Modelling the variance risk premium of equity indices: the role of dependence and contagion

Andrea Granelli ∗ Almut E. D. Veraart †

Abstract

The variance risk premium (VRP) refers to the premium demanded for holding assets whose variance is exposed to stochastic shocks.

This paper identifies a new modelling framework for equity indices and presents for the first time explicit analytical formulas for their VRP in a multivariate stochastic volatility setting, which includes multivariate non-Gaussian Ornstein-Uhlenbeck processes and Wishart processes. Moreover, we propose to incorporate contagion within the equity index via a multivariate Hawkes process and find that the resulting dynamics of the VRP represent a convincing alternative to the models studied in the literature up to date. We show that our new model can explain the key stylised facts of both equity indices and individual assets and their corresponding VRP, while some popular (multivariate) stochastic volatility models may fail.

Key words. Variance Risk Premium; quadratic variation; stochastic volatility; Lévy processes; leverage effect; Hawkes process; self-excitement; contagion; change of measure.

AMS Subject Classification. 91G99, 60G51, 60G55.

1 Introduction

1.1 Definition and properties of the variance risk premium

The variance risk premium (VRP) is a concept of great importance in finance. It can be described as the premium that investors demand for holding assets whose variance is exposed to stochastic shocks and is likely to change over time. It is commonly defined in the literature as the difference between the expected risk neutral and physical quadratic variations.

A proper understanding of the VRP is crucial in many areas of finance, like risk management and asset allocation. It has also recently been highlighted how the variance risk premium can predict aggregate stock market returns both in separate economies and even across countries (see Bollerslev et al. (2014)).

The importance of the VRP is also evident in derivatives pricing. Vanilla options on equity indices are typical examples of derivatives products which are positively exposed to a market-wide increase in variance. To understand whether the VRP is priced in the market, in the sense that investors consider this exposure valuable, it is natural to analyse variance swaps written on

∗Department of Mathematics, Imperial College London, 180 Queen’s Gate, SW7 2AZ London, UK, a.granelli12@imperial.ac.uk
†Department of Mathematics, Imperial College London, 180 Queen’s Gate, SW7 2AZ London, UK, a.veraart@imperial.ac.uk
equity indices. Historical data show that, on average, implied variance has been higher than realised variance (see Carr and Wu (2009)), yielding a negative variance risk premium. The very existence of a market for variance swaps is a proof that the VRP is present and priced in the market. In addition, the market volume for variance swaps has increased steeply over the past few years (Bondarenko (2014)), indicating the need of a deeper understanding of the VRP.

The work by Carr and Wu (2009) implies that investors who have long positions in variance accept to earn lower returns than what could be justified by other market factors, because they are hedged against an increase in the variance of the stock market. Thus, an increase in variance is perceived as an unfavourable event by investors.

1.2 Main contribution of the present work

Most of the work in the literature about the VRP is of empirical nature. This aim of this paper is instead to provide a unified framework to study the VRP, from a theoretical perspective. We aim to fill the gap in the literature by proposing a stochastic model whose aim is to reproduce the empirical features of the VRP.

There are two fundamental characteristics of the VRP that have been found empirically. The first one is that it is stochastic. As we will show, this imposes constraints on the specifications that a stochastic model for an index must have. The second fundamental characteristic was highlighted by Driessen et al. (2009): not only is the VRP present and negative for indices, but also it is not present, or is weakly positive, for the individual stocks within the index. Thus, they highlight the existence of a premium originated by the dependence between the stocks, the so-called correlation risk premium.

From a modelling point of view, it becomes crucial then to devise a model that incorporates dependence between the different assets. The vast majority of the literature focuses on univariate models for the index; but then the modelling of correlation does not achieve a sufficient level of complexity to justify and explain the presence of the correlation risk premium.

Our work proposes to model an equity index via a multivariate stochastic price model, which is both parsimonious and powerful enough to account for different forms of dependence between the assets within the index.

We show that our model replicates the empirical findings and in addition produces analytical and explicit formulas for the variance risk premium which very rarely have appeared in the literature. We give mathematical proofs that establish why the dependence between the assets is the main driver of the VRP and find which classes of processes are a priori more appropriate to be used in this framework.

1.2.1 Description and properties of the model

In building our model we followed the findings in Todorov (2010), who prescribes that the variance risk premium should be driven by both a stochastic volatility component and jumps in the prices.

We firstly indicate two popular alternatives for the stochastic volatility component of the index: the multivariate non-Gaussian OU process and the Wishart process. Both are very popular choices in the stochastic volatility literature, and they both account for cross-correlation between the stocks. We obtain the surprising result that the first of these two models is not capable of producing sufficiently complex dynamics of the corresponding VRP. In fact, it is highlighted in Todorov (2010), Bollerslev et al. (2009), Bollerslev et al. (2014) and Drechsler and
Yaron (2011) that the VRP exhibits stochastic fluctuations, while the aforementioned stochastic volatility model imply deterministic dynamics, under the widely used structure-preserving change of measure. We will also show that the result for the Wishart model is instead heavily dependent on the particular change of measure used. In addition, these two models do not allow us to split between individual and correlated stocks, in the final VRP formulas.

In order to replicate the empirical fact that individual stocks do not create VRP, while pairs do, we suggest a possible alternative model, where the stochastic volatility matrix is diagonal and consists of non-Gaussian OU components, in presence of correlated Brownian motion. This choice is motivated by the need of having a jump component in the variances, as proven in Todorov (2010), but at the same time introducing a model which is analytically tractable and allows for an explicit derivation of results. In particular, we obtain deterministic dynamics for the VRP of single stocks whilst we show that the contribution brought by the dependence between stocks exhibits stochastic fluctuations.

The second driver we make use of is a multivariate jump process. The importance of a jump component in the price is well-known and documented. The presence of jumps offers a solution to the problem of calibrating option prices to market data, being capable of describing smiles and skews in volatility and performing well across different maturities, unlike diffusion-based local volatility models. Moreover, they perform well if used to fit historical price data (see e.g. Cont and Tankov (2003, pp. 13-14)). We first discuss the contribution of a pure-jump Lévy process. The model we propose, consisting of the diagonal non-Gaussian OU stochastic volatility and the multivariate Lévy process, has all the features that are observed empirically by Driessen et al. (2009) and Todorov (2010).

It is to be stressed though, that the empirical study performed by Driessen et al. (2009) used data from 1993 until 2003. The more recent financial crisis has highlighted the need for more sophisticated stochastic models to be used in mathematical finance. While Lévy processes belong to the classical candidates when modelling jumps in asset prices, we also focus on an alternative class of jump processes which has recently attracted a lot of attention in financial applications: the class of Hawkes processes.

Hawkes processes are counting processes that allow for self- and mutual excitation, thanks to the peculiar form of their intensities and the stochastic differential equations that they satisfy. They provide our model with a different sort of dependence, which has not yet been explored in the modelling of equity indices: They account for the contagion effect between the stocks. Hawkes processes have been used in the financial literature to model default times, see e.g. Errais et al. (2010), and more recently, to model stock returns during crises, see Ait-Sahalia et al. (2010), where Hawkes processes are successfully used to model jump clusters, financial contagion and self-excitement across six large scale economies. We will see that the contagion effect is a device through which the VRP obtains stochastic dynamics.

The Hawkes process was first introduced in Hawkes (1971) in its most basic form, and subsequently used, for example, for the modelling of earthquakes, thanks to its peculiar characteristic of being self-exciting. Every component of the intensity Λ_t is affected by all the other ones and in turn affects them: When a component of the Hawkes process exhibits a jump, the corresponding intensity increases. This is the self-excitation property of the Hawkes process. This, in turn, triggers an increase also in the other elements of the intensity vector, causing a boost in the probability of subsequent jumps in the other components. This property is called mutual excitation. All these jumps subsequently affect all the intensities, feeding this circle and thus creating a large probability of encountering jump clusters. In a model where jumps are
intrinsically rare events, this scenario would be extremely unlikely. In absence of jumps, the intensities quickly revert to their original value.

While Hawkes processes have shown to be a good model to describe the interactions between different economies, we propose to use them to model stocks in a single market, using the intuition that the contagion effect studied in Ait-Sahalia et al. (2010) across markets can also appear within one market.

The introduction of the Hawkes process brings a substantial contribution to the variance risk premium. We accomplish to show that the Hawkes intensity process can be identified as a primary driver for the VRP of the index.

1.3 Mathematical contributions

There are also several mathematical stand-alone contributions in this paper. Alongside with the results we obtain concerning the dynamics of the risk premium, we employ a technique to overcome the mathematical intractability of computing conditional expectations of square roots of processes with given dynamics. We do so by using an integral representation that leads to an analytic, exact formula, which we use to read off properties of the variance risk premium. We also give some examples where we apply our results to explicitly compute the premium in the case of the Gamma process. Such a technique has however wider application, and could be useful for scopes beyond the ones studied in this paper.

Secondly, we provide useful explicit formulas for the conditional expectation of the Hawkes intensity process, in both the univariate and the multivariate case. These formulas complement the existing literature on the distributional properties of this class of processes, see for example Errais et al. (2010).

We also provide a proof of the existence of an equivalent martingale measure. Indeed, all our analytical results lay upon the fact that our model admits a structure preserving equivalent martingale measure. A risk neutral martingale measure \(Q \) will be called structure preserving if both the stock price model and the stochastic volatility have the same features under both the physical measure \(P \) and \(Q \): They preserve their probabilistic properties and follow dynamics driven by the same classes of processes, although different values for the parameters are allowed. The result of an existence of such a measure for a univariate model with similar specifications, but without the Hawkes process, was provided for the first time in Nicolato and Venardos (2003), and then extended for the multivariate case in Muhle-Karbe et al. (2012). In our work we solve the problem of finding the class of measures under which the Hawkes process maintains its characteristics, drawing upon results in Sokol and Hansen (2012), and therefore we have a characterisation of the class of structure preserving changes of measure for our multivariate model.

The rest of this article is structured as follows: Section 2 gives the detailed description of the model we use and derives dynamics of important quantities to be used subsequently. Section 3 and 4 contain, respectively, the derivations of the contribution to the total variance risk premium given by the diffusion and the jump components. Finally, Section 5 summarises our main results. In Section E in the Appendix we explicitly describe how to construct a structure preserving change of measure for our model. The Appendix also contains other selected proofs.
2 Model assumptions and properties

In this section, we present the model assumptions in detail and present some important properties of our modelling framework. In what follows we will let \(\mathbb{R}^+ := [0, \infty) \). Further, for a subset \(E \) of \(\mathbb{R}^n \), \(\mathcal{B}(E) \) will denote the class of Borel subsets of \(E \).

We will consider a stochastic basis \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\) on a fixed time horizon \([0, T]\), with the filtration \((\mathcal{F}_t)\) satisfying the usual assumptions of completeness and right continuity.

Suppose the equity index is composed of \(D \) stocks, whose log-prices are denoted by \(X^{(1)}, \ldots, X^{(D)} \). We model them simultaneously via a \(D \)-dimensional semimartingale \(\mathbf{X} \) whose differential dynamics are:

\[
d\mathbf{X}_t = (\mathbf{\mu}_t + \mathbf{\beta}(\Sigma_t))dt + \Sigma_t^{1/2}d\mathbf{W}_t + d\mathbf{J}_t,
\]

where the individual components will be specified in the following. We will think of \((\mathcal{F}_t)\) as the augmentation of the filtration generated by the process \(\mathbf{X} \) up to time \(t \).

Assumption 2.1. The price of the \(i \)-th stock is given by \(S_t^{(i)} = \exp(X_t^{(i)}) \).

Assumption 2.2. The vector process \(\mathbf{\mu}_t \) is \(D \)-dimensional, and the function \(\mathbf{\beta} : \mathbb{R}^{D \times D} \rightarrow \mathbb{R}^D \) is linear.

Assumption 2.3. The process \(\mathbf{W}_t = \left(W_t^{(1)}, \ldots, W_t^{(i)}, \ldots, W_t^{(D)} \right)^\top \) is a \(D \)-variate Brownian motion.

Assumption 2.4. The process \(\Sigma_t^{1/2} \) is the stochastic volatility matrix. It is defined to be the square root of the symmetric, positive-definite stochastic matrix \(\Sigma \). That means that we define \(\Sigma_t^{1/2} \) to be the unique symmetric positive definite matrix such that \(\Sigma_t^{1/2} \Sigma_t^{1/2} = \Sigma \) (see Serre (2010, p. 115), for a proof of existence and uniqueness).

In this work we will look at principally two different methods to model \(\Sigma \), or its square root \(\Sigma_t^{1/2} \), which we will call constant or dynamic correlation models, similarly to the terminology introduced by Bollerslev (1990) and then generalised in subsequent work (e.g. Engle (2002)).

Dynamic Correlation Models: in this first class of model, the stochastic matrix \(\Sigma \) is modelled through multivariate dynamics. We call it a dynamic correlation model, because the dependence between the components is explicitly modelled through the off-diagonal elements of the matrix, which are different from 0 and stochastic. The Brownian motion \(\mathbf{W} \) is assumed to be standard, and consisting of independent components. Firstly, we will propose a full multivariate model for \(\Sigma \), the multivariate non-Gaussian OU process, as appearing in Muhle-Karbe et al. (2012). The derivation of the results is provided in Section 3.1.1. Secondly, we compute the variance risk premium for another popular model in the literature of stochastic volatility modelling: the Wishart model. See Section 3.1.2.

Constant Correlation Models: we consider the case where \(\Sigma \) will be a diagonal matrix of OU processes. The model is therefore called a constant correlation model, since the off-diagonal elements of \(\Sigma \) are zero. Nonetheless, we allow for dependence both in the background driving Lévy processes (BDLPs) of each component, and in the Brownian motion \(\mathbf{W} \), which will be correlated. Details are given in Section 3.2.

Assumption 2.5. The process \(\mathbf{J}_t = \left(J_t^{(1)}, \ldots, J_t^{(i)}, \ldots, J_t^{(D)} \right)^\top \) is a \(D \)-dimensional pure jump process. For each component \(J_t^{(i)} \), we define its jump measure \(M^{(i)}(dt, dx) \) on \(\mathcal{B}([0,T]) \times \mathcal{B}(\mathbb{R}) \) via the following: for \(0 \leq s < t < T \) and \(A \in \mathcal{B}(\mathbb{R}) \) we set: \(M^{(i)}((s,t), A) = \# \{ l \in (s,t) \mid \Delta J_t^{(i)} \in A \} \).
Remark 2.1. The drift process μ will play no role in the following discussion, and it is left unspecified. We will later consider the case when J is a counting process; in that situation, we can think that μ contains the compensator of J.

Assumption 2.6. The processes N_t, J_t, W_t are independent.

2.1 Dynamics of the price process

An application of Itô’s lemma for semimartingales allows us to describe the dynamics of the stock price $S_t^{(i)} = \exp(X_t^{(i)})$:

$$
d\exp(X_t^{(i)}) = dS_t^{(i)} = S_t^{(i)} \left[\left(\mu_t^{(i)} + \left(\beta_t^{(i)}(\Sigma_t) + \frac{1}{2} \Sigma_t^{2(i)} \right) \right) dt + \sum_j \Sigma_t^{1(i)j} dW_t^{(j)} \right.
$$

$$
+ \left. \left. dJ_t^{(i)} + \int_{\mathbb{R}} (e^x - 1 - x) M^{(i)}(dt, dx) \right] \right]. \quad (2)
$$

If we write $a_t^{(i)} = \mu_t^{(i)} + \left(\beta_t^{(i)}(\Sigma_t) + \frac{1}{2} \Sigma_t^{2(i)} \right)$, then the above expression becomes:

$$
\frac{dS_t^{(i)}}{S_t^{(i)}} = a_t^{(i)} dt + \sum_j \Sigma_t^{1(i)j} dW_t^{(j)} + dJ_t^{(i)} + \int_{\mathbb{R}} (e^x - 1 - x) M^{(i)}(dt, dx). \quad (3)
$$

2.2 Definition and dynamics of the value-weighted index process

As we mentioned in the introduction, the aim of this study is to model the variance risk premium of equity indices. Let us briefly explain how a value-weighted index can be constructed. Here we follow Driessen et al. (2009), who perform their empirical study based on the S&P 100, which is a market capitalisation-weighted index with quarterly rebalancing.

Define a value-weighted index as a derivative whose value depends on all the stocks in the market. The weight each stock gets in the index is the ratio between its value and the total value of the stocks in the market. To obtain a market capitalisation-weighted index, we can view each single stock $X^{(i)}$ as the (logarithmic) market capitalisation process of the i–th company.

We will show that the dynamics of the value-weighted index implied by our model give rise to a variance risk premium with the empirical properties found in the literature.

We first consider the sum of the stock prices, denoted by I_t. Let 1 be a D-dimensional vector of 1-s, then: $I_t = 1^T S_t$. We can write its dynamics using a multivariate notation:

$$
dI_t = d(1^T S_t) = S_t^T a_t dt + S_t^T \Sigma_t^2 dW_t + S_t^T dJ_t + \int_{\mathbb{R}} S_t^T (e^x - 1 - x) M(dx, dt). \quad (4)
$$

In the value-weighted index, the weight $w_t^{(i)}$ is the ratio between the value of the stock $S_t^{(i)}$ and the value of the index process I_t. We will call w_t the D-dimensional vector of weights:

$$
w_t = \left(\frac{S_t^{(1)}}{I_t}, \ldots, \frac{S_t^{(i)}}{I_t}, \ldots, \frac{S_t^{(D)}}{I_t} \right)^T = \frac{S_t}{1^T S_t}.
$$

And finally we look at the log-returns of the process I_t, which we define to be $Y_t := \mathcal{L}og(I_t)$. Here $\mathcal{L}og$ is the stochastic logarithm. We can formally write: $dY_t = \frac{d(1^T S_t)}{1^T S_t}$. So, if we now
formally divide equation (4) by the total value $1^\top S_t$ we get:

$$
\frac{dY_t}{1^\top S_t} = \frac{d(1^\top S_t)}{1^\top S_t} = \frac{w_t^\top a_t}{1^\top S_t} dt + \frac{w_t^\top \Sigma_t^2 dW_t}{1^\top S_t} + \frac{w_t^\top dJ_t}{1^\top S_t} + \frac{1}{1^\top S_t} \left(e^x - 1 - x \right) M(dt, dx).
$$

The model described so far is too general to allow formal derivation of results. In order to simplify the setting we introduce the following assumption.

Assumption 2.7. The index weights are assumed to be constant over time, i.e. $w_t \equiv w$ over the time horizon we consider.

The previous assumption draws from the empirical study performed in Driessen et al. (2009), where it is stated that already when $D = 100$, like for example the S&P100, differences in price due to rebalancing of the weights are negligible. Alternatively, this assumption could also be justified if we used a different point of view when looking at the model (1): We could interpret the vector X_t as a vector of factors to which the index price is exposed, instead of a vector of logarithmic stock prices. Although not strictly equivalent, this interpretation would not affect the theoretical results developed in this work, and it would make the assumption of constant weights even more natural.

In conclusion, the formula that we will be using throughout the paper is the following:

$$
\frac{dY_t}{1^\top S_t} = \frac{w_t^\top a_t}{1^\top S_t} dt + \frac{w_t^\top \Sigma_t^2 dW_t}{1^\top S_t} + \frac{w_t^\top dJ_t}{1^\top S_t} + \frac{1}{1^\top S_t} \left(e^x - 1 - x \right) M(dt, dx).
$$

2.3 Definition of the variance risk premium

The quantity we aim to study is the variance risk premium of the value weighted index Y. We denote by $[Y]_{t+h}^{t} := [Y]_{t+h} - [Y]_{t}$ the quadratic variation of the process Y accumulated over the time interval $[t, t + h]$, for $t \geq 0$, $h > 0$. The variance risk premium VRP$_{t,h}$ is then defined to be:

$$
\text{VRP}_{t,h} := \frac{1}{h} \mathbb{E}_P \left[[Y]_{t+h}^{t} \big| \mathcal{F}_t \right] - \frac{1}{h} \mathbb{E}_Q \left[[Y]_{t+h}^{t} \big| \mathcal{F}_t \right],
$$

for some equivalent change of measure $P \rightarrow Q$ and where $\mathcal{F}_t = \sigma \{ X_l, l \in [0, t] \}$ is the filtration generated by the process X (see Todorov (2010)). In order to compute it, we need to be able to firstly find the quadratic variation of Y and then take its conditional expectation.

2.4 Quadratic variation of multivariate Brownian integrals with stochastic volatility and correlation

This section contains some necessary technical results that we will be using when dealing with the VRP of the stochastic volatility integrals.

The first step in computing the VRP consists of evaluating the diffusion term in the quadratic variation of Y as in eq. (6): $\left[\int_t^t w_s^\top \Sigma_s^2 dW_s \right]_{t+h}^{t}$. The following Proposition gives us an elegant expression:

Proposition 2.1. Let B be a D-standard Brownian motion, and G a $D \times D$ (stochastic) matrix. The quadratic variation of the stochastic integral $\int_0^t w_s^\top G_s dB_s$ computed between times t and $t + h$ has the following expression:

$$
\left[\int_0^t w_s^\top G_s dB_s \right]_{t}^{t+h} = w_t^\top \left(\int_t^t G_s G_s^\top ds \right) w.
$$
We will see that our proposed method to model the stochastic volatility consists of having a correlated Brownian motion (see Section 3.2). Since this situation does not directly follow from the previous Proposition, we state here the result that we will be using:

Corollary 2.1. Let W be a Brownian motion with (stochastic) correlation matrix ρ_t, and let Π_t such that $\Pi_t \Pi_t^\top = \rho_t$, for all $t > 0$. The quadratic variation of the stochastic integral $\int_0^t w^\top \Sigma_s^{1/2} dW_s$ computed between times t and $t+h$ has the following expression:

$$\left[\int_0^t w^\top \Sigma_s^{1/2} dW_s \right]_t^{t+h} = w^\top \left(\int_t^{t+h} \Sigma_s^{1/2} \rho_s \Sigma_s^{1/2} ds \right) w. \quad (9)$$

The variance risk premium is the wedge between the conditional expectations of (9) under \mathbb{P} and \mathbb{Q}, normalised by h. When taking the conditional expectation with respect to (\mathcal{F}_t), using conditional Fubini, one gets:

$$\mathbb{E} \left[\left[\int_t^{t+h} w^\top \Sigma_s^{1/2} dW_s \right] \mid \mathcal{F}_t \right] = w^\top \left(\int_t^{t+h} \mathbb{E} \left[\Sigma_s^{1/2} \rho_s \Sigma_s^{1/2} \mid \mathcal{F}_t \right] ds \right) w. \quad (10)$$

Remark 2.2. Note that formula (10) does not depend on our choice of the model for Σ, but will be true in any multivariate stochastic volatility model.

In order to stress that the stochastic volatility only provides a partial contribution to the total VRP, we will give its contribution a name:

Definition 2.1. We define the diffusive variance risk premium (DVRP) $\text{DVRP}_{t,h}$, at time t, over the time span $[t,t+h]$, to be the difference:

$$\text{DVRP}_{t,h} = \frac{1}{h} \mathbb{E}^\mathbb{P} \left[\left[\int_t^{t+h} w^\top \Sigma_s^{1/2} dW_s \right] \mid \mathcal{F}_t \right] - \frac{1}{h} \mathbb{E}^\mathbb{Q} \left[\left[\int_t^{t+h} w^\top \Sigma_s^{1/2} dW_s \right] \mid \mathcal{F}_t \right].$$

We will be able to derive the left hand side of (10) once we have an explicit expression for Σ. In the following, we will study some of the most widely used stochastic volatility models and we will show that different model choices will lead to very different dynamics of the corresponding DVRP.

3 Brownian and stochastic volatility component

3.1 Full multivariate modelling

We now introduce our multivariate models for the stochastic volatility matrix. It is to be stressed that, to the best of the authors’ knowledge, this is the first time in the literature that the variance risk premium is studied with a multivariate stochastic volatility model, all the previous studies focusing exclusively on univariate specifications for the equity index.

Since we now introduce correlation in Σ, it is natural to assume that W is a standard Brownian motion, and hence, Proposition (2.1) gives the correct representation for the quadratic variation of the index return Y.
3.1.1 Multivariate non-Gaussian OU model

In this section we propose a full multivariate model for the matrix Σ: the multivariate non-Gaussian OU model, as defined in Muhle-Karbe et al. (2012).

Let $\mathcal{M}_D(K)$ be the set of D-dimensional matrices over the field K, S_D be the subalgebra of $\mathcal{M}_D(K)$ of symmetric real matrices and S_D^+ be the cone of all symmetric positive semidefinite matrices. Finally, for $A \in \mathcal{M}_D(K)$, $\sigma(A)$ is the set of eigenvalues of A.

Definition 3.1. An S_D^+-valued Lévy process L is called a matrix (Lévy) subordinator if $L_t - L_s$ belongs to S_D^+, for all $t > s > 0$.

Definition 3.2. The non-Gaussian OU model is defined by:

$$d\Sigma_t = (A\Sigma_t + \Sigma_t A^\top)\,dt + dL_t,$$

where L is a Lévy subordinator with Lévy measure ν and $A \in \mathcal{M}_D(\mathbb{R})$ such that $0 \not\in \sigma(A) + \sigma(A)$ (i.e. it is impossible to write 0 as the sum of two eigenvalues of A).

Recall formula (10). In this setting where the Brownian motion W is assumed to be standard, it reads:

$$E\left[\int_t^{t+h} w^\top \Sigma_s \,dW_s \bigg| \mathcal{F}_t\right] = w^\top \left(\int_t^{t+h} E\left[\Sigma_s \bigg| \mathcal{F}_t\right] \,ds \right) w. \quad (12)$$

In order then to compute the variance risk premium, we need an explicit expression for the conditional expectation of Σ. The following Proposition provides an explicit answer to the problem. Its proof can be found in the Appendix.

Proposition 3.1. The conditional expectation of the non-Gaussian multivariate OU process Σ admits the explicit representation:

$$E\left[\Sigma_s \bigg| \mathcal{F}_t\right] = e^{A(s-t)}\Sigma_t e^{A^\top(s-t)} + \int_t^s e^{A(s-l)} \cdot k \cdot e^{A^\top(s-l)} \,dl,$$

where e^A denotes the matrix exponential and k is the matrix of the first moments of L, i.e. $k^{(ij)} := E[L^{(ij)}]$.

Remark 3.1. With exactly the same reasoning and proof, one can prove that the explicit (strong) solution of the SDE defining the process Σ: $d\Sigma_t = (A\Sigma_t + \Sigma_t A^\top)\,dt + dL_t$, is given by:

$$\Sigma_t = e^{At}\Sigma_0 e^{A^\top t} + \int_0^t e^{A(t-l)} \,dL_l \cdot e^{A^\top(t-l)}.$$

Proposition 3.1 provides the key step in computing the risk premium.

Now, looking back at equation (12), and noting that the only quantity that changes between P and Q is the moment matrix of L, we obtain the final formula:

$$\text{DVRP}_{t,h} = \frac{1}{h} \left(w^\top \left[\int_t^{t+h} \left[\int_t^s e^{A(s-l)} \cdot \left(k^P - k^Q \right) \cdot e^{A^\top(s-l)} \,dl \right] \,ds \right] w \right). \quad (13)$$

We immediately observe that the structure we imposed on Σ prevents the variance risk premium from exhibiting stochastic dynamics. This is a surprising result in that this model could have been expected to possess richer dynamics, since the stochastic volatility matrix accounts for...
dependence between its components. Nevertheless, taking the conditional expectations of such a fully specified model led us to solve a multidimensional ODE with deterministic drivers, and all the unpredictability was lost.

Finally, we observe that as a consequence of the time integrals present in the expression (13), it holds that the diffusion risk premium, at any time \(t \), decays to zero if the time span considered shrinks to zero:

\[
\lim_{h \downarrow 0} \text{DVRP}_{t,h} = 0.
\]

Hence, over small time intervals, the DVRP becomes negligible. This behaviour is not shared with the Hawkes process, as we will see after Corollary 4.1.

3.1.2 Wishart model

Another popular model for the stochastic volatility matrix is the Wishart model. We follow the definition in Da Fonseca et al. (2008).

Definition 3.3. Let \(\Omega, M, Q \in M_D(\mathbb{R}) \), with \(\det(Q) \neq 0 \), and \(B \) a \(D \)-dimensional square Brownian Motion matrix, whose \(D \times D \) components are standard Brownian motions independent of the process \(X \). The Wishart model is defined to be:

\[
d\Sigma_t = \left(\Omega \Omega^\top + M \Sigma_t + \Sigma_t M^\top \right) dt + \Sigma_t^\frac{1}{2} dB_t Q + Q^\top (dB_t)^\top \Sigma_t^\frac{1}{2}.
\] (14)

Recall that, thanks to formula (12), we need an expression for the conditional expectation of \(\Sigma \).

Lemma 3.1. If \(\Sigma \) is defined as in (14), then we have, for almost all \(s \geq t \):

\[
E\left[\Sigma_s \mid \mathcal{F}_t \right] = e^{M(s-t)} \Sigma_t e^{M^\top(s-t)} + \int_t^s e^{M(s-l)} \Omega \Omega^\top e^{M^\top(s-l)} dl.
\] (15)

As a consequence of the previous Lemma, we have:

\[
\frac{1}{h} w^\top \left(\int_t^{t+h} E\left[\Sigma_s \mid \mathcal{F}_t \right] ds \right) w
= \frac{1}{h} \left(w^\top \left\{ \int_t^{t+h} e^{M(s-t)} \Sigma_t e^{M^\top(s-t)} + \int_t^s e^{M(s-l)} \Omega \Omega^\top e^{M^\top(s-l)} dl \right\} ds \right) w.
\] (16)

Now we need to perform an equivalent, structure preserving change of measure from \(P \) to \(Q \). By the converse of Girsanov’s theorem, we have \(dB_t = dB_t^Q + K_t dt \) for some \(K_t \), where \(B^Q \) is a \(Q \)-Brownian motion.

If we pick \(K_t = \Sigma_t^\frac{1}{2} H \), where \(H \in M_D(\mathbb{R}) \), then the dynamics (14) will be transformed into:

\[
d\Sigma_t = \left(\Omega \Omega^\top + \bar{M} \Sigma_t + \Sigma_t \bar{M}^\top \right) dt + \Sigma_t^\frac{1}{2} dB_t^Q Q + Q^\top (dB_t^Q)^\top \Sigma_t^\frac{1}{2},
\]

where \(\bar{M} := M + Q^\top H^\top \).

Instead, choosing \(K_t = \Sigma_t^{-\frac{1}{2}} H \) yields the following expression:

\[
d\Sigma_t = \left(\Omega \Omega^\top + M \Sigma_t + \Sigma_t M^\top \right) dt + \Sigma_t^\frac{1}{2} dB_t^Q Q + Q^\top (dB_t^Q)^\top \Sigma_t^\frac{1}{2},
\]
where \(\tilde{\Omega} \Omega^\top = \Omega \Omega^\top + HQ + Q^\top H^\top \). The crucial difference between the two choices is whether or not the matrix \(M \) changes under the two measures. If it does, then the DVRP obtained will be stochastic, as a consequence of formula (15). An explicit formula for the DVRP in this situation follows by taking differences of (16) under the two measures, as the next Example shows in a numerical example.

Example 3.1 (Two-dimensional Wishart). *In this example we will explicitly give a numerical example of the DVRP for the simple case of a Wishart model with two stocks. We specify the model in (14) with the following choices:

\[
M = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \quad \Omega \Omega^\top = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}.
\]

As a possible choice of measure change we use \(K_t = \Sigma_t^\frac{\tilde{\Omega}}{2} \), with:

\[
H = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \text{whence} \quad \tilde{M} = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}.
\]

The \((i,j)\)-element of \(\Sigma \) will be denoted by \(\sigma_{i,j} := \sigma_{i,j:t} \) and, for ease of notation, we will not stress its dependence on time.

The quantities appearing in (16) evaluate to:

\[
e^{M(s-t) \Sigma} e^{M^\top(s-t)} =
\begin{pmatrix}
\sigma_{1,1} + \sigma_{1,2} + \sigma_{2,2} \\
\sigma_{1,1} + \sigma_{1,2} + \sigma_{2,2} e^{(s-t)}
\end{pmatrix}
\begin{pmatrix}
e^{s-t} (\sigma_{1,1} + \sigma_{2,2}) + e^{3(s-t)} (\sigma_{1,2} + \sigma_{2,1}) \\
\sigma_{1,1} + (\sigma_{1,2} + \sigma_{2,1}) e^{2(s-t)} + \sigma_{2,2} e^{4(s-t)}
\end{pmatrix}
\]

and:

\[
\int_t^s e^{M(s-t) \Omega} \Omega^\top e^{M^\top(s-t)} dl =
\begin{pmatrix}
\frac{3}{2} (e^{2(s-t)} - 1) \\
2 (e^{s-t} - 1) + \frac{1}{3} (e^{3(s-t)} - 1)
\end{pmatrix}
\begin{pmatrix}
2 (e^{s-t} - 1) + \frac{1}{3} (e^{3(s-t)} - 1) \\
(s - t) + (e^{2(s-t)} - 1) + \frac{1}{3} (e^{4(s-t)} - 1)
\end{pmatrix}.
\]

Under \(Q \) we need to do similar computations using our new matrix of coefficients \(\tilde{M} \). Integrating our results from \(t \) to \(t + h \), multiplying by the weights, and dividing by \(h \), we obtain the final formula:

\[
DVRP_{t,h} = (w) \left[\left(\sigma_{1,1} + \sigma_{2,1} + \sigma_{1,2} + \sigma_{2,2} \right) \frac{1}{2h} (e^{2h} - 1) + \frac{1}{h} (e^{2h} - 1 - 2h) + \right.
\]

\[
- \sigma_{1,1} - \frac{\sigma_{2,1} + \sigma_{1,2}}{2h} (e^{2h} - 1) - \frac{\sigma_{2,2}}{4h} (e^{4h} - 1) - \frac{h}{2} - \frac{3}{16h} (e^{4h} - 4h - 1)
\]

\[
+ (w) \left[\left(\sigma_{1,1} + \sigma_{2,1} + \sigma_{1,2} \right) \frac{e^{2h} - 1}{2h} + \frac{\sigma_{2,2}}{4h} (e^{4h} - 1) + \frac{h}{2} - \frac{1}{h} (e^{2h} - 2h - 1) + \right.
\]

\[
\frac{3}{16h} (e^{4h} - 4h - 1) - (\sigma_{1,1} + \sigma_{2,1} + \sigma_{1,2} + \sigma_{2,2}) \frac{1}{2h} (e^{2h} - 1)
\].

The formula makes it clear that, with this choice of model, it is not possible to disentangle the effects of single stocks from that of correlated stocks, as we observe the appearance of different components of the matrix \(\Sigma \) in all terms of the weighted sum.
Example 3.2 (The Heston model). The Wishart model reduces to the Heston model if $D = 1$. We recall the definition of the Heston model:

$$\begin{aligned}
 dS_t &= \mu S_t \, dt + \sqrt{\nu_t} S_t \, dW_t^S \\
 dv_t &= k(\vartheta - v_t) \, dt + \zeta \sqrt{v_t} \, dW_t^v.
\end{aligned}$$

The unique solution is:

$$dX_t = d\left(\log(S_t)\right) = (\mu - v_t) \, dt + \sqrt{\nu_t} \, dW_t^S,$$

thus we see that we can obtain the Heston specification by putting $\beta: \mathbb{R} \to \mathbb{R}; \beta(x) := x, J \equiv 0$ in our model in equation (1).

In this one-dimensional case, our index I consists only of the stock S. The return process of the index is: $Y_t = \mu t + \int_0^t \sqrt{v_u} \, dW_u^S$, from which it immediately follows that:

$$\mathbb{E}\left[|Y_{t+h}^h| F_t\right] = \int_t^{t+h} \mathbb{E}^P \left[|v_u| F_t\right] \, du.$$

From the representation $v_u = k \int_0^u (\vartheta - v_s) \, ds + \zeta \int_0^u \sqrt{v_s} \, dW_s^v$, we obtain:

$$\mathbb{E}\left[v_u F_t\right] = v_t + k \int_t^u \left(\vartheta - \mathbb{E}\left[v_s F_t\right]\right) \, ds = v_t + k \vartheta(u - t) - k \int_t^u \mathbb{E}\left[v_s F_t\right] \, ds.$$

The unique solution is: $\mathbb{E}\left[v_u F_t\right] = v_te^{-k(u-t)} + \vartheta \left(1 - e^{-k(u-t)}\right)$, and thus:

$$\mathbb{E}\left[|Y_{t+h}^h| F_t\right] = \frac{1}{k} \left(\vartheta - v_t\right) \left(e^{-kh} - 1\right) + \vartheta h. \quad (17)$$

Now we must find an equivalent martingale measure Q. We will restrict ourselves to the class of structure preserving measures Q. By the converse of Girsanov’s theorem, one can write: $dW_t^v = \tilde{W}_t^v + K_t \, dt$, where \tilde{W} is Brownian motion under Q, and hence:

$$dv_t = k(\vartheta - v_t) \, dt + \zeta \sqrt{v_t} \left(d\tilde{W}_t^v + K_t \, dt\right) = (k(\vartheta - v_t) + \zeta K_t \sqrt{v_t}) \, dt + \zeta \sqrt{v_t} d\tilde{W}_t^v.$$

Due to the particular structure of the Heston model, we can specify the structure preserving Girsanov tranformation in more than one way.

The most common choice in the literature is to ask:

$$K_t = \sqrt{v_t} H, \quad (18)$$

for some constant H, obtaining:

$$dv_t = (k(\vartheta - v_t) + \zeta v_t H) \, dt + \zeta \sqrt{v_t} d\tilde{W}_t^v = (v_t(\zeta H - k) + kv_t) \, dt + \zeta \sqrt{v_t} d\tilde{W}_t^v,$$

$$= (k - \zeta H) \left(\frac{k \vartheta}{k - \zeta H} - v_t\right) \, dt + \zeta \sqrt{v_t} d\tilde{W}_t^v = \tilde{k}(\vartheta - v_t) + \zeta \sqrt{v_t} d\tilde{W}_t^v.$$

In this situation, the DVRP takes the form:

$$\text{DVRP}_{t,h} = h(\vartheta - \tilde{\vartheta}) + \frac{\tilde{\vartheta}}{k} \left(e^{-kh} - 1\right) - \frac{\vartheta}{k} \left(e^{-kh} - 1\right) + \left[\frac{(1 - e^{-kh})}{k} - \frac{(1 - e^{-\tilde{\vartheta}h})}{\tilde{k}}\right] v_t.$$

Remark 3.2. Much of the literature regarding the VRP has focused on the one-dimensional case. The question whether it is possible to obtain stochastic dynamics if $D = 1$ has attracted much attention. Although the Heston model gives an interesting result in itself, we want to remark that the focus of the paper is fully multivariate, and we are mainly concerned in how the dependence between the components generates a stochastic VRP.
3.2 Using a diagonal matrix of non-Gaussian OU processes

The previous two sections presented results for the VRP using popular multivariate stochastic volatility models. Recall that the study performed in Driessen et al. (2009) shows that individual stocks do not create VRP, while pairs of correlated stocks do. A fully multivariate stochastic volatility model does not allow to disentangle the two contributions. We now present a different model to solve this issue.

In this section we will model the stochastic matrix Σ via a diagonal matrix of non-Gaussian Ornstein Uhlenbeck processes (as in Barndorff-Nielsen and Shephard (2001)) and introduce correlation in the Brownian motion W.

In detail, we define the variance matrix Σ to be: $\Sigma_t = \text{diag}(\sigma_t^{2(1)}, \ldots, \sigma_t^{2(i)}, \ldots, \sigma_t^{2(D)})$.

In order to define each component of the multivariate Brownian motion B_t, consider a vector $\Lambda \in \mathbb{R}^D$ with all components strictly positive. Consider a multivariate Lévy process $L := (L_{\Lambda(1)}^{(1)}(t), \ldots, L_{\Lambda(i)}^{(i)}(t), \ldots, L_{\Lambda(D)}^{(D)}(t))^\top$, with Lévy measure ν and with all components being subordinators with zero drift. Each element $\sigma_t^{2(i)}$ follows the Lévy driven SDE:

$$d\sigma_t^{2(i)} = -\lambda_t \sigma_t^{2(i)} dt + dL_{\Lambda(i)}^{(i)}t.$$ \hspace{1cm} (19)

In this context, we will call L a background driving Lévy process, or simply BDLP. Note that we are using a particular form of the multivariate non-Gaussian OU process studied in Section 3.1.1 when A is a diagonal matrix. Also observe that different components of Σ need not be independent, since their BDLPs come from a multivariate Lévy process.

We furthermore assume that the multivariate Brownian motion W is correlated, with two components $W^{(i)}$ and $W^{(j)}$ satisfying:

$$[W^{(i)}, W^{(j)}]_t = \int_0^t \rho_s^{(ij)} ds.$$ \hspace{1cm} (20)

That is the same as writing: $W_t = \Pi_t B_t$ where B_t is a multivariate Brownian motion with independent components and the matrix Π_t can be given by any decomposition of the correlation matrix ρ: $\Pi_t^\top \Pi_t = \Pi_t \Pi_t^\top = \rho_t$, where $\rho_t^{(ii)} = 1$, for all i. We can take for example the Choleski decomposition of ρ_t in which Π_t is lower triangular.

Assumption 3.1. We furthermore assume that $\rho_t^{(ij)}$ is a deterministic function of time. Although this seems to be a restrictive assumption, our stock price model embeds other forms of stochastic dependence between the stock prices, like the general Lévy measure ν, as well as the multivariate Hawkes process, as we shall see later. Note further that the assumption of having a deterministic, sometimes even constant correlation, but having stochastic volatility is a common assumption in multivariate models (see e.g. the influential work by Bollerslev (1990) on constant conditional correlation models in the time series literature), since it significantly simplifies inference in multivariate models.

We now need to find the quadratic variation of the diffusion component of the index return Y, when the volatility structure is defined as above. To this end, if we specialise the result in Corollary (2.1) for our choice of Σ_t^D, we obtain:

$$\left[\int_0^t w^\top \Sigma_s^{1/2} dB_s\right]_t^{1+h} = w^\top \left(\int_t^{t+h} \Sigma_s^{1/2} \rho_s \Sigma_s^{1/2} ds\right) w$$

$$= \sum_{i=1}^D (w^{(i)})^2 \int_t^{t+h} \sigma_s^{(i)} ds + \sum_{i=1}^D \sum_{i \neq j} w^{(i)} w^{(j)} \int_t^{t+h} \sigma_s^{(i)} \sigma_s^{(j)} \rho_s^{(ij)} ds.$$ \hspace{1cm} (21)
Formula (21) is identical to equation (2) in Driessen et al. (2009). For this choice of model for Σ, we can decompose the risk premium into the contribution from the single stocks and the contribution from two correlated stocks.

3.2.1 Contribution of the single stocks

We begin with the analysis of the contribution of the single stocks:

$$\sum_{i=1}^{D} (w^{(i)})^2 \int_{0}^{t} (\xi^{(i)})^2 ds.$$

For our proposed constant correlation model, we will decompose the diffusion risk premium into two components: the diffusive variance risk premium for individual stocks, denoted by $\text{IDVRP}^{(i)}$ and the diffusion variance risk premium from pairs of correlated stocks, called CDVRP. We give here the definition of the former. For the latter, see Definition 3.5.

Definition 3.4. We call **diffusive variance risk premium for individual stocks** at time t, for the i-th stock in the index and over the time span $[t, t+h]$, denoted by $\text{IDVRP}^{(i)}_{t,h}$, the process defined for $t \geq 0$:

$$\text{IDVRP}^{(i)}_{t,h} = \frac{1}{h} E \left[\left(\int_{0}^{t} \sigma^{(i)}_{l} dW^{(i)}_{l} \right)^{t+h} \bigg| \mathcal{F}_{t} \right] - \frac{1}{h} E^{Q} \left[\left(\int_{0}^{t} \sigma^{(i)}_{l} dW^{(i)}_{l} \right)^{t+h} \bigg| \mathcal{F}_{t} \right].$$

The IDVRP represents the component of the total risk premium which is attributable to each single stock, only through the quadratic variation of its stochastic volatility.

An application of conditional Fubini to (21) shows that we can derive the IDVRP once we obtain an expression for $E \left((\sigma^{(i)})^{2} \big| \mathcal{F}_{t} \right)$, for $s \geq t$.

3.2.2 Diffusion variance risk premium

The power of the non-Gaussian Ornstein-Uhlenbeck model assumption for σ^{2} is manifested in the following Proposition:

Proposition 3.2. Let $u \geq t$. Then the conditional expectation of $\sigma^{2}_{u}^{(i)}$ with respect to (\mathcal{F}_{t}) is given by:

$$E \left[\sigma^{2}_{u}^{(i)} \big| \mathcal{F}_{t} \right] = k_{1}^{(i)} + (\sigma^{2}_{t}^{(i)} - k_{1}^{(i)}) e^{-\lambda^{(i)}(u-t)}.$$

where $k_{1}^{(i)}$ is defined as $E \left[L^{(i)}_{1} \right] = \int_{\mathbb{R}} x \nu^{(i)}(dx)$, and $\nu^{(i)}$ is the Lévy measure of the process $L^{(i)}$.

The previous result gives us immediately upon integration an expression for the diffusion variance risk premium.

Proposition 3.3. The diffusive variance risk premium originated by each stock $S^{(i)}$ is given by:

$$\text{IDVRP}^{(i)}_{t,h} = \left(k_{1}^{P(i)} - k_{1}^{Q(i)} \right) \left(1 + \frac{e^{-\lambda^{(i)}h} - 1}{\lambda^{(i)}h} \right).$$

(23)
Let us make a few comments on what formula (23) tells us. We immediately observe that, in line with the empirical findings in Driessen et al. (2009) and Barndorff-Nielsen and Veraart (2013), the diffusion variance risk premium of single stocks is deterministic. Since the function \(f(x) = 1 + e^{-x-1} \) is positive for \(x > 0 \), the sign of each stock’s diffusion variance risk premium is given by the sign of the difference \(k_1^{P(i)} - k_1^{Q(i)} \) of the first moments of the BDLP between \(P \) and \(Q \).

3.2.3 Correlation risk premium

We will now consider the contribution to the variance risk premium originated by the correlation between the stocks. Looking back at formula (21), we look now at the contribution of the quadratic covariation between two stocks in the index \(Y \):

\[
\sum_{i=1}^{D} \sum_{i \neq j} w^{(i)} w^{(j)} \int_{0}^{t} \sigma^{(i)} \sigma^{(j)} \rho^{(i)} \sigma^{(j)} \rho^{(j)} ds.
\]

We now give the definition of the correlated variance risk premium, similarly to Definition 3.4.

Definition 3.5. We call correlated (diffusive) variance risk premium for the stocks \((X^{(i)}, X^{(j)})\) at time \(t \), over the time span \([t, t+h] \), the process defined for \(t \geq 0 \):

\[
\text{CDVRP}^{(i,j)}_{t,h} := \frac{1}{h} \mathbb{E}_P \left[\int_{t}^{t+h} \rho^{(i,j)} \sigma^{(i)} \sigma^{(j)} ds \bigg| \mathcal{F}_t \right] - \frac{1}{h} \mathbb{E}_Q \left[\int_{t}^{t+h} \rho^{(i,j)} \sigma^{(i)} \sigma^{(j)} ds \bigg| \mathcal{F}_t \right].
\]

Another application of conditional Fubini shows that the quantity of interest in order to compute the CDVRP is:

\[
\mathbb{E} \left[\rho^{(i,j)} \sigma^{(i)} \sigma^{(j)} \bigg| \mathcal{F}_t \right].
\]

Assumption (3.1) that \(\rho^{(i)} \) is deterministic will be fundamental. Indeed, it allows us to write:

\[
\mathbb{E}_P \left[\rho^{(i,j)} \sigma^{(i)} \sigma^{(j)} \bigg| \mathcal{F}_t \right] = \rho^{(i,j)} \mathbb{E}_P \left[\sigma^{(i)} \sigma^{(j)} \bigg| \mathcal{F}_t \right].
\]

The diffusion variance risk premium was greatly simplified thanks to the choice of directly modelling the square volatilities \(\sigma^2 \). The correlation risk premium appears more complicated in this setting. The natural way to proceed would be to compute the dynamics of \(\sigma^{2(i)} \sigma^{2(j)} \) via Itô’s formula. Unfortunately, this would lead to the introduction of square roots, and explicit evaluation of conditional expectations would become infeasible.

We propose a solution to this technical problem. We can employ an integral representation of the square root and subsequently interchange the integral sign with the conditional expectation operator. What we use is the following formula, which is proved for example in Applebaum (2004, pp. 80-81):

\[
\sqrt{x} = \frac{1}{2} \Gamma \left(\frac{1}{2} \right) \int_{0}^{\infty} \frac{(1 - e^{-xy})}{y^2} dy.
\]

Applying the formula twice, with \(x = \sigma^{2(i)} \), \(y = \sigma^{2(j)} \), and recalling that \(\Gamma \left(\frac{1}{2} \right) = \sqrt{\pi} \), one gets:

\[
\sigma^{(i)} \sigma^{(j)} = \frac{1}{4\pi} \left(\int_{0}^{\infty} \frac{1 - e^{-\sigma^{2(i)}y}}{y^2} dy \right) \left(\int_{0}^{\infty} \frac{1 - e^{-\sigma^{2(j)}x}}{x^2} dx \right)
\]

\[(25)\]
\[
\begin{align*}
= \frac{1}{4\pi} \int_0^\infty dy \left[\int_0^\infty \left(1 - e^{-\sigma^2 u_i y} \right) \left(1 - e^{-\sigma^2 u_j x} \right) dx \right] & \quad (26) \\
= \frac{1}{4\pi} \int_0^\infty dy \left[\int_0^\infty \frac{1}{(xy)^{\frac{3}{2}}} \left(1 - e^{-\sigma^2 u_i y} - e^{-\sigma^2 u_j x} + e^{-\sigma^2 u_i y - \sigma^2 u_j x} \right) dx \right]. & \quad (27)
\end{align*}
\]

The equality on line (26) follows from Tonelli’s theorem, since the integrands are positive, seen as functions of \(x\) and \(y\). The conditional expectation of the product \(\sigma^2 u_i \sigma^2 u_j\) now reduces to the computation of several Laplace transforms of the processes involved.

We can summarise with the following:

Theorem 3.1. The correlation risk premium at time \(t\) for the stocks \((X^{(i)}, X^{(j)})\), over the time span \([t, t+h]\), has the following expression:

\[
CDVRP^{(i,j)}_{t,h} = \frac{1}{4h\pi} \int_t^{t+h} \rho^{(i,j)}_s \left(\int_0^\infty dy \int_0^\infty \frac{1}{(xy)^{\frac{3}{2}}} H \left(\sigma^2_t u_i, \sigma^2_t u_j, x, y, t, s \right) dx \right) ds. \tag{28}
\]

An explicit expression for the deterministic function \(H\) appears in equation (43) in the Appendix.

The integral representation allows us to observe a few notable facts.

The CDVRP\(^{(i,j)}\) is random, since two of the arguments of \(H\) are the random variables \(\sigma^2_t u_i, \sigma^2_t u_j\). It is not deterministic precisely because the Laplace exponents of the components of the Lévy process \(L\) are different between \(P\) and \(Q\), as an analysis of formula (43) reveals. As a consequence, the correlation risk premium between two stocks exhibits stochastic dynamics. Moreover, if \(s\) tends to \(t\), then \(H\) tends to zero almost surely in (28). Hence we again obtain that the correlation risk premium gives no contribution to the total variance risk premium if the time span considered shrinks to zero: that is

\[
\lim_{h \to 0} CDVRP^{(i,j)}_{t,h} = 0.
\]

We conclude that this choice of modelling the stochastic volatility via a constant correlation model gives us the best results. In accordance with the empirical studies performed in the literature, (see for example Driessen et al. (2009)), it implies deterministic dynamics for all the individual risk premia and stochastic dynamics for the correlation risk premia. In addition, it appears as much simpler than compared to the previous cases: Here, in order to correctly specify the model, we just need a \(D\)-Lévy process instead of a \(D \times D\) Lévy matrix, a \(D\)-vector of parameters \(\lambda\), and the deterministic correlation matrix \(\rho\) of the Brownian motion.

Remark 3.3. We observe that our model is not the only choice one can make to obtain stochastic dynamics for the correlation risk premium. For example, choosing a diagonal matrix \(A\) in definition (11) leads to obtain diagonal elements for \(\Sigma\) which are univariate non-Gaussian OU processes (see Muhle-Karbe et al. (2012)). Hence, combining such a model with a correlated Brownian motion would still produce deterministic IDVRP and stochastic CDVRP. Nonetheless, our model is still analytically tractable and allows for explicit description of these quantities only up to a deterministic double integral, which can be approximated by standard techniques.

The next example will illustrate our results in a situation where Gamma subordinators are used as drivers of the stochastic volatility.
Example 3.3 (OU-$\Gamma(\nu, r)$). As an example, we present an explicit calculation using independent Gamma processes as BDLPs. Let X be a Gamma process with parameters (ν, r). Then its characteristic triplet is
\[
\left(\frac{\nu}{\nu}, (1 - e^{-\nu}), 0, \frac{\nu e^{-\nu x} 1_{\{x>0\}}}{x} \right).
\]
Since $\int_1^\infty \log(x) \frac{e^{-\nu x}}{x} < \infty$, there exists a non-Gaussian OU process whose BDLP is a Gamma process.

Let us now consider the same SDEs as in [19], with the parameters $\lambda^{(i)}, \lambda^{(j)}$ set to 1:
\[
\begin{aligned}
&\text{for } L^{(i)} \text{ and } L^{(j)} \text{ being Gamma independent processes with parameters } (\xi^{(i)}, r^{(i)}) \text{ and } (\xi^{(j)}, r^{(j)}), \\
&\text{respectively. We will also need the following useful result: If } Y^{(k)}_u \text{ denotes the Lévy-Itô integral:}
\end{aligned}
\]
\[
Y^{(k)}_u := \int_1^u e^{(s-u)} \ dL^{(k)}_s,
\]
then its Laplace transform can be explicitly computed via the following formula:
\[
\mathbb{E}^P \left[e^{-y Y^{(k)}_u} \right] = e^{\int_t^u \varphi_{L^{(i)}}(ye^{-(u-s)}) \ ds}, \quad (29)
\]
\[
\text{Let now } k \in \{i, j\}. \text{ The Laplace exponent of } L^{(k)} \text{ is}
\]
\[
\varphi_{L^{(k)}}(y) = r^{(k)} \log \left(\frac{\xi^{(k)}}{\xi^{(k)} + y} \right),
\]
hence the Laplace exponent of the process $Y^{(k)}_u = \int_1^u e^{(s-u)} \ dL^{(k)}_s$ follows from formula [29]:
\[
\mathbb{E} \left[e^{-y Y^{(k)}_u} \right] = e^{r^{(k)} \int_t^u \log \left(\frac{\xi^{(k)}}{\xi^{(k)} + ye^{-(u-s)}} \right) \ ds}.
\]
The independence assumption gives us an explicit expression for the joint Laplace transform:
\[
\mathbb{E} \left[e^{-y Y^{(i)}_u - y Y^{(j)}_u} \right] = e^{r^{(i)} \int_t^u \log \left(\frac{\xi^{(i)}}{\xi^{(i)} + ye^{-(u-s)}} \right) \ ds + r^{(j)} \int_t^u \log \left(\frac{\xi^{(j)}}{\xi^{(j)} + xe^{-(u-s)}} \right) \ ds}
\]
\[
= e^{r^{(i)} \int_t^u \log \left(\frac{\xi^{(i)}}{\xi^{(i)} + ye^{-(u-s)}} \right) \ ds + r^{(j)} \int_t^u \log \left(\frac{\xi^{(j)}}{\xi^{(j)} + xe^{-(u-s)}} \right) \ ds},
\]
Suppose now that we perform an Esscher change of measure, via a density given by
\[
dQ \frac{dP}{dP}_t = \frac{e^{\theta (L^{(i)}_t + L^{(j)}_t)}}{\mathbb{E} \left[e^{\theta (L^{(i)}_t + L^{(j)}_t)} \right]},
\]
for some $\theta < \min(\xi^{(i)}, \xi^{(j)}).$ Under Q, the Lévy measure of the Gamma process $L^{(k)}$ becomes $\frac{r^{(k)}}{x} e^{-(\xi^{(k)} - \theta)} \ dx.$ It follows that, under Q:
\[
\mathbb{E}^Q \left[e^{-y Y^{(k)}_u} \right] = e^{r^{(k)} \int_t^u \log \left(\frac{\xi^{(k)} - \theta}{\xi^{(k)} - \theta + ye^{-(u-s)}} \right) \ ds}.
\]
An explicit expression for \(H(\sigma_{t}^{2(i)}, \sigma_{t}^{2(j)}, x, y, t, u) \) is readily found to be given by:

\[
H(\sigma_{t}^{2(i)}, \sigma_{t}^{2(j)}, x, y, t, u) = \\
- \exp \left(-ye^{-(u-t)\sigma_{t}^{2(i)}} \right) \left[e^{r(i)} \int_{0}^{s} \log \left(\frac{\xi^{(i)}_{s}}{\xi^{(i)}_{s} + ye^{r(i)}(x-u)} \right) ds - e^{r(i)} \int_{0}^{s} \log \left(\frac{\xi^{(i)}_{s}}{\xi^{(i)}_{s} - ye^{r(i)}(x-u)} \right) ds \right] \\
- \exp \left(-xe^{-(u-t)\sigma_{t}^{2(j)}} \right) \left[e^{r(j)} \int_{0}^{s} \log \left(\frac{\xi^{(j)}_{s}}{\xi^{(j)}_{s} + xe^{r(j)}(x-u)} \right) ds - e^{r(j)} \int_{0}^{s} \log \left(\frac{\xi^{(j)}_{s}}{\xi^{(j)}_{s} - xe^{r(j)}(x-u)} \right) ds \right] \\
+ \exp \left(-ye^{-(u-t)\sigma_{t}^{2(i)}} - xe^{-(u-t)\sigma_{t}^{2(j)}} \right) \times \\
\left[e^{r(i)} \int_{0}^{s} \log \left(\frac{\xi^{(i)}_{s}}{\xi^{(i)}_{s} + ye^{r(i)}(x-u)} \right) ds - e^{r(i)} \int_{0}^{s} \log \left(\frac{\xi^{(i)}_{s}}{\xi^{(i)}_{s} - ye^{r(i)}(x-u)} \right) ds \right] \\
\times e^{r(j)} \int_{0}^{s} \log \left(\frac{\xi^{(j)}_{s}}{\xi^{(j)}_{s} + xe^{r(j)}(x-u)} \right) ds - e^{r(j)} \int_{0}^{s} \log \left(\frac{\xi^{(j)}_{s}}{\xi^{(j)}_{s} - xe^{r(j)}(x-u)} \right) ds \right].
\]

Figures 7 and 2 graphically illustrate the behaviour of the risk premium in this setting.

Remark 3.4 (Multifactor Stochastic Volatility Model). The model and the results in the previous section can be generalised to allow for multi-factor volatility models. Indeed, it is well known that a single non-Gaussian OU process often does not perform well in empirical studies. In particular, autocorrelation functions of realised volatilities exhibit a slower decay than can be justified by a single OU process. One way to overcome this problem is to employ a (finite) superposition of such processes, as explained in Barndorff-Nielsen and Shephard (2002). It is possible to obtain explicit formulas in this setting.

4 Jump component

We proceed now with our analysis of the variance risk premium due to the presence of jumps in our model. Not only are there many reasons to introduce a jump component in the stock prices (including, in particular, volatility smile fitting, heavy-tailed distributions of returns, inconsistency of prices for deeply out-of-the-money options; see Cont and Tankov (2003) pp. 13-14) for an overview of the benefits of introducing jumps), but also Todorov (2010) presents empirical evidence according to which jumps in the prices are necessary to properly give an accurate description of the variance risk premium.

Similarly to the previous Sections, we will call JVRP, short for jump variance risk premium, the component of the VRP originated from the jump process.

4.1 Lévy processes

The most natural choice when modelling jumps in prices are Lévy processes. In this section we provide the analysis of the VRP when the jump process \(\mathbf{J} \) is a pure-jump Levy process.

Assumption 4.1. The process: \(\mathbf{J}_{t} = \left(J_{t}^{(1)}, \ldots, J_{t}^{(i)}, \ldots, J_{t}^{(D)} \right)^{\top} \) is a \(D \)-dimensional pure-jump Lévy process with Lévy triplet \((0, 0, \eta) \) with respect to the truncation function \(1_{\{ |x| \leq 1 \}} \). We assume that all the components have moments of the second order, so that \(\int_{|x| \geq 1} x^{2} \eta(i)(x) dx < \infty \). For each component \(J^{(i)} \), we define its jump measure \(M^{(i)}(dt, dx) \) on \(\mathcal{B}(0, T) \times \mathcal{B}(\mathbb{R}) \) via the following: for \(0 < s < t < T \) and \(A \in \mathcal{B}(\mathbb{R}) \): \(M^{(i)}((s, t), A) = \# \{ l \in (s, t) | \Delta J_{l}^{(i)} \in A \} \).
Figure 1: Simulated paths of two non-Gaussian OU processes with Gamma processes as BDLPs, with $\sigma^2(i) = \sigma^2(j) = 0.8$, $r(i) = 2$, $r(j) = 3$, $\nu(i) = 1$, $\nu(j) = 1$. The blue line represents the path of $\sigma^2(i)$, the orange $\sigma^2(j)$. The scale on the time axis represents the simulation step, in such a way that $t = 10000$ corresponds to the final time $T = 8.78$.

Figure 2: Simulation of the Variance Risk Premium generated by the paths of the stochastic volatilities as in Figure 1, computed with Theorem (3.1), with $h = T/365$. For the change of measure we picked $\vartheta = \frac{1}{2}$.

19
Remark 4.1. The presence of a multivariate Lévy process with a general Lévy measure allows for a wealth of different possibilities to model the dependence between the assets, like the use of Lévy copulas. See for example Cont and Tankov (2003) for such an approach.

We sum up our results in the following:

Theorem 4.1. The total contribution to the variance risk premium from a D-dimensional Lévy process J is:

$$
\sum_{i=1}^{D} \left(w(i) \right)^2 \int_{\mathbb{R}} (e^x - 1)^2 \left(d\eta^{p(i)}(dx) - d\eta^{Q(i)}(dx) \right) + \\
\sum_{i,j=1, i \neq j}^{D} \left(\omega(i) \omega(j) \right) \int_{\mathbb{R}^2} (e^x - 1)(e^y - 1) \left(d\eta^{p(i,j)}(dx, dy) - d\eta^{Q(i,j)}(dx, dy) \right). \quad (30)
$$

The Lévy risk premium is simple to analyse: The first term in (30) accounts for the individual stock prices, while the second one accounts for the dependence between the stocks.

We observe that, because of the independent increments of J, the Lévy contribution is constant, and it does not even depend on the time span h, or the instant of time t. In particular, if h tends to zero, or infinity, the risk premium does not go to zero.

The theoretical features that our model presents so far, are in line with the empirical findings of Driessen et al. (2009) and Todorov (2010): the stock price model features stochastic volatility and jumps, and even with the addition of the Lévy contributions, we obtain the required result that single stocks do not exhibit significant variance risk premium, while pairs of correlated stocks do.

4.2 Hawkes component and the financial crisis

As we mentioned in the introduction, the empirical study by Driessen et al. (2009) was performed before the financial crisis in 2008. We now ask ourselves what would be the effect of introducing another source of jumps, that accounts for the correlation that is observed within a stock market in a period of financial crisis. For this purpose, we employ the class of Hawkes processes.

Hawkes processes have been used in the literature to model default times (see e.g. Errais et al. (2010)) and stock returns in different economies during crises, see (Ait-Sahalia et al. (2010)). They are used as a model for the contagion effect between defaulting firms, or different large-scale economies. In the setting of market microstructure, they have also been used for the modelling of stock prices, see for example Baerly et al. (2013). We propose to introduce them as a model of the contagion effect between the stocks within a single index.

Assumption 4.2. The process $N_t = \left(N_t^{(1)}, \ldots, N_t^{(i)}, \ldots, N_t^{(D)} \right)^{\top}$ is a D-dimensional Hawkes process with vector of intensities $\Lambda_t = \left(\lambda_t^{(1)}, \ldots, \lambda_t^{(i)}, \ldots, \lambda_t^{(D)} \right)^{\top}$. The Hawkes process is a counting process, and it is defined through its intensity process. A rigorous mathematical formulation of its behaviour is the following. We fix a vector $\Lambda_0 = \left(\lambda_0^{(1)}, \ldots, \lambda_0^{(D)} \right)$ of positive real numbers and let, for any $i \in \{1, \ldots, D\}$:

$$
\lambda_t^{(i)} = \lambda_0^{(i)} + \sum_{j=1}^{D} \int_{0}^{t} g^{(i,j)}(t-l) dN_l^{(j)},
$$
where the deterministic functions $g^{(i,j)}(x)$ account for the time decay of a shock originated by a jump of N. We will work with the classical Hawkes model, for which $g^{(i,j)}(x) = \alpha^{(i,j)} e^{-\beta^{(i)} x}$.

$$
\lambda^{(i)}_t = \lambda^{(i)}_0 + \sum_{j=1}^{D} \alpha^{(i,j)} \int_0^t e^{-\beta^{(i)} (t-s)} dN^{(j)}_s,
$$

where all the numbers $\alpha^{(i,j)}, \beta^{(i)}$ are positive. The parameter $\alpha^{(i,j)}$ represents the impact on $\lambda^{(i)}$ of a jump in the j-th component $N^{(j)}$, $\beta^{(i)}$ is the rate at which $\lambda^{(i)}$ reverts to $\lambda^{(i)}_0$.

There is an equivalent formulation of these properties that makes use of the stochastic differential equations that every $\lambda^{(i)}$ satisfies. Indeed, by the integration by parts formula, one can prove that:

$$
d\lambda^{(i)}_t = -\beta^{(i)} (\lambda^{(i)}_t - \lambda^{(i)}_0) \, dt + \sum_{j=1}^{D} \alpha^{(i,j)} \, dN^{(j)}_t. \quad (31)
$$

From this it is actually clear that $\lambda^{(i)}$ reverts to $\lambda^{(i)}_0$ exponentially at rate $\beta^{(i)}$. For other probabilistic properties of the Hawkes process, like its connection with the Markov property and expressions for its moments and transforms see Errais et al. (2010). We will use some of those results later in the paper.

Remark 4.2. It is a consequence of our assumption that N is a multivariate point process, that any two components of the Hawkes process N are instantaneously *uncorrelated*, or equivalently, they never jump together; that means, if $i \neq j$:

$$
[N^{(i)}, N^{(j)}]_t = \sum_{0 \leq s \leq t} \Delta N^{(i)}_s \Delta N^{(j)}_s = 0 \quad \text{a.s.}
$$

The intuition here is that there is an infinitesimal time delay between a jump in $N^{(i)}$ and in $N^{(j)}$ because the value of the predictable intensity $\lambda^{(j)}_t$ affects the behaviour of the right continuous process $N^{(j)}_t$ from immediately after time t.

In this section we analyse the VRP when in formula (1), J is a pure jump process whose jumps come from an underlying D—dimensional Hawkes process N_t with intensity λ_t. The jump sizes have fixed probability distributions $Z^{(i)}$ on \mathbb{R} that have no mass at zero:

$$
J^{(i)}_t = \int_{[0,t] \times \mathbb{R}} x \, M^{(i)}(ds, dx).
$$

In this situation, the jump measure $M^{(i)}(dt, dx)$ is compensated by $\lambda^{(i)}_t dt \otimes Z^{(i)}(dx)$.

Example 4.1. If we choose $Z^{(i)}(dx) = \delta_1(dx)$, where δ_1 is the Dirac measure at 1, then we have: $J^{(i)}_t = N^{(i)}_t$, i.e. we recover the original Hawkes process.

Applying Itô’s formula, we obtain that the contribution to the i-th stock dynamics is given by:

$$
\int_0^t \int_{\mathbb{R}} (e^x - 1) \, M^{(i)}(ds, dx) = \int_0^t \int_{\mathbb{R}} (e^x - 1) \, \tilde{M}^{(i)}(ds, dx) + \int_0^t \int_{\mathbb{R}} (e^x - 1) \, Z^{(i)}(dx) \otimes \lambda^{(i)}_s \, ds. \quad (32)
$$
Assumption 4.3. We will assume that the compensated integral:
\[\int_{[0,t] \times \mathbb{R}} (e^{x} - 1)^2 \tilde{M}^{(i)}(ds, dx),\]
is a martingale, for all \(i \in \{1, \ldots D\}\).

Remark 4.3. Since \(J^{(i)}\) is a local martingale, a sufficient condition for Assumption 4.3 to be satisfied is that:
\[E \left[\int_{[0,t] \times \mathbb{R}} (e^{x} - 1)^2 \tilde{M}^{(i)}(ds, dx) \right] < \infty, \tag{33}\]
for all \(t > 0\) (see Protter (2005)). We have that the quantity in (33) equals:
\[E \left[\int_{[0,t] \times \mathbb{R}} (e^{x} - 1)^4 M^{(i)}(ds, dx) \right] = \int_{\mathbb{R}} (e^{x} - 1)^4 Z^{(i)}(dx) \int_{0}^{t} E \left[\lambda^{(i)}_{s} \right] ds. \tag{34}\]

As a consequence of formula (36) below, \(\int_{0}^{t} E \left[\lambda^{(i)}_{s} \right] ds < \infty\) for all \(t > 0\). It is then sufficient to impose conditions on the jump distributions \(Z^{(i)}\) so that:
\[\int_{\mathbb{R}} (e^{x} - 1)^4 Z^{(i)}(dx) < \infty. \tag{35}\]

A possible choice is the Gaussian distribution \(Z^{(i)}(dx) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx\).

We will start with the univariate case. Some of the results derived for one stock will be the building blocks to solve the multivariate case.

4.2.1 Univariate Case

In the univariate setting, the JVRP at time \(t\), over the time span \(h\), originated by a Hawkes process is:
\[\text{JVRP}_{t,h} := \frac{1}{h} E^{\mathbb{P}} \left[\int_{0}^{t} \int_{\mathbb{R}} (e^{x} - 1) M^{(P)}(du,dx) \right]_{t}^{t+h} | \mathcal{F}_{t} - \frac{1}{h} E^{\mathbb{Q}} \left[\int_{0}^{t} \int_{\mathbb{R}} (e^{x} - 1) M^{(Q)}(du,dx) \right]_{t}^{t+h} | \mathcal{F}_{t}. \tag{34}\]

Using a martingale decomposition as in (32), we see that we need to compute:
\[\text{JVRP}_{t,h} = \frac{1}{h} E^{\mathbb{P}} \left[\int_{t}^{t+h} \lambda^{(P)} u du | \mathcal{F}_{t} \right] \int_{\mathbb{R}} (e^{x} - 1)^2 Z^{(P)}(dx) - \frac{1}{h} E^{\mathbb{Q}} \left[\int_{t}^{t+h} \lambda^{(Q)} u du | \mathcal{F}_{t} \right] \int_{\mathbb{R}} (e^{x} - 1)^2 Z^{(Q)}(dx). \tag{35}\]

In what follows, we will denote \(\kappa^{P} := \int_{\mathbb{R}} (e^{x} - 1)^2 Z^{(P)}(dx)\) and similarly for \(Q\).

The crucial quantity we need to compute for our analysis is \(E \left[\lambda_{u} | \mathcal{F}_{t} \right]\). Since we could not find an explicit computation in the literature, we state it in the following Lemma. Its proof can be found in the Appendix.
Lemma 4.1. Let N be a univariate Hawkes process with intensity: $\lambda_u = \lambda_0 + \alpha \int_0^u e^{-\beta(u-t)} dN_t$. Then, for Lebesgue-a.e. $u \geq t$, it holds that:

$$E \left[\lambda_u | F_t \right] = \frac{-\beta \lambda_0 + e^{(u-t)(\alpha-\beta)} (\beta \lambda_0 + (\alpha - \beta) \lambda_t)}{\alpha - \beta}. \quad (36)$$

We note that the result of Lemma (4.1) is important for our purposes. Indeed formula (36) shows the stochastic nature of $E \left[\lambda_u | F_t \right]$: At time t, this quantity will depend on λ_t. With a view on the operations we are going to perform next, and noting that stochastic jump intensities do depend on the probability measure (as opposed to the process σ^2 in the diffusion case), this is a promising result, that will lead us to obtain a stochastic dynamic for the Hawkes variance risk premium.

Exploiting Lemma (4.1), one can obtain the following expression for the Hawkes risk premium:

Corollary 4.1. For the univariate case, the Hawkes variance risk premium at time t, over the time span h, has the following form:

$$JVRP_{t,h} = \frac{1}{h} \int_t^{t+h} \left(\kappa_P E_P \left[\lambda_s | F_t \right] - \kappa_Q E_Q \left[\lambda_s | F_t \right] \right) ds. \quad (37)$$

It is of course possible to substitute the expression (36) into (37) to obtain an explicit representation of the Hawkes variance risk premium. A few observations are in order. Firstly we observe that the risk premium, even for a single stock, is stochastic, as we can infer from an analysis of formula (36): the conditional expectation $E \left[\lambda_s | F_t \right]$ depends on the stochastic intensity λ_t multiplied by a factor which depends on α, β, that change from P to Q (see for example Section D). Even if the law of Z is the same under P and Q, still the difference will not cancel out. Since the quadratic variation of the Hawkes process is not absolutely continuous with respect to the Lebesgue measure, the Hawkes variance risk premium may not go to zero if h tends to zero. Indeed, apart from a set of times t with zero Lebesgue measure, the limit $h \to 0$ is equal to $\lambda_t^P \kappa_P - \lambda_t^Q \kappa_Q$. This is in contrast of course with the diffusion case, for which the limit is zero, for a.e. t. As opposed with the Lévy case, this instantaneous risk premium depends on the time t.

4.2.2 Multivariate Case

In this section we will state the final result for the multivariate Hawkes integral. The interested reader can find the proofs in the Appendix.

Proposition 4.1. The Hawkes contribution to the variance risk premium has the form:

$$JVRP_{t,h} = \frac{1}{h} \sum_{i=1}^D \left(\omega(i) \right)^2 \int_t^{t+h} \left(\kappa_P^{(i)} V_i^{P(i)} - \kappa_Q^{(i)} V_i^{Q(i)} \right) ds. \quad (38)$$

An explicit expression for the matrices V^P and V^Q can be found in equation (51) in the Appendix.

The observations from the univariate case carry over to the multivariate case: The most relevant thing to note is that the multivariate Hawkes risk premium is stochastic, since it depends on the stochastic intensity Λ_t, through the matrices V^P and V^Q. As seen from the expression
In the multivariate case, the contribution from a single stock depends on all the other intensities. Indeed, the vector \(\mathbf{\Lambda}_t \), is multiplied by the matrix \(e^{h(-\mathbf{\Lambda}^\top \mathbf{A}^{-1} + \mathbf{A})} \).

In the limit when \(h \) tends to zero, we have:

\[
\lim_{h \downarrow 0} \text{JVRP}_{t,h} = \sum_{i=1}^{D} \left(w^{(i)} \right)^2 \left(\kappa^{P(i)} \mathbf{e}^{\mathbf{A}^{-1}(\mathbf{Q}_i - \mathbf{Q})} \right).
\]

Example 4.2. In this example we show how to explicitly compute the Hawkes risk premium in the easy case with two stocks, only driven by a two-dimensional Hawkes process. Let the dynamics of the stocks be given by:

\[
\begin{align*}
\left\{ \begin{array}{l}
 dX^{(1)}_t = \int_{\mathbb{R}} x M^{(1)}(dt, dx) \\
 dX^{(2)}_t = \int_{\mathbb{R}} x M^{(2)}(dt, dx)
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\left\{ \begin{array}{l}
 dS^{(1)}_t = S^{(1)}_t \int_{\mathbb{R}} (e^x - 1) M^{(1)}(dt, dx) \\
 dS^{(2)}_t = S^{(2)}_t \int_{\mathbb{R}} (e^x - 1) M^{(2)}(dt, dx),
\end{array} \right.
\end{align*}
\]

and the two Hawkes intensities, where, for simplicity, we set the \(\beta \) coefficients equal to 1, and the matrix of the \(\alpha \) coefficients equal to \(\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix} \):

\[
\begin{align*}
\left\{ \begin{array}{l}
 d\lambda^{(1)}_t = -\left(\lambda^{(1)}_t - \lambda^{(1)}_0 \right) dt + \frac{1}{3} dN^{(1)}_t + \frac{1}{3} dN^{(2)}_t \\
 d\lambda^{(2)}_t = -\left(\lambda^{(2)}_t - \lambda^{(2)}_0 \right) dt + \frac{1}{2} dN^{(2)}_t.
\end{array} \right.
\end{align*}
\]

Next, we write the index process \(I_t \) and derive its return process \(Y \):

\[
\begin{align*}
I_t &= S^{(1)}_t + S^{(2)}_t = \int_0^t S^{(1)}_s \int_{\mathbb{R}} (e^x - 1) M^{(1)}(ds, dx) + \int_0^t S^{(2)}_s \int_{\mathbb{R}} (e^x - 1) M^{(2)}(ds, dx), \\
Y_t &= \mathcal{L} \log(I_t) = \int_0^t \frac{S^{(1)}_s}{I_s} \int_{\mathbb{R}} (e^x - 1) M^{(1)}(ds, dx) + \int_0^t \frac{S^{(2)}_s}{I_s} \int_{\mathbb{R}} (e^x - 1) M^{(2)}(ds, dx) \\
&= w^{(1)} \int_0^t \int_{\mathbb{R}} (e^x - 1) M^{(1)}(ds, dx) + w^{(2)} \int_0^t \int_{\mathbb{R}} (e^x - 1) M^{(2)}(ds, dx),
\end{align*}
\]

thanks to our assumption of constant weights. Thus:

\[
[Y]_t = \left(w^{(1)} \right)^2 \int_0^t \int_{\mathbb{R}} (e^x - 1)^2 M^{(1)}(ds, dx) + \left(w^{(2)} \right)^2 \int_0^t \int_{\mathbb{R}} (e^x - 1)^2 M^{(2)}(ds, dx).
\]

Let us now assume that the change of measure is as simple as possible, namely, that the two intensities are scaled by the same factor \(\Gamma \) (see also the next Section for a more detailed discussion on this matter) and that \(\kappa^P \) and \(\kappa^Q \) are both equal to 1. Then, applying Proposition 4.1, we obtain:

\[
\begin{align*}
V^P_{u}(t) - V^Q_{u}(t) &= (1-\Gamma) \left[\begin{pmatrix}
3(\lambda^{(1)}_0 + \lambda^{(2)}_0) \left(e^{\frac{w_{u}t}{3}} - 1 \right) + \lambda^{(1)}_0 (u - t) e^{\frac{w_{u}t}{3}} + 2\lambda^{(2)}_0 \left(e^{\frac{w_{u}t}{3}} - 1 \right) \\
3(\lambda^{(1)}_0 + \lambda^{(2)}_0) \left(e^{-\frac{2}{3}} - e^{-\frac{w_{u}t}{3}} \right) + \lambda^{(1)}_0 (u - t) e^{-\frac{2}{3}} + 2\lambda^{(2)}_0 \left(e^{-\frac{w_{u}t}{3}} - 1 \right)
\end{pmatrix} \right].
\end{align*}
\]
If, for ease of exposition, we set \(\tilde{\omega}_i = (\omega^{(i)})^2 \), we finally obtain:

\[
JVRP_{t,h} = \frac{1 - \Gamma}{h} \int_t^{t+h} \left[\tilde{\omega}_2 \left(\lambda^{(1)}_t + \lambda^{(2)}_t e^{-\frac{u}{\tau}} \right) + \tilde{\omega}_1 \left(\lambda^{(1)}_t + \lambda^{(2)}_t \right) e^{-\frac{u}{\tau}} + \lambda^{(1)}_0 (u - t) \left(\tilde{\omega}_1 e^{-\frac{u}{\tau}} + \tilde{\omega}_2 e^{-\frac{u}{\tau}} \right) \right] du
\]

\[
= \frac{1 - \Gamma}{h} \left[3(\lambda^{(1)}_0 + \lambda^{(2)}_0) \left(\tilde{\omega}_1 \left(3(e^{\frac{h}{\tau}} - 1) - h \right) + \tilde{\omega}_2 e^{-\frac{h}{\tau}} \left(h + 3e^{-\frac{h}{\tau}} - 3 \right) \right) + \lambda^{(1)}_0 \left(\tilde{\omega}_1 3(e^{\frac{h}{\tau}} (h - 3) + 3) e^{\frac{h}{\tau}} + \tilde{\omega}_2 2(e^{\frac{h}{\tau}} (h - 2) + 2) e^{\frac{h}{\tau}} \right) + \tilde{\omega}_1 (\lambda^{(1)}_1 + \lambda^{(2)}_1) 3(e^{\frac{h}{\tau}} - 1) \right]
\]

\[
+ 2\lambda^{(2)}_0 (\tilde{\omega}_1 + \tilde{\omega}_2) \left(-h + 2e^{\frac{h}{\tau}} - 2 \right) + \tilde{\omega}_2 \left(\lambda^{(1)}_1 h + \lambda^{(2)}_1 2(e^{\frac{h}{\tau}} - 1) \right) \right].
\]

(40)

Figures 3 and 4 show a numerical simulation for \(JVRP_{t,h} \) and the corresponding realisations of the Hawkes intensities.

We observe that the introduction of a full multivariate jump process with a stochastic intensity has greatly increased the complexity of the dynamics of the VRP. In particular, we observe that this choice of modelling has led us to obtain stochastic dynamics for the jump component. This is an interesting result in its own, and it complements the existing literature, as in Barndorff-Nielsen and Veraart (2013), the authors create a jump model with stochastic VRP component. This is an interesting result in its own, and it complements the existing literature, as we observe that this choice of modelling has led us to obtain stochastic dynamics for the jump intensity has greatly increased the complexity of the dynamics of the VRP. In particular, we finally note that this fully multivariate jump model does not allow us to distinguish anymore between the contribution of single and correlated stocks, as the weight \(w^{(i)} \) is multiplied by all the components of the intensity vector.

5 Summary of results

In this work we provided new insights on the dynamics of the VRP by proposing a new multivariate stochastic model for the dynamics of an equity index. We have proven that it is possible to devise a model consistent with the empirical findings that the VRP of single stocks is negligible, while the VRP originated by the correlation between the stocks exhibits stochastic fluctuations. To achieve this, we can use the diagonal non-Gaussian OU model, adding the Lévy jumps.

Moreover, we provided proofs that in that model the dependence between the assets is the main driver of the VRP, and we explained the mathematical reasons behind this phenomenon. We analysed in detail various alternative methods of embedding a correlation structure within the index, and found that popular stochastic volatility models, like the Wishart model, or the multivariate BNS model, do not match the empirical findings, and may even imply deterministic dynamics for the VRP.
Figure 3: Simulated paths of the intensities from a bivariate Hawkes processes as in Example 4.2 with $\lambda_0^{(1)} = 5, \lambda_0^{(2)} = 10, \beta^{(1)} = \beta^{(2)} = 1, \alpha^{(1,1)} = \frac{1}{5}, \alpha^{(1,2)} = \frac{1}{5}, \alpha^{(2,1)} = 0, \alpha^{(2,2)} = \frac{1}{2}$. As in Figure 1, $t = 10000$ corresponds to $T = 8.78$.

Figure 4: Simulated path of the Hawkes risk premium, computed as in Formula (40), with $h = T/365$ and $\Gamma = 1.2$.
In order to derive the contribution of the dependency between two stocks in the index, Fourier methods have been employed, leading us to obtain an integral representation of the risk premium. This latter formula shows a stochastic behaviour of the correlation risk premium, which can therefore be interpreted as the main factor driving the component of the diffusive variance risk premium of the index due to the diffusion part of the stock prices.

As an answer to the need for a more sophisticated mathematical process that could be used to model stock prices during crises, we propose the class of the self- and mutual exciting Hawkes processes. For the first time in the literature we employ this class of processes in the modelling of an equity index, to allow for a contagion effect within the stocks in the index. We obtain that the stochastic Hawkes intensity drives the jump contribution to the VRP, but it then becomes impossible to split the contribution of single stocks from that of correlated pairs.

In the Appendix, we establish the existence of a risk-neutral structure-preserving equivalent measure for our model, thus ensuring absence of arbitrage. In particular, we characterise the class of measure transformations that preserve the self-affecting structure of the Hawkes process.

We conclude that our work provides a state-of-the-art multivariate modelling framework to analyse the VRP which is theoretically sound and also produces explicit and analytically tractable formulas.

A Background results

A.1 Point processes and intensities

Definition A.1 (Stochastic Intensity). Let N_t be a point process adapted to some filtration \mathcal{F}_t, and let λ_t be a nonnegative \mathcal{F}_t-progressively measurable process such that for all $t \geq 0$: $\int_0^t \lambda_s \, ds < \infty, \mathbb{P} - a.s.$

If for all nonnegative \mathcal{F}_t-predictable process C_t, the equality $\mathbb{E} \left[\int_0^\infty C_s \, dN_s \right] = \mathbb{E} \left[\int_0^\infty C_s \lambda_s \, ds \right]$ is verified, then we say that N_t admits the $(\mathbb{P}, \mathcal{F}_t)$-intensity λ_t.

We will sometimes write $\lambda^\mathbb{P}$ to stress the dependence on the probability measure.

We provide here the statement of Theorem 2.2 in Sokol and Hansen (2012), that allowed us to perform the change of measure in Section E. We employ the same notation as in Definition (E.1).

Theorem A.1. It holds that the process:

$$\mathbb{E} \left(\sum_{i=1}^D \int_0^t \left(\psi_i^{(i)} - 1 \right) \, dN_i^{(i)} \right)$$

is a martingale if there is an $\varepsilon > 0$ such that whenever $0 \leq u \leq t$ with $|t - u| \leq \varepsilon$, one of the following two conditions are satisfied:

$$\mathbb{E} \left[\exp \left(\sum_{i=1}^D \int_u^t \left(\psi_i^s \log \psi_i^s - (\psi_i^s - 1) \right) \lambda_i^s \, ds \right) \right] < \infty \quad \text{or} \quad (41)$$

$$\mathbb{E} \left[\exp \left(\sum_{i=1}^D \int_u^t \lambda_i^s \, ds + \int_u^t \max \left(0, \log \psi_i^s \right) \, dN_i^s \right) \right] < \infty. \quad (42)$$
B Proofs of selected results in Section 3

What follows is an expression for H as in Theorem (3.1).

\[H(\sigma^2_{l_i}, \sigma^2_{l_j}, x, y, t, u) := \]

\[-\exp\left(-ye^{\lambda^i(u-t)\sigma^2_{l_i}}\right) \times \]

\[
\begin{align*}
\exp\left(\lambda^i \int_t^u \varphi_{L(i)} \left(ye^{-\lambda^i(u-s)}\right) ds\right) - \exp\left(\lambda^i \int_t^u \varphi_{L(i)} \left(ye^{-\lambda^i(u-s)}\right) ds\right)
\end{align*}
\]

\[-\exp\left(-ye^{\lambda^j(u-t)\sigma^2_{l_j}}\right) \times \]

\[
\begin{align*}
\exp\left(\lambda^j \int_t^u \varphi_{L(j)} \left(ye^{-\lambda^j(u-s)}\right) ds\right) - \exp\left(\lambda^j \int_t^u \varphi_{L(j)} \left(ye^{-\lambda^j(u-s)}\right) ds\right)
\end{align*}
\]

\[+ \exp\left(-ye^{-\lambda^i(u-t)\sigma^2_{l_i} - xe^{-\lambda^j(u-t)\sigma^2_{l_j}}}\right) \times \]

\[
\begin{align*}
e \left(f^u \varphi_{L(i),L(j)} \left(ye^{-\lambda^i(u-s)}, xe^{-\lambda^j(u-s)}\right) ds\right) - e \left(f^u \varphi_{L(i),L(j)} \left(ye^{-\lambda^i(u-s)}, xe^{-\lambda^j(u-s)}\right) ds\right)
\end{align*}
\]

where $\varphi_{L(i)}$ is the Laplace exponent of L^i, i.e. the logarithm of the Laplace transform of the random variable L^i and similarly for the multivariate Lévy process (L^i, L^j): We denote by $\varphi_{(L^i,L^j)}$ its Laplace exponent.

In Example 3.3 we make use of the following relation, which is the reverse implication of (29):

\[e \left(f^u \varphi_{L(i),L(j)} \left(ye^{-\lambda^i(u-s)}, xe^{-\lambda^j(u-s)}\right) ds\right) = e \left[e^{-yf^u e^{-\lambda^i(u-s)} dL^i, L^j} ds\right]. \]

(44)

B.1 Proof for the multivariate non-Gaussian OU model

Proof of Proposition (3.1). Recall the dynamics (11) of Σ: $d\Sigma_t = (A\Sigma_t + \Sigma_t A^\top) dt + dL_t$. Conditioning upon \mathcal{F}_t and applying conditional Fubini, one gets the following:

\[
E \left[\Sigma_s | \mathcal{F}_t\right] = \Sigma_t + \int_t^s \left(AE \left[\Sigma_l | \mathcal{F}_t\right] + E \left[\Sigma_l | \mathcal{F}_t\right] A^\top\right) dt + (s-t)k.
\]

Taking derivatives with respect to s, we see that the problem of finding an explicit expression for $E \left[\Sigma_s | \mathcal{F}_t\right]$ boils down to solving the following matrix system of linear ODEs:

\[
\left\{
\begin{array}{c}
\frac{d}{ds}E \left[\Sigma_s | \mathcal{F}_t\right] = \left(AE \left[\Sigma_s | \mathcal{F}_t\right] + E \left[\Sigma_s | \mathcal{F}_t\right] A^\top\right) + k
\end{array}\right.
\]

\[
E \left[\Sigma_t | \mathcal{F}_t\right] = \Sigma_t,
\]

(45)

where k is the matrix of the first moments of L, i.e. $E[L^{ij}] = k^{ij}$.

Using the operator $\text{vec}: M_{D}(\mathbb{R}) \rightarrow \mathbb{R}^{D^2}$ that stacks the column of a $D \times D$ matrix into a single vector belonging to \mathbb{R}^{D^2}, we can rewrite the previous system in the following form (see
Wishart process

We immediately see that it is identical to the system of ODEs in (45)

\[\begin{align*}
\frac{d}{ds} \text{vec} \left(\mathbf{E} \left[\mathbf{\Sigma}_s | \mathcal{F}_t \right] \right) &= (\mathbf{I}_D \otimes \mathbf{A} + \mathbf{A} \otimes \mathbf{I}_D) \text{vec} \left(\mathbf{E} \left[\mathbf{\Sigma}_s | \mathcal{F}_t \right] \right) + \text{vec}(\mathbf{k}) \\
\text{vec} \left(\mathbf{E} \left[\mathbf{\Sigma}_t | \mathcal{F}_t \right] \right) &= \text{vec}(\mathbf{\Sigma}_t),
\end{align*} \]

where \(\otimes: M_n(\mathbb{R}) \times M_m(\mathbb{R}) \to M_{nm}(\mathbb{R}) \) is the Kronecker product. If we denote by \(\hat{A} \) the linear operator \(\mathbf{I}_D \otimes \mathbf{A} + \mathbf{A} \otimes \mathbf{I}_D, \) then a solution to the system is given by

\[\begin{align*}
 \text{vec} \left(\mathbf{E} \left[\mathbf{\Sigma}_s | \mathcal{F}_t \right] \right) &= e^{\hat{A}(s-t)} \text{vec} \left(\mathbf{\Sigma}_t \right) + \int_t^s e^{\hat{A}(s-l)} \cdot \text{vec}(\mathbf{k}) \, dl.
\end{align*} \]

In Horn and Johnson (1991) it is proved that \(e^{t\mathbf{\Sigma}} = e^{t\mathbf{A}} \mathbf{\Sigma} e^{t\mathbf{A}^T}, \) see also Barndorff-Nielsen and Stelzer (2007). We can thus go back to the matrix notation and finally obtain:

\[\begin{align*}
 \mathbf{E} \left[\mathbf{\Sigma}_s | \mathcal{F}_t \right] &= e^{A(s-t)} \mathbf{\Sigma}_t e^{A^T(s-t)} + \int_t^s e^{A(s-l)} \cdot \mathbf{k} \cdot e^{A^T(s-l)} \, dl.
\end{align*} \]

\[\square \]

B.2 Proof for the Wishart model

Proof of Lemma 3.1. Recall that formula (10) holds regardless of the chosen model for \(\mathbf{\Sigma} \). We therefore proceed to compute the conditional expectation of \(\mathbf{\Sigma} \) in the Wishart model.

All the \(D^2 \) stochastic integrals in \(\int_0^t \mathbf{\Sigma}_s^2 \, d\mathbf{W}_s \) are local martingales. A sufficient condition for them to be true martingales is that, for \(t \geq 0 \)

\[\mathbf{E} \left[\left[\int_0^t \mathbf{\Sigma}_s^2 \, d\mathbf{W}_s \right] \right] = \mathbf{E} \left[\int_0^t \mathbf{\Sigma}_s \, ds \right] < \infty, \quad (46) \]

see Karatzas and Shreve (1991). For all \(t \geq 0 \), the moment generating function of the integrated Wishart process \(\int_0^t \mathbf{\Sigma}_s \, ds \) is defined on a neighbourhood of 0, hence, the integrated Wishart process admits moments of all order and condition (46) is satisfied for \(t \geq 0 \). An explicit expression for the transform can be found in Gouriéroux (2006), while a detailed discussion for the integrated univariate square root process appears in Dufresne (2001).

Conditioning (13) upon (\(\mathcal{F}_t \)) and applying conditional Fubini leads to:

\[\mathbf{E} \left[\mathbf{\Sigma}_s | \mathcal{F}_t \right] = \mathbf{\Sigma}_t + \int_t^s \left(\mathbf{\Omega}^T + \mathbf{M} \mathbf{E} \left[\mathbf{\Sigma}_t | \mathcal{F}_t \right] + \mathbf{E} \left[\mathbf{\Sigma}_t | \mathcal{F}_t \right] \mathbf{M}^T \right) \, dl, \]

exploiting the fact that the stochastic integrals \(\int_0^s \mathbf{\Sigma}_s^{(i)} \, d\mathbf{W}_s^{(j)} \) are martingales.

Taking, as usual, derivatives with respect to \(s \), (which we can, Lebesgue-a.e.) we obtain the following system of ODEs:

\[\begin{align*}
\frac{d}{ds} \mathbf{E} \left[\mathbf{\Sigma}_s | \mathcal{F}_t \right] &= \mathbf{\Omega}^T + \mathbf{M} \mathbf{E} \left[\mathbf{\Sigma}_s | \mathcal{F}_t \right] + \mathbf{E} \left[\mathbf{\Sigma}_s | \mathcal{F}_t \right] \mathbf{M}^T \\
\mathbf{E} \left[\mathbf{\Sigma}_t | \mathcal{F}_t \right] &= \mathbf{\Sigma}_t.
\end{align*} \]

We immediately see that it is identical to the system of ODEs in (45), therefore we can draw the same conclusions we drew there. In particular, we will have the solution:

\[\begin{align*}
 \mathbf{E} \left[\mathbf{\Sigma}_s | \mathcal{F}_t \right] &= e^{\mathbf{M}(s-t)} \mathbf{\Sigma}_t e^{\mathbf{M}^T(s-t)} + \int_t^s e^{\mathbf{M}(s-l)} \mathbf{\Omega}^T e^{\mathbf{M}^T(s-l)} \, dl.
\end{align*} \]

\[\square \]
C Proofs of the results in Section 4.2

C.1 Proof for the univariate conditional expectation of the Hawkes intensity

Proof of Lemma 4.1. Let \(u \geq t \), then:

\[
\mathbb{E} \left[\lambda_u \bigg| \mathcal{F}_t \right] = \mathbb{E} \left[\lambda_0 + \alpha \int_0^t e^{-\beta(u-l)} \, dN_l \bigg| \mathcal{F}_t \right] = \lambda_0 + \alpha \int_t^u e^{-\beta(u-l)} \, dN_l + \alpha \int_t^u e^{-\beta(u-l)} \mathbb{E} \left[\lambda_l \bigg| \mathcal{F}_t \right] \, dl. \\
(48)
\]

A differentiation with respect to \(u \) gives that the following holds Lebesgue-a.e.:

\[
\frac{d}{du} \mathbb{E} \left[\lambda_u \bigg| \mathcal{F}_t \right] = -\alpha \beta \int_0^t e^{-\beta(u-l)} \, dN_l - \alpha \beta \int_t^u e^{-\beta(u-l)} \mathbb{E} \left[\lambda_l \bigg| \mathcal{F}_t \right] \, dl + \alpha \mathbb{E} \left[\lambda_u \bigg| \mathcal{F}_t \right].
\]

We now note that, from (48),

\[
-\alpha \beta \int_0^t e^{-\beta(u-l)} \, dN_l - \alpha \beta \int_t^u e^{-\beta(u-l)} \mathbb{E} \left[\lambda_l \bigg| \mathcal{F}_t \right] \, dl = -\beta \left(\mathbb{E} \left[\lambda_u \bigg| \mathcal{F}_t \right] - \lambda_0 \right),
\]

so we have that, as already seen for the other processes, \(\mathbb{E} \left[\lambda_u \bigg| \mathcal{F}_t \right] \) satisfies pathwise:

\[
\frac{d}{du} \mathbb{E} \left[\lambda_u \bigg| \mathcal{F}_t \right] = -\beta \left(\mathbb{E} \left[\lambda_u \bigg| \mathcal{F}_t \right] - \lambda_0 \right) + \alpha \mathbb{E} \left[\lambda_u \bigg| \mathcal{F}_t \right] = (\alpha - \beta) \mathbb{E} \left[\lambda_u \bigg| \mathcal{F}_t \right] + \beta \lambda_0, \\
(49)
\]

with the initial condition: \(\mathbb{E} \left[\lambda_t \bigg| \mathcal{F}_t \right] = \lambda_t := \lambda_0 + \alpha \int_0^t e^{-\beta(t-l)} \, dN_l \). The only solution is then given by the following formula:

\[
\mathbb{E} \left[\lambda_u \bigg| \mathcal{F}_t \right] = -\beta \lambda_0 + e^{(u-t)(\alpha - \beta)}(\beta \lambda_0 + (\alpha - \beta) \lambda_t) \frac{1}{\alpha - \beta}.
\]

C.2 Notation and results for the conditional expectation of the multivariate Hawkes process

Our aim is to compute \(\mathbb{E} \left[\lambda_u^{(i)} \bigg| \mathcal{F}_t \right] \), for \(u \geq t \) and for each \(i \in \{1, 2, \ldots, D\} \); in order to do so, it is convenient to stack all these quantities into a \(D \)-dimensional vector \(\mathbf{V}_u(t) \), whose generic \(i \)-th component is \(V_u^{(i)}(t) = \mathbb{E} \left[\lambda_u^{(i)} \bigg| \mathcal{F}_t \right] \). We will need some more notation:

\[
U_u^{(i)}(t) = \int_t^u \mathbb{E} \left[e^{-\beta^{(i)}(u-l)} \lambda_l^{(i)} \bigg| \mathcal{F}_t \right] \, dl, \quad A^{(i,j)} = \alpha^{(i,j)}, \quad A^{(j,i)} = \beta^{(j)} \alpha^{(i,j)},
\]

\[
K_u^{(i)}(t) = \int_0^t e^{-\beta^{(i)}(u-l)} \, dN_l^{(i)}, \quad \Lambda_0 = \left(\lambda_0^{(i)}, \lambda_0^{(i)}, \ldots, \lambda_0^{(D)} \right) \top, \quad \Lambda_t = \left(\lambda_t^{(1)}, \lambda_t^{(i)}, \ldots, \lambda_t^{(D)} \right) \top.
\]

We can now establish the following result:

Proposition C.1. If the matrix of weights \(\mathbf{A} \) is invertible, then the vector of conditional expectations whose \(i \)-th component is \(\mathbb{E}^\mathbb{P} \left[\lambda_u^{(i)} \bigg| \mathcal{F}_t \right] \) has the form:

\[
\mathbf{V}_u(t) = \int_t^u \left[e^{(u-s)(-\mathbf{A}^\beta_1 + \mathbf{A}^\beta_2)} \mathbf{A}^\beta_2 \mathbf{A}^{-1} \Lambda_0 \right] \, ds + e^{(u-t)(-\mathbf{A}^\beta_1 + \mathbf{A}^\beta_2)} \Lambda_t,
\]

where \(e^\mathbf{A} \) denotes the matrix exponential.
D Hawkes change of intensity

In this section we discuss how to change a given intensity vector of a Hawkes process in such a way to obtain another Hawkes intensity via an equivalent measure change. The following theorem constitutes the fundamental theoretical motivation that justifies our derivation of the Hawkes risk premium result.

Theorem D.1 (Characterisation of Hawkes-structure preserving changes of measure). Let N be a Hawkes process under \mathbb{P} with intensity λ^P, satisfying:

$$d\lambda^P_t = \beta(\lambda^P_0 - \lambda^P_t) dt + \alpha dN_t$$

and let λ^Q be another Hawkes intensity, that satisfies the SDE:

$$d\lambda^Q_t = \tilde{\beta}(\lambda^Q_0 - \lambda^Q_t) dt + \tilde{\alpha} dN_t.$$ \hspace{1cm} (52)

Here $\alpha, \tilde{\alpha}, \beta, \tilde{\beta}, \lambda^P_0, \lambda^Q_0$ are all strictly positive real numbers. Then, there exists a probability measure Q, equivalent to \mathbb{P}, under which N is a Hawkes process with intensity λ^Q. The density process dQ/dP is

$$\left. \frac{dQ}{dP} \right|_{\mathcal{F}_t} = \mathcal{E} \left(\int_0^t (H_s - 1) d\tilde{N}_s^P \right),$$ \hspace{1cm} (53)

where $H_t := \frac{\lambda^Q_t}{\lambda^P_t}$ and has the dynamics:

$$dH_t = \left[\frac{1}{\lambda^P_t} \left(\tilde{\beta}(\lambda^Q_0 - \lambda^Q_t) - \beta(\lambda^P_0 - \lambda^P_t) \right) \right] dt + \frac{1}{\lambda^P_t} \left[\tilde{\alpha} - \frac{\alpha}{\lambda^P_t} - \frac{\alpha \tilde{\alpha}}{\lambda^P_t} \right] dN_t.$$ \hspace{1cm} (54)

Remark D.1. We wish to stress that we use the same notation for the process N under the two measures \mathbb{P} and Q, although the process possesses different characteristics under the two measures. The relation between the characteristic triplets of a semimartingale under two different (locally absolutely continuous) measures is provided by the Girsanov’s theorem for semimartingales, (see Jacod and Shiryaev (1987) for a reference). In particular, the compensator of N under \mathbb{P} is $\int_0^t \lambda^P_s ds$, while under Q is $\int_0^t \lambda^Q_s ds$. We will therefore denote $\tilde{N}^P := N_t - \int_0^t \lambda^P_s ds$, and $\tilde{N}^Q := N_t - \int_0^t \lambda^Q_s ds$.

The next example shows a concrete and easy situation where it is possible to obtain another Hawkes intensity from a given one. Its proof can be found in the Appendix.

Example D.1. Let Λ be a D-variate stochastic intensity process of a Hawkes process, following the SDE in (31). Let $\Gamma > 0$ be a constant and consider the scaled vector: $\Lambda^Q_t = \Gamma \Lambda_t$. Then, also Λ^Q is the intensity process of a Hawkes process, with parameters: $\beta^{(i)Q} = \beta^{(i)}, \lambda^{(i)Q}_0 = \Gamma \lambda^{(i)}_0, \alpha^{(i,j)Q} = \Gamma \alpha^{(i,j)}$.

Proof of Theorem D.1. The proof of Theorem D.1 is divided into two steps. In the first one we will prove that an equivalent measure exists, and that the density is given by the stated stochastic exponential (53). In the second step we will give an explicit representation of the process H in (53).
First step The existence of the change of measure builds upon a result in Sokol and Hansen (2012). Theorem 2.2 and Corollary 2.3 in that work state sufficient conditions for the change of measure to be given by the exponential martingale \([53]\). As an application of that, they show in Example 4.6 the existence of a change of measure between \(\lambda \equiv 1\) and \(\lambda^Q = \varphi(\int_0^t h(t - l) \, d\bar{N}_l)\), for a bounded \(h\), and \(\varphi(x) \leq |x|\). In our specification of the Hawkes intensity, we assume \(h(t - l) = \alpha \exp(-\beta(t - l))\), which is trivially bounded for \(0 \leq t \leq t\), but we have \(\varphi(x) = \lambda_0 + x\). It is straightforward to extend that result to a case where \(\varphi(x) \leq K + |x|\), for \(K > 0\): Indeed, let \(h(x) < C\), then:

\[
\lambda_t^Q = K + \int_0^t h(t - l) \, d\bar{N}_l < K + CN_t,
\]

and the result follows from Example 4.3 in that work. Our existence result is now proven by just observing that, for the same reason, there exists a change of measure bringing an intensity always equal to 1 into \(\lambda^P\), and it is therefore possible to build a change of measure bringing \(\lambda^P\) into \(\lambda^Q\).

Second step The dynamics of \(H\) are obtained through Itô’s formula for semimartingales. Firstly, recall Itô’s product rule:

\[
d(H_t) = d \left(\lambda_t^Q \cdot \frac{1}{\lambda^P_t} \right) = \lambda_t^Q \, d \left(\frac{1}{\lambda^P_t} \right) + \frac{1}{\lambda^P_t} \, d(\lambda_t^Q) + d(\lambda_t^Q) \, d \left(\frac{1}{\lambda^P_t} \right).
\]

Since \(\Delta \lambda_t^P = \alpha 1(\Delta N_t = 1)\), Itô’s formula gives:

\[
d \left(\frac{1}{\lambda_t^P} \right) = - \frac{1}{(\lambda^P_{t-})^2} \left(\beta \left(\lambda^P_0 - \lambda_t^P \right) \, dt + \alpha \, dN_t \right) + \left(\frac{1}{\lambda^P_t} - \frac{1}{\lambda^P_{t-}} + \frac{1}{(\lambda^P_{t-})^2} \alpha \right) \, dN_t = - \frac{1}{(\lambda^P_{t-})^2} \left(\beta \left(\lambda^P_0 - \lambda_t^P \right) \, dt \right) + \left(\frac{1}{\lambda^P_t} - \frac{1}{\lambda^P_{t-}} \right) \, dN_t.
\]

Algebra shows that

\[
\left(\frac{1}{\lambda^P_t} - \frac{1}{\lambda^P_{t-}} \right) \, dN_t = - \frac{\alpha}{\lambda^P_t \lambda^P_{t-}} \, dN_t,
\]

so we have:

\[
d \left(\frac{1}{\lambda_t^P} \right) = - \frac{1}{(\lambda^P_{t-})^2} \left(\beta \left(\lambda^P_0 - \lambda_t^P \right) \, dt \right) - \frac{\alpha}{\lambda^P_t \lambda^P_{t-}} \, dN_t.
\]

As a consequence:

\[
d \left(\lambda_t^Q \right) \, d \left(\frac{1}{\lambda_t^P} \right) = - \frac{\alpha \tilde{\alpha}}{\lambda^P_t \lambda^P_{t-}} \, dN_t.
\]

An easy rearrangement of the terms in Itô’s product rule finally yields:

\[
d \left(\lambda_t^Q \right) \, d \left(\frac{1}{\lambda_t^P} \right) = \left[\frac{1}{\lambda^P_{t-}} \left(\beta (\lambda^Q_0 - \lambda^P_t) - \beta \frac{\lambda^Q_t}{\lambda^P_{t-}} (\lambda^P_0 - \lambda^P_t) \right) \right] \, dt + \frac{1}{\lambda^P_{t-}} \left[\tilde{\alpha} - \frac{\lambda^Q_t}{\lambda^P_{t-}} \alpha - \frac{\alpha \tilde{\alpha}}{\lambda^P_t} \right] \, dN_t.
\]

\(\square\)
Proof of Example D.1. The proof is trivial and follows from the SDE that any of the components of \(\Lambda^Q \) satisfies. Let \(i \in \{1, \ldots, D\} \), then

\[
d \left(\lambda^Q_t(i) \right) = d \left(\Gamma \lambda^Q_t(i) \right) = \Gamma \beta(i) \left(\lambda^Q_0(i) - \lambda^Q_t(i) \right) dt + \Gamma \sum_j \alpha^{(i,j)} dN^Q_t(j).
\]

If we call \(\beta(i)^Q = \beta(i), \quad \lambda^Q_0(i) = \Gamma \lambda^Q_0(i) = \Gamma \alpha^{(i,j)}, \) then the SDE becomes:

\[
d \left(\lambda^Q_t(i) \right) = \beta(i) \left(\lambda^Q_0(i) - \lambda^Q_t(i) \right) dt + \sum_j \alpha^{(i,j)} dN^Q_t(j),
\]

thus proving the claim.

E Existence of a structure preserving change of measure

E.1 Leverage and Multivariate non-Gaussian OU volatility

In this section we state the result of existence of a structure preserving \(\mathbb{Q} \), which we previously assumed in the computations of the variance risk premia, in the special case where the volatility matrix has a multivariate non-Gaussian OU specification and in presence of both a Lévy process and the Hawkes process in the dynamics of the stocks.

Throughout this section, we will denote by \(\mathbb{E}(X) \) the stochastic exponential of the semimartingale \(X \), defined to be the only process \(Y \) that satisfies the SDE:

\[
dY_t = Y_t \, dX_t.
\]

A structure preserving change of measure for the multivariate BNS model exists and is proved in Muhle-Karbe et al. (2012). With the introduction of a multivariate Hawkes process, we need to extend their result. We introduce the following:

Definition E.1. Assume we are given a \(D \)-dimensional point process \(N \) with nonnegative, predictable and locally bounded stochastic intensity \(\Lambda \), and let \(\Lambda^Q \) be another nonnegative, predictable and locally bounded process.

Then \(\Lambda^Q \) is said to be \(\Lambda \)-compatible if, for any \(i \in \{1, \ldots, D\} \), it holds that \(\lambda^Q_t(i) = 0 \) whenever \(\lambda_t(i) = 0 \) and the process \(\psi_t(i) := \lambda^Q_t(i) / \lambda_t(i) \) is locally integrable.

The change of intensity described in Theorem D.1 meets both the compatibility and the local integrability conditions. Indeed, the natural choice of stopping times to consider are the jump times \(\{\tau_k\}_{k \in \mathbb{N}} \) of \(N \). The stopped processes \(\psi_{\tau_k}(i) \) are bounded, and hence, for all \(i \in \{1, \ldots D\}, \psi(i) \) is locally integrable.

An application of Theorem 2.2 in Sokol and Hansen (2012) (whose statement can also be found in the Appendix, Theorem A.1) gives us that the martingale \(\mathbb{E} \left(\sum_{i=1}^D \int_0^t (\psi_t(i) - 1) dN^Q_t(i) \right) \) defines a new probability under which \(N \) is a point process with Hawkes intensity given by (52). An equivalent martingale measure for our model (1) is then given by the product measure between one for the multivariate BNS model in Muhle-Karbe et al. (2012) and the one just described above. We can formally collect these observation in the following:
Theorem E.1. Let a price model be given by $S^{(i)}_t = \exp(X^{(i)}_t)$, for $i \in \{1, \ldots, D\}$, where the dynamics of $X^{(i)}$ are modelled via the multivariate specification:

$$
\begin{align*}
 dX^{(i)}_t &= (\mu + \beta(\Sigma_t)) \, dt + \Sigma^{(i)}_t \, dW_t + \rho(\Sigma_t) \, dL_t + \zeta_t \, dN_t, \\
 d\Sigma_t &= (A \Sigma_t + \Sigma_t A^\top) \, dt + dL_t
\end{align*}
$$

where $\rho: \mathbb{R}^{D \times D} \to \mathbb{R}^D$ is linear. Let another Hawkes intensity Λ^Q, compatible with Λ, be given, and let ψ be such that

$$
\psi^{(i)}(x, t) = 1_{x^{(i)}=1} \frac{\lambda^Q,i}{\lambda^P,i}.
$$

Further, let $\chi: S_D^+ \to (0, \infty)$ be such that:

$$
\int_{S_D^+} \left(\sqrt{\chi(X)} - 1\right)^2 \nu(dX) < \infty, \quad \text{and} \quad \int_{\|X\|>1} \exp(\psi^{(i)}(X) \nu^X(X) dX) < \infty, \quad i \in \{1, \ldots, D\},
$$

where for $B \in \mathcal{B}(S_D^+)$, $\nu^X(B) = \int_B \chi(X) \nu(dX)$.

Define

$$
\varphi = -\Sigma^{-\frac{1}{2}} \left(\mu + \beta(\Sigma_t) + \frac{1}{2} \left(\Sigma^{11}_t \ldots \Sigma^{DD}_t\right) \right) + \left(\int_{S_D^+} \exp(\psi^{(i)}(X) \nu^X(X) dX) \right) + \left(\psi^{(1)}_t \ldots \psi^{(D)}_t\right) - 1
$$

Then the process

$$
\vartheta = \mathcal{E} \left(\varphi \cdot \mathcal{W} + (\mathcal{X} - 1) \ast (\mu^Z - \nu^Z) + (\psi - 1) \ast (\nu^N - \mu^N)\right)
$$

defines a new equivalent martingale probability measure Q via $\frac{dQ}{dp} = \vartheta_T$, under which the log-price process follows:

$$
\begin{align*}
 dX^{(i)}_t &= \left(r - \frac{1}{2} \Sigma^{ii}_t - \int_{S_D^+} \exp(\psi^{(i)}(X) - 1) \, d\nu^X(dX) - Z^{(i)}_t \lambda^{(i)}_t \psi^{(i)}_t\right) \, dt + \\
 &\quad \left(\Sigma^{(i)}_t \, dW^Q_i\right) + \rho^{(i)}(dZ_t) + \zeta^{(i)}_t \, dN^{(i)}_t, \\
 d\Sigma_t &= (A \Sigma_t + A^\top \Sigma_t) \, dt + dL_t,
\end{align*}
$$

where W^Q is a Q-Brownian motion, L is an independent Lévy process with Lévy measure ν^X, and N is an independent Hawkes process with intensity Λ^Q.

Acknowledgements

We wish to thank Dan Crisan and Alexander Sokol for helpful comments on an earlier draft of this paper. In addition, A. Granelli gratefully wishes to acknowledge financial support from Imperial College London, Department of Mathematics. A.E.D. Veraart acknowledges financial support by a Marie Curie FP7 Integration Grant within the 7th European Union Framework Programme.
References

