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Wide use of modern ICT technologies brings not only communication efficiency, but also security
vulnerabilities into industrial control systems. Traditional physically-isolated systems are now required
to take cyber security into consideration, which might also lead to system failures. However, integrating
security and safety analysis has always been a challenging issue and the various interdependencies
between them make it even more difficult, because they might mutually enhance, or undermine. The paper
proposes an integrating framework to (i) formalise the desired and undesired properties to be safe(unsafe)
or secure(insecure), including the dependencies between them, (ii) evaluate if a query state reaches a
safe(unsafe) or secure(insecure) state, and further quantify how safe or secure the state is. In this way, we can
accurately capture the benign and harmful relations between safety and security, particularly detecting and
measuring conflicting impacts on them. Finally, this framework is implemented by answer set programming
to enable automatic evaluation, which is demonstrated by a case study on pipeline transportation.
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1. INTRODUCTION

Both safety and security are paramount criteria
to evaluate the reliability of an industrial control
system (ICS). Safety aims to protect systems from
accidental failures and hazards, such as fire, flood,
vehicle crashes, chemical explosions. Security,
however, targets for intentional cyber attacks orig-
inated from malicious sources, which in particular
deals with integrity, availability and confidentially
of a system. A referential framework is proposed
by Piètre-Cambacédès and Chaudet (2010) to
distinguish security and safety in terms of origin
and consequence. Specifically, safety addresses
accidents that may damage the environment, while
security concerns about malicious attacks that may
harm both the system and the environment.

Traditionally, ICS were physically isolated. To in-
crease interconnectivity and enable remote control,
modern ICS are not closed systems any more, which
makes them vulnerable to external cyber attacks.
Thus it becomes important to consider safety and se-
curity of ICS in an integrated framework. Therefore,
a number of researchers suggest that it is necessary
to combine security and safety requirements (Bloom-
field et al. 2013; Kriaa et al. 2015; Novak et al. 2007).

However, it has never been a trivial task, because
of various interdependencies between them (Piètre-
Cambacédès and Bouissou 2010): (i)Conditional
dependency: safety relies on the fulfillment of se-
curity requirements or vice-versa, (ii)Mutual rein-
forcement: safety enhances security, or vice-versa,
(iii)Antagonism: safety and security requirements
conflict with each other, and (iv)Independence.

In this paper, we propose an integrated mechanism
to evaluate if a particular scenario of a system
is safe(secure) or not, and more importantly the
mechanism allows for the various interdependencies
between safety and security. We first need a way to
formally represent the scenarios. We describe these
scenarios by states of a system. A state consists
of states of components (e.g. sensors, actuators,
control units), system configurations (e.g. network
connectivity), consequences of cyber attacks (e.g.
a connection is blocked) and countermeasures from
security and safety. Such state-based modeling
enables us to not only analyse how states of
components/subsystems contribute to the overall
safety of a system, but also capture the outcomes of
cyber attacks. Rather than addressing broader types
of consequences of cyber attacks, we focus on the
ones which can sabotage the operational aspects
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of ICS. This motivation exactly aligns with the need
of integrating security and safety analysis for ICS,
because in terms of the traditional goals of security,
the integrity and confidentiality are less important
than availability in this case (Langer 2012).

The main contributions of this paper are threefold:
(i) state formulae are defined to declaratively
formalise the desired and undesired properties of
secure and safe states. The conditional dependency
between them is also taken into account, by which a
security property could be a condition to reach a safe
state, or vice-versa. (ii) we provide both a qualitative
and a quantitative evaluation mechanisms, in which
the former is able to verify if a query state reaches
a safe(secure) or unsafe(insecure) state subject to
specified state formulae, while the latter further
quantifies the safety and security of the state;
(iii) based on the two evaluation mechanisms, we
are able to accurately analyse the four different types
of interdependencies between security and safety. In
particular, we can detect conflicting states (i.e. states
that are safe but not secure, or secure but not safe),
and also identify and measure conflicting effects of
a countermeasure (implemented or to implement)
on them, both of which are rarely addressed by
existing work. Moreover, the proposed framework
is fully implemented for automatic evaluation by a
declarative logic programming paradigm – answer
set programming, which is then demonstrated by a
case study on pipeline transportation.

We employ a hypothetical case study about control-
ling a pipeline transportation by a simplified industrial
control system to demonstrate the proposed evalua-
tion approach. The case study is originally presented
by Kriaa et al. (2014) to illustrate the conditional
dependency between safety and security. We also
use it for the same purpose, but more importantly
we extend the case study with an extra new scenario
about side-effects of patching vulnerabilities to de-
tect conflicting impact on security and safety.

Fig.1(a) depicts the basic configuration of the
pipeline. It deploys two sensors (S1 and S2) at
different parts of the pipe to monitor the pressure.
There is a pump to accelerate the speed of fluid and
a valve to obstruct fluid. The pump is controlled by
a Remote Terminal Unit (RTU) (labelled as RTU1)
while the valve is controlled by RTU2. Both RTUs
receive commands from a Master Control Centre.
The primary safety requirement is that both the pump
and the valve must be switched off when a sensor
collects an abnormal reading. This example helps
us to form interesting states of a system by multiple
states of components, consequence of cyber attacks
and effect of countermeasures. More details will be
discussed in Section 5.2.

We start with the specification of state formulae in
Section 2, which is followed by two evaluation mech-
anisms in Section 3. Various interdependencies be-
tween safety and security are discussed in Section
4. An implementation by answer set programming is
presented, with a case study in Section 5. The paper
concludes with discussing related work in Section 6
and future directions in Section 7.

2. FORMALISATION OF STATE EVALUATION

In this section, we first give a formal representation of
the states of a system. As explained in the preceding
section, a state consists of states of components
and subsystems, outcome of cyber attacks, impact
of security and safety countermeasures. A state
is formally expressed by a set of ground atoms.
Each atom captures an aspect or a component of
a system. Variables in atoms can be instantiated by
values from corresponding categories. All atoms for
describing states of a system are from a finite set A.

Definition 1 (States) Let S be a particular state of a
system, expressed by a set of ground atomic formula
(or ground atoms) from a finite alphabet A: S =
{at|at ∈ A}, or S ∈ 2A.

As A is bounded, all the states can be represented
by 2A, which is thus finite. States label different views
of a system we want to evaluate. We can further
select some states of particular interest for security
and safety. These states are captured by state
formulae. A state formula φ serves as an indicator to
verify if a state S is safe(unsafe) or secure(insecure).
A formula is expressed by a combination of:
(i) ground atoms from A, (ii) negated ground atoms
from ¬A and (iii) three-valued functions fx�X� 1.

Definition 2 (State Formulae) : Let φ be a state
formula, A a finite alphabet, fx�X� three-valued
functions:

φ =

����
���

at

��������

at ∈ A ∨
at ∈ ¬A ∨
at = fx�X� ∨
at = f¬x�X� ∨

����
���

Sets of formulae are defined for specific purposes:
Φa is a set of safe state formulae, Ψa is a set of
unsafe state formulae, and Φa∩Ψa = ∅. Φe is a set of
secure state formulae, while Ψe is a set of insecure
state formulae, and Φe ∩ Ψe = ∅.

When describing a state being safe (resp. secure)
or unsafe (resp. insecure), one may express which
properties are expected to be satisfied by the state,
and which properties are not expected. Therefore,
a state formula is comprised of ground atoms (for

1these three-valued evaluation functions for absolute security and
safety are defined in Section3.1 shortly.
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Figure 1: (a): basic configuration. (b): primary protection. (c): reflex action recovers failure of primary protection due to jammed
connections. (d): reflex action also fails due to accidental blocking of a security patch.

desired properties), and also negated ground atoms
(for undesired properties). A state formula might also
include three-valued evaluation functions, which are
used to evaluate absolute safety and security. These
embedded functions in a state formula allows for the
conditional dependency between safety and security.
A safe state requires some security properties to
be satisfied, so we could have a nested security
evaluation function fe�X� as part of the safe state
formula. For simplicity, we assume that safe and
unsafe state sets are disjoint, and it also applies to
secure and insecure states. In this paper, we adopt
the convention that all safety-related notations are
labeled with “a”, whereas all security-related ones
are labeled with “e”. For instance, a safe set is Φa

and a secure set is Φe. We then continue to present
how a state matches a state formula, and in turn to
decide whether the state is safe (secure) or not.

Definition 3 (State Evaluation) A state S, formed
by atoms from alphabet A, satisfies a state formula
φ, denoted by S |= φ, such that: S |= φ ⇐ ∀at ∈ φ ·
S |= at, where

S |= at⇐

����
���

at ∈ A, at ∈ S ∨
at ∈ ¬A, at /∈ S ∨
at = fx�X�, fx�X�(S) = t ∨
at = f¬x�X�, fx�X�(S) = f ∨

Intuitively, to satisfy a state formula φ, all positive
atoms are required to present whereas all negated
atoms absent in a state S. The nested functions in φ
are required to be true (t) when fx�X� is given, or
false (f) when f¬x�X� is given in φ. An example of
state evaluation is shown in Fig.2. We have a safe set
Φa with one formula φ1, and a secure set Φe with one
formula φ2. In the example we leave the unsafe set

Ψa and insecure set Ψe empty. The safe formula φ1

states that it is safe to keep the pump and the valve
running, when the system is secure subject to the
security evaluation function fe�Φe, Ψe�). As specified
by the only secure formula φ2, the system is secure
if all the three connections amongst mtu, rtu1 and
rtu2 are not jammed due to cyber attacks. Thus, the
safety of a state depends on the security of the state.
A query state S is given to describe a scenario and
evaluated.

Figure 2: Example: evaluation with nested functions

3. EVALUATION FOR SAFETY AND SECURITY

In this section, we provide two different ways to
evaluate safety and security. The first one qualifies
a state to be absolutely safe or secure in terms of
the specified formulae. The evaluation is supported
by two three-valued functions fa�Φa, Ψa�(S) and
fe�Φe, Ψe�(S) over a query state S. More details are
discussed in Section 3.1. A quantitative evaluation
is provided in Section 3.2, by which we can obtain a

33



A Model-based Approach to Interdependency between Safety and Security in ICS
Li • Hankin

metric (namely safety and security degree) to assess
how safe or secure a state is.

3.1. Absolute Safety and Security

A safe state set Φa and an unsafe state set Ψa are
specified to enumerate states that are considered
safe and unsafe respectively. A three-valued function
is defined: fa�Φa, Ψa�(S) → {t, f, u}, to evaluate
a query state S by the state sets Φa and Ψa,
where t corresponds to safe, f indicates unsafe,
and for the sake of completeness, u is assigned
to all other indeterminate states. The interpretation
of the evaluation mechanism is : (i) a state is
absolutely safe if the state satisfies at least one
formula in the safe set Φa, and matches none of
the formulae specified in the unsafe set Ψa; (ii) a
state is absolutely unsafe if the state satisfies at least
one formula in the unsafe set Ψa, regardless of its
satisfaction of the safe set; (iii) a state is considered
as unspecified if we fail to verify that it is safe or
unsafe subject to the specified formulae.

fa�Φa,Ψa�(S) =

����
���

t ∃φ ∈ Φa, S |= φ ∧
� ∃ψ ∈ Ψa, S |= ψ

f ∃ψ ∈ Ψa, S |= ψ
u otherwise

(1)

As we made the assumption that Φa and Ψa

are disjoint, the function always returns an unique
value and it is impossible to verify a state to
be both safe and unsafe. We would argue that
such an assumption is necessary for this paper,
as we focus on the inter-relationships between
security and safety, rather than the intra-formulae
relationships within safety set or security set. In the
implementation Section 5, we have certain constraint
rules to avoid such conflicting formulaes.

Similarly, fe�Φe, Ψe�(S) is defined to verify if a state
is absolutely secure, or insecure or unknown, subject
to a secure state set Φe and an insecure state set Ψe:

fe�Φe,Ψe�(S) =

����
���

t ∃φ ∈ Φe, S |= φ ∧
� ∃ψ ∈ Ψe, S |= ψ

f ∃ψ ∈ Ψe, S |= ψ
u otherwise

(2)

3.2. Safety and Security Degree

Absolute evaluation provides an easy way to
capture dependency between safety and security
and qualify states. However, it may not be adequate
to accurately express the mutual effects between
security and safety. A question worth thinking about
is whether we can gain more safety whilst we
gain more security, or whether we have to sacrifice
some security to gain more safety? Before we try
to address these questions, we first need a way
to represent quantitatively how much we gain or
sacrifice in terms of security and safety. Therefore,
in this section, we introduce the notion of security

degree and safety degree, and how they can be
calculated against a query state S.

A safe state set Φa and an unsafe state set Ψa are
given to evaluate a state S is safe to certain degree
Δa = a − ã, and Δa is the safety degree of S. The
two components a and ã are obtained by a function
fa[Φa, Ψa](S) → (a, ã), where:

����
���

a = |Φ′
a| , ∀φ ∈ Φ′

a, S |= φ ∧
argmax{|Φ′

a| : Φ′
a ⊆ Φa}

ã = |Ψ′
a| , ∀ψ ∈ Ψ′

a, S |= ψ ∧
argmax{|Ψ′

a| : Ψ′
a ⊆ Ψa}

(3)

From the definition, the safety degree is calculated
by the maximal number a of safe formulae the state
satisfies, minus the maximal number ã of unsafe
formulae the state satisfies. Thus, a state would
have higher safety degree if it supports more safe
formulae and less unsafe formulae.

The similar way is adopted to obtain security degree.
A secure state set Φe and an insecure state set Ψe

are given to evaluate a state S is secure to certain
degree Δe = e − ẽ, where:

����
���

e = |Φ′
e| , ∀φ ∈ Φ′

e, S |= φ ∧
argmax{|Φ′

e| : Φ′
e ⊆ Φe}

ẽ = |Ψ′
e| , ∀ψ ∈ Ψ′

e, S |= ψ ∧
argmax{|Ψ′

e| : Ψ′
e ⊆ Ψe}

(4)

4. RELATIONS OF SAFETY AND SECURITY

So far we discussed separate evaluation of security
and safety, and in this section we combine
the two evaluations to accurately capture the
interdependencies between safety and security.
As discussed in Section 1, there are various
relations between security and safety: conditional
dependency (Section 4.1), mutual reinforcement
(Section 4.2)and antagonism (Section 4.3). In the
rest of this section, we discuss each of them in turn.

4.1. Conditional Dependency

When we define the concept of state formulae in
Section 2, a component of a formula could be a
nested evaluation function, such as the absolute
evaluation functions (c.f. Section 3.1). It allows a
safe state formula to require the fulfilment of a
security condition, or vice-versa. Such conditional
dependency might slightly increase the complexity of
the evaluation procedure. We take safety evaluation
fa�Φa, Ψa�(S) as an example to illustrate the
procedures in Algorithm 1.

To evaluate if a state is safe or not, we need to
solve the function fa�Φa, Ψa�(S). Firstly we look
for any unsafe state formula that can be satisfied
by the state S ( line 2 to 10). When we check if
the state S matches a formula φ, we firstly resolve
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Algorithm 1 Evaluation of Conditional Dependency

Input: a query state S, a safe state set Φa, an unsafe
state set Ψa, a secure state set Φe, an insecure state
set Ψe, a subset X ⊆ Φe ∪Ψe.
Compute: fa�Φa,Ψa�(S)→ res ∈ {t, f, u}
Output: res

1: procedure EVALUATE(fa�Φa,Ψa�(S))
2: for all ψ ∈ Ψa do � check for any unsafe state
3: if fe�X� ∨ ¬f¬e�X� ∈ ψ then
4: evaluate fe�X�(S)→ {t, f, u}
5: end if
6: if S |= ψ then � an unsafe state matches
7: res← f

8: return res
9: end if

10: end for � no unsafe state found
11: for all φ ∈ Φa do � check for any safe state
12: if fe�X� ∨ ¬f¬e�X� ∈ φ then
13: evaluate fe�X�(S)→ {t, f, u}
14: end if
15: if S |= φ then � a safe state matches
16: res← t

17: return res
18: end if
19: end for
20: res← u � indeterminate state
21: return res
22: end procedure

any nested functions fe�X� or f¬e�X� enclosed
in φ with regard to Def.3 (line 3 to 5). If any
unsafe match is found (line 6), the whole procedure
terminates and returns f, i.e. the state is identified
as unsafe, otherwise the whole procedure continues
to check against safe states (as listed on line 11
to 19). Again, all nested functions are evaluated
firstly and then if any safe state is found, the whole
procedure terminates and returns t, indicating the
query state is safe. Finally, if the whole procedure
fails to find any match in either unsafe or safe states,
then the whole procedure returns u and terminates
(line 20). Continuing with the example in Fig.2, we
can illustrate absolute evaluation with conditional
dependency. As the query S satisfies φ1 and φ2,
we can determine that the state is absolutely safe
in terms of the given formulae.

4.2. Mutual Reinforcement

With the help of security degree and safety degree
introduced in Section 3.2, we can now accurately
measure the mutual effects between security and
safety. It would be beneficial to know how security
and safety are affected if we make any modification
to the system configuration, or implement new
countermeasures. For instance, if a new security
countermeasure is deployed, the security degree is
very likely to increase, but the safety degree may
decrease. We denote a variant of S by S′.

Definition 4 (Mutual Reinforcement) Given an im-
proved state S′ of S, S ⊂ S′. S′ 	 S expresses
S′ reinforces safety without undermining security, or
vice-versa:

• Δa′ > Δa ∧ Δe′ � Δe, or
• Δe′ > Δe ∧ Δa′ � Δ

where Δa′, Δa, Δe and Δe′ are calculated by metric
evaluation function (c.f. Eq.3 and 4) over S and S′.

Therefore, S′ 	 S indicates that the security is
improved without undermining safety, or the safety
is enhanced without sacrificing security.

4.3. Antagonism

Conflicting requirements between security and
safety are always important to address for industrial
control systems. We need to guarantee that
increasing security (resp. safety) of a system is not
damaging the safety (resp. security) of the system.
However, in most cases, we may have to find the
most optimal trade-off between security and safety.
Here in this paper, as we combine both safety and
security requirements into the process of evaluation,
we are able to detect the existence of conflicting
situations between safety and security: (i) the first
one is based on the absolute evaluation, to detect
conflicting states, as discussed in Section 4.3.1, and
(ii) the second one employs the metric evaluation, to
find conflicting effects as presented in Section 4.3.2.

4.3.1. Finding Conflicting States
Both of the two absolute evaluation functions
fe�Φe, Ψe�(S) and fa�Φa, Ψa�(S) produce results
from a three-valued set {t, f, u}. Each value
indicates different characteristics of a state, i.e. t for
safe(resp. secure), f for unsafe(resp. insecure) and u
for unknown. Once we combine the results from both
functions, we can obtain 9 different combinations of
truth values. The conflicting states are indicated by
[t, f] and [f, t] .

Definition 5 (Conflicting States) : A state S is
identified as a conflicting state with regards to sets
of state formulae Φa, Ψa, Φe and Ψe, iff:

• fe�Φe, Ψe�(S) = t ∧ fa�Φa, Ψa�(S) = f , or
• fe�Φe, Ψe�(S) = f ∧ fa�Φa, Ψa�(S) = t .

4.3.2. Finding Conflicting Effects
This detection mechanism is based on security
degree and safety degree, as defined in Section 3.2.
It addresses the earlier requirements about system
modifications and new countermeasures may bring
conflicting effects to security and safety. We use
S′ to denote a variant of the original state S, and
calculate their corresponding security and safety
degree for comparison. The objective is to find out
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the modifications by which only security or safety
increases but the other decreases.

Definition 6 (Conflicting Effects) : Given an im-
proved state S′ of S, S ⊂ S′. S′ has conflicting effects
to security and safety with regards to sets of state
formulae Φa, Ψa, Φe, Ψe, and its original form S iff:

• Δa > Δa′ ∧ Δe < Δe′, or
• Δa < Δa′ ∧ Δe > Δe′

where Δa′, Δa, Δe and Δe′ are calculated
by metric evaluation function fa[Φa, Ψa](S) and
fe[Φe, Ψe](S)(c.f. Eq.3 and 4). Such relation is
denoted by S � S′.

We can make various modifications to a state S,
including network configurations and new security
or safety countermeasures. However, not all of
them are beneficial for both security and safety
simultaneously. We provides a way to measure
the effects, and to detect conflicting effects by
comparing the measurements. We believe it would
help with evaluating the effects of implementing a
countermeasure and making optimal decisions on
the trade-off between safety and security.

5. IMPLEMENTATION BY ASP

Answer Set Programming (ASP) is a method of
declarative logic programming under the answer set
semantics. Thanks to its declarative paradigm, it
has the advantage of describing the expectations
and constraints of solutions rather than designing an
algorithm to find solutions to a problem. There are
various languages and efficient solvers for ASP. For
this paper, we use the language AnsProlog (Baral
2003) and the solver CLINGO (Gebser et al. 2011),
which are currently the most widely used ones.

Basic elements of a normal ASP program are atoms
from a finite set of atoms A. Each atom at has a
predicate symbol applied to a number of variables,
e.g. p(X, Y). These variables X and Y can be further
grounded by specific constant values. The resulting
ground atoms can be assigned either true or false.
Literals are then atoms at or negated atoms. ASP
uses negation as failure to compute the negation of
an atom, i.e. not at is true if there is no evidence
to prove at in a program. Therefore, in this paper,
the absence of at derives not a. The language
AnsProlog follows the conventions that variables
start with capitals, while values and predicates begin
with lower-case letters.

A normal program P is a conjunction of rules r with
the general form: a : − b1, ..., bm, not c1, ..., not cn.
where r ∈ P , and a, bi and cj are atoms. Intuitively,
this means if all atoms bi are known/true and no atom

cj is known/true, then a must be known/true. a is the
head part of the rule, while bi and not cj are body
parts of the rule. A rule is a fact rule if the body part
of the rule is empty, or a constraint rule if the head
part of the rule is empty, indicating that no solution
satisfies the body. A syntactic suger aggregates is
provided by the solver to count or limit the number
of particular atoms. An aggregates statement is of
the form: lower #count{L1, . . . , Ln} upper, where
lower and upper are the lower and upper bound of
the number of literals Li, i.e. lower � n � upper.
Sometimes the keyword count could be omitted.

The semantics of an ASP program is defined in
terms of answer sets, i.e. assignments of true and
false to all atoms in the program that satisfy the rules
in a minimal and consistent fashion. A program may
have zero or more answer sets. Each answer set is
a solution to the problem specified in the program.

5.1. Evaluation by Answer Set Programming

5.1.1. State Evaluation
There are two basic atoms used to represent states
and state formulae: (i) state(S, atom) denotes that
an atom is part of the state S, and (ii) match(S, fn)
expresses a state S satisfies a formula fn. As
introduced in Def.3, there are four different types of
components to constitute a formula. For example,
we have the following four formulae: φf1 = {at1},
φf2 = {¬at1}, φf3 = {at2, f

x�φf1�} and φf4 =
{at2, f

¬x�φf1�}. Then we encode them into ASP
rules:

It is worth noting that match(S, f3) requires
satisfaction of match(S, f1), which is formalised by
fx�φf1� in φf3 . We then assign these formulae into
different formula sets with specific purpose:

A query state S1 is given by: S1 = {at1, at2}, which
can be translated into ASP facts as below:

Based on the ASP rules and facts above, the
ASP solver produces an answer set including
facts: match(s1, f1) and match(s1, f3), indicating
that the state S1 satisfies the formula φf1 and φf3 .
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5.1.2. Absolute Evaluation
Absolution evaluation for safety and security is
proposed as a qualitative means to decide if a
query state is safe or not, secure or not, or
indeterminate. Following the operational procedures
outlined in Algorithm 1, we implement the following
ASP program to achieve the evaluation of safety:

The unsafe(S), safe(S) and xsafe(S) correspond
to the three values {t, f, u} produced by the safety
evaluation fa�X�(S). Likewise, the results of secu-
rity function fe�X�(S) are given by insecure(S),
secure(S) and xsecure(S) respectively, and imple-
mented in the same way.

5.1.3. Security and Safety Degree
In this section we present the implementation of
calculating safety degree and security degree.

safe degree(S, D) and unsafe degree(S, D) collect
respectively the number (D) of safe and unsafe
formulae matched by the state S. Thus the safety
degree of S is calculated by subtracting the number
of matched unsafe formulae from the number of
matched safe formulae, which is finally carried by
safety(S, D). The security degree is obtained in the
same way, and encoded by security(S, D) .

5.1.4. Conflict Detection
Having implemented the two evaluation mecha-
nisms, we can now detect conflicting states and
conflicting effects (as defined in Def.5 and 6).

The detection of conflicting states is to find states
which are secure but not safe, or safe but not secure.

The atom conflict state(S) encodes such a state.
Ideally, an improved state should outperform the
original state in terms of both security and safety,
rather than earning one of them by sacrificing the
other. The atom conflict effect(S1, S2) is derived
to alarm the latter situations between S1 and S2.

5.2. Case Study: Pipeline Transportation

As we described in Section 1, we use an example
about pipeline transportation (Fig.1) to illustrate the
proposed evaluation approach. Particularly, possible
conflicting impact of a proposed countermeasure
on security and safety of a system can be
detected and measured. We then focus on two
response mechanisms to restore the safety.Primary
Protection in Fig.1(b): (i) an alarm signal is received
by RTU1, (ii) RTU1 forwards it to Master control
centre, (iii) Master replies with off commands to
both RTU1 and RTU2 to stop the pump and close
the valve. Such primary protection heavily depends
on reliable connections between Master and the
RTUs. Therefore, RTU Reflex Action is also deployed
to maintain the safety of the system, particularly
when the connections between Master and RTUs
are jammed by intentional cyber attacks.

RTU Reflex Action in Fig.1(c): (i) an alarm is
received by RTU1, (ii) RTU1 immediately sends
a command to stop the pump without waiting for
instructions from the Master, (iii) RTU1 sends off
commands to other RTUs without waiting for the
Master. Thus, RTU2 closes the valve successfully.

In Fig.3, we list corresponding ASP rules for Primary
Protection (line 1-5) and Reflex Action (line 6-8).
The rule on line 3-5 states that successful delivery
of a message (e.g. alarm, commands) depends
on (i) an available connection between Host1
and Host2, state(S, connected(Host1, Host2)),
and (ii) the connection is not attacked,
not state(S, jammed(Host1, Host2)). The two
conditions are also required between RTU1 and
RTU2 to deploy reflex actions (line 7-8). Line 9
specifies that a connection is valid if there is no
accidental blocking to it acci block(Host1, Host2),
which could be an unfortunate consequence of
security patching (line 10). Such an accident is very
likely to harm the safety of the pipeline by disabling
reflex action. We will use this example to analyse the
conflicting effects shortly. Finally, The two constrains
rules on line 11-12 make sure it is impossible for a
formula to be a safe(resp. secure) and an unsafe
(resp. insecure) formula at the same time.

We summarise the safety and security requirements
of the case as state formulae in Fig.4. Three safety
formulae are given on line 1-3, and satisfying any
of them keeps the system safe (as in the example
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Figure 3: Configuration of pipeline in the case study

Figure 4: State formulae in the case study

unsafe formula set is empty). We interpret each safe
formula as follows: (i) f1: sensor1 collects normal
reading. (ii) f2: in the case of alarm, the system
is safe if both pump and valve are switched off.
(iii) f3: in the case of alarm, the primary protection
can be activated only if the system is secure, i.e.
matching the secure formula f4. As given on line
6, f4 guarantees secure connections between the
master and all RTUs, i.e. there is exactly 0 jammed
connection, supported by an aggregate statement.
Regarding the security, the three connections
(Master and RTU1, Master and RTU2, RTU1 and
RTU2) are the primary concerns, and thus we
expect they can be protected properly, otherwise
the system is insecure. Such security requirements
are captured by insecure formulae (f5,f6 and f7)
on line 8-10 in Fig.4. If any of the connections
is not patched not state(S, patch(rtu1, rtu2)), the
system is insecure.

Next we give three query states in ASP, as shown
below, to analyse the dependency and conflicts
between safety and security. The three states are

identified by s1, s2 and s3, and describe the
scenarios in (b), (c) and (d) of Fig.1 respectively.

All three states are in the case of alarm. In state
s1, the safety can be restored by either primary
protection or reflex actions, because none of the
connections is jammed. We then break the security
formula by attacking the connection to result in
jammed(master, rtu1) in state s2, which leads to
unavailability of primary protection, but reflex actions
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could still restore the safety. The state s3 describes
the connection between the two RTUs is patched to
mitigate inter-RTU security vulnerabilities.

According to the state formulae in Fig.4, we then
evaluate the three states by using the ASP programs
presented in Section 5.1, to find out: (i) whether
each state is absolutely safe (resp.secure) or unsafe
(resp.insecure), (ii) the safety and security degree
of each state, and (iii) any existence of conflicting
effects caused by implemented measures. The final
result produced by the ASP solver is given below:

The result shows that s1 satisfies a set of formulae
and it matches the safety formula match(s1, f3) by
satisfying the secure formula match(s1, f4), and thus
the state is safe safe(s1) with degree safety(s1, 2).
As there is no information about patching provided in
s1, none of the three insecure formulae is avoided,
and thus the state is insecure insecure(s1) with
security degree security(s1,−3). Similar evaluation
is applied to state s2 where jammed(master, rtu1) is
present. In this case, the safety degree is reduced
by one due to the failure to match f3. But the state
is still safe safe(s2) thanks to the reflex action,
which is not effected by the jammed connection.
When a security measure patch(rtu1, rtu2) is
applied in s3, which as discussed earlier disables
reflex actions, and thus s3 is not safe and the
safety degree is reduced to 0. However, its security
degree security(s3,−2) is actually increased from
previous state security(s2,−3) due to the patch.
Thus, a conflicting effect conflict effect(s2, s3) is
detected between s2 and s3 against the patching.

6. RELATED WORK

A survey article by Kriaa et al. (2015) provides a
comprehensive summary about existing approaches
of combing security and safety for ICS. The authors
distinguish the two concepts with regard to the
terminology framework by Piètre-Cambacédès and
Chaudet (2010). Both concepts deal with risks
to prevent systems from failure. However, they

have distinct origins and consequences. The survey
further classifies existing approaches into generic
approaches, and model-based approaches.

Generic approaches mainly focus on the early stage
of system design, to provide high-level guidelines
for life-cycle or methodological process. These
approaches (Aven 2007; Woskowski 2014) may
result in an unified framework by merging safety
and security requirements into a single (conflict-
free) set. However, as argued by Eames and Moffett
(1999), such unified frameworks might not be able
to provide an accurate analysis at the interaction
between security and safety due to the highly
global abstraction and unification. In this case,
recognition of conflicting requirements or effects is
not possible. Therefore, Eames and Moffett (1999)
tend to integration approaches. Risk assessments
for security and safety operate separately to
determine requirements. The interactions between
safety and security are achieved by cross-reference
from one domain to the other. Conflicts in this
case are recognisable. Inspired by this, our
approach also follows the integrating paradigm
rather than unification, by encoding safety and
security requirements in different sets of formulae.
Given a query state, safety evaluation and security
evaluation are conducted separately, but it is still
possible to influence each other with the help of
nested functions in state formulae.

Compared with generic approaches, model-based
approaches analyse security and safety in detail
by means of formal representations and tools
(Piètre-Cambacédès and Bouissou 2010; Kriaa
et al. 2014; Bloomfield et al. 2013; Sun et al.
2009). Bloomfield et al. (2013) investigate the
security impact on safety assessment in the
context of critical infrastructure, based on Claims-
Arguments-Evidence (CAE). Piètre-Cambacédès
and Bouissou (2010) employ Boolean Logic Driven
Markov Processes (BDMP) to model interactions
between security and safety. Such an approach
offers (i) a tree-like representation to present the
hierarchical relations between events and states,
(ii) a quantitative analysis based on Markov
processes by associating leaf events with estimated
probabilities, and (iii) special “trigger” relations are
designed to capture the interactions between events
and states. This approach is also demonstrated with
a case study in Kriaa et al. (2014). The work provides
a way to model and analyse the interdependency
between security and safety, but it is not clear how
conflicting relations between them can be detected
and evaluated. In contrast, the work Sun et al.
(2009) focuses on the contradictory requirements
between security and safety without considering the
conditional dependency between them. Based on
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this, the proposed approach in this paper provides
a more comprehensive and generic mechanism
to address the conditional dependency between
security and safety, AND also the identification of
conflicting states and evaluation of conflicting effects.

7. CONCLUSION AND FUTURE WORK

In this paper, we report the initial achievement
on integrating evaluation of security and safety
for industrial control systems. We introduce an
approach to model and evaluate the various
interdependencies between security and safety
requirements. By this approach, requirements and
expectations from the view of security and safety can
be provided separately, which are then encapsulated
as state formulae. In particular security conditions
can be embedded as part of a safety formula, or
vice-versa, which is able to accurately capture the
conditional dependency between them. Moreover,
we offer two evaluation mechanisms, where the
former aims to answer the question if a given state is
safe or not, secure or not, whereas the latter further
measures how secure/safe the state is. With the
help of the two evaluation mechanisms, we enable
the detection of conflicting states, in which safety
and security cannot be fully satisfied, and also the
measurement of the conflicting effects caused by
changes of requirements or countermeasures.

There are several promising directions set out for the
future work (ii) the natural next step would be conflict
resolution between safety and security. We plan to
adopt the Belnap four-value logic (Hankin et al. 2009)
and D-algebra (Ni et al. 2009) to tackle it. Both of
them have been successfully applied to compose
access control policies while resolving conflicts that
may arise. (ii) we are also interested in possible
ways for automatic generation and learning of state
formulae from concrete use cases. (iii) currently each
state formula is treated equally. In the future, we
would assign different weights to distinguish them
according to the consequences of violating them.
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