preference over the channel coefficients

that are closer to the receiver. Moreover, in the OFDM context it is shown that a

reduction in the pilot symbol overhead is possible in addition to the Bit Error Rate

(BER) improvement.

1.3 The Approximate Message Passing Framework

Close to the SBL framework is that of message passing and its approximations

(AMP). By adopting a different way of thinking, Bayesian inference is achieved dif-

ferently with results that ultimately end up being quite different and have surpris-

ingly sparked the starting point for an exciting research area. In the message passing

framework, the distributions that relate the individual components of a model are

assumed to be “messages” exchanged between them. It was proven in the bibliog-

raphy by David Donoho, Andrea Montanari et al. [32, 33, 7] that an approximation

to this scheme results in extremely efficient inference algorithms for sparse recovery.

As opposed to the SBL, these algorithms are free from burdensome computations
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such as matrix inversions. Despite its simplicity, in a tremendously fresh framework

it is proven that asymptotically, i.e., for large systems, that the AMP achieves the

exact theoretical recovery bounds as those suggested by compressed sensing.

In what can be considered as the starting point for future work, in the final

parts of this thesis a fusion is attempted between the SBL estimators and the AMP

paradigm. In the AMP analysis a central role is played by the signal estimator for

scalar quantities. Also a key element is that of the worst-case distribution for an

estimator, which is that signal distribution which maximises distortion for a given

estimator. The scalar estimator and the worst case distribution are derived for the

SBL model and a comparison is attempted with the aim to understand where the

two techniques differ. Some surprising results are derived.

1.4 Wideband Spectrum Sensing: Hardware for

Compressed Sensing

One of the drawbacks of Compressed Sensing from the very beginning has been

the lack of appropriate hardware. Most of the digital signal processing techniques

that are applied in many cases ranging from compact music playback devices to

highly sophisticated defence equipment rely on the fact that signals are to be sampled

regularly and at a rate that obeys Shannon’s sampling theorem. Compressed Sensing

on the other hand imposes some very specific constraints on the sampling regime

to be used, something which is proven difficult to implement in practice. Applying

compressed sensing on traditional hardware is a delicate subject.

This is the subject of the final part of this thesis. Compressed sensing is imple-

mented on a Field Programmable Gate Array (FPGA) device alongside a traditional

Analogue-to-Digital Converter. The FPGA runs a full processing core developed in-

house that implements the AMP algorithm. The prototype to the author’s knowl-

edge is known to be the first of its kind, in the confines of the United Kingdom

and probably the only one to have implemented the specific techniques described in

the relevant chapter. The conclusions are interesting, to say the least, and most of

all unprecedented and demystifying. The apparatus deals with wideband spectrum

sensing as the application with the aim of handling a bandwidth of 0.4 − 1.6 GHz

instantaneously. A series of technical issues is documented and several algorith-

mic aspects are studied empirically. These provide a heap of possible future work

directions.
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1.5 Thesis Roadmap

In the diagram of Figure 1.6 (last page of this chapter), a roadmap for the

contents of the thesis is depicted. The blue colour represents the greater areas

with which the thesis transacts. In grey color are the specific theoretical thrusts

that are followed. These lead to the red boxes which represent the main theoretical

innovations of the thesis. Finally in orange colour are the main practical applications

of the innovations.

A short description of the individual chapters is:

In Chapter 2 takes place a summary of the milestones in the area of sparse

signal recovery. This covers some of the most important theoretical results in

this field that are relevant with the thesis.

In Chapter 3 follows a short summary of some of the hardware architectures

that have been proposed in the bibliography for compressed sensing.

Chapter 4 proceeds in describing the SBL framework and it is shown how

some efficient sparse recovery algorithms can be formulated in a completely

Bayesian setting.

In Chapter 5 the it is demonstrated how the uninformative SBL can be

extended and improved. The presented theoretical analysis also leads to the

relevant global performance guarantees.

In Chapter 6 the Kalman filter system model is extended with the SBL

model in order to successfully track dynamic sparse signals. One of the con-

sidered scenarios is that of the missing data problem in an Ozone measurement

experiment by NASA.

Follows in Chapter 7 a study of the informative SBL and an analysis which

allows for efficient inference algorithms to be constructed.

In Chapter 8 the fast informative SBL is taken into consideration for multi-

path channel estimation in pilot-assisted OFDM systems.

Chapter 9 presents a summary of the AMP analysis framework and some

results are presented when this analysis is applied on the SBL model.

Chapter 10 A complete FPGA hardware implementation of the AMP algo-

rithm for wideband spectrum sensing is presented. The results are known to

be seminal.
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1.5.1 Thesis Contributions and Innovations

The contributions of this thesis are outlined below:

Contribution 1 : The derivation of the exact connection between Sparse Bayesian

Learning and greedy pursuit algorithms for sparse signal recovery. This is ex-

plained in detail in Chapter 5. This contribution extends previous work of

other researchers regarding the connection of sparse Bayesian models and ba-

sis selection. This relationship manages to make the situation a lot more clear

on how sparsity is realised during the inference phase in such models.

Contribution 2 : Taking advantage of Contribution 1, it is explained in Chap-

ter 5 how it is possible to derive inference algorithms based on greedy pursuit

algorithms with sophisticated recovery schemes. Indeed by analysing the tradi-

tional algorithm used in Sparse Bayesian Learning it is shown that its sufficient

condition for exact sparse signal recovery can be improved by redesigning some

of its features. It is also demonstrated how the resulting improved algorithms

can have provable performance guarantees.

Contribution 3 : The probabilistic model behind Sparse Bayesian Learning

is employed to solve the problem of tracking dynamic sparse signals. It is

demonstrated in Chapter 6 how the said model can be incorporated in the

Kalman filter to track a sparse signal. It is a fact that the traditional Kalman

filter cannot accommodate sparse solutions. Results from Contribution 2 are

also used to further improve tracking. Empirical results are presented for both

synthetic and real-world scenarios.

Contribution 4 : A major drawback of the aforementioned model is pointed out

in Chapter 7. Basically it is shown that when certain assumptions are altered

then efficient algorithms for inference cannot be used. This contribution is

towards establishing a set of alternations that make efficient inference possible.

Contribution 5 : The said changes in the assumptions regard cases where a

certain prior statistical bias is available for the sparse components that are to

be inferred. A special case presented in Chapter 8 is that of multipath channel

estimation in OFDM systems. The priorly available bias is that the channel

coefficients are likely to follow an exponential decay trend while moving away

from the receiver and for the channel duration. It is shown that it is possible

to use such information to achieve lower Bit Error Rates and smaller pilot

symbol numbers.

Contribution 6 : In Chapter 10 a prototype wideband spectrum analyser is

presented that employs compressed sensing to recover a bandwidth of 0.4-1.6
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GHz directly. The recovery algorithm used is the Approximate Message Pass-

ing and the sampling technique is based on Discrete Random Sampling, i.e.,

a randomly clocked Analogue-to-Digital-Converter. The recovery algorithm is

implemented on an FPGA and some results from field tests are presented.

Contribution 7 : This contribution is minor and can be seen as future work. In

Chapter 9 an attempt is made to find the connections between the Approxi-

mate Message Passing inference algorithm and Sparse Bayesian Learning. The

motivation behind this is that both schemes involve approximate inference for

a model that involves similar prior distributions. It was envisaged that any

possible connections can be used to bridge the two. The first steps for this are

shown in Chapter 9 with a comparison of the scalar estimators of the two and

their corresponding worst-case mean squared error performance.

1.6 The SMARTEN Project

The SMARTEN project kicked-off in 2010 and was funded by the European

Commission under the FP7 People actions. The ultimate goal of this project was to

address the issues of managing the environment in which the modern human lives

and acts in a smart manner by employing novel digital signal processing techniques

oriented towards miniaturised wireless sensor networks. The niche aspect of this

project was its multidisciplinary nature, combining signal processing and civil en-

gineering in order to achieve a sustainable environment that takes into account the

ageing civil infrastructure, non-destructive evaluation, the ever-changing city micro-

climates and the specific constraints placed on the wireless sensing part (sensing

elements, power consumption, communications bandwidth, data fusion, antenna de-

sign).

The author was involved in the aforementioned project via a collaboration be-

tween DFL Systems Ltd. and Imperial College London. DFL Systems is a Research

and Design company based in the United Kingdom specialising in the application of

signal processing in electronic systems providing expert advise to various blue chip

companies. The author was involved as an Early Stage Researcher working in Work

Package 2 of the SMARTEN project dealing with Sensor Signal Processing. Figure

1.2 depicts an abstraction of a relevant wireless sensor network over an urban area

for the purpose of sampling an underlying, time-varying signal. Over time, not only

the signal varies but the sensor network itself, being affected by external factors (for

example harsh environments), vandalisms, poor reception, battery status or simply

the need to add or remove sensors to alter the coverage area. The techniques that

have been established theoretically in this thesis find application in such scenarios.
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(a) Sensor network over an urban area.

(b) Temporal changes affecting the network.

Figure 1.2: (a) An abstraction of a wireless sensor network in an urban area. (b) Over
time the sensed signal changes but the network changes as well, i.e., sensors brake, batteries
deplete, new ones are added etc.

During the course of the project and for experimental purposes a miniaturised

wireless sensor network has been developed in the premises of DFL Systems. The

sensor itself including analogue design, firmware development, circuit board design

and manufacturing was performed by the author as a part of his training. The

end-product can be seen in Figure 1.3.

This sensor network was used during the secondment of another Early Stage

Researcher at DFL Systems for the empirical study the effects of humidity on the

transceiver’s received signal strength. Four nodes have been used with one of them

acting as a base station. A minimal routing protocol was developed also on site with

the collaboration of the seconded researcher. A week’s worth of measurements had

been acquired and each node reported at each transmission which was the parent

node. It was then possible to relate the sensed humidity values with the changes

in the parent nodes. The nodes where positioned in such a way so as to allow for

the nodes to select a different parent note based on the received signal strength

which depends on the distance between the nodes and the sensor placement. The

measurements were being uploaded real-time to an on-line feed host. The status of

the gateway node was also being checked remotely via a command-line secure shell

connection. The results of this study have been documented in an internal extensive
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(a) Printed circuit board routing. (b) Assembled sensor.

Figure 1.3: One of the wireless sensor nodes that were developed.

report. The sensor network was deployed also on site at DFL Systems. A map and

a mounted sensor can be seen in Figure 1.4.

(a) (b)

Figure 1.4: (a) An overview of the deployed nodes. (b) A sensor mounted on a drainpipe
under a steel shed.

For the purpose of the SMARTEN project, the author was seconded at the Civil

Engineering department of the University of Surrey. The hosting research team

was investigating ways to analyse the corrosion on steel reinforcing bars in concrete

structures. The experiments took place in a controlled environment in an accelerated

test procedure, where a high current was induced on the steel bars that have been

enclosed in hardened concrete. The amperage and application time was passed on

to a model that related these two parameters to a number of actual years of the

structure being exposed to corrosion by environmental factors. The bars where

broken out of the concrete and then scanned by a high-precision three dimensional

scanner and the un-wrapped cylindrical images where sent to a personal computer

for analysis in raw format. Such an example can be seen in Figure 1.5.

The images where then subjected to wavelet analysis in order to automatically

recover the corrosion pit severity and build a dataset with pit severity, age of steel bar
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Figure 1.5: Corrosion pits on a 3D scanned steel reinforcement bar (courtesy of Dr.
Leticia Llano Trueba).

and other parameter. The author was involved in aiding the host team with relevant

signal processing techniques for multi-resolution signal analysis and implementation.

There have also been attempts to apply prediction techniques so as to extrapolate

results for a number of years with the ultimate goal to save experimental time.

Results have also been documented in an internal report.

1.7 Academic Papers and Project Reports

During the course of building this thesis, several papers have been produced. To

the author’s knowledge it has always been the case that the presented ideas and

statements to always be original and documented to their full extent. Moreover,

there has been a significant amount of effort to always position the proposed work

in the suitable context by achieving the appropriate balance between breadth and

width.

At the time of writing the following journal papers are in preparation:

1. Evripidis Karseras andWei Dai “Improved Inference in Sparse Bayesian Learn-

ing for Dynamic Sparse Signal Tracking”

2. Evripidis Karseras and Wei Dai “Informative Sparse Bayesian Learning for

Channel Estimation With Prior Statistical Input”.

The following papers have been accepted for presentation in peer-reviewed con-

ferences:

1. Evripidis Karseras, Kin Leung, and Wei Dai “Tracking Dynamic Sparse Sig-

nals using Hierarchical Bayesian Kalman Filters”, International Conference

on Acoustics, Speech, and Signal Processing (2013)

2. Evripidis Karseras, Kin Leung and Wei Dai “Tracking Dynamic Sparse Sig-

nals with Kalman Filters: Framework and Improved Inference”, International

Conference on Sampling Theory and Applications (2013)

3. Jason Filos, Evripidis Karseras, Wei Dai and Shulin Yan “Tracking Dynamic

Sparse Signals with Hierarchical Kalman Filters: A Case Study”, Digital Sig-

nal Processing (2013)
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4. Evripidis Karseras, Kin Leung, and Wei Dai “Bayesian Compressed Sensing:

Improving Inference ”, China Summit and International Conference on Signal

and Information Processing (2013)

5. Evripidis Karseras, Kin Leung and Wei Dai “Hierarchical Bayesian Kalman

Filters for Wireless Sensor Networks ”, European Signal Processing Confer-

ence (2013)

6. Evripidis Karseras and Wei Dai “A Fast Variational Approach for Bayesian

Compressive Sensing with Informative Priors”, International Conference on

Acoustics, Speech, and Signal Processing (2014)

7. Evripidis Karseras, Wei Dai, Linglong Dai and Zhaocheng Wang “Fast Varia-

tional Bayesian Learning for Channel Estimation with Prior Statistical Infor-

mation”, International Workshop on Signal Processing Advances in Wireless

Communications (2015)

The following reports have been prepared as deliverables for projects that have

been undertaken:

1. Khash-Erdene Jalsan and Evripidis Karseras “Evaluating Humidity Effect on

the received Signal Strength of a Radio Transceiver”, Joint Secondment Report,

DFL Systems Ltd. (2012)

2. Bo Han, Evripidis Karseras “Investigation of Distortion on Audio Amplifiers

and Ultrasonic Range Detection”, Joint Secondment Report, DFL Systems

Ltd. (2012)

3. Evripidis Karseras and Leticia Llano Trueba “Sparse Representations for Pre-

dicting Corrosion Pit Depth of Reinforcing Bars in Concrete”, Joint Second-

ment Report, Civil Engineering Department, University of Surrey (2013)
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Sparse Signal Representations

In the digital signal processing realm, analogue signals are digitised so that cer-

tain mathematical tools can be applied and information can be extracted from the

signal itself. For example voice signals are sampled and then the cepstral coefficients

are estimated. Another example is that of communications’ signals where an ana-

logue signal is transmitted over a medium and then via a series of digital processing

stages the transmitted data are recovered. In most of the cases in order for the

transmitted information to be acquired, high sampling rates are required and also

careful design and implementation of the analogue front-end.

The concept of sparse signals is that signals can be compactly represented in

some domain different than their natural one. A simple sinusoid signal is spread

out in the time domain but it is localised in the frequency domain. Results from

information theory have shown that it is possible to efficiently sample and accurately

reconstruct sparse signals. The Compressive Sensing framework accomplishes to

capture all the necessary information in a signal without extraneous samples and also

in a uniform manner since all acquired samples are deemed equally important. The

significantly under-sampled signal can be accurately reconstructed by introducing

the notion of incoherence (or randomness) in the sampling process. The trade-off

for this gain is the additional computational requirements for signal reconstruction.

2.1 Classic Sampling Process

Usually the reason to measure a signal whether it is a voltage value at the output

of a sensor or the price of a share in the stock market is to achieve a certain goal. A

number of mathematical tools can be applied in order to extract useful information

from the data points. Dual to this action is the process of suppressing unwanted

information from the signal such as noise or even the isolation of specific structured

parts of the signal.

A very good example from the area of digital signal processing is the suppression
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of noise from a sampled electrical signal. A digital filter acts upon the samples of the

signal altering its content according to some specification. It is recognised that by

transforming the signal to the frequency domain it becomes possible to process the

conveyed information in a much more efficient and meaningful way. In the cepstral

analysis example; the cepstral coefficients can be used to easily to identify a spoken

word.

By sampling, digitising and transforming a signal the unequivocal value of spar-

sity is recognised. As it happens for most of signals of interest the signal can be

well approximated by a small number of components in some other domain. Not

all frequencies are equally important in an audio signal, an image can be compactly

represented in the wavelet domain or huge datasets might contain only a few classes

of data. This fact on its own means great savings in the number of computations,

the storage requirements, power consumption, communication overhead and many

more.

2.1.1 Classic Sampling Theorem

Quoting Shannon from his original paper [83],

Theorem 1 (Shannon). If a function f(t) contains no frequencies higher than W

Hz, it is completely determined by giving its ordinates at a series of points spaced
1/2W seconds apart.

Usually the function under study f(t) is the associated continuous-time signal

and its discrete-time counterpart; f [n] = f(nT ) a sequence of values taken at integer

multiples of time interval T . The theorem provides a sufficient condition for the

exact reconstruction of signal f(t) from its samples f [n], i.e., that the sampling

period must obey T ≤ 1/2W . The Fourier transform F(ω) of f(t) is assumed to exist

so that F(ω) = 0 for ω ≥ W .

In his original paper Shannon discusses how f(t) can be reconstructed from f [n]

via the Whittaker-Shannon Interpolation Formula,

f(t) =
+∞∑

n=−∞
f [n] · sinc

(
t− nT

T

)

where sinc(x) = sin(πx)/πx.

2.1.2 Aliasing and Interpolation Error

Focusing on Shannon’s sampling theorem, two sources of degradation can exist.

One of them is the well-known aliasing which is caused by sampling rates being lower
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than what the theorem suggests. In short; lower parts of the sampled spectrum are

added to the upper parts thus producing the spectrum of a signal different than

the one being sampled. This is due to the fact that the uniform sampling of x(t) at

intervals nT results in the superposition of shifted copies of F(ω) at integer multiples

of 1/T . The theorem suggests sampling rates so that this situation is avoided. This

form of distortion can be avoided by proper filtering.

The second form of error is introduced during reconstruction in a process called

Digital-to-Analogue conversion and is attributed to the fact that the sum in the

interpolation formula is an infinite sum impossible to be implemented in the real-

world of circuits. Usually an approximation to the process of interpolation with the

sinc function is used.

2.2 Sparse Approximations

Consider the classic sampling theorem and that m equidistant samples of f(t)

are gathered in a single vector f ∈ R
m. Projecting vector f in the Discrete Fourier

Transform (DFT) basis would decompose f in a set of coefficients. The magni-

tude of the said coefficients would then represent the contribution of each of the

corresponding sinusoid basis function in signal f .

Applying a threshold on the coefficients, i.e., keeping only a subset of the coeffi-

cients and setting the rest to a zero value effectively means that the dimensionality

of f is forced to a smaller basis. A more sophisticated kind of thresholding is met

in compression techniques and usually in conjunction with a number of bases that

are able to reveal certain aspects of the signal at hand.

2.2.1 Threshold Operators

Consider representing vector f in a basis B = {bk} with k = [1,m]. Approxi-

mating f with a subset G ⊂ B of vectors with s < m is referred to as the s-term

approximation. The quality of the approximation is measured via the s-term ap-

proximation error,

εs =
∑

i/∈B−G
|〈f , bi〉|2.

Subset G is usually chosen so as to concentrate most of the energy of f . It was

proven in [65, Theorem 9.9, p.453] that forming G via a suitable threshold C will

produce the best s-term approximation with respect to εs for the resulting number

of chosen vectors,

G = {bk : |〈f , bk〉| ≥ C}.

This threshold operation on the coefficients achieves a signal-specific approxima-
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tion scheme which is based on the localised information extracted by transforming

a signal to a different domain. This is sometimes referred to as a non-linear approx-

imation since subset G and threshold C depend on the signal.

Sparsity implies the definition of a basis that greatly captures most of the signal’s

characteristics, e.g., the wavelet coefficients provide good geometrical information

on the edges in an image. A sparsifying basis means that s << m. Subsequently

compression, de-noising, filtering and other processing or transmission can be per-

formed efficiently for a sparse signal. This is not always trivial since these adaptive

approximations are signal-dependent and not universal for a class of signals. To

the engineering community’s benefit, most natural signals of interest happen to be

sparse in some domain depending on the application.

2.3 Redundant Dictionaries

By slightly changing the terminology let us now move from bases to dictionaries.

Consider a set of vectors {hk}k∈S belonging to R
m (assuming real-valued vectors)

with |S| > m. A dictionary H ∈ R
m×|S| is a matrix whose columns are consisted

of vectors hk. A discrete signal f can be projected over such a dictionary with its

support being G = {hk : |〈f ,hk〉| > 0} ⊂ S. At this point it is good to define

the �0 quasi-norm which counts the non-zero components of a vector. Assuming the

coefficient vector x for f in H , ‖x‖0 = |G|.
In the general case of dictionaries that are over-complete, selection of vectors by

the application of a threshold on the corresponding coefficients does not yield an

optimal approximation with respect to εs. Result [65, Theorem 12.1,p.612] and [65,

Theorem 12.2,p.613] dictate that in the case of over-complete dictionaries minimising

the following expression with respect to x,

L(x) = ‖f − fs‖2 + C2‖x‖0 (2.1)

will return the optimal subset G and fs will be the best s-term approximation. This

problem collapses to finding the threshold C in case the dictionary is a basis.

It has been proven in [27] that the problem of optimising with respect to the �0

norm is NP-hard. In the computational complexity literature this term describes

problems that cannot be solved by existing machines (or algorithms of polynomial

complexity) so one has to resort to approximations of the problem. To summarise,

given a signal f and an over-complete dictionary H one cannot recover the optimal

solution ‖x‖0 = s for a given s.
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2.3.1 Characterisation of Dictionaries

By introducing more columns than rows, i.e., H ∈ R
m×n with usually m << n

the sparsity of a representation can be greatly improved. The price to pay is the

increased complexity that is required to make the best choice of vectors and also to

guarantee uniqueness of the representation.

Uncertainty Principle

Studying the uncertainty principle helps in gaining some intuition regarding the

representation of a signal in a dictionary. The uncertainty principle states that

a particle being described by two complementary variables cannot be described

with arbitrary accuracy in both. For example when analysing a signal in time and

frequency it cannot be compactly represented in both domains, i.e. a sinusoid is

spread in the time domain but it becomes a Dirac function in the Fourier domain.

A very good a example from [36] explains this situation for dictionaries. Assume

a dictionary H = [Ψ,Ω] ∈ R
m×n consisted from two orthonormal bases. Also

consider a signal b ∈ R
m. Clearly the following holds:

b = Ψy = Ωx

If Ψ is taken to be the canonical basis and Ω to be the Fourier basis then y would

be the time domain signal while x its Fourier transform. In case Ψ = Ω then by

setting b equal to one of the columns of Ψ would render it sparse in both domains.

Deviating from this setting, the sparsity of b in both domains is ruled by the distance

between the two bases.

Mutual Coherence

Mutual coherence gives information on how much correlation there is between

the columns of a dictionary H ∈ R
m×n. It is defined as follows:

μ(H) = max
1≤k �=l≤n

|hT
khl|

‖hk‖2‖hl‖2

and it gives the maximum correlation between two vectors from the same dictionary.

A theorem on the uniqueness of a sparse representation in a dictionary is given

below.

Theorem 2 ([36, Theorem 2.5]). If a system of linear equations Hx = y has a

solution x obeying ‖x‖0 < 1
2
(1 + 1/μ(H)), this solution is necessarily the sparsest

possible.
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The Spark

The spark of the matrix introduced in [29] is another way to assess the “quality”

of a given dictionary. The term stems from the words “sparse” and “rank”. For a

dictionary H, spark(H) is defined as the smallest number of columns from H which

are linearly dependent. As opposed to the rank of a matrix which gives the largest

number of columns which are linearly independent. It is easy to verify that the spark

is in the range [2,m + 1] since the maximum number of independent columns is m

and the minimum is 1. This is not a tight upper bound since its exact determination

is actually a combinatorial problem.

To be more precise, the spark characterises the dictionary’s null-space. The

above definition is equivalent to saying that every vector x that belongs in the null-

space of H cannot have less than spark(H) non-zero entries, i.e., ‖x‖0 ≥ spark(H).

The following is quite similar to Theorem 2.

Theorem 3 ([36, Theorem 2.4]). If a system of linear equations Hx = y has

a solution x obeying ‖x‖0 < spark(H)/2, this solution is necessarily the sparsest

possible.

It can further be proven [36, Lemma 2.1] that the mutual coherence can be used

to bound the spark. For every dictionary H the following holds:

spark(H) ≥ 1 +
1

μ(H)
.

The Restricted Isometry Property

The Restricted Isometry Property (RIP) is another useful metric for dictionaries

and was primarily introduced in [17]. Consider the dictionary H ∈ R
m×n, positive

integers s ≤ m and constant 0 ≤ δs ≤ 1. Also assume all subsets I ⊂ [1, n] with

|I| ≤ s. The dictionary satisfies the s-RIP with δs being the smallest constant for

which the following holds:

(1− δs)‖c‖22 ≤ ‖HIc‖22 ≤ (1 + δs)‖c‖22

where HI is the sub-matrix formed by the columns indexed by I and c ∈ R
s.

This definition allows us to measure how close to orthonormal are subsets of

vectors from a dictionary. Simply put, a matrix formed by any chosen subset of at

most s columns I to form another matrix HI is almost orthonormal. When HI

acts on a vector c it will alter its magnitude to at most (1± δs)‖c‖22, almost like an

isometric transformation. Just like in the case of the spark, the RIP constant can
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be bounded by the mutual coherence. It can be easily proven that:

δs ≤ (s− 1)μ(H).

It is fair to say that compared to the mutual coherence, the RIP gives a more strict

bound on a dictionary since it measures how stable the subsets of the dictionary

are rather than the correlation between two vectors. Hence the RIP is a more

informative measure. A quite straightforward result from the definition of the RIP

is the following,

Lemma 1 ([17, Lemma 1.3]). Assume H ∈ R
m×n satisfies the RIP with δ2s < 1

then any signal f ∈ R
m with a sparse decomposition x in H satisfying ‖x‖0 ≤ s,

can be exactly represented in H.

Without getting into further technical details one can deduce that matrices obey-

ing the RIP for values of s close to n is an extremely useful attribute.

2.3.2 Incoherent Dictionaries

The theorems mentioned in the previous subsection despite being rudimentary

are informative and help with intuition. The existence of a solution is discussed but

they do not suggest a way of arriving at one. This is discussed in Section 2.4. The

theorems simply suggest that a sparse approximation (as defined in Chapter 2) is

possible depending on the coherence of the vectors in the dictionary.

Assume two dictionaries H and Ψ with both of them being orthonormal bases

for f ∈ R
m. In this particular case the mutual coherence of the two bases can be

shown to satisfy:
1√
m

≤ μ([H ,Ψ]) ≤ 1.

If H is the identity basis and that Ψ is the Fourier basis then it can be verified that

the minimum mutual coherence is μ([H ,Ψ]) = 1√
m
.

The minimum mutual coherence of a dictionary constituted of the time and fre-

quency domain bases allows for exact sparse representation of a sparse signal in only

one of the domains. It was shown in [30] that random bases with independent, iden-

tically distributed entries drawn from the Gaussian distribution of certain variance

also have small mutual coherence with any fixed basis. This means that a sparse

signal in domain H must be spread out in domain Ψ (with which H is incoherent).

The fact that H can be generated at random brings us to the next section of this

chapter which exploits several results to establish an efficient scheme of sampling

sparse signals.
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2.4 Compressed Sensing

The incoherence between a sparsity-promoting dictionary and a random sensing

domain means that signals can be sparsely represented in one domain while being

spread out in the other one. Thus it is possible to acquire information on the sparse

components of the signal in the representation domain from random projections in

the sensing domain. Based on this fact it is then possible to sample and reconstruct

sparse signals with a number of samples far smaller than what is proposed by the

Shannon sampling theorem.

Assume that a signal is sampled traditionally at a sufficient rate and then a sparse

approximation is obtained in some dictionary by applying the threshold operator.

The signal reconstruction provided by Compressed Sensing is at least as good as

that sparse approximation. It is thus possible to acquire an adaptive approximation

of a given signal without adapting the measurement process itself to the signal.

2.4.1 Random Acquisition

Consider an operator described by matrix Φ ∈ R
n×m acting upon the discrete

signal f ,

y = Φf

giving n linear combinations at its output. In a real-world implementation this

would imply an analogue mixing of a natural signal and then subsequent sampling

by an analogue-to-digital converter. Usually in Compressed Sensing this operator

is random, remotely resembling spread-spectrum communications’ techniques where

a wide-band analogue signal is being modulated by a pseudo-random sequence to

spread its content all the way down to the baseband. In Compressed Sensing it is

assumed that n << m.

It is then assumed that f admits a sparse representation in some domain, f =

Ψx hence the random measurements can be written as:

y = ΦΨx

= Hx (2.2)

If the dimensionality of y ∈ R
n is sufficiently large then it is possible to recover the

signal’s sparse support x in domain Ψ (and subsequently f). More importantly the

acquisition system Φ is completely agnostic of the signal’s particularities in domain

Ψ.
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A word on the term sparse signals

So far the term sparse signal has been mentioned with the notion that it can

be represented by only a few vectors when decomposed in some suitable domain.

Referring to a signal as being s-sparse it is meant that its support x does not have

more than s non-zero components. This differs slightly from the definition of the

best s-term approximation of a signal which is acquired by keeping only the s largest

contributions from an orthonormal dictionary (see Subsection 2.2.1).

The quality of a signal which is sampled compressively depends on whether the

signal can be well approximated by a an s-sparse support and more specifically on

the decay of the rest of the non-zero components of the support. It was proven in

[16] that in case the support has s non-zero components then the support can be

recovered exactly.

2.4.2 Acquisition Matrices

Even without an algorithm to perform the sparse support recovery the impor-

tance of sensing matrix H ∈ R
n×m is recognised. Recovering the correct sparse

support for a set of measurements y is greatly affected by the coherence between

the sparsity basis Ψ and the sensing system H . The way matrix H is generated

greatly affects the computational and memory requirements of a reconstruction al-

gorithm since it has to be sufficiently large. Favourable matrices are those which

produce highly incoherent dictionaries but also admit efficient implementations.

Gaussian and Bernoulli Random Matrices

The entries of a Gaussian matrix H ∈ R
n×m are drawn form the Gaussian

distribution, N (0, n−1), hence its columns can be seen as realisations of white noise

processes. It has been shown in [18, 28] that H satisfies the RIP with exponentially

increasing probability as n increases, for Gaussian H and any orthonormal basis Ψ,

when the following holds:

n ≥ C · s · log
(m
s

)
where C is a constant. This expression relates the number of measurements n, the

dimensionality of the sparsity basis m and the number of non-zeroes s in the sparse

support. By constructing a random Gaussian matrix of appropriate dimensions the

RIP holds with a certain probability. Given a sufficiently large n, H satisfies the

RIP almost for certain.

The same claim can be made for when the entries of matrix H are drawn from

the Bernoulli distribution, i.e. they take values ± 1√
n
with probability of 1

2
. In the

case of the Bernoulli distribution the constant C is larger hence more measurements
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are needed but operations become computationally cheaper since multiplications

become additions. In both cases memory requirements are O(n ·m).

Sub-sampled Projectors

In this class of sensing matrices dictionaries are constructed by assuming struc-

tured operators such as the Discrete Fourier Transform matrix. This is achieved

by choosing vectors uniformly at random (without replacement). It was proven in

[18] that the RIP for a sub-sampled Fourier matrix H holds with exponentially

increasing probability as m increases when the following holds:

n ≥ C · s ·
(
log

(m
s

))4

where C is a constant. Of course in this case constant C becomes dependent on the

mutual coherence between the two orthonormal bases.

Compared to the Gaussian and Bernoulli matrices, these random sensing matri-

ces are far more efficient to implement and to manipulate due to their structured

nature. Usually fast algorithms exploit this structure to accelerate computations,

i.e. for Fourier or wavelet bases. The price to pay of course is a larger lower bound

on the number of measurements because of the dependence on the mutual coherence

between H and Ψ something which Gaussian/Bernoulli matrices do not suffer from.

2.5 Reconstruction Algorithms

So far no mention has been made on any method to recover a sparse approxima-

tion from the samples. The problem is written as follows

min
x

‖x‖0 so that y = Hx (2.3)

which is computationally impossible to solve in polynomial time [27]. It is assumed

that ‖x‖0 = s.

The approximations to such a solution can usually be divided into two categories;

greedy algorithms (or pursuits as usually mentioned in the bibliography) and convex

relaxation methods. For both categories solutions can be found which coincide with

the global minimum of Equation (2.3). This is translated into constraints regarding

the value of s and the specific dimensionality of the problem at hand. Success cannot

be guaranteed for every possible case since that would bring us back to the problem

of Equation (2.3).
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2.5.1 Convex Relaxation

The main difficulty with the optimisation problem described in (2.3) is the non-

convexity of the �0 term. Convex problems make optimisation easier and are quite

attractive in the signal processing area. Consider using the �2 norm in (2.3), then

the optimisation problem becomes strictly convex and admits a closed form solution.

Replacing with the �1 norm gives rise to what is referred to in the bibliography as

Basis Pursuit (BP) and can be seen more like a principle rather than an algorithm.

It is stated as

min
x

‖x‖1 so that y = Hx (2.4)

and even though it is not strictly convex it has some appealing properties. It is easy

to visualise two optimal solutions with the same �1 norm something which means

that there exist infinite solutions to this problem. Despite the fact that uniqueness

cannot be guaranteed for non-strictly convex problems the two following attributes

can be guaranteed: first the solutions belong in a bounded convex set and second

there exists at least one solution with a maximum of n non-zero components. An

intuitive explanation can be found in [36]. There is a natural preference of the �1

norm towards sparse solutions.

This modification of Equation (2.3) results in a well-posed problem which can

be solved by Linear Programming [17]. Then the problem of sparse reconstruction

can be solved by interior point algorithms, the simplex method and others. The

major drawback of such algorithms is their sophisticated nature and their sometimes

prohibitively complex implementation. The FOCUSS algorithm proposed in [45]

attempts an approximation to Basis Pursuit which admits a simple implementation

and avoids local minima but it does not guarantee convergence to a minimum and

has the danger of dwelling to a fixed point.

Performance Guarantees

In [16, 15] it was proven that under certain conditions Basis Pursuit and �0

minimisation arrive at the same solution. This does not suggest that an algorithm

to solve Basis Pursuit behaves in the same way like an algorithm to solve �0.

Theorem 4 ([16]). Consider the solution x∗ given by Basis Pursuit. Further assume

that matrix H satisfies the RIP with δ2s <
√
2− 1 then it holds that

‖x∗ − x‖2 ≤
C√
s
‖x− xs‖1 ‖x∗ − x‖1 ≤ C‖x− xs‖1

where C is a constant and x is the actual solution. Vector xs is formed by zeroing

all but the s largest entries of x.
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The bound has been further improved to δ2s < 0.4652 in [41]. The theorem suggests

that if a signal has an exactly s-sparse support then it is recovered exactly given the

sufficient condition on the RIP of the sensing matrix. In any other case it returns

the best s-term approximation. Also unlike previous results [13] this theorem is

deterministic since is suggests exact recovery without probability of error.

2.5.2 Greedy Algorithms

The brute force strategy silently proposed by Equation (2.3) gives way to a

constructive way of finding a solution. Algorithms of this category start off with an

empty support set and then based on a selection criterion, column indices are added

or removed. These algorithms focus on the fact that the problem of recovering the

solution via Equation (2.3) can be solved by first identifying the correct support and

then recovering the magnitudes by least squares.

The Orthogonal Matching Pursuit

A widely used algorithm is the Orthogonal Matching Pursuit (OMP) which made

its appearance in the engineering field well before the Compressed Sensing. The

OMP selects the elements of the support sequentially based on the correlation of

the residual signal with the remaining vectors of the dictionary. It starts off with

the residual being equal to the measurements vector y. The contribution of the

previously selected support vectors is eliminated from the residual and the new

residual is formed. The steps for the OMP are given below as it will partake in the

following discussions.

Algorithm 1 Orthogonal Matching Pursuit
Input : s, H , y
Initialise :

1. T 0 = ∅
2. y0

r = y −HT 0H†
T 0y.

Iteration l:

1. T l = T l−1 ∪ { index corresponding to the largest magnitude entry in vector
Hyl−1

r }.
2. Calculate residual: yl

r = y −HT lH†
T ly.

3. If l = s quit.

Output :

1. The estimated signal x̂ satisfying x̂{1,··· ,m}−T l = 0 and x̂T l = H†
T ly.

In [91] it was proven that given certain requirements on the mutual coherence of

H the OMP recovers all s-sparse signals exactly.
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Theorem 5 ([91]). For y = Hx with H ∈ R
n×m and (n < m), if the following

holds

‖x‖0 ≤
1

2

(
1 +

1

μ(H)

)
,

then the OMP algorithm recovers all s-sparse signals exactly.

After some basic calculations it is evident that the OMP places more strict

bounds on the RIP than Basis Pursuit. Actually BP shows superior performance

empirically but the OMP enjoys extremely simple implementations and far lower

computational requirements. The computational complexity of this type of pursuit

algorithm is ruled by the number of iterations needed for exact reconstruction. For

the OMP this complexity is roughly O(s · n ·m) since it recovers an s-sparse signal

in exactly s iterations.

Other Greedy Pursuits

The OMP has been extended to the Regularised OMP (ROMP) [73] and the

Stagewise OMP (StOMP) [34]. The algorithms follow a similar path with the OMP

by selecting several candidate columns from H for inclusion in the support set based

on their correlation values with the residual. Those vectors that are deemed reliable

based on a given criterion are eventually added to the support set. The pursuit

continues until a finishing criterion is met. Computational complexity is also lower

than Basis Pursuit. The ROMP algorithm reconstructs all s-sparse signals exactly

given that H satisfies the RIP with δ2s ≤ 0.06√
s
. The RIP requirements remain more

strict than those for Basis Pursuit given in Theorem 4 and are also dependent on s.

Another type of greedy algorithms promote sparsity in the solutions by apply-

ing hard thresholds like the one in [11]. These algorithms admit extremely low

computational effort and show performance guarantees comparable to other more

sophisticated sparse reconstruction algorithms mentioned below. Indicatively the

algorithm in [11] recovers all s-sparse signals exactly given that the RIP holds with

δ3s < 1√
32
. Further discussion on this type of algorithms does not take place here

since the present text does not negotiate any of their properties.

Subspace Pursuit

The Subspace Pursuit (SP) introduced in [26] attempts to minimise the gap

between the superior performance of Basis Pursuit and the low computational com-

plexity of greedy pursuits. The Compressive Sampling Matching Pursuit (CoSaMP)

algorithm introduced in [72] admits similar analysis and performance guarantees as

the SP. The key point behind these algorithms is that once elements are included in

the support set they are then allowed to be excluded if deemed appropriate. This
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is possible because of an added backtracking step. Collocated in Algorithm 2 are

the steps for the SP algorithm since this specific algorithm will take part in the

discussions in the chapters to follow.

The authors in [26] provide the following theorem regarding the performance of

SP.

Theorem 6 ([26]). For y = Hx with H ∈ R
n×m and (n < m), if the following

holds

δ3k < 0.205,

then the SP algorithm recovers all s-sparse signals exactly in a finite number of

iterations.

Algorithm 2 Subspace Pursuit
Input : s, H , y
Initialise :

1. T 0 = {s indices corresponding to the largest magnitude entries in the vector
Hy}.

2. y0
r = y −HT 0H†

T 0y.

Iteration l:

1. T̃ l = T l−1 ∪ {s indices corresponding to the largest magnitude entries in the
vector Hyl−1

r }.
2. Set xp = HT̃ l .

3. T l = {s indices corresponding to the largest elementsof xp}.
4. yl

r = y −HT lH†
T ly.

5. If ‖yl
r‖ < ‖yl−1

r ‖, let T l = T l−1 and quit.

Output :

1. The estimated signal x̂ satisfying x̂{1,··· ,m}−T l = 0 and x̂T l = H†
T ly.

2.5.3 Measurement Perturbations

So far it has been assumed that the compressed measurements did not suffer

from the effects of noise. Here it is assumed that the measurements are corrupted

with random noise usually white. The model described in Equation (2.2) becomes

y = Hx+ n (2.5)

where the entries of vector n are independent and identically distributed drawn

from N (0, σ2). The results that have been presented only consider the noiseless

case. The authors of the respective work have provided the noisy counterparts of
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their theorems with the corresponding error bounds and performance guarantees.

In this text further results are not presented since a complete study on Compressed

Sensing is not the goal of the current text.

Basis Pursuit De-noising

The optimisation problem posed by the Basis Pursuit in Equation (2.4) is trans-

formed into the following:

min
x

‖x‖1 so that ‖y −Hx‖2 ≤ ε (2.6)

which is known as Basis Pursuit Denoising (BPDN). The value of parameter ε de-

pends on the noise variance which is assumed to be bounded. Actually when the

same problem is transformed into a Lagrange unconstrained optimisation problem

it becomes what is known to the machine learning community as the Least Absolute

Shrinkage and Selection Operator (LASSO). The LASSO problem statement is the

following

min
x

1

2
‖y −Hx‖22 + C‖x‖1. (2.7)

Constant C is proportional to the noise variance. It is easy to verify that when

the noise variance (or C) goes to zero then the problem goes back to solving Basis

Pursuit.

The notions of the spark, the mutual coherence and the RIP are still extensively

used in order to assess the stability of the solutions for each algorithm with the RIP

being the most flexible tool for this task. Indicatively one result for BPDN from

[16] is mentioned in the following theorem. The analyses for greedy algorithms like

the OMP, SP, CoSaMP and other all demonstrate results of similar nature.

Theorem 7 ([16]). Consider the solution x∗ given by BPDN. Given that H satisfies

the RIP for δ2s <
√
2− 1 then the following holds

‖x∗ − x‖2 ≤
C1√
s
‖x− xs‖2 + C2ε

where C1, C2 are constants and x is the actual solution. Vector xs is formed by

zeroing all but the s largest entries of x.

This extends the noiseless case stated in Theorem 4 and sates that BP solves

the sparse reconstruction problem in the noisy case with an error bounded by the

amount of noise and the error if the support had exactly s non-zero components.

Thus noise is handled in a controlled manner.
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The Dantzig Selector algorithm

The Dantzig Selector (DS) algorithm is mentioned here for completeness. It was

introduced in [14] and it serves as an alternative to BPDN. The algorithm attempts

to solve the following problem

min
x

‖x‖1 so that ‖HT (y −Hx) ‖∞ ≤ ε (2.8)

where again ε depends on the noise variance.

The first thing to notice when compared to BPDN is that the DS has an addi-

tional requirement for the residual signal. In a way it does not only constrain the

residual to be within the noise level but also allows for the residual to be structured,

i.e. correlated with the columns of H . The DS can also be formulated as a Linear

Program and be solved by one of the available methods.

2.6 Conclusion

Representing a signal in the digital world accurately is only part of the story. An

analogue signal undergoes discretisation and can be exactly reconstructed as long

as a restriction on its frequency content is imposed. Taking this a little bit further,

the ultimate goal of the sampling process is to unravel that part of the signal which

is particularly important. The classic sampling theorem does not take into account

the inherent sparsity of the signal, i.e., the fact that not all transform coefficients

have equal weight. From this standpoint it is clear that in order to recover the

signal, the number of samples required should not be independent of the number of

important frequencies (if the Fourier domain is assumed).

The modern sampling theories that all fall under the title of Compressed Sens-

ing, suggest a different sampling procedure altogether; instead of sampling at rates

comparable to the associated bandwidths to only take as many samples required

for the actual sparse components to be recovered. This comes with a number of

supporting theorems that set the foundations. Theoretical results that prove such a

feat is possible and under which circumstances. Much like the traditional sampling

theorem by Shannon. Moreover, due to the particularities, recovery comes at the

cost of a sophisticated algorithm as opposed to the interpolation formula. Again, re-

searchers have been able to provide a vast set of algorithms along with their intricate

performance guarantees.
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Hardware Architectures for

Compressed Sensing

There seems to be a discrimination in the bibliography regarding the actual

random sampling of an analogue signal and then its subsequent recovery. This

etiquette is adopted here and this chapter is divided into two sections; one for

random sampling and one for sub-Nyquist sampling architectures.

This chapter serves as a short summary of some of the most prominent machinery

encountered in the area of random sampling and analogue sparse signal recovery.

Some of the most commonly met random sampling schemes in the bibliography are

presented with minor technical details. These are the Multi-coset sampling scheme,

the Co-prime sampling scheme and the Discrete Random Sampling framework.

Since these sampling schemes are not necessarily tied to a reconstruction pro-

cedure but to rather generic sparse recovery algorithms, three of the most popular

analogue sparse signal sampling and recovery architectures are presented that have

been proposed for actual hardware implementations. These include the Random Fil-

ters approach, the Random Demodulator and the Modulated Wideband Converter.

3.1 Non-uniform Sampling Schemes

In previous chapters it was shown that the Compressed Sensing framework re-

quires for the sampling operator to introduce a certain amount of randomness into

the acquired samples. This process is related to what has been discussed in Subsec-

tion 2.4.1. Let us put theory to the side for a while and see how this randomness

can actually be introduced in some real-world scenarios.

Most of the time it is assumed that the sampling domain is that of time even

though these techniques apply to the space domain as well. Randomness is usually

introduced by sampling a signal at non-uniform sampling intervals.
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3.1.1 Multi-coset Sampling

Multi-coset sampling was studied in [38]. The authors propose the use of multiple

uniform sampling branches at rates well below the Nyquist rate but with different

phase offsets and time delays. The scheme is depicted in Figure 3.1.

Figure 3.1: Multi-coset non-uniform sampling scheme.

In the diagram the delays are chosen so that 0 ≤ ci ≤ M − 1 where M is a

positive integer. A choice of m < M distinct such integer delays is made. Then the

samples for each sampling branch are naturally written as,

xxi
[n] = x(nMT + ciT )

where 1/T is the Nyquist rate. Based on the above the average sampling rate is m
MT

which is lower than the Nyquist rate.

3.1.2 Co-prime Sampling

Co-prime sampling was introduced in [95] and is briefly summarised in Figure

3.2.

Figure 3.2: Co-prime sampling scheme.

The diagram depicts the original formulation where two sampling branches are

employed. The scheme can extended to more than two branches. The key idea is

that the under-sampling factors M,N are co-prime integers. The authors base their
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results in some fundamental properties of co-prime numbers to establish a sampling

framework where a signal is sampled sparsely but several aspects of the signal like

the spectrum is calculated at a significantly higher resolution. The average sampling

rate is 1
MT

+ 1
NT

.

3.1.3 Discrete Random Sampling

The authors of [63] leverage the work of previous authors to establish some very

useful results for sampling an analogue signal at randomly selected points in time

which reside on a predefined uniform grid. The sampling points are taken in the

fashion, of the diagram in Figure 3.3.

Figure 3.3: Additive Random sampling scheme.

In the functional diagram Δ is the uniform spacing of the predefined grid and

nk is a discrete random variable chosen based on some chosen distribution.
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Figure 3.4: Example of the ARS scheme.

Sampling in such a way (and on non-uniform time intervals in general) results in

that the sampled spectrum to be consisted of an aliasing noise-floor in addition to

the spectral content of the sampled signal as shown in Figure 3.4. The theoretical

results include the exact relationship between the aliasing noise floor and the desired

frequency content with respect to the distribution function of the sampling points.
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3.2 Sub-Nyquist Sampling Architectures

Here three well known architectures are summarised. These architectures were

introduced as complete sampling and reconstruction systems rather than just ran-

dom sampling schemes like the ones presented in the previous section. The Random

Filters approach can be taken as a theoretical approach since it only considers dis-

crete time signals as input but helps build intuition. The Random Demodulator and

the Multi-band Wideband Converter are two architectures aiming at sub-Nyquist

sampling of analogue signals with the latter being the first architecture proposed to

be backed up by a hardware prototype.

3.2.1 Random Filters

The Random Filters technique was introduced in [93] as a practical means to

sample and reconstruct a signal at sub-Nyquist rates. As the authors state in their

paper, this method was analysed and empirically tested solely for discrete signals.

Even though this method is not applicable in real-world it is a very good starting

point for understanding how sub-Nyquist sampling and sparse recovery algorithms

are tied in together and how the reconstruction process is affected by the introduc-

tion of randomness.

The method assumes that a discrete signal s of length d can be compactly rep-

resented in a basis Ψ with only m << d components, i.e, signal s is m− sparse. In

mathematical language:

s = Ψθ

where vector θ has m non-zero entries representing the coefficients of s in basis Ψ.

Compressed Sensing theory dictates that by acquiring a sufficient number N of

linear measurements of s in a randomised manner can yield exact recovery of any

m− sparse signal,

y = Φs

where y is the N -dimensional measurement vector and Φ is a randomly sourced

measurement matrix. The relationship between the number of measurements re-

quired for exact recovery and the type of matrix employed has been extensively

studied in the previous chapter.

Recovery aims to find an approximation to the well known problem,

θ̂ = min
θ

‖θ‖1 so that y = ΦΨθ.

The recovery process has to be taken care of by a non-linear algorithm such as

the Orthogonal Matching Pursuit (OMP), the Subspace Pursuit [26] or CoSaMp

56



Chapter 3

[72]. Exact recovery can also be accomplished with other computationally expensive

algorithms based on Linear Programming.

Filters with Random Tap Weights

The authors assume a filter h of length B whose entries are randomly sourced

independently from the Gaussian distribution N (0, 1). This choice is not restric-

tive but facilitates understanding without compromising generality. The sampling

process is then described likewise:

y = Φs⎡
⎢⎢⎢⎢⎣

y0

y1
...

yN−1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
h4 h3 h2 h1 0 · · · · · · · · · · · · 0

0 0 0 h4 h3 h2 h1 0 · · · 0
...

. . .
...

0 · · · · · · · · · · · · · · · h4 h3 h2 h1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
s0

s1
...

s15

⎤
⎥⎥⎥⎥⎦ (3.1)

where it is assumed for illustration purposes that d = 16, N = 5 and B = 4. Matrix

Φ is built so that each of its rows is equal to the previous one shifted by �d/N�. This
is described compactly in the following diagram:

Figure 3.5: The Random Filter Architecture

The process described by Equation (3.1) can be seen as convolution of the signal

with the filter followed by a down-sampling operation.

OMP-based Recovery Algorithm

The recovery procedure which aims at finding a suitable sparse vector θ̂ is carried

out by the algorithm in Algorithm 3.
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Algorithm 3 Random Filters Recovery Algorithm
Input : ΦΨ, y
Initialise : r0 = y
Iteration l = 1..N :

1. Find the column il of ΦΨ such that

il = argmax
i

|〈rl−1, (ΦΨ)i〉|.

2. Compute the new residual
rl = y − Ply

where Pl is the orthogonal projector onto the span of the l columns chosen
from ΦΨ.

Output :

1. Columns {il} and coefficients {θ̂il} such that

PNy =
N∑
l=1

θ̂il (ΦΨ)il .

The algorithm is based on the OMP algorithm but accepts several enhancements

as the authors mention because of the special structure of matrix Φ. These alter-

nations aim towards reducing the computational complexity. The authors test the

recovery algorithm on several cases of sparse signals including toy problems based

on signals sparse in the time domain, the Fourier domain and the Haar wavelet

domain. The empirical findings will not be discussed in this text and the interested

reader is redirected to the relevant bibliography for a more elaborate description.

3.2.2 The Random Demodulator

The authors in [92] present a sub-Nyquist signal acquisition system namely the

Random Demodulator. This is a result of previous work of other researchers which

will not be presented here. This authors present a long study of the system covering

the separate components of the system, practical aspects and the signal model that

is followed. The work is supported by a rigorous set of empirical evidence and a

detailed theoretical analysis on the performance guarantees of the system. These

include the minimum sampling rate required for exact recovery versus the sparsity

of the signal.
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Figure 3.6: The Random Demodulator Architecture

The architecture is shown in Figure 3.6. The band-limited analogue signal f(t) is

demodulated by a pseudo-random sequence of ±1, called the chipping sequence. The

rate at which this sequence alternates is at or above the Nyquist rate of the signal W

Hz. The output of the mixer is then low-pass filtered and down-sampled by a factor

R. In reality the low-pass filter is an accumulator which sums the mixed signal for
1/R seconds. The output is then digitised by an analogue-to digital converter. The

key idea is that the rate R at which the signal is sampled is far lower than the

Nyquist rate W . The value of R depends on the number of active frequencies in the

analogue signal f(t).

The process described above introduces randomness in the sampling process in a

different way than Random Filters since it is aimed in actual sampling of analogue

signals. The authors note that the hardware needed is not specialised in any way

and is readily available.

Signal Model

The assumed signal model is mathematically described as,

f(t) =
∑
ω∈Ω

aωe
−2πωt for t ∈ [0, 1)

where Ω ∈ {0,±1,±2, · · · ,W/2} is the set of the K << W active frequencies and aω

are the corresponding amplitudes. The time interval has been normalised for ease

of exposition.

In real-world applications the above signal model is not always met since it

implies that the signal only contains harmonics residing exactly on the Fourier grid.

Unfortunately this is not always the case. The authors propose a classical remedy

to this problem, that is to introduce a windowing operation prior to acquiring f .

Operation of the Random Demodulator

It can be proven that the continuous time domain signal f(t) comprising of the

frequencies in Ω can be written down as a discrete time signal xn with the same
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frequency content:

xn =
∑
ω∈Ω

sωe
−2πinω/W n = 0, 1, · · · ,W − 1

where

sω = aω
e−2πinω/W−1

2πiω
.

The above can then be easily written in matrix form:

x = Fs

where matrix F is the W×W DFT matrix. The actions of mixing with the chipping

sequence and the accumulator can be written also in matrix form:

D =

⎡
⎢⎢⎢⎢⎣
ε0

ε1
. . .

εW−1

⎤
⎥⎥⎥⎥⎦ H =

⎡
⎢⎢⎢⎢⎣
1 1 1

1 1 1
. . .

1 1 1

⎤
⎥⎥⎥⎥⎦

where {ε0, · · · , εW−1} is the chipping sequence. Matrix H ∈ R
R×W resembles the

matrix that was encountered in the Random Filters. In the example above it is

assumed that W
R

= 3. The entries of each row are adjusted accordingly for when W
R

is not an integer.

The whole process can be written as:

y = HDFs = Φs

and matrix Φ is called the random demodulator matrix. Like with Random Filters,

a recovery algorithm needs to be employed to solve

ŝ = min ‖v‖1 so that y = Φv.

and find the most suitable sparse vector ŝ.

3.2.3 The Modulated Wideband Converter

The Modulated Wideband Converter (MWC) was introduced in [68] for wide-

band sub-Nyquist sampling of analogue signals. The authors aimed at efficient

hardware implementation and low computational load achieved through simple re-

covery algorithms. The architecture is based on a sub-band acquisition system that

more or less resembles classical approaches. It is depicted in Figure 3.7. The con-
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sidered signal model assumes that x(t) occupies only a small number N of bands

in the entire wideband spectrum. B is assumed to be the maximum bandwidth of

each band in the frequency content of x(t).

Figure 3.7: The Modulated Wideband Converter Architecture

The MWC is consisted of m channels. At each channel the analogue input signal

x(t) is mixed with a Tp periodic mixing sequence which in this particular example is

a square wave with M as shown in the diagram. The mixing sequence signs are be

chosen uniformly at random so that the sequences for each channel are adequately

different from each other. The value of fp = 1/Tp ≥ B is chosen so that parts of the

spectrum from each band will be aliased down to baseband. The mixed signal is

then fed into a low-pass filter with a cut-off frequency of 1/2Ts. Ideally the frequency

response is rectangular. The filtered signal is then sampled by an ADC at a rate of

fs = 1/Ts.

The whole process can be written in matrix form as shown below in Figure 3.8

Figure 3.8: The MWC operation in matrix form

Where Yi(e
i2πfTs) for f ∈ Fs = {−fs/2,+fs/2} is the Fourier transform of sequence

yi[n], the elements of the m×M matrix S are the elements of the mixing sequences

taken from {±1} and matrix F is an M ×L sub-matrix of the M ×M DFT matrix.

The constant L × L diagonal matrix D is defined in the original paper. Further

details are omitted from this functional description of the converter. Vector z(f)
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contains L slices of the spectrum where,

L0 =

⌈
fNyq + fs

2fp

⌉
− 1

L = 2L0 + 1

and represents the unknown spectral content of x(t). The Nyquist rate for x(t) is

fNyq. One of the conditions for recovery presented in the paper is M ≥ L. More

precisely,

zi(f) = X(f + (i− L0 − 1)fp), 1 ≤ i ≤ L, f ∈ Fs

where X(f) is the Fourier transform of x(t).

The theoretical results establish the rules for choosing the parameters for the

problem specified above so that the system will function properly and for recovery

to be accurate. The choice of fp ≥ B results in that each of the N bands contributes

only one non-zero element in z. This means that z(f) is N − sparse.

Signal Reconstruction

Recovery is based upon recovering the sparsest z(f) for each f ∈ Fs. Unlike

the Random Filters and the Random Demodulator the MWC employs a different

approach for sparse recovery in which the support set (the index set of the non-zero

entries) and the magnitudes are calculated separately. This is done so as to achieve

gains in performance due to the structure of the MWC.

Let us write the process in Figure 3.8 a bit more compactly

y(f) = Az(f) f ∈ Fs

where A = SFD. The algorithm to solve the problem stated above is based on the

Orthogonal Matching Pursuit and is called Simultaneous OMP [67]. The algorithm

recovers the support set S = supp(z(Fp)) where Fp = {−fp/2,+fp/2}. Set S is the

union of supports of z(f) for f ∈ Fp. The way to achieve this is shortly described

in the original paper and is based on previous work of the same authors. After S

has been recovered one performs,

zS[n] = A†
Sy[n]

zi[n] = 0, i /∈ S

to compute the inverse DTFT of z(f).
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3.3 Conclusion

A very quick tour through that small place in hardware-land was taken in this

small chapter, that deals with actual ways to implement compressed sensing in the

real world. The amount of work that has been put into developing an actual hard-

ware platform is disanalogous to the theoretical work and not many implementations

have been reported so far, at the time of writing of course year 2015. The reasons

for this can be many such as the daunting randomness feature these samplers have

to exhibit. Many of the questions a design engineer would have to answer is, “How

random does it have to be ?”. The answer to this question directly affects the perfor-

mance of a compressed sampler. Another difficult task is to find ways to implement

randomness in the analogue domain, something which is greatly limited by the na-

ture of the signal to be sampled. Researchers and engineers have worked together

to find ways to understand how to overcome these issues and make the most benefit

out of sparsity.
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Bayesian Models for Sparse

Signals

The close relation of redundant dictionaries, sparse representations, machine

learning and statistics has given the incentive to seek solutions to the sparse recovery

problem in a probabilistic setting. It turns out that the problem of sparse support

recovery is very close to those of regression and classification. Usually the assumed

statistical model is trained on the available dataset and a predictive distribution

is constructed. More than often the predictor variables (model parameters) for a

regression problem result being sparse or a large dataset can contain only a few

classes of objects.

By employing Bayesian methods it is possible to formulate the Compressed Sens-

ing problem into a regression problem and apply Bayesian inference methods to

recover a sparse model for the given measurements. Actually most of the aforemen-

tioned sparse recovery principles - and as shall be shown, algorithms as well - have

a probabilistic backbone. Jumping on the Bayesian bandwagon, the problem can be

explored in a more meaningful way.

4.1 Maximum Likelihood andMaximum A-Posteriori

Estimates

Consider the problem of reconstructing x from its noisy measurements y de-

scribed by Equation (2.5), also shown here for convenience

y = Hx+ n. (4.1)

This can be put in a probabilistic setting by assuming that the measurements follow

some distribution. Following the justifiable norm, let us consider that a multivariate
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normal distribution is employed. Then the probability distribution function for y

given the measurements and noise variance is

p(y|x, σ2) = N (Hx, σ2I) =
1

(2πσ2)
m
2

e−
1

2σ2 ‖y−Hx‖22

where I is the identity matrix. This expression is also referred to as the likelihood

function of the data vector y given a set of model parameters x.

TheMaximum Likelihood (ML) estimate of x is found by minimising− log p(y|x, σ2)

with respect to x:

− log p(y|x, σ2) =
m

2
log(2πσ2) +

1

2σ2
‖y −Hx‖22

which coincides with the Least Squares solution. It is straightforward that there is

no trend towards a sparse x and it is a fact that the least-squares solution to an

inverse problem is not a sparse one. In the statistician’s dialect this is equivalent to

saying that there is no preference towards sparse solutions expressed by the assumed

model.

To remedy this problem - simply - a prior distribution is assumed for x which

helps in expressing this need for a sparse solution, i.e. for the components xi to

have a tendency towards the zero value. For reasons that will become apparent, the

Laplace distribution is chosen for this task. The probability density function of a

Laplace distributed random variable x has the following form

f(x|α, β) = 1

2β
e−

|x−α|
β

and an example is shown in Figure 4.1. The mean value of x is given by α while its

variance by 2β2.
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Figure 4.1: Probability Density Function of the Laplace distribution.
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By assigning a Laplace prior over over xi with α = 0 and a suitably chosen β

a prior belief can be expressed for xi to attain smaller values. In which case the

probability function becomes more peaked at zero. In a way β expresses how strong

this belief is. Thus, since parameters xi are independent from each other the prior

distribution function becomes

p(x|β) = 1

(2β)m
e−

‖x‖1
β . (4.2)

The prior is independent for each xi but hyper-parameter β is shared.

According to the Bayes rule the posterior distribution for x is proportional to

the product of the likelihood and the prior,

p(x|y, σ2, β) ∝ p(y|x, σ2)p(x|β)

Finding the Maximum a-posteriori estimate (MAP) of x would require to maximise

the posterior distribution p(x|y, σ2, β) or equivalently minimise − log p(y|x, σ2) −
log p(x|β),

xMAP = min
x

[
C + σ−2

(
1

2
‖y −Hx‖22 +

σ2

β
‖x‖1

)]
where C is a constant. This is the same as the finding the solution to the LASSO

stated in Equation (2.7) for λ = σ2

β
and BPDN in Equation (2.7). When σ2 → 0

then the MAP estimate for x under the Laplace prior is the same as the solution

given by Basis Pursuit. The regularisation term λ in Equation (2.7) controls the

trade-off between sparsity and quality of reconstruction. The MAP estimate can be

seen as a regularisation of the ML.

In machine learning jargon, the use of prior distributions is said to avoid over-

fitting which means that a model too complex is inferred. The regularisation term

introduced by the prior helps in favouring simple models. Let us note that the

Laplace distribution is not the only distribution fit for this task but other expo-

nential super-Gaussian distributions can be used just like other �0<p<1 norms can

be used instead of the �1, resulting in different forms of regularisation (surely non-

convex). These cases will not occupy us in this text since the techniques presented

are not based solely on a specific form for the prior and can be applied. For exam-

ple if a Gaussian distribution is used then the MAP would introduce a quadratic

regularisation term leading to what is also known as regularised least squares or

Tikhonov regularisation.

In Figure 4.2 two different choices of prior are shown, the Laplace and the Gaus-

sian prior. Like in the case of �0 minimisation where replacing with the �1 norm

makes the problem convex the same happens when adopting a different prior. More

specifically by changing from the Gaussian prior to a super-Gaussian prior promotes
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Figure 4.2: Effect of regularisation on the sparsity of a solution in the case where m = 2.
The blue concentric circles show the first part of the log-posterior which is the squared
error term. The green area shows the constraint posed by the regularisation term. The
MAP estimate is the point where these two areas meet.

sparsity in the solutions.

4.1.1 Conjugate Prior Distributions

Employing various prior distributions like the Laplace prior comes with a price

to pay, just like the requirement for sparse solutions. In simple terms by solving

an under-determined system by least squares is a completely different story than

requiring for that solution to be sparse.

The choice of prior has a significant impact on the tractability. For example

when the prior is Gaussian p(x|γ) = ∏m
i=1 N (0, γ) then the posterior p(x|y, σ2, β)

admits a closed form solution which is also in the form of a Gaussian N (μ,Σ), with

μ = σ−2ΣHTy

Σ =
(
HTH + σ2γI

)−1
.

In this case the choice of a Gaussian prior results in that the mean of the posterior

distribution coincides with the MAP estimate xMAP = μ (Figure 4.2a). Of course

this does not hold for a Laplace prior and one has to solve the BPDN problem.

This convenient choice for a prior (even though it does not promote sparsity)

where the posterior distribution belongs in the same family as the prior is called

a conjugate prior. In this particular case; the exponential family of distributions.

Quoting from a Wikipedia article, a conjugate prior is an algebraic convenience,
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giving a closed-form expression for the posterior; otherwise a difficult numerical in-

tegration may be necessary. This means that an analytic expression for the posterior

is possible depending on whether the prior is chosen wisely. The importance of this

choice for a prior will become evident in the following discussions as well.

4.2 Sparse Bayesian Learning

The previous discussion on prior distributions might suggest that the probabilis-

tic formulation of the sparse signal recovery problem has nothing to offer more than

an intuitive and convenient representation. Fortunately and to our great advantage

this is hardly the case since it is possible to construct models that give elegant solu-

tions without the need to explicitly express a preference while still providing sparse

solutions. By borrowing ideas from machine learning, it is possible to infer a sparse

model for the data y with the help of a hierarchical prior model. This is achieved

via an approximation process which allows a shortcut towards explicitly specifying a

regularisation threshold. Even though this might seem to be computationally inef-

ficient it is also proven that efficient algorithms exist. These algorithms will occupy

us in a different chapter.

4.2.1 Graphical Models

In order to facilitate discussion and understanding a couple of paragraphs are

spent to introduce the notion of Graphical models. A Graphical model is a way of

graphically depicting the dependencies between the random variables that partici-

pate in a model. In such constructions it is easy to visualise a model and under-

stand the computations that take place behind it for performing usual tasks such

as inference (computation of posterior distributions of a set of variables) or even

marginalisation (something related to factor graphs).

x1 x2

x3

Figure 4.3: A Simple Bayesian Network representing the relationship of random variables
x1, x2 and x3.

In Figure 4.3 an example of a simple Bayesian network is shown. The graph

represents the conditional dependencies between the three random variables x1, x2

and x3. Every node represents a single or a group of variables while the edges indicate
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a probabilistic relationship between the connected nodes. For this reason the edges

are directed. Two unconnected nodes denote that the corresponding variables are

conditionally independent. The graph in its entirety shows how the joint distribution

can be factorised. For our little example this translates to:

p(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2).

One can easily comprehend that variables x1 and x2 are independent when condi-

tioned on x3. A Bayesian Network is a type of graph like the above, bearing no

cycles, i.e., no closed paths or a Directed Acyclic Graph.

In most of the cases the random variables associated are not all known and

have to be estimated. Usually the input is described as the data or measurements

like in the previous section. The model parameters that have to be estimated are

usually called latent or unobserved and in our cases of interest they usually represent

the sparse vector to be recovered. In the some of the models to follow the hyper-

parameters of a model are also considered to be latent and have to be estimated. We

will return to this at a different stage in this text. This section will not be occupied

with the estimation algorithms per se but solely on the models and their meaning.

4.2.2 Sparse Bayesian Models

Following the discussion about graphical models and Bayesian networks we now

introduce what is known in the wider bibliography as Sparse Bayesian Models. In

most of the cases these are introduced as a hierarchical probabilistic model easily

described as a graphical model. Probably the most notable of such models is the one

introduced in [89] which is described below. The discussion to follow will be based

on this original rendition. Then a smorgasbord of models is presented that employ

various changes to achieve different results. This has the purpose to show how

versatile and scalable the Bayesian methods are towards developing new algorithms

and intuition.

a c

αi xi yj σ−2

b i ∈ [1,m] j ∈ [1, n] d

Figure 4.4: Bayesian Network of the Relevance Vector Machine.
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In Figure 4.4 the aforementioned model is depicted [89]. A slight addition in the

notation are the two dashed parts which are repeated m and n times respectively.

The sparse parameter vector to be estimated is denoted as x ∈ R
m and the mea-

surements are gathered in vector y ∈ R
n. A hyper-prior distribution p(α) is placed

above the parameter vector which takes as input another two parameters and the

same happens for the noise variance. Values a, b, c and d denote the hyper-prior’s

parameters and for the moment it is assumed that they are not to be estimated

and are deterministic constants. Note that the hyper-prior choice is specific for the

model in [89] and other choices will be discussed later in the text.

This hierarchical model of distributions assigns a separate prior distribution to

each component of the support xi. At a first glance this might seem like a bad

choice since it would lead to over-fitting (hence not a sparse model) due to the

number of parameters to be estimated. Recall that in Section 4.1 there was only

one set of m unknowns to estimate (the sparse vector) but in this case the number of

unknowns is doubled with the addition of a hyper-prior distribution. The elegance

of Bayesian methods shows that this is not the case. On the contrary it leads to

efficient algorithms for sparse reconstruction. A central role plays the fact that

the choice of the hyper-prior distribution is a conjugate distribution to the prior

distribution.

More specifically it is assumed that the prior distribution for x is formulated as

follows

p(x|α) =
m∏
i=1

N (0, α−1
i ) = N (0,A−1) (4.3)

where hyper-parameters αi control the inverse variance of the corresponding compo-

nent xi and matrix A = diag(α1, · · · , αm). Doing a quick comparison with Equation

(4.2) it is noticed that in this model a separate hyper-prior is placed over each com-

ponent.

The hyper-prior distribution placed over x controls the variance of each xi. In

contrast to having a fixed prior like in Subsection 4.1 this allows for a consistent

Bayesian treatment without introducing dependencies between variables xi. This is

key to realising sparsity in this framework. The hyper-prior is chosen to be

p(α) =
m∏
i=0

Gamma(a, b)

p(σ−2) = Gamma(c, d), (4.4)

where p(x) = Gamma(a, b) = Γ(a)−1baxa−1e−bx is the Gamma distribution. The

gamma distribution is chosen since it is a conjugate distribution to the precision

(inverse variance) of the Gaussian distribution.
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The parameters of this hyper-prior are chosen so that it is uninformative, i.e., so

as to express no preference over any value for the corresponding xi. A hyper-prior is

also assigned to the noise variance of the measurement model. For the hyper-prior

distributions to be uninformative the deterministic parameters a, b, c, d are set to

zero or to near-zero values in practice. Note that such a prior is often described as

improper because the posterior distribution cannot be normalised, hence it would

not be an actual distribution. Essentially the true posteriors are approximated as if

one used a proper hyper-prior with extreme values assigned to their parameters. In

Figure 4.5 an example is given for the Gamma distribution for small values of the

parameters.

x
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Figure 4.5: Probability Density Function of Gamma distribution for parameter values
a = b = 0.14.

Bayesian Inference

Writing down the joint distribution

p(y,x,α, σ2) = p(y|x, σ2)p(x|α)p(α)p(σ2).

and from the Bayes theorem, the posterior can be written as,

p(x,α, σ2|y) = p(y|x,α, σ2)p(x,α, σ2)

p(y)
. (4.5)

Any attempt to compute the expression above would come to a halt because of the

term p(y) being not possible to evaluate analytically in full [89]. We put a pause at

this stage as far as this is concerned and for the remainder of the discussion it will

be assumed that a suitable approximation exists. We will revert to this problem in

more detail later in the text and inform the reader that the posterior is approximated
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Figure 4.6: (a) The probability distribution given the prior is a bivariate Normal. (b) By
marginalising over the prior the resulting distribution is a Student-t distribution strongly
peaked along the axes.

via the Expectation-Maximisation algorithm or equivalently via Type-II Maximum

Likelihood [9].

Promoting Sparsity

Based on the discussion on sparsity-promoting prior distributions in the previous

section; a prior that places significant probability mass on near-zero values and

exhibits heavy tails like the Laplace distribution is suitable for promoting a sparse

solution. So far no such prior was shown since p(xi|αi) is a Gaussian while p(αi)

itself is a Gamma distribution. In order to work out the actual distribution of a

single xi from Equation (4.3) one must integrate over the hyper-prior αi, i.e.

p(xi) =

∫
p(xi|αi)p(αi)dαi ∝

(
b+

x2
i

2

)−(a+ 1
2)

=
1

|xi|

where in the last part of the equation the fact that a = b = 0 was considered. As it

turns out the prior does manage to promote sparse solutions - p(xi) ∝ 1
|xi| - because

of its peak at zero, quite like the Laplace prior p(xi) ∝ e−|xi|. More specifically p(x)

follows a Student-t distribution. The graph in Figure 4.6 shows the comparison

between p(x|α) and p(x) for m = 2, i.e. the bivariate case. It is evident that the

prior over p(x) shown on the right concentrates most of the probability mass on

ridges along the axes as opposed to the Gaussian on the left.

4.2.3 Related Work

The authors of [3] - Babacan et al. - have attempted to make a good connection

between �0<p≤1 optimisation and Sparse Bayesian Learning by relating the models
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discussed above with the following,

min
x

1

2
‖y −Hx‖22 + τ‖x‖pp

which is a slightly modified LASSO problem. For this the authors assign a Gener-

alised Gaussian prior to the sparse vector which is very similar to the one shown

above,

p(x|α) = C · αm
p

(
−α

m∑
i=1

|xi|p
)
.

Note that the hyper-prior is shared among the model parameters and the authors

follow a different approach to make the model more versatile.

Again, Babacan et al. in [4] have attempted the following hierarchical prior

structure

p(x|γ) =
m∏
i=1

N (0, γi)

p(γi|λ) = Gamma (1, λ/2) =
λ

2
e−

λγi/2

p(λ|ν) = Gamma (ν/2, ν/2) .

The authors’ goal with this model was to implement a Laplace prior over the pa-

rameters but the issue they faced was that the Laplace prior is not a conjugate prior

to the precision of the Gaussian p(yi|hT
i x, σ

2). By adopting the above three-stage

hierarchical model the following marginal,

p(x|λ) =
∫

p(x|γ)p(γ|λ)dγ =
λm/2

2m
e−

√
λ
∑m

i=1 |xi|,

indeed results in a Laplace prior over the sparse parameter vector. Let us stand for

a moment and appreciate the elegance and versatility Bayesian models offer towards

constructing new algorithms. In this model the value of λ has to be calculated also,

being a random variable. This is accomplished via a variational approach, something

which will be discussed in a separate chapter. To conclude with this form of prior a

mention is made for [110] in which the authors have provided yet another prior for

which the Laplace prior and the Gaussian-Gamma prior are special cases.

In another attempt to model the sparse coefficients of a system the authors

in [21] use what is called an algebraic-tailed prior from the generalized Cauchy

distribution. The authors base their intuition on the fact that these distributions

better describe impulsive processes than the Gaussian distribution. The Generalised
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Cauchy Distribution for a random variable z is defined as,

f(z) = p
Γ(2/p)

2(Γ(1/p))2
δ(δp + |z|p)−2/p,

where parameter δ controls the scale while p controls the tail. It is known to exhibit

heavier tails than the Laplace distribution for p = 1 in which case it is called the

Meridian distribution. Based on this the authors design the following prior,

p(x|δ) = δm

2m

m∏
i=1

1

(δ + |xi|)2
.

The MAP estimate when using the prior above becomes,

min
x

1

2
‖y −Hx‖22 + 2σ2‖x‖L,L1,δ

where the norm,

‖u‖L,Lp,δ
=

m∑
i=1

log
(
1 + δ−p|ui|p

)
δ > 0.

The authors make their argument based on the fact that the L,Lp,δ quasi-norm can

be used as an approximation to the �0 norm. One important feature which they

quote is that this norm penalises a bit more mildly large deviations; hence being a

bit more forgiving for impulsive processes.

The research team of Ji et al. in [84] have explicitly for the first time introduced

to the community the definition of Bayesian Compressive Sensing which is the

application of the model in [89] for the purpose of sparse signal recovery. A set of

further minor modifications are also presented and the interested reader is redirected

to the relevant bibliography. A year later members of the same team have went a

step further to introduce the term Multitask Compressive Sensing in their paper

[49]. In this work the authors consider the following problem,

yi = Φixi + ni i ∈ [1, L] Φ ∈ R
ni×m

where it is assumed that there exist L many sparse recovery problems, namely

tasks and the tasks between them are not independent. Task i produces ni many

measurements and it is possible that each task contributes with a different number

of measurements. The authors propose a hierarchical model to address this issue.

This summary is restricted to the graphical model due to the length of the analysis.

This demonstrates the other aspect of graphical models, the ease at which complex

ideas can be communicated.

Using only intuition from the graphical model, there is enough flexibility to
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a, b, c, d

α σ−2

x1 xi xL

y1,j j = [1, n1] · · · yi,j j = [1, ni] · · · yL,j j = [1, nL]

Figure 4.7: Bayesian Network for Multi-task Compressive Sensing.

model the individual tasks but also to capture the correlations between them. This

is achieved by the shared hyper-prior over the sparse vectors from all the tasks xi.

All the individual tasks contribute in inferring the hyper-prior vector α which is

then used to recover the individual xi.

A very inspired work by [94] showcases a different approach into constructing a

prior. In short the authors propose the following hyper-prior,

p(α|β) ∝ e−c·Trace(σ2HΣxHT )

where Σx is the inferred covariance matrix of the posterior distribution. Without

getting into much detail, the value in the exponent measures the degrees of freedom

of the model. This is chosen as a regularising value of the sparsity along with control

parameter c.

4.3 Conclusion

In this chapter the connection between sparse signal representations and Bayesian

models was presented. In the beginning of this chapter we saw how the same prob-

lems can be formulated in the world of probabilities and how intuition is added in

the recipe with the use of meaningful prior distributions. Most of the sparse recovery

problems admit a probabilistic formulation. This formulation can then be extended

and communicated in a very efficient manner by the use of Graphical models. The

traditional recovery problems such as �1 optimisation can be recast, reformulated

and improved by the use of a proper model that better fits the problem at hand.

76



Chapter 4

The following list underscores some of the differences and similarities between

more traditional sparse recovery methods and sparse Bayesian models.

The first thing to notice is that instead of point estimates of the support

x, the Bayesian approach produces estimates of complete distributions. By

computing the posterior p(x|y,α, σ2) statistical information on each of the

components xi is acquired. This is an appealing feature which will concern us

in later chapters.

Another appealing aspect which has been discussed, is the easiness at which

these Bayesian models produce highly sparse solutions without any external

tuning and sometimes they can be described as automatic. The hierarchical

models that have been studied work in such a way so that they compute all

the necessary parameters on their own. Recall that in deterministic methods

which almost always require some sort of input such as the sparsity level or a

regularisation parameter. Of course the performance of this Bayesian model

depends on the model mismatch, i.e., whether the signal originated from the

exact hierarchical model.

One attribute against Bayesian methods is the difficulty to produce any prov-

able performance guarantees like the ones for deterministic methods. Those

theorems are probably the most valuable tool engineers have at their disposal

to decide whether an algorithm is going to produce accurate results given a

specific problem and noise levels. Unfortunately we do not have such luxuries

with Bayesian methods due to the fact that most of them result in non-convex

optimisation problems. In Chapter 5 to follow it will be demonstrated that

a different analysis can lead to an alternative way of understanding how the

specific hierarchical Bayesian model promotes sparsity. Via this analysis it is

also shown that provable performance guarantees are indeed possible that are

global. This bridges the gap between Bayesian methods and greedy pursuits

for sparse signal recovery and is one of the contribution of this thesis.
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Bayesian Inference Algorithms for

Sparse Recovery

Having discussed sparse signals from a Bayesian perspective let us point out

that no algorithm has been discussed so far to actually perform Bayesian Inference

on these sparse models. Inference is the mechanism of applying Bayes’ theorem

on the probabilistic model to compute the posterior probability of the unknown

parameters in the model. Here a set of algorithms will be discussed that are able

to carry out this task when a sparse Bayesian model is considered. The reasons

why such an algorithm is needed is mainly attributed to the fact that the posterior

usually does not admit a closed-form solution. The algorithm then implements a

process of approximating the posterior. The algorithms come in two flavours; the

slow kind which exhibit great computational and memory requirements and the fast

kind which are the type used by the majority due to their efficiency. The reasons

for this are presented below.

Researchers are also faced with a new dilemma. While traditional sparse re-

covery methods are amenable to rigorous mathematical analysis and performance

guarantees, Bayesian inference algorithms have not been analysed to that degree.

This is on one hand justifiable because of the context in which these algorithms

have been developed in the first place (machine learning problems like regression

and classification) but on the other hand their increased popularity for sparse signal

recovery has left this gap related to their respective performance guarantees. There

have been numerous attempts to “marry” the two, i.e., to put sparse Bayesian learn-

ing in a more theoretical foundation and point out how sparse recovery relates to

the basic principles like �0 minimisation and basis pursuit.

More importantly there is a pronounced lack of such a theoretical foundation for

the fast kind of Bayesian inference algorithms. In the later sections of this chapter

a fine analysis is presented which points out a very fine connection between the

fast inference algorithms and the greedy pursuit sparse recovery algorithms. The
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benefits of such a connection are two-fold. Firstly it becomes possible to derive

global performance guarantees based on metrics such as the mutual coherence of the

matrix and the Restricted Isometry Property (Chapter 2). This is an important step

since comparison with other recovery algorithms becomes possible something which

was not possible before these innovations. Secondly, this uncovered relationship is

found to extend previous results of other research teams that only provided local

convergence guarantees. Lastly, great improvements are found to be possible by

extending the Bayesian inference algorithms with concepts from traditional greedy

pursuits. This innovation has a major impact on the range of applicable scenarios

for Bayesian sparse recovery since fast inference algorithms with superior recovery

performance can be constructed.

5.1 Type-II Maximum Likelihood

Let us start off this discussion with Equation (4.5) [89]

p(x,α, σ2|y) = p(x|y,α, σ2)p(α, σ2|y). (5.1)

Looking at the above formula, the following integral is found to be impossible to

compute analytically,

p(y) =

∫
p(y|x,α, σ2)p(x,α, σ2)dxdαdσ2.

Equation (5.1) is derived based on basic probability calculus. It is quickly recognised

that this is the posterior over the parameters and is quite convenient since it is

tractable and p(x|y,α, σ2) can be readily given in analytical form as a multivariate

Gaussian distribution given by p(x|y,α, σ2) = N (μ,Σ),

μ = σ−2ΣHTy

Σ =
(
σ−2HTH +A

)−1
. (5.2)

Focusing on the hyper-parameter posterior p(α, σ2|y); a suitable approximation

is needed. Even though this still is an intractable integral, it is much easier to

approximate. Taking the noise variance to be known, the easiest way out for an

approximation is to adopt

p(α|y) ≈ δ(α∗),

i.e., that the posterior is approximated with a delta distribution placed at the modes
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(most probable values) of the actual posterior. Now, rewriting the posterior,

p(α|y) ∝ p(y|α)p(α),

one can see that under the uninformative prior assumption (see Chapter 4 and

Figure 4.5) for p(α) that the most probable values α∗ can be found by optimising

the likelihood p(y|α). This approximation might seem overly too optimistic - one

distribution collapsing to a delta distribution - but it proves to be highly practical

and effective.

The procedure of optimising the quantity p(y|α) is coined in the bibliography as

Evidence Approximation, Type-II Maximum Likelihood or the Evidence Procedure.

The following marginal log-likelihood is maximised with respect to α,

L(α) = log p(y|α) = log

∫
p(y|x)p(x|α)dx = logN (0,C)

= −1

2

[
n log(2π) + log |C|+ yTC−1y

]
(5.3)

where C = σ2I + HA−1HT . By inspection it is evident that the above form is

non-convex and optimisation cannot be performed straightforwardly. Optimising

this cost function is the starting point for all inference algorithms to follow and

subsequent analysis.

By using the determinant identity [75],

|σ2I +HA−1HT | = |A|−1|σ2I||A+ σ−2HTH|
log |C| = − log |Σ|+ n log σ2 − log |A|

Using the Woodbury inversion identity [75],

C−1 = σ−2I − σ−2HΣHTσ−2

yTC−1y = σ−2yT (y −Hμ)

= σ−2‖y −Hμ‖2 + σ−2yTHμ− σ−2μTHTHμ

= σ−2‖y −Hμ‖2 + μTΣ−1μ− σ−2μTHTHμ

= σ−2‖y −Hμ‖2 + μTAμ.

Some insight is gained by observing that the result of the above relates to a log-

likelihood function computed at the mean of the posterior of Equation (5.2). Each

component contributes as much as the prior α will allow via the diagonal matrix A.

Combining the two,

L(α) = −1

2

[
n log σ2 − log |Σ| − log |A|+ σ−2‖y −Hμ‖2 + μTAμ

]
(5.4)
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The expression above resembles the log-likelihood function computed at the mean

of the posterior of the parameters while being regularised by the corresponding

variances on the main diagonal of matrix A. Each component is found to contribute

only as much as its variance will allow.

5.1.1 Direct Optimisation

Quoting [89], Equation (5.4) can be directly optimised with respect to logαi ,

∂L
∂ logαi

=
1

2

[
1− αi(μ

2
i + Σii)

]
= 0 (5.5)

The optimal value for the hyper-parameters is acquired,

α∗
i =

1

μ2
i + Σii

. (5.6)

The noise variance also according [89] is computed in a similar manner,

σ2
∗ =

‖y −Hx‖2
n−∑

i(1− αiΣii)

but in this text it will be assumed to be known to keep the discussion clutter-free.

5.1.2 Expectation-Maximisation

The Expectation-Maximisation (EM) is a general technique for computing max-

imum likelihood solutions for models that have what is known as latent variables.

In this case the model parameters x are considered to be the latent variables. With-

out plunging into much details about the derivation of the algorithm the results are

collocated for our model of interest.

The algorithm iterates between two steps, namely the Expectation step and the

Maximisation stem. At the E-step it is assumed that the hyper-parameters have

been estimated somehow and are fixed and the posterior over the model parameters

is computed by Equation (5.2).

For the M-step the following log-likelihood is optimised with respect to αi,

Ex|y,α,σ2 [log p(x|α)p(α)]

which give the update rule for the hyper-parameters

α∗
i =

1

〈x2
i 〉

=
1

μ2
i + Σii
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where 〈x2
i 〉 = Ex|y,ασ2 [x2

i ] = μ2
i + Σii. This is a direct result for the Gaussian

distribution.

The hyper-parameter update rules are the same for when using direct optimisa-

tion of the likelihood function above. The noise variance expression ends up being

slightly different and the interested reader is redirected to [89].

5.1.3 Computational Complexity

The iterative algorithm then proceeds by repeated application of Equations (5.2)

and the resulting optimal hyper-parameter expressions. Both of these methods even

though highly practical and straightforward have high computational requirements

in the order of O(m3) which is the cost for computing the inverse of the variance

matrix of the posterior of the parameters. This is indeed the case - at least for the

initial iterations of the algorithm - since a sparse parameter vector is expected. It

is expected that most of the hyper-parameter values will converge to near-infinity

values (i.e. near-zero variance for the corresponding model parameters) thus a mech-

anism can be constructed to exclude these parameters from the model. Basically if

α∗
i is found to be greater than some high threshold τ or close to the machine pre-

cision then the corresponding columns of Σ can be excluded from its re-estimation

thus reducing the cost for the inverse. Even then, the cost would be prohibitive

for massive datasets until the algorithm had begun to converge. The authors of

[90] have proposed a more elegant way of keeping complexity under control without

sacrificing inference performance. This is discussed in the next section.

5.2 Fast Marginal Likelihood Maximisation

In [37, 90] a different fast approach is introduced and analysed which suggests a

highly efficient algorithm for the iterative maximisation of Equation (5.3). The key

difference with the previously proposed algorithms is that the special form of the

cost function (5.3) allows for a convenient re-writing

L(α) = L(α−i) + �(αi) (5.7)

where subscript −i means the exclusion of the corresponding hyper-parameter from

the calculations. The second term on the left is the remainder and bears depen-

dence only on the single hyper-parameter. By differentiating with respect to αi and

equating to zero the analytical expressions for a single αi are found.

The authors apply some basic linear algebra to separate the cost function in two

distinct parts to achieve separation. The relevant matrix is basically rewritten as a
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sum of rank-1 updates,

C =

(
σ2In +

∑
j �=i

α−1
j hjh

T
j

)
+ α−1

i hih
T
i

= C−i + α−1
i hih

T
i

where the subscripted quantities indicate computation with removal of the cor-

responding column. Using the determinant identity and the Woodbury inversion

lemma,

|C| = |C−i||1 + α−1
i hT

i C
−1
−i hi|

C−1 = C−1
−i −

C−1
−i hih

T
i C

−1
−i

αi + hT
i C

−1
−i hi

.

Combining all of the above, Equation (5.3) can be rewritten,

L(α) =
1

2

[
n log(2π) + log |C−i|+ yTC−1

−i y

− log(αi) + log(αi + hT
i C

−1
−i hi)−

(
hT

i C
−1
−i y

)2
αi + hT

i C
−1
−i hi

]

= L(α−i) +
1

2

[
log(αi)− log(αi + si) +

q2i
αi + si

]
= L(α−i) + �(αi).

The following very useful quantities have been defined

si = hT
i C

−1
−i hi qi = hT

i C
−1
−i y. (5.8)

The next step is to directly optimise function L(α) which is now a lot easier due to

this explicit separation. Optimisation of �(αi) with respect to αi gives two distinct

and mutually exclusive stationary points,

αi =
s2i

q2i − si
, for q2i > si (5.9)

αi = +∞, for q2i ≤ si. (5.10)

Equations (5.10), (5.9) suggest an analytic pruning rule, i.e., the means to ex-

plicitly exclude a parameter from the model based on a criterion on qi and si. This

is something which the EM algorithm or the direct Type-II ML do not provide. This

has a tremendous effect on the complexity since for a sparse support the computa-

tional effort will decrease as most of the αi will satisfy (5.10). When αi = +∞ then
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Figure 5.1: (a) The log-likelihood function �(αi) for the case when the corresponding
parameter is found to be irrelevant to the dataset since the variance tends to zero (αi →
+∞). (b) The opposite case for when the log-likelihood exhibits a finite maximum and the
corresponding parameter has to be kept.

this automatically means that the most probable value for the corresponding xi = 0.

A graphical example of the pruning rule is shown in Figure 5.1. On the left-hand

side the case where the value of αi diverges can be seen, hence the maximum value is

+∞. On the right-hand side the opposite case is shown where the maximum value

attained is positive and finite.

This finding suggests an iterative algorithm which takes advantage of this ana-

lytic pruning. Of course this involves a “greedy” step since there has to be a schedule

on which basis functions are removed, added or altered. The steps of the iterative

algorithm developed in [90] are given in Algorithm 4.

Implementation Aspects

The algorithm outlined in Algorithm 4 iterates through all the columns of H

and applies the pruning rule

θi = q2i − si. (5.11)

At the same time it calculates the increase in the likelihood for the specific change

suggested by the value of θi. The change which causes the likelihood to increase

the most is applied and the parameters of the posterior p(x|y,α, σ2) are updated.

This alternating process repeats until the change in the likelihood L(α) falls below

some threshold. This procedure indicates a greedy approach in which the change to

achieve the greater increase to the log-likelihood will be applied.

The authors also propose an efficient way to compute the necessary quantities

in Equation (5.8). They propose that complete records are kept in vectors ŝ and q̂.

In the case that 0 < αi < +∞ then the following records are kept

ŝi = hT
i C

−1hi q̂i = hT
i C

−1y
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Algorithm 4 Fast Marginal Likelihood Maximisation
Input : H , y
Initialise :

1. Initialise σ2 to some appropriate value.

2. T = { index i for which αi is minimum }.
3. Compute Σ and μ for T .

Iteration :

1. For each i ∈ [1,m]:

Compute θi = q2i − si.
Calculate the increase Δ�i(αi) for all the possible changes in T :

– i ∈ T but θi > 0 and i should remain in T .

– i /∈ T but θi > 0 and i should be added to T .

– i ∈ T but θi ≤ 0 and i should be removed from T .

2. Select index i for which Δ�i is maximised and apply the corresponding change
(addition, re-estimation, removal).

3. Update μ and Σ for the new T and αi.

4. If the change in L(α) is below some threshold then quit.

Output :

1. Estimated support set T and sparse support x = μ with covariance matrix
Σ.

and the aforementioned quantities are calculated as

si =
αiŝi

αi − ŝi
qi =

αiq̂i
αi − q̂i

.

In the case where αi → +∞, then the Woodbury inversion lemma is used

ŝi = σ−2hT
i hi − σ−4hT

i HIΣIH
T
I hm (5.12)

q̂i = σ−2hT
i y − σ−4hT

i HIΣIH
T
I y. (5.13)

Subset I = {i : 0 < αi < +∞} denotes those indices for which the corresponding

hyper-parameters escape the pruning rule, i.e., are kept in the model. The sub-

scripted quantities indicate calculation based only on the indices in L; which is a

sub-matrix HI and the covariance ΣI =
(
σ−2HT

I HI +AI
)−1

.

Notice the immense decrease in computational requirements since from O(m3)

we fall down to O(k3) where k � m is the level of sparsity in the signal. The

quantities in Equation (5.13) are far easier to compute than the inverse of the full

covariance matrix.

In the original work [90] the authors give update formulae to update the param-
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eters Σ, μ and the increase in L for each type of change in the support set T . This

way complexity is further kept to reasonable levels by avoiding complete matrix

inversions at each iteration. The update formulae comes after some straightforward

but tedious mathematical manipulations so they are not given here. A complete list

can be found in [90].

Comparing Basis Pursuit De-noising and Fast Marginal Likelihood Maximisation

one notices that the latter is almost completely automatic. There is no need to

priorly assume a specific sparsity level k for the measured signal. The analytic

pruning rule resulting from the evidence approximation manages to infer the sparsity

level from the data itself without the need for an external regularising parameter.

The original algorithms presented in [89] empirically have negligible differences

when compared to FMLM. Of course the difference in computational requirements

is huge, especially for large datasets. The trade-off this time comes in the form of

greediness. The FMLM as presented in Algorithm 4 is a greedy algorithm, unlike

its original computationally hungry cousins. At each time instant it makes a greedy

choice based on the greatest increase in the likelihood function. In later chapters it

is demonstrated how this leaves a lot of room for improvement.

5.3 Evaluation of Sparse Bayesian Learning

With each algorithm must come a set of reassuring statements on how the algo-

rithm performs. Such statements were made in the form of those excellent theorems

regarding sparse signal recovery with convex relaxation and greedy pursuits. These

theorems usually come in two flavours; the first one having to do with the existence

and uniqueness of a solution (this part usually is independent of the process, i.e.

the algorithm) and the second one having to do about how close a given algorithm

can get to the best solution.

A huge amount of effort has been made by researchers towards proving such

conditions about the models that have been discussed above. We stand mostly

on the work of David. P. Wipf and Bashkar D. Rao whose research team has

made many contributions into building an framework about how sparse recovery

is exactly related with the hierarchical models for promoting sparsity. Their work

has helped researchers understand a great deal about the relationship between �0

minimisation, Basis Pursuit and the regularising effect of a great class of regularising

prior distributions.
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5.3.1 Sparse Bayesian Learning and �0-norm minimisation

The first attempt to relate the two was in [105]. Among other results the authors

in [107, 106] provide a very useful theorem regarding the Type-II ML cost function

- or Sparse Bayesian Learning (SBL) - in Equation (5.3) and �0 norm minimisation.

Theorem 8 ([106]). Let X0 denote the set of vectors that globally minimise the well

known problem,

min
x

‖x‖0 so that y = Hx.

Also let,

X (σ2) =

{
x∗ : x∗ = (HTH + σ2A)−1HTy, α∗ = argmin

α
L(α)

}
.

In the limit of σ2 → 0, if x ∈ X (σ2) then x ∈ X0.

The theorem puts forward a clear declaration that optimising the SBL cost func-

tion is in essence an alternative path towards approximating �0 norm minimisation.

The result is pretty much self explanatory; if a solution minimises the SBL cost func-

tion in the noiseless setting then that solution is also one of the optimal solutions

to the �0 problem.

In the noisy case the authors provide yet another theorem regarding local minima

(i.e. suboptimal solutions).

Theorem 9 ([106]). Every local minimum of L is achieved at a sparse solution,

regardless of the noise level.

Theorem 9 basically states that at all cases the SBL will return a sparse vector

no matter what. This proves the highly practical features of this model. In line

with Theorem 8 it seems that optimising L is a very good choice for performing

�0 optimisation since globally optimal solutions can be achieved in the absence of

noise, whereas in any other case one would recover a sparse vector.

5.3.2 Sparse Bayesian Learning and Convex Relaxation

The next question the authors have provided the answer to is whether the SBL

cost function is actually a better choice than traditional convex relaxation with �p

regularisation. In [103, 108]the authors have shown the exact relationship between

these two strategies and have shown exactly why it is better to choose SBL.

Theorem 10 ([103, 108]). Consider the prior p(xi) =
∫
N (0, α−1

i )p(αi)dαi ∝ 1/|xi|
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and the following cost function

K(α) = yTC−1y +
m∑
i=1

logαi

with α ≥ 0 and C = σ2I +HA−1HT . Then α is the global minimum of K iff

x = A−1HT
(
σ2I +HA−1HT

)−1
y

A = diag (α)

is a global minimum of

M(x) = −2 log p(y|x)p(x) = ‖y −Hx‖22 + σ2

m∑
i=1

|xi|.

This correspondence extends to local minima as well.

It is useful to note that the following holds true,

p(xi) =

∫
p(xi|αi)p(αi)dαi

=
bi

aiΓ(ai + 1/2)√
2πΓ(ai)

(bi + x2
i/2)−(ai+1/2) ∝ 1

|xi|

where in the last step it was assumed that ai = bi = 0.

By comparing Equation (5.3) with the results from Theorem 10 we conclude that

MAP estimation of x (cost function M in the theorem) is actually a limiting case

of the Type-II method with the log |C| term missing from the former. So one can

adopt a similar optimisation form to Type-II ML over the hyper-parameter space

and the corresponding computed value of the posterior mean x would be the same

as performing MAP over the parameter space. Basically this shows that Type-II

methods are more general.

Theorem 11 ([103, 108]). Consider cost function

M(x) = ‖y −Hx‖22 + σ2g(x)

with penalty function

g(x) = min
α≥0

xTAx+ log |C|. (5.14)

Then

x = A−1HT
(
σ2I +HA−1HT

)−1
y

A = diag (α)
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is a global minimum of M(x) iff α is a global minimum of L(α) in Equation (5.3).

This correspondence extends to local minima as well.

Therefore the opposite has been proven as well, that Type-II methods can be

seen as problems similar to finding the MAP estimate. The theorem basically shows

a way of obtaining the Type-II posterior mode directly in the parameter space.

5.3.3 The SBL Cost Function Local Minima

The authors give rigorous proof that the SBL cost function is superior over Type-

I methods in that they exhibit far less local minima. In [82] certain conditions are

given regarding the worst-case scenario for a sparse signal that can be given as input

to SBL and they show how it compares with other methods. Later in [109, 108] the

authors investigated the effect of the prior distributions on the local minima. A

toy problem is presented which is derived from the bibliography to showcase one

important aspect of SBL.

Consider the case where H10×11 such that the null-space of this matrix is con-

sisted of one vector. Any solution of y = Hx can be written as x = x0+av where v

belongs in the null-space of H , since H(x0 + av) = y with x0 being the maximally

sparse solution. Using this small experiment one can plot any function over any x

with respect to the real multiplier a, i.e. there is only one global minimiser which is

found when a = 0. This can be used to compare an �p regularisation term with the

Type-II penalty in Equation (5.14).

In Figure 5.2 such a comparison is made between the traditional prior used in

SBL and �p for p = 0.01. It is easy enough to see that there are indeed 11 possible

local minima for the �p while those have been “smoothed-out” as the authors say in

the Type-II. Based on this intuition the Type-II methods process less local minima

hence there as little chance that the algorithm will provide one as a solution.

5.4 Improved Fast Marginal Likelihood Maximi-

sation

In the previous section a series of theoretical results on the relationship of the

Type-II cost function have been presented. Those results have solidified the fact

that indeed Sparse Bayesian Learning provides a Bayesian short-cut towards �0

optimisation and a good one for that matter. The authors have even provided the

necessary conditions under which the aforementioned cost function exhibits less local

minima and the worst-case scenarios, i.e., the cases at which SBL is likely to perform

badly.
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Figure 5.2: Comparison of local minima between Type-II ML prior and �p regularisation
with p = 0.01.

In this section focus is turned on the set of greedy techniques for performing in-

ference, namely the Fast Marginal Likelihood Maximisation (FMLM) [90] algorithm.

The reader should take a quick glance at Algorithm 4 to notice that the FMLM has

a greedy behaviour. The criterion on which it bases its decisions is the value of the

log-likelihood. This resembles other greedy pursuits albeit using a criterion usually

related to the residual error.

Given the fact that greedy pursuits exhibit reduced computational and memory

requirements than other sparse recovery principles an attempt has been put forward

into combining the two. One of the major contributions of this thesis is the deriva-

tion of the direct relationship of FMLM and other greedy algorithms such as the

Orthogonal Matching Pursuit and the Subspace Pursuit that have been introduced

in the initial chapters. The result is a set of superior sparse Bayesian inference

algorithms that exhibit far better qualities.

Another important contribution of this thesis is the derivation of provable per-

formance guarantees for FMLM. These performance guarantees have been presented

for the first time to the author’s knowledge in [56, 53]. These include the sufficient

conditions for exact sparse signal recovery based on the mutual coherence and the

Restricted Isometry Property.

5.4.1 A Properly Scaled FMLM algorithm

A usual practice towards drawing conclusions regarding performance and algo-

rithm behaviour is to focus on how FMLM behaves in the limit of zero noise variance,

σ2 → 0. This was also the case with [107, 109]. The results are then extrapolated

to the noisy-case. Usually under the zero noise assumption the probabilistic models

collapse into deterministic ones. This makes it difficult to perform analysis for hi-

91



Chapter 5

erarchical models in which proper probability distributions play a significant role in

inference.

Theorem 12 (Karseras, Dai). For any given hyper-parameter vector α, define the

set

I � {1 ≤ i ≤ m : 0 < αi < ∞} .

Then

lim
σ2→0

σ2L =
∥∥∥y −HIH

†
Iy
∥∥∥2

2
,

where HI is the sub-matrix of H formed by the columns indexed by I, and H†
I

denotes the pseudo-inverse of HI. In particular, if y ∈ span (HI), then

lim
σ2→0

σ2L = 0.

If |I| < n, then the unscaled cost function behaves as

lim
σ2→0

L = −∞.

Proof. Consider any given hyper-parameter vector α. Assume the set of indices I =

{1 ≤ i ≤ m : 0 < αi < ∞} for which the corresponding entries of α have positive

and finite values. Also let D = [1,m]− I denote the remaining indices. For vector

α matrix C can be written as,

C = σ2I +HIA
−1
I HT

I +HDA
−1
D HT

D

= σ2I +HIA
−1
I HT

I

since αi = +∞, ∀ i ∈ D. Subscripts I,D denote the sub-matrices formed by the

corresponding subsets.

In order to derive the properly scaled version of the cost function, the determinant

and the inverse of matrix C are rewritten as follows

log |C| = −n log
∣∣σ−2I

∣∣+ log
∣∣I + σ−2HIA

−1
I HT

I
∣∣

C−1 = σ−2I − σ−2HI
(
σ2AI −HT

I HI
)−1

HT
I

where the matrix inversion lemma [44] was used in the derivation of the second

equation. Now the cost function becomes

L(α) = −n log σ−2 + log
∣∣I + σ−2hIA

−1
I HT

I
∣∣+

σ−2yT
(
y −HI

(
σ2AI +HT

I HI
)−1

HT
I y

)
= o(σ−2) + σ−2yT

(
y −HI

(
σ2AI +HT

I HI
)−1

HT
I y

)
.
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In the case where noise variance approaches zero,

lim
σ2→0

σ2L(α) = yT
(
y −HI

(
HT

I HI
)−1

HT
I y

)
= yT

(
y −HIH

†
Iy
)

(5.15)

where in the last step the expression for the pseudo-inverse of a tall matrix is used.

Now let yp = HIH
†
Iy denote the projection of y on the span of HI and yr = y−yp

the corresponding residual. It holds that

〈y,yr〉 = 〈yp + yr,yr〉 = ‖yr‖22,

since,

〈yp,yr〉 =
(
HIH

†
Iy
)T (

y −HIH
†
Iy
)

=
(
H†

Iy
)T (

HT
I y −HT

I HI
(
HT

I HI
)−1

HT
I y

)
= 0.

From the above, Equation (5.15) becomes

lim
σ2→0

σ2L(α) = ‖yr‖22.

Let K be the correct support set for vector x. Further assume that y ∈
span(HI), then naturally K ⊆ I. It then follows that

yr = y −HIH
†
Iy

= y −HKH
†
Ky = 0

and subsequently

lim
σ2→0

σ2L(α) = 0.

which completes the first part of the proof.

For the second part, consider the unscaled cost function in the noiseless setting.

It suffices to see that the determinant term becomes

|C| =
∣∣HIA

−1
I HT

I
∣∣ = 0

since rank(HIA
−1
I HT

I ) < n and C ∈ R
n×n. It then follows that

lim
σ2→0

L(α) = −∞

which completes the proof for Theorem 12.
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Theorem 12 suggests that in the case where the noise variance approaches zero

the problem becomes equivalent to recovering a subset I with a minimal number

of elements. This would correspond to the optimal solution, minimising the scaled

cost function. It is actually the same principle governing many sparse recovery

algorithms including the OMP [91] and the SP [26]. In the case of zero noise variance

minimisation of the unscaled cost function can be achieved by any subset I for which

the corresponding hyper-parameters take positive and finite values. The scenarios

analysed in [107] are special cases of Theorem 12.

The scaling affects certain parts of the fast inference algorithm to optimise the

cost function. The cost function has a unique maximum with respect to a single

hyper-parameter and two cases exist

αi =

⎧⎨
⎩

s2i
θi

if θi > 0,

+∞ if θi ≤ 0,

where θi = q2i − si while si = hT
i C

−1
−i hi and qi = hT

i C
−1
−i y.

Interest is turned towards the case where θi > 0, i.e. basis function i is selected.

Let us first define I to be the set of indices i for which 0 < αi < +∞. Also let

D = I − i be the set formed by the removal of element i from index set I. Then

the following reformed quantities are derived,

σ−2Σ =
(
σ2AI +HT

I HI
)−1

(5.16)

μ = σ−2ΣHT
I y,

σ2C−1
−i = I −HD(σ

2AD +HT
DHD)H

T
D , (5.17)

s̄i = σ2si = hT
i

(
σ2C−1

−i

)
hi

q̄i = σ2qi = hT
i

(
σ2C−1

−i

)
y.

Subsequently the expression for the optimal αi given all other αj, j �= i, becomes

αi =
σ4s2i

σ4q2i − σ4si
=

s̄2i
θi

where now θi = q̄2i − σ2s̄i. When σ2 → 0 this expression becomes

αi =

(
hT

i (hi −HDH
†
Dhi)

)2

(
hT

i (y −HDH
†
Dy)

)2

+ σ2
(
hT

i (hi −HDH
†
Dhi)

)
=

(hT
i hi,r)

2

(hT
i yi,r)2

=
s̄2i
q̄2i

(5.18)

where hi,r denotes the residual vector from the projection of hi on the span of
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HD. The same holds for the residual yi,r. In the derivation of Equation (5.18) the

following fact was also used

lim
σ2→0

σ2C−1
−i = I −HDH

†
D.

The importance of deriving these expressions can be shown with a simple exam-

ple. If σ2 = 0 is substituted in Equation (5.2) to compute the posterior mean then

it is easily verified that performance degrades due to the inversion of a badly condi-

tioned covariance matrix. There seems to be a gap one has to jump when altering

between the noisy and the noiseless setting. However, adopting the properly scaled

reformed quantities it is possible to draw on further results.

Performance Guarantees

By studying the inference algorithm from a non-Bayesian standpoint we notice

that basically there is a measure by which all the possible atoms of the dictionary

are judged to participate in the model. In the original rendition of the FMLM in

[90] the authors provide several choices. One of them being at random, i.e, choose a

basis function i and apply the corresponding change which can be either an addition,

a removal or a re-estimation of the affected quantities including the posterior mean

and variance. The most popular choice that the authors propose is to greedily

choose and apply that modification which causes the cost function L(α) to increase

the most. Thus the criterion becomes the difference ΔLi(αi).

On the other hand, algorithms such as the OMP and SP make decisions based

on different criteria. For example the OMP makes greedy choices based on the

correlation values while the SP employs additional steps which effectively allow for

a more relaxed selection regime. A very good question arises; whether by adopting

a different selection strategy in FMLM it is possible to achieve better performance

guarantees for sparse reconstruction and if there is any room for improvement. The

following theorem sheds some light on this matter.

Theorem 13 (Karseras, Dai). Assume the noiseless setting y = Hx where H ∈
R

n×m and hT
i hi = 1 for all 1 ≤ i ≤ m. Further assume that h = max

∣∣hT
i hj

∣∣ for
1 ≤ i �= j ≤ m. A variant of the FMLM algorithm based on one of the following

selection criteria:

1. the maximum value of σ2ΔLi

2. the maximum value of xi

3. the minimum value of αi.
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is equivalent to FMLM and recovers all k-sparse signals exactly given the sufficient

condition,

h <
0.375

k
.

A variant of the FMLM algorithm based on the maximum value of θi = q̄i,

recovers all k-sparse signals exactly given the sufficient condition

h <
0.5

k
.

Proof. The mutual coherence h for a matrix H ∈ R
n×m is defined as

h = max
1≤i �=j≤m

|hT
i hj |

assuming that hT
i hi = 1, ∀i ∈ [1,m].

Assume that the selection criterion for the basis vectors is the value of the cor-

responding hyper-parameter as give by Equation (5.18),

αi =
s̄2i
q̄2i

=
(hT

i hi,r)
2

(hT
i yi,r)2

. (5.19)

Let I denote the true support set for x with I = k and D = [1,m] − I its

complement. Further consider j∗ to be the index for the minimum α in the correct

support set,

j∗ = argmin
j

αj so that j∗ ∈ I.

Towards proving the sufficient condition for αi the following requirement must

hold,

|αj∗ | < |αi∈D|. (5.20)

In order to proceed the left-hand side must be bounded from above while the right-

hand side must be bounded from below. The numerator of Equation (5.19) is

bounded,

1− kh ≤ |hT
i hi,r| ≤ 1. (5.21)

The denominator of the left-hand side of Inequality (5.20) can be bounded as

follows

|hT
j∗y| ≥ |xj∗ | −

∣∣∣∣∣ ∑
i �=j∗,i∈I

xih
T
i hj∗

∣∣∣∣∣ ≥ |xj∗ | − h
∑

i �=j∗,i∈I
|xi|

≥ |xj∗ | − h
√
k‖x‖2 ≥

(
1√
k
− h

√
k

)
‖x‖2. (5.22)

where the fact that ‖x‖∞ ≥ ‖x‖2√
k

and ‖x‖1 ≤
√
k‖x‖2 were used.
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Moving to the right-hand side of Inequality (5.20), for any i ∈ D the following

holds

|hT
i y| ≤

∣∣∣∣∣∑
j∈I

xjh
T
i hj

∣∣∣∣∣ ≤ ∑
j∈I

|xj||hT
i hj|,

=
∑
j∈I

|xj|h ≤ h
√
k‖x‖2. (5.23)

By applying both the bounds from (5.22), (5.23) and (5.21)

αi∈D ≥ 1− kh

h
√
k‖x‖2

αj∗ ≤
1(

1√
k
− h

√
k
)
‖x‖2

.

In order to derive the sufficient condition for exact recovery of every k-sparse

signal the above bounds are substituted in the requirement posed by Inequality

(5.20) and this gives

1− kh

h
√
k‖x‖2

>
1(

1√
k
− h

√
k
)
‖x‖2

k2h2 − 3kh+ 1 < 0

By solving the above inequality one finally arrives at

h <
3−

√
5

2k
≈ 0.375

k
. (5.24)

This concludes the proof for the sufficient condition for when the minimum value

of αi is used to select the basis functions. Theorem 13 suggests that when the

maximum value of xi or the maximum value of σ2ΔLi are used as the selection rule

the sufficient condition for the mutual coherence of H is the same. To prove this

we refer to [90] for the formula for a single component xi,

xi =
hT

i C
−1
−i y

αi + hT
i C

−1
−i hi

=
hT

i

(
σ2C−1

−i

)
y

σ2αi + hT
i

(
σ2C−1

−i

)
hi

which in the limit of zero noise,

xi = lim
σ2→0

=
hT

i

(
σ2C−1

−i

)
y

σ2αi + hT
i

(
σ2C−1

−i

)
hi

=
q̄i
s̄2i
.
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Likewise by taking the limit for the expression of σ2ΔL one gets,

σ2ΔLi =
q̄i
s̄i
.

The expressions above for xi and σ2ΔLi are very similar to the expression for αi

given in Equation (5.19) and that the analysis for deriving the sufficient condition is

performed in the same way. Finally one arrives at the same condition given in (5.24)

for all three criteria. This concludes the proof for the first part of the theorem.

Moving to the second part of the theorem where the selection criterion is

θi = q̄i = hT
i yi,r.

By applying the same analysis as for αi which in fact is slightly easier due to the

absence of a numerator one arrives at the conclusion that

h <
0.5

k
.

This completes the proof for Theorem 13.

Theorem 13 gives some very useful insight. Actually now we become more certain

about how different basis selection criteria perform. If one replaces ΔLi as the

selection criterion in FMLM then different performance is attained. Basically the

same sufficient condition for exact recovery is required for when choosing any of the

three criteria involved in the theorem. More importantly this condition is relaxed

when choosing based on the value of θi. This is an important result since under

the Bayesian framework anything like this would be meaningless, yet from what we

know about greedy pursuits this is perfectly normal. Even then, it is still possible

to keep updating the mean and the variance of the posterior like in the un-altered

FMLM algorithm.

FMLM Variants

Here the theoretical results are combined to form a new flavour of the FMLM

algorithm which is another novelty presented in this thesis. Changing the selection

criterion should result in better performance. Below a set of algorithms is presented

as variants of the FMLM. In the last part of this section a far superior algorithm

is presented that not only does it use a different criterion but a renovated selection

strategy altogether based on the Subspace Pursuit. It is also shown how the new

algorithm achieves sparse recovery with far more relaxed conditions.
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Algorithm 5 FMLM-X
Input : H ,y, σ2

Initialise :
- T̂ = {index i ∈ [1,m] for maximum |hT

i y|}.
Iteration :
- Calculate values of αi and criterion X for i ∈ [1,m] \ T̂ .
- T ′ = T̂ ∪ { index i corresponding to the best value for X for i /∈ T̂ .
- Calculate values αi for i ∈ T ′.
- T̃ = {i ∈ T ′ : 0 < αi < +∞}.
- If |L̄T̃ − L̄T̂ | < tol. then compute σ−2Σ,μ for T̃ and quit. Otherwise set T̂ = T̃
and continue.
Output :
- Estimated support set T̃ and sparse signal x̃ with x̃T̃ = μ and x̃T̃ c = 0, where
T̃ c = {[1,m]− T̃ }.
- Estimated covariance matrix σ−2Σ.

Theorem 13 gives the incentive to redesign the inference algorithm. More specif-

ically the FMLM algorithm can be reassembled to admit OMP-like performance

guarantees based on different criteria as the first part of Theorem 13 suggests. Ac-

tually the inference algorithm greatly resembles the OMP; where the basis functions

are recovered sequentially with decreasing order of correlation with the residual sig-

nal. As the second part of Theorem 13 suggests, performance guarantees equivalent

to those of the OMP are achievable.

This relationship with the OMP becomes more evident by observing Equation

(5.18). In the noiseless case and if θi is used as the selection criterion in FMLM

instead of αi, then this variant is the same algorithm as the OMP.

In Algorithm 5 these variants are presented. Set X = {xi, θi, αi, σ
2ΔLi} denotes

the different choices in criteria so FMLM-X means the variant based on one of the

available criteria suggested by 13. Note that a tolerance threshold is used to assess

whether the cost function has stabilised in the 6th step of the algorithm.

5.4.2 Bayesian Subspace Pursuit

Having gained consciousness of how the inference algorithm behaves, it is now

possible to alter the selection strategy completely to improve the algorithm in terms

of the exact sparse signal recovery. Following this rationale, further progress can be

made by adopting more sophisticated selection rules.

Results from [26] are the motivation to extend the FMLM-X algorithm to a

less greedy optimisation procedure by borrowing ideas from the Subspace Pursuit

(SP) algorithm. The SP selects a subset of basis functions at each time instant

based on correlation maximisation, but adds a backtracking step so as to retain

only the sparse components with the largest magnitudes. The proposed algorithm,
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Algorithm 6 Bayesian Subspace Pursuit

Input : H ,y, σ2

Initialise :
- T̂ = {index i ∈ [1,m] for minimum αi =

1
|hT

i y|}.
Iteration :
- Store αmax = argmax

αi

|αi| for i ∈ T̂ .

- Calculate values αi and θi = q̄2i − s̄i for i ∈ [1,m].
- Calculate values lθi>0 = |{i ∈ [1,m] : θi > 0}| and lαi≤αmax = |{i ∈ [1,m] : |αi| ≤
αmax}|.
- If lθi>0 = 0, then k = lαi≤αmax + 1 else k = lθi>0 + lαi<αmax .

- T ′ = T̂ ∪ {indices corresponding to k smallest values of αi for i ∈ [1,m]}.
- Compute σ−2Σ and μ for T ′.
- T̃ = {indices corresponding to k largest non-zero values of μ for which 0 < αi <
+∞}.
- If |L̄T̃ − L̄T̂ | < tol. then quit. Otherwise set T̂ = T̃ and continue.
Output :
- Estimated support set T̃ and sparse signal x̃ with x̃T̃ = μ and x̃T̃ c = 0, where
T̃ c = {[1,m]− T̃ }.
- Estimated covariance matrix σ−2Σ.

termed here Bayesian Subspace Pursuit (BSP), shares the Bayesian background of

SBL while the basis selection part is improved by the SP core. The algorithm still

remains agnostic of the sparsity level and still provides useful statistical information

to use in the tracking steps. The redesigned algorithm is presented in Algorithm 6

while for comparison the reader can revert to Algorithm 2 in Chapter 2.

Performance Guarantees

Theorem 14 (Karseras, Dai). Given the measurements y = Hx where H ∈ R
n×m,

Algorithm 6 recovers all k-sparse signals x exactly if matrix H satisfies the Re-

stricted Isometry Property (RIP) with parameter

δ3k < 0.205.

Proof. To facilitate the analysis of the theorem we rely on the following widely used

lemmas. Only the main results are shown here whilst a complete proof can be found

in [26, 17].

Lemma 2. The RIP constant δk is a monotonically increasing function of k, i.e.,

δk ≤ δk′

for any two integers k ≤ k′.
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Lemma 3. Assume H ∈ R
n×m and subsets I,J ⊂ [1,m] with I ∩ J = ∅ and

δ|I|+|J | < 1. Then it holds that

∥∥HT
I HJa

∥∥
2
≤ δ|I|+|J |‖a‖2

for any vector a ∈ R
|J |.

Lemma 4. Assume H ∈ R
n×m and subsets I,J ⊂ [1,m] with I ∩ J = ∅ and

δ|I|+|J | < 1. Also let y ∈ span(HI). The following holds:

1− 2δ|I|+|J |
1− δ|I|+|J |

‖y‖2 ≤ ‖y −HJH
†
Jy‖2

Assuming the same setting as earlier, consider T to be the correct support set

for sparse signal x. Furthermore, consider sets T̃ , T̂ and T ′ as defined in Algorithm

6. We cite the following two theorems:

[26, Th.3]: It holds that

‖xT −T ′‖2 ≤
√
10δ2k

1 + δ2k
‖xT −T̂ ‖2

[26, Th.4]: It holds that

‖xT −T̃ ‖2 ≤
1 + δ3k
1− δ3k

‖xT −T ′‖2

These two theorems help in establishing the relationship between the steps of Algo-

rithm 6 as far as reconstruction error is concerned.

More specifically in order for the algorithm to recover all k-sparse signals exactly

the following must hold:

‖ỹr‖2 < ‖ŷr‖2 (5.25)

where ỹr = y −HT̃ H
†
T̃ y and ŷr = y −HT̂ H

†
T̂ y. In order to make the connection

between these two quantities and derive the sufficient condition we make use of

Lemmas 2 and 3. Specifically:

‖ỹr‖2 = ‖Hx−Hx̃‖2
≤ ‖HT −T̃ xT −T̃ ‖2

≤ 1 + δ3k
1− δ3k

√
10δ2k

1 + δ2k
‖xT −T̂ ‖2

≤ (1 + δ3k)

√
10δ2k

1− δ3k
‖xT −T̂ ‖2

where x̃ = H†
T̃ y. In the third line of the above formula we have made use of of [26,
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Th.3,Th.4]. In the last line Lemma 2 was applied.

By applying Lemma 4:

‖ỹr‖2 ≥
1− 2δ3k
1− δ3k

‖y‖2

≥ 1− 2δ3k
1− δ3k

‖HT −T̂ xT −T̂ ‖2

≥ (1− 2δ3k)‖xT −T̂ ‖2

By combining the last two inequalities into (5.25) one arrives at at the following

requirement:
1 + δ3k
1− 2δ3k

·
√
10δ3k

1− δ3k
< 1.

After some basic computations we conclude that δ3k < 0.205.

Theorem 14 concludes the theoretical analysis regarding the improvement of the

inference algorithm by providing the sufficient condition under which the modified

version of FMLM recovers all k-sparse signals exactly for a certain criterion. This

condition is equivalent to the mutual coherence restriction for the OMP [91]. It

also provides the sufficient condition for exact recovery for the SP-like variant of the

algorithm.

5.4.3 Inference Algorithm Performance

To verify the preceding statements on the performance of the algorithms, a sim-

ple experiment is conducted. The algorithms under comparison are the FMLM

algorithm as originally presented in [90], the variants based on the scaled quantities;

FMLM-xi, FMLM-αi, FMLM-δli, FMLM-θi, the BSP and sparse recovery via linear

programming. The OMP algorithm is also run for comparison with the variants.

The results are acquired with the cvx software package [46] and are referred to as

BP (Basis Pursuit). Noise variance is assumed to be σ2 = 0. The experiment is as

follows,

1. Generate H ∈ R
128×256 with i.i.d entries from N (0, 1

n
).

2. Generate T uniformly at random so that |T | = K.

3. Generate xT with i.i.d entries from N (0, 1). Set xT c = 0, where T c =

{[1, 256]− T }.

4. Compute y = Hx and then apply a reconstruction algorithm. Compare

estimate x̂ to x.

5. Repeat experiment 100 times for the same value of K.
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Figure 5.3: Exact reconstruction rates for n = 128, m = 256.

This experiment is run for different values of K. The results from this procedure

are depicted in Figure 5.3. The first critical observation is that the original FMLM

performs poorly when σ2 = 0 due to the improperly scaled cost function. The three

scaled variants of FMLM based on the criteria mentioned in Theorem 13 perform

in the same manner. There is an increase in the performance for FMLM-θi, a

consequence of altering the selection criterion to θi = q̄i. Even though changing the

criterion gives theoretically better performance as Theorem 14 suggests, empirically

this gain is not great. Comparing with the OMP; one can see that indeed the OMP

bears very close performance with the FMLM-θi variant as it was suggested by

Theorem 13. By re-designing the inference algorithm based on ideas from the SP

it is possible to achieve far better performance, as the curve for the BSP algorithm

shows. The results for BP are in agreement with a similar experiment performed

in [26] which compares the SP greedy algorithm and the BP. It is noted that in the

case where the sparse components take their values from {−1,+1} it was shown in

[26] that BP does indeed outperform the BSP. An exhaustive study of the empirical

recovery performance of the aforementioned algorithms and their comparison with

BP is not in the scope of this work.
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5.5 Conclusion

In this chapter the natural consequence of a model was presented; the algorithms

to perform inference on that model. This is not an easy task to perform efficiently

especially when large datasets are at hand. An easy way out is a greedy rendition

instead of direct optimisation. This has been widely accepted by the community and

has managed to provide excellent results in many scenarios of practical importance.

A large amount of work has also been conducted towards understanding the

relationships between Sparse Bayesian Learning and �0 norm minimisation. The

basic theorems have been presented in order to point out the significance of this

algorithm for compressed sensing in general.

A refined theoretical analysis of the FMLM greedy inference algorithm was pre-

sented and is one of the major contributions of this thesis. In short, the direct

connection of FMLM and greedy pursuits has been discovered. Moreover it was

revealed that improvements are indeed possible and a set of algorithms has been

provided that are less-greedy in performing inference in sparse Bayesian models.
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Dynamic Sparse Signal Recovery

In previous chapters, the signal acquisition process was modelled as a linear

system of equations, y = Hx + n with additive noise which is assumed to be in

many cases white Gaussian. The previous chapter demonstrated the case where

a sparse x ∈ R
m is recovered from the noisy measurement vector y ∈ R

n in the

particularly interesting case where n � m. The signals under consideration were

assumed to be static, i.e., the realisation of an experiment for only one time instant.

Let us put the problem of sparse signal recovery aside for a moment and consider

the following simple example. Consider a volt meter providing a noisy measurement

y for a voltage x plus an amount of noise. Given only one measurement y then

the best estimate is actually x = y ! Given several measurements of x all taken

instantaneously, i.e., one has many volt meters, then a better estimate for x would

be the sample mean over all measurements since the noise terms will tend to cancel

out. Assume that this scenario changes so that the quantity of interest changes

over time to xt and temporal measurements yt are taken. Unfortunately the simple

time average would not suffice since one would get only a single estimate at time

instant t. Furthermore this estimate would not accurately describe the time-varying

signal xt because of possible extreme values or periods of smooth activity. An easy

way out would be the introduction of a time window so that the average would be

taken only for a number of past consecutive samples. The problem is then taken to

determine the length of such a window to capture the variations of the signal while

suppressing noise at the same time.

From the example given in the previous paragraph it is evident that a unified

approach is needed in order to reconstruct a signal which varies with time, i.e., dy-

namic signals. The best way to proceed is to consider a more sophisticated model for

the measurement process which addresses this problem in a systematic and unclut-

tered way. Boasting extremely simple implementations and countless applications,

the Kalman filter can be thought of as the lightweight champion for his task. The

dynamic system model offers explicit estimation of the system’s dynamics with low
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computational complexity. The filter manages to provide good results even if there

is a model mismatch between the actual and the assumed model.

Another major contribution of this thesis is presented in this chapter where

the case of a time-varying system produces sparse signals is considered. The great

disability that one faces is that traditional methods fail to recover sparse estimates

for the signal given its temporal measurements. A novel idea is presented which

manages to combine the virtues of the Kalman filter and Sparse Bayesian models.

6.1 The Kalman Filter

When a sample vector y is available then the estimate x̂ given by a minimum

mean squared error (MMSE) estimator is optimal in the squared error sense. Such

an optimal estimator becomes linear when the samples and the model parameters

are assumed to follow the Gaussian distribution and the estimator is then given by

the maximising the posterior of x given y. In the case where no prior knowledge is

available for x then the estimate is equivalent to the maximum likelihood estimate,

i.e., MAP estimation with a uniform prior. This coincides with the solution given

by the Wiener filter.

In the Kalman filter model is assumed for the time-varying xt. The Kalman

filter estimates in an on-line fashion the state x of a time varying system via its

noisy measurements y.

6.1.1 The State-Space Model

The model for a system to accommodate the dynamic nature of signals is assumed

to be a discrete-time state-space model. The model assumes two types of conditional

distributions,

xt ∼ p(xt|xt−1)

yt ∼ p(yt|xt),

where the time index has been introduced into the mathematical notation. The first

distribution describes the time evolution of the system’s state while the second one

models the measurement process given the state. The model comes with two very

important assumptions that might seem restrictive at first but in reality allow for a

rich class of systems to be modelled. In Figure 6.1 the graphical representation of

the model is shown in the form of a Bayesian network.
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· · · xt−1 xt xt+1 · · ·

yt−1 yt yt+1

Figure 6.1: The State-Space Model.

The Markov property of the States

The Markov property dictates that a state at time t is only dependent on the

previous state. In probabilistic terms this is expressed as

p(xt|x1:t−1,y1:t−1) = p(xt|xt−1).

This is equivalent to the statement that whatever has happened in the past before

t− 1 will not directly affect the present state.

The Conditional Independence of the Measurements

The measurement at time instant t is conditionally independent of the previous

states and measurements when conditioned on the state at the same time instant t.

Again this is written as

p(yt|x1:t,y1:t−1) = p(yt|xt).

6.1.2 The Filtering Equations

The goal of the Kalman filter is to calculate the following posterior distribution

p(xt|y1:t)

at each time instant t given the measurements up to and including t. The calculation

of this marginal distribution can be seen as a two-step procedure.

The Prediction Step

In the prediction step one needs to find the distribution of xt given y1:t−1. This

can be accomplished as follows. At first the joint distribution of xt and x1:t−1 given
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y1:t−1 is written down,

p(xt,x1:t−1|y1:t−1) = p(xt|x1:t−1,y1:t−1)p(xt−1|y1:t−1)

= p(xt|xt−1)p(xt−1|y1:t−1).

where the Markov property has been used. The desired distribution is then formu-

lated by marginalising over xt−1,

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1.

The prediction step projects forward in time the distribution of the previous state

by using the dynamic state model. This way the assumed uncertainties of the state

are elegantly taken into consideration. This uncertainty in the system’s states is

called process noise.

The Update Step

The update step basically is direct application of the Bayes’ rule to find the

distribution of xt given the most recent measurement yt. The posterior distribution

is written directly as,

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

.

6.1.3 The Gaussian Assumption - Kalman Filter Equations

The Kalman filter assumes that the model is linear and described by the following

set of equations,

xt = Ft−1xt−1 + ut−1

yt = Htxt + nt,

where matrix F ∈ R
m×m is usually called the state transition matrix and it is used to

describe the linear transform from one state to the next. The assumed distributions

are Gaussian both for the measurement and the state model so in probabilistic terms

the above equations are written as

p(xt|xt−1) = N (Ft−1xt−1,Ut−1)

p(yt|xt) = N (Htxt,Nt),

where Ut and Nt are the covariance matrices of the state and the noise process

respectively. The matrix Ut is assumed to be known or somehow estimated.
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Since the assumed distributions are Gaussian the resulting conditional and marginal

distributions mentioned above remain Gaussian. By using the direct result for the

Gaussian distribution in Equation (A.3) of the appendix, the prediction step be-

comes

p(xt|y1:t−1) = N (μt|t−1,Σt|t−1)

μt|t−1 = Ft−1μt−1

Σt|t−1 = Ft−1Σt−1F
T
t−1 +Ut−1,

while the result in (A.4) gives the update step p(xt|y1:t) = N (μt,Σt) with

μt = μt|t−1 −Kt

(
yt −Htμt|t−1

)
Σt = Σt|t−1 +KtHtΣt|t−1.

Matrix Kt comes by the name of the Kalman Gain and is as follows,

Kt = Σt|t−1Ht

(
Nt +HtΣt|t−1H

T
t

)−1
.

6.2 Dynamic Sparse Signals

In previous chapters it has been shown how the redundancy in the signal can

be exploited in order to process the signal efficiently and moreover how to sample

and reconstruct a sparse signal. In terms of this chapter; we have dealt with the

stationary sort of sparse signals, i.e., a block of samples is taken and then a sparse

estimator is sought. Focus is now turned on the case when such blocks are acquired

one after the other and a sparse estimate of a signal is required in a temporal fashion.

Since modelling a dynamic system can be done efficiently and practically the

natural consequence is to employ a dynamic system model to reconstruct dynamic

sparse signals. A very convenient way to visualise this problem is in the form of a

video signal where each separate frame is sparse in some domain (i.e. the wavelet

domain). While reconstructing each frame separately would still exploit the spatial

redundancy within each frame, the temporal correlation will remain unexploited.

For a dynamic sparse signal xt measured with

yt = Htxt,

the support set Tt is expected to be highly correlated with the support set at the
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previous time instant Tt−1, i.e.,

Dt = Tt − Tt−1

|Dt| � |Tt ∪ Tt−1|

where the minus sign between sets denotes the set difference operation. The main

assumption here is that the difference between the support sets between two consec-

utive sampling instants Dt is much smaller than either of the support sets. This is

explained by the second equation. In order to take full advantage of the regularities

in the dynamic signal, a linear estimator is required in order to track these small

changes in the support. Unfortunately, direct application of the Kalman filter is

inappropriate.

6.2.1 Incompatibilities and Limitations

In Section 6.1 there was no assumption of sparsity and the prior distributions

on the signals were assumed to be multivariate Gaussian. The solutions given

by the estimator were allowed to take any form without any preference to-

wards sparsity. In Chapter 2 it was demonstrated how sparse solutions can

be promoted by imposing sparsity-promoting prior distributions on the signal

to be recovered. The ML approaches effectively lead to regularisation based

algorithms while MAP solutions provide a Bayesian approach to the sparse

recovery problem.

The Compressed Sensing literature mainly deals with the static case. It as-

sumes batch computations on the complete dataset and based on a set of

assumptions it provides algorithms along with performance guarantees for ex-

act reconstruction. In general the sparse recovery machinery does not take

into account the temporal correlation between datasets in order to improve

sparse reconstruction as far as performance and computational requirements

are concerned.

When considering the tracking capabilities of the Kalman filter and the reasons

why this technique is widely accepted as one of the most important in the field

of filtering it is soon realised that it comes down to two factors. First, simplicity

along with ease of implementation and second, optimality with respect to the

MSE under mild conditions with acceptable performance when there is model

mismatch. Keeping this in mind we recognise that the algorithms mentioned

in Chapter 2 sometimes require some sort of sparsity regularising parameter or

threshold in order to recover a sparse signal. This comes to contrast with the
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two guidelines for dynamic sparse signal reconstruction since in a real-world

dynamic scenario this luxury is highly likely to be unavailable.

In Chapter 2 it was demonstrated that sparse signal sampling is possible to

implement with efficient algorithms and acceptable performance guarantees

in the case of noisy or even compressible sparse signals. This gives further

motivation to pursue dynamic sparse signal tracking.

6.2.2 Related Approaches

Seminal work in this area is attributed to Vaswani and her work in [97]. A

solution to the dynamic sparse signal recovery problem is proposed by what is an

external modification of the Kalman filter. Sparse recovery is performed on the

innovations signal whenever the prediction error rises above a certain threshold.

Deletions from the estimated support set are also based on an additional threshold

value that is suitably determined. The considered model is as follows:

yt = Htxt + nt

xt = xt−1 +wt

(qt)Tt∩Tt−1 = σ2
sys

(qt)Tt−Tt−1 = σ2
init

(qt)T c
t
= 0

where the time-varying sparse signal x is assumed to be a random variable drawn

from wt ∼ N (0, diag(qt)). Set Tt denotes the support set of xt and T c means

the complement of set T over its domain. The generative signal model assumes

that changes in the sparse signal happen at random and these can be additions

or deletions to its support set. Components of xt that are zero can attain a non-

zero value at t + 1 with variance σ2
init while the remaining non-zero components

evolve with variance σ2
sys. Observations yt are taken at each time instant t via the

measurement matrix Ht plus white Gaussian noise with variance σ2
obs.

The algorithm runs a reduced order Kalman filter iteration based on the estimate

of the support set Tt−1 and then the filtering error is computed. If it is found to

be above a certain threshold then a suitable sparse recovery algorithm is run to

compute the support set of the error signal. The Kalman filter update step is run

again on the merged support sets of the filtering error and Tt−1. After this step yet

another threshold is applied to delete all the small components indicating deletions

in the support. If there have been any deletions the Kalman update is run again.

The authors in [99] propose to replace the Kalman update in this algorithm with

a Least Squares step. Also they provide the conditions under which the algorithms
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converge to the case when the support is exactly known. Note that in these series

of algorithms only changes in the support are considered and not in the actual

magnitudes of the components in xt.

The authors in [98, 100] propose two similar ideas; to apply compressive sensing

on the residual signal of the Kalman filter or the Least Squares residual signal.

This time the authors take into consideration the tracked magnitudes as well as the

support. An application for Magnetic Resonance Imaging (MRI) is documented in

[77].

Vaswani and her team make yet another excellent contribution in [102] by recast-

ing the dynamic sparse signal recovery problem as a compressed sensing problem

with partially known support. Basically the following problem is formulated,

min
b

‖bT c‖1 so that y = Hb

in which the best possible sparse representation or the y is desired but on a support

set complementary to T which is considered to be the prior knowledge. The exact

recovery conditions are derived and under certain assumptions it is shown that they

are less restrictive than those for �1 minimisation for T = ∅. The straightforward

application of this to the dynamic case is also proposed with the addition of a

threshold to detect changes. Further theoretical analysis on the stability of this

method are given in [101] and an application of this on MRI in [59].

Finally in [60, 62, 61] introduce another extension of the aforementioned meth-

ods which basically introduces noise in the dynamic recovery procedure. It is also

considered that some prior knowledge is available, i.e., that parts of the support

set are known and that the magnitudes of the corresponding components are also

given. It is also assumed that this knowledge can be partially erroneous. Analysis

undertakes the following familiar problem,

min
b

‖y −Hb‖2 + λ‖bT c‖1

which the authors term as Regularized Modified Basis Pursuit De-noising.

Another example of early work in dynamic sparse signal recovery was by An-

gelosante et al. and can be found in [2]. The authors propose two algorithms based

on the LASSO. The first algorithm considers the case where the support remains sta-

tionary but the magnitudes are ever-changing. The second algorithm is completely

dynamic and can recover both signals with time-varying support and magnitudes.

The algorithm for the stationary case is termed Group-Fused Lasso minimises the
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following cost function,

min
x1···xT

T∑
t=1

‖yt −Htxt‖22 so that

K∑
k=1

√√√√ T∑
t=1

|(xt)k|2 ≤ s1 and
K∑
k=1

√√√√ T∑
t=2

|(x)k − (xt−1)k|2 ≤ s2.

Basically a number of sparse signals [x1 · · ·xT ] is recovered jointly under certain

constraints. The first constraint encourages grouping of the components that have

the same index in the support. A group is described as the non-zero components in

[x1 · · ·xT ] that have the same index. The second constraint promotes smoothness

,i.e., that the components within the same group will have similar amplitudes. For

the time-varying case the authors alter the cost function given above by adopting

the �1 norm instead of the quadratic.

Some novel ideas that incorporate Bayesian modelling of time-varying signals

are introduced by Ziniel et al. in [112]. A probabilistic model for the support is

introduced based on a Bernoulli prior while the magnitudes evolve based on a Gauss-

Markov process resembling a random walk model. The signal model is described by

the equations below

(xt)i = (st)i � (θt)i∀i ∈ [1,m]

(θt)i = (1− a)(θt−1)i + a(wt)i.

Symbol � means element-wise multiplication. Random variables (st)i are assumed

to be drawn independently from the Bernoulli distribution with small probability of

appearance so as to promote a sparse xt. Random variables (wt)i are i.i.d Gaussian

with some variance and together with a deterministic a ∈ [0, 1] they control the value

of the non-zero components. Two transition probabilities are also considered for the

case of components being added or deleted from the support. Signal amplitudes and

support are estimated separately via a Belief Propagation algorithm. More details

on this algorithm will be presented at a later chapter and the interested reader is

redirected to the original paper.

Carmi et al. attempt to estimate a dynamic sparse signal with a modified Kalman

filter but by avoiding the use of an internal compressed sensing algorithm like in the

work of Vaswani and others. Their work can be found in [20]. This inspired idea

suggest the notion of pseudo-measurements. Very simply the authors embed an �1

optimisation in the Kalman filter by augmenting the measurements by a fictitious
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one

0 = ‖xt‖1 − ε

= h̄txt − ε

where h̄t = sign(xt) is the element-wise sign function. An additional update step is

then run for this pseudo-measurement updating thus the statistics of xt.

The approach in [19] also employs a technique which requires several threshold

values to be set which affect the quality of the solution.

In [22], a technique is presented that uses prior sparsity knowledge into the track-

ing process but also requires a number of parameters to be pre-set. The techniques

revolve around the idea of casting the dynamic sparse signal recovery problem as a

classic compressed sensing problem for one time instant. There is a discrimination

between sparsity in the states and sparsity in the innovations. This work is closely

related to the later work by Vaswani et al.

The approach in [24] extends the LMS algorithm to promote sparse system iden-

tification. The authors augment the cost function of the standard LMS with several

cases of sparsity penalties. These penalty function incorporate several parameters

that need defining priorly to the application.

Work in [66] proposes to alter the CoSaMP greedy pursuit algorithm [72] from

block mode of operation into a sequential mode on-line algorithm. Because of this,

it assumes a-priori known sparsity levels. Moreover a forgetting factor is employed

in order to deal with time-varying sparse signals. The algorithm does not attempt

to perform any further tracking of the statistics and no dynamic data model is

assumed.

The framework developed in [42] deals with modelling highly complex dynamical

linear systems something which falls well outside our cases of interest. The authors

employ a multi-layered hierarchical probabilistic model able to capture discrete and

continuous events. It is uncertain yet whether simplifications to this model can be

used for compressed sensing. The complexity of the model makes analysis obscure.

To conclude; there has been some work which aimed in transforming LMS-type of

algorithms but it is not related to dynamic sparse signals. Work in [50], [87] presents

an �0 treatment of LMS type of algorithms along with performance guarantees to

solve the sparse reconstruction problem in an adaptive filtering framework. However

the dynamic sparse signal case is not considered at all and usually this sort of work

gets confused because of the use of LMS-like algorithms.
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6.3 The Hierarchical Bayesian Kalman Filter

The novel approach which was introduced in [55] is one of the contributions of

this thesis. The dynamic sparse signal model which was proposed by the authors

will be described and analysed. The Hierarchical Bayesian Kalman Filter (HBK)

runs just like a traditional Kalman filter but with a sparse DNA structure. At the

heart of this new technique is the efficient Type-II ML inference algorithm which

was presented earlier in this text. To take things one step further, the authors in

[56] have merged their improved inference algorithms into the HBK filter resulting

in a superior sparse signal tracking algorithm.

6.3.1 A Hierarchical Model for Dynamic Sparse Signals

Let us start off this discussion by defining the grounds on which work will take

place. It has already been pointed out that the structure of the Kalman filter is

desirable and should be kept, in that it exhibits the Markov property of the states

and conditional independence of the measurements. For this reason the dynamical

system equations are kept the same with a slight alternation to fit our case of

interest. That is; to accommodate a measurements model for sparse signals. In the

proposed approach the following set of equations describe the dynamic system under

consideration,

xt = xt−1 + ut−1 (6.1)

yt = Htxt + nt,

The measurement process is considered to be Gaussian with known covariance ma-

trix nt ∼ N (0, σ2I). It is assumed that signal xt ∈ R
m is sparse in some domain

and this sparsity domain is considered to remain unchanged at all time instants.

This allows to set the state transition matrix Ft equal to the unitary matrix I.

In Figure 6.2 the graphical representation of the proposed dynamic model is

given. The main attribute of this work is the obvious extension of the classic state-

space dynamic model; by the inclusion of another level of prior distributions. This

is of course the same sort of hierarchical model that was met in Sparse Bayesian

Learning. A sparsity promoting prior distribution is used to model the states. After

performing inference the resulting xt will be sparse. More details on this will follow.
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αt−1 αt αt+1

· · · xt−1 xt xt+1 · · ·

yt−1 yt yt+1

Figure 6.2: The Hierarchical Bayesian Kalman filter Bayesian network. The state ran-
dom variables are further described by a hierarchical prior structure that is met in sparse
Bayesian learning models.

6.3.2 The Revised Prediction and Update Steps

The proposed Kalman filter model bears many similarities when it comes to tem-

poral passing of correlations but the actual expressions for the update and prediction

steps have to be altered. It all comes down to marginalisation at some point and

the expanded prior structure dictates to recompute those marginals. It was stated

above that the noise variance is considered to be given. It is already known from

Sparse Bayesian Learning that it can be estimated from the data. This is not our

main concern and without any sacrifices it will not occupy us any further.

In the Hierarchical Bayesian Kalman Filter it assumed that ut ∼ N (0,A−1
t )

where At = diag(αt) = diag([α1, · · · , αn]t) and hyper-parameters αt have to be

learned by optimising the cost function. Driving αt,i → +∞ results in p(ut,i|αt,i) →
δ(0) which means that it is a posteriori certain that ut,i = 0. The Kalman filter

two-step procedure is still performed with slight alternations so as to accommodate

the revised system model.

In the prediction step the parameters of p(xt|yt−1) = N (μt|t−1,Σt|t−1) are eval-

uated straightforwardly as follows

μt|t−1 = μt−1, (6.2)

Σt|t−1 = Σt−1 +A−1
t ,

For the update step the following quantities are defined,

yt|t−1 = Htμt|t−1,

ye,t = yt − yt|t−1.
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The parameters of p(xt|yt) = N (μt,Σt) can then be written down as,

μt = μt|t−1 +Ktye,t, (6.3)

Σt = (I −KtHt)Σt|t−1

Kt = Σt|t−1H
T
t (σ

2I +HΣt|t−1H
T )−1

6.3.3 The HBK Inference Algorithm

From Equation (6.2) it is straightforward that,

ye,t = yt − yt|t−1

= Htut + nt.

It becomes clear that a sparse ut has to be inferred from the available data. Ef-

fectively a sparse prediction error signal has to be recovered at each time instant

which will also - very likely - produce a sparse xt.

In order to recover the needed statistical information from ye,t there is an ad-

ditional step of learning αt. By incorporating the prediction step p(xt|yt−1) the

following posterior needs to be minimised,

L(αt) = log p(yt|αt) = logN (Htμt−1,Cu)

= log p(ye,t|αt) = logN (0,Cu)

= log |Cu|+ yT
e,tC

−1
u ye,t (6.4)

where Cu = σ2I +Ht

(
Σt−1 +A−1

t

)
HT

t .

If we compare the cost function above with Equation (5.3) we notice that there

is a difference on the covariance matrices involved. Let us focus on matrix Cu. This

can be written as,

Cu = σ2I +Ht

(
Σt−1 +A−1

t

)
HT

t

= σ2B +HtAtH
T
t

where σ2B = σ2I +HtΣt−1H
T
t . By applying the matrix inversion lemma [44],

σ2C−1
u = B−1 −B−1Ht

(
σ−2Σu

)−1
HT

t B
−1 (6.5)

where σ−2Σu =
(
σ2At +HT

t B
−1Ht

)
is the scaled covariance matrix of ut. This

way the contribution from the previous time instant in computing matrix Cu has

been quantified exactly. Bayesian inference can now be performed the same way as

it was described in Chapter 5. Please note the use of scaled quantities as in Chapter
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Algorithm 7 HB-Kalman Filter

Input : yt, Ht, σ
2

Initialise :
- T1 = {index i ∈ [1, n] for maximum |hT

t,1y1|}.
- Calculate μ1 and Σ1 with support set T1.
Iteration :
- Apply Prediction Step by calculating ye,t.
- Apply InferenceAlgorithm(ye,t, Ht, σ

2,Σt−1) to recover ut, Σu with support
set Iu.
- Expand or contract Tt accordingly.
- Calculate Σt|t−1.
- Apply Update Step and calculate μt and Σt.
Output :
- At time instant t, output sparse signal xt with mean value μt, covariance matrix
Σt and support set Tt.

5. Assuming scaled quantities also makes the situation easier when incorporating

the improved inference algorithms that where also introduced.

In Algorithm 7 the steps of the HBK filter are shown. In the second step of

the iteration part the inference algorithm to be employed is shown as a sub-routine,

InferenceAlgorithm. This means that at this point optimisation of Equation

(6.4) takes place. This sub-routine should take as input the prediction error signal,

the noise variance, the sampling matrix and the covariance matrix from the previous

time step Σt−1. This is done so that matrix in Equation (6.5) can be computed.

Algorithms 5 and 6 can be used as the InferenceAlgorithm subroutine in

the description of Algorithm 7. Note that Algorithm 5 and Algorithm 6 are not

affected by this modification except from the computation of the relevant quantities

like si and qi with the new matrix in Equation (6.5). The Kalman filter steps given

above can be used to track the scaled covariance matrix of sparse signal xt.

The HBK filter steps are described in Algorithm 7. A sparse support for ye,t is

recovered and the support set of the dynamic signal is updated accordingly. The use

of InferenceAlgorithm as a sub-routine in the algorithm description refers to

an appropriate algorithm to perform inference and produce the necessary statistical

information.

6.3.4 HBK Filter Advantages

The whole mechanism remains agnostic about the sparsity level of the dynamic

signal. The filter tracks the support set along with the magnitudes of the

sparse components in a unified manner. This retains the original nature of the

Kalman filter; to be simple to implement and efficient to compute.

The HBK filter does not rely on any external modifications or controlling
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(a) Measurements n = 100.
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(b) Measurements n = 28.

Figure 6.3: Tracking performance comparison between the HB-Kalman and the classic
Kalman filter for sparse input. The i.i.d case is provided for comparison and verification.
(a) Number of noisy measurements is adequately high to ensure reconstruction. (b) Number
of measurements is reduced to unsustainable levels that do not allow exact reconstruction.
HB-Kalman successfully tracks the sparse signal by employing temporal information gained
from tracking.

parameters (except of course from the measurement noise variance which is

assumed to be known or estimated). Sparsity is realised in a Bayesian frame-

work where the internal inference algorithm requires no external parameters.

The HBK filter carries the same sort of inference algorithms like the ones

presented in Chapter 5. This means that automatically the HBK filter comes

attached to a set of provable performance guarantees and sufficient criteria for

recovery.

6.4 Test Cases

In this section several empirical test cases will be presented. These experiments

have been published in [39, 54]. Three such experiments are discussed; one in

which synthetic data are used as input to the algorithms to be tested, a real-world

scenario in which incomplete Ozone data are treated to complete the missing samples

and finally a rather ambitious case in which an attempt is made for audio signal

reconstruction after the signal has been synthetically corrupted.

6.4.1 Synthetic Scenarios

The original Kalman filter and the proposed method are compared in a case

of synthetically generated dynamic sparse signals. The case where the samples

are assumed to be independent and identically distributed is also considered, i.e.

apply the Bayesian Compressive Sensing (BCS) algorithm [84] independently at
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each time instant. This example aims to underscore that temporal correlations can

be exploited towards achieving better sparse recovery performance as opposed to

when applying compressed sensing independently at each time instant.

Signal xt ∈ R
m is assumed to be sparse in the natural basis with support set S

chosen uniformly at random from [1,m] wherem = 256. The magnitudes of the non-

zero entries of xt evolve according to Equation (6.1) with Ut = σ2
uI with σ2

u = 0.1.

The simulation time for this experiment was 200 time instants. Noisy measurements

yt with the entries of matrix Ht ∈ R
128×256 being drawn from N (0, 1

n
) and to be

re-sampled at each time instant. Measurement noise variance is set to σ2 = 0.01

for the entire simulation time. At two randomly chosen time instants; t = 50 and

t = 150, a change in the support of xt is introduced. A non-zero component is

added to the support of x50 and a non-zero component is removed from the support

of x150. Apart from these two time instants the support of xt remains unaltered.

At t = 1 the support is initialised with k = 30 non-zero components.

In Figure 6.3a the reconstruction error is plotted against time for each of the

three reconstruction methods. It is evident that the error levels are much lower

for the HB-Kalman filter when compared to the conventional Kalman filter, a direct

consequence of the assumed sparse model. By comparing to the repeated application

of the BCS method it is demonstrated that by incorporating statistical information

from previous estimates results in lower reconstruction error.

In a more difficult setting, the number of measurements is reduced but the sparse

signal is of a sparsity level well above this number. More specifically, n = 28 < 2×30

is less than twice the number of active components which is 30. This is a particularly

difficult case since the number of measurements is less than what is required for

exact reconstruction of the sparse signal. The sparse signal x0 is taken to be known

beforehand. This corresponds to the case where successful reconstruction with an

adequate number of measurements has been achieved but for some external technical

reason the number of measurements is forced to be reduced to what usually are

unsustainable low levels. It is shown in Figure 6.3b that given statistical information

from an earlier time instant the filter manages to maintain its performance even

though it might take slightly longer to converge.

6.4.2 The Ozone Distribution Dataset

The proposed method is tested on a real-life scenario. We attempt to track the

spatial distribution of the Ozone layer over the entire globe. The dataset on which

the proposed method is tested is obtained from the Ozone Monitoring Instrument

(OMI) on the NASA Aura spacecraft [71]. The dataset consists of daily measure-

ments for a number of months. This dataset can conceptualised as a cube on which
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the x−y dimensions represent the pixels of an image while the z dimension represent

the time (days). This dataset is of particular interest since the measurements for

each day of the month are incomplete due to a fault of the monitoring system. This

can be seen in Figure 6.4a by the blue vertical stripes.

For the purpose of exposition it is considered that these heatmap-like images

exhibit a sparse representation in the discrete cosine transform (DCT) domain. To

be pedantic one should better say that these images are compressible. Possibly

better results could have been achieved had a better representation domain was

employed. The original images are cropped to form a square image and are under-

sampled by a factor of 8 so that n = 4275. This is done so as to be able to perform

the tests on a personal computer. Pausing for yet another moment, the value of

sparsity is recognised when dealing with datasets. This however does not hinder

performance and does not affect the generality of the results. The areas of the

image that appear blue on the top of Figure 6.4 are the parts of the dataset that

are missing due to the malfunction. The part of the dataset that was not damaged

is assumed to take the role of the measurements yt in the HB-Kalman filter model.

The measured Ozone image for each day was transformed into a stacked vector by

keeping only the undamaged data points (or pixels); the indices of which were also

used to sample the corresponding rows of the DCT matrix. This sub-sampled DCT

matrix plays the role of Ht. Each time instant corresponds to one day of the month

for a total of 28 days. Measurement noise variance is set to σ2 = 10−6.

By performing dynamic sparse signal recovery the support set of each image is

recovered and subsequently a reconstructed image with the damaged pixels being

filled-in. The accuracy of the reconstruction is then measured by computing the

MSE between the pixels of the two images corresponding to the undamaged parts.

As can be seen from Figure 6.5, the standard Kalman filter fails to accurately

track the dynamic sparse signal. By contrast, repeated application of the BCS

method and the HB-Kalman filter, exhibit much lower error levels and accurately

reconstruct the missing data. The HB-Kalman outperforms the BCS method as

it incorporates statistical information from the previous day resulting in lower re-

construction error. By carefully comparing the results in Figure 6.4 it can be seen

that the BCS reconstruction lacks some of the higher frequency components that

are present in the HB-Kalman reconstruction and the original signal. This results

in losing some of the details in the signal hence producing lower quality results.

6.4.3 Audio Signal Reconstruction

Here the rather ambitious problem of reconstructing a corrupted audio signal is

considered; the recording of a classical piano piece in a real reverberant environment.
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(a) Reconstruction with HB-Kalman filter.
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(b) Reconstruction with BCS.

Figure 6.4: Reconstructed ozone distribution signal using the HB-Kalman filter and BCS.
Atmospheric ozone distribution is measured in normalised Dobson units. Original data is
shown on the top of each graph. For brevity only one frame from the complete reconstructed
dataset is shown. The frame is the same for both cases.

The recorded signal is highly non-stationary, broadband and contains overlapping

notes (that might be harmonically related). To make things worse, the pedal on

the piano is engaged throughout, causing significant time-frequency smearing. The

piano recording is sampled at a frequency of fs = 44.1 kHz and split into T non-

overlapping frames of length m = 1024 samples.

The Fourier domain support of each frame is assumed to be approximately sparse,

i.e., there is only a small number of dominant frequencies present, as can be seen

from Figure 6.6. For each of these frames only a small number of samples are kept

in order to artificially corrupt the signal. The indices of the samples that are kept

are chosen uniformly at random from [1, 1024] to form the index set It where t

represents a time frame. Sampling matrix Ht = F−1
It is then formed by choosing

those rows from the Fourier matrix that correspond to It.

At each time instant an estimate for the support xt is recovered. Since the

assumed basis is the Fourier basis the support is tracked in the both the real and

imaginary domain. The measurement matrices now become �{Ht} and �{Ht}.
Note that these matrices belong in R

n×m/2 because of the symmetry of the Fourier

transform for real-valued functions. The simulation time for this experiment is

T = 100 time domain frames. At each time instant m = 256 samples are kept.

Measurement noise variance is set to the sufficiently small value of σ2 = 0.15 for the

entire simulation time since the input signal was generated with no additional noise.

The resulting Root Mean Squared Error (RMSE) for the whole simulation time

T is shown in Figure 6.8. As can be seen from the resulting graph, the error levels

are much lower for the HB-Kalman filter when compared to the standard Kalman

filter; this is a direct consequence of the assumed sparse model. By comparing to

the repeated application of the BCS method, i.e assuming independent, identically
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Figure 6.5: Reconstruction error for the Ozone distribution dataset for the period of 28
days.
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Figure 6.6: Snapshot of the sparse frequency content in a single time-frame of piano
data.
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Figure 6.7: Original time-domain representation (dotted line) of a frame of audio, along
with the reconstructed data using the HB-Kalman.

distributed data, we see that incorporating statistical information from previous

estimates results in lower reconstruction error. In Figure 6.7 a comparison is made
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Figure 6.8: Reconstruction error given over a time period of 100 frames. Each frame
contains n = 1024 samples from which m = 256 are chosen at random.

between the reconstruction of a frame and the original one. Even thought the two

seem to be quite close, the perceived quality by the human ear is not that great. It

also is important to emphasize that the parameters are identical for both the BCS

algorithm and the HB-Kalman for a fair comparison; tuning certain parameters

individually for each algorithm can lead to better reconstruction results depending

on the specific application scenario.

The results are cannot be described as fascinating even though a basic point has

been made. Working with audio signals is not at all straightforward particularly for

this example. The dictionary that was chosen for sparse recovery was admittedly

very naive and simple to capture all the transients and changes in the frequency

domain of each frame. Nevertheless, positive results with such basic scenarios only

show the potential of the proposed methods.

6.5 Conclusion

In this chapter the notion of dynamic sparse signals was introduced. As it hap-

pens in most cases, many classes of signals exhibit temporal correlations between

their samples. It is therefore, only natural to ask whether it is possible to do any

better for dynamic sparse signals, i.e., exploit this temporal redundancy to improve

performance. The classic Compressed Sensing framework does not make provisions

for the dynamic case and the well established sparse reconstruction algorithms per-

form reconstruction on a batch of samples which is considered to have been acquired

instantaneously.

By employing any of the traditional adaptive estimators in an “out of the box”
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fashion results in non-sparse solutions since the assumed probabilistic model fails to

accurately model sparse systems. The employment of an appropriate probabilistic

model in the Kalman filter system model allows us to surpass this problem and

achieve full dynamic sparse signal tracking without any external modification or

dangerous parameters that hinder performance. The resulting Hierarchical Bayesian

Kalman Filter is a completely automatic sparse recovery framework which exploits

temporal correlations between continuous samples. The filter has been shown to

maintain the same flexibility as its non-sparse cousin.

The theoretical analysis of this framework highlights that it is possible to derive

performance guarantees regarding the global optimality of the provided solutions.

The proposed framework provides the flexibility to consider different probabilistic

models with different prior distributions even with a completely redesigned Bayesian

inference algorithm.
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Informative Sparse Bayesian

Learning

In Chapters 4 and 5 a very versatile Bayesian model for sparse signals was anal-

ysed along with some very efficient inference algorithms. To summarise; every sparse

component xi is modelled as a separate Gaussian random variable with zero mean

and variance α−1
i , N (0, α−1

i ). A so-called inference algorithm is then employed to

recover what the optimal value for the variance of each component is. After conver-

gence one hopes that many of the variances will reach zero or near-zero values thus

producing a sparse signal x. It was demonstrated in earlier chapters that this model

is indeed easily extended to cope with many different distributions and structures.

Let us undertake the case where not a simple point estimate for the value of αi

is sought but a complete distribution instead. Recalling from Chapter 4 each vari-

ance was attached to a hyper-prior distribution p(αi) = Gamma(a, b) (the Gamma

distribution) with all of the hyper-prior distributions sharing the same constant

hyper-parameters a, b. In the so-called truly Bayesian approach the Bishop et al.

in [10] consider that p(αi) = Gamma(ai, bi) and adopt a special type of inference

to compute the optimal values for the hyper-parameters of the distributions. The

Variational Sparse Bayesian Learning will be explained below in more detail. The

authors expected that the gains from this approach will be more pronounced in cases

where the dataset size is limited despite the increased computational demands of

the variational method.

From what was demonstrated in Chapter 5 in most of the cases it makes more

sense to assume no prior knowledge about the sparse components xi and in this

discussion this translates to adopting an uninformative prior for the components’

variance αi. This is implemented by setting a = b = 0 in the traditional SBL or

ai = bi = 0 in the variational SBL. In Section 5.1 it was explained that an uninfor-

mative prior allows for the posterior p(α|y) ∝ p(y|α)p(α) to be approximated in

a certain way and basically assume that p(α|y) ≈ δ(α∗) since p(α) is taken to be

127



Chapter 7

constant, i.e., uninformative and the most probable value α∗ is sought. The reader

is redirected to Figure 4.5 for intuition. Based on the assumption for an uninfor-

mative prior, the authors in [86] have taken advantage of this special case to derive

a fast variational inference algorithm. It was also proven that their fast variational

algorithm is in fact equivalent to the fast Type-II maximum likelihood maximisation

algorithm described in Chapter 5.

The main focus of this chapter is those cases for which an informative prior is

used to model some preference over the distribution of each of the sparse compo-

nents. Such information usually comes from empirical tests or expert systems. To

incorporate such belief into the aforementioned hierarchical Bayesian model one has

to finely-tune the distribution of each αi and then run a suitable variational infer-

ence algorithm that will allow for an estimate p(αi) = Gamma(ãi, b̃i) to be found.

It is explained that in the case where ai �= 0 and bi �= 0 the fast algorithm of [86]

cannot be used. A theoretical analysis is conducted which explains this phenomenon

for an informative prior. The analysis proceeds in establishing several modifications

and rules that allow for a fast variational algorithm to exist for informative prior

distributions.

7.1 Revisiting the Sparse Bayesian Model

Let us point out the main difference between the two approaches by using their

corresponding graphical models. Figure 7.1 shows the graphical model for the vari-

ational approach to Sparse Bayesian Learning (VSBL), i.e., when the Gamma dis-

tribution parameters ai, bi are to be estimated instead of being fixed. Quoting the

authors [10]; this results in the computation of the distributions for each αi instead

of point estimates. Comparison should be made against Figure 4.3 from Chapter

4. One quickly notices that inside the dashed rectangle (or plate in statistician’s

jargon) now lie the hyper-parameters as well indicating that now they have become

part of the inference process. Recall that p(y|x, σ2) = N (Hx, σ2I).

Recalling from SBL, in order to compute the optimal values for αi in such a hier-

archical model, the Evidence Procedure is followed or Type-II Maximum Likelihood.

This involves maximisation of the hyper-parameter posterior,

log p(α, σ2|y) ∝ p(y|α, σ2)p(α)p(σ2).

In the case of an uninformative prior, i.e., distributions p(α), p(σ2) are essentially flat

constant functions, one only maximises the likelihood p(y|α, σ2). For the considered

cases of an informative prior, i.e., the prior distributions are no longer flat, this
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ai c

αi xi yj σ−2

bi i ∈ [1,m] j ∈ [1, n] d

Figure 7.1: Bayesian Network of the Variational Relevance Vector Machine.

results in the following cost function,

L = log p(α, σ2|y) = log p(y|α, σ2) + log p(α) (7.1)

=
1

2

[
log

∣∣σ2I +HA−1HT
∣∣+ yT

(
σ2I +HA−1HT

)−1
]

+
m∑
i=1

(ai log bi + (ai − 1) logαi − biαi − log Γ(ai)) .

To keep things uncluttered in the expression above, it was silently assumed that the

noise variance is known and not a random variable.

One quickly realises that direct optimisation of the cost function for recover-

ing the variances αi is indeed tractable while optimisation with respect to hyper-

parameters ai and bi becomes more troublesome. In the section to follow the vari-

ational method is described which adopts a different and more holistic approach

towards performing inference.

7.2 Variational Sparse Bayesian Learning

In this section the Variational Sparse Bayesian Learning of [10] is presented.

Variational methods [51, 78] generally behave differently than the Type-II Maximum

likelihood and act more like the Expectation-Maximisation algorithm [9] towards

achieving approximate inference. The variational approach proceeds in defining a

distribution Q which will be used to approximate the posterior,

p(x,α|y) � Q(x,α)

It was shown in Chapter 5 and Equation (5.1) that this posterior is in fact intractable

to compute. The Variational Lower Bound L(Q) is then maximised over all possible
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distributions Q that follow a special form,

L(Q) =

∫
Q(x,α) log

p(x,α,y)

Q(x,α)
dxdα

Q(x,α) = Qx(x)Qα(α).

The special form of the approximating distribution Q is that it can be factorised

while no other limitations are placed regarding the form of the factors. The lower

bound is then optimised directly with respect to each of the factors. This might

seem daunting at a first glance but as it turns out the resulting expressions are

simple.

7.2.1 Variational Inference

Before proceeding it is re-iterated that one separate hyper-parameter for each αi

is contemplated to control the variance of each component xi:

p(α) =
m∏
i=1

Gamma(ai, bi)

p (x|α) =
m∏
i=1

N
(
0, α−1

i

)
= N

(
0,A−1

)
p(y|x) =

n∏
i=1

p(yi|x, σ2) = N (Hx, σ2I)

where matrix A = diag ([α1, · · · , αn]). Hyper-prior distributions are also defined as

p(αi) = Gamma(a, b) = 1/Γ(a)(baαa−1
i e−bαi) where Γ(a) is the Gamma function [89].

This results in the joint distribution,

p(x,α,y) = p(y|x)p (x|α) p(α).

Following the variational approach, one can compute the factors of the approx-

imating distribution one by one by taking the logarithm of the joint distribution

shown above and then taking the expectation with respect to those variables not in

the factor to be estimated. Applying this rule for Qx(x),

logQx(x) = Eα [log p(y|x) + p (x|α)] + C1

= −1

2
xT

(
σ−2HTH +A

)
x+ σ−2xTHTy + C1

= logN (μ,Σ)
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where

μ = σ−2ΣHTy (7.2)

Σ =
(
σ−2HTH +A

)−1
.

Where matrix A = diag ([〈α1〉 · · · 〈αm〉]) is the diagonal matrix with 〈αi〉 = E(x)

on its main diagonal. Constant C1 gathers all the terms independent of x when

computing logQx(x).

Applying the same process for Qα(α),

logQαi
(αi) = Ex,αj �=i

[log p(xi|αi) + log p(αi)] + C2 (7.3)

= (ai + 1/2 − 1) logαi − (bi + 〈x2
i 〉/2)αi + C2

= logGamma(ai + 1/2, bi + 〈x2
i 〉/2)

= logGamma(ãi, b̃i).

where

ãi = ai +
1

2
(7.4)

b̃i = bi +
〈x2

i 〉
2

.

Constant C2 gathers all the terms independent of αi that appear during the com-

putation of Qαi
(αi).

Based on the properties of the Gamma distribution and on very basic results for

the Gaussian distribution it is possible to easily compute the following

〈x〉 = μ (7.5)

〈xxT 〉 = Σ+ μμT

〈αi〉 =
ãi

b̃i
.

At this stage one recognises how the variational framework is more general than

the Type-II maximum likelihood approach, acting in a fully Bayesian framework

by providing closed form solutions to approximations of distributions that are in-

tractable to derive analytically. The variational SBL (VSBL) is ideal for when the

estimates of the hyper-prior distributions are required, something which becomes

unmanageable within the Type-II ML framework. The price to pay of course is

higher computational complexity since the algorithm iterates through computing

Equations (7.4) and (7.2).

A quantity which is very useful to compute is the actual variational lower bound.
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This is usually done to check for convergence. Indeed this will be the case with

methods presented later in the text. This is given by the expression below

L = 〈log p(y|x)〉+ 〈log p(x|α)〉+ 〈log p(α)〉 − 〈logQ(x)〉 − 〈logQ(α)〉. (7.6)

The individual quantities are computed as follows based on results for the Gaus-

sian and the Gamma distribution [10],

〈log p(y|w)〉 = n

2
log(2π)− σ−2

2

n∑
i=1

[
y2i − 2yi〈x〉Thi + hT

i 〈xxT 〉hi

]
〈log p(w|α)〉 = −m

2
log(2π) +

1

2

m∑
i=1

[
〈logαi〉 − 〈αi〉〈x2

i 〉
]

〈log p(α)〉 = m · ai log bi + (ai − 1)
n∑

i=1

[〈logαi〉 − bi〈αi〉]−m · log Γ(ai)

〈logQ(x)〉 = −m
1 + log(2π)

2
+ log

|Σ|
2

〈logQ(α)〉 =
n∑

i=1

[
ãi log b̃i + (α̃i − 1)〈logαi〉 − b̃i〈αi〉 − log Γ(ãi)

]

7.3 The Fast Variational Sparse Bayesian Learn-

ing

A fast version of the variational algorithm was proposed in [86, 85] and is sum-

marised in this section. The main goal of the authors is to establish a way of

analytically detecting which components of x have reached a state where they can

be excluded from the model, hence stop updating their corresponding variational

distribution parameters. This is exactly what the case was in the Fast Type-II

Maximum Likelihood (FMLM) in [90]. The authors manage to implement such a

mechanism in a way similar to FMLM. As it turns out, for uninformative prior

distributions, i.e., the fast VSBL (FVSBL) is equivalent to FMLM.

Starting off by substituting Equation (7.4) in the expression for the mean of the

Gamma distribution,

α̃−1
i = 〈α−1

i 〉 = b̃i
ãi

(7.7)

=
bi + 1/2(μ2

i + Σi,i)

ai + 1/2

= μ2
i + Σi,i

= eT
i

(
Σ+ μμT

)
ei

= eT
i

(
Σ+ σ−2ΣHTyyTHΣ

)
ei
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where in the third step it was assumed that the hyper-prior is uninformative thus

setting ai = bi = 0. For computing 〈x2
i 〉 the second expression from Equation (7.5)

was used. Vector ei denotes the ith canonical vector of appropriate dimensions

defined from the context.

The covariance matrix of the posterior in Equation (7.2) can be decomposed as,

Σ =
(
σ−2HTH +A

)−1
(7.8)

=

(
σ−2HTH + α̃ieie

T
i +

∑
j �=i

α̃jeje
T
j

)−1

=
(
Σ−1

−i + α̃ieie
T
i

)−1

= Σ−i −
Σ−ieie

T
i Σ−i

α̃−1
i + eT

i Σ−1ei

where matrix Σ−i denotes the covariance matrix computed after excluding compo-

nent indexed with i from the model.

Substituting Equation (7.8) in Equation (7.7) one arrives after some mathemat-

ical manipulations to the following implicit expression

α̃−1
i = w2

i + zi −
z2i + 2ziw

2
i

α̃−1
i + zi

+
z2iw

2
i

(α̃−1
i + zi)2

where the following quantities have been defined

zi = eT
i Σ−iei

w2
i = σ2eT

i Σ−iH
TyyTHΣ−iei. (7.9)

Viewing the implicit equation as a recursive form the following map function is

defined for iteration t,

α̃
[t+1]
i =

⎡
⎣w2

i + zi −
z2i + 2ziw

2
i

1

α̃
[t]
i

+ zi
+

z2iw
2
i

( 1

α̃
[t]
i

+ zi)2

⎤
⎦−1

= F (α̃
[t]
i ) (7.10)

which gives the value of α̃
[t+1]
i at iteration t given its value at the previous iteration.

The authors then adopt a fixed point analysis by letting t → ∞ and study the

fixed point of map function F for stability. At convergence it holds that α̃
[t+1]
i =

α̃
[t]
i = α̃∗

i . The two fixed points are found which are asymptotically stable:

α̃i =

⎧⎨
⎩(w2

i − zi)
−1, if w2

i > zi

+∞, if w2
i ≤ zi.

(7.11)
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The first fixed point is found by solving α̃∗
i − F (α̃∗

i ) = 0 while the second one is

readily available from inspection. The authors then compute the absolute value of

the derivative of the map function at the first fixed point,

dF (α̃∗
i )

dα̃∗
i )

∣∣∣∣∣
α̃i=(w2

i−zi)−1

= −zi(zi − 2w2
i )

w4
i

(7.12)

∣∣∣∣zi(zi − 2w2
i )

w4
i

∣∣∣∣ < 1

In order for the fixed point α̃i = (w2
i − zi)

−1 to be asymptotically stable and positive

(absolute value of the derivative at that point smaller than 1) the rule w2
i > zi must

hold, otherwise the fixed point diverges and α̃i = +∞. The positivity constraint

rises from the definition of the Gamma distribution.

It can be seen from Equation (7.12) that the intermediate iterations for comput-

ing the model parameters can be circumvented by iteratively computing the fixed

points. Moreover by studying the stability of these fixed points it becomes possible

to analytically prune those parameters for which the fixed point is not asymptotically

stable. It is uncertain whether the convergence points of the two approaches (the

traditional and the fast) will converge be the same. Nevertheless this is quite prac-

tical since for sparse signal recovery a threshold function is usually required. The

pruning rule takes this part. This results in a highly efficient variational algorithm

for sparse Bayesian learning.

7.3.1 Equivalence with Type-II Maximum Likelihood

From Chapter 5 the optimal values for the variance point estimates where found

via Type-II Maximum Likelihood to be,

αi =

⎧⎨
⎩

s2i
q2i −si

, for q2i > si

+∞, for q2i ≤ si.

where si = hT
i C

−1
−i hi, qi = hT

i C
−1
−i y and C−i =

(
σ2I +

∑
j �=i α

−1
j hjh

T
j

)
.

It is easy to show by computing C−1
−i that the following equalities hold [86]

zi = s−1
i

w2
i =

q2i
s2i
.

This summarises to the fact that for an uninformative prior Gamma distribu-

tion the pruning rules and the variance values αi derived from the Fast variational

approach are in fact the same as the ones given by the Fast Marginal Maximum
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Likelihood.

7.4 Employing an Informative Prior

It was underscored in Section 7.2 that the VSBL approach allows for estimating

not only point estimates for αi but the parameters of its distribution hence providing

a fully Bayesian framework. It was also shown above that by iterating Equations

(7.2) and (7.4) the variational lower bound is maximised and a solution which best

describes the data in y will be recovered. Focusing on the properties of the hier-

archical model of SBL the fast Type-II (FMLM) and the fast Variational (FVSBL)

algorithms manage to achieve excellent performance and scalability by assuming an

uninformative prior distribution for αi. It was also shown [86] that both algorithms

are effectively equivalent regarding the analytical pruning rules and solutions.

Reverting to the initial reasons for adopting the variational approach; one wishes

to place different preference over the variance of each xi. This is mostly attributed

to relevant experience for the given sparse problem or due to some expert system or

empirical model. Put simply, the variance of the sparse components might have a

certain bias towards some values than some others. An example which will occupy

a whole chapter later in the text is that of sparse channel estimation. Envision a

component xi of a multipath communications channel residing at delay i and another

component xj. Assume that j > i, i.e., component xj resides at a greater distance

from the receiver than xi. If one adopts the known hierarchical Bayesian model then

it is expected that the variances are likely to satisfy αi > αj due to the physical

phenomena governing the channel, i.e, components closer to the receiver will have

exponentially larger magnitudes. It is desired that this prior knowledge about the

nature of the problem to be somehow implemented into the inference algorithm.

The variational approach allows for this to be implemented naturally since for

each αi a complete distribution is assumed and a certain statistical bias can be

imposed by appropriately selecting the corresponding values for ai > 0, bi > 0 (the

parameters of the hyper-prior Gamma distribution). It was highlighted in Section

7.1 that Type-II is not suitable for this task. Even though the VSBL algorithm can

handle this addition it has been shown that it is not efficient for sparse signals.

Attempting to use the FVSBL algorithm presented in the previous section halts

at the second line of Equation (7.8) for the update of the mean of αi,

α̃−1
i =

bi + 1/2(μ2
i + Σi,i)

ai + 1/2
.

By setting non-zero values for ai and bi one quickly realises that there is a major

discrepancy with the analytical pruning rule in Equation 7.11 since the fixed point
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of α̃i = +∞ can no longer be reached. Strictly speaking the FVSBL can still be

employed to perform inference but the performance gains are questionable since no

pruning will be taking place for any component. In such case for an informative prior

the original variational approach is more fitting. It will be demonstrated later in the

text - as another contribution of this thesis - that there exists a set of modifications

that actually allow for a fast algorithm to exist for an informative variational SBL

model.

7.4.1 Related Approaches

Strictly speaking the problem of infusing prior information in the recovery of

a sparse signal can be addressed in a deterministic way in a simplistic setting.

Consider a sparse signal x with support set T . A sparse recovery algorithm is used

to produce an estimate x̂. For the sake of discussion assume that the Orthogonal

Matching Pursuit algorithm is used (see Chapter 2, Algorithm 1). The algorithm is

usually initialised with an empty support set T [0] and a x̂ = 0. It is possible that

some estimate T̃ of the true support set is available along with some prior estimate

x̃. Quite simply the OMP algorithm can be initialised with T̃ and x̃ instead of the

usual initialisations. This of course affects convergence and recovery performance

in numerous ways. To be pedantic it is also related to the problem of dynamic

sparse signal recovery discussed in Chapter 6 and more specifically to that of sparse

recovery problems with partially known support. It is easy to envision that the

available estimates T̃ , x̃ might actually be seen as the output of the algorithm from

one iteration to the next. The authors in [102] have addressed this issue and have

been able to derive certain performance guarantees.

Despite this vantage point is quite interesting it will not occupy this text any

further. The approaches studied here despite being applied for sparse recovery or

basis selection, they differ from non-Bayesian methods since they attempt to fit the

given measurements in a certain hierarchical Bayesian model. From what has been

discussed so far this involves the definition of a hyper-prior, a prior distribution and

a measurement distribution. Sparsity is then realised via an inference mechanism

which provides estimates for the model parameters. In this rationale, any prior

knowledge about the sparse signal has to be implemented in a systematic way that

respects the model structure so that meaningful results are produced.

It is a fact that not many cases exist in the bibliography that explicitly address

the problem of adopting informative prior distributions for the specific hierarchical

Bayesian model. From a completely different perspective but still nearby the authors

in [64] perform a study for the benefits of informative prior distributions for inference

in graphical models. A very vague mention for sparsity is made in [43] where a very
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specific prior is proposed for general regression problems. The authors propose a

prior that is able to cope with large datasets in which the number of predictors is

small. This is related to sparse system models but the overall proposed structure

does not fit in the cases studied here. A discussion of similar nature takes place in

[70] but for single-layer graphical models which is clearly more confined than the

sparse Bayesian model considered here.

7.5 Modified Fast Variational Bayesian Learning

In this section a set of modifications to the fast VSBL approach that are an

original contribution of the thesis. The same analysis is carried out as before like

in [86] but this time an informative prior is employed so one has ai > 0, bi > 0. A

similar map function like the one in Equation (7.10) is derived,

(2ai + 1)

α̃
[t+1]
i

=

⎡
⎣2bi + w2

i + zi −
z2i + 2w2

i zi
1

α̃
[t]
i

+ zi
+

z2iw
2
i

( 1

α̃
[t]
i

+ zi)2

⎤
⎦

= G(α̃
[t]
i ). (7.13)

Likewise, to derive the fixed points of the above map function the roots of the

following equation must be found,

α̃∗
i −G (α̃∗

i ) = 0. (7.14)

It turns out that the polynomial in Equation (7.14) is not as well-posed as the one

in Equation (7.10). A quick inspection reveals that the additional terms attributed

to the informative prior cause this issue and map function G cannot be factorised

easily enough to allow for simple closed form solutions for the fixed points. A study

in [12] has pointed out these issues as well. The solutions of this cubic polynomial

of course can be derived using basic results from algebra; the expressions for the

roots of a cubic can be analytically produced but their intricacy does not allow for

any results like the ones derived earlier. The problem of choosing one of the three

roots of the polynomial then arises.

Theorem 15 (Karseras, Dai). Assume a Gamma hyper-prior for αi with ai >

0, bi > 0 and that the values of αj �=i are fixed. Let α̃∗
i be the value at which the map

function G converges when iteration t → ∞. Then β∗
i = 1

α̃∗
i
+ zi is one of the three

solutions of the cubic polynomial,

f(β∗
i ) + g(β∗

i ) = 0 (7.15)
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that satisfies β∗
i > zi, where

f(β∗
i ) =

(
β∗
i − w2

i

)
(β∗

i − zi)
2

g(β∗
i ) = 2(β∗

i )
2(ai(β

∗
i − zi)− bi).

Proof. Starting from Equation (7.13) and substituting the fixed point α̃∗
i = α̃

[t+1]
i =

α̃
[t]
i ,

(α̃∗
i )

−1 =
1

2ai + 1

[
2bi + w2

i + zi −
z2i + 2w2

i zi
(α̃∗

i )
−1 + zi

+
z2iw

2
i

((α̃∗
i )

−1 + zi)
2

]

(α̃∗
i )

−1 + zi =
1

2ai + 1

[
2bi + w2

i + zi −
z2i + 2w2

i zi
(α̃∗

i )
−1 + zi

+
z2iw

2
i

((α̃∗
i )

−1 + zi)
2

]
+ zi

(β∗
i )

3 − (β∗
i )

2(w2
i + 2zi) + β∗

i (z
2
i + 2ziw

2
i )− z2iw

2
i = (β∗

i )
2(2bi − 2ai(β

∗
i − zi))

(β∗
i − w2

i )(β
∗
i − zi)

2︸ ︷︷ ︸
f(β∗

i )

+2(β∗
i )

2(ai(β
∗
i − zi)− bi)︸ ︷︷ ︸

g(β∗
i )

= 0.

At the second step the substitution took place, β∗
i = (α̃∗

i )
−1 + zi. One arrives at the

claimed result after a careful re-ordering of the terms.

Theorem 15 dictates that the map function is indeed quite simple to comprehend;

it can be seen as being consisted of two discrete parts. Using variable βi as a proxy

the situation becomes easier to handle. As will be shown next this is the first step

towards arriving at some positive results about the aforementioned problems. The

first part, function f(β∗
i ) is actually the same as the map function for when an

uninformative prior is used. The second part, function g(β∗
i ) represents that bias

induced by the additional terms for when ai > 0, bi > 0. It can be easily verified

that for the uninformative case function g vanishes. Solving f(β∗
i ) = 0 will result in

the same fixed points for FVSBL.

7.5.1 A set of Practical Rules

Theorem 15 provides useful intuition for the fixed points and facilitates further

qualitative analysis by using functions f and g. Proposition 1 suggests that it is

possible to identify the cardinality of the fixed set given certain conditions. From

basic algebra it is known that a cubic polynomial can have either 3 real roots or 1

real root and two imaginary ones (conjugate to one another). From this point on,

valid roots are those that belong in R
+ since the according to the model the roots

represent variances which are positive dimensionless numbers.
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Proposition 1 (Karseras, Dai). Assume that the same conditions hold as in The-

orem 15. Solving Equation (7.14) can result in one of the following cases:

1. if w2
i ≤ zi, then there may exist three distinct valid roots,

2. if w2
i > zi, then for bi

ai
≥ 2

3
(w2

i − zi) there exists only one valid root,

3. if w2
i > zi, then for bi

ai
< 2

3
(w2

i − zi) there may exist three distinct valid roots.

Proof. The process starts from computing the roots of the two auxiliary functions

f(βi) and g(βi) and of their derivatives. For f(βi)

f(βi) = (βi − w2
i )(βi − zi)

2 = 0

⇒ βi = w2
i or βi = zi

f ′(βi) = (βi − zi)
[
(βi − zi) + 2(βi − w2

i )
]
= 0

⇒ βi = zi or βi = 1/3(2w2
i + zi).

For g(βi)

g(βi) = 2(βi)
2(ai(βi − zi)− bi) = 0

⇒ βi = 0 or βi = bi/ai + zi

g′(βi) = 6aiβ
2
i − 4βi(aizi + bi) = 0

⇒ βi = 0 or βi = 2/3(bi/ai + zi)

A sign diagram is drawn for both functions for the case where w2
i < zi.

βi

f ′(βi)

f(βi)

0 w2
i

2w2
i+zi
3

zi +∞

+ + 0 − 0 +

− 0 + + 0 +

βi

g′(βi)

g(βi)

0 2(bi/ai + zi)/3 bi/ai + zi +∞

0 − 0 + +

0 − − 0 +

From the sign table for f it is directly evident that there is a maximum at

βmax = (2w2
i + zi)/3 and a minimum at βmin = zi. Function g exhibits a root at

bi/ai + zi. Based on this it is certain that there exists a root β1
i ∈ (zi, bi/ai + zi) for
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the sum f + g. This happens since the point

f(βmin) + g(βmin) < 0

will always be negative hence f+g will exhibit a sign change in the interval (zi, bi/ai+

zi).

It is possible to identify the existence of maybe two additional roots by observing

the behaviour of f and g in the interval (w2
i , zi). More specifically, in case,

f

(
2w2

i + zi
3

)
+ g

(
2w2

i + zi
3

)
> 0

then there will certainly exist another two roots β2
i , β

3
i ∈ (w2

i , z
2
i ) since f(w2

i ) +

g(w2
i ) < 0 and f(zi) + g(zi) < 0 always. It is easy to see that in case,

f

(
2w2

i + zi
3

)
+ g

(
2w2

i + zi
3

)
= 0

then there will only one additional root and
2w2

i+zi
3

will be a local maximum of f+g.

Lastly, in case

f

(
2w2

i + zi
3

)
+ g

(
2w2

i + zi
3

)
< 0

there will be no additional roots. In all cases if any additional roots exist they will

lie in the interval (w2
i , zi).

The same is performed for the case when w2
i = zi. This case being easier the

derivative test is not required.

βi

f(βi)

g(βi)

0 w2
i = zi bi/ai + zi +∞

− 0 + +

− − 0 +

For this case it is easy to verify that

g(w2
i = zi) < 0

and that

f (bi/ai + zi) > 0.

By inspecting the table it is then evident that f + g will exhibit a change of signs

in the interval (w2
i = zi, bi/ai + zi) indicating the existence of only one solution.

The same is repeated for the case when w2
i > zi.
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βi

f ′(βi)

f(βi)

0 zi (2w2
i+zi)

3
w2

i +∞

+ 0 − 0 + +

− 0 − − 0 +

βi

g′(βi)

g(βi)

0 2(bi/ai + zi)/3 bi/ai + zi +∞

0 − 0 + +

0 − − 0 +

Actually the sign table for g(βi) remains the same but is repeated for convenience.

From the table f exhibits a minimum at βmin =
(2w2

i+zi)

3
and a root at w2

i . Since g has

a root at bi/ai + zi the existence of more than one roots depends on the relationship

between βmin and bi/ai + zi.

More specifically, if bi/ai + zi ≥ (2w2
i + zi)/3 ⇒ bi/ai ≥ 2(w2

i − zi)/3, one identifies three

cases for the single root β1
i

if w2
i > bi/ai + zi then β1

i ∈
(
bi/ai + zi, w

2
i

)
,

if w2
i = bi/ai + zi then β1

i = bi/ai + zi,

if w2
i < bi/ai + zi then β1

i ∈
(
w2

i , bi/ai + zi
)
.

In the first and third cases there is a sign change in the corresponding intervals while

for the case in the middle the result is immediately drawn from the table since both

f and g exhibit a root at the same point. There only exists a single root since f + g

exhibits only a single sign change.

Now focus is turned at the case where bi/ai + zi < (2w2
i + zi)/3 ⇒ bi/ai < 2(w2

i − zi)/3.

By inspecting the tables for the interval (zi, bi/ai+zi, ) one notices that f+g < 0 and

that two sign changes are possible depending on the values of g(βi) for βi > bi/ai+ zi

and f(βmin). One then can deduce that three distinct real roots are possible in the

interval (bi/ai + zi, w
2
i ).

Proposition 1 suggests that in some cases it is possible for the fixed set to con-

tain three distinct real fixed points without being able to identify which one should

be selected. Comparing the results from the proposition and the pruning rule in

Equation (7.11) one quickly notices that indeed it is not applicable as in some cases

some basis functions might get pruned when they should not and vice versa. In-

deed this agrees with intuition as well since from what was demonstrated above the

existence or not of more than one valid fixed points depends on the value of ai, bi

and more specifically on the relation ship between the local extrema of functions
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f and g. The only situation in which no selection needs to take place is in case 2

where a single valid fixed point can exist. A numerical example for the third case

can be constructed by setting w2
i = 0.6, zi = 0.4, ai = 0.02 and bi = 0.002. Similar

examples can be constructed for all cases.

Fixed point selection

Focusing on those cases where there exist three distinct possible fixed points

for α̃∗
i (equivalently for β∗

i ), a choice must be made. In order to resort to a choice

the stability of each fixed point has to be assessed like in Equation (7.12). This

requires the analytical expression of dG
dα̃i

to be calculated at each of the three possible

fixed points α̃∗
i and then to check whether they are asymptotically stable or not.

The highly complicated expressions unfortunately prohibit this analysis and a work

around must be found.

Since the variational approach aims to maximise the variational lower bound a

reasonable choice is to choose the fixed point that achieves the variational lower

bound to increase the most. This would effectively mean that the update equations

for the parameters of the variational model to be updated in triplicate and then for a

choice to be made based on the variational lower bound (also computed three times).

Since this would lead to an increase in the computational demands, especially for

large systems and sparse signals a different route is chosen.

The following conjecture which suggests a simple and effective remedy to this

problem.

Conjecture 1 (Karseras, Dai). In case the solution of Equation (7.14) results in

three distinct real roots 0 < α̃1
i < α̃2

i < α̃3
i < +∞ then α̃1

i causes the variational

lower bound L to increase the most. The same holds if two distinct real roots exist.

In Conjecture 1 it is argued that in the case where three distinct real fixed

points exist, the best choice as far as the lower bound is concerned is to select

the smallest one in value. The motivation behind the conjecture is that since the

hierarchical model tends to promote sparse signals then choosing the fixed point

which corresponds to the smallest variance α̃i is more likely to contribute towards

inferring a sparse xi , hoping that this way the approximating distribution Q(x,α)

will be closer to the truth. The conjecture has not been able to be proven yet but

empirical results show that it achieves very good results.

7.5.2 Controlling complexity for superfluous parameters

A practical way to allow further control over the overall complexity is to update

only those parameters for which α̃∗
i is above a certain threshold. In [86] it was
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discussed that
w2

i

zi
= SNRi

can be seen as an estimate of the signal-to-noise ratio for component xi. Then the

pruning rule can be recast as

w2
i > zi · SNR′

i

for a given SNR′
i value. This proposal is perfectly in sync with the proposed ap-

proaches for an informative prior. Quite easily one can chose to update only those

parameters for which α̃∗
i > σ2, i.e., that exhibit variance greater of that of the noise.

Algorithm 8 Extended Fast Variational Sparse Bayesian Learning

Input : H , y, σ2, hyper-prior parameters ai, bi∀i ∈ [1,m] and threshold τ .
Initialise :

1. Initialise σ2 to some appropriate value and α̃
[−1]
i = +∞ for i ∈ [1,m].

2. Compute α̃
[0]
i from Equation (7.13).

3. T = { index i for which αi is minimum }.
4. Compute Σ,μ and ãi, b̃i using only the indices i ∈ T .

Iteration [t]:

1. For each i ∈ T c = [1,m]− T :

Compute w2
i , zi according to Equations (7.9).

Compute solutions of Equation (7.14) using a numerical method and form
fixed set A. The fixed set will contain three elements.
Set α̃

[t]
i = min{A} where min{A} selects the minimum positive real ele-

ment from A.
If α̃

[t]
i < τ then set T = {i, T } and update Σ,μ based on the new α̃

[t]
i .

2. For each i ∈ T :

Compute w2
i , zi according to Equations (7.9).

Compute solutions of Equation (7.14) using a numerical method and form
the fixed set A.
Set α̃

[t]
i = min{A} where min{A} selects the minimum positive real ele-

ment from A.
If α̃

[t]
i > τ then set α̃

[t]
i = +∞.

Update values of Σ,μ based on the new α̃
[t]
i .

3. Compute the variational lower bound L[t] according to Equation (7.6). If the
change form L[t−1] is below some threshold then quit.

Output :

1. Estimated support set T and sparse signal x with mean μ and covariance
matrix Σ.

143



Chapter 7

7.5.3 The Extended Fast Variational Sparse Bayesian Learn-

ing Algorithm

The steps of the extended fast variational algorithm are described in Algorithm

8. The reader will notice that the steps of the algorithm are divided into two parts;

the first part being responsible for updating the statistics for the indices outside of

a support set while the second part being responsible for updating those elements

corresponding to indices inside a support set. This is done to facilitate the use of

a threshold τ like it was discussed in Subsection 7.5.2. This is of course optional

and in case a threshold is not used the algorithm would have to be altered slightly

(basically one then would set T = [1,m] constantly and the first group of updates

would vanish).

Also importantly the algorithm requires the constant updating of the quantities

Σ,μ of the posterior. This can be efficiently performed by extensive use of the

Woodbury matrix identity for adding, deleting and updating of specific parts of a

matrix or a vector. The expressions for such efficient operations can be found in

[86] but in [90] as well.

7.6 Empirical Results

(a) e-FVSBL returns an exactly sparse
signal in contrast to VSBL.

(b) e-FVSBL converges faster, at a
higher lower bound with smaller error.

Figure 7.2: Reconstruction performance for H ∈ R
128×256, |T | = 20 and σ2 = 0.01 for

a zero-one sparse signal. The Gamma distribution parameters are set to ai = bi = 0.13.

The performance of the proposed algorithm namely the extended Fast Variational

Sparse Bayesian Learning e-FVSBL is assessed. At first the performance of e-FVSBL

is compared against VSBL in terms of sparse signal recovery, convergence speed

(iteration count t) and reconstruction error e. The entries of H ∈ R
128×256 are

drawn from N (0, 1/√n). Signal x is a zero-one sparse signal with support set T
chosen uniformly at random from [1,m] with |T | = 20 and σ2 = 0.01. A single run
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of the algorithms was performed with y, σ2 as input. The sparsity level needs not

be known as was discussed in earlier chapters. The Gamma parameters were set to

ai = bi = 0.13 for all i ∈ [1,m]. A threshold τ = σ2 was also used.

In Figure 7.2a the original signal is shown versus the recovered. The e-FVSBL

does not suffer from the small amplitude components giving an exactly sparse signal.

This causes a decrease in convergence speed as shown in Figure 7.2b where e-FVSBL

converges in only 10 iterations. Convergence was assumed when the difference in

the variational lower bound went below 0.18. The number of iterations was limited

to 30 since VSBL during tests took more than 700 iterations to converge. It is also

shown that the e-FVSBL achieves a significantly higher variational lower bound and

higher reconstruction accuracy.

Problem Iterations (t) Runtime (sec)

Size e-FVSBL VSBL e-FVSBL VSBL

128×256 10 40 0.44 0.75
256×512 9 39 1.20 3.91
512×1024 8 38 6.63 25.28
1024×2048 9 38 62.2 142.88

Table 7.1: Comparison for ai = bi = 0.13, |T | = 20, σ2 = 0.01 and for increasing
problem size.

Table 7.1 compares the convergence speed and runtime (in seconds) of e-FVSBL.

In this scenario increasing problem sizes are considered, i.e., the design matrix H is

re-sampled at different sizes. The sparsity level and prior distribution strength are

kept unchanged. It is evident that the proposed algorithm succeeds in recovering

sparse signals under the informative assumption showcasing significantly reduced

computational complexity and runtime.

Prior |S| = 15 |S| = 30

ai = bi ‖e‖2 |T ′| t ‖e‖2 |T ′| t

0.12 0.54 71 35 0.13 50 11
1 0.57 71 48 0.13 50 10
102 0.55 69 24 0.12 50 9
105 0.62 69 27 0.12 50 9

Table 7.2: Comparison for H ∈ R
128×256, |T | = 50, σ2 = 0.01 at different sizes of S

against different prior strength.

For Table 7.2 a stringent scenario is assumed. For a subset S ⊂ T a stronger

prior is employed expressing prior preference. For subset i ∈ T − S the prior is

set to ai = bi = 0.15 while the prior for i ∈ S varies as shown in Table 7.2. The
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algorithm is tested for different sizes of S against reconstruction error, recovered

support set cardinality ‖T ′‖ and iteration count. It is considered that |T | = 50

while H ∈ R
128×256. Recovery using uninformative priors under-performs with

‖e‖2 = 0.55 and |T ′| = 71. Table 7.2 shows that for adequately large S, i.e.

adequate prior information, exact recovery is possible. By increasing the strength

of the prior is it also possible to improve convergence speed.

7.7 Conclusion

Certain cases exist where the hierarchical model for sparse Bayesian learning

is crippled when it comes to adopting some attributes of the system under study.

In cases like this it is presumed that some knowledge is available for the sparse

components of a signal, for example some components should exhibit a smaller

magnitude than others because of the physical properties of the problem.

Under the usual assumptions for uninformative hyper-prior distributions that are

made in the bibliography the available inference algorithms are capable of excellent

performance. It was underscored that the nice properties of these algorithms vanish

when it comes to the cases of interest described above. The main contributions

in this chapter is that informative hyper-prior distributions can be used to inject

certain prior statistical knowledge in the model and that efficient algorithms can be

derived to perform inference.
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Multipath Channel Estimation

This chapter builds upon the idea of incorporating prior statistical information

for the problem of channel equalisation. More specifically pilot-assisted Orthog-

onal Frequency-Division Multiplexing (OFDM) systems are considered. Focus is

on cases where prior information about the distribution of the channel coefficients

can be used to enhance the equalisation process and achieve improved performance

and convergence speed. This is performed by considering certain informative prior

distributions for the channel coefficients ci.

Assuming a sparse multipath channel, the equalisation problem is amenable to

a Bayesian formulation and inference can be performed in the well-known Sparse

Bayesian Learning (SBL) framework which was discussed extensively in previous

chapters. This translates to adopting a hyper-prior p(αi) for the variance of each

coefficient p(ci|αi) which will be able to express certain preference over some values

of αi. The variational algorithms that where analysed earlier in the text are indeed a

perfect fit for this task. It was shown that the previously proposed Fast Variational

SBL (FVSBL) algorithm is capable of efficient inference in a true Bayesian setting

but only in the case of uninformative prior distributions. In Chapter 7 a refined

analysis provided a set of very practical extensions to mitigate these problems with

the FVSBL approach.

The previously proposed algorithm, namely the extended Fast Variational Sparse

Bayesian Learning (e-FVSBL) is adapted to perform equalisation for multipath fad-

ing channels in OFDM systems. The proposed approach shows how to exploit prior

knowledge about exponentially decaying power-delay channel profiles to produce

accurate estimates and improve convergence. Empirical results are presented for

synthetic test cases. A real-world example is also presented with a dataset acquired

from private transmissions tests at the Tsinghua University, China.
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Figure 8.1: Example of a simulated multipath fading channel according to the model
described by Equations (8.1) and (8.2).

8.1 Multipath Fading Transmission Channels

Many wireless channels display a scattering nature which results in a sparse

impulse response, i.e., it can be seen as a finite sum of impulses over a finite time

duration. Usually, the power-delay profile of the channel exhibits an exponential

decay of the multipath components. This phenomenon can be attributed to the

propagation of electromagnetic waves and its explanation falls outside the purpose

of this text. For the discussion to follow it will be used as a fact but the methods

developed are not limited to such an assumption and accept any class of channel

profiles.

Envision a sparse multipath channel described by

c(t) =
K∑
k=1

ckδ(t− tk), 0 ≤ tk ≤ Tcp, (8.1)

a finite sum of Dirac impulses with complex coefficients ck. The delay values tk are

chosen uniformly at random from the continuous interval [0, Tcp] where Tcp in reality

is equal to +∞. For practical purposes a finite value is considered to aid equalisation

and in OFDM systems it is usually considered to be less than the duration of the

cyclic prefix. A valid choice for K is the one proposed in [74] where

p(K) = Pois(K|M) =
MKe−M

K!

is taken to be Poisson distributed with M being constant. The number of non-

zero components greatly affects the performance of sparse recovery algorithms and

also depends on the environment. So in effect K models the number of multipath
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components. One can easily imagine that K can also tend to ∞ in reality with the

corresponding coefficients having near-zero values.

To model an exponentially-decaying profile, the coefficients are conditioned on

their corresponding delays as a Gaussian distribution,

ck|tk ∼ N (0, σ2(tk)), σ2(tk) = ue−
tk/v. (8.2)

The model further contains two deterministic parameters; v which is the decay rate

and u which is a normalisation constant. These two constants are considered to

be given or somehow estimated since they represent the physical properties of the

channel. They can be derived from an empirical model or expert knowledge about

the channel. An exponentially decaying power-delay profile portrays a number of

physical channels both over-the-air and underwater [48, 58]. It is possible that the

power-delay profile of a channel to follow some different trend and not an exponential

one. The model presented here is general enough to demonstrate the proposed

methods but not limiting as to sacrifice generality.

In Figure 8.1 a simulated channel drawn from this model is shown. The sam-

pling frequency was set to 10 MHz and M = 8. The continuous line represents

the exponential trend used to draw the channel coefficients drawn as stems. The

exponential decay rate was set to v = 0.4μs. The channel duration was set to 3.2μs.

On the right hand side of Figure 8.1 one can observe the troublesome nature of such

a channel.

In Figure 8.2 the expected value 〈ck〉 of 226 real-world channel responses is

plotted [25]. The sampling rate for this specific experiment was 7.56MHz and the

DTMB-A system under test was able to output the estimated channel at 256 taps.

The lines above and below represent 〈ck〉 ± σck , i.e, the mean value plus/minus one

standard deviation. It is evident that the variance of the channel coefficients exhibits

an exponential decay and though not strictly sparse, the channel can be considered

as such since the number of significant components is small and placed at smaller

delays.

8.2 OFDM Signal Model

Consider a perfectly synchronised, single-user OFDM system with N sub-carriers

and a cyclic prefix (CP) of D samples, duration Tcp = DTs and sampling period Ts.

The channel has a finite impulse response c = [c1, · · · , cL] with L ≤ D and is

stationary during the transmission of a single OFDM symbol.

TheN -point inverse fast Fourier Transform (FFT) of a data block s = [s1, · · · , sN ]T
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Figure 8.2: Mean and variance of measured channel components.

is computed and the CP is added to form the transmit OFDM symbol,

xcp = [xN−D+1, · · · , xN , x1, · · · , xN ]
T

with x = FHs and F the FFT matrix. The data in s usually come from a modula-

tion scheme, e.g., QAM and have unit power. The received block of data is denoted

as rcp ∈ C
(N+D)×1.

rcp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1
...

rD

rD+1

...

rN+D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N+D)×1

=
[
CISI CIBI

]
(N+D)×2(N+D)

[
xcp

xIBI

]
2(N+D)×1

.

At the receiver the CP is discarded leading to the disappearance of the inter-block

interference (IBI) imposed by matrix CIBI . The inter-block interference is a result

of the previously transmitted symbol xIBI still present on the channel during the

transmission of xcp. Next it is easy to verify that

⎡
⎢⎢⎣
rD+1

...

rN+D

⎤
⎥⎥⎦

N×1

=

⎡
⎢⎢⎣

cL · · · c1 · · · 0

0N×(D−L+1)
...

. . . . . . c1 0

0 · · · cL · · · c1

⎤
⎥⎥⎦

N×(N+D)︸ ︷︷ ︸
lower part of CISI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xN−D+1

...

xN

x1

...

xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N+D)×1

.

Based on the above and after an N -point FFT is taken, this can be conveniently
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re-written as

y =

⎡
⎢⎢⎣
y1
...

yN

⎤
⎥⎥⎦ = F

⎡
⎢⎢⎣
rD+1

...

rN+D

⎤
⎥⎥⎦ = FCFHs+ n = Hs+ n = Sh+ n, (8.3)

where n ∼ CN (0, σ2
nI) denotes noise samples drawn from the Complex Normal

distribution and S = diag(s) and superscript H denotes the Hermitian transpose.

The second step is a direct consequence of the cyclic prefix being longer than the

duration of the channel. Matrix C is the following circulant matrix,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 0 · · · 0 cL · · · c3 c2

c2 c1 · · · · · · 0 cL · · · c3
...

. . . · · · . . . · · · . . . · · · ...

cL · · · c2 c1 0 · · · · · · 0

0 cL · · · c2 c1 0 · · · 0
...

. . . · · · . . . · · · . . . · · · ...

0 · · · · · · cL cL−1 · · · · · · c1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

= FHHF

where H = diag(h) and h = FHc. This is due to the fact that every circulant

matrix can be diagonalised by the Discrete Fourier Transform. Equalisation is then

performed with an element-wise division of y with an estimate ĥ of the channel’s

frequency response.

8.2.1 Pilot-assisted Channel Estimation

Pilot symbols are transmitted at selected sub-carrier frequencies. Both the pilot

symbols and their corresponding sub-carrier frequencies are known at the receiver.

Let the set of pilot sub-carriers be I ⊂ [1, N ] with |I| = m. For the noiseless case

it was shown in [96] that a Zero Forcing (ZF) equaliser can be realised as,

(ĥZF )I = S−1
I yI (8.4)

where the subscripted quantities indicate entries indexed by I. The received symbols

in yI are used for performing channel estimation and then equalisation of the rest

of the symbols indexed by [1, N ]− I.
Far better performance can be achieved by formulating a sparse recovery problem

with the help of a discrete dictionary [79, 74, 8]. Multipath fading channels tend to

have a response that can be taken to be sparse. The experimental data shown in

Figure 8.1 shows that only a few components closer to the receiver can contribute
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significantly. In addition the channel samples is usual to have a decay trend as the

time delay increases in the channel duration interval.

Assuming that sk = 1 + j0 for k ∈ I then yI are samples of the frequency

response,

S−1
I yI = hI + S−1

I n

A partial Fourier matrix Φ ∈ C
m×n acts as as dictionary on a discrete set of delays

T = {i · Tcp/n|0 ≤ i ≤ Tcp − Tcp/n},

Φk,l = e−2π
√
−1fkτl , k ∈ I, τl ∈ T . (8.5)

where fk = k/N · Ts is the kth pilot sub-carrier frequency. A sparse recovery problem

is formulated as follows,

S−1
I yI = Φĉ+ S−1

I n (8.6)

where a suitable algorithm recovers a sparse vector ĉ. An estimate ĥ is computed

by extending the dictionary in Equation (8.5) to k ∈ [1, N ], i.e., all the sub-carrier

frequencies.

8.3 Hierarchical Bayesian Channel Model

As discussed in Section 8.1, the multipath channel is taken to be sparse (or

at least approximately) and its power-delay profile is exponentially decaying. One

way to capture this prior statistical information is to use the following hierarchical

Bayesian model. In particular, the complex channel coefficients ci are modelled

by the circularly-symmetric complex Gaussian random variable ci ∼ CN (0, σ2
c,i).

However, if the values of σ2
c,i are chosen as fixed constants, then the support set

of the channel coefficients is fixed, that is, ci = 0 with probability equal to one if

σ2
c,i = 0 and ci �= 0 with probability equal to one otherwise. From what has been

discussed, the sparsity pattern of the channel is decided by the wireless environment

and subjects to temporal changes. This physical phenomenon can be described

by the hierarchical Bayesian model which models the inverse variance σ−2
c,i of each

sparse coefficient as a random variable. The certain choice of a Gamma hyper-prior

is convenient because as it was discussed in Chapter 4, it is conjugate to CN (0, σ2
c,i)

thus making computations analytically tractable.

Let α−1
i := σ2

c,i and αi be Gamma distributed

p(αi) = Gamma(ai, bi) =
baii

Γ(ai)
αai−1
i e−biαi
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where Γ(ai) is the Gamma function. Then

p (c|α) =
n∏

i=1

CN
(
0, α−1

i

)
= CN

(
0,A−1

)

where matrix A = diag([α1, · · · , αn]). The marginal of ci is given by integrating out

αi from p(crei |αi) and p(cimi |αi),

p(crei ) = p(cimi ) = St(ai, bi) (8.7)

where crei = �{ci}, cimi = �{ci} and St denotes the Student-t distribution with zero

mean. Due to the heavy tails of the Student-t distribution, the channel coefficients

ci will be sparse. By designing the parameters ai and bi (see more details in Section

8.4), a desired power-delay profile can be achieved. Given the channel coefficients

and the channel noise variance, the distribution of the received signal is given by

p(yI |c, σ2
n) = CN (Φc, σ2

nI).

Here, the noise variance σ2
n is known at the receiver, which is the common assumption

in practice. Unlike traditional sparse recovery algorithms, this model allows the

automatic determination of the number K of the multipath components which is a

random variable.

The hyper-prior is a nodal point for this work as it allows to express preference

for certain values of the variance of the multipath components. Note that given

hyper-parameters αi, the channel estimation problem reduces to the classic MMSE

estimation for Gaussian random variables and admits a linear solution given by

ĉ = σ2
n

(
σ2
nΦ

HΦ+A
)−1

ΦHyI .

To estimate the optimal values for αi becomes the major task. This task can be

achieved by using variational methods. The details of the iterative updates are given

as follows. From the previous chapter; a factorised approximation to the posterior

distribution is assumed,

p(ĉ,α|yI) ≈ q(ĉ)q(α),

where

q(α) =
n∏

i=1

Gamma(ãi, b̃i)

q(ĉ) = CN (w,Σ).

The Variational Lower Bound (VLB) L is then maximised with respect to each of
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the model parameters,

L =〈ln p(yI |ĉ)〉+ 〈ln p(ĉ|α)〉+ 〈ln p(α)〉 − 〈ln q(ĉ)〉 − 〈ln q(α)〉

which gives the known update formulae as in Chapter 7:

Σ =
(
σ2
nΦ

HΦ+A
)−1

, w = σ2
nΣΦHyI (8.8)

ãi = ai + 1, b̃i = bi + |wi|2 +Σi,i, αi = ãi/̃bi.

The avid reader will notice that there is a slight difference with the corresponding

equations in Chapter 7 because of the use of the Complex Normal distribution.

8.3.1 Related Approaches

The Sparse Bayesian Learning framework has attracted the attention of re-

searchers for the purpose of channel estimation with some of the contributions being

distantly related to the purpose of this chapter. The most alluring aspects of this Hi-

erarchical model for channel estimation is firstly its flexible nature to accommodate

a plethora of situations and secondly the fact that the inference algorithms have a

very nice mechanism of selecting the number of dominant components automatically

without having to cope with fixed sparsity levels.

The authors in [47] have adopted the SBL model for the equalisation of a single

input-output Pulse Amplitude Modulation (PAM) system with two levels, i.e., 2-

PAM. The authors exploit the form of the cost function of a constant modulus

algorithm to incorporate it into the SBL model. This approach falls well outside of

the scope of this chapter since it aims at completely different modulation schemes.

The authors in [23] consider equalisation in OFDM systems by directly applying

the FMLM algorithm ( see Chapter 5 ) but by considering a slightly different im-

plementation to allow tracking of the channel coefficients in a block-spaced manner.

Basically the algorithm exploits the properties of the model to update the channel

estimates by transmitting one pilot at a time. This leads to reduced pilot tone

overhead.

The authors in [76] have proposed an inspired way to use the SBL framework to

perform channel equalisation in OFDM systems. Basically they propose to use the

Expectation-Maximisation approach to infer both the channel and the transmitted

data. This done so as to achieve better performance in equalisation by using the

full block of received symbols y and not just the received symbols related to the

pilots yI . Not that the authors assume a discrete channel and for this they assume

p(ci|αi) for each channel tap and do not assume a dictionary for discretisation of

the channel response.
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From Chapter 5, in the traditional EM algorithm one computes the E-step (the

posterior):

p(c|yI ,α) = Ec|yI ,α[log p(c,yI ,α)]

while at the M-step one maximises,

α̂i = argmax
αi>0

p(c|yI ,α).

In their approach the authors argue that estimating c by using all of the available

data in the block y will result in better performance while at the same time this

will allow for estimating the data symbols as well in s[1,N ]−I . For this reason they

consider at the E-step,

p(c|y, s,α) = Ec|y,s,α[log p(c,y, s,α)]

and at the M-step the joint maximisation of,

{α̂i, ŝ} = arg max
αi>0,s

p(c|y, s,α).

For the M-step basically one then needs to perform two separate maximisation

problems

α̂i = argmax
αi>0

Ec|y,s,α[log p(x,α)]

ŝ = argmax
s

Ec|y,s,α[log p(y|c, s)].

This is the basic idea behind their approach on how the SBL van be beneficial for

channel equalisation.

The work in [74] adopts the continuous channel model described in Section 8.1

and the formulation of a sparse recovery problem like in Subsection 8.2.1 for pilot-

assisted channel estimation in OFDM systems. The authors consider the model in

Section 8.3 which they term as a 3-layer hierarchical model. A variational algorithm

is developed for inference which is based on message passing and bears some resem-

blance with the traditional variational approach. The model makes no assumption

on the type prior even though an uninformative prior is used as per the norm. The

approach makes no attempt for improving the complexity of the algorithm.

8.4 Model Design from Real Data

Consider now the channel profile of Subsection 8.1 where the variance of ĉi at

ti ∈ T is σ2(ti) = u′e−ti/v′
. Based on empirical knowledge of the channel [25], v′ and
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u′ can be defined. Then for every ĉi the values of ai, bi have to be tuned to reflect

this prior preference.

By calculating the variance of each magnitude |ĉi|,

E[|ĉi|2] = E[�(ĉi)2] + E[�(ĉi)2]

= 2

∫
�(ĉi)2p(�(ĉi))d�ĉi =

2bi
ai − 1

,

which is a standard result for the Student-t distribution. In order to impose an

exponential decay on the variance the following is imposed,

2bi
ai − 1

= u′e−
ti/v′

. (8.9)

Note that E[αi] = ai/bi only depends on the ratio hence without loss of generality

the following are defined,

ai =
1

2
u′e

ti/v′
+ 1

bi = 1.

8.5 Extended Variational SBL

Recall from Chapter 7 that for a given index i, the values of αj are fixed for all j �=
i, and only the update of αi is considered. After some mathematical manipulation

one arrives at an implicit expression for α̃r+1
i at iteration r+ 1 as a function of α̃r

i ,

(ai + 1)

α̃
[r+1]
i

= bi + w2
i + zi −

z2i + 2w2
i zi

1/α̃[r]
i + zi

+
z2iw

2
i

(1/α̃[r]
i + zi)2

=: G(α̃
[r]
i ). (8.10)

where zi = eT
i Σ−iei, w

2
i = σ2eT

i Σ−iΦ
HyIy

H
I ΦΣ−iei, Σ−i = (σ2ΦHΦ + Ã−i)

−1, G

is the so-called map function and ei is the i
th canonical vector. Notation Φ−i means

the removal of column i while Ã−i of both the row and column. Please note that

the equation above is slightly different from the one in the previous chapter.

Equation (8.10) specifies the update rule for αi from one iteration to the next.

Letting the iteration r → ∞ one has α̃
[r+1]
i = α̃

[r]
i = α̃∞

i . It has been shown that for

the case of ai = bi = 0, by solving

α̃∞
i −G (α̃∞

i ) = 0, (8.11)
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Figure 8.3: (a) Empirical BER performance for simulated channels (b) BER for real-
world channel responses.

two asymptotically stable fixed points are found:

α̃i =

⎧⎨
⎩(w2

i − zi)
−1, w2

i > zi

+∞ w2
i ≤ zi.

(8.12)

If the variance of a multipath αi = +∞, then ĉi is found not to be active. In the

case of an informative prior (ai �= 0, bi �= 0) the fixed point analysis is not able to

be achieved and therefore the FVSBL cannot be applied to the problem considered

here.

The Extended FVSBL is employed which can handle the informative prior effi-

ciently via a very practical rule. Basically the three possible fixed points of Equation

(8.11) are computed analytically. In the case of imaginary roots then the real one

is selected. The following proposes a way out of the difficult case where three real

fixed points are found.

Conjecture 2 ([52]). If w2
i > zi and the solution of Equation (8.11) results in three

distinct real roots 0 < α̃1
i < α̃2

i < α̃3
i < +∞ then α̃1

i causes the variational lower

bound L to increase the most.

Conjecture 2 recommends that the fixed point which achieves the greatest in-

crease in the VLB is the one with the smallest value. This provides a complete

selection rule for the fixed points even though an analytical expression like in (8.11)

cannot be attained.
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8.6 Test Cases

8.6.1 Synthetic OFDM System

A comparison is made between the uninformative FVSBL (ai = bi = 0), the

Extended FVSBL (ai �= 0, bi �= 0) and a ZF equaliser with synthetic datasets. Con-

vergence for the Extended FVSBL is reached once the change in the VLB between

two iterations falls below 10−7. Convergence of the uninformative FVSBL is tested

like in [86] by checking whether the number of α̃i that satisfy Equation (8.12) has

remained the same and the �2 norm of the difference of the corresponding α̃i be-

tween two iterations has fallen below 10−7. Both algorithms are allowed to run for a

maximum of 1000 iterations and are both initialised with empty models (α̃i = +∞).

An OFDM system with 512 sub-carriers and Fs = 10 MHz is simulated. The

guard interval is Tcp = 32/Fs. Two cases of 32 and 64 pilot symbols are simulated.

The modulation chosen was 4-QAM and the pilot symbols where set to 1 + j0.

A multipath channel was simulated with Poisson parameter K = 10 and additive

white Gaussian noise. The decay rate was set to v = 4/Fs and u was set so that the

components were normalised. The time delays of the multipath components where

chosen from the interval [0, 16/Fs] uniformly at random. The dictionary was built

with 64 atoms according to Equation 8.5. A prior was constructed like in Section

8.4; the decay rate was set to be v′ = v = 10/Fs and u′ = u. The values of ai where

set according to Equation (8.9) for the Extended FVSBL algorithm. This assumes

exact knowledge of the decay rate.

In Figure 8.3a the average BER performance of 200 runs is plotted against a

range of SNR values. By inspecting the FVSBL-32 and the Extended FVSBL-32

curves (32 pilot symbols) one notices the difference in performance by employing

the prior. Both perform better than the ZF because of the sparsity assumption.

The informative algorithm achieves the lowest BER curve even for low SNR values.

Looking at the curves for 64 pilot symbols, the performance for the informative

case is still far better than the uninformative case which has shown only marginal

improvement over the case with 32 pilot symbols. This is an important aspect since

the pilot symbol overhead can be reduced given appropriate CSI.

In Figure 8.4 the runtime is compared. The Extended FVSBL converges faster

than its uninformative counterpart especially when the problem size increases. The

curves suggest that for 64 pilot symbols the informative algorithm performs as fast as

the uninformative for half the number of symbols. The proposed algorithm handles

the statistical bias cleverly achieving faster convergence and better performance.
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Figure 8.5: Comparison of reconstructed responses and prior.

8.6.2 Real-world OFDM System

Here the dataset mentioned in Subsection 8.1 is used, which consists of 226

channel responses. The first 113 channel responses are used to compute the sample

variance for each of the 256 taps. Then a prior is empirically constructed v = 16/Fs.

This can be seen in Figure 8.5 (dashed line) which follows the trend of one of the

remaining responses (crossed line).

An OFDM system like before is simulated with 1024 sub-carriers and 4-QAM.

The guard interval was set to be Tcp = 256/Fs, i.e., the length of the responses. The

dictionary was also constructed in the same manner. Two cases of 32 and 64 pilot

symbols were considered.

In Figure 8.3b the average BER performance over 200 runs is shown. At each run

a response was chosen randomly out of the remaining 113 that did not participate

in constructing the prior. It is pointed out that the Extended FVSBL algorithm

performs far better than its uninformative cousin in both cases of pilot symbols.

Back to Figure 8.5, the reconstructed channel responses are plotted against one
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of the actual ones for the case of SNR=25db and 64 pilots. In the top half, focus is

turned on the smaller delays where the Extended FVSBL algorithm has managed

to capture the trend and the magnitude of almost all of the components while the

uninformative has produced large components where they do not exist. The same

is observed in the bottom half where the Extended FVSBL imposes the trend for

small components based on the prior.

8.7 Conclusion

This chapter has focused on a very fitting application of the Extended FVSBL

algorithm for multipath channel equalisation. A common attribute of sparse multi-

path channels was exploited, i.e., the fact that the channel coefficients are not only

sparse but they follow an exponential decay law as well. A rather simple profile

was adopted for the channel coefficients but in reality this sort of information may

originate from an empirical model or expertise. This information finds a very nice

way into the sparse Bayesian learning model as the tuning hyper-parameters of the

hyper-prior distribution over the channel coefficients. In this way it is possible to

have a fully flexible channel model able to absorb any power-delay profile by an

appropriate tuning of the hyper-prior. For this task the variational approach to

SBL is the most fitting as was shown in Chapter 7. The Extended FVSBL is used

for inferring the channel parameters from the OFDM training symbols after cast-

ing the equalisation process as a sparse recovery problem. The prior distribution

assumed for the channel coefficients is informative which precludes the traditional

fast variational approach of being used.
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Approximate Message Passing

A different class of sparse recovery algorithms based on Bayesian methods is that

of Message Passing. They have been used for sparse recovery in various examples

with the most widespread that of [6] with subsequent modifications like that of [88].

The message passing is based on a certain type of representation of a probabilistic

model and the derivation of an algorithm for performing inference over such a graph

by viewing the relation ship between the nodes of the graph as exchanged messages.

In general such algorithms succeed in providing the exact formula for marginal

distributions for many types of models. In the case of sparsity-promoting models

like the ones that have been introduced earlier these message passing algorithms

provide approximations.

Message passing has been the initial step for a series of “approximations” and as-

sumptions with the most important one being that of the very-large system. Proba-

bly the motivation behind such approximations to an already approximate algorithm

was their overly expensive computational nature. Fortunately these approximations

that will be discussed next have provided a very powerful class of algorithms termed

Approximate Message Passing that exhibit extremely low complexity and some quite

favourable properties for a new type of analysis; the State Evolution formalism.

Even though the Sparse Bayesian Learning models have been widely accepted

by the engineering community and for a countless applications it is still uncertain

what the relationship is between the Type-II approximate inference algorithm and

that suggested by Approximate Message Passing. The main motivation to explore

such relationships is basically the fact that both are built on a hierarchical model

of sparsity-inducing prior distributions. Also the fact that if such relationships

become known then further improvements could be made possible by combining the

two approaches.
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9.1 Inference on Graphical Models

In Chapter 4 the notion of Bayesian networks was introduced and it was evident

immediately that one can communicate and expand a probabilistic model with ease

and intuition. All the Bayesian networks that have been presented so far had one

thing in common; the fact that the joint distribution was able to be separated into

individual factors. The Bayesian network of course hides this information and this

is where the factor graphs come into play.

In the hierarchical Bayesian networks for Sparse Bayesian Learning, inference

was performed approximately via the Type-II maximum likelihood procedure which

resulted in a certain class of inference algorithms. The idea behind factor graphs is

to devise inference algorithms that are directly related to the graph itself.

9.1.1 Factor Graphs

The example is borrowed from [9]. Consider the following joint distribution of

random variables x1, x2, x3,

f(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2).

In Figure 9.1a the corresponding Bayesian network shows the dependency be-

tween the random variables. In Figures 9.1b and 9.1c two renditions for the corre-

sponding factor graph are shown. One quickly notices that the factor graphs include

only two types of nodes, the so called variable nodes and the factor nodes depicted

by circles and squares respectively. As one might guess the factor nodes correspond

to the factors that make up the joint distribution related to the graph. So for Figure

9.1b the single factor node is actually the same as the joint distribution. For Figure

9.1c the factor nodes are,

fa(x1) = p(x1), fb(x2) = p(x2), fc(x1, x2, x3) = p(x3|x2, x1).

Each factor node is associated with all the neighbouring variables and vice-versa.

Comparing the notion between Bayesian networks and Factor graphs it is evident

that factor graphs bear no information about the underlying distributions but focus

solely on the hierarchical structure of the model. Factor graphs can represent the

form of the factorised joint distribution precisely. By using factor graphs it is possible

to derive algorithms for performing inference by the means of the messages sent from

one node to another. The notion of messages refers to the distribution functions

computed at the connecting edges between the nodes. The messages then can be

used to compute marginal distributions for any part of the graph.
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x1 x2

x3

(a) Bayesian Network for
f(x1, x2, x3).

x1 x2

f

x3

(b) The corresponding
factor graph.

x1 x2

fa fc fb

x3

(c) Another rendition of a factor
graph for the same joint distribu-
tion.

Figure 9.1: Example showing the transition of a Bayesian network to a factor graph.

9.1.2 The Sum-Product Algorithm

For notational convenience, letters a, b will be representing the index variables

for factor nodes while letters i, j will be representing index variables for variable

nodes. This is done to simplify notation as much as possible. For this purpose the

messages from variable nodes xi to factor nodes fa will be represented as

μi→a(xi)

while messages from factor nodes to variable nodes will be given by

μa→i(xi).

The sum-product algorithm is an efficient way of performing exact inference on

factor graphs given the fact that there are no cycles in the structure of the graph.

This assumption can be violated but the resulting algorithm will be approximate.

This is known as the “loopy” version of the sum-product algorithm and has been

used with great success. Recall that in earlier chapters approximate inference was

also used in the case of Type-II Maximum likelihood. In both cases the main fact

was that the joint distribution of all the variables in the model can be written as a

product of factors.

The actions of the algorithm can be divided into two categories, messages sent

from variable nodes to factor nodes as shown in Figure 9.2a and as messages sent

from factor nodes to variable nodes shown in Figure 9.2b. Focusing only on the

main results (a full analysis is located in [9]), the outgoing message is

μi→a(xi) =
∏
b �=a

μb→i(xi),
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which in writing means that the variable node sends out the product of all the

incoming messages except the message coming from the factor node it is sending the

message to.

Respectively for the outgoing messages from factor nodes,

μa→i(xi) =

∫
fa(xi, x1, · · · , xn)

∏
j �=i

μj→a(xi)dxj �=i

which means to multiply the function associated with the factor node with all the

other incoming messages (accept the one coming from xi) and then integrate all over

those variables.

The simple cases where a variable or a factor node is a leaf, i.e., the node has

only one associated edge the messages are then simply

μi→a(xi) = 1

μa→i(xi) = fa(xi).

Usually these types of messages are absorbed into their neighbouring nodes.

f1

... xi fa(xi)

fm

μi→a(xi)

(a) From variable node xi to factor node
fa(xi).

x1

... fa xi

xn

μa→i(xi)

(b) From factor node fa(x1, · · · , xn) to
variable node xi.

Figure 9.2: Types of messages exchanged between nodes of a factor graph.

Once all the messages have been propagated then the marginal distribution for

any variable xi can be computed by forming the product of all the incoming messages

to that variable node (from neighbouring factor nodes),

p(xi) ∝
∏
a

μa→i(xi).

Likewise, the marginal over the variables associated with a factor node fa(x1, · · · , xn)

can be computed by multiplying all the incoming messages (from neighbouring vari-
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able nodes) with the function related to that node,

p(x1, · · · , xn) = fa(x1, · · · , xn)
∏
i

μi→a(xi).

9.2 Derivation of the AMP Algorithm

p(x1) x1

p(y1|x) y1

p(x2) x2

p(y2|x) y2

p(x3) x3

...
...

...
...

p(yn|x) yn

p(xm) xm

Figure 9.3: The factor graph corresponding to the joint distribution used in the AMP
algorithm.

The Factor graph in Figure 9.3 corresponds to the following joint distribution,

p(y,x) = p(y|x)p(x)

=
n∏

a=1

p(ya|x)
m∏
i=1

p(xi)

where the likelihood function as usually is given by

p(y|x) = N (Hx, σ2I).

The prior distribution placed independently over each xi is a Laplace prior,

p(xi) =
λ

2σ2
e−

λ/σ2|xi|.

It was discussed in Chapter 4 how the Laplace distribution leads to sparse esti-

mates. The AMP algorithm builds heavily on this model even though extensions to

accommodate arbitrary distributions have been proposed [81].
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To further reduce clutter the factor and variable nodes that are drawn with

dashed lines in Figure 9.3 are not taken into consideration since they represent the

prior distribution and the deterministic measurements are both given as input and

can be absorbed in their neighbours.

Based on the main results for the sum-product algorithm discussed earlier, the

posterior distribution for any factor node is,

p(xi|y) = p(xi)
∏

a∈[1,n]
μa→i(xi).

9.2.1 Applying the Sum-Product Algorithm

Applying the direct result from the sum-product algorithm for messages from

factor nodes to variable nodes we obtain,

μa→i(xi) =

∫
p(ya|x)

∏
j �=i

μi→a(xi)dxj �=i ∝
∫

e−
1

2σ2 (ya−(Hx)a)2
∏
j �=i

μj→a(xi)dxj �=i

(9.1)

Applying the result from the sum-product algorithm for messages from variable

nodes to factor nodes, it is straightforward to write,

μi→a(xi) ∝ e−
λ|xi|
σ2

∏
b �=a

μb→i(xi). (9.2)

By inspecting Equations (9.1) and (9.2) it is easy to verify that indeed there has

to be a message passing schedule since for the computation of either of the equations

the other one is needed. This is in agreement with the sum-product theory which

dictates that inference is exact for acyclic graphs which is not the case with the

factor graph in Figure 9.3.

The algorithm is transformed then in an iterative scheme for passing messages

based on the iteration t,

μt+1
i→a(xi) ∝ e−

λ|xi|
σ2

∏
b �=a

μt
b→i(xi)

μt
a→i(xi) ∝

∫
e−

1
2σ2 (ya−(Hx)a)2

∏
j �=i

μt
j→a(xj)dxj �=i = Exj �=i

[
e−

1
2σ2 (ya−(Hx)a)2

]
.

In the last part it was identified that the message is in fact the expectation of

e−
1

2σ2 (ya−(Hx)a)2 for the random variables xj �=i and their respective distributions given

by the messages μj→a(xj).
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9.2.2 The large system limit

One of the basic assumptions is that of the large system limit, i.e, when the

dimensions of the problem n,m → ∞ and δ → n
m
. In this limit it is shown that

the afore mentioned messages can in fact be approximated by the means well-known

distributions. This is tied closely to the fact that the entries of matrixH ∈ R
n×m are

taken to be independent and identically distributed random variables drawn from

N (0, 1
n
). Furthermore the columns of matrix H are normalised to unit �2-norm.

Hence in the large system limit the following hold

n∑
a=1

Hai = 0,
n∑

a=1

H2
ai = 1

∑
b �=a

H2
bi ≈ 1− 1

n
, Hai = O(1/

√
n).

Approximating μa→i(xi)

For this take the following convenient rewriting,

μa→i(xi) ∝ Exj �=i

[
e−

1
2σ2 (ya−Haixi−

∑
j �=i Hajxj)

2]
= Exj �=i

[
e−

1
2σ2 (z−Haixi)

2
]

where the auxiliary random variable

z = ya −
∑
j �=i

Hajxj

was defined and will play a central role.

Furthermore the following two helpful definitions are made for a variable dis-

tributed according to xi ∼ μt
i→a(xi),

E[xi] = xt
i→a , var[xi] = σ2τ ti→a.

Then the mean and variance of z can be written down as

E[z] = zta→i = ya −
∑
j �=i

HajE[xj] = ya −
∑
j �=i

Hajx
t
j→a (9.3)

var[z] = τ̂ ta→i =
∑
j �=i

H2
ajvar[xi] = σ2

∑
j �=i

H2
ajτ

t
j→a ≈ τ̂ t.

In the last part the individual variances are assumed to be approximated by a single

variance since the value of H2
aj is expected to be small for n → ∞ thus dropping

the dependence on index i.
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A direct application of the Berry-Essen theorem [33, 1] shows that for n → ∞,

μt
a→i(xi) ∝ N

(
zta→i, σ

2(1 + τ̂ t)
)

(9.4)

which in effect means that the distribution conveyed by the message μa→i(xi) con-

verges to a Gaussian, parametrised by the auxiliary random variable z. The main

results from the application of the Berry-Esseen are not presented here since they

are not entirely relevant to the main theme of this chapter.

Approximating μi→a(xi)

Substituting the approximation for μt
a→i(xi) into the expression for μt+1

i→a

μt+1
i→a(xi) ∝ e−

λ|xi|
σ2

∏
b �=a

μt
b→i(xi)

= e−
λ|xi|
σ2

∏
b �=a

N
(
Haixi|ztb→i, σ

2(1 + τ̂ t)
)
.

The exponent of the product of Gaussians in the expression above can be approxi-

mated as,

− 1

2σ2(1 + τ̂ t)

∑
b �=a

(
x2
iH

2
bi + (ztb→i)

2 − 2xiHbiz
t
b→i

)
≈ C − 1

2σ2(1 + τ̂ t)

(
xi −

∑
b �=a

Hbiz
t
b→i

)2

.

where constant C = −∑
b �=a(z

t
b→i)

2. The fact that
∑

b �=a H
2
bi ≈ 1− 1

n
was also used

based on the properties of matrix H .

Based on this approximation the message μt+1
i→a(xi) can be written as,

μt+1
i→a(xi) ∝ e

−λ|xi|
σ2 − 1

2σ2(1+τ̂ t)
(xi−

∑
b �=a Hbiz

t
b→i)

2

.

9.2.3 The noiseless case

In the limit of σ2 → 0 the variance of the auxiliary variable in Equation (9.3)

becomes τ̂ t = 0. The value of xt+1
i→a can be computed straightforwardly by using the

Laplace’s method for approximating integrals of the form
∫
eM ·f(x)dx whenM → ∞.

Computing the mean,

xt+1
i→a = E[xi] =

∫
xiμ

t+1
i→a(xi)dxi

∝
∫

xie
−λ|xi|

σ2 − 1
2σ2 (xi−

∑
b �=a Hbiz

t
b→i)

2

dxi
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one arrives at an integral which can be approximated by Laplace method as σ2 → 0.

Laplace’s method dictates that the value of the integral will be

xt+1
i→a ≈ argmax

xi

⎧⎨
⎩−λ|xi| −

1

2

(
xi −

∑
b �=a

Hbiz
t
b→i

)2
⎫⎬
⎭ .

By computing the stationary points of the above expression it is concluded that,

xt+1
i→a =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑

b �=a Hbiz
t
b→i − λ, for

∑
b �=a Hbiz

t
b→i > λ∑

b �=a Hbiz
t
b→i + λ, for

∑
b �=a Hbiz

t
b→i < −λ

0, otherwise .

The above expression is better known as the soft-threshold function and can be

written more compactly as

xt+1
i→a = η

(∑
b �=a

Hbiz
t
b→i, λ

)
, (9.5)

which means that the threshold (second operand) decides the value of the outcome

xt+1
i→a.

Now to compute the variance,

τ t+1
i→a =

1

σ2
var[xi]

∝
∫

(xi − E[xi])
2 e−

λ|xi|
σ2 − 1

2σ2 (xi−
∑

b �=a Hbiz
t
b→i)

2

dxi

Computing the expression above for σ2 → 0 results in a very simple interpre-

tation given in [1] but it can also be derived rigorously based on the properties of

exponential distributions,

τ t+1
i→a =

⎧⎨
⎩1, for |∑b �=a Hbiz

t
b→i| ≥ λ

0, otherwise .

This can be written as the derivative of the soft threshold function,

τ t+1
i→a = η′

(∑
b �=a

Hbiz
t
b→i, λ

)
.

By dropping the dependence on the missing index a the following approximation
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can be employed,

τ t+1 =
1

n

m∑
i=1

τ t+1
i→a (9.6)

where the variances are averaged over n factor nodes.

Summarising so far, in the large system limit and under the noiseless assumption;

the message μt
a→i becomes a deterministic value given by the mean of the Gaussian

in Equation (9.4),

zta→i = ya −
∑
j �=i

Hajx
t
j→a.

Likewise, the message μt+1
i→a(xi) can be approximated by a distribution with its mean

given by Equation (9.5),

xt+1
i→a = η

(∑
b �=a

Hbiz
t
b→i, λ

)
.

9.2.4 First Order Approximation

In the two equations derived above for zta→i and xt+1
i→a the sums on the right

hand side are the main problem to what otherwise would have been a very simple

iteration, i.e., the sums for computing each of the messages are always one term

short of the whole sum. This leads to making the following assumptions

xt
i→a = xt

i + δxt
i→a (9.7)

zta→i = zti + δzta→i.

So in reality it is assumed that the messages no longer depend on the missing indices

a and i respectively, but that there is a correction term that does depend on them.

The natural consequence of things is to approximate this correction term. In this

approximation the properties of matrix H help greatly.

Substituting Equations (9.7) in the corresponding message variables and expand-

ing the sum,

zta + δzta→i = ya −
∑
j

Haj(x
t
j + δxt

j→a) +Haix
t
i +�������0

Haiδx
t
i→a (9.8)

xt+1
i + δxt+1

i→a = η

(∑
b

Hbi(z
t
b + δztb→i)−Haiz

t
a +�������0

Haiδx
t
a→i , λ

)
.

Next the first order Taylor approximation of the second equation is taken at the
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point
∑

b Hbi(z
t
b + δztb→i),

xt+1
i + δxt+1

a→i ≈ η

(∑
b

Hbi(z
t
b + δztb→i), λ

)
− η′

(∑
b

Hbi(z
t
b + δztb→i), λ

)
Haiz

t
a.

Then by inspection of the equations above one can identify the following

zta = ya −
∑
j

Haj(x
t
j + δxt

j→a) (9.9)

δzta→i = Haix
t
i (9.10)

xt+1
i = η

(∑
b

Hbi(z
t
b + δztb→i), λ

)
(9.11)

δxt+1
i→a = −η′

(∑
b

Hbi(z
t
b + δztb→i), λ

)
Haiz

t
a. (9.12)

It is now straight forward to eliminate the approximating terms by making the

necessary substitutions. Plugging Equation (9.10) into Equation (9.11),

xt+1
i = η

⎛
⎜⎝∑

b

Hbiz
t
b +

�
�

�
�

���
xt
i∑

b

H2
bix

t
i , λ

⎞
⎟⎠

which in vector form becomes

xt+1 = η
(
xt +HTzt, λ

)
with η being applied element-wise on its operands.

Plugging Equation (9.12) into Equation (9.9),

zta = ya −
∑
j

Haix
t
j +

∑
j

H2
ajη

′(xt−1
j + (HTzt−1)j, λ)z

t−1
a

zt ≈ y −Hxt +
1

n

∑
j

η′(xt−1
j , λ) = y −Hxt +

1

n
‖xt‖0zt−1

where in the final step the fact that the summation of the individual terms η′(xt
j, λ)

actually returns the 0-norm of vector xt.

Finalising the discussion around the derivation of the AMP algorithm the itera-
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tions are as follows,

xt+1 = η
(
xt +HTzt, θt

)
zt = y −Hxt +

1

n
‖xt‖0zt−1

θt =
α√
n
‖zt‖2.

(9.13)

The meaning and definition of the threshold θt will be made more clear in the

discussion to follow.

To keep in line with the main bibliography around the AMP algorithm [69, 33, 32]

the threshold from the Laplace prior λ is replaced with a scaled version based on

the theory developed in [69],

λ = θt(1− bt)

where bt =
1
n
‖xt‖0. This means that when the iterations above converge to a solution

then this solution is the same as the solution given by the �1 approach with λ as the

regularisation parameter.

9.3 State Evolution

One of the most prominent questions among theorists and engineers that deal

with compressed sensing in one way or another is that of recovery and the conditions

under which it will happen. From the early years of the appearance of Compressed

Sensing, theorems relate the recovery conditions based on the sensing matrix, the

sparsity of the signal and the noise level (a summary can be traced back in Chapter

2). Put simply and in simple engineering terms;“Will this matrix do for recovering

this sparse signal and how bad is the solution going to be ?”. The theorems that

give answer to this question usually provide some bounds either pessimistic or loose

and in some cases based on quantities, e.g., the Restricted Isometry Property, that

cannot be easily computed in practice.

The formalism of the “state Evolution” is a fairly recent analysis framework that

provides a lot of answers in a holistic manner and from a different perspective. As

the name states it is based on the so-called ”state” of the recovery algorithm, i.e.,

a parameter that describes accurately the course of the solution and whether the

algorithm will succeed in solving the specific problem or not. The major difference

between the state evolution and previous work is that it depends greatly on the

sampling matrix (so far solid results regard random Gaussian matrices) and the

that different results hold for different types of sparse signals, i.e., signals with their

non-zero entries being only positive, or positive and negative and combination of

thereof. The state evolution has been found to hold for the AMP algorithm and
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several other of its renditions which will not occupy this text.

9.3.1 The Scalar Case

The analysis of the AMP algorithm depends a great deal on the scalar case

analysis where

y = x+ w, (9.14)

is the measured signal x with additive noise w of zero mean and variance σ2. This

commences with the following,

x̂(y) = η(y, λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y − λ, if y > λ

y + λ, if y < −λ

0, otherwise.

, λ = θ (9.15)

with the simple scalar estimator and the equivalence relationship for λ. This agrees

with the previous discussion about this relationship and the avid reader is redirected

to [69]. Furthermore the author in [69] points out that since the estimator x̂ is

basically a de-noising function, to scale the threshold with the noise level so the

following is adopted

θ = ασ.

Another important definition is that of the worst-case distribution for an esti-

mator, which is that distribution for the signal x to be estimated so that the Mean

Square Error (MSE) is maximised. This has a very useful intuitive meaning; since

the actual distribution of the signal is unknown then it makes sense to perform

analysis based on the worst possible distribution. It turns out that for the scalar

estimator in Equation (9.15) the worst case distribution is the following

p#(x) =
ε

2
δ−∞ + (1− ε)δ0 +

ε

2
δ+∞

which is basically the sum of three Dirac distributions placed at ±∞ and 0 with

probabilities 0.5 · ε and 1− ε respectively.

The worst-case MSE for the estimator can be computed in a straightforward

manner,

E
[
(x̂(y)− x)2

]
= E

[
(x̂(y)− x)2|x = −∞

]
p(x = −∞)

+E
[
(x̂(y)− x)2|x = 0

]
p(x = 0) + E

[
(x̂(y)− x)2|x = +∞

]
p(x = +∞)
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Breaking this down to the individual parts,

E
[
(x̂(y)− x)2|x = −∞

]
p(x = −∞) = E

[
(x̂(y)− x)2|x = +∞

]
p(x = +∞)

=
σ2

2
E
[
(w + ασ)2

]
=

ε

2
σ2(1 + α2).

For the term in the middle,

E
[
(x̂(y)− x)2|x = 0

]
p(x = 0) = (1− ε)[E

[
(w − ασ)2|w > ασ

]
p(w > ασ)+

E
[
(w + ασ)2|w < ασ

]
p(w < ασ)].

Each of these two terms breaks down into three integrals,

∫ −σα

−∞
w2N (0, σ2)dw = σ2(αφ(α) + Φ(−α))

2ασ

∫ −σα

−∞
wN (0, σ2)dw = −2ασφ(α)

α2σ2

∫ −σα

−∞
N (0, σ2)dw = α2σ2Φ(−α).

where φ(x) and Φ(x) are standard Gaussian density and cumulative functions re-

spectively.

Combining all of the above, one then arrives at the expression for the worst-case

MSE,

σ2 ·M(ε, α) = σ2
[
ε(1 + α2) + 2(1− ε)(1 + α2)Φ(−α)− αφ(α)

]
.

Notice that this intuitively scales with the noise variance just like θ.

Optimising the expression above with respect to α and substituting the resulting

optimal α#(ε) in the expression above, the soft-threshold minimax risk expression

is formed,

M#(ε) = M(ε, α#(ε)). (9.16)

The term minimax stems from the fact that the estimator that uses α# achieves

the smallest possible MSE for the worst-case distribution. The expression for α#(ε)

does not have a closed form expression but it can be computed numerically quite

easily as the solution of

M ′(ε, α) = 2εα + 4(1− ε) [αΦ(−α)− φ(α)] = 0. (9.17)
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9.3.2 Heuristic Derivation of the State Evolution

The so-called state evolution framework is a way to accurately describe the evo-

lution of the iterations of the AMP algorithm in the large system limit. The “state”

of the algorithm refers to a single parameter with which the iterations can be fully

described. The derivation of the state can be done heuristically by altering the AMP

iterations as follows

xt+1 = η
(
xt +HT

t zt, θt
)

(9.18)

zt = yt −Htxt. (9.19)

In this fictitious setting, matrix H is re-sampled at each iteration. This implicitly

means that a yt = Htxt +w is acquired afresh at each iteration. From the second

equation the correction term was also removed for reasons that will become relevant

shortly.

A single iteration of the equations above gives

xt+1 = η (x+Htw +Bt(xt − x), θt) (9.20)

where Bt = I−HT
t Ht. Focusing only on the main results [69], it is discovered that

the following hold for the respective entries,

(
HT

t w
)
i
∼ N (0, σ2)

((Bt(xt − x))ij ∼ N
(
0,

τ̃ 2t
δ

)

where τ̃ 2t = limm→∞
1
m
‖xt−x‖22. Based on this it is then easy to see that the entries

of the first argument of Equation (9.20) converge to

X0 + τtZ with τ 2t = σ2 +
τ̃ 2t
δ
,

where Zi ∼ N (0, 1). Random variables (X0)i are drawn from the distribution from

which the original entries xi are drawn. Based on the above derivations at iteration

t+ 1,

τ̃ 2t+1 = lim
m→∞

1

m
‖xt+1 − x‖22 = E

[
(η(X0 + τtZ, θt)−X0)

2] . (9.21)

The temporal evolution of τt is known as the state of the algorithm and is given

by the following equation,

τ 2t+1 = σ2 +
1

δ
E
[
(η(X0 + τtZ, θt)−X0)

2] .
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In a nutshell, τt was shown to summarise the two steps of the fictitious iterations

in Equations (9.19). The relationships listed above are greatly based on the fact

that matrix H is re-sampled at each iteration. As will be shown below, state

evolution fails if this assumption is dropped. The additional correction term which

was neglected in the beginning makes all the difference. This additional term causes

the state evolution to be correct for the AMP algorithm.

In [7] the authors provide a powerful theorem for relating the MSE at each

iteration of the AMP algorithm with the state of the algorithm as defined above.

Without providing any further details the authors prove that under certain mild

assumptions the following result holds,

lim
m→∞

1

m

m∑
i=1

(xt+1
i − xi)

2 = E
[
(η(X0 + τtZ, θt)−X0)

2] .
Taking a moment to appreciate this result, the theorem allows to predict the MSE

of the algorithm at each iteration based on the state τt. Taking this intuition a bit

further one can envision that this implies that at each iteration

(
xt +HTzt

)
i
= xi + w̃i.

This is equivalent to saying that the estimates xt are in reality individual estimates

of the original signal entries with an increased noise level w̃i ∼ N (0, τ 2t ). This comes

by the name of decoupling principle since based on the developed theory the AMP

acts as if m individual scalar problems are to be solved. The increased noise level is

intuitively given by the state of the algorithm and relates to the “coupling” imposed

by matrix H .

Based on this intuition the threshold θt for the vector case (θ = ασ in the scalar

case) can be set equal to

θt = ατt ≈ α
1√
n
‖zt‖2

according to the equivalent noise level for the vector case. The temporal estimate

of this can be given by the magnitude of the residual zt.

9.3.3 The Phase Transition Curve

The results listed above about the state evolution and its asymptotic convergence

rely on the distribution X0 to make predictions. Going back to the discussion about

the soft threshold minimax risk M#(ε), the authors in [31] provide yet another very

useful result which relates this with the predicted one in Equation (9.21), τ̃ 2t . Again,
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presenting just the main results; if ρ = ‖x‖0
n

, ε = ‖x‖0
m

= ρδ and ρc is the solution of

δ = M#(ε)

then for every ρ < ρc the following holds

τ̃ 2∞ =
M#(ε)

1− M#(ε)
δ

while for every ρ ≥ ρc

τ̃ 2∞ = ∞.

The corresponding values of ρ and δ at which this happens are given by

ρ(α) = 1− αΦ(−α)

φ(α)
(9.22)

δ(α) =
2φ(α)

α + 2(φ(α)− αΦ(−α))
(9.23)

in which case the optimal minimax threshold is used then α = α#(ε) as used in

Equation (9.16). The expressions above result by solving Equation (9.17) for ε = ρδ

and then factorising the resulting expression in two discrete factors.

To interpret this result the notion of the phase transition curve is introduced.

Basically for every sparse recovery problem there is a problem size n,m and a sparse

signal x with ‖x‖0 = k non-zero components. For every instance of such a sparse

recovery problem, i.e., for every possible problem size and k, a recovery algorithm

exhibits a certain degree of success. This means that if the algorithm is run over

a fixed problem size and k for an infinite number of instances then based on some

criterion (e.g., the MSE being smaller than a threshold) it will succeed with proba-

bility S. Using the notion of δ and ρ this means that for a given degree of success

S the (δ, ρ) space is divided into two parts. The part for which the algorithm will

succeed and the part for which it will fail; always based on the criterion which

was chosen. This is the so-called phase transition, from the area of problems with

(ρ, δ, k) for which the selected algorithm succeeds to the area of problems for which

the algorithm fails.

What the result above provides is a closed form expression for the phase transi-

tion curve in parametric form - depending on the threshold α - for when the success

is judged based on the MSE. For the AMP algorithm this means that running it for

a range of values of δ and ρ, each time with α#(ε) and by measuring success based

on the MSE it is possible to draw the phase transition curve given the corresponding

ε.

The following experimental setup is devised to demonstrate these results empir-
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ically.

1. Divide the interval [0.01, 0.99] in 50 equidistant points and form set I.

2. Set the problem size m = 1000.

3. For each point δ ∈ I do the following:

Set m = �δ ·m�.
For each point ρ ∈ I do the following:

(a) Set sρ = 0.

(b) Set k = �ρ · n�
(c) Draw matrix H ∈ R

n×m

(d) Draw a sparse signal x ∈ R
m with k non-zero entries placed at uni-

formly random indices and set uniformly random equal to ±1.

(e) Compute α#(ρδ) by solving Equation (9.17).

(f) Run the AMP iterations in Equations (9.13) for 1000 iterations for

α#(ρδ).

(g) If
‖x1000−x‖22

‖x‖22
< 0.14 then set sρ = sρ + 1.

(h) Repeat steps (c)-(g) 20 times.

(i) Compute the empirical probability of success Sδ,ρ =
sρ
20
.

4. Fit all the data points in Sδ,I to a generalised linear model (see below) and

compute the values ρ50th at which the fitted probability of success is 50%.

5. For each point δ ∈ I compute α#(δ · ρ50th) .

6. Compute the predicted values of ρ(α#), δ(α#) from Equations (9.23).

In Step 4 of the procedure above the pairs (ρ, Sδ,I) are fitted to the following

model using regression [29],

logit(Sδ,I) = a+ bρ.

where logit(x) = log x
1−x

is the inverse of the logistic function. After the data pairs

have been fitted to this model the point at which Sδ,I = 0.5 can be computed,

ρ50th = − â

b̂

with the values of the fitted regression parameters â, b̂.

The results of this long experiment are shown in Figure 9.4. The parametric

curve computed with Equations (9.23) is plotted with the red thick line while the
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empirical curve corresponding to the pairs (δ, ρ50th) is drawn with the blue thin line.

It is interesting to notice that the empirical curve showing the points at which the

algorithm succeeds by 50% coincide with the predicted parametric points computed

at the threshold α# used to achieve this performance.

δ
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Figure 9.4: Comparison of the empirical phase transition curve for the AMP algorithm
and the predicted via state evolution.

9.4 Relationship With Sparse Bayesian Learning

In Section 9.2 the route of deriving the AMP algorithm was shown to basically

be an approximation as the name implies of an inference procedure based on dis-

tributions being interpreted as messages being exchanged between nodes on the

corresponding factor graph. In Sparse Bayesian Learning which was presented in

numerous occasions in this text inference is performed also in approximate manners

by either the Type-II Maximum Likelihood procedure (Chapter 5) or by Variational

methods (Chapter 7). Recall that the latter two methods were proven to be equiv-

alent for uninformative distributions.

The signalling difference between the two methods of approximating inference is

that the AMP does not require the computation of an inverse matrix while under

the large system assumption, the quality of the estimates is improved via a specific

prescription of the threshold to be used and the correction term in the computation

of the residual zt in Equations (9.13). There have been several attempts to marry the

two approaches initially with [88] and later in [57]. There have also been empirical

reports of cases with highly-coherent dictionaries [111] where SBL-based algorithms

outperform several other approaches including the AMP by a great deal.

In the surrounding bibliography and community the theoretical results from the

AMP analysis are indeed ground-breaking because of the state evolution frame-
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work. It is yet uncertain what the relationship is between the two approaches. A

central role in the analysis of the AMP algorithm plays the scalar estimator and its

worst-case distribution. In this section an attempt is presented to understand the

relationship between the scalar SBL estimator and the soft-threshold estimator as

used in the AMP.

9.4.1 The Scalar SBL Estimator

From Equation (9.14) and the Sparse Bayesian Learning hierarchical model the

following apply for the scalar case,

p(y|x) = N (x, σ2)

p(x|γ) = N (0, γ−1)

p(γ) = Gamma(a, b).

The Gamma hyper-prior in the last level of the model is set to what has been known

so far in this text as the uninformative prior with a = b = 0. Following the steps of

Chapter 5 the optimal value of γ is found as

γ∗ = argmax0<γ<+∞ log p(y|γ)
p(y|γ) = N (0, σ2 + γ−1),

which results in

γ∗ =
1

y2 − σ2
, |y| > σ.

The scalar estimator is the mean of the posterior p(x|y, γ) ∝ p(y|x)p(x|γ) calcu-
lated at γ∗,

x(y) =

⎧⎨
⎩

1
σ2γ∗+1

y = y2−σ2

y2
y, |y| > σ

0, otherwise.
(9.24)

The graph in Figure 9.5 shows the comparison between the SBL estimator in

Equation (9.24) derived above and the soft-threshold estimator as in Equation (9.15).

9.4.2 The SBL Worst Case Distribution

In Chapter 5 there has been a short discussion regarding the worst-case input

signal the SBL inference algorithm can be given to recover. In the work of Wipf and

his colleagues in [82], [108] and in more detail in [104] the worst-case scenario for

the distribution of the sparse components is discussed from a different perspective.

The authors pose this problem of finding the worst possible distribution for the

sparse signal coefficients with respect to the corresponding cost function for SBL
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Figure 9.5: Comparison of SBL and soft-threshold estimators for λ = σ = 0.5.

(actually they consider a broader class which is more general but of the same form

nonetheless), i.e., the one that will produce the most local minima. The result of

that study is that the worst case for the cost function happens when all of the sparse

signal coefficients are equal, e.g., xi = xj = 1. This result is backed up by a short

discussion and examples but is not rigorously proven. The result is of high practical

importance but not directly applicable in the discussion to take place in this text

since care is taken in finding which is the worst possible distribution as far as the

MSE is concerned. The relationship between the number and existence of local

minima for the SBL cost function (recall that it is a non-convex function) and the

MSE is not direct or straightforward to derive.

Moreover from what has been discussed so far for the State Evolution formalism,

it is important to compare the worst case distribution of the SBL estimator with the

MSE for the worst-case distribution for the soft-threshold estimator, given in Equa-

tion (9.3.1). For this purpose the three-point distribution is parametrised with the

magnitude u and then that magnitude ±u∗ which achieves the maximum distortion

for the SBL scalar estimator is computed. The resulting three-point distribution

will be the one maximising the MSE for the class of three-point distributions but

it is not certain that this is the worst-case over all possible coefficient distributions.

It serves as the means to compare the two estimators and what the performance

of the scalar SBL estimator is when given a sparse signal drawn from a three-point

distribution.

The MSE with respect to the considered 3-point distribution p(x = ±u) = ε
2
and

p(x = 0) = 1− ε is

M(u, ε) = 2E[(x̂(y)− x)2|x = u]p(x = u) + E[(x̂(y)− x)2|x = 0]p(x = 0).
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After a tedious but straightforward calculation the resulting expression is,

M(u, ε) = 2ε
[
σ2

(
(σ + u)φ(σ + u, σ2) + Φ(−σ − u), 0, σ2)

)
+ 1

− σ2
(
(σ − u)φ(σ − u, σ2) + Φ(σ − u, 0, σ2)

)
+

∫ −σ−u

−∞

(
− 2σ2w

u+ w
+

σ4

(u+ w)2

)
N (w|0, σ2)dw

+

∫ +∞

σ−u

(
− 2σ2w

u+ w
+

σ4

(u+ w)2

)
N (w|0, σ2)dw

+ u2
(
−Φ(−σ − u, 0, σ2) + Φ(σ − u, 0, σ2)

) ]
+ 4σ2(1− ε) (φ(1, 1)− Φ(−1, 0, 1)) .

The following are defined as well,

φ(x, σ2) =
1√
2πσ2

e−
x2

2σ2

Φ(x, μ, σ2) =

∫ x

−∞

1√
2πσ2

e−
(w−μ)2

2σ2 dw.

For future reference note that the expression for the MSE is linear with respect to

ε as opposed to the expression for the soft-threshold estimator in Equation 9.16.

In order to derive the expression for u which maximises distortion the first order

derivativeM ′(u, ε) has to be computed. After a long series of integrations this results

in the following

M ′(u, ε) = 2ε
[
(σ + u)2φ(σ + u, σ2)− (σ − u)2φ(σ − u, σ2) + 2σ2φ(σ − u, σ2)

(9.25)

−
(
2σ(σ + u) + σ2

)
φ(σ + u, σ2) +

∫ −σ−u

−∞

(
2σ2w

(u+ w)2
− 2σ4

(u+ w)3

)
N (w|0, σ2)dw

−
(
2σ(σ − u) + σ2

)
φ(σ − u, σ2) +

∫ +∞

σ−u

(
2σ2w

(u+ w)2
− 2σ4

(u+ w)3

)
N (w|0, σ2)dw

+ 2u
(
−Φ(−σ − u, 0, σ2) + Φ(σ − u, 0, σ2)

)
+ u2

(
φ(−σ − u, σ2) +−φ(σ − u, σ)

) ]

Solving the equation M ′(u, ε) = 0 results in the worst-case ±u∗ for the maximum

MSE for the SBL scalar estimator. This will be referred to as

M∗(ε) = M(u∗, ε).

This quantity denotes the worst-case MSE the SBL scalar estimator produces when

the sparse signal is drawn from the corresponding three-point distribution. The
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value of

u∗ ≈ 2.16

is computed numerically since an analytic solution is intractable.

u
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Figure 9.6: MSE for the SBL scalar estimator with respect to u for ε = 0.01 and σ2 = 1.

From Figure 9.6 it is evident that the SBL scalar estimator has a special be-

haviour as far as the worst-case three point distribution. Actually it exhibits a

maximum at a point different than +∞ at which it the estimator saturates pro-

ducing a smaller MSE. By inspecting the expression for the computation of u∗ in

Equation (9.25) one can see that this point is of course dependent on the noise

variance non-linearly. This is not the case with the soft-threshold estimator and the

MSE given in Equation (9.16).

In order to get a sense of comparison between the two the MSE for the three-

point distribution at u = ±∞ for the SBL scalar estimator is computed. Again,

this is expected to be smaller than the case where u = ±u∗. A similar series

of computations can result in the MSE for when u = ±∞ so that a more close

comparison is possible between the SBL estimator and the worst-case for the soft-

threshold estimator. The expression for this is given below,

M±∞(ε) = ε+ 4(1− ε) (φ(1)− Φ(−1)) .

The above quantity gives the MSE of the SBL estimator when the input signal is

drawn from the worst-case distribution for the soft-threshold estimator.

Comparing the curves for the MSE’s in Figure 9.7 one can easily understand

that there is a specific range for the sparsity level ε for which the SBL estimator will

produce smaller MSE when recovering signals drawn from the worst-case distribution

for the soft-threshold estimator. Observing this from the opposite direction it is
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Figure 9.7: MSE comparison for between the SBL estimator for u = ±u∗, u = ±∞ and
the soft-threshold estimator for its worst-case distribution. The assumed noise variance is
σ2 = 1.

always certain that for the case where u is finite, for example u = u∗, the soft-

threshold estimator will always perform better than the SBL estimator.

Another aspect worth considering is that the worst-case MSE for the SBL esti-

mator is linear with respect to the sparsity level. This is easy to verify since u∗ is

independent of ε. There is a dependency of u∗ on the noise level which means that

the worst-case MSE will not scale linearly with respect to the noise level as opposed

to the worst-case MSE for the soft-threshold estimator. Recall from Equation (9.17)

that α#(ε) depends linearly on both ε and σ2 hence the worst-case MSE will not

scale linearly with ε. From these two facts one can see a trade-off between knowing

the sparsity level for the soft-threshold estimator and the SBL estimator which is

agnostic.

9.5 Conclusion

In this chapter the very important framework of the AMP algorithm was pre-

sented along with the infamous State Evolution formalism. The purpose was not a

deep analysis but merely an introduction towards establishing the relationship be-

tween the AMP and the SBL and more specifically what happens in the initial stages

by assuming scalar estimators and their corresponding worst-case distributions.
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AMP-based Spectrum Analyser

on an FPGA

In this chapter a fully working wideband spectrum analyser based on compressed

sensing is presented. It is showcased how novel sampling techniques can be leveraged

to greatly simplify the structure of such an apparatus and more specifically its

analogue front-end without using non-exotic components. A basic assumption for

such feats is that the radio frequency (RF) spectrum exhibits low occupancy at any

given time instant. Basic motivation for this is the lack of hardware implementations

despite the maturity of the theory and the analysis of the related algorithms.

The work carried out has revealed many practical aspects of these novelties that

would otherwise have remained hidden behind the surrounding theory of compressed

sensing. The limitations that have been uncovered can be considered as a starting

point for future research. These include hardware considerations that reveal signifi-

cant differences between theory and practice and hinder actual performance. Some

crucial characteristics of the algorithms are pointed out.

A fully working prototype was produced, which implements a state-of-the-art

random sampling scheme and an efficient reconstruction algorithm. More specifically

the analogue signal is sampled using the Discrete Random Sampling theory [63] while

recovery is performed by the Approximate Message Passing (AMP) algorithm [32].

Both are implemented on an FPGA in the form of a standalone core.

10.1 Technical Context

Conventional digital wideband spectrum sensing approaches usually monitor the

spectrum using a swept, narrow bandwidth super-heterodyne receiver. These re-

ceivers dwell for a fixed period of time on a particular frequency band searching for

transmissions before tuning to the next band in a pre-programmed list. Covering a
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wide spectrum bandwidth is not instantaneous and it is possible that short duration

transmissions will be missed. Other techniques that avoid such shortcomings are

the ones that rely on filter-banks which can lead to increased hardware complexity

of the analogue front-end.

The proposed spectrum analyser relies on unconventional sampling techniques

that have been theoretically proven to achieve good performance based on sparse

signal sampling and recovery methods without resorting to any of the solutions

described above. The theory behind compressed sensing requires only a simple

analogue front-end and a limited number of samples in exchange of a non-linear

process for recovery instead of the classic interpolation formula. Within this project

this was circumvented by employing computationally efficient algorithms that are

amenable to FPGA hardware implementations.

The theory behind compressed sensing dictates that the analogue signal has to

be sampled with a true random operator. Maybe one of the first examples is the

Single-pixel camera [35] which employs a special laboratory setup to sample an im-

age. The nature of imaging allows for this setup to exist and perform well up to

a certain degree. A device which was presented in an earlier chapter is the Mod-

ulated Wideband Converter [68] and is aimed at compressively sampling wideband

spectra. This technique was developed using bespoke hardware and DSP algorithms

and is probably the first of its kind. It highly resembles sub-band processing devices

with certain unique touches for adopting randomness and sparse recovery. Another

implementation is that of [80] which is based on the Random Demodulator, also pre-

sented earlier. The researchers presented a prototype which worked for frequencies

up to several hundreds of KHz.

For the prototype presented here the technical characteristics aim at achieving

true RF wideband operation between 0.4 − 1.6 GHz. Based on the initial require-

ments study it is speculated that 50% reductions in the sampling rate are possible

with any further reductions only being limited by the existing commercial hardware.

Another basic requirement is to have a very simple hardware analogue front-end as

opposed to other compressed sensing prototypes. The wideband requirement places

significant constraints on the implementation of such techniques with off-the-shelf

components.

The two main steps in a technique as such are; first to acquire a reduced num-

ber of samples in a compressive manner and second to reconstruct the spectrum of

the compressively sampled signal. In order to recover the original signal from its

samples a non-linear process has to take place. This process, usually in the form of

an iterative algorithm, recovers the original signal. For all practical purposes one

cannot hope for exact recovery. The chosen algorithm can greatly affect the recov-

ery accuracy and performance of the final system. The class of algorithms which
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Clock
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Figure 10.1: Discrete Random Sampler gated clock.

achieves the best recovery performance for the least number of samples is that of

Linear Programming algorithms. Usually such algorithms require an abundance of

computational power. A class of greedy algorithms such as the OMP, CoSaMP,

SP provide a good trade-off between complexity and performance [91, 72, 26]. The

downside of these algorithms is that they are not easily amenable to hardware im-

plementations. The reason is that they require operations on sets of integers and

computation of inverse matrices something which is more suitable for Digital Signal

Processor implementations.

10.1.1 A Discrete Random Sampler

In order to implement a true compressive sampler randomness has to be in-

troduced in the analogue domain. This would require exotic hardware or extremely

bespoke solutions like the ones mentioned in Chapter 3. This path is not followed for

the sake of simplicity of using off-the-shelf components. For this reason the Discrete

Random Sampling theory is employed [63]. This technique dictates that samples are

taken at randomly selected uniform clock pulses. This means a discretisation of a

true non-uniform sampler which to the author’s knowledge is a non-existent device

or at least not yet commercially available.

The random sampler quite simply consists of an Analogue-to-Digital converter

clocked by a random clock. The random clock is actually an AND-gated clock pulse

with the second input to the gate being the output of a pseudo-random number

generator (PRNG). This is shown in Figure 10.1.

A very important aspect of this sampler is that the minimum sample-spacing [40]

for the ADC corresponds to the maximum frequency to be captured by the sampler.

This is clarified in the Figure 10.2 diagram showing the relationship between the

two clocks. For the proposed wideband spectrum analyser a bandwidth of 0.4− 1.6

GHz is aimed for hence the uniform clock behind the random sampler has to be able

to support this bandwidth.

10.1.2 AMP for Sparse Recovery

Recently, theory has shown that a class of computationally inexpensive algo-

rithms is possible to reach the performance of �1 optimisation under certain large

187



Chapter 10

Minimum

Spacing

Clock

ADC Clock

Figure 10.2: ADC Random Clock. Notice minimum sample spacing. Blue lines represent
instants at which the PRNG select a uniform clock pulse for capturing a sample with the
ADC.

system limits [32]. The AMP algorithm has been proven to exhibit some very

favourable attributes, i.e., it does not require any matrix inverse operations or set

operations ans is only based on simple matrix-vector operations. Moreover this class

of algorithms has been theoretically proven to achieve performance close to that of

Linear Programming in the large system regime. Some hardware implementations

have been reported but differ significantly from the technique proposed here for

wideband RF spectrum recovery [5].

To summarise, the two main technical challenges are:

1. The implementation of an efficient random sampler to compressively sample

the signal. The sampler needs to be simple and relatively unbiased.

2. The implementation of a hardware-friendly algorithm to reconstruct the com-

pressively sampled signal. The chosen algorithm will be empirically tested.

10.2 System Architecture

In this section the overall system architecture is presented. At first the ideal

system architecture is discussed and then the reasons why one must resort to the

actual system architecture used in the implementation.

10.2.1 Ideal System Architecture

In Figure 10.3 the functional diagram of the system is shown. The yellow and

blue boxes along with the AND gate and the ADC are what consist the random

sampler. The randomly generated digital samples are fed into the reconstruction

algorithm core which implements the AMP algorithm. The term “Low-rate ADC”

refers to the fact that the effective number of samples used is far lower than the

Nyquist rate in the average.
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Figure 10.3: Ideal System Architecture.

10.2.2 Actual System Architecture

The chosen ADC device is capable of supporting a minimum discrete random

sample spacing for frequencies up to 1.6 GHz and outputs samples for two channels

(labelled In-phase and Quadrature) in a time-interleaved manner so as to reach the

advertised bandwidth. Figure 10.4 shows the state at the data bus of the ADC for

two consecutive clock cycles at t and t-8. The ADC data buses are 4 in total and

are 8-bit wide. These are the I and Q lines and their delayed versions Id and Qd for

the two channels respectively.

Clock Edge Qd Id Q I

↑ Sample[t] Sample[t − 1] Sample[t − 2] Sample[t − 3]

↓ Sample[t − 4] Sample[t − 5] Sample[t − 6] Sample[t − 7]

↑ Sample[t − 8] Sample[t − 9] Sample[t − 10] Sample[t − 11]

↓ Sample[t − 12] Sample[t − 13] Sample[t − 14] Sample[t − 15]

Figure 10.4: ADC data output timing.

The ADC architecture impairs the way theory is applied to support the ideal

system architecture in Figure 10.3. In short, one cannot randomly trigger the ADC

to acquire one single sample but a group of 8 samples instead. Furthermore the ADC

does not provide a stable mode of operation on a random clock but its operation is

driven by an inhibit function communicated via a serial command. This complicates

even further the direct adaptation of theory into practice. To circumvent this issue

it was decided that a buffer to be implemented for the ADC samples and then the

subsequent random clocking to be performed offline once a sufficiently large number

of samples is acquired. For instance if the subsequent processing is to be performed

on a Fourier grid of 4096 samples then a buffer of 4096 samples is implemented since

the output of the PRNG is taken to be unbiased (equal number of zeros and ones).
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This behaviour simulates the theoretical device described in the previous subsection.

ADC DEMUX

FIFO × AMP Core

CLOCK CLOCK ÷4 PRNG

Figure 10.5: Actual System Architecture.

The diagram in Figure 10.5 is a functional description of the actual system. The

blocks in red are the ones needed for the system to function given the specific ADC

device. The red de-multiplexer block does not introduce any latency in the design

and is a requirement due to the ADC output sample order.

The following actual numerical values describe the data rates in the system:

ADC Clock : 1520 MHz

ADC Data rate : 2× 1520/8 = 380 Samples/Second

PRNG bit rate : 100 Mhz (FPGA device clock)

AMP Core : 100 Mhz core clock

The data rate into the AMP Core is dependent on the processing rate of the core.

Blocks of 4096 samples are mixed with the PRNG and presented to the AMP Core

when it has finished processing a previous block. This rate will be substantially

lower than the ADC sample rate.

The limitations underscored above regarding the ADC architecture are key into

understanding why this technique will be difficult to implement even with future

and more advanced ADC devices.

1. Any ADC able to achieve the minimum sample spacing for random sampling

will also be able to achieve the entire bandwidth. Then we face the question

whether any sparse processing algorithm will be able to achieve better results

than traditional DSP algorithm both in terms of speed and accuracy.

2. In order to meet the high demands in data rates between the ADC and any

other device FPGA/ASIC, the data transfers will definitely not be one sample

190



Chapter 10

at a time. This fact along with the ADC’s time-interleaved (possibly) con-

struction implies some sort of pipeline which means that random selection of

one single sample will not be possible. Currently there is no supporting theory

for randomly sampling a signal in sets of samples instead of one sample at a

time.

3. Any gains from the AMP core will have to come from sparse processing of the

signal either in terms of accuracy or via a Sparse FFT algorithm (currently

existing in an experimental setting) being able to outperform a traditional

FFT core in terms of complexity.

10.3 The Approximate Message Passing Core

The AMP algorithm belongs in the class of sparse signal recovery algorithms

that employ a soft threshold function to select the active components in the signal.

In our case the Fourier basis will be considered hence the dominant frequencies in

the sampled signal are iteratively being recovered until convergence to a certain

margin or a predefined number of iterations has been reached. The AMP can be

easily implemented in hardware since there are no explicit computations of the in-

verse of a matrix involved with the workhorse being the matrix-vector multiplication

operation.

The AMP core for the FPGA utilises an FFT core to implement the matrix-

vector multiplication operation since the considered compressed sensing matrix is

the partial Fourier matrix. This way, the AMP core complexity is governed by the

complexity of the FFT core used in the implementation. This in general is highly

optimised and provided by the FPGA vendor or other.

10.3.1 The AMP algorithm

It is assumed that the random sampler has produced a vector of samples y with

dimension m. For the implementation it is assumed that the signal is going to be

sparse in the Fourier basis of dimension N which is chosen according to the device

capabilities. The basic steps of the AMP algorithm are shown in Algorithm 9.

Subscript i denotes the iteration number. Function η(x, θ) outputs the value of x

if its absolute value is greater than the threshold θ and 0 otherwise. The dimension

of y is taken to be half of the size of the FFT (m = N/2) since it is assumed that the

PRNG is unbiased and that the subsampling rate is 50%. Matrix F is the Discrete

Fourier matrix. The �0 norm at Step 3 simply counts the non-zero elements of the

operand.
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Algorithm 9 AMP Algorithm for FFT basis.

Initialise : r0 = y, s0 = 0.
Iteration i = 1..imax:

1. θ = λ · ‖ri−1‖2 · 1/√m

2. si = η(si−1 + Fri−1, θ)

3. ri = y − F Tsi + ri−1‖si‖0 · 1/m

In Step 3 of the algorithm the forward Fourier transform of the residual signal si

is taken and the result is being sub-sampled by pre-loading the PRNG with the same

seed that was used when sampling the signal with the random sampler. In short, the

FFT output samples are chosen based on the same pseudo-random sequence with

which the analogue signal was sampled. This is a very efficient way of implementing

the partial Fourier matrix transform.

Similarly in Step 2, the inverse Fourier transform of signal ri−1 is taken. In this

step the signal ri−1 is zero-padded according to the PRNG after being pre-loaded

with the same seed as before. Recall that vector ri−1 is of dimension m.

10.3.2 Functional Description of the AMP core

The steps in Algorithm 10 describe the actual operations of the AMP core. The

actual finite state machines responsible for these are not described here.

In many algorithms for Compressed Sensing the stopping criteria varies. In

most of the greedy pursuits the stopping criterion is that the mean squared error

falls below a certain threshold. In iterative threshold algorithms like the AMP such

a criterion can also be used. For all these algorithms convergence is tightly tied

with the maximum iteration count. For this prototype it is was decided to use the

iteration count as a stopping criterion as a safety measure in case the algorithm

diverged, i.e., avoid an infinite hardware loop. As a matter of fact even if the MSE

was used a maximum iteration count would also be used for this reason.

A decisive factor on the size of the FFT core to be used is the sub-sampling rate.

A buffer has to be utilised and this means that for lower sub-sampling rates a longer

window has to be used (i.e., longer buffer) to allow for proper implementation of

discrete random sampling. This in turn means that lower average sampling rates

dictate for a smaller FFT core (in order for the longer buffer and the AMP core to

fit in the same FPGA). Based on the capabilities of the device a sub-sampling rate

has to be chosen so that both the buffer and the AMP core to both fit in the FPGA.
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Algorithm 10 Functional Description of the AMP Core.

Initialise : r0 = y, s0 = 0.

1. Load PRNG with seed. Read the samples from the buffer into the AMP core
based on the output of the PRNG.

2. Calculate ‖r0‖2 at the same time.

Iteration i = 1..imax:

1. θ = λ · ‖ri−1‖2 · 1/√m

Check for iteration count. Calculate θ before entering Step 2.

2. si = η(si−1 + Fri−1, θ)

Load PRNG with seed.

Load ri−1 into FFT core based on the PRNG (zero-padding).

Unload results from FFT core and read si−1 while computing the thresh-
old function. Compute ‖si‖0 at the same time for Step 3.

3. ri = y − F Tsi + ri−1‖si‖0 · 1/m

Load si into FFT core.

Load PRNG with seed.

Unload FFT results from core based on the PRNG output (partial FFT).

Calculate ‖ri‖2 at the same time required in Step 1 for iteration i+ 1.

10.3.3 Limited Numerical Precision

All arithmetic operations are carried out in 2’s complement and the chosen ac-

curacy of the fixed point arithmetic used is 24 bits. This is a design parameter and

can be defined before synthesis of the core. In all cases the numerical accuracy has

to accommodate the scaling introduced by the FFT core and the bit length of each

mathematical operation.

By observing the steps of the algorithm it is evident that the main source of

significant bit growth comes from the FFT core and the inherent butterfly structures.

The worst-case scenario for this bit growth for a Radix-2 FFT is,

input length + log2(transform length) + 1.

Assuming a 24-bit word length and a transform length of 4096 the resulting FFT

samples would require 37-bit long words. A very conservative scaling schedule can

be employed for each butterfly stage but approach is not followed here.

The numerical performance of an algorithm in fixed point arithmetic is a research

subject on its own and some of its aspects will be verified in the section to follow.

In order for the AMP algorithm to remain friendly towards any hardware platform
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it is essential to be able to perform well in fixed point arithmetic.

10.4 Experimental Results

To assess the performance and validity of the results the extensive tools provided

by the Xilinx ISE and the Modelsim simulator are used. The bit–accurate model of

the Xiling FFT core is also used to build a model of the AMP core on MATLAB.

In the tests with the simulator a test-bench was written with all the necessary

signals and output. The output of the random generator is firstly output to a file

on the disk to get the random sequence of bits for 4096 clock cycles (assuming

a 4096-sample FFT core). This sequence is then used in MATLAB to generate

and randomly sample an exactly sparse signal with 4 active frequencies (placed at

100, 300, 600 and 800 MHz) in the Fourier domain with a 4096 point DFT matrix.

The precision of this signal is then quantised to 8 bits (ADC output word length)

and written in the input file for the Verilog test-bench. The test-bench is then run

for 10 iterations with two different values for λ. The test-bench is also run for two

different cases; firstly where the amplitude of the active frequencies is chosen to be

the same and secondly where the amplitude of the active frequencies is different and

decreasing.

Using the bit-accurate model an empirical study of the algorithm’s parameters

is attempted. Considered also are test cases with spectral leakage in the frequency

domain which corresponds to all practical cases of interest. Lower sub-sampling

rates are also attempted, something impossible to implement on the device due to

the hardware requirements.

10.4.1 Simulator Experiments

From the simulator it was possible to measure the exact time for a single AMP

iteration at a device clock of 100 MHz and a transform size of 4096 samples to be,

1× AMP iteration = 4.6 ms.

It should be noted that 4096 samples constitutes approximately 1.3 μs of data.

Assuming an iteration count of 10, the algorithm is running at a 0.003% duty cycle.

This will severely impact the ability to detect very short duration transmissions.

However, for a one second burst of communications, the system will still sample

this over 20 times resulting in a high probability of detection. This can be further

improved by using more processing resources.

Currently, the duty cycle of this implementation is not competitive compared

with state-of-the-art super-heterodyne receivers. However, the actual system archi-
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tecture has more potential to improve with advances in processor technology than

super-heterodyne receivers.

Experiment 1

In this test, the value of λ in the AMP algorithm is set to 15 and the AMP

algorithm is run for 10 iterations. Below are the reconstructed spectra for iterations

4, 5 and 10 compared against the original spectrum.

(a) (b)

Figure 10.6: (a) 4th iteration. (b) 5th iteration. Regulariser λ = 15.

Figure 10.7: 10th iteration. Regulariser λ = 15.

Experiment 2

The same experiment is run with the same value for λ but this time the simulated

sparse signal is generated with equal amplitudes for the active frequencies.
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Figure 10.8: 5th iteration. Regulariser λ = 15. Equal Amplitudes.

Experiment 3

The same experiment as Experiment 1 but the value of the regulariser is reduced

to λ = 5.

(a) (b)

Figure 10.9: (a) 4th iteration. (b) 5th iteration. Regulariser λ = 5.

Figure 10.10: 10th iteration. Regulariser λ = 5.
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10.4.2 Number of Iterations

In theory the algorithm will converge to a stationary point at which the sparse

signal will have been recovered within certain accuracy. The algorithm exhibits

a steady-state at that point and any further iterations will have little effect on

the result. In this particular implementation of the AMP algorithm as an FPGA

core with fixed point arithmetic of limited precision, convergence to that stationary

point is not always guaranteed before the algorithm’s intermediate results go over

the predefined word length.

In Experiment 1 it is observed that from iteration 4 to 5 the spectrum quality

has improved with the frequency components being closer to the truth. In iteration

4 most of the spurious frequencies have been discarded by the algorithm as well.

By progressing even further in iteration 10 it can be seen that the algorithm has

diverged by recovering only one major component. In effect this means that some

of the estimates have grown beyond the accuracy, hence they have been regularised

out by the threshold function in Step 2.

By decreasing the value of λ in Experiment 3 it is possible to attain more of

the components but the algorithm also diverges at high iteration counts simply by

recovering non-dominant frequency components. In any practical setting the number

of iterations has to be carefully chosen for the recovery algorithm to remain within

the numerical accuracy.

10.4.3 Regulariser

The regulariser value defines the maximum frequency to be allowed during recov-

ery. By comparing Experiments 1 and 3 it is recognised that all of the components

have been identified by the algorithm in Figure 10.9 for λ = 5, along with some

spurious components. In Experiment 3 for λ = 15 it was impossible to recover the

component at 100 MHz with the smallest amplitude.

The value λ of the regulariser tells only half of the story for the threshold. In

Step 1 of the algorithm the threshold is computed and it is directly proportional

to the value of λ. The magnitude of the residual signal also plays an important

role which is demonstrated by observing Experiment 2. In this case; all of the

frequency components are chosen to have the same amplitude and the value of

λ is set to 15 something which results in the component at 100 MHz not to be

recovered. We see that when the frequency components have the same amplitude

they are all recovered successfully by AMP at the 5th iteration (Figure 10.8). This

signifies that the relevant frequency amplitude plays an important role in recovery

especially in fixed point applications. This means that a high amplitude component

will result in a threshold value small enough to recover a component only up to a
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comparable amplitude. This phenomenon disappears in floating-point and double

precision computations since the maximum iteration count can be larger without

the algorithm diverging.

10.5 Bit-Accurate Model Simulations

In order to further explore the complications behind the issues regarding the

regulariser in a controlled manner the FFT core bit-accurate model is used in MAT-

LAB. The bit-accurate model of the core is provided in C++ which is then compiled

into a MEX function. The model allows the numerical study of the AMP algorithm.

The arithmetic functions described in the steps of the AMP algorithm are also sim-

ulated exactly by quantizing the results appropriately. By using the bit-accurate

model it is also possible to simulate lower sub-sampling rates. As it was discussed

earlier in the text, the sub-sampling rates on the actual device are limited by the

size of the FFT used in the AMP and of course by the capabilities of the device. The

performance of the AMP core at lower average sampling rates and/or with higher

point FFT’s can be assessed.

10.5.1 Regulariser

The same experiment as above is repeated, where the frequency components are

of decreasing amplitude and placed exactly on the Fourier grid (4096 points). The

bit-accurate algorithm is run for 10 iterations. During the course of the 10 iterations

the values of the regulariser θ are stored. The value of λ = 5, is kept the same for

this experiment.

(a) (b)

Figure 10.11: (a) AMP with FFT bit-accurate model 10th Iteration. (b) The value of θ
during the 10 iterations.

On the left-hand side of Figure 10.11 it is observed that the bit-accurate model of
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the AMP produced to a very high degree the same spectrum as that of the original

signal. Please note that the AMP has recovered many small-amplitude components

not clearly visible on the plot.

The results presented above show that the AMP algorithm does not suffer from

numerical instability issues as shown in Experiment 3. The bit-accurate model

produced a nearly-perfect spectrum after 10 iterations without diverging something

which was present in Experiment 3 in the Modelsim simulator after the same number

of iterations and the same value for λ. This suggests either that the design suffers

from timing issues (divisors, multipliers, adders) or that the AMP bit-accurate model

lacks details from the actual HDL implementation.

10.5.2 Spectral Leakage

So far the experiments where performed on an exactly sparse spectrum which

means that the amplitude components are placed exactly on the Fourier grid. In

this experiment the frequency component at 800 MHz is replaced with one that does

not exactly fit the Fourier spacing so that leakage is introduced. The value of λ is

left the same as before.

(a) (b)

Figure 10.12: (a) AMP with FFT bit-accurate model 10th Iteration. (b) The value of θ
during the 10 iterations.

In Figure 10.12 we notice the additional spectral components in the original

spectrum. At the 10th iteration the algorithm was not able to recover any of the

additional components. By studying the value of θ during the course of the algorithm

it can be seen that the algorithm has converged to a larger value compared to the

earlier example without any leakage. This means that the algorithm will have a

larger threshold for the recovered frequencies resulting in many of them – including

the desired ones – to be pruned out. The same experiment with a slightly decreased

value of λ is repeated. The results are shown below.
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(a) (b)

Figure 10.13: The same as in Figure 10.12 with a slightly smaller value for λ.

The algorithm was able to recover many of the additional frequencies with a

smaller value for the λ in Figure 10.13. By looking at the plot on the right-hand

side, the regulariser value has reached a smaller threshold, hence allowing the desired

frequencies to appear upon convergence. The last two experiments point out the

importance of the regulariser during the execution of the algorithm. Should any

numerical issues exist like finite word-length or overflows these will greatly affect

the algorithms performance. After many tests there were no issues to report with

the bit-accurate algorithm diverging or FFT overflows. The actual results from the

algorithm’s steps have been thoroughly checked with the Modelsim simulator. In

the bit-accurate model, the actual behaviour of the dividers, multipliers and adders

that are actually implemented in the AMP core was not modelled. This is another

factor which might have affected the results in the actual experiments.

10.5.3 Sub-sampling Rate

In this series of tests a short empirical study of the sub-sampling rate is at-

tempted. In the experiments that have been discussed so far the rate was 50%

meaning that a sufficiently long sample window was taken and the PRNG has chosen

roughly half of the samples. The same experimental procedure is followed but lower

sub-sampling rates are implemented by appropriately under-sampling the PRNG

output which was recorded by running the Modelsim simulator. Below are the

results for 25% sub-sampling rates.
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(a) (b)

Figure 10.14: Results for 25% sub-sampling rate.

Comparing these results with the previous ones, the algorithm takes a larger

number of iterations to converge but still manages to recover accurately the fre-

quency components. Repeating the same experiment for lower average sampling

rates:

(a) (b)

Figure 10.15: Results for 12.5% sub-sampling rate.
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(a) (b)

Figure 10.16: Results for 6.25% sub-sampling rate.

The bit-accurate model produces exact spectra for up to 6.25% sub- sampling

rate. The algorithm reaches convergence at a higher number of iterations.

In the following experiment leakage is introduced for 25% sub-sampling rate.

(a) (b)

Figure 10.17: Results for 25% sub-sampling rate with spectral leakage.

The algorithm converges without recovering any frequencies near the missing

one. Some positive results have been reported during the tests by altering the value

of λ but the spectrum was not sparse and resembled the one of Figure 10.17. Leakage

plays an important role in recovering a sparse signal and it is not to be overlooked.

10.6 Field Trials

The prototype was exposed in a series of experiments to assess coverage and

sensitivity with only the basic components of an analogue front-end, namely an

omni-directional antenna and an amplifier. The choice of these two components was

generic and no special study took place prior to their choice. The basic limitations

of the system such as dynamic range were verified.
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PC User Interface AMP Prototype

Splitter Antenna/Amplifier

Swept-tuned Analyser

Figure 10.18: Experimental setup signal path.

Alongside with the evaluation module a swept-tuned Spectrum analyser was used

and was fed with the input from the antenna with a splitter. For the purposes of

the demonstration a graphical user interface was written in MATLAB. The interface

was able to generate alarms when the power level on a specific band of the spectrum

was present.

Several other limitations have been examined such as the algorithm’s perfor-

mance under limited numerical accuracy and fixed-point arithmetic. These also

regard specific parameters of the algorithm which affect performance such as the

number of iterations. These findings can serve as the starting point for future re-

search.

10.6.1 Experimental Setup

The signal path for the trials is shown in Figure 10.18. The setup in the lab-

oratory can be seen in Figure 10.19 and consisted of an RF signal generator, the

SMA cables, a balun, the evaluation board (ADC and FPGA), a PC (running client

software) and a USB cable.

Figure 10.20 shows the sampled spectrum at Nyquist rate using the original

device firmware and software provided by Texas Instruments. Figures in 10.21 show

typical captures during the trials by the evaluation module. It was observed that the

algorithm would only converge at a very small number of iterations, typically 1 to

4 and diverge soon after that. By lowering the value of the regulariser it is possible

to remedy this situation slightly but at the expense of recovering, possibly noise

components. The impact was a limited ability to reconstruct multiple emissions.

Some background emissions would not be reported when the higher power control

signal was transmitting.

To follow this, it was also observed that the value of the regulariser greatly affects

the initial guess and subsequent steps. Even though such a situation does not arise in

the theoretical analysis of the AMP algorithm [32] this can be possibly attributed to
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Figure 10.19: Setup in the laboratory.

Figure 10.20: Typical spectrum during the trials.

the fixed point arithmetic and/or erratic FPGA behaviour as post-route simulations

have not been carried out. The regulariser value should only affect the convergence

speed.

The algorithm runs with two parameters to be predetermined, the maximum

number of iterations and the regulariser value. In order to set these two values

during the tests a trial and error procedure was followed by first increasing the

value of the regulariser until a reasonable result was acquired and then increase the

iteration count to fine tune the result.

The trial demonstrated that the prototype equipment was approximately 30dB’s

less sensitive than the commercial spectrum analyser used for comparison. This was

expected because the spectrum analyser detects signals in a considerably narrower

bandwidth (lower noise). However, it was easily demonstrated that the C.S equip-

ment had a higher probability of capturing short duration transmissions than the
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(a) (b)

Figure 10.21: (a) Personal Radio Module transmission. (b) GSM transmission.

spectrum analyser because of the latter’s swept super-heterodyne architecture.

10.7 Conclusions

There are certain limitations linked to the chosen hardware that were proven

impossible to overcome and a sub-optimal solution had to be followed. The lesson

learnt from these limitations was that significant gains from sparse recovery methods

can be possible in very specific scenarios and applications.

In the algorithmic part, a compressed sensing algorithm was implemented on an

FPGA device. There are certain aspects of the algorithm that are not covered by the

existing theory and limit to a great extent the performance. Careful and targeted

research is possible to provide solutions to these problems. To be more specific,

the performance of sparse recovery algorithms under limited numerical precision is

rarely studied. Attempts have been made in order to understand these limitations

in an empirical manner.

The platform was tested in laboratory conditions and field tests have also been

carried out. The experience of working with such novel techniques in real-life was

proven to be highly rewarding in every aspect.
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Appendix

A.1 Matrix Identities

The Matrix Inversion Lemma

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1. (A.1)

The Positive Definite Identity

If A and C are positive definite then the following holds,

(
A−1 +BTC−1B

)
BTC−1 = ABT

(
BABT +C

)−1
(A.2)

A.2 The Gaussian Distribution

The multivariate Gaussian distribution for a vector x ∈ R
m is given by,

p(x) = N (μ,Σ) =
1√

(2π)m · |Σ|
· e− 1

2
(x−μ)TΣ−1(x−μ)

where

E[x] = μ

cov[x] = Σ.

Given the marginal distribution for x and the conditional distribution for y given

x:

p(x) = N (μ,A)

p(y|x) = N (Hx,B)
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then the marginal distribution of y and the conditional distribution of x given y

are given by:

p(y) = N
(
Hμ,B−1 +HA−1HT

)
(A.3)

p(x|y) = N
(
Σ(HTB−1y +A−1μ),Σ

)
(A.4)

where

Σ = (A−1 +HTB−1H)−1.
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