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1. INTRODUCTION

Over the past decades the persistence of excitation con-
dition has found a number of applications in mathe-
matical control theory, see, e.g., Söderström and Stoica
[1989], Ljung [1999], Van Overschee and De Moor [1996],
Katayama [2006], Huang and Kadali [2008], Pintelon and
Schoukens [2012], Sastry and Bodson [1989], Narendra
and Annaswamy [1989], Åström and Wittenmark [1995],
Ioannou and Sun [1995], Khalil [1996], Tao [2003]. From
a historical point of view, the notion of persistence of
excitation of a signal has been introduced in Åström and
Bohlin [1965] to ensure asymptotic consistency of the
solution of a maximum likelihood identification problem.
Thereafter, persistently exciting signals have attracted con-
siderable interest in the control engineering area prompted
by the possibility of proving stability results for adaptive
control algorithms (see, e.g., Morgan and Narendra [1977],
Anderson and Johnson [1982], Boyd and Sastry [1983],
Bitmead [1984], Goodwin and Teoh [1985], Boyd and
Sastry [1986], Narendra and Annaswamy [1987]). This
has generated a vast and diverse body of contributions,
e.g., Ljung [1971], Yuan and Wonham [1977], Stoica [1981],
Moore [1983], Mareels [1984], Mareels and Gevers [1988],
Ljung and Glad [1990, 1994], Willems et al. [2005], Gevers
et al. [2009], Ortega and Fradkov [1993], Zhang et al.
[1996], Panteley et al. [2001], Loŕıa et al. [2005], which have
provided extensions and applications of the persistence of
excitation condition.

The notion of persistence of excitation is particularly useful
in experiment design both for system identification and
adaptive control Söderström and Stoica [1989], Ljung [1999],
Van Overschee and De Moor [1996], Katayama [2006],
Huang and Kadali [2008], Pintelon and Schoukens [2012],
Sastry and Bodson [1989], Narendra and Annaswamy
[1989], Åström and Wittenmark [1995], Ioannou and Sun
[1995], Khalil [1996], Tao [2003]. Roughly speaking, a
signal is persistently exciting if its spectrum contains a

sufficiently large number of harmonics Ljung [1971]. The
use of persistently exciting signals is often necessary to
ensure that a system identification experiment produces
informative data. For example, these signals are especially
important when all the modes of a linear system need to
be excited Söderström and Stoica [1989], Ljung [1999],
Van Overschee and De Moor [1996], Katayama [2006],
Huang and Kadali [2008], Pintelon and Schoukens [2012].
Persistence of excitation conditions are also crucial in the
stability analysis of certain classes of nonlinear systems
Panteley et al. [2001], Loŕıa et al. [2005], which, in turn, is
instrumental for the investigation of convergence properties
of adaptive control algorithms Sastry and Bodson [1989],
Narendra and Annaswamy [1989], Åström and Wittenmark
[1995], Ioannou and Sun [1995], Khalil [1996], Tao [2003].

The first objective of this work is to characterise geomet-
rically the persistence of excitation condition for signals
generated by the class of time-invariant, continuous-time,
autonomous systems, i.e. dynamical systems described
by time-invariant ordinary differential equations without
forcing term. In particular, our main goal is to show that
a rank condition is equivalent to the property that the
state of an autonomous system is persistently exciting.
The proposed rank condition turns out to have a simple
system-theoretic interpretation in terms of controllability
properties of a particular system.

The second objective is to use the proposed rank condition
to address special issues in control problems dealing with
input-output data. To demonstrate the significance of our
result we address questions in subspace identification for
linear autonomous systems Verhaegen and Verdult [2007]
and nonlinear autonomous systems Padoan and Astolfi
[2015]. We also envisage the use of the result to deal with
issues arising in the study of the steady-state response of
nonlinear systems Astolfi [2010] and in data-driven model
reduction by moment matching for linear and nonlinear,
possibly time-delay, systems Scarciotti and Astolfi [2015].



Note that this is only a subjective selection of issues based
on the authors’ background and the possibility of finding
other applications in the future is not excluded.

The rest of the paper is organized as follows. Section 2
contains basic definitions. Section 3 provides a system-
theoretic interpretation of the notions introduced and the
main result of the paper, which asserts that the state
of a time-invariant, continuous-time, autonomous system
is persistently exciting if and only if a rank condition is
satisfied. Section 4 illustrates ideas and tools presented in
Sections 2 and 3 by means of simple examples. Section 5
presents an application in system identification. Finally,
conclusions and future research directions are outlined in
Section 6.

Notation: Standard notation is used. N denotes the set of
natural numbers (including 0). R, Rn and Rp×m denote
the set of real numbers, of n-dimensional vectors with
real entries and of p ×m-dimensional matrices with real
entries, respectively. R+ and C− denote the set of non-
negative real numbers and the set of complex numbers with
negative real part, respectively. ‖ω‖ denotes the standard
Euclidean norm of the vector ω ∈ Rν . M ′ and ImM denote
the transpose and the image space of the matrixM ∈ Rp×m,
respectively. λ(S) denotes the spectrum of the matrix
S ∈ Rν×ν . The function ϕ(·) is said to be of class Ck, with
k > 0 integer, if it possesses continuous partial derivatives
up to the order k. L2

loc(R+,Rν) denotes the Hilbert space
of locally square-integrable functions ω : R+ → Rν . The
flow of a vector field s(·) passing through ω ∈ Rν at time
t = 0 is denoted by φst (ω), i.e. t 7→ φst (ω) is the unique
maximal integral curve of s(·) such that φs0(ω) = ω. The
positive orbit of a forward-complete vector field s(·) passing
through ω ∈ Rν at time t = 0 is denoted by γ+(ω), i.e.
γ+(ω) = {φst (ω) : t ∈ R+}. Finally, ω1(t) ≡ ω2(t) means
that the functions ω1(·) and ω2(·) coincide in their common
domain of existence.

2. PRELIMINARIES

Consider a continuous-time, autonomous, nonlinear system
described by equations of the form

ω̇ = s(ω), (1)

in which ω(t) ∈W ⊂ Rν denotes the state of the system
at time t ∈ R+. Without loss of generality, suppose that
the state space W is a compact invariant set containing
the origin, that the vector field s : W →W is analytic, i.e.
expandable in a convergent power series in its arguments
about each point of W , and that the origin is an equilibrium
point for the system, i.e. s(0) = 0.

Definition 1. Consider the system (1). The excitation
space E of system (1) is defined as the smallest linear space
over R of vector fields on W containing the identity map
and closed under Lie differentiation along the vector field
s(·).

An equivalent description of the object defined above can
be established as follows. Define recursively the vector fields

θk+1 : W →W : ω 7→ ∂θk
∂ω

(ω)s(ω), k ∈ N, (2)

with θ0(·) the identity map. If ω(·) is a solution of class Ck

of the ordinary differential equation (1), then

ω(k)(t) ≡ θk(ω(t)),

in which ω(k)(t), with k a positive integer, denotes the k-th
order time derivative of the function ω(·) at time t ∈ R+,
provided it exists. In other words, along the solutions of the
system (1), the vector fields defined above coincide with
the state of the system and its successive time derivatives.
Hence, we provide an equivalent definition of excitation
space.

Definition 2. Consider the system (1). The excitation
space of system (1) is given as

E = span {θk(·), k ∈ N} .
Definition 3. Consider the system (1). The excitation dis-
tribution of system (1) is defined as

E(ω) = span {θk(ω), k ∈ N} , ω ∈W.
Definition 4. Consider the system (1) and the corre-
sponding excitation distribution E(·). System (1) is said
to satisfy the excitation rank condition at ω0 ∈W if
dimE(ω0) = ν, i.e.

dim Im [ θ0(ω0) θ1(ω0) θ2(ω0) · · · ] = ν.

3. A SYSTEM-THEORETIC INTERPRETATION

In this section we show that the definitions introduced
above can be used to give a geometric characterisation of
the classical notion of persistence of excitation (see, e.g.,
Sastry and Bodson [1989], Ioannou and Sun [1995]).

Definition 5. A signal ω(·) ∈ L2
loc(R+,Rν) is persistently

exciting if there exists a real constant T > 0 such that the
matrix

W(t, t+ T ) =

∫ t+T

t

ω(τ)ω(τ)′dτ (3)

is positive definite for all t ∈ R+.

To illustrate our results we first consider the case of linear
systems and subsequently discuss the extension to nonlinear
systems.

3.1 Linear systems

The definitions introduced in the previous section can
be given a simple interpretation. Every solution of an
autonomous system of the form (1) with non-zero initial
condition can always be associated with the impulse
response of a specific controlled system with zero initial
condition, the controllability properties of which are
well-defined. More precisely, consider a continuous-time,
autonomous, linear system described by equations of the
form

ω̇ = Sω, (4)

in which ω(t) ∈ Rν and S ∈ Rν×ν is a constant matrix.
If ω(0) = ω0 is the initial condition of the state, then the
dynamics of the system (4) coincide with that of the system

η̇ = Sη + ω0u, (5)

with η(t) ∈ Rν , when the initial condition is zero and
the input u(t) ∈ R is the Dirac δ-function. Therefore, it
is always possible to interpret the dynamics of a linear
autonomous system of the form (4) with non-zero initial
condition as the dynamics of a controlled linear system of
the form (5) with zero initial condition and an impulsive
input.



The definitions introduced in Section 2 can be now given a
direct interpretation as follows. Consider the systems (4)
and (5). The special structure of system (4) allows to write

θk(ω) = Skω, ω ∈ Rν .
Thus, according to Definition 3 and 4, the excitation
distribution reads as

E(ω) = Im Ξ(S, ω), ω ∈ Rν ,
in which Ξ(S, ω) denotes the controllability-like matrix with
infinitely many columns associated with the pair (S, ω),
defined as

Ξ(S, ω) =
[
ω Sω S2ω · · ·

]
. (6)

As a result, the following result can be established.

Proposition 1. System (4) satisfies the excitation rank
condition at ω0 ∈ Rν if and only if the system (5) is
controllable, i.e. dim Im Ξ(S, ω0) = ν.

The results developed so far allow to give a geometric
characterisation of the persistence of excitation condition.

Theorem 1. Consider the system (4) with initial condition
ω(0) = ω0. The following statements are equivalent.

(L1) The state of the system is a persistently exciting
signal.

(L2) For every ω◦ ∈ γ+(ω0), there exists a real constant
T > 0 such that the controllability Gramian

W(0, T ) =

∫ T

0

eSζω◦ω◦′eS
′ζdζ (7)

is positive definite.
(L3) The system (4) satisfies the excitation rank condi-

tion at every ω◦ ∈ γ+(ω0).

Proof 1. (L1) ⇔ (L2). We only show (L1) ⇒ (L2), since
the inverse implication it trivial.

Taking into account that the solution of the linear dif-
ferential equation (4) is t→ ω(t) = eStω0, a shift of the
integration variable gives

W(t, t+ T ) =

∫ T

0

eSζω◦ω◦′eS
′ζdζ,

with ω◦ = eStω0 and t ∈ R+. Recalling that the matrix
W(t, t + T ) is positive definite by hypothesis yields the
claim.

(L2) ⇔ (L3). This equivalence is a direct consequence of
a standard result of linear systems theory Antoulas [2005,
Corollary 4.11].

The significance of Theorem 1 is that the state of the
system (4) is persistently exciting if and only if the pair
(S, ω◦) is exciting for every point ω◦ which belongs to
the positive orbit γ+(ω0). Note that an objection can
be raised: one needs to check the validity of (L2) or
(L3) for every ω◦ ∈ γ+(ω0) to conclude that the state
of system (4) is persistently exciting, thus making the
verification practically infeasible. To resolve this issue, the
following result, stated without proof for reasons of space, is
introduced by strengthening the assumptions of Theorem 1.

Theorem 2. Consider the system (4) with initial con-
dition ω(0) = ω0. Assume that the matrix S is skew-
symmetrizable 1 . The following statements are equivalent.
1 A matrix S is skew-symmetrizable if there exist a positive definite
diagonal matrix D such that SD + DS′ = 0. In particular, all the
eigenvalues of S lie on the imaginary axis.

(L1)
∗

The state of the system is a persistently exciting
signal.

(L2)
∗

There exists a real constant T > 0 such that the
controllability Gramian

W(0, T ) =

∫ T

0

eSζω0ω
′
0e
S′ζdζ

is positive definite.
(L3)

∗
The system (4) satisfies the excitation rank condi-

tion at ω0.

3.2 Nonlinear systems

The arguments used in the linear case can be extended to
the case of nonlinear systems.

Theorem 3. Consider the system (1) with initial condition
ω(0) = ω0. The following statements are equivalent.

(NL1) The state of the system is a persistently exciting
signal.

(NL2) For every ω◦ ∈ γ+(ω0), there exists a real constant
T > 0 such that the matrix

W(0, T ) =

∫ T

0

φsζ(ω
◦)φsζ(ω

◦)′dζ (8)

is positive definite.
(NL3) The system (1) satisfies the excitation rank condi-

tion at every ω◦ ∈ γ+(ω0).

The following lemma is crucial in proving Theorem 3.

Lemma 1. Consider the system (1) with initial condition
ω(0) = ω0. Select ω◦ ∈ γ+(ω0) and let W(0, T ) be as in
(8). Then ImW(0, T ) = E(ω◦) for all T > 0.

Proof 2. The proof is adapted from the proof of An-
toulas [2005, Proposition 4.10]. Fix a real constant T > 0
and a constant vector z ∈ Rν such that z 6= 0. To prove
the claim it suffices to show that z′W(0, T ) = 0 if and
only if z′E(ω0) = 0. Equivalently, in view of the positive
semi-definiteness of W(0, T ), it is enough to show that
z′W(0, T )z = 0 if and only if z′E(ω◦) = 0. Moreover,

0 = z′W(0, T )z =

∫ T

0

(z′φsζ(ω
◦))2dζ

amounts to saying that z′φst (ω
◦) = 0 for every t ∈ R+.

The latter condition, by analyticity, is equivalent to
t 7→ z′φst (ω

◦) and all its derivatives being zero for every
t ∈ R+, i.e. z′θk(ω◦) = 0 for every k ∈ N. This, in view of
Definition 3, is equivalent to z′E(ω◦) = 0, as desired.

Proof 3. (Proof of Theorem 3). (NL1)⇔ (NL2). The claim
follows directly from Definition 5 using the change of
integration variable ζ = τ − t.
(NL2) ⇔ (NL3). This equivalence is a direct consequence
of Lemma 1.

To state a nonlinear counterpart of Theorem 2 we introduce
the following definitions.

Definition 6. Isidori [1995] Consider the system (1). A
point ω◦ ∈W is said to be Poisson stable if the following
conditions hold.

(PS1) The flow φst (ω
◦) of the vector field s(·) is defined

for every t ∈ R.
(PS2) For every neighbourhood W ◦ ⊂ W of ω◦ and for

every real number T > 0 there exist real constants



t− < −T and t+ > T such that φst−(ω◦) ∈W ◦ and

φst+(ω◦) ∈W ◦.
Definition 7. Isidori [1995] The system (1) is said to be
neutrally stable if the following conditions hold.

(NS1) The equilibrium point at ω = 0 is stable in the
sense of Lyapunov.

(NS2) There exists an open neighbourhood of the origin
in which every point is Poisson stable.

Remark 1. A continuous-time, autonomous, linear system
described by equations of the form (4) is neutrally stable
if and only if the matrix S is skew-symmetrizable.

We are now in the position to establish the following result.

Theorem 4. Consider the system (4) with initial condition
ω(0) = ω0. Assume that system (4) is neutrally stable. The
following statements are equivalent.

(NL1)
∗

The state of the system is a persistently exciting
signal.

(NL2)
∗

There exists a real constant T > 0 such that the
matrix

W(0, T ) =

∫ T

0

φsζ(ω0)φsζ(ω0)′dζ

is positive definite.
(NL3)

∗
The system (1) satisfies the excitation rank con-

dition at ω0.

4. EXAMPLES

This section illustrates the notions and tools introduced in
Sections 2 and 3 by means of two simple examples.

Example 1. Consider a continuous-time, autonomous, lin-
ear system described by equations of the form (4), with
ω(t) ∈ R3, S ∈ R3×3 a constant skew-symmetrizable ma-
trix defined as

S =

[
0 0 0
0 0 Ω
0 −Ω 0

]
, Ω > 0,

and ω(0) = [ω10 ω20 ω30 ]′ the initial condition of the state.
The matrix with infinitely many columns Ξ(S, ω(0)), de-
fined as in (6), reads as

Ξ(S, ω(0)) =

 ω10 0 0 · · ·
ω20 Ωω30 −Ω2ω20 · · ·
ω30 −Ωω20 −Ω2ω30 · · ·

 .
A direct computation shows that the determinant of the
matrix composed by the first three columns of Ξ(S, ω(0))
is zero if and only if

ω10 = 0 or ω2
20 + ω2

30 = 0. (9)

By Proposition 1 and by Cayley-Hamilton theorem Horn
and Johnson [1985], this implies that the excitation rank
condition is satisfied if and only if neither of the conditions
(9) holds. Hence, in view of Theorem 2, the state of
the system is a persistently exciting signal if and only if
neither of the conditions (9) holds. Since the system under
consideration de facto describes the time evolution of
two non-interacting autonomous linear systems, conditions
(9) have a simple interpretation: to ensure that all the
components of the state of the system are persistently
exciting both sub-systems need to start from a non-zero
initial condition.

Example 2. (Euler’s equations). The angular velocity of a
rigid body with respect to a fixed reference frame with
axes fixed to the body and parallel to the body’s principal
axes of inertia can be described by the classical Euler’s
equations Bloch [2003]

I1ω̇1 = (I2 − I3)ω2ω3,
I2ω̇2 = (I3 − I1)ω1ω3,
I3ω̇3 = (I1 − I2)ω1ω2,

(10)

in which ω = [ω1 ω2 ω3 ]′ and I1 > 0, I2 > 0, and I3 > 0
denote the vector of angular velocities and the principal
moments of inertia with respect to a body fixed coordi-
nates frame with origin located at the center of mass,
respectively. Due to their numerous applications in di-
verse fields, Euler’s equations have received considerable
attention by the control community over the past decades,
e.g., in relation to controllability, observability, and sta-
bilization problems Baillieul [1981], Crouch [1984], Aeyels
[1985], Aeyels and Szafranski [1988], Sontag and Sussmann
[1989], Outbib and Sallet [1992], Bloch et al. [1992], Astolfi
and Rapaport [1998], Astolfi [1999], Mazenc and Astolfi
[2000]. Note that system (10) is neutrally stable.

Assuming, without loss of generality, that I1 < I2 < I3,
system (10) can be re-written as

ω̇1 = A1ω2ω3, ω̇2 = A2ω1ω3, ω̇3 = A3ω1ω2, (11)

with A1 = (I2 − I3)/I3 < 0, A2 = (I3 − I1)/I2 > 0 and
A3 = (I1 − I2)/I3 < 0. Combining (2) and (11) gives

θ0(ω) =

[
ω1

ω2

ω3

]
, θ1(ω) =

[
A1ω2ω3

A2ω1ω3

A3ω1ω2

]
,

and

θ2(ω) =

A1A2ω1ω
2
3 +A1A3ω1ω

2
2

A1A2ω2ω
2
3 +A2A3ω

2
1ω2

A1A3ω
2
2ω3 +A2A3ω

2
1ω3

 .
A direct computation shows that the determinant of the
matrix the columns of which are the vectors θ0(ω), θ1(ω)
and θ2(ω) is zero if 2

ω1 = ω2 = 0 or ω2 = ω3 = 0 or A1ω
2
3 −A3ω

2
1 = 0, (12)

which are (well-defined) invariant manifolds for the sys-
tem. By Definition 4 this implies that the excitation rank
condition at ω is satisfied only if neither of the conditions
(12) holds. Thus, in view of Theorem 4, the state of the
system is a persistently exciting signal only if neither of
the conditions (12) holds at the initial condition ω(0).
However, these are only sufficient conditions for the system
to satisfy the controllability rank condition at a given
point ω ∈ Rν . In other words, the system may satisfy the
controllability rank condition at ω even if some of the
conditions (12) is satisfied.

Simulations have been run using an explicit Runge-
Kutta (4, 5)-order integration method, with a variable
integration step, an absolute tolerance εabs = 10−12 and
a relative tolerance εrel = 10−12. The parameters I1 = 1,
I2 = 2 and I3 = 3 have been selected. Fig. 1 displays
the state of the system (top) and the smallest singu-
lar value σmin(W(t− T , t)) of the matrix W(t− T , t)
(bottom), with T = 2 and initial condition selected as

2 Recalling that A1 < 0, A2 > 0 and A3 < 0 the conditions
A2ω2

3 −A3ω2
2 = 0 and A1ω2

2 −A2ω2
1 = 0 boil down to the first two

conditions in (12).
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Fig. 1. Time histories of the state of the system ω(t) (top)
and of the least singular value σmin(W(t− T , t)) of the
matrix W(t− T , t) (bottom) with ω(0) = [ 1 1 1 ]′.
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Fig. 2. Time histories of the state of the sys-
tem ω(t) (top) and of the least singular value
σmin(W(t− T , t)) of the matrixW(t− T , t) (bottom)

with ω(0) = [
√
A1/A3 0 1 ]′.

ω(0) = [ 1 1 1 ]′. The matrix W(t− T , t) has been com-
puted using the fact that W(t− T , t) = W(0, t) −
W(0, t− T ) and setting W(0, t− T ) = 0 for t ≤ T . Note
that this causes a transient behaviour of σmin(W(t− T , t))
for t < T . We can see that the system satisfies the
excitation rank condition at ω(0) and that, after an ini-
tial period, the quantity σmin(W(t− T , t)) is positive and
periodic. Therefore the state of the system is a persis-
tently exciting signal, as expected. Fig. 2 displays the
state of the system ω(t) (top) and the smallest sin-
gular value σmin(W(t− T , t)) of the matrix W(t− T , t)
(bottom), with T = 100 and initial condition selected as

ω(0) = [
√
A1/A3 0 1 ]′. Although the system satisfies the

third condition in (12), after an initial period, the quantity
σmin(W(t− T , t)) is positive and periodic. Therefore the
state of the system is a persistently exciting signal and,
by Theorem 4, the system satisfies the excitation rank
condition at ω(0). This also proves that the system may
satisfy the excitation rank condition even if one of the
conditions (12) holds.

5. APPLICATION TO THE PROBLEM OF SUBSPACE
IDENTIFICATION

This section contains an application of the notions in-
troduced in Section 2. Consider a continuous-time, au-
tonomous, nonlinear system described by equations of the
form

ẋ = f(x), y = h(x), (13)

in which x(t) ∈ X ⊂ Rn and y(t) ∈ Rp denote the unknown
state and the measured output of the system at time t ∈ R+,
respectively. Without loss of generality, suppose that the
state space X is a compact invariant set containing the
origin and that the mappings f : X → X and h : X → Rp
are analytic and such that f(0) = 0 and h(0) = 0. In
addition, assume that the system is observable 3 and that
x(0) = x0.

The identification problem considered in this section can
be stated as follows.

Problem 1. Determine the dimension n of system (13)
and the mappings f(·) and h(·) from a given sequence
of observed measurements of the form {y(k)(t)}Mk=0, with
t ∈ R+ and M ∈ N.

To make sure that the problem is well-posed, we assume
that t ∈ R+ is fixed, that M ∈ N is sufficiently large,
and that a pair of integers (i, j) satisfying the condition
n ≤ n̄ < i ≤ j, with n̄ an upper bound on n that we assume
to be a priori known, is given.

We now show that a solution can be determined using a
subspace approach when the system satisfies the excitation
rank condition. The material presented below is partly
borrowed and adapted from Verhaegen and Verdult [2007,
p. 297] and Padoan and Astolfi [2015].

5.1 Linear systems

Suppose system (13) is linear and described by equations
of the form

ẋ = Fx, y = Hx,

with x(t) ∈ Rn, y(t) ∈ Rp and F ∈ Rn×n, H ∈ Rp×n con-
stant matrices. Define the matrix

Yi,j =


y(t) y(1)(t). . . y(j−1)(t)

y(1)(t) y(2)(t). . . y(j)(t)
...

...
. . .

...

y(i−1)(t)y(i)(t). . . y(i+j−2)(t)

 ,
and note that, using the linearity of the system, it admits
the decomposition

Yi,j = ΓiXj , (14)

in which Γi = [ H ′ F ′H ′ · · · (F ′)i−1H ′ ]′ and
Xj = [ x(t) Fx(t) · · · F j−1x(t) ].

To see that the excitation rank condition is sufficient
for Problem 1 to be solved, recall that, by observability
of the system, the matrix Γi is full rank. In view of
Proposition 1 and of the decomposition (14), it follows
that if system (13) satisfies the excitation rank condition

3 For nonlinear systems it is possible to define several, non-equivalent
notions of observability. Herein, a system is observable if it satisfies the
observability rank condition at any point of the state space Nijmeijer
and Van der Schaft [1990, p. 96].



at x0, then rankYi,j = n and Im Γi = ImYi,j . This, in turn,
allows to solve Problem 1 by performing a singular value
decomposition of the matrix Yi,j and solving a linear system
(see Padoan and Astolfi [2015] for more detail).

5.2 Nonlinear systems

The treatment of the nonlinear case proceeds along the
same lines as the linear one based on the following results.

Lemma 2. Padoan and Astolfi [2015] Consider the system
(13). Assume that µ(·) and θ(·) are an analytic function
and an analytic vector field both defined on X, respec-
tively. For every integer k > 0, define recursively 4

ρθk(x) =

k−1∑
q=0

Lk−1−qf L[f,θ]L
q
fh(x), for all x ∈ X,

with ρθ1(·) = L[f,θ]h(·). If µ(·) = Lθh(·), then

Lkfµ(·) = LθL
k
fh(·) + ρθk(·)

for every integer k ≥ 1.

Theorem 5. Padoan and Astolfi [2015] Consider the sys-
tem (13). If there exist vector fields θ0(·), . . . , θj−1(·) that
satisfy the conditions

Lkfh(·) = Lθkh(·), k ∈ [0, j − 1], (15)

then, for every x ∈ X, the decomposition 5

Hi,j(x) = dHi(x)Θj(x) +Ri,j(x), (16)

in which

Hi,j(x) =


h(x) Lfh(x). . . Lj−1f h(x)

Lfh(x) L2
fh(x). . . Ljfh(x)

...
...

. . .
...

Li−1f h(x)Lifh(x). . .Li+j−2f h(x)

 ,
Hi(x) =

[
h(x)′ Lfh(x)′ . . . Li−1f h(x)′

]′
,

Θj(x) = [ θ0(x) θ1(x) . . . θj−1(x) ] ,

Ri,j(x) =


0 0 . . . 0

ρθ01 (x) ρθ11 (x) . . . ρ
θj−1

1 (x)
...

...
. . .

...

ρθ0i−1(x) ρθ1i−1(x) . . . ρ
θj−1

i−1 (x)

,
holds.

Theorem 6. Padoan and Astolfi [2015] Consider the sys-
tem (13) and equation (16). Suppose that the assump-
tions of Theorem 5 hold and that the intersection of the
subspaces spanned by the rows of the matrices Θj(x) and
Ri,j(x) contains only the zero vector for almost every 6

x ∈ X. If the matrix Θj(x) is full rank, then 7

rankHi,j/R⊥i,j(x) = n, (17)

4 As in Isidori [1995, Chapter 1], Lfh(·) denotes the Lie derivative
of the function h(·) along the vector field f(·). Lk

fh(·), with k ∈ N,

is defined recursively as Lk+1
f

h(·) = Lf (Lk
fh)(·), with L0

fh(·) = h(·).
[f, g](·) denotes the Lie bracket of the vector fields f(·) and g(·).
5 dH(·) denotes the differential of the mapping H(·), as defined in
Isidori [1995].
6 A property holds almost everywhere if the set where the property
does not hold has a Lebesgue measure equal to zero.
7 Following Padoan and Astolfi [2015], A/B⊥ denotes the projec-
tion of the row space of the matrix A ∈ Rp×j onto the orthog-
onal complement of the row space of the matrix B ∈ Rq×j , i.e.
A/B⊥ = A(I −B′(BB′)†B), with (BB′)† the Moore-Penrose inverse
of the matrix BB′.

for almost every x ∈ X.

The decomposition (16) along with the rank condi-
tion (17) allows to solve the identification problem posed.
As in the linear case, since rankHi,j/R⊥i,j(x) = n and

ImHi,j/R⊥i,j(x) = Im dHi(x) for almost every x ∈ X, if
Ri,j(x) can be estimated from the available data, Problem 1
can be solved through a singular value decomposition
and the solution of a linear system Padoan and Astolfi
[2015]. Note, however, that one needs to find a full rank
matrix Θj(x), the columns of which satisfy the conditions
(15). The following theorem formalises the role of the
proposed excitation notion in this context: the excitation
rank condition guarantees that the matrix Θj(x) is full
rank for some j ∈ N.

Theorem 7. Consider the system (13). Define recursively
the vector fields θ0(·), . . . , θj−1(·) as in (2) and the matrix-
valued function Θj(·) as in Theorem 5. If system (13) satis-
fies the excitation rank condition at x ∈ γ+(x0), then there
exists j ∈ N such that the columns of the matrix Θj(x) are
linearly independent and satisfy the conditions (15).

Proof 4. By hypothesis, the system (13) satisfies the ex-
citation rank condition at x ∈ γ+(x0). Hence, there ex-
ist j ∈ N and t ∈ R+ such that dim ImXj = n, with

Xj(t) = [x(t)x(1)(t) . . . x(j−1)(t) ]. The claim is now a di-
rect consequence of Padoan and Astolfi [2015, Lemma 3].

6. CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

The property of persistence of excitation for signals
generated by time-invariant, continuous-time, autonomous
linear and nonlinear systems has been studied. After
having discussed the system-theoretic interpretation of
the proposed notion in terms of a geometric condition, the
result has been used to address issues arising in system
identification. In order to illustrate notions and tools
required to develop our approach, simple examples have
also been provided.

We envisage that the notions of excitation space and
excitation distribution have a fundamental role in solving
specific issues arising in many control problems dealing
with input-output data. This is, for instance, immediately
evident in the problem of data-driven model reduction
by moment matching Scarciotti and Astolfi [2015]. More
precisely, consider a linear, single-input, single-output,
continuous-time, system described by the equations

ẋ = Fx+Gu, y = Hx, (18)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, F ∈ Rn×n, G ∈
Rn×1 and H ∈ R1×n. Let W (s) = H(sI − F )−1G be
the associated transfer function and assume that (18) is
minimal, i.e. controllable and observable.

Definition 8. Let si ∈ C, with si 6∈ λ(F ). The 0-moment
of system (18) at si is the complex number η0(si) = W (si).
The k-moment of system (18) at si is the complex number

ηk(si) = (−1)k
k!

[
dk

dsk
W (s)

]
s=si

, with k ≥ 1 integer.

In Astolfi [2010] it has been noted that the moments
of system (18) are in one-to-one relation with the well-
defined steady-state response of the output of a particular
interconnected system. This interpretation of the notion



of moment relies upon the center manifold theory and it
has the advantage that it can be extended to nonlinear,
possibly time-delay, systems Scarciotti and Astolfi [2016].

Theorem 8. Astolfi [2010] Consider system (18) and sup-
pose si /∈ λ(F ) ⊂ C−, for i = 1, . . . , η. Let S ∈ Rν×ν be
any non-derogatory matrix with characteristic polynomial
p(s) =

∏η
i=1(s − si)ki , where ν =

∑η
i=1 ki. Consider the

interconnection of system (18) with the system

ω̇ = Sω, u = Lω, (19)

with L such that the pair (L, S) is observable. Then there
exists a one-to-one relation between the moments η0(s1),
. . . , ηk1−1(s1), . . . , η0(sη), . . . , ηkη−1(sη) and the steady-
state response of the output y of such interconnected
system, namely HΠω, with Π ∈ Rn×ν the unique solution
of

FΠ +GL = ΠS.

Since the moments are in one-to-one relation with the
output of a system, it is natural to investigate the possibility
of determining the moments of the system, i.e. HΠ, from
input-output data without any knowledge of F , G, H
and x(0). This problem has been solved in Scarciotti and
Astolfi [2015]. The proposed solution relies on the following
assumption.

Assumption 1. Scarciotti and Astolfi [2015] Let T rk =
{tk−r+1, . . . , tk−1, tk} with 0 ≤ t0 < t1 < · · · < tk−r <
· · · < tk < · · · < tq, with r > 0 and q ≥ r. The elements
of T νk are such that dim Im [ ω(tk−ν+1) . . . ω(tk) ] = ν for
all k.

Exploiting the notion of excitation distribution it follows
that Assumption 1 can be always satisfied when the
excitation rank condition holds for the initial state of
system (19).

Proposition 2. Assume λ(F ) ∩ λ(S) = ∅ and that ω(0) =
ω0 ∈ P = {ω ∈ W : dim (E(ω)) = ν}. Then it is
always possible to select the elements of T νk such that
Assumption 1 holds and, as a consequence, Π is the unique
solution of the system

F Π̄(ω(tk−ν+1))− Π̄(ω(tk−ν+1))S +GLω(tk−ν+1) = 0,
...

F Π̄(ω(tk))− Π̄(ω(tk))S +GLω(tk) = 0,

where Π̄(ω) = Πω.

In light of these results, we expect that the notions
of excitation space and excitation distribution play an
important role, not only in solving the problem of data-
driven model reduction for linear and nonlinear, possibly
time-delay, systems, but also in many other data-driven
problems based on the notion of steady-state, e.g., in the
output regulation problem. These applications are, among
other topics, the subject of current research.

The analysis of the interplay between the stability of specific
classes of nonlinear systems and the proposed notions of
persistence of excitation is another important direction
for future research. As well known, different notions of
persistence of excitation may be used to establish global
uniform asymptotic stability results for general classes
of time-varying nonlinear systems (see, e.g., in Morgan
and Narendra [1977], Panteley et al. [2001], Loŕıa et al.
[2005]). Consequently, with the geometric characterisation

of persistence of excitation provided in the present paper,
one may extend these stability results using geometric
conditions which may be checked a priori, thus bypassing
the numerical integration of (possibly nonlinear) ordinary
differential equations.
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