
1 Informational contagion

1.1 Contagion between markets

Informational contagion refers to the process whereby information about one market

has an impact on another market. The study of informational contagion did not originally

require the use of an explicit network, but the concept of a network is a natural framework

for the study of informational contagion. Two of the earliest studies, Kodres and Pritzker

(2002) [KP] and Pavlova and Rigobon (2008) [PR], illustrate the network structure that is

implicit in the study of informational contagion.

[KP] make use of the familiar rational expectations model of financial markets, in which

private information is aggregated in asset prices. They consider a model consisting of two

asset markets,  and , and that traders in one market can observe the asset prices in both

markets. The presence of noise traders prevents prices from revealing information perfectly.

In fact, prices will reflect a combination of noise and fundamentals. The fundamental values

of the assets in the two markets are affected by a combination of common and market-specific

shocks. Traders in market , observing changes in the prices of assets in market , will

try to infer information that is relevant to the valuation of assets in market . In this way,

an increase in prices in market  may cause prices to rise in market  if traders infer that

the price increases in market  are due to a common shock that has raised fundamental

values in both markets. Since prices do not reveal information perfectly, traders in market

 may be fooled by price increases in market  that result either from noise trading or from

fundamental shocks that are irrelevant to market . Thus, the spillover from market  to

market  may be unjustified by the information originally received by traders in market .

Now suppose that there are three markets, , , and , and that  and  have a

common factor,  and  have a common factor, but that  and  have no factors in

common. Contagion is possible between  and  and between  and  for the usual reasons

explained above. What is more surprising is that portfolio rebalancing allows financial

contagion between market  and market . Even if there is no information asymmetry in

market  and no market specific shock, a shock to market  will spillover to market  and

affect prices there. These price changes will be interpreted as the result of a shock common

to  and  and will thereby influence prices in market .

In the simplest cases, the idea of a network structure is almost superfluous, but if one

thinks of a larger number of markets, for example, capital markets in different countries, the

network concept arises quite naturally. Suppose the markets are indexed by  = 1  and

the factors affecting asset values are indexed by  = 1  . Each market  is affected by a

set of factors  (). A pair of markets  and  will share some common factors  ∩ 
but each will also be affected by specific factors \ and \ that do not directly
affect the other. Two markets  and  are directly connected if  ∩  is non-empty. Of
course, the “connection” between two markets is more complicated than the existence of an

edge between two nodes in a graph, but the analogy is clear.

[PR], like [KP], use the rational expectations framework, but seek to show how informa-
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tional contagion can affect economies that have no common shocks. They illustrate this idea

with the Brazilian financial crisis that followed the Russian default of 1998. The link be-

tween the apparently unrelated crises in Russia and Brazil was the New York market, which

was linked to both. The Russian default caused New York banks to adjust their portfolios

because of institutional constraints designed to control risk exposures. This reallocation of

wealth in turn caused changes in prices in the Brazilian market that signalled a bad shock.

Here the network is salient: New York constitutes the centre of the network and Brazil and

Russia represent two peripheral nodes.

These two papers also illustrate the difference between pure information externalities

and payoff externalities. In [KP] there is a pure informational externality: the actions of

traders in market  do not affect the payoffs of traders in market . The only reason that

traders in market  pay attention to the actions of traders (or prices) in market  is because

of the information those actions (or prices) reveal. In [PR], on the other hand, the actions

of the traders in New York have a direct affect on the traders in Brazil, through their effect

on prices, in addition to the information revealed by the change in prices. Pure information

externalities are somewhat unusual in economics, but they are characteristic of models of

herd behavior (Banerjee, 1992; and Bikhchandani, Hirshleifer and Welsh, 1992). In those

models, a sequence of agents chooses a discrete action after observing a private signal. One

can think of the sequence of agents as forming a kind of network in which agent+1 observes

the actions of agents  = 1   , but not their private information. The discrete action

chosen by preceding agents is a course signal of their private information and this makes

possible informational cascades, in which agents ignore their private information and follow

their predecessors, and herd behavior, in which agents choose the same action indefinitely.

These ideas have also been applied in market settings. Avery and Zemsky (1998) have shown

that the informational role of prices can prevent the occurrence of informational cascades and

incorrect herds. Cipriani and Guarino (2008a, 2008b) have found conditions under which

cascades can exist in financial markets (this requires transaction costs or gains from trade)

and showed that contagion may occur between asset markets (information revealed by prices

in one market may cause a cascade in another market).

In [KP] and [PR], traders are assumed to observe prices in all markets, but prices are

not perfectly revealing because of the presence of noise. Other writers assume that agents

in one location can only observe a subset of other locations. Examples include Gale and

Kariv (2003), Acemoglu, Dahleh, Lobel and Ozdaglar (2011), and Mueller-Frank (2013).

This literature is discussed in the chapter by Golub and Sandler, in this volume.

1.2 Contagion between banks

Informational contagion between banks has been explored in settings that do not call for

an explicit network structure. One example is the paper by Ahnert and Georg (2012),

in which the release of bad information about one bank provides information about other

banks, because of common asset holdings and common counterparty exposures. The paper

by Ahnert and Bertsch (2014) makes use of a different type of contagion, the “wake up
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call.” Bad information about one bank causes depositors to obtain costly information about

another bank, because the depositors suspect a common shock. Even if it transpires that

the second bank was not subject to a common shock, the information revealed about the

second bank may, coincidentally, provoke a run. Thus, even in the absence of a common

shock, there is informational contagion.

These models, like those of [KP] and [PR] are interesting because they provide an ac-

count of informational contagion between banks, but they do not make use of an explicit

network. It is easy to see how these informational contagion channels could be embedded

in a network framework to give a richer account of financial contagion. Two examples of

financial contagion in networks are described next.

Caballero and Simsek (2013) have exploited an explicit network formulation to show how

informational contagion can amplify the mechanical contagion that results from counterparty

exposures. Imagine a sequence of banks, indexed by  = 1 , arranged in a circular

network. Bank  owes one unit to bank (− 1)mod. Banks are funded by deposits and
capital (equity) and the latter allows banks to suffer some losses without failing. If bank 

fails completely (its assets become worthless), it cannot pay what it owes bank − 1. Then
bank − 1 can pay bank 1− 2 the amount min {1 }, where  represents the bank’s equity,
bank  − 2 will be able to pay bank  − 3 the amount min {min {1 }+  0} and so on. If
bank  is far enough away from bank  so that (−  + 1)  ≥ 1,1 it will receive the full

amount and bank  will not fail. Thus, a complete failure of bank  only causes limited

contagion within the network.

Now suppose that all banks know that some bank has failed completely but the identity

of the failing bank is unknown. Then every bank will have a positive probability of being

hit by the contagion and failing. In fact, if the probability distribution of any bank failing is

unknown and depositors have an extreme form of uncertainty aversion, they may assume the

worst case, i.e., that bank  is close to the failing bank and will also fail. In effect, uncertainty

aversion collapses the network, making the failed bank every bank’s neighbor.

Alvarez and Barlevy (2014) [AB] have undertaken a more complex and nuanced analysis

of uncertainty about the location of bad banks. In their analysis, banks are randomly

assigned to locations on a network. Some of the banks are bad banks, which have received

a shock that makes it impossible for them to repay their debts in full. Other banks have

not received such a shock but may have counterparty exposure, directly or indirectly, to one

of the bad banks. As in [CS], bank ’s exposure depends on the distance between bank 

and the nearest bad bank. The complexity of the analysis derives partly from the generality

of the networks considered and the difficulty of characterizing the distribution of good and

bad banks. Each of the good banks has an investment option that can produce enough

revenue to keep the bank solvent but it requires investment that has to be externally funded.

The problem is that, because of the uncertainty of the location of good and bad banks, the

debt overhang discourages investors from investing in the good banks. [AB] show that, under

certain conditions, mandatory disclosure of banks’ financial condition can permit some banks

1The contagion ends at bank  if bank  − 1 can repay its debt in full and banks  − 2   cannot. In
that case, bank  − 1 can pay at most (−  + 1)  and  will not fail if and only if (−  + 1)  ≥ 1.
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to obtain external funding and return to solvency, whereas non-disclosure ensures that none

will receive the new investment they need to survive.

These two examples illustrate how financial contagion depends not only on the network

structure but also on the banks’ knowledge and beliefs about that structure. This suggests

that providing information about or ensuring the transparency of the network structure, may

be a useful regulatory tool.
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