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I. INTRODUCTION

Thermonuclear burn in inertial confinement fusion is predicted to involve the most extreme

temperatures, densities and pressures ever produced in the laboratory [1]. It is hoped that tem-

peratures indicative of a relativistic electron distribution (kBT ∼ 10 keV and above) are reached

in deuterium-tritium targets on the National Ignition Facility [2, 3]. The development of other

ICF schemes, such as fast-ignition [4] and shock-ignition [5], is also predicated on achieving such

temperatures. Prospective tritium-poor or pure deuterium inertial fusion schemes are expected to

involve even higher temperatures (kBT ∼ 100 keV) [6].

Transport processes, particularly electron thermal conduction, are important for the formation

of the hotspot in ICF and the dynamics of the subsequent propagating burn wave [7]. Although

these systems are conventionally unmagnetized, recently both imposed [8] and self-generated [9]

electromagnetic fields have been studied in ICF-like plasmas, and these are likely to have profound

effects on electron transport.

There is therefore a growing need for a complete transport theory for plasmas, which fully

accounts for the effects of special relativity. In a previous paper [10], we derived the dynamical

friction and diffusion coefficients for a relativistic plasma in the same form as those of Trubnikov

[11]. In the present work, we use these results to calculate the transport coefficients of a plasma

in which the electron distribution is relativistic.

The subject of relativistic transport has been studied in the past by various authors. McBride

and Pytte [12] first determined the electron conductivity of a magnetized plasma using the col-

lision operator of Beliaev and Budker [13] to lowest order in the relativistic correction (v2/c2).

Dzhavakhishvili and Tsintsadze [14] soon after calculated the transport coefficients of an ultra-

relativistic plasma (kBTe � mec
2) using a similar approach to that of Braginskii [15]. Balescu et

al. [16] determined the form of the thermal conductivity, along with the shear and bulk viscosities,

for a relativistic plasma, but did not provide numerical results. With reference to the early uni-

verse, van Erkelens and van Leeuwen [17] calculated the electrical conductivity of a pair plasma,

including the effects of the interaction with a radiation field. (A similar analysis was performed

later by Kremer and Patsko [18].) Braams and Karney [19, 20], using an expansion of the relativis-

tic Fokker-Planck collision operator in spherical harmonics, derived the electrical conductivity of a

non-magnetized plasma with arbitrary ionic charge. Mohanty and Baral [21, 22] used a modified

Chapman-Enskog analysis to calculate the cross-field transport coefficients, although their expres-

sion for the thermal conductivity diverges in the weak-field limit. Honda and Mima [23] derived
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the transport coefficients via an expansion in spherical harmonics, though they do not evaluate the

cross-field terms explicitly and neglect electron-electron collisions.

To our knowledge, the only previous work which attempts to describe magnetized transport in

a relativistic plasma, while including the effects of both electron-ion and electron-electron scat-

tering, is that of Metens and Balescu [24]. Using an expansion in Hermite polynomials, they

provide expressions for all components of the thermal and electrical conductivities. However, their

results are inconsistent with those derived here, as well as those of other authors (e.g., electrical

conductivity with Braams and Karney [20] and thermal conductivity with Honda and Mima [23])

and the magnitude of their relativistic corrections cannot be reconciled with the changes in the

distribution function; significant corrections are given at mild temperatures, for which the classical

and relativistic Maxwellian distributions are closely aligned.

For the transport theory developed in this work, we adopt the notation of Braginskii [15], whose

relations are

enE = −∇p+ j×B + α · j/ne− nkBβ · ∇T, (1)

q = −κ · ∇T − β′ · jkBT/e, (2)

where p is the scalar pressure, T is the temperature, e is the elementary charge, j is the electric

current and B is the magnetic flux density. α, β, κ are the electrical resistivity, thermoelectric and

thermal conductivity tensors, respectively, whose relativistic forms this paper seeks to calculate.

Finally, in the case of a non-relativistic plasma,

β′ = β +
5

2
I, (3)

where I is the unit diagonal second-order tensor.

This paper is structured as follows: Sec. II outlines the derivation of the relativistic Ohm’s law

and heat flow equation, and presents the transport coefficients for a Lorentzian plasma in semi-

analytical form. This analysis is generalized to systems with arbitrary atomic number in Sec. III,

for which the linearized Boltzmann equation is solved numerically. Such an approach is equivalent

to an infinite expansion of the collision operator in Laguerre or Hermite polynomials, so long as the

numerical grid is sufficiently fine [25]. In Sec. IV we provide rational function fits for the various

transport coefficients, such that they may readily be used in transport calculations. Sec. V then

follows a discussion on these results, including the size of the relativistic corrections, and, finally

in Sec. VI, we discuss the limits of applicability of this work.
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II. LORENTZIAN PLASMA: ANALYTICAL TREATMENT

We begin our analysis with the Boltzmann equation for the electron population:

∂fe
∂t

+ v · ∂fe
∂r
− e(E + v ×B) · ∂fe

∂u
=
∑
b

Ce/b, (4)

where u ≡ p/me is the momentum p per species mass me, v = u/γ is the velocity (where

γ = (1 + u2/c2)1/2 with u = |u|), fe(r,u, t) is the electron distribution function, Ce/b is the

collision term and b represents all species present in the plasma. Here we are interested solely in

electrons and ions; b ∈ (e, i).

In order to solve the Boltzmann equation, an expansion of the distribution function and collision

operator can be made in Cartesian tensors [26]. Under the assumption that the distribution is only

weakly perturbed from equilibrium, retaining only the first two terms is sufficient for an accurate

description of transport:

f(r,u, t) = f0(r, u, t) + f1(r, u, t) · u
u
, (5)

as f1 describes the anisotropy in the system which leads to the current and heat flow. Substituting

this truncated expansion into the Boltzmann equation, Eq. (4), yields the f1 equation:

∂f1

∂t
+ v∇f0 −

e

me
E
∂f0

∂u
− e

γme
B× f1 = C1, (6)

where C1 is the collision term. (We have dropped the subscript e from the distribution function f

for brevity.) It is also possible to derive in a similar manner an equation for the time evolution of

f0. However, in this work this is taken to be the relativistic Maxwellian, f0(r, u, t) = fJ(u), with

fJ(u) =
nee
−γ/Θe

4πc3ΘeK2(1/Θe)
, (7)

and therefore invariant with respect to both r and t. Here ne is the electron density, Θe ≡
kBTe/mec

2 is the reduced electron temperature and Kν is the νth-order Bessel function of the

second kind [27].

It is also possible to expand to higher orders and consider the time evolution of, e.g., f2. However,

in this analysis we set all higher order terms to zero: this corresponds to ignoring the effects of

pressure anisotropy on the transport.

Our neglect of all higher order terms than l = 1 in the expansion of the Boltzmann equation

forms part of the diffusive approximation. The remaining step is to disregard the time derivative

term, ∂f1/∂t, in Eq. (6); we do so now. This allows us to find the steady-state solution of this

equation.
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In general, the collision term includes contributions from both electron-electron and electron-

ion scattering, C1 = C
e/e
1 + C

e/i
1 . However, in the Lorentz limit (Z → ∞), electron-electron

collisions may be neglected; electron-ion collisions dominate for these systems as scattering scales

strongly with charge (∼ Z2). Assuming the ions to be infinitely massive, mi → ∞, and at rest,

fi(r,u, t) = δ(u), the collision term then reduces to the simple form:

C1 = −νeif1, (8)

where

νei =
Γe/i

u2v
(9)

is the electron-ion collision frequency, with v = |v|. The coefficient Γe/i is given by

Γe/i =
Zne4 ln Λe/i

4πε20m
2
e

,

where Z is the atomic number of the ionic species, ln Λe/i is the electron-ion Coulomb logarithm,

n = ne and we have assumed that the plasma is quasi-neutral: Zni = ne. The f1 equation now

reads

v∇f0 −
e

γme
B× f1 −

e

me
E
∂f0

∂u
= −νeif1. (10)

Letting B = (0, 0, B) and introducing the classical electron gyro-frequency ω = eB/me, the com-

ponents of f1 are given by

f1,x =
u4fJ

u6ω2 + (Γe/iγ2)2

{
−Γe/iγ2

[
∂xp

p
+

(
γ

Θ
− K1(1/Θ)

ΘK2(1/Θ)
− 4

)
∂xT

T
+

(
e

kBT

)
Ex

]

+ u3ω

[
∂yp

p
+

(
γ

Θ
− K1(1/Θ)

ΘK2(1/Θ)
− 4

)
∂yT

T

+

(
e

kBT

)
Ey

]}
, (11a)

f1,y =
−u4fJ

u6ω2 + (Γe/iγ2)2

{
u3ω

[
∂xp

p
+

(
γ

Θ
− K1(1/Θ)

ΘK2(1/Θ)
− 4

)
∂xT

T
+

(
e

kBT

)
Ex

]

+ Γe/iγ2

[
∂yp

p
+

(
γ

Θ
− K1(1/Θ)

ΘK2(1/Θ)
− 4

)
∂yT

T

+

(
e

kBT

)
Ey

]}
, (11b)
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where Θ = Θe, T = Te, ∂x ≡ ∂/∂x and we have made use of the relations:

∂xfJ =

[
∂xn

n
+

(
γ

Θ
− K1(1/Θ)

ΘK2(1/Θ)
− 3

)
∂xT

T

]
fJ , (12)

∂fJ
∂u

=− u

γΘc2
fJ , (13)

as well as the equation of state for an ideal relativistic gas, p = nkBT [28]. Once the form of f1

is known, the electric current and total heat flow are calculated via integrations over momentum

space [26]:

j =
4πqe

3

∫
f1vu

2du, (14)

q =
4πmec

2

3

∫
f1(γ − 1)vu2du, (15)

which, in this case, yield

jx =
4πqe

3

{
−Γe/i〈u5,1〉

[
∂xp

p
−
(
K1(1/Θ)

ΘK2(1/Θ)
+ 4

)
∂xT

T
+

(
e

kBT

)
Ex

]

− Γe/i〈u5,2〉 1

Θ

∂xT

T

+ ω〈u8,−1〉
[
∂yp

p
−
(
K1(1/Θ)

ΘK2(1/Θ)
+ 4

)
∂yT

T
+

(
e

kBT

)
Ey

]

+ ω〈u8,0〉 1

Θ

∂yT

T

}
, (16a)

jy = −4πqe
3

{
ω〈u8,−1〉

[
∂xp

p
−
(
K1(1/Θ)

ΘK2(1/Θ)
+ 4

)
∂xT

T
+

(
e

kBT

)
Ex

]

+ ω〈u8,0〉 1

Θ

∂xT

T

+ Γe/i〈u5,1〉
[
∂yp

p
−
(
K1(1/Θ)

ΘK2(1/Θ)
+ 4

)
∂yT

T
+

(
e

kBT

)
Ey

]

+ Γe/i〈u5,2〉 1

Θ

∂yT

T

}
, (16b)

qx =
4πmec

2

3

{
−Γe/i

(
〈u5,2〉 − 〈u5,1〉

)[∂xp
p
−
(
K1(1/Θ)

ΘK2(1/Θ)
+ 4

)
∂xT

T
+

(
e

kBT

)
Ex

]

− Γe/i
(
〈u5,3〉 − 〈u5,2〉

) 1

Θ

∂xT

T

+ ω
(
〈u8,0〉 − 〈u8,−1〉

)[∂yp
p
−
(
K1(1/Θ)

ΘK2(1/Θ)
+ 4

)
∂yT

T
+

(
e

kBT

)
Ey

]
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+ ω
(
〈u8,1〉 − 〈u8,0〉

) 1

Θ

∂yT

T

}
, (17a)

qy = −4πmec
2

3

{
ω
(
〈u8,0〉 − 〈u8,−1〉

)[∂xp
p
−
(
K1(1/Θ)

ΘK2(1/Θ)
+ 4

)
∂xT

T
+

(
e

kBT

)
Ex

]

+ ω
(
〈u8,1〉 − 〈u8,0〉

) 1

Θ

∂xT

T

+ Γe/i
(
〈u5,2〉 − 〈u5,1〉

)[∂yp
p
−
(
K1(1/Θ)

ΘK2(1/Θ)
+ 4

)
∂yT

T
+

(
e

kBT

)
Ey

]

+ Γe/i
(
〈u5,3〉 − 〈u5,2〉

) 1

Θ

∂yT

T

}
, (17b)

where we have introduced the class of integral:

〈ui,j〉 =

∫ ∞
0

fJ

u6ω2 + (Γe/iγ2)2
ui+2γjdu.

Making E the subject of Eqs. (16), one may verify that the Braginskii formalism of Ohm’s law

[Eq. (1)] is satisfied in the relativistic case.

The corresponding transport coefficients ϕ may be expressed in terms of components relative

to the magnetic field vector b = B/|B| and driving force s by using

ϕ · s = ϕ‖b(b · s) + ϕ⊥b× (s× b)± ϕ∧b× s, (18)

where ϕ ∈ {α, β, κ}, s ∈ {E,∇T} and the negative sign applies only in the case ϕ = α. This

geometry is shown in Fig. 1.

In this notation, we find

α⊥ =
3n2kBT

4πΓe/i〈u5,1〉∆ , (19)

α∧ = ωmen

(
3nkBT 〈〈u8,−1

5,1 〉〉
4π(Γe/i)2me〈u5,1〉∆ − 1

)
, (20)

β⊥ =
〈〈u5,2

5,1〉〉+ 〈〈u8,0
8,−1〉〉〈〈u8,−1

5,1 〉〉2(ω/Γe/i)2

Θ∆
−
(
K1(1/Θ)

ΘK2(1/Θ)
+ 4

)
, (21)

β∧ =
ω〈〈u8,−1

5,1 〉〉[〈〈u8,0
8,−1〉〉 − 〈〈u5,2

5,1〉〉]
Γe/iΘ∆

, (22)

where 〈〈ui,ji′,j′〉〉 ≡ 〈ui,j〉/〈ui
′,j′〉 and ∆ = 1 + (ω〈〈u8,−1

5,1 〉〉/Γe/i)2. The parallel components of the

transport coefficients may be found by taking the ω → 0 limit of the perpendicular components.

(The component of the transport parallel to the magnetic field is independent of the magnitude of

B, as may be straightforwardly shown by taking the scalar product of the f1 equation, Eq. (10),

with B.)
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x y

z

s
b

FIG. 1: The geometry used in our description of transport, as per Eq. (18). The tensorial

transport coefficients are described by their components in the b (‖), b× (s× b) (⊥) and b× s

(∧) directions.

The relativistic heat transfer equation can be deduced by substituting Eqs. (16) into (17). This

also takes the same form as in classical theory [Eq. (2)], with the revised relation:

β′ = β +

(
K1(1/Θ)

ΘK2(1/Θ)
+ 4− 1

Θ

)
I, (23)

cf. Eq. (3), and the following thermal conductivity coefficients:

κ⊥ =
4πΓe/i

3Θ2

{(
〈u5,3〉 − 〈u5,2〉

)
−
(
〈u5,2〉 − 〈u5,1〉

) 〈〈u5,2
5,1〉〉+ 〈〈u8,0

8,−1〉〉〈〈u8,−1
5,1 〉〉2(ω/Γe/i)2

∆

+
(
〈u8,0〉 − 〈u8,−1〉

) 〈〈u8,−1
5,1 〉〉(ω/Γe/i)2[〈〈u8,0

8,−1〉〉 − 〈〈u5,2
5,1〉〉]

∆

}
, (24)

κ∧ =
4πω

3Θ2

{(
〈u8,1〉 − 〈u8,0〉

)
−
(
〈u8,0〉 − 〈u8,−1〉

) 〈〈u5,2
5,1〉〉+ 〈〈u8,0

8,−1〉〉〈〈u8,−1
5,1 〉〉2(ω/Γe/i)2

∆

−
(
〈u5,2〉 − 〈u5,1〉

) 〈〈u8,−1
5,1 〉〉[〈〈u8,0

8,−1〉〉 − 〈〈u5,2
5,1〉〉]

∆

}
. (25)

A. Limiting cases

Equations (19) to (25) are the relativistic forms of Braginskii’s transport coefficients for a

Lorentzian plasma, and can be shown to reduce to other known results in particular limits. We

consider two such cases.
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Firstly, in the limit Θ→ 0, these results reduce to those in the classical work of Epperlein [29]:

α⊥ =
3n2kBT

4πΓe/i〈v5〉∆ , (26)

α∧ = ωmen

(
3nkBT 〈〈v8

5〉〉
4π(Γe/i)2me〈v5〉∆ − 1

)
, (27)

β⊥ =
〈〈v7

5〉〉+ 〈〈v10
8 〉〉〈〈v8

5〉〉2(ω/Γe/i)2

Θ∆
− 5

2
, (28)

β∧ =
ω〈〈v8

5〉〉[〈〈v10
8 〉〉 − 〈〈v7

5〉〉]
Γe/iΘ∆

, (29)

κ⊥ =
4πΓe/i

3Θ2

{
〈v9〉 − 〈v7〉〈〈v

7
5〉〉+ 〈〈v10

5 〉〉〈〈u8
5〉〉2(ω/Γe/i)2

∆

+ 〈v5〉〈〈v
8
5〉〉〈〈v10

5 〉〉(ω/Γe/i)2[〈〈v10
8 〉〉 − 〈〈v7

5〉〉]
∆

}
, (30)

κ∧ =
4πω

3Θ2

{
〈v12〉+ 〈v8〉〈〈v

7
5〉〉2 − 〈〈v10

5 〉〉2(ω/Γe/i)2

∆
− 2〈v5〉〈〈v

10
5 〉〉〈〈v7

5〉〉
∆

}
, (31)

where

〈vi〉 =

∫ ∞
0

fM

v6ω2 + (Γe/i)2
vi+2dv,

with the Maxwell-Boltzmann distribution, fM (v) = n exp(−mv2/2kBT )/(2πmkBT )1/2, 〈〈vii′〉〉 ≡
〈vi〉/〈vi′〉 and

lim
Θ→0

∆ = 1 + (ω〈〈v8
5〉〉/Γe/i)2.

The second limit of interest is that which characterizes unmagnetized plasmas: ω → 0. In this

case we find,

lim
ω→0
〈ui,j〉 =

1

(Γe/i)2

∫ ∞
0

fJu
i+2γj−4du,

lim
ω→0

∆ = 1

and, using,

〈u5,j〉 =
nξj(Θ)c5

4π(Γe/i)2Θ2−jK2(1/Θ)
,

where

ξ1(Θ) = E1(1/Θ)/Θ− e−1/Θ(1−Θ + 2Θ2 − 6Θ3 − 24Θ4 − 24Θ5),

ξ2(Θ) = −E1(1/Θ)/Θ + e−1/Θ(1−Θ + 2Θ2 + 42Θ3 + 120Θ4 + 120Θ5),

ξ3(Θ) = 48Θ2e−1/Θ(1 + 6Θ + 15Θ2 + 15Θ3),
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and

E1(x) =

∫ ∞
x

e−udu

u

is the exponential integral function, we can write

α‖ =
3nmeΓ

e/iΘ2K2(1/Θ)

ξ1(Θ)c3
, (32)

β‖ =
ξ2(Θ)

ξ1(Θ)
−
(
K1(1/Θ)

ΘK2(1/Θ)
+ 4

)
, (33)

κ‖ =
nc5

3Γe/iΘK2(1/Θ)

(
ξ3(Θ)− [ξ2(Θ)]2

ξ1(Θ)

)
. (34)

It is simple to check that this value of α‖ agrees with that previously obtained by Braams and

Karney [20], and the value of κ‖ similarly agrees with that of Honda and Mima [23].

B. Dimensionless transport coefficients

By defining a relativistic mean gyro-frequency:

ω? =
eB

〈γ〉me
(35)

and, similarly, a relativistic mean electron-ion collision time [14]:

τ? =
3c3〈γ〉Θe1/ΘK2(1/Θ)

Γe/i(1 + 2Θ + 2Θ2)
, (36)

(where 〈γ〉 = 3Θ +K1(1/Θ)/K2(1/Θ) is the mean energy per particle in a relativistic Maxwellian

distribution), it is possible to cast these coefficients into dimensionless form (denoted by the su-

perscript c), such that they are functions of the atomic number Z, Hall parameter χ (= ω?τ?) and

reduced temperature Θ only, using the following relations:

αc = α (τ?/〈γ〉men) , (37)

βc = β, (38)

κc = κ (〈γ〉me/nkBTτ
?) . (39)

The dimensionless transport coefficients for a Lorentzian plasma are plotted in Fig. 2 as functions

of ω?τ?, for 6 values of Θ between the classical (Θ = 0) and ultra-relativistic (Θ =∞) limits.

The way in which we have defined the Hall parameter, that is, to use the relativistic electron

gyro-frequency and mean electron-ion collision time, rather than Braginskii’s definitions [15], means

that the dimensionless coefficients are independent of temperature in both limits. (Other definitions
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FIG. 2: (Color online) Plot of a) α⊥, b) α∧, c) β⊥, d) β∧, e) κ⊥, f) κ∧ as a function of ω?τ? in

the case a Lorentzian plasma for Θ = 0 (black, solid), Θ = 0.01 (black, dash), Θ = 0.1 (black, dot

dash), Θ = 1 (blue, dot dash), Θ = 10 (blue, dash) and Θ =∞ (blue, solid).
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lead to non-finite values for the coefficients in the limit Θ→∞.) We stress that, by parameterizing

the coefficients in this way, we have effectively split the relativistic correction into two variables: the

Hall parameter χ and the reduced temperature Θ. The reason for this is that, in Sec. IV, we shall

find that it is significantly easier to provide fits for these functions than for other parameterizations.

It does mean, however, that Fig. 2 (and later Fig. 3) does not on its own illustrate the size of the

relativistic correction at different temperatures. For this reason, in Sec. V we shall examine the

magnitude of the correction, such that it is clear when it is necessary to use these results in favour

of those of classical transport theory.

III. PLASMAS WITH ARBITRARY ATOMIC NUMBER: NUMERICAL SOLUTION

In this section, we calculate the transport coefficients for a relativistic plasma under the influence

of arbitrary electromagnetic fields, including the effects of both electron-electron and electron-ion

scattering. Our approach is analogous to that taken in Sec. II, although the analytical work is

dropped in favor of the direct numerical solution of the linearized Boltzmann equation.

As our previous results in Ref. [10] are expressed in spherical coordinates, we shall switch to

the spherical harmonic form of the expansion for the distribution function and collision operator,

e.g.,

f(r,u, t) =
∞∑
l=0

l∑
m=−l

fml (r, u, t)P
|m|
l (cos θ)eimφ, (40)

where f−ml = (fml )∗. This is formally equivalent to the Cartesian tensor expansion used in the

previous section [30]. Without loss of generality, the driving force s ∈ {E, ∇T} can be specified

to be in the x-direction, with the magnetic field B in the z-direction, as before. The f1 equation,

Eq. (10), is then given in spherical coordinates by [31]

∂f0
1

∂t
= −v∂f

0
0

∂x
+
eEx
me

∂f0
0

∂u
− 2eBz
γme

f1
1 + Ce/e(f0

1 ) + Ce/i(f0
1 ), (41a)

∂f1
1

∂t
=

eBz
2γme

f0
1 + Ce/e(f1

1 ) + Ce/i(f1
1 ), (41b)

where, in this case, I{f1
1 } = 0, such that f1

1 = f−1
1 . (Note that, in contrast to the previous

section, we now retain the time-derivative terms ∂fm1 /∂t.) For plasmas with finite atomic number,

electron-electron collisions must also be accounted for in the collision operator. This term is given

by [20, 32]

Ce/e(fm1 ) =
Ce/e[fm1 P

|m|
1 (cos θ)eimφ, fJ ] + Ce/e[fJ , f

m
1 P

|m|
1 (cos θ)eimφ]

P
|m|
1 (cos θ)eimφ

, (42)
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where

Ce/e[fm1 P
|m|
1 (cos θ)eimφ, fJ ]

P
|m|
1 (cos θ)eimφ

= − 1

u2

∂

∂u

(
u2F

e/e
u,0 f

m
1 − u2D

e/e
uu,0

∂fm1
∂u

)
− 2

u2
D
e/e
θθ,0f

m
1 , (43)

with Fe/e and De/e given by Eqs. (16) to (18) in Ref. [10]. The second term is [20]

Ce/e[fJ , f
m
1 P

|m|
1 (cos θ)eimφ]

P
|m|
1 (cos θ)eimφ

=

4πΓe/e

n

{
1

γ
fm1 (u) +

∫ u

0

[
1

u2c2

(
2j′1[1]1 +

j′1[1]2

Θ
− 10

j′1[2]02

Θe

)

+
γ

u2c2

(
−2

j′1[1]1

Θ
+ 4

j′1[2]11

Θ
+ 6

j′1[2]02

Θ2
− 24

j′1[3]022

Θ2

)
+

(j′1[1]0

c4Θ

)

+ γ

(
2
j′1[2]02

c4Θ2

)]
cu′2

γγ′
fm1 (u′)du′ +

∫ ∞
u

[
1

u′2c2

(
2j1[1]1 +

j1[1]2

Θ

− 10
j1[2]02

Θ

)
+

γ′

u′2c2

(
−2

j1[1]1

Θ
+ 4

j1[2]11

Θ
+ 6

j1[2]02

Θ2
− 24

j1[3]022

Θ2

)

+

(
j1[1]0

c4Θ

)
+ γ′

(
2
j1[2]02

c4Θ2

)]
cu′2

γγ′
fm1 (u′)du′

}
. (44)

where Γe/e = ne4 ln Λe/e/(4πε20m
2
e), jl[k]∗ = jl[k]∗(u/c) and j′l[k]∗ = jl[k]∗(u

′/c); these func-

tions are catalogued for reference in Appendix A. In using the form for the collision opera-

tor given by Eq. (42), we have neglected the self-interaction of the perturbation, i.e., assumed∑
k C

e/e[fm1 P
|m|
1 (cos θ)eimφ, fk1P

|k|
1 (cos θ)eikφ] = 0, and made use of the fact that Ce/e[fJ , fJ ] = 0

(the collision operator vanishes in equilibrium). As we have neglected all terms l > 1 in the ex-

pansion of the distribution function, we also make the equivalent approximation in the expansion

of the collision operator.

Finally, the electron-ion collision term is given by

Ce/i(fm1 ) = −νeifm1 , (45)

cf. Eq. (8).

A. Numerical scheme

As in classical transport theory, outside the Lorentz limit, one must calculate the transport

coefficients numerically. We again need to find the steady-state solution f0
1 , f

1
1 (u, t → ∞), as this

allows us to determine the electric current j and heat flow q using Eqs. (14) and (15), as well as



14

the conversion between notations,

f1 =


f0

1

2<(f1
1 )

−2=(f1
1 )

 . (46)

where <(z) and =(z) refer to the real and imaginary parts of z respectively. From this we are then

able to calculate the transport coefficients as before.

In order to calculate f0
1 , f

1
1 (u, t → ∞), we transform the differential equations [Eqs. (41)] into

algebraic equations using the finite difference method. The momentum of the system is discretised

on a uniform grid whose spacing ∆u = umax/Nu, where umax is the maximum momentum consid-

ered and Nu the number of computational grid points used. We take Nu = 1000, and the maximum

momentum is chosen such that fJ(umax) = fJ(0) × 10−9; the contribution from momenta above

this is assumed to be negligible. (This can be checked by varying umax.) The jth momentum point

is given by uj = j∆u.

Similarly, time is quantized into discrete steps ∆t = tmax/Nt, where, in this case, the number

of timesteps Nt and therefore the total simulation time tmax are both adapted in the simulation;

ultimately they are determined by the time tmax = Nt∆t taken for a steady-state to be reached.

The numerical scheme we use in this work is similar to that which has been applied previously

by Braams and Karney [20] and Spitzer and Härm [25] to the calculation of transport coefficients.

The magnetic field terms in Eqs. (41) and differential terms of the collision operator, Eqs. (43) and

(45), are all differenced fully implicitly. The integral term [Eq. (44)] is treated explicitly: this is

justified as this term represents the stopping of the bulk of the distribution fJ on the perturbation

f1; an effect that is expected to be small (given the condition on the validity of linear transport

theory that the system is close to equilibrium; see Sec. VI). The distribution is then advanced

in time using Euler differencing until a steady state is reached. This is considered to have been

achieved once the fractional difference in the perturbation fm1 between successive timesteps is less

than 1× 10−9.

On substituting this representation into Eqs. (41), we arrive at the following band-diagonal

series of equations:
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1 + c1∆t d1∆t e1∆t

b1∆t 1 + c1∆t d1∆t e1∆t

a2∆t b2∆t 1 + c2∆t d2∆t e2∆t

a2∆t b2∆t 1 + c2∆t d2∆t e2∆t

a3∆t b3∆t ... ... ...

a3∆t ... ... ...

... ... ...



·



f0,n+1
1,1

f1,n+1
1,1

f0n+1
1,2

f1,n+1
1,2

...

...

...


=



f0,n
1,1 +An1 ∆t

f1,n
1,1 +Bn

1 ∆t

f0,n
1,2 +An2 ∆t

f1,n
1,2 +Bn

2 ∆t

...

...

...


(47)

where

aj = −Duu,j

(∆u)2
+

1

2∆u

(
2Duu,j

uj
+
∂Duu,j

∂u
+ Fu,j

)
,

bj =
qeBz

2γjme
,

cj =
2Duu,j

(∆u)2
+

2Dθθ,j

u2
j

+
Γe/i

u2
jvj

,

dj = −2qeBz
γjme

,

ej = −Duu,j

(∆u)2
− 1

2∆u

(
2Duu,j

uj
+
∂Duu,j

∂u
+ Fu,j

)
,

Anj =
Ce/e[fJ , f

0,n
1,j P

|m|
1 (cos θ)eimφ]

P
|m|
1 (cos θ)eimφ

+
vj
T

∂T

∂x

(
γj
Θ
− K1(1/Θ)

ΘK2(1/Θ)
− 4

)
− qeExvj

kBT
,

Bn
j =

Ce/e[fJ , f
1,n
1,j P

|m|
1 (cos θ)eimφ]

P
|m|
1 (cos θ)eimφ

with γj = (1 + u2
j/c

2)1/2 and vj = uj/γj .

Finally, we are required to specify the initial and boundary conditions of the system: for these

we take f0
1 , f

1
1 (u, t = 0) = 0 (though this can be chosen arbitrarily), and f0

1 , f
1
1 (u = 0, t) and

f0
1 , f

1
1 (u = umax, t) = 0 are enforced throughout the simulation. The implicit differencing scheme

allows a steady state to be reached in O(1) timesteps. However, it has been verified that the

the same answers are obtained for a timestep that is a small fraction of the relevant timescale:
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the mean electron-ion collision time τ? for weakly magnetized plasmas and the reciprocal of the

gyro-frequency 1/ω? for strongly magnetized plasmas.

We note that this approach is markedly different to that of the previous section, due to the

retention of the term ∂fm1 /∂t, which enables us to model the evolution of a plasma with time.

However, as we are interested in steady-state quantities, this is not strictly necessary; for example

Epperlein and Haines have successfully determined the transport coefficients of a classical plasma

whilst neglecting the time derivative of the perturbation [33].

Once the steady state solutions of Eqs. (41) have been found, the transport coefficients can

be calculated by an integration over momentum space and the use of the relativistic Braginskii

transport relations (analogous to the previous section). As an example, the dimensionless transport

coefficients for a Z = 1 plasma are plotted in Fig. 3 in a similar form to those for a Lorentzian

plasma.

As a means of benchmarking these numerical results, we have verified that they are consistent

with others in three separate limits. Firstly, in the limit Θ→ 0, the transport coefficients of both

Spitzer [34] and Braginskii [15] can be reproduced for all values of Z. Secondly, in the ω?τ? → 0

limit, the electrical conductivity αc‖ is consistent with the results of Braams and Karney [20], again

for arbitrary Z. Finally, in the Z →∞ limit, the transport coefficients reduce to those derived in

the previous section.

IV. RATIONAL FITS TO THE TRANSPORT COEFFICIENTS

To enable the coefficients derived in this work to be used in transport calculations, rational

functions have been fitted to the numerical data. These take the general form

ϕc⊥,∧ =
g(χ) + Θ(1 + Θ)h(χ)

G(χ) + Θ(1 + Θ)H(χ,Θ)
, (48)

where χ = ω?τ?, g(χ), G(χ) and h(χ) are polynomials and H = H(χ), other than in the case of

αc∧ and βc⊥, for which H = H(χ, θ). In the classical limit, the fits reduce to

lim
Θ→0

ϕc⊥,∧ =
g(χ)

G(χ)
(49)

and in the ultra-relativistic limit,

lim
Θ→∞

ϕc⊥,∧ =
h(χ)

H(χ)
. (50)

The parameters of the functions g(χ), G(χ), h(χ) and H(χ,Θ) are dependent only on the atomic

number Z. These have been optimized via the use of a non-linear least squares method, such that
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FIG. 3: (Color online) The relativistic transport coefficients as a function of ω?τ? in the case of a

Z = 1 plasma for Θ = 0 (black, solid), Θ = 0.01 (black, dash), Θ = 0.1 (black, dot dash), Θ = 1

(blue, dot dash), Θ = 10 (blue, dash) and Θ =∞ (blue, solid).
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the fits accurately reproduce numerically-calculated values for each coefficient. In our analysis, the

numerical data were spaced at equal logarithmic intervals in the range 10−3 ≤ ω?τ? ≤ 103 and

10−4 ≤ Θ ≤ 102. The fits are constructed in such a way, by constraining various parameters, that

they reproduce the numerical data exactly in the four limits (χ,Θ)→ (0, 0), (0,∞), (∞, 0), (∞,∞).

The full forms of the transport coefficients are given by

αc⊥ = 1− a1 + a2χ+ Θ(1 + Θ)a3

(a4 + a5χ+ χ2) + Θ(1 + Θ)(a6 + a7χ+ χ2)
, (51)

αc∧ =
χ[A1 +A2χ+A3Θ(1 + Θ)(A4 +A5χ)]

(A6 +A7χ+A8χ2 + χ8/3) +A3Θ(1 + Θ)(A9 +A7χ+A8χ2 + χ8/3+Θ/3(Θ+1))
, (52)

βc⊥ =
b1 + b2χ+ Θ(1 + Θ)(b3 + b4χ)

(b5 + b6χ+ b7χ2 + χ8/3) + Θ(1 + Θ)(b8 + b9χ+ b10χ2 + χ8/3+b11Θ/3(b11Θ+1))
, (53)

βc∧ =
χ[B1 +B2χ+B3Θ(1 + Θ)(B4 + χ)]

(B5 +B6χ+B7χ2 + χ3) +B3Θ(1 + Θ)(B8 +B6χ+B7χ2 + χ3)
, (54)

κc⊥ =
c1 + c2χ+ c3Θ(1 + Θ)(c4 + c5χ)

(c6 + c7χ+ c8χ2 + χ5/2 + χ3) + c3Θ(1 + Θ)(c9 + c10χ+ c11χ2 + χ3)
, (55)

κc∧ =
χ[C1 + C2χ+ C3Θ(1 + Θ)(C4 + C5χ)]

(C6 + C7χ+ C8χ2 + χ3) + C3Θ(1 + Θ)(C9 + C7χ+ C8χ2 + χ3)
, (56)

with

αc‖ = lim
χ→0

αc⊥ = 1− a1 + a3Θ(1 + Θ)

a4 + a6Θ(1 + Θ)
, (57)

βc‖ = lim
χ→0

βc⊥ =
b1 + b3Θ(1 + Θ)

b5 + b8Θ(1 + Θ)
, (58)

κc‖ = lim
χ→0

κc⊥ =
c1 + c3c5Θ(1 + Θ)

c6 + c5c9Θ(1 + Θ)
. (59)

The parameters of these fits are tabulated for a range of values of Z in Tables I to III.

The χ dependence of all transport coefficients in the weak-field limit (χ→ 0) is not a function

of temperature. This is also the case for αc⊥, βc∧, κc⊥ and κc∧ in the strong-field limit (χ → ∞).

However, the χ dependence of αc∧ and βc⊥ in the strong-field limit does vary with temperature:

at Θ = 0, αc∧ ∼ χ−2/3 and βc⊥ ∼ χ−5/3, whereas, at Θ = ∞, αc∧ ∼ χ−1 and βc⊥ ∼ χ−2. (The

former limit was found by Epperlein and Haines [33]; the latter may be obtained by following their

analysis in the limit γ → u/c.) For these two coefficients, at intermediate temperatures (Θ ∼ 1),

errors may increase with χ in the strong field limit. However, transport is strongly suppressed for

such cases and maximum errors of 20% are observed for values up to χ = 103. This is shown for

the example of a Lorentzian plasma in Fig. 4, along with the fractional percentage errors of the

other fits provided. Outside these two special cases, the maximum error is approximately 15% for

all temperatures and field strengths.



19

10−3 10−2 10−1 100 101 102 103

ω?τ?

−20

−15

−10

−5

0

5

10

15

20

Fr
ac

.e
rr

or
(%

)

a)

10−3 10−2 10−1 100 101 102 103

ω?τ?

−20

−15

−10

−5

0

5

10

15

20

Fr
ac

.e
rr

or
(%

)

b)

10−3 10−2 10−1 100 101 102 103

ω?τ?

−20

−15

−10

−5

0

5

10

15

20

Fr
ac

.e
rr

or
(%

)

c)

10−3 10−2 10−1 100 101 102 103

ω?τ?

−20

−15

−10

−5

0

5

10

15

20

Fr
ac

.e
rr

or
(%

)

d)

10−3 10−2 10−1 100 101 102 103

ω?τ?

−20

−15

−10

−5

0

5

10

15

20

Fr
ac

.e
rr

or
(%

)

e)

10−3 10−2 10−1 100 101 102 103

ω?τ?

−20

−15

−10

−5

0

5

10

15

20

Fr
ac

.e
rr

or
(%

)

f)

10�2 10�1 100 101 102

w?t?

10�4
10�3
10�2
10�1

100
101
102

kc
?

Q = 0 Q = 0.01 Q = 0.1 Q = 1 Q = 10 Q = •

FIG. 4: (Color online) Plot of fractional error in fits to a) α⊥, b) α∧, c) β⊥, d) β∧, e) κ⊥, f) κ∧ as

a function of ω?τ? in the case of a Lorentzian plasma (Z →∞) for Θ = 0 (black, solid), Θ = 0.01

(black, dash), Θ = 0.1 (black, dot dash), Θ = 1 (blue, dot dash), Θ = 10 (blue, dash) and Θ =∞
(blue, solid).
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TABLE I: The constant coefficients of the rational functions of χ and Θ used to fit αc⊥ and αc∧, as

per Eqs. (51) and (52) respectively.

Z 1 2 3 4 5 6 7 8 10 12 14 20 30 60 ∞

a1 316 159 112 89.5 76.6 68.2 62.3 58.0 51.9 48.0 45.2 40.1 36.3 32.4 28.5

a2 12.0 10.2 9.36 8.88 8.57 8.35 8.18 8.04 7.85 7.71 7.61 7.42 7.25 7.08 6.89

a3 109 66.3 51.7 44.3 39.9 36.9 34.7 33.0 30.7 29.2 28.0 26.0 24.4 22.7 21.0

a4 639 279 185 143 120 105 95.2 87.8 77.7 71.2 66.6 58.6 52.4 46.4 40.4

a5 142 86.4 67.7 58.2 52.5 48.7 45.9 43.9 40.9 38.9 37.5 34.9 32.8 30.7 28.4

a6 1390 573 373 287 240 210 190 175 156 143 134 118 107 95.3 83.9

a7 229 146 117 102 93.3 87.3 82.9 79.6 75.0 71.9 69.7 65.6 62.4 59.1 55.6

A1 17.9 16.3 12.7 10.3 8.75 7.72 7.00 6.47 5.77 5.32 5.03 4.55 4.24 4.00 3.88

A2 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53

A3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

A4 6.72 8.85 8.33 7.69 7.18 6.80 6.50 6.28 5.95 5.73 5.58 5.31 5.12 4.95 4.83

A5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

A6 89.8 49.8 30.5 21.5 16.6 13.6 11.7 10.3 8.63 7.61 6.94 5.87 5.17 4.59 4.16

A7 86.8 77.0 60.2 49.6 42.9 38.4 35.3 33.0 30.0 28.2 26.9 25.0 23.7 22.9 22.6

A8 20.6 18.1 16.5 15.5 14.9 14.4 14.1 13.9 13.6 13.4 13.2 13.0 12.8 12.6 12.4

A9 440 247 154 111 87.1 72.5 62.8 56.0 47.0 41.5 37.8 31.6 27.1 23.1 19.3

V. DISCUSSION OF RESULTS

As this work has so far been largely mathematical, in this section we provide some physical

interpretation of the previous results. Of initial note is that transport in weakly magnetized

plasmas (χ� 1) is dominated by collisions, whereas in strongly magnetized plasmas (χ� 1) it is

dominated by the magnetic field. In the classical theory [15], this can be thought of in terms of the

collisional mean free path λei = vthτ and the Larmor radius rL = vth/ω (where vth is the thermal

electron speed); whichever is smaller determines the characteristic step-size for transport. Here τ

is Braginskii’s mean electron-ion collision time [15]:

τ =
3
√
πΘ3/2c3

√
2Γe/i

, (60)

which should not be mistaken for its relativistic counterpart seen earlier in this work [Eq. (36)].
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TABLE II: The constant coefficients of the rational functions of χ and Θ used to fit βc⊥ and βc∧,

as per Eqs. (53) and (54) respectively.

Z 1 2 3 4 5 6 7 8 10 12 14 20 30 60 ∞

b1 2.07 0.905 0.646 0.525 0.453 0.405 0.371 0.345 0.311 0.286 0.269 0.237 0.212 0.185 0.158

b2 4.82 4.85 4.86 4.86 4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.88 4.88 4.88 4.88

b3 2.39 1.35 1.13 1.04 0.979 0.943 0.920 0.904 0.887 0.877 0.871 0.868 0.874 0.894 0.943

b4 5 3.5 3 2.76 2.61 2.51 2.44 2.38 2.31 2.26 2.22 2.16 2.11 2.06 2

b5 2.95 1 0.635 0.481 0.395 0.342 0.305 0.278 0.242 0.218 0.202 0.172 0.150 0.127 0.105

b6 7.04 5.45 4.91 4.61 4.42 4.28 4.18 4.11 3.99 3.91 3.86 3.74 3.65 3.55 3.44

b7 7.93 8.70 9.27 9.65 9.93 10.2 10.3 10.5 10.7 10.8 11.0 11.2 11.4 11.7 12.0

b8 10.4 3.77 2.54 2.03 1.75 1.58 1.46 1.37 1.26 1.19 1.14 1.06 1.01 0.965 0.943

b9 18.9 8.87 6.18 4.97 4.30 3.88 3.59 3.37 3.09 2.91 2.78 2.57 2.43 2.31 2.25

b10 2.14 1.92 2.03 2.14 2.23 2.31 2.38 2.44 2.54 2.62 2.68 2.81 2.94 3.08 3.25

b11 2.5 1.75 1.5 1.25 1.25 1.25 1.25 1.25 1 1 1 1 1 1 1

B1 4.86 2.83 2.34 2.11 1.96 1.86 2.10 2.07 2.01 1.97 1.93 1.89 2.09 2.14 2.48

B2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

B3 0.5 0.5 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75 0.75 0.75 1 1 1.25

B4 6.45 4.85 4.53 4.35 4.22 4.10 4.19 4.19 4.15 4.11 4.07 3.99 4.17 4.20 4.55

B5 5.51 1.56 0.907 0.653 0.520 0.438 0.453 0.416 0.362 0.328 0.304 0.265 0.266 0.245 0.252

B6 6.15 3.21 2.57 2.28 2.10 1.99 2.21 2.18 2.13 2.09 2.07 2.05 2.26 2.37 2.81

B7 9.81 7.46 6.87 6.57 6.38 6.24 6.51 6.48 6.42 6.36 6.32 6.26 6.55 6.60 7.06

B8 115 33.7 19.7 14.0 11.0 9.17 8.28 7.49 6.36 5.61 5.09 4.19 3.75 3.14 2.73

At χ ∼ 1, these two length-scales are of the same order, and transport is both collisional and

magnetized. (This is why the ∧ coefficients are maximized at this point [15].) We will see that a

similar physical picture applies in the relativistic case.

Firstly, note that we have parameterized the coefficients in terms of ω?τ?, which is the product

of the relativistic gyro-frequency ω? and the relativistically mean electron-ion collision time τ?. The

reason for doing this can be seen by considering αc⊥: electron-ion collisions set up a frictional force

that resists the flow of current, Rei ∼ αc⊥men〈γ〉〈v〉/τ? (where the current is given by −en〈v〉)
[14]. The use of τ? in our parameterization ensures αc⊥ tends to unity in the strong-field limit,

corresponding to the case in which the electron distribution is a drifting Maxwellian. For lower
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TABLE III: The constant coefficients of the rational functions of χ and Θ used to fit κc⊥ and κc∧,

as per Eqs. (55) and (56) respectively.

Z 1 2 3 4 5 6 7 8 10 12 14 20 30 60 ∞

c1 9.89 2.37 0.973 0.774 0.686 0.769 0.837 0.702 0.539 0.445 0.386 0.293 0.281 0.213 0.178

c2 4.58 3.87 3.63 3.51 3.44 3.40 3.36 3.34 3.30 3.28 3.26 3.23 3.21 3.19 3.16

c3 1.25 1.5 1.5 1.75 2 2.5 3 3 3 3 3 3 3.5 3.5 4

c4 12.5 2.81 1.25 0.903 0.732 0.674 0.627 0.543 0.440 0.380 0.342 0.282 0.249 0.212 0.181

c5 16 10 8 7 6.4 6 5.71 5.5 5.2 5 4.86 4.6 4.4 4.2 4

c6 3.09 0.482 0.159 0.111 0.0894 0.0934 0.0965 0.0775 0.0557 0.0440 0.0368 0.0261 0.0237 0.0168 0.0131

c7 2.74 1.08 0.688 0.579 0.521 0.512 0.510 0.467 0.412 0.378 0.355 0.317 0.301 0.270 0.247

c8 5.84 3.32 2.56 2.61 2.69 3.00 3.26 3.14 2.99 2.91 2.85 2.77 2.88 2.81 2.85

c9 12.2 1.64 0.565 0.345 0.249 0.210 0.182 0.149 0.111 0.0897 0.0768 0.0575 0.0466 0.0359 0.0272

c10 12.0 4.85 3.10 2.31 1.88 1.60 1.41 1.29 1.13 1.02 0.951 0.824 0.724 0.632 0.541

c11 1.84 0.937 0.707 0.696 0.705 0.750 0.783 0.774 0.766 0.766 0.769 0.783 0.824 0.855 0.915

C1 18.0 7.71 5.88 4.99 3.82 3.50 3.29 3.13 2.92 2.80 2.73 2.07 1.76 1.66 1.65

C2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

C3 0.5 0.75 0.75 0.75 1 1 1 1 1 1 1 1.5 2 2 2

C4 22.0 7.30 5.97 5.34 3.28 3.11 3.01 2.94 2.87 2.85 2.86 1.60 1.11 1.16 1.33

C5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

C6 2.99 0.492 0.230 0.143 0.0882 0.0688 0.0568 0.0488 0.0391 0.0335 0.0299 0.0192 0.0142 0.0115 0.00957

C7 3.41 1.11 0.725 0.560 0.407 0.355 0.321 0.297 0.265 0.246 0.234 0.172 0.142 0.128 0.122

C8 7.97 3.78 3.03 2.67 2.14 2.01 1.92 1.85 1.77 1.72 1.69 1.36 1.21 1.17 1.17

C9 82.2 9.66 4.60 2.91 1.39 1.09 0.908 0.785 0.632 0.544 0.488 0.219 0.124 0.101 0.0857

values of the Hall parameter, the resistivity αc⊥ decreases, because collisions distort the distribution

function and the electrons that contribute primarily to the current are those that are less collisional.

This difference between the weak- and strong-field resistivity is reduced relativistically (compared

to that seen classically) because the electron-ion collision frequency scales with 1/u2v rather than

1/v3 [Eq. (9)], with the former tending to 1/u2 in the ultra-relativistic case.

This ω?τ? parameterization also ensures that the functional form of the coefficients is broadly

independent of temperature (see, e.g., Fig. 3), and the physical reasoning outlined above can be

updated as follows: for ω?τ? � 1, the collisional mean free path, λei = vthτ
?, is the characteristic
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length-scale for transport and, conversely, for ω?τ? � 1, the Larmor radius rL ∼ vth/ω
? is the

appropriate length-scale. At ω?τ? ∼ 1, these two lengths are of the same order, which is why, for

all values of Θ, the switch between collisional and magnetized transport occurs at or near to this

point.

We are now in a position to compare these results with those given by the classical theory, so

as to analyze the magnitude of relativistic effects at various temperatures and field strengths. For

this, it is useful to use the classical form of the Hall parameter, ψ = ωτ , as this enables us to

confine the relativistic correction to the Θ variable alone. In the classical theory, for a given ωτ ,

the dimensionless coefficients are independent of temperature. However, in the relativistic theory,

this no longer remains the case. Plotting the ratio of the coefficients (given in terms of ωτ) at

arbitrary Θ to that at Θ ≈ 0 therefore provides the size of the relativistic correction. This is done

in Fig. 5 for the case of a Z = 1 plasma. (Corrections for plasmas with different atomic numbers

are of the same order.)

Figure 5 shows that the relativistic electrical resistivity α⊥ increases from its classical value

as the temperature is increased. This can be understood by again considering the frictional force

Rei, which balances the electromagnetic fields and pressure gradient in a steady state. As we have

seen, Rei ∼ αc⊥men〈γ〉〈v〉/τ?, with 〈γ〉/τ? → 1/τ ∼ Θ−3/2 (non-relativistic) and 〈γ〉/τ? ∼ Θ−1

(ultra-relativistic). In the ultra-relativistic limit, the correction to the classical result therefore

scales as Θ1/2. Physically, this represents the increased collisionality of high temperature plasmas

when relativistic effects are accounted for, or, alternatively, the reduction of the current j and heat

flow q generated in the plasma as particles are limited to c.

Similarly, at low field strengths, the thermal conductivity κ⊥ decreases from its classical value

as the temperature is increased. The correction in this case scales as Θ−1/2 in the ultra-relativistic

limit. This is because the thermal conductivity is effectively a diffusion coefficient of the form

(∆x)2/∆t, where ∆x is the characteristic step length of transport and ∆t the step time [15].

Classically, this can be expressed λ2
ei/τ = (vthτ)2/τ , whose temperature dependence is given by

(Θ1/2Θ3/2)2/Θ3/2 ∼ Θ5/2. In the ultra-relativistic limit, this switches to (vthτ
?)2/τ?, which scales

as (Θ2)2/Θ2 ∼ Θ2. The corresponding Θ−1/2 correction can be attributed to the same physical

considerations as the resistivity above.

By contrast, at low field strengths, the thermoelectric coefficient β⊥ does not change indefinitely

at high temperatures. In fact, in the ultra-relativistic limit, βc‖ → 0.2297, which is of the same

order as the classical value, βc‖ ≈ 0.7029 (Z = 1). Again this can be justified by simple physical

arguments [15]; consider, for example, the thermoelectric term nkBβ · ∇T in Eq. (1). This term
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FIG. 5: Relativistic correction factors in the case of a) α⊥, b) α∧, c) β⊥, d) β∧, e) κ⊥, f) κ∧ as a

function of the non-relativistic Hall parameter ψ = ωτ and reduced temperature Θ for a Z = 1

plasma.
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arises due to the fact that, when a temperature gradient is imposed, the electrons higher up

the gradient are less collisional, which produces a net frictional force down the gradient. An

estimate for this force can be given by considering an electrons with extra energy ∼ λeikB∂T/∂x

as they travel a mean free path λei down the temperature gradient. Thus the force is of order

(λei/T )∂T/∂x(〈γ〉menvth/τ
?) ∼ n∂T/∂x, which is clearly independent of temperature.

The corrections at high field strengths, and to the α∧, β∧ and κ∧, coefficients, are slightly

more subtle. Firstly, the temperature scaling of ωτ (the non-relativistic Hall parameter) is Θ3/2,

whereas that of ω?τ? (the relativistic Hall parameter) is Θ in the ultra-relativistic limit. In other

words, relativistic effects mean it is more difficult to magnetize a plasma than would be expected

classically (again because of increased collisionality); the effect of the magnetic field is decreased

by ∼ Θ−1/2 at very high temperatures. With the exception of α⊥, this is manifested in an increase

in all coefficients in the high field limit. This can be seen as all these decrease rapidly with an

increasing magnetic field, and a relativistic treatment acts to reduce the effects of this.

The corrections seen in the low field limit of α∧, β∧ and κ∧ are due to the combination of effects

discussed above. For α∧, an ∼ Θ1/2 increase as per α⊥ is exactly balanced by the ∼ Θ−1/2 decrease

due to the reduced magnetization (as the coefficient scales ∼ χ in this limit). Therefore, in the

classical limit, αc∧ = 0.1988ωτ , whereas in the ultra-relativistic limit, αc∧ = 0.01528ωτ . In the case

of β⊥, a simple Θ−1/2 correction is required due to magnetization effects. Lastly, the combination

of two Θ−1/2 scalings for κ∧ result in a net Θ−1 correction [35].

Finally, we note that the relativistic corrections to α‖ and κ‖ can be fairly significant, even at

mild temperatures. For example, at kBT = 30 keV (Θ ≈ 0.06), κ‖ is reduced to 80% of its classical

value. Note that this is somewhat larger than the correction to α‖, as the thermal conductivity

is a higher moment of the distribution and thus more sensitive to the change in the shape of the

tail due to relativistic effects than the electrical resistivity. However, the greatest corrections are

those to the coefficients in the (b × s) direction in the weak-field limit. We find that, even at

kBT = 5 keV (Θ ≈ 0.01), β∧ and κ∧ are reduced by 10%. By kBT = 20 keV (Θ ≈ 0.04), κ∧ has

decreased to approximately 60% of its classical value. Although transport is strongly suppressed in

this direction for weak field strengths, we find these corrections remain to ωτ ∼ 0.1; at this point

the thermal conductivity κ∧ is a large fraction of its maximum value (see the Θ = 0 case in Fig. 3,

for which τ = τ?).
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VI. LIMITS OF VALIDITY

Firstly, the results of this work are restricted in their validity to an ideal plasma; that is one

which is fully ionized and weakly coupled. The former condition requires the presence of neutral

particles to be negligible; otherwise the transport coefficients assume more complex forms [26].

The latter corresponds to ln Λa/b � 1, such that small-angle scattering dominates and the Fokker-

Planck approach can be accurately used to describe transport [11].

The limits of applicability of linear transport theory have been discussed by numerous authors

[36–38]. For a relativistic plasma, it is required that the thermal-averaged momentum,

uth =
4π

n

∫
fJu

3du =
2(1 + 3Θ + 3Θ2)

e1/ΘK2(1/Θ)
c, (61)

is much greater than the magnitude of the drift momentum,

udr =
4π

3n

∫
f1u

3du; (62)

otherwise f1 can no longer be considered to be a small perturbation and the time evolution of f0,

f2 etc. must be considered. This places constraints on the magnitude of the electric fields E and

temperature gradients ∇T that may be studied using this approach.

The assumption that the ions are infinitely massive is fairly robust for Ti ∼ Te and Θi � 1,

given mi � me. We note that in the presence of a strong magnetic field the ion contribution to

transport may be greater than the electron contribution in the direction normal to the magnetic

field [39]. However, the higher mass of the ions means that, for temperatures as high as kBTi ∼ 0.1

GeV (Θe ∼ 100), their motion remains non-relativistic. For this, the reader is referred to earlier

works on classical ion transport [15, 26].

In the present work, our analysis has been confined to the inertial frame in which the ions are at

rest. Allowing for relativistic flow is complicated: Dzhavakhishvili and Tsintsadze [14] showed that

the relativistic MHD equations contained terms (∼ 1/c2) completely absent from their classical

counterparts [15]. However, in the case of a mildly relativistic plasma, in which the mean velocity

of the ions Vi is finite but much smaller than the speed of light, |Vi|2/c2 ≈ 0, we may approximate

the effects of this by substituting E′ = E + Vi×B in place of the electric field in Ohm’s law. This

is the transformation used in the classical theory [26]. For our purposes, this approximation should

suffice, given ionic flow in ICF is distinctly non-relativistic (e.g., the implosion velocity on the NIF

point design is around 370 kms−1 ∼ c/1000 [3]).

The results here are valid for an electron-ion plasma, under the assumption of quasi-neutrality;

that is, Zni = ne. Clearly, as the temperature is increased, the effect of pair production will alter
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this relation to Zni + ne+ = ne− , where the positron density ne+ is a function of the optical depth

of the plasma. However, in the case of the highest temperature ICF plasmas of interest (of order

100 keV), the positron density ne+ is expected to be less than 1% of that of the electrons ne− [40],

such that these results will still accurately describe electron transport. In the more general case,

for which ne+ <∼ ne− , the kinetics of both electron and positron populations need to be considered

for an accurate description of transport. This is left for further work.

Finally, our work has neglected the effect of radiative processes on the electron transport.

Again this corresponds to the assumption that the plasma is optically thin; otherwise processes

such as Compton scattering are likely to be significant. Irrespective of optical depth, however,

bremsstrahlung may be an important consideration in collisional systems and synchrotron radiation

similarly in magnetized systems. To order of magnitude, the former can be shown to be non-

negligible only for temperatures Θ >∼ 10 [10]. In order to determine the circumstances under which

the latter becomes significant, consider the power radiated by an isotropic distribution of electrons

in a magnetic field [41]:

P =
e4

9πε0m2
ec

3
v2γ2B2. (63)

(We neglect here the effect of the electric field and pressure gradients on the electron, and consider

solely its v ×B rotation.)

For simplicity we confine ourselves to the ultra-relativistic limit, in which τ? → 9Θ2c3/Γe/i,

〈γ〉 → 3Θ and we can take v ≈ c in Eq. (63). For synchrotron processes to be negligible, we require

the fractional energy loss per collision time Pτ?/〈γ〉mec
2 � 1 (for χ � 1) or that per v × B

rotation Pτ?/χ〈γ〉mec
2 � 1 (for χ � 1). Substituting the relevant parameters into the latter of

these and rearranging yields

ΘZn ln Λe/iχ� 3

16πr3
0

. (64)

Taking representative values of laboratory high energy density plasmas for the parameters on the

left-hand side of this equation, e.g., Z = 1, n = 1 × 1031 m−3, ln Λe/i = 5 and χ = 1, we find

a temperature condition of Θ � 5 × 108. Clearly this is easily satisfied, and, even though this

condition is sensitive to the Hall parameter χ, we find Θ� 5× 106 for values as high as χ = 100.

Beyond this, transport is no longer collisional and, as such, the process of synchrotron radiation

can be safely neglected for all systems of interest.
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VII. CONCLUSIONS

In this work, a self-consistent transport theory for a relativistic plasma has been presented.

It was first verified that Braginskii’s transport relations [15] remain valid relativistically, in the

frame in which the ions are at rest. The main system of interest, a burning ICF target, does not

involve relativistic flow and so this description should be sufficient. Transport coefficients were

derived in a semi-analytical form for a Lorentzian plasma (Z → ∞), which reduce to Epperlein’s

classical results [29] in the non-relativistic limit. The relativistic results of other authors can also

be reproduced in various limits [20, 23].

For plasmas with arbitrary atomic number, the linearized Boltzmann equation was solved nu-

merically as a means to calculate the relativistic transport coefficients. The main result of this

paper is the rational fits to these, which were expressed as simple functions of the Hall parameter

χ and reduced temperature Θ, and reproduce the numerical results within a maximum percentage

error of 20%. (In most cases, particularly in the weak field limit, the error is considerably smaller

than this.) To the best of our knowledge, this is the first work to provide transport coefficients for

a relativistic plasma in this form. Accounting for relativistic effects results in non-negligible cor-

rections to these coefficients, even at reasonably mild temperatures, e.g., the thermal conductivity

κ‖ is reduced to 85% of its classical value at kBT = 20 keV.
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Appendix A: The jl[k]∗ functions

We catalogue the jl[k]∗ functions as given by Braams and Karney [20] for l = 0, 1, where the

argument z = u/c, the Lorentz factor γ = (1 + z2)1/2 and the rapidity σ = sinh−1 z = cosh−1 γ:

j0[1]0 = σ/z,

j0[1]1 = 1,

j0[1]2 = γ,

j0[2]02 = (zγ − σ)/4z,

j0[2]11 = (γσ − z)/2z,

j0[2]22 = [−zγ + σ(1 + 2z2)]/8z,

j0[3]022 = [−3zγ + σ(3 + 2z2)]/32z,

j1[1]0 = (γσ − z)/z2,

j1[1]1 = (zγ − σ)/2z2,

j1[1]2 = z/3

j1[2]02 = [−3γσ + 3z + z3]/12z2,

j1[2]11 = [−3zγ + σ(3 + 2z2)]/8z2,

j1[2]22 = [−σγ(3− 6z2) + 3z − 5z3]/72z2,

j1[3]022 = [σγ(15 + 6z2)− 15z − 11z3]/288z2.
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