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ABSTRACT

For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop.
Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one
thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This
has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism.
The instability of the unstable thread follows the evolution determined in many earlier investigations. However,
once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby
threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the
avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted.
The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the
heating is more like that of nanoflares than of constant heating.

Key words: magnetohydrodynamics (MHD) – methods: numerical – Sun: activity – Sun: corona – Sun: magnetic
fields

1. INTRODUCTION

The physical mechanism responsible for energy release in
the solar corona remains unknown, but must involve the rapid
dissipation of magnetic energy that is either stored in situ or
injected as waves. In the former case, it is becoming widely
accepted that the energy release does not occur at a single site
(e.g., a monolithic current sheet), but involves dissipation over
a large volume, a consideration motivated originally by the
particle acceleration requirements in solar flares. However, in
view of the power-law distribution of event sizes over a broad
range of energies, such considerations can also be assumed to
apply to smaller events such as microflares and hypothesized
nanoflares.

One example of such large-scale energy release of
importance to this paper are the recent studies of the
magnetohydrodynamic (MHD) kink instability (Browning
et al. 2008; Hood et al. 2009; Bareford et al. 2013) in a single
twisted magnetic flux strand. Hood et al. (2009) showed that
the magnetic energy is released as one extended “event,” which
may correspond to a microflare or swarm of nanoflares. While
the initial stages correspond to the fast release of energy when a
helical current sheet forms, the sheet then fragments and the
plasma appears turbulent with many small current sheets
forming throughout the loop cross section. These sheets also
release their energy as the magnetic field relaxes toward the
final lowest energy (Taylor) state with a constant alpha force-
free field. Temperatures up to around 107 K result from Ohmic
and viscous heating (Tam 2014). The importance of this result
is that it provides a triggering mechanism for the release of
magnetic energy. Prior to the onset of the ideal MHD
instability, the magnetic field is in a stressed but stable
configuration. Current sheet formation occurs during the
nonlinear development.

During the relaxation process, the loop expands in the radial
direction until it is approximately 1.5 times its original value.
Hence, we expect that an unstable loop could influence any

nearby neighbors if they are within this new expanded radius.
Tam et al. (2015) investigated the conditions under which a
nearby stable loop could be disrupted by an unstable loop.
They showed that the disruption could occur when the second
loop was sufficiently close. The addition of other closely
spaced loops sets up the intriguing possibility of initiating an
MHD avalanche.
Lu & Hamilton (1991) proposed that the solar coronal

magnetic field is in a state of self organized criticality (SOC),
analogous to a sandpile onto which sand is being slowly
poured, which naturally produces a power-law distribution for
the dependence of solar flare magnitude on occurrence
frequency. In the SOC paradigm, a local instability at a site
occurs if a critical parameter value is exceeded: the subsequent
reconfiguration releases some energy and also affects neighbor-
ing sites, possibly causing critical conditions to arise there, with
an avalanche resulting as the disturbance spreads out. In the
standard approach, the system is subject to random external
driving during the intervals between avalanches, with SOC
being reached when a statistical balance between external
energy input and the dissipation is achieved. Models are based
on simple rules to determine when instability is reached and
how the field subsequently reconfigures, usually with a cellular
automaton (CA) approach.
This approach to modeling solar flares, and solar coronal

heating through nanoflares, has been developed extensively
(see reviews by Charbonneau et al. 2001 and Aschwanden et al.
2014). Different rules may be proposed for driving, for
determining instability, and for relaxation to a stable state.
Typically, models use a CA approach, with the magnetic field
represented by vector or scalar values on a 2D or 3D
rectangular grid; relaxation is triggered if a field value differs
too much from neighboring values (representing reconnection
onset above a critical field gradient) or if the horizontal field or
twist exceed a critical value (Lu & Hamilton 1991; Lu et al.
1993; Vlahos & Georgoulis 2004; López Fuentes & Klim-
chuk 2010, 2015). However, Hughes et al. (2003) consider an
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ensemble of semi-circular field lines, giving a discrete model
not using a rectangular lattice. Morales & Charbonneau (2008,
2009) present a CA approach based on magnetic field lines
rather than magnetic field values on a grid, guaranteeing a
divergence-free magnetic field. Strugarek et al. (2014) develop
avalanche models with deterministic driving representing the
slow twisting of a loop, with the stochasticity required for SOC
introduced through the criticality or relaxation algorithms. A
CA model in which the instability criterion is inspired by kink
instability of twisted loops has recently been proposed by
Mendoza et al. (2014); however, this model does not consider
the reconnection between neighboring loops, which is
predicted by our model.

SOC models have the advantage of being simple, with
readily understandable physical principles and the capability of
modeling large volumes and time periods efficiently. They
generally predict power-law distributions of event sizes,
consistent with observations of solar flares. However, the
assumed rules for instability onset and relaxation are not
derived directly from the underlying MHD equations. For
example, it is difficult directly to relate the relaxed state in CA
models to the predictions of MHD models (Taylor 1974;
Yeates & Hornig 2014).

In this paper, we predict an avalanche-type energy release
using an ab initio MHD approach. It is not our aim to
incorporate ongoing driving, which would be computationally
unfeasible at this time. We, thus, consider an initially stressed
field with only a single avalanche, in contrast to the discrete
models discussed above, which are repeatedly driven through a
sequence of avalanches toward the SOC state. While earlier
MHD models are restricted to 2D and use the approximate
equations of reduced MHD (Dmitruk et al. 1998; Georgoulis
et al. 1998), we present fully 3D results that place no artificial
restrictions on the evolution of the magnetic field.

To the present date, there has never been a demonstration of
how an avalanche can arise from first principles using the full
equations of 3D MHD. It is the purpose of this paper to
demonstrate the proof of principle of an MHD avalanche. We
build on the work of Tam et al. (2015) and investigate how a
single coronal structure (e.g., a loop or part of an AR) that
consists of 23 individual magnetic threads evolves in time
when there is initially only one unstable thread surrounded by
22 non-potential but stable threads. The basic model is
described in Section 2 and illustrated in Figure 1. In Section 3,
we demonstrate that an avalanche involving the majority of the
threads can arise on rapid timescales. Section 4 presents our
conclusions.

2. INITIAL SETUP

We assume that the magnetic field in a coronal loop consists
of a number of threads. In our case, we take 23 threads. Each
thread is described below and is non-potential. However, only
one thread is actually unstable to the ideal MHD kink
instability. The other threads are well below the marginal
stability threshold. Thus, we initiate the MHD avalanche
through a kink instability in a single thread. This is equivalent
to the ideas of CA that reconfigure fields once a local gradient
(or other quantity) exceeds a critical value.

We solve the resistive MHD equations using the Lagrangian
Remap code, Lare3D, as described in Arber et al. (2001).
Shock viscosities are used to treat shocks and the Ohmic and
shock heating are added to the thermal energy equation

(Bareford & Hood 2015). To keep the results simple, we ignore
thermal conduction and optically thin radiation. The effects of
these terms have been considered by Botha et al. (2011),
Bareford et al. (2016), and Tam (2014). There are no additional
ad hoc heating terms included, so that all the heating comes
from the dissipation of energy in shocks and Ohmic dissipation.
To avoid any additional diffusion of the background current,
the resistivity is zero and is only switched on if the magnitude
of the current density exceeds a threshold value. This is
discussed in, for example, Hood et al. (2009), where the non-
dimensionalization is also described. We select a length scale
of a 10 = Mm, based on the radius of each thread, a field
strength of B 100 = Gauss and a density of

1.67 100
12r = ´ - kg m−3 that corresponds to a number

density of 1015 m−3. The reference time is 1.45 s, based on
the Alfvén travel time across a thread.
The number of grid points is limited by the computational

resources available and we used 480 points in both directions
of the loop cross section and 960 along the loop length. The
boundaries are located at x 5=  , y 5=  , and z 10=  . All
boundaries are taken as line-tied so that there are no velocities
on any of the boundaries.
The single loop analysis has shown how the instability

depends on numerical resolution and boundary conditions. Tam
et al. (2015) showed that insufficient resolution results in some
numerical diffusion of the current and an unstable loop is
destabilized without any initial disturbance. In our case, each
thread has approximately 100 grid points across its diameter
and this is sufficient to reduce the influence of numerical
diffusion. The side boundaries and the location of the loop
footpoints tend to stabilize the kink instability if the sides are

Figure 1. Twenty-three threads are used in the avalanche simulation. The
twisted field lines outline just three of the threads. The contours of the axial
current density are shown in the midplane. The gaps between the threads are
filled with a uniform axial field.
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too close to the loop and the loop length is too short. However,
what is clear is that any instability in these stabilizing
circumstances means that there will be an instability when
the boundary conditions are relaxed.

2.1. Initial Equilibria

Consider the coronal situation, where the ratio of the gas
pressure to the magnetic pressure is so small (around 10−3), so
that the magnetic field can be assumed to be force-free. Hence,

B Ba ´ = . For simplicity of modeling, we assume that
each equilibrium magnetic thread can be modeled by a straight
twisted cylinder, with the cylinder axis of the ith thread located
at x y,i i( ), and we use the smooth α profile that only depends on
radius, r, as described by Hood et al. (2009). Therefore, each
magnetic thread is non-potential but has zero net axial current,
corresponding to localized twisting. For a radial coordinate
defined by r x x y yi i

2 2 2( ) ( )= - + - , where the location of
the axis of the thread is x y,i i( ), the magnetic field components
of the ith thread, for r 1 , has the form

B B r r1 , 1i i
2 3( ) ( )l= -q

B B r r r1
7 7

1 1 , 2z i
i i

i

2 2
2 7 2 2 2 6( ) ( ) ( )l l

l= - + - - -

r r

B

2 1 1 4
,i

z

2 2 2( ) ( )
a

l
=

- -

and, for r 1> ,

B 0, 3( )=q

B B 1 7, 4z i i
2 ( )l= -

0.a =

Bi is the magnetic field strength on r=0 of the ith thread and
il is a constant parameter related to the twist in the magnetic

field. Thus, the space between the threads is filled with an axial
(untwisted) field; note that fields are continuous everywhere,
and in force balance. The maximum value of il is restricted by
the fact that Bz

2 must be positive and, therefore, 2.438il < . il
controls the stability properties of the thread and the marginal
stability value, critl , does depend on the length, L2 z, of the
thread. For our case, L2 20z = and 1.586critl = . The stability
threshold for longer threads will be given by smaller values of

il (Bareford et al. 2010). If the system can create an avalanche
with short threads, there will definitely be an avalanche for
longer, less stable threads. il also controls the maximum value
of the magnitude of the initial current, i.e., B2 i il . Note that il is
positive in each thread so that they all have the same sense of
rotation.

The critical current used in switching on the anomalous
resistivity is always chosen to be larger than the maximum
value. The axial flux within a thread is of the form

B f2 i i( )p lF = , where f ( )l is a monotonically decreasing
function of λ. Thus, the magnitude of the magnetic field on the
axis of each thread is Bi and this is proportional to the axial
magnetic flux in the thread. Note that the values of il and Bi are
related for the different threads. From Equation (4), a smaller
value of il requires a smaller value of Bi so that all threads are
embedded in the same uniform potential field.

The initial array of magnetic threads is shown in Figure 2.
This has a similar but superficial appearance to the lattice used

by Charbonneau et al. (2001), where each node was assigned a
value Bk as a measure of the magnetic energy. However, it is
important to remember that in this paper the magnetic field is
continuous and that a small sample of contours for the axial
current density is chosen to aid in the identification of each
thread in Figure 2. Contours of the axial current are shown at
the midplane z=0. The individual threads are numbered by
the order in which they are disrupted. The unstable thread is
labelled as “1” and has 1.81 critl l= > . All the remaining
threads have the same value of il given by 1.4i critl l= < .
Thus, all the stable threads have a λ value that is significantly
below the marginal value of 1.6critl » . In order to emphasize
that this simulation is using a continuous magnetic field, the
initial axial field, Bz, and the initial By component are shown in
Figure 3 as functions of x, at the midplane, z=0, and at y=0.
Five threads in this cut are clearly visible and the larger values
of Bz and By indicate the unstable thread.
Since the radial profile of α has both positive and negative

values, the total magnetic helicity in the equilibrium field will
be relatively small. In this case, the Taylor relaxed state will be
weakly twisted and close a potential field. Hence, in the
midplane z=0, the magnetic fields will eventually evolve to a
nearly uniform field in the axial direction. Bx and By are small
and will only be significantly larger near the photospheric
boundaries, z Lz=  .

3. RESULTS

To initiate the simulation, a small velocity disturbance is
applied to the unstable thread, as discussed in Tam et al.
(2015). Note that if this disturbance is applied to a stable thread
nothing happens. Hence, all except one thread are stable to
small disturbances. Remember that the magnetic field varies
continuously across each thread and that each thread is
surrounded by a potential field with a constant axial field
component.

Figure 2. Twenty-three threads are outlined by contours of axial current
density and numbered for identification. Only loop 1 is unstable. The numbers
correspond to the order in which they are disrupted and this is used in the
avalanche description in the main text.
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3.1. Axial Current Density

To illustrate the development of an MHD avalanche, we
show results in the cross section at the midplane, z=0.
Contours of the axial current, jz, give a clear indication of
current sheet formation, break up and relaxation. The
simulation runs to a final time of t=800. During this period,
there are nine distinct interaction stages that lead to the MHD
avalanche. These are shown in Figures 4 and 5. Figure 4 shows
contours of jz at three early times and covers stage 1 (linear
phase, top), stage 1 (nonlinear phase, middle), and stage 2 (first
interaction). The top panel is during the initial kink instability
of loop 1 at time t=75. The first current sheet is clearly seen
in loop 1. The middle panel is at time t=150. The current
sheet in the unstable loop has fragmented and small current
sheets are forming throughout the volume of loop 1. This is
during the first stage of the avalanche, as the single unstable
thread is evolving. The fragmented currents are reminiscent of
a turbulent system, with a range of scales all the way down to
dissipation. In addition, thread 1 has expanded and is now
interacting with the neighboring threads, numbered 2, 3, 4, 5, 6,
and 8 as indicated in Figure 2. However, the first stable loop to
be disrupted is thread 2, as can be seen in the bottom panel in
Figure 4 and this is the start of stage 2. Because of the

Figure 3. Initial (a) axial field, Bz, and (b) transverse field, By, at the midplane
(z = 0) and at y=0 as a function of x.

Figure 4. Contours of the axial current at the midplane (z = 0) for t=75, 150,
165 during the early stages: stage 1 (top and middle panels) and stage 2 (bottom
panel). Here the background resistivity is zero. Red corresponds to positive
current, blue to negative, and white to zero.
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fragmented current sheet development of thread 1, it is not clear
why it should be thread 2 that is disrupted first, though this loop
is closest to the initial midplane current sheet in thread 1 (see
top panel of Figure 2). Note that as thread 2 begins to coalesce
with thread 1, it interacts strongly with threads 3 and 4, forming
current sheets between them. At the midplane, the jz contours
are still remarkably symmetric, despite the kink instability
breaking symmetry and the turbulent nature of the plasma.
Interactions then start to happen more frequently, as shown in

Figure 5. The top panel shows jz contours at time t=200. This
is stage 3 and threads 3 and 4 have been pulled into the middle
and there is evidence of current sheets forming at threads 5 and
6. The symmetry in the interactions is no longer seen at time
t=290 (middle panel) and thread 5 is already beginning to
disrupt before thread 6 in stage 4. The following stages are
noted. In stage 5, thread 7 is disrupted, essentially on its own.
Stage 6 involves threads 8, 9, and 10 (in that order). Stage 7 sees
the disruption of threads 11–14. Stage 8 covers the disruption of
threads 15 and 16 and the final stage in this simulation (bottom
panel) involves the disruption of threads 17 and 18.
There may be a few more interactions after the end of the

simulation but it is also possible that the avalanche ends with a
few threads still remaining unaffected. In this simulation, those
unaltered are threads 19–23.

3.2. Magnetic Field Lines

Figure 6 shows a sample of the magnetic field lines for three
times: namely the initial state, the partially relaxed state at
t=400, and the state at the end of our simulation (t= 800).
The individual twisted threads are clearly seen in the top figure
and as the threads are disrupted the twist is reduced, leaving
only weakly twisted field lines at the end. The system has not
yet fully relaxed, as there are 5 threads that are still twisted and
in their initial state.

3.3. Heating

As one would expect, the magnetic energy is reduced at each
of the stages when a thread is disrupted. The volume integrated
magnetic energy, minus its initial value, is shown as a function
of time in Figure 7. There is no reduction in magnetic energy
until the kink instability develops around t=75. Then, there
are several times when the gradient is steep and then followed
by a shallower gradient. These periods of rapid decrease in
magnetic energy correspond to the various loops being
disrupted.
The maximum free magnetic energy of each thread depends

on the value of the twist parameter, λ, and this can be estimated
as its initial energy minus the potential field with the same axial
flux. Strictly speaking the radius of the relaxed thread will be
larger than the original thread, but we ignore this small effect.
For the unstable thread, 1.8l = and the free volume integrated
magnetic energy is 1.8. From Figure 7, the magnetic energy
released is approximately 1.3 between t=75 and t=145. Not
all the available energy is released in this time partly because
the relaxed state is not a potential field and partly because the
relaxation process takes longer to reach its final equilibrium.
Stage 2 is triggered before this can happen. For the stable
threads the volume integrated magnetic energy available is 0.8
and during stage 2, the magnetic energy of the thread is
reduced by 0.6. Again not all the energy is released. Similar

Figure 5. Contours of the axial current at the midplane (z = 0) for times 200,
290, and 800 during the later stages. Stage 3 is shown in the top panel, stage 4
in the middle, and stage 9 in the bottom. Here the background resistivity is
zero. Red corresponds to positive current, blue to negative, and white to zero.
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amounts of energy are released during the other stages. For
example, stage 7 lasts between t=490 and t=600 and the
magnetic energy is reduced by 2.8 units. There are 4 threads
disrupted during this period so that around 0.7 units of
magnetic energy is released per thread.
The time derivative of the volume integrated magnetic

energy is related to the Ohmic heating. However, it is better to
calculate the volume integrated heating due to both Ohmic and
viscous heating, where the viscous heating is due to shock
heating, which has proven to be a very important effect
(Bareford & Hood 2015). The volume integrated heating
function, H(t), is plotted in Figure 8 as a function of time. This
is the form of heating function that should be used in the single
field line modeling of coronal loops. From this figure, the nine
different stages can be identified. Stage 1 starts around t=75.
The start times of each of the stages can be estimated from the
jz contours. The start of a stage is determined by the time that
the first thread in a group starts to move. The start times are
plotted as vertical dashed lines in Figure 8. They are always
just when the heating function starts to rise rapidly.
The heating function is clearly not uniform but instead

consists of bursts of heating with the amplitude of the burst
depending on the number of threads that are disrupted around

Figure 6. Magnetic field lines shown for times 0 (top), 400 (middle), and 800
(bottom) showing the initial state, halfway through the simulation and the
final time.

Figure 7. Change in the volume integrated magnetic energy as a function of
time. Each rapid change in energy corresponds to a significant release of
magnetic energy. The dashed vertical lines indicate the start of the different
stages, as determined from the jz contour plots.

Figure 8. Volume integrated heating function, H(t), as a function of time. The
dashed vertical lines indicate the start of the different stages, as determined
from the jz contour plots.
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the same time. In addition, the length of time of the burst of
heating also depends on the number of threads involved.

Note that there is a low background level of Ohmic heating
during the simulation, after the onset of the initial instability.

4. CONCLUSIONS

Using a fully 3D MHD simulation, we have demonstrated
for the first time how a local instability in the coronal magnetic
field can trigger large-scale energy release through an
avalanche. This involves an initial instability in one magnetic
thread, the nonlinear phase of which leads to magnetic
reconnection with neighboring stable threads. The process is
repeated until most of the stable threads have been engulfed,
leading to a large, highly structured, weakly twisted flux rope.
Each disruption results in significant release of magnetic
energy and, in our simulation, approximately three-quarters of
the maximum magnetic energy is released in each thread. This
results in a series of heating events, whose height and width
depend on the number of threads disrupted at each stage. The
final state shows some aspects that may be ascribed to a
turbulent or chaotic system, such as a large hierarchy of scales
in the final current profiles.

The demonstration here does not yet address many of the
aspects present in the Self Organized Criticality or SOC-type
models discussed in the Introduction, such as power-law
distributions of energy release as well as the lack of continual
driving. In part that is a computational issue (see below), but it
is important to note the need for avalanches to have varying
degrees of efficiency. In the present simulation, that requires
the termination of the avalanche before it can engulf all the
threads. Two aspects are likely to be important. One is the
separation between the threads but this may not be a major
issue if all the threads come from discrete photospheric
magnetic sources. If there is no normal magnetic field between
the photospheric sources, then the field will automatically
expand until it touches its neighboring fields. The second issue
is whether the introduction of threads with opposite twist can
“block” the spread of the avalanche. Preliminary simulations
suggest that this can indeed happen, and this will be presented
fully in the future.

While SOC/CA models have been very useful in under-
standing coronal phenomenon, there are always concerns about
whether their “rules” are consistent with the equations of
MHD. A meaningful examination of avalanches in MHD has
been precluded in the past by the large computer resources
required. Even now, it will be a major challenge to simulate, in
proper 3D MHD, the statistical balance between driving and
avalanches that are central to SOC models.
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