
An adaptable parallel algorithm for the direct numerical simulation of incompressible
turbulent flows using a Fourier spectral/hp element method and MPI virtual topologies

A. Bolisa, C.D. Cantwella,∗, D. Moxeya, D. Sersona, S.J. Sherwina

aDepartment of Aeronautics, Imperial College London, South Kensington Campus, London, UK

Abstract

A hybrid parallelisation technique for distributed memory systems is investigated for a coupled Fourier-spectral/hp element
discretisation of domains characterised by geometric homogeneity in one or more directions. The performance of the approach is
mathematically modelled in terms of operation count and communication costs for identifying the most efficient parameter choices.
The model is calibrated to target a specific hardware platform after which it is shown to accurately predict the performance in
the hybrid regime. The method is applied to modelling turbulent flow using the incompressible Navier-Stokes equations in an
axisymmetric pipe and square channel. The hybrid method extends the practical limitations of the discretisation, allowing greater
parallelism and reduced wall times. Performance is shown to continue to scale when both parallelisation strategies are used.

Keywords: Spectral/hp element method, High-order methods, incompressible flows, MPI parallelisation, virtual topologies

1. Introduction

Direct Numerical Simulation (DNS) is used to simulate com-
plex laminar and turbulent flow problems both to gain an un-
derstanding of the fundamental flow physics and for industrial
applications [1]. Turbulent flows inherently require high spa-
tial and temporal resolutions in order to resolve the spectrum of
scales within the flow, which depends on the Reynolds number
Re. The number of grid points needed to resolve a fully tur-
bulent three-dimensional flow scales as Re9/4 [2], meaning that
even at modest Re, the computational demands are significant.
Since practical CFD applications involve Reynolds numbers on
the order of 103 − 106 and higher, this inevitably makes serial
computation impossible, necessitating the use of parallel clus-
ters of computers.

The most prevalent form of high-performance computer sys-
tems are distributed-memory clusters consisting of an intercon-
nected collection of processors, each with their own local mem-
ory hierarchies. Traditionally, the capacity of these systems has
been broadly increased through faster processor clock speeds
and improved lower-latency network interconnects. However,
in recent years, HPC facilities have evolved around increasingly
parallel systems as clock speeds have saturated and energy-
usage concerns become a motivating factor [3]. Consequently,
algorithms have been required to adapt to the changing hard-
ware landscape in order to maintain efficiency.

The spectral/hp element method [4], whilst being used to
simulate fluid flow for many years in an academic setting, is
now emerging as an attractive alternative to many traditional
numerical discretisations on modern HPC hardware. As op-
posed to the classical finite element method, spectral/hp ele-
ments use high-order polynomial expansions on each element.

∗Corresponding author (e-mail: c.cantwell@imperial.ac.uk)

Numerically, this has the advantage of low dispersion and dif-
fusion alongside exponential convergence in the polynomial or-
der. Additionally however, discretised operators are dense and
have a far richer structure compared to linear expansions, mean-
ing that they can more effectively utilise caching on modern
HPC hardware. The tensor product of one-dimensional basis
functions on each element also admits a rich fabric of imple-
mentation strategies [5, 6, 7].

However, variations of this method mean that we can fur-
ther improve computational performance whilst preserving the
accuracy of the simulation. Many studies of fundamental
flow physics are posed on domains which are characterised by
geometric homogeneity in one or more coordinate directions
[8, 9, 10]. Instead of discretising the domain using a 3D spec-
tral/hp element method, one can combine a 2D spectral/hp el-
ement discretisation with a pure spectral expansion to signifi-
cantly reduce the computational cost of these problems. This
approach is known as a Fourier–spectral/hp element method
[11]. In this study we are specifically interested in the case
where only one coordinate direction posesses geometric homo-
geneity. Therefore, the 3D domain is decomposed into a se-
quence of spectral/hp element planes, coupled using a Fourier
expansion in the third coordinate directions.

The approach typically used when parallelising this type of
discretisation is to either use mesh-decomposition in the spec-
tral/hp element planes, or apply a modal decomposition in the
Fourier direction. The latter takes advantage of the orthogo-
nality property of the Fourier basis for linear operators. The
optimal choice of parallelisation strategy typically depends on
the size of the problem, the ratio of Fourier planes to spectral el-
ements, alongside the hardware and interconnect of the parallel
system. Moreover, the fast development of computer systems
forces software designers to make a continuous effort to main-

Preprint submitted to Computer Physics Communications April 20, 2016

tain algorithms to be able to exploit all the benefits exposed by
the latest generation of hardware. There is therefore benefit to
be gained from a code supporting both types of parallelism, but
predicting the performance of these algorithms on a specific ar-
chitecture is not trivial [12].

The performance of a parallel 3D incompressible Navier-
Stokes solver using the Fourier–spectral/hp element method has
been benchmarked previously [13, 14]. Spectral modes were
distributed across the processes, requiring the transposition of
data using the MPI all-to-all technique to compute derivatives
in that direction. Their performance model assumed a flat com-
munication topology and the maximum number of processes
was limited to the number of Fourier planes. Conversely, paral-
lelisation of a spectral element discretisation has been explored
[15, 16, 17, 18, 19], for which the upper limit on the number of
processes is the number of mesh elements.

Performance of a mixed-parallelism case for 3D turbulence
simulations has previously been investigated [20], specifically
for a 1D spectral/hp element discretisation, coupled with a 2D
spectral expansion. Parallel communication was implemented
across processes as a Cartesian topology and a performance
model was constructed which suggested improved strong scal-
ing could be achieved on specific architectures. Solver per-
formance depends on hardware characteristics such as memory
bandwidth and processor cache size, but also on network capa-
bilities in terms of latency, and bandwidth. Therefore prudent
choice of parallelism strategy can enable improved overall per-
formance by structuring the computation and communication
pattern to better match the available hardware.

The present study is distinguished from this previous work
by the choice of discretisation. We use a two-dimensional spec-
tral/hp element method, coupled with a one-dimensional spec-
tral expansion. This permits the investigation of flow prob-
lems on geometries of significantly greater complexity than ear-
lier works. We first outline the discretisation and parallelisa-
tion strategies and quantify their comparative performance. For
large runs with many processes the number of possible hybrid
parallelism strategies may be significant. We construct a math-
ematical model to characterise the expected performance of any
given single or hybrid parallelisation strategy which can be used
to predict the optimal strategy for a given problem. We cali-
brate the model against the individual mesh-decomposition and
Fourier parallelisation techniques and demonstrate its accuracy
in predicting performance of the hybrid approach.

2. Methods

Three-dimensional incompressible, isothermal flow with
constant density and viscosity is governed by the incompress-
ible Navier-Stokes equations which, in terms of the primitive
variables (u, p), are expressed as

∂u
∂t

+ u · ∇u = −∇p + ν∇2u,

∇ · u = 0,

where p is the kinematic pressure, ν is the kinematic viscosity
and u = [u, v,w]> is the velocity.

y

x

z

Plane 0

Plane 1

Plane 2

Plane k

Plane k+1

Plane N-1

ZN-1

Z0

Z1

z

ZN-1 = Lz

y0 x0
x1

y1

yq

xp

Figure 1: Structure of a three-dimensional expansion using a Fourier spec-
tral/hp element method.

2.1. Spatial discretisation

The three-dimensional domain is decomposed into NZ two-
dimensional spectral/hp element planes spanning the x and y
coordinate directions, coupled with a Fourier expansion in the
third homogeneous direction, as illustrated in Figure 1. The
spectral/hp element discretisation is described elsewhere [4]
and only a brief summary is given here.

Each two-dimensional plane Ωk is partitioned into a set of
Nel subdomains Ωe

k such that,

Ωk =

Nel⋃
e=0

Ωe
k

Ωe
k ∩Ω

f
k = ∅ ∀e , f .

In this study the meshes consist of quadrilateral elements only,
but the approach may be equally applied when using triangu-
lar elements. Numerical integration and differential operators
are constructed on a standard reference element Ωst which is
mapped to each Ωe

k using a bijective map, χe : Ωst → Ωe, as
x = χe(ξ). On each element, the solution u may be approxi-
mated as

uδ(x, y) =

N∑
n=0

φn(x, y)ûn =

P∑
p=0

P∑
q=0

φp(x)φq(y)ûe
pq,

where ûe
pq are elemental coefficients. These correspond to the

tensor-product of nodal expansion bases, φp(x) and φq(y), of or-
der P defined as Lagrange polynomials through Gauss-Lobatto-
Legendre points ξi, and have the form

φm(ξ) =

∏P
l=0,l,m(ξ − ξl)∏P

l=0,l,m(ξm − ξl)
.

2

This is synonymous with the original spectral element method,
giving a total of (P + 1)2 degrees of freedom (DOF) per ele-
ment and NXY = Nel × (P + 1)2 local degrees of freedom per
plane. Gaussian quadrature is used for numerical integration,
for which the solution u is represented on the same set of P + 1
points ξm.

The connectivity of elements in a plane is represented by an
assembly mapping A which maps the concatenated vector of
elemental degrees of freedom to their global counterparts and
enforces a C0-continuity constraint. The global degrees of free-
dom are assembled using the relation ûe = Aûg, where A is the
matrix equivalent ofA. This matrix is in general highly sparse
and so is in practice not constructed explicitly.

Operators in the spectral/hp element method are constructed
elementally and applied using the sum-factorisation technique
[21] as this has been demonstrated to be more efficient when
operating on elements with higher-order bases [7, 6, 5]. The
tensor-product nature of the elemental expansion bases allows
matrix-vector operations to be decomposed into a sequence of
smaller, more computationally efficient matrix-matrix opera-
tions, performed in each coordinate direction separately.

In the z-direction, the solution is expressed using a Fourier
basis of NZ/2 complex modes, φk(z) = eizk, to give an expansion
of the three-dimensional solution on an element as

uδ(x, y, z) =
∑

n

φn(x, y, z)ûn =
∑
pqk

φpq(x, y)φk(z)ûpqk.

The total number of degrees of freedom is therefore Ntot =

NXY NZ .

2.2. Temporal discretisation
A stiffly stable splitting scheme [22] is adopted which de-

couples the velocity and pressure fields, leading to an explicit
treatment of the advection term and an implicit treatment of the
pressure and the diffusion terms. The key steps are

ū −
∑J−1

q=0 αqun−q

∆t
= −

J−1∑
q=0

βq[(u · ∇)u]n−q,

∇2 pn+1 = ∇ ·

(ū
∆t

)
,

¯̄u − ū
∆t

= −∇pn+1,

γ0un+1 − ¯̄u
∆t

= ν∇2un+1.

To maintain the order of the scheme, a modified Neumann pres-
sure boundary condition is used,

∂p
∂n

n+1

= −

[
∂u
∂t

n+1

+ν

J−1∑
q=0

βq(∇ × ω)n−q

+

J−1∑
q=0

βq[(u · ∇)u]n−q

 · n.
The coefficients αq, βq and γ0 can be found in [22] for
first-, second- and third-order implicit-explicit (IMEX) time-
integration schemes. Figure 2 illustrates the implementation of

Figure 2: Incompressible Navier-Stokes solution algorithm. Details of the
building blocks of the time-integration process. The most expensive routines
are highlighted, i.e. the advection term calculation and the elliptic solvers for
pressure and velocity (Poisson and Helmholtz).

the time-integration section of the algorithm, where we ignore
input/output and set-up costs. For short time-integration, these
may be significant.

2.3. Parallelisation

In this section we describe the parallelisation approaches
used in this study. We provide an overview of the two orthog-
onal approaches: parallel decomposition of the Fourier modes
(modal parallelisation) and parallel decomposition of the spec-
tral/hp element planes (elemental parallelisation). We then out-
line the hybrid approach which combines both techniques, and
describe its implementation. In each case we partition the simu-
lation across a total of R processes. The Message Passing Inter-
face (MPI) library is used for communication in all three meth-
ods.

In modal parallelisation the NZ planes, corresponding to
NZ/2 complex Fourier modes, are distributed equally among
the processes. Elliptic solves are decoupled in the Fourier-
transformed space and can be performed independently on each
plane using either a direct Cholesky factorisation with reverse
Cuthill-McKee algorithm (LAPACK) [23], or through an iter-
ative conjugate gradient algorithm. The non-linear advection
term is more efficiently computed in non-modal space. To per-
form the inverse and forward Fourier transforms, used before
and after the advection calculation respectively, the data to be
transformed must reside on the same process. In practice, this
requires a transposition of the data using an MPI all-to-all op-
eration. To support efficient differentiation in the z-coordinate
direction, we additionally impose the constraint that both the
real and imaginary components of each complex Fourier mode

3

Figure 3: Illustrative MPI cartesian communicator for a hybrid parallelisation
of a Fourier spectral/hp element discretisation using 4 elements per plane and 4
planes, on 16 MPI processes. Row communicators handle the communication
between mesh partitions for elemental parallelisation while column communi-
cators handle communication between planes for modal parallelisation.

reside on the same process, since, in the Fourier space, deriva-
tives are calculated through the multiplication ûk 7→ −ikûk. This
restricts the maximum number of usable processes to NZ/2.

In contrast, elemental parallelism distributes the Nel elements
of each plane among the processes. The partitioning of the
2D plane is implemented using the METIS graph partition-
ing library [24] and an identical partitioning and distribution
amongst processes is used for each plane in the domain. The
natural limit on the number of usable processes is therefore Nel.
The dual-graph of the mesh is partitioned among the R pro-
cesses to equally distribute the number of degrees of freedom,
whilst minimising the edge-cut, and therefore the inter-process
communication. Elliptic solves are performed iteratively, with
communication being required to exchange boundary informa-
tion between adjacent elements residing on different processes
at each iteration. This data exchange is implemented using
the gather-scatter algorithm from Nek5000 [25] which uses a
global numbering of the DOFs in the plane to efficiently sum-
mate process-local contributions and distribute the result back
to the participating processes.

Hybrid parallelisation combines both modal and elemental
approaches by organising the available processes in a Cartesian
grid [20], as illustrated in Figure 3. In this arrangement, the
world communicator is split into a series of row communicators
which support elemental parallelisation, while column commu-
nicators enable modal parallelisation. Each process belongs to
precisely one row communicator and one column communica-
tor and nominally operates on a fixed subset of elements in a
fixed subset of planes. As in modal parallelism, elliptic solves
are performed in Fourier-transformed space, but due to the ele-
mental parallelism the iterative conjugate gradient solver must
be used. The limit on the number of viable processes is now
increased substantially to Nel × NZ/2.

2.4. Test Environment

All simulations are performed on an SGI Altix ICE 8200 EX
system with up to 512 cores (64 eight-core nodes). Each node
contains Nehalem CPUs running at 2.93 GHz and 24GB RAM.
Communication is through a dual-rail Infiniband interconnect.
The system runs Redhat Enterprise Linux with kernel version
3.0.58-0.6.6. Intel MPI was used for parallel message exchange
and FFTW 3.2.2 for performing fast Fourier transforms.

The software used for the spectral/hp element discretisation
in this study was Nektar++ v3.3.0 [26, 27]. In summary, the
framework provides scope for constructing high-order poly-
nomial expansions on both fully two-dimensional and three-
dimensional domains. It also supports a coupled spectral/hp
element – Fourier approach for domains with geometric ho-
mogeneity. The specific operators and time integration neces-
sary for solving the incompressible Navier-Stokes equations are
built upon this framework. As with any numerical timing study,
the presented results are specific to the implementation used, al-
though should provide useful generic guidance.

3. Performance Model

Identifying the optimal strategy and the distribution of pro-
cesses between elemental and modal parallelism is non-trivial,
since algorithmic complexity and specific system architecture
affects performance. We therefore design a performance model,
calibrated through the use of the two parallelisation strategies
independently, to help select the best approach before the start
of a given simulation.

3.1. General model assumptions

To ensure the model remains simple enough for predictive
use, yet sufficiently complex to provide reasonable accuracy,
we make a number of assumptions regarding the nature of the
computational problem and hardware when evaluating the com-
putational and communication costs.

The computational cost of an algorithmic unit is evaluated
using the floating-point operation count of basic routines such
as matrix-vector multiplications, inner products and vector-
vector summations. This implicitly disregards hardware char-
acteristics, such as caching and memory throughput limits, al-
though our testing has shown that these aspects can be reason-
ably captured using scalar constants, determined during the cal-
ibration process for a specific platform. Operations are eval-
uated at the element level, and their total computational cost
across the domain is therefore assumed to be predominantly in-
dependent of the parallelisation strategy.

Communication costs are generally more complex to model
and strongly depend on the hardware configuration. Different
cluster configurations, such as mesh, hypercube or ring inter-
connect topologies, have a significant effect on the measured
communication time. In this study we follow the most common
approach when estimating communication costs [20, 14], which
is to assume a “flat” topology supporting direct communication
between nodes and no interconnect contention. Operations are
assumed to be performed using double-precision floating point

4

numbers, occupying eight bytes on the test system described
above.

3.2. Model construction
The general structure of our performance model is as follows.

Let Oi be the operation count of the i-th operation in the algo-
rithm. Let C j be the time required for the j− th communication,
then we can define the total parallel execution time, T , as

T =
1

RXYRZ

∑
i

Oi +
∑

j

C j.

where RXY and RZ are the number of processes used for ele-
mental and Fourier parallelism, respectively, and R = RXYRZ .
The size of a computational problem is generally measured by
the number of degrees of freedom. In the spectral/hp discretisa-
tion, this corresponds to the number of elemental modes which,
for two-dimensional quadrilateral elements, is (P + 1)2. For
some matrix-vector operations the sum-factorisation technique,
which exploits the tensorial nature of the expansion, can be used
that requires (4P3 + 18P2 + 26P + 12) operations per element
[7].

The communication times TC j can be further modelled as

C j = Nmsgs ×
[
τL + Nop × τB

]
(2)

where Nmsgs is the number of messages transmitted during an
operation, Nop is the number of floating-point values per mes-
sage, τL is the latency and τB the inverse of the bandwidth. Note
that τB is quantified using s/DOF, rather than the conventional
s/MB, to facilitate the modelling. Latency and bandwidth are
sampled for the test system using the MPI benchmarking appli-
cation IBM-MP1. Bandwidth is measured for a number of MPI
routines and for messages of size 8 bytes up to 4MB and av-
eraged. For the test system considered, the average bandwidth
measured was 1.64 · 103 MB/s. Bandwidth and latency for the
test system was determined to be

τB = 4.87 · 10−9 s/DOF, τL = 2.09 · 10−6 s.

3.3. Advection Term
We first model the advection term u · ∇u, which is computed

in physical space and can be expanded as

N(u) = u∂u/∂x + v∂u/∂y + w∂u/∂z,

N(v) = u∂v/∂x + v∂v/∂y + w∂v/∂z,

N(w) = u∂w/∂x + v∂w/∂y + w∂w/∂z,

where u, v and w denote the three components of the velocity u.
The numerical implementation of this is shown in Algorithm 1.
Computational costs arise from FFTs (lines 1, 4 and 6), deriva-
tives (lines 2 and 3) and vector-vector operations (line 5), while
communication is only required to compute the FFTs.

Inverse FFTs are required for each of the velocity compo-
nents and the z-derivatives of each of the velocity components.
A forward FFT is used to transform the result of the advection
calculation. This gives a total of nine FFTs, each consisting

input : ũ0, ũ1, ũ2

output: Ñ(u0), Ñ(u1), Ñ(u2)

// Transformation back to physical space

for i = 0 to 2 do
1 ui = IDFT (ũi);

end

for i = 0 to 2 do
// Derivatives in the 2D spectral/hp

element plane

2 ∂ui/∂x = Dxui ∂ui/∂y = Dyui;

// Derivatives in the spectral direction

3 ∂ũi/∂z = D̃zũi;

// Transformation back to physical space

4 ∂ui/∂z = IDFT (∂ũi/∂z);

// Construction of the i − th advection

component

5 N(ui) = u0∂ui/∂x + u1∂ui/∂y + u2∂ui/∂z;

// Transformation to Fourier space

6 Ñ(ui) = DFT (N(ui));
end

Algorithm 1: Non-linear advection term procedure. Terms
with a tilde are forward Fourier-transformed.

of a set of independent 1D FFTs. The number of 1D FFTs is
given by the number of quadrature points associated with the
local spectral/hp element mesh partition. Assuming the mesh
is evenly partitioned, we can quantify the total number of 1D
FFTs as Nel(P + 1)2, each costing O(NZ log2(NZ)), giving a cu-
mulative cost of

OA
1 = 9Nel(P + 1)2 ·CFFTNZ log2 NZ ,

where CFFT is a const. Derivatives in the z-direction are a BLAS
level 1 operation with total cost

OA
2 = NelNZ(P + 1)2

In-plane physical derivatives will be proportional to the cost
of executing a matrix-vector multiplication using the general
derivative matrix. A total of six in-plane derivatives are com-
puted. The total cost of derivative operations is therefore,

OA
3 = 6Nel(P + 1)4.

Finally, there are five level 2 BLAS operations in calculating
each component of N(ui). Vectors are of size Nel(P + 1)2, re-
sulting in a total cost of

OA
4 = 15Nel(P + 1)2.

For the advection term, communication is required during
the 9 FFTs to shuffle data between processes so that the data for
each 1D FFT, previously spanning RZ processes, is colocated
on the same process. We apply the communication model de-
scribed in (2). For each of the 9 FFTs two MPI All-to-all calls

5

input : initial guess x0

output: final solution x

// calculate initial residual r0
r0 = b − Ax0;

// solve for w0 where K is the

preconditioner

Kw0 = r0;

// set parameters

q−1 = p−1 = 0 β−1 = 0 s0 = Aw0;
ρ0 = (r0,w0) µ0 = (s0,w0) α0 = ρ0/µ0;

for i = 0 to NMAX
iter do

1 pi = wi + βi−1 pi−1;
2 qi = si + βi−1qi−1;
3 xi+1 = xi + αi pi;
4 ri+1 = ri − αiqi;

if (ri+1, ri+1) < tolerance then

break;

end
5 Solve Kwi+1 = ri+1;
6 si+1 = Awi+1;
7 ρi+1 = (ri+1,wi+1);
8 µi+1 = (si+1,wi+1);

βi = ρi+1/ρi;
αi+1 = ρi+1/(µi+1 − ρi+1βi/αi);

end

Algorithm 2: Preconditioned Conjugate Gradient Method.
Demmel et al. [28].

are required (shuffling and unshuffling), each of which formally
requires Nmsgs = (RZ − 1) messages [20, 14]. Message size is
based on the assumption that the 1D FFTs will be evenly dis-
tributed across the participating processes. This gives a com-
munication cost of

CA
1 = 18(RZ − 1)

(
τL +

Nel

RZRXY
(P + 1)2τB

)
.

Combining the above contributions and distributing the com-
putational cost amongst the processes gives a parallel execution
time of

T A =
1

RZRXY
·
∑

i

OA
i +

∑
j

CA
j .

3.4. Elliptic Solver

Algorithm 2 shows the basic steps to solve the linear systems
using a preconditioned conjugate gradient method. To simplify
the analysis, we do not perform static condensation of the el-
liptic systems, evaluating them using a block-diagonal matrix
system, where each block contains a full elemental matrix.

The daxpy operations on lines 1-4, each comprising one
scalar-vector multiplication and one vector-vector summation

giving a total cost of

OE
1 = 8Nel(P + 1)2.

The application of the diagonal preconditioner in step 5 can be
considered a vector-vector multiplication and has cost

OE
2 = Nel(P + 1)2.

The most computationally expensive step is the evaluation of
the matrix system in step 6. Applying the sum-factorisation
operation count defined earlier in this section we quantify the
number of operations as

OE
3 = Nel(4P3 + 18P2 + 26P + 12).

Finally, the two inner products in steps 7 and 8 evaluate the
stopping criteria of the iterative algorithm. Each consist of a
vector-vector multiplication and a sum reduction. The vector-
vector multiplication requires Nel(P + 1)2 operations per plane
while the sum reduction Nel(P+1)2−1 operations per plane. In
order to maintain simplicity in the model we approximate the
sum reduction to Nel(P + 1)2 operations, leading to

OE
4 = OE

8 = 6Nel(P + 1)2.

Communication appears during the inner product reductions
and during the matrix-vector multiplication. The inner prod-
uct reduction can be modelled using the All-gather model [20].
The number of messages is (RXY − 1) for each inner product,
since the local reductions need to be composed into a global re-
duction, which happens on one processor. Since the reduction
operations for each iteration can be collated into a single mes-
sage, the size is three floating-point values. This results in the
communication time

CE
1 = (RXY − 1)

(
τL + 3τB

)
.

To estimate communication during matrix-vector multiplica-
tion, we assume the structure of the mesh decomposition leads
to a tree-like graph of communication, arising from recursive
bisection. The number of communications will therefore be
proportional to log2(RXY). Furthermore, we can assume data
needs to be exchanged in both directions for each edge of the
tree. Message size is far more challenging to estimate, since
this is dependent on the size of the boundary between any two
partitions. We therefore choose the maximum message size,
which can be estimated at 2(N loc

el + 1), as illustrated in Figure 4.
Here we are also assuming that all partitions are interior to the
domain and therefore all boundaries participate in communica-
tion. These estimates lead to a prediction for the matrix-vector
multiplication communication costs as

CE
2 = 2CGS log2(RXY)

[
τL + 2

(
Nel

RZRXY
+ 1

)
(P + 1)τB

]
,

where CGS is a constant relating to the implementation of the
gather-scatter algorithm.

Combining these contributions gives the cumulative cost of a
single iteration of the elliptic solver as

T E =
1

RZRXY
·
∑

i

OE
i +

∑
j

CE
j .

6

Figure 4: Overview of how a partition containing Nloc
el can be cast. The differ-

ent groupings suggest that the maximum number of edges which may require
communication is ∝ 2(Nloc

el + 1)

3.5. Incompressible Navier-Stokes Model

We now combine the above components of the model to el-
licit a full model for the incompressible Navier-Stokes algo-
rithm described in Figure 2. The total parallel execution time
for one time-step can be expressed as

T NS = a · T A + b ·
(
NP

iter + 3NH
iter

)
· T E , (3)

which captures the costs associated with the advection term,
Poisson solve for the pressure and the three Helmholtz solves
for the velocity components. NP

iter and NH
iter are the number

of iterations of the Poisson and Helmholtz solves, respectively.
These will vary depending on the nature of the problem and
the choice of preconditioner plays an important role in the effi-
ciency of the iterative solver. The diagonal preconditioner was
chosen for modelling simplicity and is not necessarily the most
efficient choice. Typical values are NP

iter ∼ 80 and NH
iter ∼ 10

for the problems considered in this study. However, these are
problem-specific and are largely independent of the parallelisa-
tion strategy. The coefficients a and b capture the characteristics
of specific hardware and are determined during the calibration
process discussed next.

4. Results

We consider two prototype turbulent flow problems to quan-
tify the performance of the different parallelisation regimes.
These examples highlight the benefits of the hybrid paralleli-
sation approach for increasing parallelism in a scalable way
and therefore reducing parallel execution time. Table 1 lists
the performance model properties of the two domains consid-
ered. Since this study concerns only the parallelisation aspect
of these simulations, we consider a fixed discretisation in each
case. The discretisation is chosen to be numerically converged
for capturing turbulent flow in the given geometry and at the
prescribed Reynolds number, based on previously published
studies [10, 29, 30].

4.1. Test problems

The pipe geometry is illustrated in Figure 5, where the
streamwise direction is geometrically homogeneous. Lengths
and velocities are non-dimensionalised by the diameter D and

Table 1: Turbulent test cases discretisation features.

Test case P N plane
el NZ Nel NXY NTOT

Pipe 7 64 128 8192 5184 663552
Channel 6 450 64 28800 28800 1843200

Figure 5: Diagram illustrating the pipe geometry and its discretisation.
Spectral/hp elements are used in the cross-plane with a Fourier expansion used
in the streamwise direction.

the bulk velocity ubulk, respectively. The length of the pipe is
5D. The flow is driven by a constant body-force of

fz = 0.5 ∗ 0.3164/Re0.25

for Re = 3000 to instil a turbulent flow regime. The pipe is
discretised using spectral elements in the cross-section of the
pipe and a Fourier expansion in the streamwise direction. A
total of 64 spectral elements at polynomial order 7 are used in
the x-y plane, while 128 modes are used in the Fourier expan-
sion. No-slip boundary conditions are imposed on the wall of
the pipe. The time-step used for simulations is ∆t = 0.002 non-
dimensional time units with a second-order IMEX scheme.

For the channel, shown in Figure 6, lengths are non-
dimensionalised by the channel half-height and velocities by
ubulk. The length of the channel is 4π, and the spanwise dimen-
sion is 4π/3. The flow is driven by a body force of fx = 0.0036
for Re = 3000 and no-slip boundary conditions are imposed
on the top and bottom of the channel. The channel was discre-
tised using 64 Fourier modes and 450 spectral elements with
a polynomial order of 6. The time-step used for channel flow
simulations was 0.0001 with a second-order IMEX scheme.

4.2. Hybrid parallelism performance

The efficiency of the various parallel strategies is assessed
through the strong scaling tests for both problems. The results
for the pipe are shown in Figure 7. Modal parallelism (triangle
and square symbols) scales well using either direct or iterative
elliptic solvers. Elemental parallelism (circle symbols) scales
poorly due to the large ratio of communication to computation,
since even for only 32 processes, there are only 2 elements per
process. The dotted lines indicate theoretical bottlenecks on the
number of usable processes due to there being an insufficient
number of elements or Fourier modes. In both cases, this limit
is 64 processes. However, in the case of a Fourier-dominanted
discretisation, modal parallelism is clearly preferably over ele-
mental parallelism.

7

Figure 6: Diagram illustrating the channel geometry and its discretisation. A
Fourier expansion is used in the spanwise direction.

 0.1

 1

 10

 100

 16 32 64 128 256 512

S
p
ee

d
u
p

Processors

Modal (Iterative)

Modal (Direct)

Elemental (Iterative)

Linear

Hybrid

Model Calibration

Model

Modal
 Bottleneck

Elemental
 Bottleneck

Figure 7: Parallel efficiency of the four parallel approaches for the pipe flow
problem on the system detailed in Section 2.4. The vertical dotted black lines
indicates the practical limit imposed by the modal and elemental discretsations
in isolation. The solid purple line shows ideal efficiency, relative to the 16-core
case using modal parallelism with iterative elliptic solver. The dotted orange
lines show the model prediction for the cases used for calibration. The solid
orange lines show predictions for the hybrid regime.

Figure 8 shows a comparison of efficiency for the differ-
ent parallelism strategies in the channel problem. Here the
modal bottleneck is reached at 32 cores and the modal ap-
proach with direct solver has the greatest performance in this
regime. Elemental parallelism is possible up to 450 cores but,
above 128 cores, the ratio of computation to communication is
low and at 256 cores, the distribution of computation becomes
significantly unequal, resulting in poor parallel performance.
However, elemental parallelism outperforms modal parallelism
when using the iterative solver. This observation is intuitive
since only four nodes are used and most of the communica-
tion between partitions will be intra-node. Recent versions of
the OpenMPI libraries allow processes on the same node to use
shared memory, rather than using the network interface to send
messages. Within a node latency between processes is therefore
low and sending a large number of small messages becomes the
most effective method.

Hybrid parallelism extends these limits substantially, en-
abling simulations up to and beyond 512 processes. The dis-
tribution of modal and elemental parallelism will lead to differ-
ent performance. In Figure 7 and Figure 8 the solid triangles
indicate the minimum execution time achievable using hybrid
parallelism for a prescribed total number of cores. Efficiency

 0.1

 1

 10

 100

 16 32 64 128 256 512

S
p
ee

d
u
p

Processors

Modal (Iterative)

Modal (Direct)

Elemental (Iterative)

Linear

Hybrid

Modal
Bottleneck

Elemental
Bottleneck

Figure 8: Parallel efficiency of the four parallel approaches for the channel flow
problem on the system detailed in Section 2.4. The vertical dotted black lines
indicates the practical limit imposed by the modal and elemental discretsations
in isolation. The solid purple line shows ideal efficiency, relative to the 16-core
case using modal parallelism with iterative elliptic solver.

is less than the ideal case in general, but still reduces runtime
significantly as the number of processes increase. In particular,
for 512 processes, the performance approaches the ideal case.

Figures 9 and 10 show the parallel efficiency of the vari-
ous parallelisations of the pipe and channel problem, respec-
tively, normalised against the 16-core modal case with itera-
tive solver. Efficiency of both modal and elemental parallelism
reduces with increasing core counts, however, the use of the
hybrid approach recovers a significant portion of the lost effi-
ciency. For the pipe the combined approach enables 80% of
ideal parallel efficiency to be attained on 512 cores, while for
the channel there is an order of magnitude increase in efficiency
at 256 cores, compared to the elemental approach.

4.3. Model Calibration
Calibration is the process whereby we identify values for the

machine-specific constants a, b and c in Eq. (3). To simplify the
calibration process, we combine the costs of the elliptic solves
and split the timings into those for computation and those for
communication as

T NS = a1 · T A
O + a2 · T A

C + b1 · T E
O + b2 · T E

C .

To illustrate the use of the model, six measurements were
taken of the time taken to solve the pipe problem using the ele-
mental and Fourier parallel decomposition. The model T NS was
implemented in MATLAB and the required coefficients were
calculated using a least-squares algorithm as

a1 = 0.45 · 10−6 a2 = 0.2 b1 = 3.15 · 10−6

and

b2 =

400, if N plane
el /PXY < 4,

10, otherwise.

The coefficient b2 is multi-valued since performance of the ele-
mental parallel decomposition typically degrades sharply when

8

16 32 64 128 256 512
0

0.5

1

1.5

2

Processors

E
ff
ic

ie
n
c
y
 =

 S
/P

(P
Z
 , P

XY
)

(32,4) (16,16)

(32,16)

Modal (Iterative)
Modal (Direct)
Elemental (Iterative)
Hybrid

Figure 9: Turbulent pipe flow parallel simulation - efficiency of parallelisation
approaches on a cluster of 8-core nodes. The histograms show the efficiency E
of different parallel simulations defined as E = S/P where S is the speed-up
and P is the total number of processors used for the simulation. The speed-up
is based on the 16-core (2 nodes) run using the Modal (iterative) approach.

there are fewer than four elements per process, often due to im-
balance in the mesh distribution amongst the processes.

4.4. Model validation

To quantify the accuracy of predictions using the calibrated
performance model in the hybrid regime, we apply the model to
the turbulent pipe flow example. Results presented are obtained
by averaging 1000 measurements of the timings for each of the
components of the time-stepping algorithm. The choice of el-
liptic solver has a significant impact on performance, and as in
the modal parallelism case, the timings for the elliptic solves
are measured using both a direct method using LAPACK and
an iterative conjugate gradient approach. The four paralleli-
sation types used throughout the remainder of this section are
therefore modal (iterative and direct), elemental (iterative) and
hybrid (iterative). Strong scaling is performed for the different
parallelism strategies and results are normalised by the timings
for the 16-core modal approach using the iterative solver.

The model, outlined in Section 3, is calibrated for the turbu-
lent pipe flow example using simulations executed using both
modal parallelism and elemental parallelism in isolation. These
timings are consequently accurately reproduced by the model,
as shown by the dashed orange lines in Figure 7. The solid or-
ange line in the same figure shows predicted runtimes using the
performance model in the hybrid regime. Good agreement is
observed and the model correctly identifies the best performing
hybrid case, timings of which are shown by the blue triangles.

5. Discussion

In this paper we presented a technique to parallelise a 3D
incompressible Navier-Stokes algorithm discretised using a 2D
spectral/hp element mesh coupled with a Fourier expansion in

16 32 64 128 256 512
0

0.5

1

1.5

2

Processors

E
ff
ic

ie
n
c
y
 =

 S
/P

(P
Z
 , P

XY
)

(16,16)

(32,16)

Modal (Iterative)
Modal (Direct)
Elemental (Iterative)
Hybrid

Figure 10: Turbulent channel flow parallel simulation - efficiency of paralleli-
sation approaches on a cluster of 8-core nodes. The histograms show the ef-
ficiency E of different parallel simulations defined as E = S/P where S is
the speed-up and P is the total number of processors used for the simulation.
The speed-up is based on the 16-core (2 nodes) run using the Modal (iterative)
approach.

a third geometrically homogeneous direction. The implemen-
tation enables a flexible mixture of both elemental parallelism
and modal parallelism. We have illustrated the hybrid paral-
lelism technique on two prototype problems: turbulent flow in
an axisymmetric pipe and turbulent flow in a channel. Both
problems enjoy increased parallelism through the approach and
consequently improved runtimes and greater energy efficiency.
The optimal weighting of these strategies can be systematically
chosen through the construction of a performance model, cal-
ibrated to a specific system through measurements of the two
parallelism approaches independently. This enables rapid se-
lection of the highest-performing combination of the strategies
without costly trial-and-error testing.

In the modern HPC environment, where energy is of increas-
ing concern, selecting the optimal implementation to maximise
performance is becoming increasingly important. Although ex-
perience and intuition can generally suggest the most suitable
parallelisation approach for a specific problem, the decision is
in general highly challenging, particularly when moving be-
tween HPC systems or when tackling problems on a range of
different domains with the same algorithm. Even from a purely
theoretical perspective, it can be appreciated that a single par-
allel approach can not be optimal in all situations and this has
been confirmed through numerical experimentation.

The number of degrees of freedom in the xy−plane and the
number of Fourier modes are the first indicators of which tech-
nique is more appropriate. We recognise that problems with
a high number of modes compared to the number of elements
per plane appear to benefit from the modal parallelisation ap-
proach. On the other hand, a domain discretisation with a larger
number of elements than Fourier modes generally benefits from
an elemental decomposition technique. However, the relative
performance of different approaches cannot be determined en-

9

tirely through operation counts. Accounting for specific hard-
ware characteristics and the latency and bandwidth available on
the communication pattern is essential to accurately predict the
optimal strategy. Parallelisation approaches requiring a large
number of messages, such as the mesh-decomposition paral-
lelisation, can suffer from poor performance if the interconnect
latency is high. These types of parallel techniques are therefore
efficient on shared memory machines or low-latency intercon-
nects.

In general we wish to be able to tackle a range of problems
where those quantities can vary, potentially reaching extreme
values. It is therefore clearly beneficial to have both parallelisa-
tion strategies available within a single codebase and this study
illustrates the advantages of being able to combine them in a
flexible manner to achieve lower runtimes on a fixed number
of processors. A further benefit is the extension of strong scal-
ability possible through the use of the hybrid parallel imple-
mentation. The potential of new machines are often exploited
by investigating even larger problems than previously explored
and in finer detail, or using larger Reynolds numbers, and to
capitalise on weak scalability. Good weak scalability generally
follows from good strong scalability and by increasing an algo-
rithms strong scalability, simulations can be run faster and on
larger machines.

It should be noted that not all the hybrid parallel approaches
we tested provided good performance. Depending on the mesh
topology, partitioning and the number of Fourier modes on each
processor, some strategies may not perform efficiently. We
note, for example, that the optimal 128-core hybrid parallel
case for the turbulent pipe in Figure 7 has a similar runtime
to the modal parallelism using the direct solver with only 64
cores. Conversely, we showed that certain choices may result
in reduced computational time without increasing the number
of processors. This is the case of the modal approach when
using a direct solver, which generally performs as well as an el-
emental parallelisation method with twice the number of CPUs.
Minimising the energy consumption when running a simulation
is a point of interest in current high performance computing re-
search. Implementation flexibility plays an important role in
addressing these goals.

In terms of limitations, we have disregarded some pieces of
the algorithm in order to focus on the two main routines, namely
the advection and the elliptic operators. This is a typical ap-
proach when creating a scalability model [20], although it may
introduce some errors. The calibration has been carried out by
monitoring the solution time on the SGI Altix ICE 8200 EX
system, therefore the coefficients presented here must be con-
sidered specific for that machine. Finally, the model, and there-
fore the results presented in this paper, are specific to Nektar++.
However, it still provides valuable insight and can suggest over-
all guidelines on typical choices of parallelisation strategy on
large HPC resources.

6. Acknowledgments

AB and SJS acknowledge support from EPSRC under grant
EP/H000208/1. CDC acknowledges support of the British

Heart Foundation under grant FS/11/22/28745. DS acknowl-
edges support from CNPq and FAPESP. DM acknowledges
support under the Laminar Flow Control Centre funded by Air-
bus/EADS and EPSRC under grant EP/I037946.

References

[1] N. Kroll, C. Hirsch, F. Bassi, C. Johnston, K. Hillewaert, IDIHOM: Indus-
trialization of High-Order Methods-A Top-Down Approach: Results of a
Collaborative Research Project Funded by the European Union, 2010-
2014, Vol. 128, Springer, 2015.

[2] S. Pope, Turbulent Flows, Cambridge University Press, 2000.
[3] H. Meuer, E. Strohmaier, J. Dongarra, H. Simon, Top500 supercomputer

sites, http://www.top500.org (2013).
[4] G. Karniadakis, S. Sherwin, Spectral/hp element methods for computa-

tional fluid dynamics, 2nd Edition, Numer. Math. Sci. Comp., Oxford
University Press, Oxford, 2005.

[5] C. Cantwell, S. Sherwin, R. Kirby, P. Kelly, From h to p efficiently: se-
lecting the optimal spectral/hp discretisation in three dimensions, Mathe-
matical Modelling of Natural Phenomena 6 (3) (2011) 84–96.

[6] C. Cantwell, S. Sherwin, R. Kirby, P. Kelly, From h to p efficiently: Strat-
egy selection for operator evaluation on hexahedral and tetrahedral ele-
ments, Computers & Fluids 43 (1) (2011) 23–28.

[7] P. Vos, S. Sherwin, R. Kirby, From h to p efficiently: Implementing finite
and spectral/hp element methods to achieve optimal performance for low-
and high-order discretisations, Journal of Computational Physics 229 (13)
(2010) 5161–5181.

[8] H. Blackburn, D. Barkley, S. J. Sherwin, Convective instability and tran-
sient growth in flow over a backward-facing step, Journal of Fluid Me-
chanics 603 (2008) 271–304.

[9] C. Cantwell, D. Barkley, H. Blackburn, Transient growth analysis of flow
through a sudden expansion in a circular pipe, Physics of Fluids (1994-
present) 22 (3) (2010) 034101.

[10] K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, B. Hof, The onset
of turbulence in pipe flow, Science 333 (6039) (2011) 192–196.

[11] G. Karniadakis, Spectral Element-Fourier Methods for Incompressible
Turbulent Flows, Computer Methods in Applied Mechanics and Engi-
neering 80 (1990) 367–380.

[12] A. Grama, A. Gupta, V. Kumar, Isoefficiency: measuring the scalability
of parallel algorithms and architectures, IEEE Parallel Distributed Tech-
nology Systems Applications 1 (3) (1993) 12–21.

[13] C. Crawford, C. Evangelinos, D. Newman, G. Karniadakis, Parallel
benchmarks of turbulence in complex geometries, Computers & Fluids
25 (1996) 677.

[14] C. Evangelinos, G. Karniadakis, Communication Performance Models
in Prism: A Spectral Element-Fourier Parallel Navier-Stokes Solver,
in: Proceedings of the 1996 ACM/IEEE Conference on Supercomputing
(SC’96), 1996.

[15] P. Fischer, Analysis and Application of a Parallel Spectral Element
Method for the Solution of the Navier-Stokes Equations, Computer Meth-
ods in Applied Mechanics and Engineering 80 (1990) 483–491.

[16] P. Fischer, E. Rønquist, Spectral element methods for large scale paral-
lel Navier-Stokes calculations, Computer Methods in Applied Mechanics
and Engineering 116 (1–4) (1994) 69–76.

[17] P. Fischer, Parallel domain decomposition for incompressible fluid dy-
namics, Contemporary Mathematics 157 AMS (1994) 313–322.

[18] P. Fischer, A. Patera, Parallel Simulation of Viscous Incompressible
Flows, Ann. Rev. Fluid Mech. 26 (1994) 483–528.

[19] P. Fischer, An overlapping Schwarz method for spectral element solu-
tion of the incompressible Navier-Stokes equations, J. Comput. Phys. 133
(1997) 84–101.

[20] C. Hamman, R. Kirby, M. Berzin, Parallelization and scalability of a spec-
tral element channel flow solver for incompressible Navier–Stokes equa-
tions, Concurrency and Computation: Practice and Experience (March)
(2007) 1–7.

[21] S. Orszag, Spectral methods for problems in complex geometries, J. Com-
put. Phys. 37 (1) (1980) 70–92.

[22] G. Karniadakis, M. Israeli, S. Orszag, High-Order Splitting Methods for
the Incompressible Navier-Stokes Equations 414443 (1991) 414–443.

10

[23] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen,
LAPACK Users’ Guide, 3rd Edition, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1999.

[24] G. Karypis, METIS’s Manual, Department of Computer Science and En-
gineering, University of Minnesota, Minneapolis, MN 55455, 5th Edition
(March 2013).

[25] P. Fischer, J. Lottes, D. Pointer, A. Siegel, Petascale algorithms for reactor
hydrodynamics, Journal of Physics: Conference Series 125.

[26] R. Kirby, S. Sherwin, The Nektar++ project, http://www.nektar.info
(2006).

[27] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Men-
galdo, D. de Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi,
H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto,
R. M. Kirby, S. J. Sherwin, Nektar++: An open-source spectral/hp
element framework, Comput. Phys. Commun. 192 (2015) 205–219.
doi:10.1016/j.cpc.2015.02.008.

[28] J. Demmel, M. Heat, H. van der Vorst, Parallel numerical linear algebra,
Acta Numerica (1993) 111–197.

[29] H. Koberg, Turbulence control for drag reduction with active deformation,
Ph.D. thesis, Imperial College London (University of London) (2007).

[30] J. Kim, P. Moin, R. Moser, Turbulence statistics in fully developed chan-
nel flow at low reynolds number, Journal of Fluid Mechanics 177 (1987)
133–166.

11

