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Abstract: This paper proposes a novel Plug-and-Play (PnP) dynamic approach for the
monitoring of Large-Scale Systems (LSSs). The proposed architecture exploits a distributed
Fault Detection and Isolation (FDI) methodology for nonlinear LSS in a PnP framework. The
LSS consists of several interconnected subsystems and the designed FDI architecture is able
to manage plugging-in of novel subsystems and un-plugging of existing ones. Moreover, the
proposed PnP approach performs the unplugging of faulty subsystems in order to avoid the
propagation of faults in the interconnected LSS. Analogously, once the issue has been solved,
the disconnected subsystem can be re-plugged-in. The reconfiguration processes only involves
local operations of neighboring subsystems, thus allowing a distributed architecture.
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1. INTRODUCTION

Complex systems such as LSS (Lunze (1992)), Systems-of-
Systems (Samad and Parisini (2011)) and Cyber-Physical
Systems (Baheti and Gill (2011)) attract a significant and
steadily growing interest in academia and industry. These
systems are characterized by a large number of states
and inputs, are spatially distributed, and are modeled
as the interaction of many subsystems coupled through
physical or communication relationships. Furthermore,
they often can have a dynamic structure that changes
along the time. The increased scale and complexity of the
considered systems implies a consequent increase in risk: in
a networked framework, also small failures can have severe
consequences for the entire system, involving individuals,
operators, system owners, societies and the environment.
Therefore, reliability is a key requirement in systems
design and the development of distributed methods for
fault diagnosis is an emergent important topic.

When dealing with monitoring of LSSs, centralized archi-
tectures (see Blanke et al. (2003) for a survey) can be not
adequate due to computational, communication, scalabil-
ity and reliability limits. An alternative is offered by the
adoption of decentralized and distributed approaches (see
Li et al. (2009), Zhang and Zhang (2012), Boem et al.
(2011), Ferrari et al. (2012) as examples). Moreover, a
novel requirement is the design of monitoring architectures
able to be robust to the changes that may happen in
the dynamic structure of the LSS. This is why, in this
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paper we develop a distributed Fault Detection and Isola-
tion methodology, properly designed for a Plug-and-Play
framework. It is worth noting that the proposed technique
is not a data-driven method (see Yin et al. (2014) for a
recent survey), but a model-based one (Frank (1996)). To
the authors’ knowledge, this is the first time that a com-
plete distributed monitoring architecture is designed for
LSS in a PnP scenario. Some recent results are presented in
Riverso et al. (2014a), integrating distributed model-based
fault detection with Model Predictive Control (MPC).
Compared with Riverso et al. (2014a), the present paper
shows the following significant differences: i) a general class
of nonlinear systems is addressed, while in Riverso et al.
(2014a) the analysis was limited to a class of nonlinear
systems, with matched control input; ii) the fault isolation
problem is also considered; iii) we exploit a full PnP
framework, where the monitoring architecture is always
robust to plug-in and unplugging of subsystems. Instead,
in Riverso et al. (2014a) only a reconfiguration process
after fault occurrence is considered. Recently, some works
have been published dealing with PnP scenarios: Stous-
trup (2009); Bendtsen et al. (2013); Riverso et al. (2013)
analyze only the control problem; Izadi-Zamanabadi et al.
(2012) designs a fault-tolerant control strategy for a cen-
tralized system; finally, Bodenburg et al. (2014) presents a
fault-tolerant PnP controller, but, differently from the pro-
posed work, it considers linear systems with a centralized
approach. The paper is organized as follows. In Section 2,
the problem formulation is provided whereas, in Section
3, the PnP distributed FDI scheme is presented. The PnP
operations are described in Section 4. Some simulation
results on a power systems application are presented in
Section 5. Finally, some concluding remarks are given in
Section 6.



Notation. We use a : b for the set of integers {a, a +
1, . . . , b}. Let v, v̄ ∈ R

s, the inequality |v| ≤ v̄ means that
for each component vk of the vector v, k = 1 : s, we have
|vk| ≤ v̄k.

2. PROBLEM FORMULATION

Let us consider a LSS, composed, at time t, of M inter-
connected subsystems. Subsystem dynamics is

Σ[i] : x
+
[i] = fi(x[i], ψ[i], u[i]) + wi(x[i], ψ[i])

+ φi(x[i], ψ[i], u[i], t) (1)

where x[i] ∈ R
ni , u[i] ∈ R

mi , i ∈ M = 1 :M , are the local

state and input, respectively, at time t and x+[i] stands for

x[i] at time t + 1. The vector of interconnection variables
ψ[i] ∈ R

pi collects components of the states {x[j]}j∈Ni

that influence the dynamics of x[i], where Ni is the set of

parents of subsystem i defined as Ni = {j ∈ M :
∂x

+
[i]

∂x[j]
6=

0, i 6= j}. We also define Ci = {k : i ∈ Nk} as the set
of children of Σ[i]. Finally, we say that Σ[i] and Σ[j] are
neighbors if j ∈ Ni or j ∈ Ci. fi(·) : Rni×R

pi×R
mi → R

ni

represents possibly nonlinear nominal dynamics, including
also known relationships with parent subsystems by means
of the interconnection variables, while wi(·) : R

ni ×
R
pi → R

ni represents the unknown possibly nonlinear
coupling among subsystems and includes also modeling
uncertainties. Instead, the function φi(·) : R

ni × R
pi ×

R
mi × R → R

ni represents the fault-function, capturing
deviations of the dynamics of Σi from the nominal healthy
dynamics: it is null before the unknown fault time T0.
We assume that the nominal model (1) takes already into
account the influences due to all the possible subsystems
that can be plugged-in to the i-th subsystem, by means
of the interconnection variables ψ[i]: at a certain time t,
some of these variables could be null (or set to a defined
value) because the corresponding father subsystem is not
connected to Σ[i] at that time. The k-th component of
vector x[i] is specified by x[i,k]. In this paper, we assume
that the state vector is fully accessible through noisy
measurements y[i]:

y[i] = x[i] + ̺[i], (2)

where ̺[i] ∈ R
ni , i ∈ M, is the local unknown measure-

ment error at time t. Similarly, z[i] = ψ[i]+θ[i] is the vector
of measured interconnection variables communicated by
father subsystems, with θ[i] collecting the involved mea-
surement error ̺[j], j ∈ Ni. We consider the following

Assumption 1. (I) Subsystems Σ[i], i ∈ M are subject
to the constraints

x[i] ∈ Xi, u[i] ∈ Ui, ψ[i] ∈ Ψi , (3)

where Xi, Ui and Ψi are compact sets.
(II) Functions wi(·) are bounded for all i ∈ M, i.e. it is

possible to define ∀i, k at each time step a bound
w̄i,k, so that

∣

∣wi,k(x[i], ψ[i])
∣

∣ ≤ w̄i,k(y[i], z[i]).
(III) The measurement error ̺[i] is bounded for all i ∈ M

at each time t, i.e. |̺[i]| ≤ ¯̺[i].

Some state variables, which we call shared variables,
are monitored by more than one LFD (see Fig.1). The
decomposition of the LSS is then termed overlapping
(Lunze (1992)). Examples of applications that can be
represented in this way are: power networks, water/gas
distribution networks and all the facilities networks that
are divided into subnetworks.

Fig. 1. The possibly overlapping decomposition of the LSS
structural graph: the small green circles represent the
state and input variables; the yellow ones are the
shared state variables.

Fig. 2. The reconfiguration option after fault detection.

The PnP framework we are considering, allows the plug-
in and unplugging of subsystems, without any need to
reconfigure the entire LSS: only neighboring subsystems
have to be updated, continuing to guarantee convergence
properties of the estimators and operational capabilities of
the diagnosers. We assume that only healthy subsystems
are connected to the LSS within the plug-in operations.
On the other hand, the unplugging process may occur
also in faulty conditions. In fact, one of the advantages of
the proposed framework is that, after fault detection, the
faulty subsystem can be disconnected, in order to avoid
the propagation of the fault in the LSS system. More
specifically, plug-in and unplugging operations, that we
generally call reconfiguration operations, could happen due
to changes of the dynamic structure of the LSS system or
it could be the consequence of the detection of a fault.
In this second case, the unplugging could be acted as a
consequence of the isolation phase or in alternative to the
isolation step. In general, after the detection of a fault (see
Section 3.1), depending on the specific application context
and criticality, two distinct actions may be feasible: i)
immediate “disconnection” of the faulty subsystem after
detection (see Fig. 2) or ii) continuation of the system
operation in “safety mode” and simultaneously fault iso-
lation, as explained in Section 3.6. After fault isolation,
two alternatives are possible: the unplugging of the faulty
subsystem or fault accommodation. We do not consider
fault accommodation in this paper. All these alternatives
are explained in the qualitative flowchart in Fig. 3.



Fig. 3. The proposed FDI architecture in the PnP frame-
work. The LSS normal operations include the plug-in
of novel subsystems and unplugging of existent ones.

3. THE FDI ARCHITECTURE

In this section, we design a distributed FDI architecture
for the considered PnP framework. Each subsystem is
monitored by one Local Fault Diagnoser (LFD).

3.1 Distributed Fault Detection

Let us first consider the fault detection task. We spe-
cialize to the PnP framework considered in this paper
a typical model-based FD approach: an estimate x̂[i] of
the local state variables is defined; the estimation er-
ror ǫ[i] , y[i] − x̂[i] is compared component-wise with
a suitable time-varying detection threshold ǭ[i] ∈ R

ni

+ .
The condition |ǫ[i,k]| ≤ ǭ[i,k], ∀k = 1 : ni is a necessary
(but generally not sufficient) condition for the hypothesis
Hi : “Subsystem Σ[i] is healthy”. If the condition is vio-
lated at some time instant, then we can conclude that a
fault has occurred. In the PnP framework, the diagnosers
are designed so to guarantee the absence of false alarms
and the convergence of the estimator error both during
healthy conditions and during the reconfiguration process:
the healthy subsystems diagnosers have to continue to
work properly also when the faulty subsystem(s) is (are)
unplugged and then plugged-in after problem solution.
Furthermore, properties are guaranteed during all the
plug-in and unplugging processes in healthy conditions.

3.2 The Fault Detection Estimator

For detection purposes, each LFD implements a local
nonlinear estimator, based on the local model (1). The
ki-th non-shared state variable of Σ[i] can be estimated as

x̂+[i,ki] = λ(x̂[i,ki] − y[i,ki]) + fi,ki(y[i], z[i], u[i]) , (4)

where the filter parameter is chosen in the interval 0 <
λ < 1, in order to guarantee convergence properties. Let
now consider a shared variable x[i,ki] = x[j,kj ], where ki
and kj are the ki-th and kj-th components of local vectors
x[i] and x[j], respectively. We use the redundant measure-
ments due to overlapping for implementing a deterministic

consensus approach (see Ferrari et al. (2012)). In fact, as
regards shared variables estimation, each subsystem com-
municates with parents and children subsystems sharing
that variable. In the following, Sk is the time-varying set
of subsystems Σ[i] sharing a given state variable k of the
LSS at the current time step. Let the shared variable be
x[i,ki]. The estimates of shared variables are provided by

x̂+[i,ki] = λ(x̂[i,ki] − y[i,ki]) +
∑

j∈Sk

W k
i,j

[

λ(x̂[j,kj ] − x̂[i,ki])

+fj,kj (y[j], z[j], u[j])
]

, (5)

where W k
i,j are the components of a row-stochastic matrix

W k, which will be defined in Subsection 3.4, designed
to allow plugging-in and unplugging operations. By now,
notice that W k collects the consensus weights used by Σ[i]

to weight the terms communicated by Σ[j], with j ∈ S
k.

We note that (5) holds also for the case of non-shared
variables (4), since, in this case, Sk = {i}, and W k

i,i = 1 by
definition. In the following, for the sake of simplicity, we
omit the subscript of the shared component index k, i.e.
we use x[i,k] instead of x[i,ki] when not strictly necessary.

3.3 The detection threshold

In order to properly define a threshold for FD, we analyze
the dynamics of the local estimation error in healthy
conditions. Defining W k such that

∑

j∈Sk
W k
i,j = 1 and

since for shared variables ∀i, j ∈ S
k there are ki and kj

such that it holds fi,ki(x[i], ψ[i], u[i]) = fj,kj (x[j], ψ[j], u[j]),
the k-th state estimation error dynamics model is given by

ǫ+[i,k] =
∑

j∈Sk

W k
i,j

[

λǫ[j,k] +∆fj,k + wj,k(x[j], ψ[j])

−λ̺[j,k]
]

+ λ̺[i,k] + ̺+[i,k] ,

where ∆fj,k , fj,k(x[j], ψ[j], u[j]) − fj,k(y[j], z[j], u[j]) and

̺+[i,k] is the measurement error at time t + 1. As in

Ferrari et al. (2012), we can bound the estimation error,
guaranteeing no false-positive alarms:

|ǫ+[i,k]| ≤
∑

j∈Sk

W k
i,j

[

λ|ǫ[j,k]|+ |∆fj,k|+ λ|̺[j,k]|+

+|wj,k(x[j], ψ[j])|
]

+ λ|̺[i,k]|+ |̺+[i,k]| .

We define the following time-varying threshold ǭ[i,k] that
can be computed in a distributed way by each LFD as

ǭ+[i,k] =
∑

j∈Sk

W k
i,j

[

λǭ[j,k] +∆f̄j,k + λ ¯̺[j,k] + w̄j,k(y[j], z[j])
]

+ λ ¯̺[i,k] + ¯̺+[i,k] , (6)

where ∆f̄j = maxx[j]∈Xj ,ψ[j]∈Ψj
|∆fj |. Assumption 1 im-

plies that state and input variables are bounded; hence
all quantities in (6) are bounded as well; ¯̺[i,k] and w̄i,k
are defined in Assumption 1. The threshold dynamics (6)
can be initialized with ǭ[i,k](0) = ¯̺[i,k](0). Threshold (6)
guarantees the absence of false-alarms caused by the uncer-
tainties. On the other hand, this is a possibly conservative
result since, in rough and qualitative terms, it does not
allow to detect faults “whose magnitude is lower than the
uncertainties magnitude” in the system dynamics 1 .

1 In Riverso et al. (2014b) some detectability results are given.



Remark 2. For diagnosis purposes, the information ex-
change between the local diagnosers is limited. It is not
necessary that each diagnoser knows the model of neigh-
bouring subsystems. In the shared case (5), it is sufficient
that each subsystem Σ[i] communicates to neighbouring
subsystems only the interconnection variables and the
local consensus terms for estimates and thresholds.

3.4 The consensus matrix

In this subsection, we explain how to design the consensus
matrix in an appropriate way in order to allow PnP
operations. For PnP capabilities, we use a square time-
varying weighting matrix W k whose dimension is equal to
the maximum number (as large as wanted) of subsystems
that can be plugged in sharing that variable. Each row
and each column represent a LFD sharing the variable
k: the generic element W k

i,j indicates how much the i-th
diagnoser weights the consensus terms received by the j-th
diagnoser in S

k. Each row can have non null elements only
in correspondence of connected (plugged-in) subsystems.
In the case that, at a given time, the variable is not shared
(and hence at most one subsystem is using it) the only
non-null weight is the one corresponding to the considered
subsystem (this does not affect the convergence of the FD
estimator as illustrated in Subsection 3.5). Similarly as
in Boem et al. (2013) (where it was useful for a delay
compensation strategy), here we define the time-varying
consensus-weighting matrix W k:

W k
i,j =











1 if j = arg min
j∈S

k
λ(ǭ[j,k] + ¯̺[j,k]) + ∆f̄j,k

+w̄j,k(y[j], z[j])
0 otherwise

(7)

At each time-step, every LFD receives estimates and con-
sensus terms of variable x[i,k] only from the subsystems
sharing it at that specific time. Then, it selects the con-
tribution affected by “smaller uncertainty” in its mea-
surements and in the local model. The introduction of
the proposed time-varying consensus matrix allows PnP
operations and is advantageous from a second perspective:
it allows to obtain the smallest threshold in the set of all
the possible conservative thresholds designed in (6).

3.5 Estimator convergence

Next, we address the convergence properties of the overall
estimator before the possible occurrence of a fault, that
is for t < T0. Towards this end, we introduce for analysis
purposes a vector formulation of the state error equation.
Specifically, the extended estimation error vector ǫk,E is
a column vector collecting the estimation error vectors
of the Nk subsystems sharing the k-th state component:
ǫk,E , col

(

ǫ[j,k] : j ∈ S
k
)

. Hence, the dynamics of ǫk,E
can be described as:

ǫ+k,E =W k [λǫk,E +∆fk,E + wk,E − λ̺k,E ]+λ̺k,E+̺+k,E ,

(8)
where ̺k,E is a column vector, collecting the corresponding
kj value of vector ̺[j], i.e. ̺[j,kJ ], for each j ∈ S

k;
∆fk,E and wk,E are column vectors collecting the vectors
wj,k and ∆fj,k, with j ∈ S

k, respectively. The following
convergence result can now be provided. Due to length
constraints, the proof is omitted.

Proposition 3. System (8), where the consensus matrix is
given by (7), is BIBO stable.

3.6 Distributed Fault Isolation

For fault isolation, we implement a Generalized Observer
Scheme (GOS, see Patton et al. (1989)), following the
approach proposed in Ferrari et al. (2012) for distributed
systems. We adapt it for the PnP scenario we are con-
sidering. We assume that each subsystem knows a local
fault set Fi, collecting all the NFi

possible nonlinear
fault functions: φli(x[i], ψ[i], u[i], t), l ∈ {1, . . . , NFi

}. After
fault detection at time Td, each interested LFD uses NFi

nonlinear estimators of the local state x[i], called Fault
Isolation Estimators (FIEs), in order to locally determine
which of the possible NFi

faults in the set Fi has occurred.
After the generic l–th FIE estimator is activated, with
l ∈ {1, . . . , NFi

}, it monitors its i-th subsystem, providing
a local state estimate x̂l[i] of the local state x[i]. The dif-

ference between the estimate x̂l[i] and the measurements

y[i] is the estimation error ǫl[i] , y[i] − x̂l[i] which is used

as a residual and compared, component by component,
to a suitable isolation threshold ǭl[i] ∈ R

ni

+ . The condition

|ǫl[i,k]| ≤ ǭl[i,k] ∀ k = 1, . . . , ni is associated to the l–th fault

hypothesis Hi,l:”The subsystem Σ[i] is affected by the l-th
fault”, with l = 1, . . . , NFi

. As soon as the hypothesis Hi,l

is falsified, the fault φli is excluded as a possible cause of
the fault. The goal of the isolation task is to exclude every
but one fault, which is said to be isolated.

3.7 The Fault Isolation Estimators

After the fault φi has occurred, the dynamics of the k–th
state component of the i–th subsystem becomes

x+[i,k] = fi,k(x[i], ψ[i], u[i]) + wi,k(x[i], ψ[i])

+ φi,k(x[i], ψ[i], u[i], t),

being φi,k 6= 0. The l–th FIE estimate for the general case
of a fault on a shared variable, can be computed as

x̂+l[i,k] = λ(x̂l[i,k] − y[i,k]) +
∑

j∈Sk

W k
i,j

[

λ(x̂l[j,k] − x̂l[i,k])

+fj,k(y[j], z[j], u[j]) + φlj,k(y[j], z[j], u[j], t)
]

. (9)

The corresponding estimation error dynamic equation is

ǫ+l[i,k] =
∑

j∈Sk

W k
i,j

[

λǫl[j,k] +∆fj,k + wj,k(x[j], ψ[j])

+∆φlj,k − λ̺[j,k]
]

+ λ̺[i,k] + ̺+[i,k] ,

with

∆φlj,k = φi,k(x[i], ψ[i], u[i], t)− φlj,k(y[j], z[j], u[j], t).

Now, considering a matched fault (that is, φi,k =
φli,k(x[i], ψ[i], u[i], t), ∀ i ∈ S

k), the error equation absolute
value can be bounded by a threshold:

ǭ+l[i,k] =
∑

j∈Sk

W k
i,j

[

λǭl[j,k] + w̄j,k(z[j]) + ∆f̄j,k +∆φ̄j,k

+λ ¯̺[j,k]
]

+ λ ¯̺[i,k] + ¯̺+[i,k] (10)

where ∆φ̄j = maxx[j]∈Xj ,ψ[j]∈Ψj
|∆φj |. This threshold

guarantees by definition that no matched fault will be
excluded because of uncertainties 2 . The time-varying con-
sensus matrix designed in Section 3.4 is useful also for fault
2 Isolability conditions can be derived (Ferrari et al. (2012)).



isolation in order to allow PnP operations. The derived
distributed fault isolation methodology is robust to the
PnP considered scenario.

4. RECONFIGURATION STRATEGY

In the previous sections, we derived suitable fault detection
and isolation architectures for a PnP framework. We now
explain how to use them during PnP operations. As
already explained, system reconfiguration could happen
due to changes over time of the dynamic structure of the
LSS system or it could be the consequence of the decision
of the monitoring architecture after fault detection (see
Fig. 2). In both cases (healthy and faulty conditions),
subsystems plug-in and unplugging are designed as follows.

4.1 Subsystem unplugging

In this paragraph, we show how to reconfigure LFDs in
the LSS when a subsystem Σ[j] is disconnected from the
LSS, guaranteeing estimators convergence and monitoring
of the new network with one less subsystem. The following
operations are needed:

• In the children subsystems i ∈ Cj , the components of

the interconnection variables ψ̃[i] and z[i] related to
parent subsystem Σ[j] are not received anymore and
so become equal to 0 or set to defined values. This is
needed for computation of detection (5) and isolation
(9) estimates and related thresholds (6)-(10) .

• If the unplugged subsystem was sharing variable k,
its consensus contribution will not be received by
neighboring subsystems i, with i ∈ Cj or i ∈ Nj ,

sharing some variables with Σ̃[j]; then the weights

associated with Σ̃[j] in the consensus matrices W k

computed in (7) are set to zero.

4.2 Subsystem plugging-in

The plug-in of a subsystem into the LSS interconnected
structure may be needed in case of replacement of a
previously unplugged subsystem or if a novel subsystem
has to be added to the LSS. For what concerns the
distributed FDI architecture, thanks to the way the time-
varying shared variables estimators are defined in (5) and
(9), the plug-in is always feasible. More specifically, if a
subsystem Σ[j] is added to the LSS:

• In the children subsystems i ∈ Cj , the components of

ψ̃[i] and z[i] related to subsystem Σ[j] are received and
used for computation of detection (5) and isolation
(9) estimates and related thresholds (6)-(10) .

• In the neighboring subsystems i, with i ∈ Cj or i ∈

Nj , sharing some variables k with Σ̃[j], the consensus

matrices W k are computed as in (7) considering also
the components received from Σ[j].

5. A POWER NETWORKS APPLICATION

In this section, we show features brought about by the
proposed PnP architecture using models of Power Network
Systems (PNS) described in Riverso et al. (2014a), that
are composed by five generation areas connected through
tie–lines (see Fig. 4). In Riverso et al. (2014b), we shown
how to reconfigure controllers and LFDs when a fault
is detected in a generation area and the faulty area is

unplugged. In the following we propose a fault isolation
scheme. Indeed, when a fault occurs in a generation
area, we should not unplug the faulty area, until it can
still contribute to the frequency regulation. Therefore,
electrical or mechanical faults, that reduce capabilities of
a generation area, must be detected and then isolated.
In the following, for the PNS in Fig. 4, we use the same
parameters as in Section 7.2 in Riverso et al. (2014b).
Due to faults, we consider that a generation area may lose
local generators: this corresponds to reducing the inertia
parameter for that area. In particular, we consider that
the inertia can decrease of 30%, 60% and 90% from the
nominal value. This defines local fault sets for each area.

Fig. 4. Power network system.

At time t = 60s, a fault occurs in area 4 and the inertia
parameter is reduced of 90%. Therefore, the area can
still contribute to the frequency regulation. In Fig. 5 we
show that the fault is detected a time t = 68s when
ǫ[4](68) > ǭ[4](68). At this time, we run three different state
estimators by varying the inertia parameter. Since only the
state estimator designed using 90% of the nominal inertia
guarantees ǫ[4](68) < ǭ[4](68), we are able to isolate the
fault. Therefore we do not need to unplug the faulty area,
but we reconfigure the local controller and the local fault
detector. Moreover, in Fig. 5 at time t = 68s, the state
estimations and the thresholds are changed in accordance
with the new state estimator.
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Fig. 5. Simulation for area 4 with isolation and reconfigu-
ration: dashed lines are the absolute values of errors
ǫ[4] and bold lines are the thresholds ǭ[4].

In Fig. 6 and 7 we show problems that can occur without
a suitable reconfiguration. In the simulation, in Fig. 6, we
assume that at time t = 68s neither the isolation procedure
is executed nor the faulty area is unplugged (indeed we
can notice that for t > 68s the fault is still detected).
Moreover, in Fig. 7 we also note that without a suitable
reconfiguration of the local controller, the stability of the
closed-loop system can not be guaranteed. The reason is
that, as in Riverso et al. (2014a), we use local controllers



based on MPC and, without reconfiguration, predictions
made by MPC over the control horizon are based on the
incorrect model of the generation area.
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Fig. 6. Simulation for area 4 without isolation and reconfig-
uration: dashed lines are the absolute values of errors
ǫ[4] and bold lines are the thresholds ǭ[4].
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Fig. 7. Control input for area 4: dashed line is the set-point,
bold blue line is the input with reconfiguration and
dashed red line is the input without reconfiguration.

6. CONCLUDING REMARKS

In this paper, a distributed fault detection and isolation
architecture for nonlinear LSS is designed in a PnP sce-
nario. The proposed FDI architecture is able to man-
age plugging-in of novel subsystems and un-plugging of
existent ones, requiring reconfiguration operations only
in the neighboring subsystems. Moreover, the proposed
PnP monitoring framework allows the unplugging of faulty
subsystems in case it is necessary to avoid the risk of fault
propagation. Simulation results show the potential of the
proposed approach in power networks applications. Future
research efforts will be devoted to provide detectability and
isolability analysis and to extend the PnP methodology to
the non completely measurable state case.
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