
Towards a Cognitive Routing Engine for Software
Defined Networks

Frederic Francois and Erol Gelenbe
Intelligent Systems and Networks

Department of Electrical and Electronic Engineering
Imperial College, London SW7 2BT, UK

Email: {f.francois and e.gelenbe}@imperial.ac.uk

Abstract—In Software Defined Networks (SDN), intensive traf-
fic monitoring is used to optimize the Quality-of-Service (QoS)
of the network paths which are selected. Thus, we introduce the
use of the Cognitive Packet Network (CPN) algorithm to SDN in
order to optimize the search for new high-QoS paths. We install
the CPN algorithm in the Cognitive Routing Engine (CRE), a
new application software for SDN, and show that with limited
monitoring overhead we are able to determine the near-optimal
paths for given QoS metrics that may be proposed by the end
users. Measurements that we have conducted on an experimental
replica of the GÉANT network that our approach uses close to
10 times less monitoring data than conventional SDN, but that
we are able to approach the optimal paths within 2%.

I. INTRODUCTION

The use of non-standardized and closed source protocols
between the control and data plane of commercial Network
Forwarding Elements (NFEs) has led researchers to develop
Software Defined Networks (SDNs) [1] where open and
standardized protocols, such as OpenFlow (OF) [2], are used
to program the data plane of NFEs. In order to route traffic,
SDNs usually make use of routing applications which runs on
top of the SDN controller. These routing applications make
routing decisions based on network policies and the state
of the network but unfortunately, gathering the state of the
network is an expensive activity both in terms of processing
overhead at the controller and NFEs and control traffic [3].
With this in mind, we develop a new routing application
called Cognitive Routing Engine (CRE) which significantly
increases the efficiency of the network state gathering process
while obtaining enough information about the network to
calculate the best paths that meet the Quality of Service (QoS)
requirements of the host applications which use them.

II. RELATED WORK

Most traffic engineering techniques [4] used in SDN take
a global view of the current network state and topology in
a logically centralized controller. Hence, optimization can be
performed on the network by running different types of global
traffic engineering algorithms such as constrained shortest path
first. In this paper, we take the view that networks can be
large and therefore, it is inefficient to obtain accurate and
updated state information for the whole network at a frequency
required for effective traffic optimization [3]. Existing work on

network monitoring in SDN includes active and passive moni-
toring. Active monitoring involves either the actual probing of
the network by sending special packets [5] and/or polling the
state of the network through OF mechanisms, e.g. retrieving
the value of OF counters [2]. In contrast, passive monitoring
either only observes the existing SDN behaviour to infer the
state of the network, e.g. Packet-In and Flow Removed OF
messages [6], or calculates the network state based on the
collected sampled packets [7].

The CRE is derived from Cognitive Packet Networks
(CPNs) [8]–[11] which is a distributed routing protocol, while
the CRE centralizes CPN’s functions within a logically cen-
tralized SDN controller which can control numerous currently
deployed SDN switches. Thus, our main contribution is a
SDN-compatible CRE system that reduces SDN’s network
monitoring overhead while discovering the best paths that meet
the QoS requirements of user applications. On the other hand,
CPN’s hardware (or overlay) routers collectively run a learning
based routing algorithm for “smart packets” whose role is to
discover the best paths, while payload packets, CPN’s “dumb
packets”, are source routed to reduce the resulting overhead.
CPN has been used successful [12] for traffic engineering [13],
routing in wireless [14] and sensor [15] networks, and defence
against Denial-of-Service (DoS) attacks [16].

III. OVERALL ARCHICTECTURE

Fig. 1 shows where the CRE application is located in the
overall SDN architecture and how it interacts with the various
other components of a typical SDN deployment.

A brief description of each component of the overall SDN
architecture is provided as follows:

Network Forwarding Elements (NFE)—are SDN-enabled
packet switches and use OpenFlow v1.3 [2] as the communi-
cation protocol between the data plane of the NFEs and the
SDN controller in this particular instance.

SDN Controller—a.k.a Network Operating System, is re-
sponsible for sending and receiving OF messages from the
NFEs. In addition, the SDN controller typically orchestrates
the different applications running on it and act as an OF pro-
tocol translator for the applications. Resilience of controllers
against failures through replication and distribution have been
well studied in literature [17].

N1 N2

N3

SDN Controller

CRE
CRAM NMM PTM

Link
Discovery Other Apps

Network Forwarding Element
Data plane link
Control plane link

Legend

F1,2H1 H2

Server

5ms

30ms 30ms

5ms

25ms

Fig. 1. Network architecture showing where the Cognitive Routing Engine
is located and how it interacts with other components of the architecture.

Applications—are pieces of software running on top of the
controller which provides specialized network functions such
as routing and firewall. In this particular instance, there are 2
applications:
• Link Discovery application—which discovers the data

plane topology of the network by using the standardized
Link Layer Discovery Protocol (LLDP) [18]. A link is
defined in this paper as being unidirectional, and

• CRE application—which efficiently finds and installs new
suitable paths in the network as requested by other SDN
applications. CRE is made of 3 main modules:

– the Cognitive Routing Algorithm Module (CRAM)
implements the CPN algorithm using Random Neu-
ral Networks (RNNs) [19] with Reinforcement
Learning (RL) [20] to find network paths which max-
imize a customizable objective function and there-
fore, meet the QoS requirements of host applications,

– the Network Monitoring Module (NMM)—which
efficiently either uses past network measurements
and/or probes and/or poll the network to get the
necessary network state information to update the
RNNs in the CRAM, and

– the Path-to-OF Translator Module (PTM)—which
is able to convert the paths found by the CRAM
into the appropriate set of OF messages so that
paths are either created or updated with minimum
inconsistency in the network.

IV. MESSAGE EXCHANGE SEQUENCE BETWEEN
COMPONENTS OF THE SDN ARCHITECTURE

Fig. 2 provides an example of the sequence of message
exchange between the different components of the SDN archi-
tecture when a new flow arrives at the network and paths need
to be set up to route the flow through the SDN according to
the network policies set by the network operator. A flow in the
electrical/packet domain is considered by OF as a collection of
packets where the value of a subset of the layer 2 to 4 fields are

Switches Controller CRAM NMM PTM
CRE

New flow F1,3

Packet-in

Event raised

Request to update paths

Reply with updated network state

Flow-mod OF messages

Request updated network state

Reply with new network state data

1 2

3

Request for new network state data

Request to update paths

Flow-mod OF messages

4

10

5

6

7

8

9

11

Fig. 2. Message exchange sequence between components of the network
during the initial flow set-up.

the same and a new flow is one where there is no rule which
matches it inside the flow table(s) of the first encountered NFE.

The different steps in Fig. 2 are described below:

• Step 1: A new flow F1,2 arrives at the NFE N1 which
needs to travel to NFE N2.

• Step 2: N1 analyzes the first packet of F1,2 and finds that
there is no rule inside its flow table(s) which matches
the packet. Thus, N1 encapsulates the packet into an
OF Packet-In message and sends the message to its
master SDN controller since the default action for a table-
miss event was set to forward the packet to the master
controller during the configuration of the NFE.

• Step 3: The master SDN controller receives the OF
Packet-In message, parses it into a data structure more
suitable for processing by different applications running
on top of the SDN controller and finally notifies and
sends the data structure to all its applications which have
registered to receive OF Packet-Ins.

• Step 4: Notified applications decide if they are interested
to perform actions based on the data structure that is sent
by the controller. In this particular scenario, the CRE
application is the only relevant application which will
perform actions due to the new flow F1,2.

• Step 5: CRE first installs a path for flow F1,2 by calcu-
lating the shortest path based on hop count between NFE
N1 and N2 by using the network topology discovered by
the Link Discovery application. This allows packets to
be routed in the network fast without waiting for CRE to
collect network measurements and find a path based on
RNN which can lead to packet loss. The PTM module
of CRE is responsible for implementing the new path for
flow F1,2 in the NFEs by installing the appropriate OF
rules as will be described later in Section VII.

• Step 6: Next, CRAM finds the most suitable links for a
given path request by using RNNs with RL. In order for
CRAM to operate, it needs to gather information about
the network state, which is the responsibility of NMM in
CRE. A detailed description of how CRAM operates will
be given in the following Section V.

• Step 7: NMM receives requests from CRAM for certain
characteristics of links in the network so that CRAM
can calculate the numeric value of the objective function
of the whole path that it has chosen and also update
its RNNs so that it chooses better paths in the future.
Currently, NMM can obtain utilization, quality (based on
packet loss and frame errors) and delay of network links.

• Step 8: NMM can retrieve and calculate link utilization
and quality of a given link by using the OF Port Stats
Request messages. On the other hand, OF doesn’t have
any native ability to obtain the necessary information
from the network in order to calculate the packet delay on
a link but the SDN controller can send probe packets to
obtain a good estimate of packet delays [5]. In addition,
NMM is intelligent enough that it does not always query
the network for new data but it can use its database
of recently gathered data to reply to the requests made
by CRAM. This increases the efficiency of the network
monitoring process for the whole CRE.

• Step 9: CRAM updates its RNNs through reinforcement
learning based on the data received from the NMM and
will output the best paths found.

• Step 10: If paths need to be updated, they are then passed
to the PTM.

• Step 11: The PTM is responsible for implementing the
paths in the NFEs by modifying their flow table(s) in a
way which will not lead to packet loss and forwarding
loops in the network. This is explained in more detail in
Section VII.

V. CRAM: COGNITIVE ROUTING ALGORITHM MODULE

CRAM is a routing algorithm which uses CPN based on the
Random Neural Network (RNN) [19], [21] with Reinforce-
ment Learning (RL) [8]–[11]. The approach is inspired from
the idea that search in a random environment can be successful
even when the searcher does not initially know which direction
to pursue [22], [23] even in highly chaotic environments [24].

For a given flow, a new RNN is created for each NFE
along the path initially found through shortest path routing
based on hop count. A RNN is constructed, where each neuron
represents one active port of the NFE. The decision on which
port to use as the next hop can be done in either an exploratory
or an exploitation way. When CPN is in exploratory mode,
it chooses the output port randomly, but when CPN is in
exploitation mode, it chooses the neuron which has the highest
probability of being excited as described in the next paragraph.
Exploratory mode is chosen with a probablity 5% or 10% in
many implementations of CPN [12], [25], with the exploitation
mode chosen otherwise. If the next hop NFE does not have a
RNN for this particular flow, a new RNN is created for it.

In the RNN each neuron’s potential is a non-negative
integer, and we denote by qi the probability that the ith

neuron’s potential is positive, or equivalently that the neuron
is excited and can “fire”. Thus the neuron with the highest
qi is selected as the output when the RNN is in exploitation
mode and the most excited neuron determines the next hop

NFE of the path. The qi, 1 ≤ i ≤ |P | where P is the set of
neurons of the RNN, are calculated as:

qi =
λ+i

ri + λ−i
(1)

where λ+i and λ−i are respectively the total arrival rates to
neuron i of excitatory or inhibitory spikes:

λ+i =
∑
j∈P

qjw
+
j,i + Λ+

i , λ
−
i =

∑
j∈P

qjw
−
j,i + Λ−i , where j 6= i.

(2)
where w+

j,i and w−j,i are the excitatory and inhibitory weights
from neuron j to neuron i, and the total firing rate of neuron
i is given by ri =

∑
j∈P

[w+
i,j + w−i,j], j 6= i.

In the CPN algorithm, the quantities w+
i,j and w−i,j are

determined by using reinforcement learning. The value of the
objective function, such as the delay Ot

sd of a path with source
s and destination d is measured at successive times t and
reward to be maximized is denoted Rt

sd = (Ot
sd)−1. Then

γtsd the historical value of the reward at time t is updated

γtsd = βγt−1sd + (1− β)Rt
sd, (3)

where 0 ≤ β ≤ 1 is an exponential averaging parameter.
If Rsd[t] ≥ γtsd then the previous decision to select output i

is considered valid and the corresponding weights are updated:

w
+|t
j,i = w

+|t−1
j,i +Rt

sd, j 6= i, w
−|t
j,k = w

−|t−1
j,k +

Rt
sd

|P | − 2
, (4)

for k ∈ P and k 6= i, j, while all the other w+
i,l, w

−
i,l, remain

unchanged for l 6= i. On the other hand, if Rsd[t] ≤ γsd[t],
i.e. the reward of the new path is less than the threshold and
therefore the RNNs have made the wrong decision, the weights
are updated to reflect that other paths should be tried:

w
+|t
j,k = w

+|t−1
j,k +

Rt
sd

|P | − 2
, k 6= i, w

−|t
j,i = w

−|t−1
j,i +Rt

sd, (5)

for j 6= i. In order to prevent the link weights from increasing
indefinitely, they are re-normalized at each step t by first
calculating the new r∗i by using the updated W values and
then updating the link weights as follows: W = W ri

r∗i
. CRAM

also keeps a record of the best Z recent paths found for each
path request and the best path out of the Z paths is used for
the actual routing of the traffic flow if the existing path has
been active for longer than a minimum time period to avoid
frequent path fluctuations.

VI. NMM: NETWORK MONITORING MODULE

The Network Monitoring Module (NMM) is responsible
for providing to the CRAM and external SDN applications
the characteristics of the links that they request. The link
characteristics that can currently be monitored and calculated
by NMM are: utilization, quality (based on packet loss and
frame errors) and delay.

A. Link Delay Monitoring

Since the OF protocol as of [2] does not specify that an
OF-compatible NFE can measure and store link delay by itself
and CRE needs to be compatible with already-deployed OF-
enabled NFEs, it is necessary to make use of probe packets
in order to measure the delay of the link between 2 NFEs.
The Link Delay Monitoring mechanism follows the following
steps to calculate the link delay between 2 NFEs Ns and Nd

with source and destination port Ps and Pd respectively:
• Step 1: An OF Echo Request message (with a specified

transaction id xid) along with an OF Barrier Request
message is sent to NFE Ns and the time TNs it takes for
Ns to reply back with a corresponding OF Echo Reply
(identified by the xid value) is measured. The same is
done for Nd.

• Step 2: The SDN controller is instructed to send an
OF Packet Out message to NFE Ns where the source
and destination MAC of the packet is set to the MAC
address of the port Ps and port Pd respectively. The MAC
addresses are obtained by using an OF Port Description
Request message in OF v1.3 [2] during the population
of the NFEs Database. The Packet Out message also
contains the single action of outputing the packet on the
port Ps. The Ethernet protocol type of the packet is set to
an arbitrary value, e.g. 0x07c3, so that the SDN controller
can identify the packet as a probe packet. The time Tt
that it takes for the SDN controller to receive the probe
packet from Nd is measured. The delay Dsd between Ns

and Nd is Dsd = Tt − TNs

2 −
TNd

2
• Step 3: The NMM will instruct the SDN controller to

periodically send probe packets as in step 2 above if the
link continues to be selected by any RNN for probing.
TNs

and TNd
are periodically measured also since these

may change during the network operation.

B. Link Utilization and Quality Monitoring

OF-enabled NFEs have counters [2] which can count dif-
ferent port characteristics such as the number of packet sent,
received and received with errors per port. This information is
retrieved on either a per NFE-basis or port-basis by the SDN
controller by sending an OF Port Stats Request message to
the relevant NFE with the port number specified if retrieving
information on a per-port basis.

To retrieve the following characteristic of a link:
• Utilization—is calculated by first obtaining the number

of transmitted bytes A being sent over a link by sending
to the source NFE of the link an OF Port Stats Request
message specifying the port number of the source port of
the link so that only statistics about this port is retrieved
and not for all the ports of the NFE [2]. The utilization
U of a link is:

U =
At −At−1

δb
(6)

where δ is the time period between the 2 times at
which the number of transmitted bytes A is polled from

the NFE. δ can be adjusted according to the accuracy
and overhead required, a smaller δ will lead to a more
accurate U but more overhead in terms of processing and
bandwidth used by the control messages.

• Quality—(based on packet loss and frame errors) is
calculated by first obtaining the statistics of the source
(s, i) and destination (d, j) ports of the link in the same
manner as above for utilization. The link quality Q is:

Q =
[
(Bs,i −BD

s,i −BE
s,i −Rd,j) + (RD

d,j +RE
d,j) +

(BD
s,i +BE

s,i)
]−1

(7)

where Bs,i, BD
s,i and BE

s,i are respectively the total no.
of packets transmitted, dropped and containing errors on
the transmission pipeline of port i of source NFE s. Rd,j ,
RD

d,j and RE
d,j are respectively the total no. of packets

received, dropped and containing errors on the reception
pipeline of port j of destination NFE d. A higher Q value
means that packet transfer is more reliable on the link.

C. Optimizing the Network Monitoring Process

The network monitoring process can be optimized through
the following:
• the monitoring information is shared between the differ-

ent RNNs by re-using whenever available recent monitor-
ing information already in the monitoring database. For
e.g, OF statistics are stored and reused if appropriate and
needed to calculate other link characteristics. Thus, CRE
has the same worst-case bound on its network monitoring
activity as current global SDN traffic engineering applica-
tions [4] which poll every NFE in the network. Moreover,
CRE runs a global and optimal routing algorithm if it is
in a scenario where it is monitoring the whole network.

• the NMM will not repeat the same monitoring if it was
done less than threshold time te ago. te can be seen
as a trade-off between having updated network state
and overhead associated with monitoring and can be
optimized based on for e.g. the rate of change of the
link characteristic [26].

VII. PTM: PATH-TO-OF TRANSLATOR MODULE

The main objective of the Path-to-OF Translator Module
(PTM) is to install and/or update OF rules in the network so
that the traffic flow follows the path chosen by CRAM without
any packet loss, forwarding loops and unecessary Packet-In
messages being sent to the SDN controller. If the path is made
of 2 or more NFEs, PTM does for a:
• new path creation: OF rules are inserted at the NFEs

by starting with the last NFE of the path to the first NFE
so that Packet-In are not triggered by the NFEs for flows
for which CRAM has already calculated a path. For the
last NFE, a rule is added which matches the original flow
with the addition of VLAN ID 1. The actions of the rule
is to remove the VLAN tag and output the packet to the
destination port. Next, the rule with the same match as the
previous rule is added to all intermediate NFEs except the

first NFE of the path. The action of the rule is to output
to the relevant port as selected by CRAM. Finally, for the
first NFE of the path, the rule is to match the orginal flow
only with actions being tag the flow packets with VLAN
ID 1 and forward the flow to the output port connected
to the next NFE of the path.

• existing path change: OF rules are inserted for all
NFEs except the first NFE as the previous case with the
difference that the VLAN ID used is 2 if 1 was previously
used for the flow and 1 if 2 was used. The use of VLAN
tags is used to avoid conflict between the old and new
rules for the same flow. The OF rule for the flow in the
first NFE is modified so that now it tags the flow packets
with the new VLAN ID and outputs the packet to the
port connected to the next NFE of the new path. Finally,
the old rules in the intermediate and last NFE of the old
path are deleted.

It should be noted that if the source and destination of the
flow is directly connected to the same NFE, CRE does not
need to calculate a path, it just inserts a rule which matches
the flow with the single action of outputing the flow packets
to the port connected to the destination host.

In order to automatically remove rules for flows with no
traffic for the last ti seconds, the idle timeout is set to ti for
all the rules inserted in the NFEs and the hard timeout is set to
0 (inactive) so that the network always has a path for a current
active flow even if the controller becomes unresponsive.

VIII. EVALUATION

The following initial evaluation scenarios where carried out
using the SDN emulator Mininet [27] where custom topology
can be deployed with custom delay, bandwidth, packet loss
and queue length for each link.

A. Scenario 1: Delay Detection and Path Switching in illus-
trative network

This scenario aims to demonstrate CRE finding, monitoring
and switching paths in a network where the delay on links
can vary. The topology in Fig. 1 is used where the initial link
delays are as shown in the figure. When Ping #1 enters the
network with source 1 and destination 2, CRE first installs 2
paths G1,2 = H1 → N1 → N2 → H2 and G2,1 = H2 →
N2 → N1 → H1 based on the shortest hop count path which
also coincidentally gives the paths with the shortest delay
with the Ping Round-Trip Time (RTT) of 120ms. The higher
RTT for Ping #1 compared to immediate subsequent Pings are
due to the overhead of notifying the controller of new flows,
calculating paths and inserting rules inside the NFEs. Then
CRE starts to monitor the network based on RNN with RL.
At time 9s in the experiment, the link L1,2 and L2,1 from/to
N1 to/from N2 suffers from increased delay from 25ms to
200ms resulting in the Ping RTT to increase to 420ms. CRE
detects this increase in path delays through its monitoring of
the network, the first path that is changed is G2,1 where an
alternative path H2 → N2 → N3 → N1 → H1 is found which
reduces the Ping RTT to 280ms at Ping #18. Furthermore, the

0 5 10 15 20 25
100

150

200

250

300

350

400

450

Time, s

Pi
ng

R
ou

nd
-T

ri
p

Ti
m

e
be

tw
ee

n
H

1
an

d
H

2
,m

s

Fig. 3. Change in Ping Round Trip Time when the delay on link L1,2 and
L2,1 is changed to 200ms in topology of Fig. 1

path G1,2 is changed to H1 → N1 → N3 → N2 → H2 with
the RTT becoming 140ms at Ping #20. These two new paths
found by CRE are optimal for the new network conditions.

B. Scenario 2: CRE convergence and monitoring reduction in
the GÉANT operational network

The network topology used is GÉANT—a European aca-
demic network which is made up of 23 Point of Presence
(PoP), represented as NFEs in this experiment, and 74 uni-
directional links, where the propagation delay of a given
link is calculated based on the line-of-sight distance between
the source and destination PoP of the link. The experiment
objective is to measure the amount of time and monitoring
probes that CRE uses to discover the best path in the network
for a given Source-Destination (SD) pair compared to an
optimal routing algorithm which need to probe all the 74 links
for each iteration. The experiments are run for 90s with the
network being loaded around 20s into the experiment. The
time between each iteration of both CRE and the optimal
algorithm is set to 5s. Fig. 4 shows the increase in Ping RTT
around 20s when the network is loaded and the decrease in
RTT when CRE finds iteratively better paths to route the flow.

Table I shows that CRE can reduce by up to 9.5 times the
amount of monitoring required to find a best path, which on
average is only 1.65% worse than the optimal RTT and takes
around 30.8s (i.e. ∼6 CRE iterations) more time to find. CRE
can be made to converge faster by increasing the frequency
at which CRE monitors flows in the network and this can be
efficiently done by increasing CRE frequency for a flow when
there is a sudden change in QoS and decreasing the frequency
when the QoS has stabilized.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we develop a smart routing engine called CRE
for SDN. CRE is based on previous work on the Cognitive
Packet Network [8]–[11], but takes a centralized approach

0 10 20 30 40 50 60 70 80 90

750

850

950

1,050

1,150

1,250

1,350

1,450

1,550

1,650

1,750

Time, s

Pi
ng

R
ou

nd
-T

ri
p

Ti
m

e
fo

r
se

le
ct

ed
SD

pa
ir,
m
s

Fig. 4. Change in Ping Round Trip Time for a given Source-Destination pair
when the network is loaded around 20s in the experiment and CRE is active.

TABLE I
CRE CONVERGENCE VS OPTIMAL

Exp. No. No. of No. of CRE addit- Increase in
Optimal CRE ional time CRE Ping RTT

Monitoring Monitoring over Optimal over Optimal
(s) (%)

1 370 23 32.6 3.80
2 370 69 39.6 0
3 296 43 44.4 2.03
4 370 21 1.01 0
5 370 31 36.5 2.41

Avg. 355.2 37.4 30.8 1.65

within SDN systems to find paths which are close to the
optimal ones without incurring a large monitoring overheard. It
achieves this performance without requiring any modification
to already-deployed SDNs which run OpenFlow.

Future work will involve further evaluation of our approach
by carrying out more experiments on other operational network
topologies with real traffic matrices where each flow may
have different QoS requirements. Moreover, we will study the
impact of CRE parameters on the trade-off between monitoring
and convergence speed and how CRE behaves during link and
node failures. We will also compare our solution with other
state-of-art SDN monitoring solutions [3], [6], [7], [26].

REFERENCES

[1] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue,
vol. 11, no. 12, pp. 20:20–20:40, Dec. 2013.

[2] (2015, March) Openflow switch specification, ver-
sion 1.3.5. Open Networking Foundation. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf

[3] A. Yassine, H. Rahimi, and S. Shirmohammadi, “Software defined
network traffic measurement: Current trends and challenges,” Instrumen-
tation Measurement Magazine, IEEE, vol. 18, no. 2, pp. 42–50, April
2015.

[4] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap
for traffic engineering in sdn-openflow networks,” Computer Networks,
vol. 71, no. 0, pp. 1 – 30, 2014.

[5] K. Phemius and M. Bouet, “Monitoring latency with openflow,” in
Network and Service Management (CNSM), 2013 9th International
Conference on, Oct 2013, pp. 122–125.

[6] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. Madhyastha,
“Flowsense: Monitoring network utilization with zero measurement
cost,” in Passive and Active Measurement, ser. Lecture Notes in Com-
puter Science, 2013, vol. 7799, pp. 31–41.

[7] J. Suh, T. Kwon, C. Dixon, W. Felter, and J. Carter, “Opensample:
A low-latency, sampling-based measurement platform for commodity
sdn,” in Distributed Computing Systems (ICDCS), 2014 IEEE 34th
International Conference on, June 2014, pp. 228–237.

[8] E. Gelenbe, Z. Xu, and E. Seref, “Cognitive packet networks,” in Tools
with Artificial Intelligence, 1999. Proceedings. 11th IEEE International
Conference on, 1999, pp. 47–54.

[9] E. Gelenbe, “Cognitive packet network,” US Patent 09/680,184, October
12, 2004.

[10] E. Gelenbe, R. Lent, and Z. Xu, “Design and performance of cognitive
packet networks,” Perform. Eval., vol. 46, no. 2-3, pp. 155–176, Oct.
2001.

[11] E. Gelenbe, “Steps toward self-aware networks,” Commun. ACM,
vol. 52, no. 7, pp. 66–75, 2009.

[12] G. Sakellari, “The cognitive packet network: A survey,” The Computer
Journal, vol. 53, no. 3, pp. 268–279, 2010.

[13] E. Gelenbe and A. Nunez, “Traffic engineering with cognitive packet
networks,” in Simulation Series, vol. 35, 2003.

[14] E. Gelenbe and R. Lent, “Power-aware ad hoc cognitive packet net-
works,” Ad Hoc Networks, vol. 2, no. 3, pp. 205–216, 2004, quality of
service in ad hoc networks.

[15] L. Hey, “Power aware smart routing in wireless sensor networks,” in
Next Generation Internet Networks, 2008. NGI 2008, April 2008, pp.
195–202.

[16] E. Gelenbe, M. Gellman, and G. Loukas, “An autonomic approach to
denial of service defence,” in World of Wireless Mobile and Multimedia
Networks, 2005. WoWMoM 2005. Sixth IEEE International Symposium
on a, June 2005, pp. 537–541.

[17] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“Onos: Towards an open, distributed sdn os,” in Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, ser. HotSDN
’14. New York, NY, USA: ACM, 2014, pp. 1–6.

[18] “Ieee standard for local and metropolitan area networks– station and
media access control connectivity discovery,” IEEE Std 802.1AB-2009
(Revision of IEEE Std 802.1AB-2005), pp. 1–204, Sept 2009.

[19] E. Gelenbe, “Learning in the recurrent random neural network,” Neural
Computation, vol. 5, no. 1, pp. 154–164, 1993.

[20] U. Halici, “Reinforcement learning with internal expectation for the
random neural network,” European Journal of Operational Research,
vol. 126, no. 2, pp. 288–307, 2000.

[21] E. Gelenbe, “The first decade of g-networks,” EUROPEAN JOURNAL
OF OPERATIONAL RESEARCH, vol. 126, no. 2, pp. 231–232, 2000.

[22] E. Gelenbe and Y. Cao, “Autonomous search for mines,” EUROPEAN
JOURNAL OF OPERATIONAL RESEARCH, vol. 108, no. 2, pp. 319–
333, 1998.

[23] E. Gelenbe, “Search in unknown random environments,” Physical Re-
view E, vol. 82, no. 6, p. 061112, 2010.

[24] E. Gelenbe and F.-J. Wu, “Large scale simulation for human evacuation
and rescue,” Computers & Mathematics with Applications, vol. 64,
no. 12, pp. 3869–3880, 2012.

[25] E. Gelenbe and Z. Kazhmaganbetova, “Cognitive packet network for bi-
lateral asymmetric connections,” IEEE Trans. on Industrial Informatics,
vol. 10, no. 3, pp. 1717–1725, 2014.

[26] N. Van Adrichem, C. Doerr, and F. Kuipers, “Opennetmon: Network
monitoring in openflow software-defined networks,” in Network Opera-
tions and Management Symposium (NOMS), 2014 IEEE, May 2014, pp.
1–8.

[27] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
New York, NY, USA: ACM, 2010, pp. 19:1–19:6.

