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Abstract  

It has long been established that gradients in the Alfvén speed, and in particular the plasma 

density, are an essential part of the damping of waves in the magnetically closed solar corona 

by mechanisms such as resonant absorption or phase mixing. While models of wave damping 

often assume a fixed density gradient, in this paper the self-consistency of such calculations 

is assessed by examining the temporal evolution of the coronal density. It is shown 

conceptually that for some coronal structures, density gradients can evolve in a way that the 

wave damping processes are inhibited. For the case of phase mixing we argue that: (a) wave 

heating cannot sustain the assumed density structure and (b) inclusion of feedback of the 

heating on the density gradient can lead to a highly structured density, although on long 

timescales. In addition, transport coefficients well in excess of classical are required to 

maintain the observed coronal density. Hence, the heating of closed coronal structures by 

global oscillations may face problems arising from the assumption of a fixed density gradient 

and the rapid damping of oscillations may have to be accompanied by a separate (non-wave 

based) heating mechanism to sustain the required density structuring. 
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1. Introduction 

Coronal heating due to the dissipation of magnetohydrodynamic (MHD) waves has a long 

history (e.g. Nakariakov and Verwichte, 2005; De Moortel and Nakariakov, 2012; Arregui, 

2015). However, in a uniform medium the timescale for dissipating the wave energy for 

classical models of viscous or resistive transport is very slow, being proportional to the 

viscous and magnetic Reynolds number (Re and Rm), both of which are >> 1. The problem is 

particularly acute for linear shear Alfvén waves when the compressive components of the 

viscous stress tensor vanish (Braginskii, 1965). 

Through a substantial body of literature, this well-known difficulty has been addressed in two 

ways. The first, originating in the fusion literature (e.g. Tataronis and Grossmann, 1973), is 

that for a structured corona in MHD equilibrium, a resonance exists between a “global” mode 

whose frequency reflects the large-scale plasma and magnetic structure, and a local (shear) 

Alfvén wave that satisfies AVk.  at some location (a resonant layer), where k is the wave-

vector, 04/ 0A BV   the Alfvén speed, and subscript “0” denotes equilibrium quantities. 

Energy is fed into this layer at a rate independent of the value of the diffusion coefficients, so 

giving an effective damping of the global mode (e.g. Ionson, 1978; Rae and Roberts, 1981, 

Lee and Roberts, 1986; Ruderman and Roberts, 2002; Goossens et al, 2011). However, to 

heat the atmosphere, dissipation of the wave energy must still occur within the layer and is 

commonly assumed to happen on a similar timescale to the damping of the global mode. In 

reality, energy will build up in the layer (e.g. Ofman et al, 1994, 1995), leading to large 

amplitude oscillations and “something happens” to dissipate the (shear) Alfvén wave. In 

numerical simulations, “something” is strong diffusion, artificially enhanced over its real 

value by several orders of magnitude. 

The second process, phase mixing of shear Alfvén waves (Heyvaerts & Priest, 1983: 

hereafter HP83), can result in effective dissipation, though again the diffusion coefficients 

need to be enhanced over classical values. For the closed coronal structures (loops) that we 

will be concerned with, the presence of a gradient in Alfvén speed transverse to both the 

velocity and magnetic field of the (standing) wave, and its wave-vector, means that as time 

increases, neighbouring waves become out of phase, developing sharp spatial gradients. 

HP83 showed that the dissipation time scales as the cube root of Rm and Re and for typical 

values this is a significant enhancement over the damping of waves in a uniform medium. 
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A gradient in the Alfvén speed is essential for both resonant absorption and phase mixing to 

operate. With phase mixing, the field must be locally straight, otherwise coupling to other 

modes arises (Parker, 1991). For a low-beta corona, this implies that the magnetic field 

strength is approximately constant, so that the Alfvén speed gradient is due to a changing 

density. Most studies of resonant absorption in the solar literature assume that the resonance 

is obtained by a having a density gradient in a uniform field, so that the condition in Cartesian 

geometry is )(4/ 00 reszz xxBk   , with the magnetic field in the z direction and xres 

the location of the resonant layer. However, resonant absorption can also occur for constant 

density when there is a shear in the magnetic field, and then the resonant condition is

   000 4/)(  reszzresyy xxBkxxBk   (e.g. Poedts et al, 1990). Note that while it is 

often assumed that the coronal field varies smoothly over the observed loop dimension, the 

density gradient can be more local. These conditions translate readily to the commonly used 

cylindrical geometry. 

Within the framework of MHD, and assuming a degree of symmetry, the freedom exists to 

choose the density and magnetic field profiles as long as equilibrium is maintained. However, 

it is well known that in the magnetically closed corona, the density is directly related to the 

magnitude of the heating (e.g. Klimchuk, 2006; Reale, 2014) and this opens up important 

questions for wave heating. Numerical models of wave heating typically pose an initial value 

problem in which waves are injected from the chromosphere into a fixed (transverse) density 

profile involving a transition from low to high density. Here, the high-density region must be 

sustained by some form of coronal heating. One option is that this occurs via a form of non-

wave heating (e.g. small-scale magnetic reconnection). The wave calculations will then 

proceed as advertised, but with their role in coronal heating being small. Alternatively, if the 

waves are responsible for heating, the assumed density profile must be consistent with the 

density structure implied by wave heating. If that is not the case, the well-known 

phenomenon of coronal draining will occur (e.g. Bradshaw & Cargill, 2010), leading to a 

gradual decline in the enhanced density, in turn changing the plasma conditions in the layer 

where heating is anticipated to occur. A related issue is how any evolution of the density 

changes the conditions in which heating must operate, and whether such feedback can change 

wave dissipation properties: Klimchuk (2006) offered a preliminary discussion.  

This paper addresses these aspects by use of simple examples that conceptually demonstrate 

the form of behaviour that can be expected. Although large scale (future) MHD numerical 
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models may be able to (further) quantify these effects, the proof of concept set out in the 

current paper indicates inherent, fundamental difficulties for wave based heating 

mechanisms. Section 2 summarises briefly how density gradients enter the calculations for 

wave damping due to resonant absorption and phase mixing. Section 3 assesses the 

sustainability of the density profiles and Section 4 examines feedback between heating and 

density. The Appendix, which will be referred to throughout the paper, contains a discussion 

of classical and anomalous dissipation (diffusion) coefficients. 

 

2.  Damping Rates 

In the rest of the paper, we discuss wave heating for a series of loop parameters summarised 

in Table 1. The lengths, plasma parameters and magnetic field strengths (rows 3 – 6) 

correspond to (1) short loops, perhaps in the quiet Sun, (2) typical active region values (e.g. 

Warren et al., 2012), (3) the long (flare-induced) oscillating loops originally identified by 

Nakariakov et al (1999), and (4) small structures such as X-ray bright points. [Bracketed 

quantities for case 3 are discussed in Section 3.2].  

The damping of standing shear Alfvén waves by phase mixing was discussed by HP83 and 

Browning and Priest (1984) for Cartesian geometry. The wave is confined to oscillate 

between two photospheric boundaries of a magnetically closed structure such as a coronal 

loop of total length 2L. The loop axis is assumed to lie in the z-direction along the 

background magnetic field, the wave magnetic and velocity components are in the y-direction 

and the density gradient is in the x-direction. Under these conditions the Alfvén wave is 

damped (and dissipated) according to (e.g. HP83, Browning and Priest, 1984):  

  txzkxttxvtxv Pyy )(sin)sin())(/(exp)0,(),( ||

3      (2.1) 

with k|| = /L to represent a standing wave, the magnetic field follows from Faraday’s law 

and the characteristic damping time for phase mixing is: 

  3 2
//6 dxdtP         (2.2) 

with  = m+ v, the sum of the resistive and viscous damping coefficients (see the Appendix 

for a discussion of these),  = qVA(x)/2L, q is the mode number, L the loop half-length (we 

will use this definition throughout the paper), and for a uniform magnetic field d/dx = -
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(d/dx)/2. Note that q = 1 corresponds to a mode with wavelength 4L (referred to as the 

global mode). For “classical” transport, tP is large (Table 1, row 9 and Appendix), typically 

tens of thousands of seconds or more. [In Table 1, plasma quantities are defined as being 

in the high-density region.] 

For resonant absorption we consider the straight field case for the well-studied cylindrical 

loop geometry. If there is a smooth density profile linking high and low density regions (i 

and e respectively) through a layer of width l, the global mode feeds energy into the layer at 

an approximate rate (e.g. Goossens et al, 1992; Ruderman and Roberts, 2002): 

W

ei

ei
R t

l

a
t

)1/(

)1/(2











     (2.3) 

where a is the transverse scale of the global oscillation (typically assumed to be a loop radius 

so that a/L is roughly the aspect ratio of the loop), and tW ~ 23/2L(1 + e/i)
1/2/VA is the period 

of the global mode (Nakariakov et al., 1999; Ruderman and Roberts, 2002) with the Alfvén 

speed determined by i. The wavelength of this global (fundamental) mode is twice the loop 

length1. Typical values of tW and tR for i >> e and a/l = 10 are given in Table 1, rows 7 and 

8. The damping times lie between 100 and 2000 sec., with the largest value for the longest 

loops. Shorter damping times, as suggested by Nakariakov et al (1999) and Nakariakov and 

Ofman (2001) for long loops, can be obtained by adjusting the parameters.  

 

Note that the expressions for tW and tR (Eq 2.3) give the period and damping time for the 

resonantly-damped, fundamental (radial) mode of a thin flux tube. Whilst such a single-

frequency driver has one resonant layer, a broad-band spectrum may have multiple 

resonant layers, all within the width l (e.g. De Groof & Goossens 2002). The results in 

our paper apply to the scenario of a single, fixed frequency. For a broadband driver, the 

situation may well be somewhat different; although the supporting plasma structure 

may be changing, resonant absorption will continue to occur, although likely at varying 

positions. 

 

                                                           
1 Expression 2.3 assumes a specific density profile (Ruderman and Roberts, 2002, Eq 71). 

Other profiles lead to small changes in the numerical factors. Also Soler et al (2013) have 

shown that the general form of (2.3) holds for values of l/a as large as 0.5. 
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Although using different geometries, both of the above examples illustrate wave-based 

heating underpinned by a local density gradient. Finally, we point out that we are equating 

the wave damping time due to phase mixing or resonant absorption with the timescale for 

plasma heating. This can be considered to be a best case scenario, in the sense that clearly no 

(wave) heating can occur before (substantial) wave damping occurs. If there is a lag between 

the wave damping and the actual plasma heating, the conclusions of Section 3 will be 

strengthened. 

 

3.  The relation between wave damping and density structures 

In most models of wave damping due to phase mixing and resonant absorption, a stationary 

density gradient is imposed, although slowly varying densities are also now being considered 

in some problems (e.g. Morton et al., 2010; Williamson and Erdelyi, 2014a,b). However, it 

was noted in the Introduction that any density structuring in the closed corona is associated 

with variable levels of coronal heating. This Section asks whether these imposed density 

gradients are consistent with the energy deposited due to wave heating, and how a temporally 

evolving (transverse) density profile changes the nature of wave damping. We again 

emphasise that we are addressing this from the point of view of an initial value problem 

where a density gradient is assumed to exist, and waves are injected into it. 

3.1 Are assumed density structures compatible with wave heating? 

As a simple example, consider steady heating. In this case, well-known scaling laws (e.g. 

Craig et al. 1978; Hood and Priest, 1979) lead to the following relations between the coronal 

plasma and heating per unit volume (H)2:  

T7/2 ~ HL2 ,  nL~T(7-2)/4,  n ~H(7-2 L-2/7    (3.1) 

where a radiative loss 
TT  )(  is assumed (see e.g. Klimchuk et al, 2008). Typical 

values of  lie between -½ and -3/2: for the former arises the familiar result T ~ n1/2 and 

unless otherwise stated we assume  = -1 and  = 4 10-16 in c.g.s. units. So a high-density 

region requires more heating if it is to be in static equilibrium.  

                                                           
2 Note that these relations arise from an exact solution of the one-dimensional static energy 

equation (e.g. Martens, 2010), with the details of the integration and boundary conditions 

determining the constants in the scalings. 
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For the density profiles used in contemporary calculations of resonant absorption and phase 

mixing, heating is focussed either at the resonance layer or in the vicinity of the point of 

maximum density gradient, respectively, rather than in the high density regions. Figure 1 

shows some of the consequences of this in a simple example of phase mixing. The basic 

parameters are as in Case 1 of Table 1, though the results are generic. Throughout the paper 

we assume an initial density profile of the form (solid line in Fig 1): 

 }/)tanh{(1)(2/(1)( 10 scxxxfnxn     (3.2) 

and set n0 = 108 cm-3, f = 4, x1 = 108 cm, xsc = 107 cm and L =  2 109 cm. For the case of phase 

mixing which we now discuss, the wave propagates in the z direction, with magnetic field 

and velocity perturbations in the y-direction.  Note also that locally, the density profile in a 

thin layer is independent of whether this layer forms the boundary in a Cartesian or a 

cylindrical system and hence we can also use the same density profile (eqn 3.2) for resonant 

absorption, as in Section 3.2. 

We now use (2.1) and (2.2) to calculate the heating associated with phase mixing in the 

density profile (3.2). Eq (2.1) is averaged over a wave period and the loop length, so that the 

decrease in wave kinetic energy as a function of time is then 

  32

0 ))(/(2exp1)()(2/1 xttxvx py   where <vy0> denotes the averaged initial velocity. 

For this example, we use an initial averaged wave amplitude of 30 km/s, but the result is 

generic. Since a shear Alfven wave has equal kinetic and magnetic energy, the wave energy 

(kinetic + magnetic) lost over time is   32

0 ))(/(2exp1)()(),( xttxvxtxE pyw    which 

in turn determines a heating rate. To calculate H for use in (3.1), we sum Ew over 

2min(tP) to obtain an average heating rate. [Note that the diffusion is enhanced by 106 in 

order to give damping times of interest (see Section 4.1 and Appendix).] The density 

associated with this heating then follows from the scaling laws (3.1) (dashed line in Figure 

1). [Note that in order to avoid T and n becoming zero, a weak constant background heating 

is imposed, which is added to the wave heating. This background heating is taken to be 10-

2H(x=0), as given by (3.1).] Clearly the two density profiles differ considerably (note that the 

two profiles have been normalised to their respective maxima). The new density profile 

requires a mass flow to and from the chromosphere along the magnetic field, as discussed by, 

for example, Antiochos and Sturrock (1978) and Klimchuk et al (2008). The flow is of order 

15 – 30 km/s depending on the specific situation. A similar conclusion would hold for 
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resonant absorption (when considering a single-frequency driver): the heating at the 

resonant layer (for example, half way through the density gradient) will give a density spike 

there, while the rest of the loop is unheated (e.g. Ofman et al, 1998). Thus the initial imposed 

density profile is incompatible with the density implied by the wave heating. 

3.2 Temporal evolution of an imposed density structure 

Eq (3.1) is limited in its assumption of an instantaneous adjustment of the density to the wave 

heating. In reality, a loop would not evolve immediately from one density structure to another 

and it is important to see how the temporal development of the density structure can impact 

wave damping. We discuss the evolution of a prescribed density profile using the Enthalpy 

Based Thermal Evolution of Loops (EBTEL) approach (Klimchuk et al., 2008; Cargill et al, 

2012a,b, 2015), an approximate zero-dimensional model that treats the corona and transition 

region (TR) as separate entities, matched at the boundary between them. Assuming symmetry 

about the loop apex, the coronal density and pressure evolve according to: 

  HRR
Ldt

dp
trc 



1

1

1


 ,     

 
 trc RF

LkTL

nv

dt

dn



 0

0

0

2

1




  (3.3) 

where p, n and T are coronal averages, taken to be the same as the assumed (uniform) plasma 

distribution along the loop axis used in wave calculations. LTF ac /)7/2( 2/7

00   is the heat 

flux at the top of the TR, LTnRc )(2 the integrated coronal radiation, Rtr the integrated 

TR radiation, subscript “0” denotes a quantity at the top of the TR, and subscript “a” a 

quantity at the loop apex. The temperature follows from the equation of state. Solving this set 

of equations requires the specification of three (semi-)constants that are defined as 

ctr /R = RC1 , 
aTTC /2   and aTTC /03  , as discussed fully in Klimchuk et al (2008) and 

Cargill et al (2012a). C2 and C3 can be taken as constant, with values of 0.9 and 0.6, 

respectively. C1 is, in the absence of gravity, 2 for equilibrium, static loops and 0.6 during 

radiative cooling. 

The study has two parts. First, we examine how the facilitators of damping, a density gradient 

in the case of phase mixing and the location of the resonant layer for resonance absorption, 

change as an imposed density structure [n(x)] evolves in the absence of heating. For current 

wave heating models to be valid, the density structure must remain approximately unchanged 

over the time required for wave damping to become effective. In Section 4 we discuss how 

heating might operate in such an evolving density structure. 
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Consider a loop that is in equilibrium according to (3.1) and switch off the heating. This 

models the situation in the usual initial value problem where a coronal density structure is 

imposed, and waves are then introduced into the plasma. In the absence of any wave heating, 

the loop cools and drains through four phases: (i) first conduction and radiation both 

contribute but, as the temperature falls, (ii) radiation becomes dominant with T ~ n2. This 

phase is characterised by a slow subsonic downflow whose associated enthalpy flux powers 

the TR radiation (e.g. Reale et al. 1993; Bradshaw and Cargill, 2010). Cargill and Bradshaw 

(2013) argued that at a critical temperature of order 1 MK for short loops, this phase breaks 

down and phase (iii) begins, characterised by a rapid temperature fall with a slowly varying 

density. The onset is determined by the inability of sound waves to sustain a subsonic flow as 

the temperature falls. During this phase, the corona becomes more over-dense, so cannot be 

sustained in hydrostatic equilibrium, and in phase (iv) drains rapidly. Although it is the 

density structure that is important for wave damping and/or dissipation, the temperature 

evolution is also of importance for the onset of phase (iii). We will be mainly concerned with 

the duration of phase (ii). 

We again (locally) consider the boundary density profile is given by (3.2), so that there is a 

density change of a factor five going from left to right (see Figure 1). We again stress that the 

cooling calculation is independent of whether the loop boundary is a slab or a cylinder. Two 

sets of initial conditions for the temperature are considered: one where the temperature is 

assumed to be constant with the value given in Table 1 (Figure 2) and a second where it is 

related to the density through Eq (3.1) (Figure 3). The EBTEL approach allows us to study 

spatially well-resolved transverse density structures quickly. Equations (3.3) are solved 

at 2000 points in the x-direction for 1000 seconds. This takes a few minutes on a laptop.  

The results for cases 1, 2 and 4 (see Table 1) are quantitatively similar, so only Case 1 is 

shown. Case 3 is discussed separately. In Figures 2 and 3, the top row shows the evolution of 

the density and temperature as a function of time. The dashed line on the right panel is the 

critical temperature for the onset of catastrophic cooling (Eq. 5 of Cargill and Bradshaw, 

2013). The curves are plotted every 100 sec, with both T and n decreasing with time. The two 

plots in the second row show the period of the global mode (left) and the damping time 

(right) from Ruderman and Roberts (2002) and Section 2, assuming that these quantities can 

adjust to the evolution of the density. In practice this is done by calculating e and i from the 

hydrodynamic EBTEL model (Eq 3.3) and substituting these into the expressions for tW and 

tR from Section 2.2. (Note that the damping times for phase mixing, as given by Eq (2.2), 
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would generally be considerably longer but would qualitatively show similar behaviour.) The 

last row shows the maximum value of the density gradient (left) and the location of the 

resonant point with respect to its initial value (x1) which is located at the mid-point of the 

density gradient (right). The latter is calculated by noting that the resonant condition is given 

by )(4/4 reszw xxBtL   , using the updated expression for tw to evaluate (x = xres), and 

finally solving for xres from the hydrodynamic calculation of .   

The two initial conditions give different results. When the initial temperature is assumed to 

be constant, the high density region of the loop cools rapidly, the period of the wave 

(damping time) decreases (increases) due to the smaller density (density jump), the resonance 

point expressed as the ratio (xres-x1)/xsc moves to the left by approximately 0.4 xsc and the 

maximum density gradient also falls and its location moves to the left. When the temperature 

and density are everywhere related by (3.1), the period of the wave falls, but the damping 

time also decreases such that their ratio remains nearly constant. The resonance point stays 

almost exactly at its original location (note the very different scales on the y-axis of the 

bottom right hand panel of Figs 2 and 3), while the maximum density gradient falls, although 

its location also does not move. For this case xsc = 180 km, but the dimensionless quantity 

(xres-x1)/xsc is roughly independent of xsc.  

Clearly the density profile shows considerable evolution on the timescale 

 )()1(/2 TnRkT Ldrain    (Eq 3.3, where the draining time is defined as n/(dn/dt) and the 

cooling time is roughly half this). For modern loss functions (Reale and Landi, 2012), RL in 

the vicinity of 1 MK is ~ 4 x 10-22 ergs cm3 s-1, which leads to drain of order 1000 sec, 

consistent with these results. To understand the motion of the resonance layer and location of 

maximum density gradient we use the fact that a loop cooling by radiation satisfies 

approximately (Cargill et al. 1995): 

B

R

t
ATtT 










0

1)0()(


 

where A and B are constants that can be assumed independent of the plasma conditions (see 

the Appendices of Cargill et al. 1995 and Cargill, 2014 for details) and )(/3 0000 TRnkT LR  , 

the radiative cooling time at t = 0. For a constant initial temperature, R0(x) ~ 1/n0(x) so that 

the right hand side of the loop (higher density) in Figure 2 will cool faster. For a loop in 
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initial static equilibrium at all values of x, the 2nd equation of (3.1) can be used to relate n0 

and T0 as n0(x) ~ T0(x)(7/4 – /2) so that R0(x) ~ T0(x)-(3/4+/2), a weak dependence on T0. This 

initial state ensures that the cooling time (and hence the draining time) is weakly dependent 

on x, meaning that the density structure is preserved as the loop cools, with the resonance 

point remaining at the same location. [For the case  = -3/2 we have confirmed that there is 

no movement at all in xres.] The behaviour of the wave period and damping time follow. The 

period will always fall because the density falls. For the constant temperature initial 

conditions, the density gradient across the resonance layer decreases (right side drains faster), 

so that the damping time increases. For the static loop initial state, the ratio i/e remains 

roughly constant as the loop drains, so that the damping time also decreases3. 

Thus for initial conditions corresponding to static equilibrium atmospheres, energy may 

continue to enter a fixed resonant layer of a cooling loop despite the continually evolving 

loop density. For other initial states, the resonant layer moves, making it less clear whether 

wave damping can occur. For phase mixing, the density gradient persists throughout the 

cooling and draining, though with diminishing values. Since the damping time depends on 

the density gradient to the power 2/3, damping may become weaker as time increases, 

accentuating the difficulties with the (slow) rate of heating in phase mixing.  

To assume a fixed density profile in wave calculations, the damping time (dissipation time) 

for resonant absorption (phase mixing) must be shorter than the draining time if the resonance 

layer (location of maximum density gradient) does not move, or less than the characteristic 

time over which these quantities move. Violation leads to the termination of heating because 

the coronal density structure needed for wave heating is destroyed. Table 1 row 9 shows that 

for phase mixing a large enhancement of the transport coefficients is required, an assumption 

                                                           
3 Case 3 with a constant temperature is the exception to these results. We first considered 

values of T and n (1 MK and 2 109 cm-3 respectively) used in the analysis of transverse 

oscillations (e.g. Nakariakov and Ofman, 2001; White et al., 2012). In this case, the loop 

enters phase (iii) of the cooling almost immediately, and the density structure ceases to exist 

after 200 sec. It seems that these commonly used plasma parameters may not be appropriate 

as such a loop does not appear sustainable on relevant timescales (unless an additional 

heating mechanism is operating). Adoption of a smaller density as shown in the bracketed 

terms in Table 1 recovers the generic results of Cases 1, 2 and 4. 
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prevalent in the literature (Appendix). For resonant absorption, these conditions may be met 

for short loops and/or strong magnetic fields, but significantly not for the long loops for 

which resonant damping is frequently invoked (e.g. Goossens et al., 2006, 2011). The 

viability of a fixed density profile must thus be assessed on a case-by-case basis. 

 

4. Consequences of evolving density for wave heating  

If wave heating cannot sustain the initially imposed density profile, what happens? A simple 

calculation for resonant absorption was due to Ofman et al (1998)4 who studied a linear initial 

value problem and included the feedback of an evolving density profile using Eq (3.1) which 

fed an updated density into the wave damping calculation. This evolving density led to a 

“detuning” of the resonance from its initial location, with the heating moving to elsewhere in 

the loop. Starting with a smooth density profile with asymptotic values differing by a factor 

10, the density evolved into a spiky structure (Figures 3 – 5 of Ofman et al, 1998). The initial 

density profile could not be sustained, and the time-averaged density fell to roughly 20% of 

the initial value. Thus, in this case there was a mis-match between the energy injected and the 

initial density (and associated thermal energy), the former being too small. This could 

presumably have been mitigated by an increase in the incoming wave power. For the case of 

a single driver frequency, total detuning took place, with no heating, the loop drained of all 

material, and resonant conditions could not be recovered.  

4.1 General considerations 

The assumption of an instantaneous adjustment to static equilibrium by Ofman et al almost 

certainly over-estimates the rate at which standard resonant absorption breaks down. We have 

shown in Section 3 that the detuning that may take place can be relatively slow. Although 

time-dependent simulations of an Ofman-like scenario seem desirable, one can make some 

simple generic comments. Figure 4 shows in a schematic manner some of the issues for 

resonant absorption and phase mixing (see also Figure 4 of Klimchuk, 2006).  

                                                           
4 There have been some efforts to address the problem of density feedback on resonant 

absorption heating through large-scale simulations (e.g. Belien et al. 1999), but 

computational limitations at the time meant that the simulations could not be run for long 

enough to see the full impact of feedback. 
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The initial density profile is the smooth solid line and increases from left to right. For 

convenience we locate the resonant layer and location of steepest gradient in the middle, and 

it is there that the heating is strongest (* on diagram). The heating leads to a density 

enhancement, as shown. For phase mixing, this density spike can have two points of 

enhanced dissipation, one on either side of the new density maximum (lower left panel). 

Heating at these may then lead to two new density spikes etc. and one can see that a runaway 

process with a very spiky density could arise, potentially leading to fast wave dissipation. For 

resonant absorption, the simplest scenario is for the location of the resonant layer to move as 

shown, so that the resonant frequency matches the new density profile, a less drastic process 

than that discussed in Ofman et al. However, we note that more structured multi-peaked 

density profiles may lead to a more complicated situation. Although a full, explicit model of 

this scenario would, in general, require MHD simulations that couple thermal and MHD 

evolution, we present a simple example in the next subsection to demonstrate the basic 

concept. 

4.2 Heating by phase mixing in an evolving atmosphere and the role of feedback  

Next, we consider heating by phase mixing in the evolving atmosphere discussed in Section 

3. The case of resonant absorption will be discussed in a subsequent publication. The 

decrease in wave energy (kinetic + magnetic) from an initial state and averaged along the 

loop  is ),( txEw as defined in Section 3.1, and the heating rate follows. Table 1 shows that 

with classical coefficients, tp is much longer than the cooling time so for phase mixing to be 

viable,  must be enhanced by several orders of magnitude. As in Section 3.1, for case 1, our 

main example here, an increase of six orders of magnitude is used. This enhancement is 

discussed further in the Appendix and the dependency of  on density and temperature is 

neglected since any anomalous diffusion is unlikely to have the same scalings as classical. 

Also, to simulate a driven system, the wave amplitude is re-initialised every 25 sec, which is 

of order the wave period. This models an effective Poynting flux through the photosphere. 

For Case 1, the wave amplitude after each re-initialisation, averaged over the loop length and 

a wave period, is approximately 30 km/s. Cases 2 – 4 are discussed later. 

Figure 5 shows results for Case 1. The first example has an energy equation where radiative 

and conductive losses are ignored, implying a background heating that sustains the initial 

density profile. Since the wave heating only determines the change in pressure, there is 

freedom to apportion this pressure change between density and temperature. First we adopt a 



14 

 

scaling T ~ nb where b = 0 corresponds to no temperature change, b = ½ to a static loop 

scaling (see Section 3) and b = 2 to a loop where the temperature is determined by radiation 

(Bradshaw and Cargill, 2010). The top row shows the density and temperature after 1600 sec. 

The solid, dashed and dash-dotted lines have b = 0, ½ and 2, respectively, and the thick 

dashed line in the right panel is the heating in arbitrary units averaged over the 200 sec before 

the end of the run. A new density peak appears and the heating spreads away from the centre 

of the density gradient, similar to what was shown in Figure 1. The maximum of the heating 

is displaced to the high-density side because of the dependence on n of the wave kinetic 

energy, but the maximum of the heating per unit density (not shown) is roughly located at the 

location of the maximum density gradient. Note though that the new density peak is also 

displaced to the higher density side of the density gradient. As is expected, larger values of b 

have weaker density enhancements. 

The second row shows the density and temperature at 1600 sec. using the EBTEL approach 

described in Section 3.2 (solid) and the static scaling laws (dashed). For the EBTEL 

calculation the heating is the same as in the upper row and for the scaling law the heating is 

averaged over consecutive 200 sec intervals, then the scaling laws are applied. The density in 

the heated region is similar for both models, but to the left and right it decreases since there is 

no heating to support the plasma (c.f. Figure 1). When the scaling laws are used, this decline 

is instantaneous. This confirms the suggestion made at the start of Section 3 that the 

prescribed density profiles used in such calculations are unsustainable: the density evolves 

from a step between a low and a high value to a localised peak.  

Inclusion of feedback of the new density profile on the wave heating requires an MHD 

simulation that could be restricted to the linearised wave equations plus an energy equation. 

However, for demonstration purposes we have carried out a simple model to include density 

feedback using the following procedure. Every tN secs, the density in the wave damping 

calculation (2.1) is reset to the new value calculated from the energy equation and the model 

restarted. However, we found that this could lead to discontinuities in the damping time 

and hence, spuriously enhanced damping, since changing the new density gradient, 

when folded in with the previous time, implies that the phase mixing is more developed 

than it should be. Instead, when the density is reset, we force the damping time to be 

continuous. This is done by re-defining the “time” associated with each field line such 

that the quantity t*/tp(x) is the same before and after the density reset, where t* is a 

dummy time: when we reset the density, we define tp(old) and tp(new) as the damping 



15 

 

times associated with the old and new density profiles and then set t* = t* 

(tp(new)/tp(old)) such that the factor e-t/tp(old)=e-t*/tp(new) . Thus, if the density gradient 

steepens (lessens), tp decreases (increases) and hence, t* at that location is decreased 

(increased). This process is repeated every time the density is reset, and is nothing but a 

straightforward book-keeping exercise to ensure the damping time remains 

continuous5. 

The results are shown in Figure 6, which has a compressed x-axis and enhanced y-axis to 

show the important features. We have run feedback in both models with tN = 200 sec: left 

(right) without (with) full energetics. For the former, we see small density spikes beginning to 

appear near the centre of the density gradient, which on subsequent iterations develop 

rapidly. Within a few iterations these are at grid size. With the EBTEL solution, spikes again 

develop, but are much more muted: the loop thermal evolution is too important for the 

feedback to have a real effect in this case.  

Cases 2 – 4 have also been examined. To permit a comparison with Case 1, we have reset the 

dissipation coefficients and wave amplitude so that the temporal evolution is similar to Case 

1. Explicitly, this means that we require that the peak density take on similar values after 

1600 sec to that shown in Figure 5 and that tp is also the same. This requires an increase of 

the diffusion by a factor 10 for cases 2 and 3, and a decrease by a factor 0.4 with Case 4. For 

cases with no feedback, the averaged wave amplitude was increase by 1.75 for case 2, 1.5 for 

case 4, and remained the same for case 3. We then ran these cases with feedback. In the 

absence of a full energy equation, results similar to the left panel of Figure 6 were obtained. 

With the EBTEL approach, Case 4 was similar to Case 1, but Cases 2 and 3 took longer 

(2000 and 3000 s respectively) to reach the equivalent density structure.  

5. Conclusions 

                                                           
5 We also considered a case when the static scaling laws (Eq 3.1) are used in place of the 

dynamic evolution. Here the density evolved much more rapidly into a spiky structure on grid 

scales since the response to heating is instantaneous. However, this exaggerates the role of 

the density change. In an evolving loop, the density will change approximately on the 

conductive timescale of the heated plasma, here a few hundred seconds, as shown in the 2nd 

row. The scaling law approach thus appears to be inadvisable, at least for phase mixing.  
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MHD wave heating mechanisms such as phase mixing and resonant absorption crucially 

depend on a local density gradient. However, few, if any, studies have examined MHD wave 

heating in the context of an evolving density gradient, and it is not a-priori clear whether the 

density gradient required for dissipation is compatible and/or sustainable by the wave heating 

mechanism. This paper has addressed two aspects of this question. We have presented a proof 

of concept that (i) such density profiles may not be sustained because the density gradients 

are destroyed by plasma cooling on a timescale compatible with, or faster than the heating 

which in turn implies (ii) the density profiles assumed in models of wave dissipation may be 

incompatible with the spatial distribution of the heating. When such cooling and draining 

takes place, the movement of the dissipation layer depends on the chosen initial conditions.  

Incorporation of feedback can, in principle, lead to highly structured density profiles for both 

resonant absorption and phase mixing, but in reality the timescale for this to evolve is 

comparable to the time taken for a loop to cool and drain and hence it may only play a small 

role. Thus, the temporal evolution of the plasma in which any wave heating takes place seems 

to be an essential factor in considering the viability of wave damping mechanisms. One 

option is that an alternative heating mechanism such as small scale reconnection can maintain 

the required density profile, and wave damping can then take place as proposed in the 

literature.  

It is worth pointing out that the restrictions we have noted for wave heating do not apply to 

mechanisms for coronal heating that rely on small-scale reconnection, commonly referred to 

as “nanoflare heating”. Here all that is required is the misalignment of the coronal magnetic 

field to a degree that permits the onset of reconnection. While the form this takes remains an 

open question, it is commonly assumed that the local plasma density structure plays no role. 

Studies of reconnection where a density gradient is present are common in studies of the 

terrestrial magnetopause (Levy et al., 1964) and summarised by Yin and Lee (1993). There 

are qualitative changes in quantities such as reconnection rates, but the overall generic 

properties of reconnection are unchanged.  

While this paper has only addressed simple examples of wave heating, the conclusions are 

general. In particular, extensions to broader density transitions (e.g. Soler et al., 2013), the 

injection of an Alfven continuum (e.g. Poedts et al, 1989) and examples of complexities in 

the damping process (e.g. Boynton and Poedts, 1996) will undergo the same form of generic 

feedback of the density. Similar conclusions apply to wave dissipation in force-free fields 
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with initially constant density (e.g. Poedts et al, 1989 etc.). In that case, heating at a resonant 

layer with either a single wave frequency or a continuum will lead to plasma heating, a 

subsequent change in the density, and a modification of the resonant conditions. 

Understanding the full consequences will require numerical modelling, but the basic physical 

process outlined here is expected to occur regardless of additional complexities. 

Examination of phase mixing in this environment brings long-standing problems into fresh 

focus. For classical transport coefficients, the fundamental difficulty is the slow dissipation of 

the wave energy; we were unable to find cases where the damping time was short enough to 

be of interest. Further, ways that phase mixing could give faster damping such as the density 

feedback discussed here and the development of compressive waves (e.g. MacLaughlin et al., 

2011, Nakariakov et al 1997, 1998; Tsiklauri et al 2001) cannot happen until the phase 

mixing itself becomes well developed, a slow process. Other mechanisms such as the Kelvin-

Helmholtz instability (Browning and Priest, 1984, Antolin et al., 2014) may be promising, but 

require more investigation. In order to demonstrate the interaction of loop plasma evolution 

with wave damping we have argued that the transport coefficients are enhanced artificially by 

an unspecified process. A more pessimistic view may be that for closed coronal structures, 

phase mixing is unviable. 

Verification of our conclusions will in general require multi-dimensional MHD simulations 

which will be quite challenging given the competing constraints of the small timestep needed 

for numerical stability and the long times that need to be run. Only then can a definitive 

answer be reached as to the viability of coronal wave damping process, although our work 

suggests that caution is warranted.  
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Appendix: Transport coefficients and phase mixing 

In their paper on phase mixing, HP83 used classical resistivity and viscosity coefficients. The 

Braginskii (1965) viscosity has five terms, three of which are associated with compressive 

effects. Defining the ion-ion collision time as nTi /84.0 2/3 , the compressive (kinematic) 

viscosity is nTmkT ii /10  46.6)/(96.0/ 2/57

0   , agreeing with HP 83, Eq 22. To 

calculate the shear viscosity, as modified by the magnetic field, 0 is reduced by a factor 

1/(ii)
2, or 1.4 10-8n2/B2T3 to give 

2/12

1 /9.0/ TBnv   (correcting the viscous term 

temperature dependence in HP836). This is the viscosity used in Eq (2.2). The resistive 

damping term is 2/313 /10 Tm  . The ratio of shear viscous damping to resistive damping is 

then 9 10-14nT/B2 = 13, where  = 8p/B2, and is shown in the 10th row of Table 1. For all 

our parameters resistive damping is the more important, and in three cases, dominant. The 

ratio of shear to compressive viscosity is shown the final row of Table 1 so any process that 

introduces a compressive component may be important. 

The damping times due to phase-mixing (tp) are given in Table 1. One can write Eq (2.2) as

 3 2
//46  Axp qVLLt  , where L is the total loop length, Lx the length over which the 

density changes and q the mode number. So short loops, high harmonics and sharp gradients 

are optimal, but on taking Lx ~ 200 km, tp is always rather large as is the ratio tp/tw; we see no 

reasonable likelihood of finding the values of 20 quoted by HP83 for this ratio. [Note that for 

only viscous damping, 3
2/1

2

22
8

p 10 1.6t T
q

LL x









  , independent of B and n.] 

As we have noted, to obtain damping times of order or less than a cooling time, the transport 

coefficient needs to be increased by many orders of magnitude. One way to do this would be 

to invoke non-linear MHD effects such as a coupling to the fast or slow-mode waves that 

introduce a compressive viscosity. The compressive waves would damp in turn at a rate 

                                                           
6 The HP83 analysis seems to contain a few numerical errors and typos. They find 1/(ii)

 = 

3.5 10-4n/BT3/2
, so that the correction (the square) is 1.23 10-7, an order-of-magnitude too 

large.  Using their Eqns (22) and (23), Eq (24) should be 8.6n/B2T1/2 rather than the 

coefficient 3.6 as stated. Thus the HP83 1 for their typical values is incorrect (too large) by a 

factor 4 as written. Since we take the cube root, this error is not huge. As a check, the typical 

numbers from Ofman et al (1994) give roughly correct values of both viscosities. 
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inversely proportional to the Reynolds number calculated using compressive viscosity, with a 

damping time tc ~ Lc
2/0, where Lc is a compressive wave scale. The ratio of the damping 

times is   23/83 2
// 9.3~/ cxcp nLTqLLtt  and for Lc ~ 109, these can be comparable. Thus the 

1/3 dependence of the phase mixing compensates for the weak transverse viscosity. In 

addition, non-linear effects are unlikely to develop before phase mixing is well underway, so 

invoking compressive viscosity actually gains very little since the longevity of tp is due to the 

long time before the phase mixing becomes strong enough to lead to non-linear effects. 

There are two common solutions to these long dissipation times. One just invokes an ad hoc 

enhanced dissipation, as is done in many numerical calculations. For example, McLauchlin et 

al (2011) define a dimensionless viscosity sc = L0VA0. For our parameters, this is 1.38 1014
 

cm2 s-1. A dimensionless viscosity of 10-2 such as they use implies a viscosity 108 times larger 

than given by classical models. On the other hand, Browning and Priest (1984) argue for a 

massive (unspecified) enhancement due to a local Kelvin-Helmholz instability. At the 

antinode of the standing wave the velocity gradients are strongest while the perturbed field 

vanishes and the latter effect reduced any (stabilising) magnetic tension forces have on the 

instability. This analysis requires that the instability grows faster than the period of the wave, 

so that it can be assumed that the anti-node constitutes an equilibrium. Browning and Priest 

examine two cases: strong and weak phase mixing. Based on their results, we can write down 

a simple expression for the kinematic viscosity: Va210~  , where a is the transverse scale of 

the density gradient and V is the wave amplitude. This gives a viscosity of 4 1012 cm2 s-1 for a 

wave amplitude of 40 km/s and a shear width of 108 cm, so 8 – 9 order of magnitude larger 

than the classical shear value. In turn, this reduces the damping time from 30,000 s to about 

100 s. Further investigations are required to assess the viability of this mechanism. 
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Table 1.  A range of loop parameters, damping and dissipation times and associated 

quantities. For Case 3, we use two densities, as discussed in the text. 

Case 1 2 3 4 

Comment Quiet Sun Active Region 

(Warren et al, 

2012) 

Flare-induced 

oscillation. 

(Nakariakov & 

Ofman, 2001) 

X-ray Bright 

Point 

2L (Mm) 40 100 140 40 

B (G) 20 100 20 100 

ni (109 cm-3) 0.5 4 2 (0.5) 2 

Ti (MK) 1 3 1 2 

tw (s) 32 45 222 (111) 13 

tR (s) 303 429 2122 (1060) 121 

tP(s) 20900 84170 161000 (110000) 16450 

v/m 0.11 0.11 0.46 0.037 

 0.11 1.2 0.007 1.43 
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 Figure 1. The initial imposed density (solid line) and density calculated in response to the 

heating (dashed) for phase mixing, where the density is calculated from static loop scaling 

laws (Eq 3.1). The heating is the sum of a low-level background and the heating due to phase 

mixing averaged over 2tP. 

Figure 2 The evolution of the average density and temperature profiles over 1000 sec. Loop 

parameters for Case 1 are used and the initial temperature is constant. The top row shows the 

density (left) and temperature (right) every 100 s. The dashed line is the condition required 

for the onset of phase (iii) of the loop cooling (see text). The middle row shows the wave 

period (left) and damping time (right) as a function of time. The lower row shows the 

maximum density gradient (left) and position of resonance layer (right) as a function of time. 
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Figure 3 As Figure 2 except the initial temperature is related to the density through (3.1). 

 

 

Figure 4. A schematic representation of how the feedback due to heating can influence wave 

damping and dissipation. The upper sketch shows the density enhancement that takes place at 

the site of the heating. The lower left panel shows that with phase mixing, two new regions of 

large density gradient are created. The lower right panel shows that with resonant absorption 

the resonance layer can move to a new location to the left of the original. 
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Figure 5. The density and temperature after 1600 s for wave damping by phase mixing. The 

upper two panels show cases when there are no radiative or conductive losses. The solid, 

dashed and dash-dotted lines show cases where T ~ nb with b = 0, ½ and 2 respectively. The 

lower dotted lines are the initial density and temperature, and the temperature for b = 0 is not 

shown since it is unchanged from the initial state. The thick solid line in the right hand panel 

is the wave heating in arbitrary units. The lower panels include an energy equation. The solid 

line shows results using EBTEL and the dashed using a static loop scaling law with the dotted 

line showing the initial conditions. 

Figure 6 The evolution of the density when feedback is included. Only the central part of the 

density gradient is shown. The left panel shows the case with no energy losses and b = 0. The 

right panel includes the energy equation, solved using the EBTEL approach. For clarity, the 

density at each time has been shifted vertically by 25% of the initial loop density. This should 

be compared with the lower panels in Figure 5 to deduce the real density. 


