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Abstract 

 

The room temperature ionic liquid, [C4C1im][HSO4] provides a multi-faceted medium in which 

to convert fructose to the versatile chemical building block, 5-hydroxymethylfurfural (HMF). A 

range of metal salts have been investigated in order to establish some of the properties required 

for the optimization of this process. This has led to almost quantitative conversion of fructose to 

5-HMF in a system which is both selective for the desired product, less energy intensive and 

more environmentally benign than the commercial process. 
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Introduction 

 Conversion of biomass to useful platform chemicals is a vital aspect in the replacement 

of petroleum-based feedstocks with sustainable alternatives.
1,2

 It is likely that 

lignocellulosic biomass will be heavily used as a feedstock for future large-scale 

biorefineries as lignocellulose is distributed widely and can be grown on a billion ton 

scale. This offers opportunities for reducing the carbon footprint and diversifying fuel and 

material supplies. A major driving force behind this is the fact that the fuels and materials 

derived from such biomass are potentially ‘carbon neutral’, however, the current 

production of lignocellulosic biomass requires extensive, costly and environmentally 

harmful pre-treatment.
3
 Ionic liquids have provided a far more benign method of 

separating cellulose and this process is critical in the development of the functionalization 

of the resultant biopolymer.
4-9

 

 

 In 2004, the U.S. Department of Energy identified 5-hydroxymethylfurfural (HMF) as 

a key platform chemical, which can be the precursor to both chemical feedstocks and 

potential fuels, such as 2,5-dimethylfuran (40% higher energy density than ethanol).
10

 

The versatility of this synthetic building block is now widely recognised, leading to an 

increase in transformations using HMF being reported.
11,12

 

 

 In 2007, pioneering work by Zhao illustrated that an ionic liquid (IL), [C4C1im]Cl, 

could be used in combination with various metal salts to break down fructose to HMF in 

70% yield at 120 °C over the course of 3 hours.
13

 Chromium salts were found to provide 

the highest conversions and this has been confirmed by subsequent work in closely 

related studies.
14-17

 While the ‘green’ credentials of ILs can be overstated,
19

 they have 

environmental benefits such as their reusability and negligible vapour pressure. More 

importantly, they offer a vast improvement over the currently used process, which 

employs highly acidic aqueous solutions with all the attendant safety, environmental and 

containment issues.
3
 

 

 Over the last five years, a plethora of reports have appeared in which ILs have been 

employed to dissolve and breakdown sugars (fructose, sucrose, cellulose etc.) derived 

from biomass.
14-18

 The majority of these have followed the original research in using 

imidazolium chloride ionic liquids, such as [C4C1im]Cl and [C2C1im]Cl (Figure 1). 

However, an overview of the catalytic literature using ILs illustrates that the presence of 

chloride (an excellent ligand) as part of the solvent system (and hence in huge 

concentration) in many cases inhibits the ability of transition metals to generate a vacant 

site in order to perform catalytically.
20
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Figure 1. Ionic liquids used in the dissolution and breakdown of biomass. 

 

 One of the many strengths of ionic liquids is the ability to tune their physical and 

chemical properties to provide the best medium for a specific transformation. The 

breakdown of fructose is known to be favoured by acidic conditions so the IL, 

[C4C1im][HSO4] was chosen as a suitable candidate for this transformation due to the 

mildly acidic proton located on the anion. Dilute acids have been reported to accelerate 

fructose conversion to HMF in both water
21

 and ILs.
16

 In addition, the absence of a 

chloride counterion and the presence of only a weakly coordinating hydrogensulfate anion 

were also important factors in the choice of this solvent. 

 

 The coordinating ability of the IL anion was demonstrated to be a significant factor by 

Hu et al when they reported the conversion of glucose to HMF using a Lewis acid (SnCl4) 

in ILs with a range of anionic species while the cation used in all cases was [C4C1im]
+
.
14

 

The best results was obtained when the anion was [BF4]
-
 while lower yields were 

obtained with the anions of ILs Cl
-
, Tf2N

-
, TFA

-
, Trif

-
 and Sacc

-
, all of which have the 

ability to coordinate (Figure 2).
14

 The coordinating anions would have stronger 

interactions with the metal centre which would compete with the interaction between 

sugar and catalyst and thus inhibit the formation of HMF.
14 

 

 
 

Figure 2. HMF yields in various ILs and DMSO. Reprinted with permission from 

reference 14. 
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 It was proposed that a suitable medium should have strong solvent power for sugar 

dissolution but low coordination ability to metal centre. 

 

Catalytic Studies 

In order to ascertain the conversion of fructose to HMF without any additives, the sugar 

was heated at 80 °C in [C4C1im][HSO4] in air (Scheme 1) and the reaction monitored by 

removing aliquots after 0.5 hours, 1 hour, 3 hours and 24 hours. The conversion was 

determined by 
1
H NMR analysis (methodology confirmed by HPLC comparison). This 

conversion is performed industrially in acidic aqueous media so it was not a surprise to 

see some HMF being formed after 0.5 hours (11%), rising to 38% conversion after 24 

hours. 

 

 

 

Scheme 1. Fructose conversion to 5-hydroxymethylfurfural (HMF). 

 

 Chromium salts have been shown to be particularly active in catalysing this 

transformation and so 7 mol% chromium(III) chloride hexahydrate was introduced, 

maintaining the same conditions as before. This resulted in substantial conversion after 

only 0.5 hours (54%), rising to 80% after 3 h, which was also the final conversion after 24 

h (Table 1, Entry 2). This represented an improvement on the results obtained using 

[C4C1im]Cl under the same conditions.
13

 Using the hydrated salt, CrCl3•6H2O, introduced 

a small amount of water into the system so anhydrous CrCl3 was investigated and found 

to result in a much slower reaction (Table 1, Entry 4). However, when 15% water (v/v 

with the IL) was used, a higher overall conversion (at 80 °C) of 85% was observed (Table 

1, Entry 1). The addition of 50% water slowed the conversion substantially, although the 

addition of other co-solvents, such as acetonitrile, did not lead to the same observed 

sluggishness. Anhydrous chromium(II) chloride was also found to be a reasonable 

catalyst for the formation of HMF, resulting in 74% conversion after 24 h. This is higher 

than the anhydrous chromium (III chloride, which performed very poorly in our system 

(only 6% conversion in the first 0.5 h, though increasing to 65% after 24 h). The 

anhydrous chromium (III) chloride salt did not dissolve in the anhydrous IL; only after 

approximately 1 h did the catalyst fully dissolve. We believe that the water yielded by the 

dehydration reaction was necessary to hydrate the chromium (III) chloride enough for it 
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to become soluble, and the catalyst performance therefore suffered until this condition 

was met. 

 

Table 1. Fructose conversion to HMF 

 

 Conversion to HMF (%) 

Entry Metal salt 0.5 h 1 h 3 h 24 h 

1 CrCl3•6H2O + 15% H2O 11 30 65 85 

2 CrCl3•6H2O 54 60 80 80 

3 CrCl2 (anhydrous)  48 54 70 74 

4 CrCl3 (anhydrous) 6 11 32 65 

5 CrCl3•6H2O + 50% H2O 5 5 15 65 

6 CrCl3•6H2O + 15% MeCN 54 60 80 65 

7 WCl4 49 54 60 65 

8 MoCl3 33 49 54 60 

9 Y(OTf)3 27 38 49 60 

10 LaCl3 11 22 38 60 

11 RuCl3 27 37 48 59 

12 K2PtCl4 22 32 42 58 

13 NiCl2 22 37 41 54 

14 RhCl3 16 26 42 53 

15 La(OTf)3 22 33 49 49 

16 Sc(OTf)3 27 38 43 49 

17 no catalyst + 15% water 5 5 11 44 

18 ZnCl2 16 21 32 38 

19 no catalyst 11 21 27 38 

 

7 mol% catalyst loading, 80 °C; Table ordered in terms of conversion after 24h. Entries numbered sequentially across 

both tables. 

 

 While other group 6 transition metal (Mo, W) salts led to acceptable conversions after 

24 h, none tested here matched the chromium salts. This has been remarked upon in many 

reports and has been the subject of a combined experimental and computational study.
15

 

Metal salts from later in the transition series fared even worse. This led us to ponder 

whether the activity observed was an effect of Lewis acidity
14

 and the general ‘hard’ 

nature of the metal compounds, as salts of higher oxidation state metals generally 

performed better against comparable related species. However, the strongly Lewis acidic 

lanthanide triflate ions showed unremarkable activity under the conditions tested (see 

Table 1). 
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 Once variation of the duration of the reaction and the nature of the catalyst had been 

investigated, the effect of raising the temperature to 100 °C was analysed. Maintaining 

the other variables constant, this change led not only to the highest conversions observed 

in this study (96% after 3 h) but also to over 69% after only 0.5 hours (Table 2, Entry 20). 

At higher temperatures, high conversions were observed after only 0.5 h (87%, Table 2, 

entry 21). However, under these conditions, the formation of humins becomes an issue, 

leading to darkening of the ionic liquid and a lower conversion after 3h than at 100 °C. 

The addition of acetonitrile has previously been shown to limit this process.
22

 Conducting 

the reaction 80 °C with 15% acetonitrile (v/v with the IL) leads to equally high yields 

(Table 2, Entry 6). There are several possible explanations for this result. As these ILs are 

highly viscous, acetonitrile may simply be acting as a diluent, reducing the viscosity of 

the solution, thereby enabling faster mass transport and accelerating the reaction. 

Acetonitrile also has a fairly high dielectric constant (ca. 36), which could affect the 

dissociation ability of the acidic IL solvent. In order to test this effect, we measured 

Hammett acidity values using the technique described by Fărcaşiu
23

 for the IL with and 

without added acetonitrile. As Hammett acidity is intended as an extended pH scale, 

lower values indicate a more strongly acidic medium. Our measured value for pure 

[C4C1im][HSO4] (H0 = 1.96) was noticeably lowered by the addition of 15% acetonitrile 

(H0 = 1.12). This suggests that adding acetonitrile to the IL enhances the ability of the 

[HSO4] anion to protonate the substrate, increasing the acidity of the solvent medium. It 

should be noted that the Cr(II) chloride system also benefitted from higher temperature 

(conversion to 5-HMF increased from 70% at 80 °C to 87% at 100 °C after 3 hours), 

though the effect of acetonitrile on this system was negligible. 

 

 Adding 50% water (v/v) to the chromium(III) chloride system was found to decrease 

the final conversion after 24 h substantially (Table 1, entries 1 and 5). Adding such a 

large amount of water is likely to dissociate any metal-substrate complexes, and will also 

solvate the sugar substrates, likely retarding catalytic effects. Water will also stabilise the 

Cr(III) complex ions in solution, possibly reducing impetus for substrate binding. This 

same principle would lead to the formation of dehydrated intermediates being less 

favourable. As water is eliminated during this reaction, the water byproduct (or water 

from a ‘wet’ IL) is not likely to result in ligation to the Cr due to the solvation of the IL 

anion taking precedence (it is present in much higher concentration, though it is a poorer 

reaction partner).
19
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Table 2. Fructose conversion to HMF 

 

  Conversion 

to HMF (%) 

Entry Metal salt Temp. 0.5 h 1 h 3 h 24 h 

20 CrCl3•6H2O  100 °C 69 87 96 - 

21 CrCl3•6H2O 120 °C 87 87 89 - 

22 no catalyst 100 °C 51 69 69 - 

23 no catalyst 120 °C 71 71 78 - 

24 CrCl2 (anhydrous) 100 °C 69 80 87 - 

25 CrCl2 (anhydrous) + 15% MeCN 100 °C 64 73 80 - 

3 CrCl2 (anhydrous) 80 °C 48 54 70 74 

2 CrCl3•6H2O 80 °C 54 60 80 80 

6 CrCl3•6H2O + 15% MeCN 80 °C 54 60 80 65 

1 CrCl3•6H2O + 15% H2O 80 °C 11 30 65 85 

5 CrCl3•6H2O + 50% H2O 80 °C 5 5 15 65 

 

7 mol% catalyst loading; Table ordered in terms of conversion after 3h. Entries numbered sequentially across both 

tables. 

 

 There are several possible reasons for the high performance of the IL [C4C1im][HSO4] 

as a solvent for HMF formation. The mildly acidic [HSO4] proton (pKa = 1.7) is likely to 

be acting as a co-catalyst for this reaction as well as acting as the solvent (and thus 

present in large excess). However, most strong acids promote over-dehydration of sugars 

to levulinic acid and formic acid, in both water
21

 and ILs,
16

 even in catalytic amounts. A 

large excess of a weaker acid appears to be a compromise between acid strength and 

concentration that optimises the formation of the dehydration intermediate HMF without 

promoting either levulinic acid or humin formation (as observed on adding concentrated 

H2SO4 to this system). The [HSO4] anion itself is also a mild hydrogen bond acceptor, 

compared to the much more basic chloride anion.
24

 It is also less likely to compete with 

the substrate for the coordination sites at the metal catalyst, being a weakly coordinating 

anion. This result is in stark contrast to that found by Qi et al.
25

 where a sulfonated 

zirconia catalyst was much more selective in [C4C1im]Cl (89% HMF) than 

[C4C1im][HSO4] (43%), likely due to the over-acidity of the combined catalyst and 

solvent in the latter system. 

 

Conclusions 

In conclusion, a room temperature ionic liquid (IL) has been selected on the basis of the 

combination of the properties it provides as a medium for almost quantitative conversion 
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of fructose to 5-hydroxymethylfurfural (HMF) in the presence of a low loading of 

chromium(III) chloride. Previous to this report, the transformation of sugars to HMF in 

ILs had been carried out predominantly in dialkylimidazolium chloride salts. However, 

careful tailoring of the IL properties beyond the standard chloride salts improves the 

performance of the system substantially. The best condition that we report is 96% yield of 

5-HMF in 3 hours at 100 °C. The selectivity of this process is indicated by the fact that no 

trace of levulinic acid or formic acid was encountered after conversion of fructose. This 

combination of the well-established advantages of ILs (negligible vapour pressure, 

recyclability) with a weakly acidic, weakly-coordinating medium provides an excellent 

environment for selective catalysis by a low toxicity metal species in only a few hours. 

Since HMF has recently become the starting point for scaled up production of ‘green’ 

beverage packaging,
26

 the optimisation of high yielding routes to this platform chemical 

has never been more important or timely. 
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Metal-catalysed selective breakdown of fructose using ionic liquids 
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Supplementary Information 

 

Experimental Section 

General Comments. All experiments were carried out under aerobic conditions apart from where 

stated. The ionic liquids used, [C4C1im]Cl, [C4C1im][MeSO4] and [C4C1im][HSO4] were prepared 

with only slight modifications to the literature routes.
S1

 However, for convenience, the synthetic 

details are reproduced here along with selected data. The metal salts were obtained from commercial 

suppliers. Petroleum ether refers to the fraction boiling in the range 40-60 °C. Electrospray mass 

spectra were obtained using a Micromass LCT Premier instrument. Infrared data were obtained using 

a Perkin-Elmer Spectrum 100 FT-IR spectrometer. Unless otherwise indicated, NMR spectroscopy 

was performed at 25 °C using a Varian Mercury 300 spectrometer. All couplings are reported in 

Hertz. 

 

Preparation of [C4C1im]Cl 

A flask containing freshly distilled 1-methylimidazole (162 mL, 0.88 mol) and ethyl acetate (150 mL) 

was cooled in a dry ice bath. Freshly distilled 1-chlorobutane (100 mL, 0.96 mol) was added dropwise 

by dropping funnel under a nitrogen atmosphere. The reaction mixture was allowed to reach room 

temperature and then heated slowly under reflux for 1 hour until the solution became turbid. Then, the 

solution was heated under a nitrogen atmosphere to 70 oC for 48 hours. The solvent was removed by 

cannula filtration and the resultant viscous liquid was dissolved in an acetonitrile (25 mL) and ethyl 

acetate (75 mL) mixture. The solution was allowed to cool and kept at – 25 oC until crystals formed 

after 14 hours. The ethyl acetate and acetonitrile solvent mixture was removed by cannula filtration. 

The white crystals were washed with ethyl acetate (4 x 25 mL) and dried under vacuum overnight to 

give a 75 % yield of [C4C1im]Cl. 
1
H NMR (400 MHz, DMSO) δ 9.45 (s, 1H, N2CH), 7.86, 7.79 (m x 

2, 2 x 1H, 2 x NCH), 4.20 (t, 2H, NCH2, JHH = 7.2 Hz), 3.88 (s, 3H, NCH3), 1.77, 1.24 (m x 2, 2 x 2H, 

CCH2), 0.90 (t, 3H, CCH3, JHH = 7.3 Hz) ppm. 
13

C NMR (100 MHz, DMSO) δ 137.2 (N2CH), 124.1, 

122.7 (2 x NCH), 48.8 (NCH2CH2CH2CH3), 36.2 (NCH3), 31.8 (NCH2CH2CH2CH3), 19.3 

(NCH2CH2CH2CH3), 13.6 (N(CH2)2CH2CH3) ppm. MS (FAB, +ve mode): m/z (abundance) = 139 

(100) [C4C1im]+. 

 

Preparation of [C4C1im][MeSO4] 

1-Butylimidazole (100 mL, 0.76 mol) was diluted in toluene (60 mL) and cooled in an ice bath. 

Dimethyl sulfate (72 mL, 0.76 mol) was added dropwise to the reaction mixture (flow rate 0.5 



 

S2 

 

drops/sec) while stirring. The reaction mixture was stirred for a further hour at room temperature 

before the upper toluene layer was removed. The lower ionic liquid layer was washed with toluene (3 

x 50 mL) before it was dried overnight at 65°C under vacuum with stirring. The yield was 92% and 

was used without further purification in the preparation of [C4C1im][HSO4]. 

 

Preparation of [C4C1im][HSO4] 

[C4C1im][MeSO4] (40 g, 0.16 mol) was diluted with deionized water (5 mL). The reaction vessel was 

kept open to the air and placed in a heating block at 215 °C. The internal temperature of the reaction 

mixture was continuously monitored and kept between 170 to 180°C for four hours by dropwise 

addition of deionized water. The reaction mixture was cooled to 65°C and kept under vacuum while 

stirring overnight to remove all residual water. The yield was 98%. 1H NMR (400 MHz, DMSO) δ 

9.19 (s, 1H, N2CH), 7.79, 7.72 (m x 2, 2 x 1H, 2 x NCH), 4.17 (t, 2H, NCH2, JHH = 7.2 Hz), 3.86 (s, 

3H, NCH3), 1.74, 1.23 (m x 2, 2 x 2H, CCH2), 0.88 (t, 3H, CCH3, JHH = 7.3 Hz) ppm. 13C NMR (100 

MHz, DMSO) δ 137.1 (N2CH), 124.1 and 122.7 (2 x NCH), 48.9 (NCH2CH2CH2CH3), 36.1 (NCH3), 

31.8 (NCH2CH2CH2CH3), 19.2 (NCH2CH2CH2CH3), 13.7 (N(CH2)2CH2CH3) ppm. MS (FAB, +ve 

mode): m/z (abundance) = 139 (100) [C4C1im]+, (FAB, −ve mode): m/z (abundance) = 97 (100) 

[HSO4]
−. 

 

Catalytic formation of 5-hydroxymethylfurfural (HMF) 

In each run, fructose (1.00 g, 5.55 mmol) was added to a round bottomed flask containing 

[C4C1im][HSO4] (0.70 g, 2.96 mmol). The catalyst (0.39 mmol, 7 mol%) under study (CrCl2, 

CrCl3·6H2O, CrCl3, WCl4, MoCl3, LaCl3, Sc(OTf)3, La(OTf)3, Y(OTf)3, RuCl3, K2PtCl4, NiCl2, RhCl3, 

ZnCl2) was added to the flask. The flask was equipped with a reflux condenser and the reaction 

mixture was stirred at the desired temperature (60, 80, 100 or 120 
o
C) for 24 hours. Samples were 

collected after various reaction times (0.5, 1, 3, 24 hours) and analysed by NMR spectroscopy. HMF 

yields were calculated from the integration of HMF peaks against the ionic liquid [C4C1im][HSO4] 

itself. The ionic liquid was considered to be an internal standard, as it has negligible vapour pressure. 

For a selected group of conversions, HPLC-RI analysis was used to confirm the HMF selectivity. The 

HMF peak at the lowest field chemical shift value of 9.55 ppm was chosen for calculation of the 

yields as it does not interfere with any of the solvent resonances in 
1
H NMR spectrum. 

1
H NMR (400 

MHz, DMSO) δ 9.55 (s, 1H, CHO), 7.50 (d, 1H, furan-CH, JHH = 3.5 Hz), 6.61 (d, 1H, furan-CH, JHH 

= 3.5 Hz), 5.57 (t, 1H, OH, JHH = 6.0 Hz), 4.51 (d, 2H, CH2O, JHH = 6.0 Hz) ppm. 
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