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Abstract 
Viscous fingering can be a major concern when waterflooding heavy oil reservoirs. Most commercial reservoir simulators 

employ low-order finite volume/difference methods on structured grids to resolve this phenomenon. However, this approach 

suffers from a significant numerical dispersion error due to insufficient mesh resolution which smears out some important 

features of the flow. We simulate immiscible incompressible two-phase displacements and propose the use of unstructured 

control volume finite element (CVFE) methods for capturing viscous fingering in porous media. Our approach uses 

anisotropic mesh adaptation where the mesh resolution is optimized based on the evolving features of flow. The adaptive 

algorithm uses a metric tensor field based on solution interpolation error estimates to locally control the size and shape of 

elements in the metric. The mesh optimization generates an unstructured finer mesh in areas of the domain where flow 

properties change more quickly and a coarser mesh in other regions where properties do not vary so rapidly. We analyze the 

computational cost of mesh adaptivity on unstructured mesh and compare its results with those obtained by a commercial 

reservoir simulator based on the finite volume methods.  
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Introduction 
Viscous fingering, also known as Saffman-Taylor instability, is an instability that occurs during unfavorable, mobility ratio 

displacements, when a more viscous fluid is displaced by another fluid that is less viscous (Saffman and Taylor,1958). It can 

be of major concern in several oil recovery processes including waterflooding of heavy oil reservoirs and miscible and 

immiscible gas injection as it results in reduction in the sweep efficiency and an early breakthrough of the displacing fluid 

(Lake, 1989). It is therefore important to be able to predict when viscous fingering occurs and how it develops. The criteria 

for instability in immiscible displacements is much stronger as in these cases it is necessary for the shock front mobility ratio 

to be greater than 1 (Chuoke, 1959). 

 

The number and growth rate of the fingers are controlled by the level of physical diffusion (capillary pressure in immiscible 

displacements) between the injected and displaced fluid (e.g. Chikhliwala et al., 1988; Christie, 1989; Riaz and Tchelepi, 

2006). Fingering will only occur is miscible displacements when the viscosity ratio is greater than 1. It is therefore important 

to ensure that the physical diffusion in a simulation is greater than the numerical diffusion. For most field-scale 

displacements this requires a prohibitively large number of cells, especially if using a conventional, first order, finite volume 

approach. A further problem is that significant grid orientation error can occur when using such approaches (e.g. Djjabarov et 

al., 2016). 

 

A range of numerical approaches have been applied to this problem with the aim of minimizing numerical diffusion and grid 

orientation error. There is a significant literature on the numerical modeling of first contact miscible viscous fingering, most 

showing that conventional finite volume approaches are very successful for linear displacements. Tan and Homsy (1988) 

developed a spectral method to study the dynamics of viscous fingering however they found the method resulted in numerical 

instabilities at high Peclet and Reynolds numbers. Christie and Bond (1987) developed a more conventional, higher order, 

finite difference method for capturing miscible viscous fingering. The method was validated by comparing predictions 

against the experimental data of Blackwell et al. (1959). Subsequent works (Christie and Jones, 1987; Christie et al. 1989; 

Davies et al. 1991; Muggeridge et al., 2002) have shown this approach can successfully predict first contact miscible 

fingering patterns, solvent production and oil recovery obtained from physical experiments performed under a range of 

conditions, with and without gravity, and including well-characterized heterogeneities. Araktingi and Orr (1990) developed a 

particle-tracking simulator to study the combined effects of permeability heterogeneity, flow rate and mobility ratio on 

miscible viscous fingering. They obtained a good agreement when they compared their numerical results with experimental 

results from the literature. Tchelepi and Orr (1994) developed this particle-tracking approach into a hybrid finite difference 

and particle tracking technique. They used this approach to compare results obtained from two- and three-dimensional 

simulations of viscous fingering with the specific objective of investigating the impact of gravity on finger growth. A finite 

element model was developed by Kelkar and Gupta (1991) with the aim of reducing both numerical diffusion and grid 

orientation error. De Wit and Homsy (1997) performed numerical simulations based on Fourier spectral method (Tan and 

Homsy, 1988) to study viscous fingering in periodically heterogeneous porous media. They compared and contrasted the 
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dynamics of fingers with those occurring in homogeneous medium and showed qualitative agreement with experimental 

visualizations. More recently, Ruith and Meiburg (2000) developed a vorticity-stream function formulation to investigate the 

influence of the Peclet number, viscosity and density contrast, and the aspect ratio on the dynamic evolution of displacement 

in porous media.  

 

The literature investigating methods for the numerical simulation of immiscible viscous fingering is much more limited and 

suggests that it is much harder to model the dynamics of immiscible viscous fingering using conventional finite volume 

approaches. Riaz and Tchelepi (2006) applied the vorticity-stream function formulation to solve for velocity using Fourier-

Galerkin spectral method and investigated the effect of the relative permeability functions on viscous fingering. Riaz et al. 

(2007) extended these studies to compare the method to laboratory experiments investigating viscous fingering in a sandstone 

core but were not able to obtain good agreement with the experiments. Daripa and Pasa (2008) studied instability of 

immiscible displacement in the presence of capillary pressure and showed that the slowdown of instability by capillarity is 

commonly very rapid. Berg and Ott (2012) studied the stabilizing influence of capillary pressure using a finite volume 

method and triggered fingers by superimposing a permeability variation on the domain. Jauré et al. (2014) have developed a 

higher order simulator based on the multipoint flux approximation that is readily parallelizable and applied this to the 

modeling of the experiments described by Riaz et al. (2007). 

 

All of the above approaches used static meshes meaning that a fine resolution was required throughout the domain to capture 

the development of the fingers accurately. Such fine meshes mean that the simulations are both CPU and memory intensive. 

This is wasteful of computing resources as the fine resolution is only needed in the vicinity of the viscous fingers. Properties 

such as saturation or concentration only change slowly, if at all, ahead of and behind the fingers. Although some existing 

commercial reservoir simulation software provides the facility to automatically develop non-uniform static meshes, they are 

not able to dynamically adapt the mesh during the simulation. Implementing dynamic adaptive meshing would enable 

computational effort to be focused where it is most needed, minimizing CPU time whilst also minimizing numerical 

diffusion. Edwards and Christie (1993) and Mulder and Gmeling Meyling (1993) both proposed using dynamic and adaptive 

meshes for the modeling of first contact miscible viscous fingering but only in a finite volume model. These models were 

able to reduce numerical diffusion but the models were still prone to grid orientation error.  

 

We propose using dynamic mesh adaptivity and control volume finite element (CVFE) methods to resolve viscous fingering 

in reservoir flows. The CVFE approach means that the simulations will be less subject to grid orientation error whilst the 

dynamic mesh adaptivity means that a high resolution mesh can be used to resolve the fingers whilst coarsening the mesh in 

other regions. The method is used to simulate immiscible incompressible two phase displacements in two dimensional porous 

media and the results are compared with those obtained using fixed mesh in a commercial reservoir simulator based on the 

finite volume method. Capillary pressure is neglected in all these simulations in order to focus on the comparison of the 

differences in numerical diffusion and grid orientation error seen in the different modeling approaches. The remainder of this 

paper is organized as follows. The next section reviews the governing equations of immiscible and incompressible flow in 

porous media. Then, we describe the applied adaptive mesh CVFE numerical techniques used to simulate viscous fingering 

in this study. Finally, we present several numerical models and demonstrate the capabilities of mesh adaptivity for simulation 

of viscous fingering. 

 

Mathematical Formulation 
The displacing and displaced fluids are considered to be incompressible and immiscible. In addition, we ignore the effects of 

capillarity and gravity in our simulations. We assume the displacement is isothermal and no source or sink exists in the 

domain. Therefore, the governing equations for flow are described by the conservation of mass and Darcy’s law as 

𝜑
𝜕𝑆𝑚

𝜕𝑡
+ ∇. 𝑢𝑚 = 0 (1) 

𝑢𝑚 = −
𝐾𝑘𝑟𝑚

𝜇𝑚

∇𝑝 (2) 

where φ is porosity, K is absolute permeability, p is pressure, t is time, Sm, um, krm, and μm  are saturation, Darcy velocity, 

relative permeability and viscosity of phase m. The saturation of the phases are constrained by 

∑ 𝑆𝑚 = 1

𝑚

 (3) 

By some algebraic manipulation and combining Equations (1), (2), and (3), the governing equations are converted to 

𝜑
𝜕𝑆𝑚

𝜕𝑡
− ∇. [

𝐾𝑘𝑟𝑚

𝜇𝑚

∇𝑝] = 0 (4) 
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∇. [∑ (
𝐾𝑘𝑟𝑚

𝜇𝑚

∇𝑝)

𝑚

] = 0 
(5) 

 

Equation (4) and (5) are known as the saturation and pressure equations, respectively. 

 

CVFE Method  
We apply a control volume finite element (CVFE) approach in conjunction with an implicit pressure explicit saturation 

(IMPES) method to discretize the pressure and saturation equations in space and time. In the CVFE approach, the pressure 

and saturation are represented using finite element and control volume basis functions, respectively, 

𝑝 = ∑ 𝑝̂𝑗𝑁𝑎

𝑗

 (6) 

𝑆 = ∑ 𝑆̂𝑗𝑀𝑏

𝑗

 (7) 

where 𝑁𝑎 is first order finite element basis function, 𝑀𝑏 is control volume basis function that is equal to unity over the 

control volume constructed around node j (Figure 1) and is equal to zero everywhere else. The 𝑝̂𝑗and 𝑆̂𝑗 are the nodal values 

for pressure and saturation, respectively. 

 

 
Figure 1. The control volume (CVb) constructed around node j is shown in gray. Dotted lines show the elements boundaries. 

 

To generate a linear system for pressure, a Petrov-Galerkin weighted residual method is used. Equation (5) is multiplied by a 

control volume based weight function and is integrated over the computational domain, 

 (8) 

where superscripts n and n+1 denote the current time and the next time step, respectively. Note that due to the use IMPES 

time discretization, the relative permeability is calculated based on saturation at time step n. 

Mb is a control volume wise function that is equal to unity only over control volume b, therefore, 

 (9) 

where all terms are calculated at the control volume surfaces. For calculation of face values of relative permeability, an 

upwind scheme is applied. Substituting for pressure from Equation (6), a linear set of equation is formed that is solved using 

a GMRES method (Saad and Schultz, 1986). 

To update saturation, Equation (4) is used and by applying standard node centered control volume weighting and basis 

functions we obtain 

 (10) 

The saturation equation is solved explicitly following solving for pressure at each time. For more details regarding the 

applied numerical method, refer to Mostaghimi et al. (2014) and Jackson et al. (2015). 

 

Dynamic Mesh Adaptivity 
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Numerical discretization produces numerical error in resolving the curvature of a smooth solution. As the curvature increases, 

a finer mesh is required to control the error. In this work, mesh optimization is initiated by estimating the L2 norm of local 

interpolation error in saturation using the Hessian matrix. Galerkin projection is used to project the variables defined in the 

control volume space onto finite element space. Although there is no proof that the upper bound of the interpolation error is 

bounded using this approach, various practical applications suggest that this is the case, at least for the linear interpolation 

error  The Hessian is calculated by iterative Galerkin projection of the linear interpolation as in Loseille and Alauzet (2011). 

and then a functional prescribing mesh quality is defined for a finite element partitioning of the domain such that 

𝐼 = ∑ (𝑣𝑖
𝑇𝑀𝑣𝑖 − 1)2

𝑖∈𝑒𝑑𝑔𝑒𝑠

 
(11) 

where I is the functional,  vi is vector describing the edges connecting the vertices of the finite element mesh, and 

𝑀𝑖𝑗 = (𝑑𝑒𝑡(𝐻))
−

1

2𝛾+𝛿
|𝐻𝑖𝑗|

𝜖
 (12) 

defines the matrix describing the interpolation error metric along each edge (Chen et al 1997). H is the Hessian matrix of the 

solution, ϵ is a normalizing factor, effectively specifying the desired tolerance in the chosen field, γ is the polynomial degree 

for the chosen norm that is specified to be 2, and δ is the dimension of the problem. The mesh adaptivity process is reduced to 

minimizing the functional, I, and thus to generating a mesh with a minimum (and thus approximately uniform) interpolation 

error estimate. Additional bounds are defined to control the size of the constructed new meshes at each time step including 

minimum and maximum edge length. These constraints contribute in generating a unified metric field specifying the 

preferred anisotropic mesh resolution. Based on the target metric, the local structure mesh is modified iteratively in the areas 

where the current resolution of mesh has a higher interpolation error than what is desired. This results in refinement and 

coarsening of the mesh until the required length scales are obtained or no further improvement is possible. The mesh 

adaptivity modifies the existing mesh in each time step through topological operations including: 

1. Refinement via splitting existing elements and adding additional degrees of freedom along an existing edge and 

regenerating the existing elements that share it. 

2. Coarsening by edge collapse, removing an existing degree of freedom by collapsing an existing edge to zero length and 

thus replacing two vertices by a single one lying at the edge midpoint.  

3. Face-edge and edge-face swaps, reordering the connectivity of existing groups of elements to improve the mesh shape, as 

measured by the functional.  

4. Node movement, repositioning a vertex within the convex hull spanned by the elements that share it.  

Following construction of the new mesh satisfying the specified constraints, variables are transferred from the previous mesh 

structure to the new one. This is realized by applying a conservative Galerkin projection-interpolation technique (Farrell, 

2011). The relative permeability functions are recalculated based on the local recalculated saturation similar to that of 

commercial simulator with fixed grids.  

Further discussions relating to the significance of dynamic mesh adaptivity in improving the numerical dispersion error for 

prediction of saturation can be found in Pain et al. (2001) and Mostaghimi et al. (2015). 

 

Numerical Simulations  
We simulated incompressible, immiscible, two-phase displacements in a two dimensional, horizontal, rectilinear porous 

medium. The medium has dimensions of 100×100 m
2
 and the rock and fluid properties are taken from Jauré et al. (2014), 

which in turn were based on the experiments reported by Riaz et al. (2007). The model reservoir was assumed to be 

homogeneous with uniform porosity and permeability of 20.5% and 377 mD, respectively. The relative permeabilities in all 

the models were calculated as a quadratic function of saturation, giving a shock front mobility ratio of 100 for the oil and 

water viscosities used (Table 1). Water, as the displacing fluid, was injected with a constant velocity of 10
-6

 m/s along the left 

hand side while a constant pressure boundary condition was applied on the outlet, i.e. the right hand side boundary. These 

were modeled using horizontal injection and production wells located along the left and right hand sides of the reservoir. The 

wells were perforated in all grid blocks along the boundary. No-flow boundaries were imposed on the remaining sides. We 

assumed Newtonian flow behaviour. The rock and fluid properties used in all simulations are summarized in Table 1. Gravity 

and capillary pressure were ignored.  

 

Table 1. Rock and fluid properties 

Porosity (%) 20.5 

Permeability (mD) 377 

Water viscosity (Pa S) 0.001 

Oil viscosity (Pa S) 0.1 

Water relative permeability krw=Sw
2
 

Oil relative permeability kro=(1-Sw)
2
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We compared the results from our CVFE simulations, both with and without mesh adaptivity, with results obtained from the 

black oil commercial simulator Eclipse 100 (Schlumberger, 2013). Eclipse uses a finite volume discretization and a fixed 

mesh. An IMPES solution was used in both models.  

  

The range of meshes, resolutions and simulators employed are summarized in Tables 2 and 3. We first investigated the 

impact of mesh resolution and orientation on the fingering patterns predicted by Eclipse. Meshes 1 and 2 were uniform with 

100×100 and 1000×1000 cells, respectively. To study the effects of non-uniform gridding on the fingering pattern two extra 

models were generated. In these two models (Meshes 3 and 4), the medium was divided into two equal regions (left and 

right). The left region was connected to the injection well and the right region was in contact with the production well. In 

Mesh 3, the left region was uniformly discretized with a grid block size of 1×1 m
2
 while the right region consisted of finer 

grid blocks of 0.1×0.1 m
2
. In Mesh 4, we used a higher resolution grid (0.1×0.1 m

2
 grid blocks) for the left region while the 

right region consisted of a lower resolution grid (1×1 m
2
 grid blocks). In all these models the grid was orientated parallel to 

the main direction of flow.  

 

To investigate the importance of mesh orientation on viscous fingering, we also used a diagonal mesh arrangement. This was 

Mesh 5. To build Mesh 5  in the commercial simulator, we created a uniformly meshed Cartesian grid formed of 1415×1415 

grid blocks. Each grid block was 0.1×0.1 m
2
.   The central region of the grid (Figure 2), with dimensions 100×100 m

2
, was 

given a porosity of 20.5% and a permeability of 377 mD and the rest of the grid blocks were set to be inactive. The injection 

and production wells were located on the two opposite sides of the selected region as shown in Figure 2. 

 
Figure 2. Wells arrangement for constructing Mesh 5 with diagonal mesh. The dark gray sections represent the inactive regions of 

the porous medium that do not contribute to the displacement.  
 

We compared the results of simulations from Meshes 1 to 5 with those obtained from our CVFE simulator using both static 

and dynamic meshes. Meshes 6 and 7 used static structured and unstructured triangular meshes, respectively and were 

designed to investigate the possible effect of mesh orientation when using the CVFE discretization. Figure 3 shows a 

schematic of the meshes created for all these cases. Mesh 8 used a dynamic, adaptive anisotropic mesh after the displacing 

fluid had passed through 20% of the medium. Before this, it used a fixed mesh with each cell having a characteristic length of 

0.1 m to allow fingers to begin to form and grow. The minimum and maximum edge length are specified as 0.1m and 50m, 

respectively. The minimum length is chosen such that the highest resolution of mesh created during mesh adaptation is 

consistent with other models (Meshes 2, 6 and 7) and the maximum edge length is chosen to be half the domain size. The 

mesh adaptation occurs after each time step.  Metric advection is also applied to predict the future density of mesh and to 

enable the method to capture the propagation of instabilities in the saturation front.  

 

For both sets of simulations, using the commercial simulator and the CVFE method, a fixed time step of 1800 seconds was 

used. All simulations were performed on a PC with a 3.2 GHz CPU with no parallel processing.  

 

The viscous fingers were triggered using a random initial water saturation in the first row of grid blocks adjacent to the 

injection well.  This had a variance of 10% and a wavelength of 1 m .  

 

Injection 
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(i) (ii) 

 

(iii) 

  
(iv) (v) 

 
Figure 3. A schematic of the non-uniform parallel Cartesian meshes used for Meshes 3 and 4 (i, ii), diagonal mesh used for 

Mesh 5 (iii), structured (iv) and unstructured (v) triangular elements used for Meshes 6 and 7, respectively. 

 

Results 
Stable Displacement 

The CVFE model was first validated by comparing its predictions using both a fixed two dimensional mesh and a dynamic 

adaptive two dimensional mesh with  the Buckley-Leverett solution (Buckley and Leverett, 1941) for a simulation in which 

fingers were not triggered. The simulations were also performed using the commercial simulator.  The fluid and rock 

properties are as shown in Table 1. Figure 4 shows the saturation profiles along the horizontal line at y=50 m and at 0.08 PVI. 

The analytical solution is also displayed.  
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Figure 4. Comparison of numerical simulation results with the Buckley-Leverett analytical solution for 1D flow without fingering, 

showing saturation profiles from the low  and high resolution commercial simulations and adaptive CVFE simulation. The 

analytical solution is shown with a dashed line. The high and low resolution finite volume meshes had 1,000 and 100 grid blocks in 

the main direction of flow, respectively. The adaptive CVFE mesh had 1330 elements. 
 

The accuracy of any simulator obviously depends on the mesh resolution. The saturation profile obtained from the coarser 

grid commercial simulation suffers from a significant numerical dispersion error and does not capture a sharp saturation 

profile. The results obtained from adaptive CVFE simulation are very similar to results from the higher resolution 

commercial simulation. The high resolution commercial model had 1,000×1,000 grid blocks whilst the adaptive model had 

only 1330 elements.   

In the adaptive mesh simulation, a high resolution mesh was formed in the vicinity of the displacement front, with the aim of 

minimizing numerical diffusion error. Figure 5 (i) shows the saturation distribution for the Buckley-Leverett validation 

shown in Figure 4, whilst Figure 5 (ii) shows the mesh used to create the distribution in Figure 5 (i).  The CPU time for the 

low resolution and high resolution commercial simulations was 23 and 9983 seconds, respectively. The adaptive mesh 

required only 234 seconds, which is much lower than that required by the high resolution model whilst offering similar 

accuracy. Mostaghimi et al. (2015) has provided further more test cases for validation of the developed CVFE method and 

Mostaghimi et al. (2014) demonstrated that the static mesh CVFE discretization has a linear order of convergence. 

 

  
(i) (ii) 

Figure 5. (i) Saturation distribution in the adaptive CVFE simulation of Buckley-Leverett displacement shown in Figure 4. (ii) The 

mesh generated at this instant in simulation time . 

 

Unstable Displacement 

Next, we used the initial disturbance discussed in the previous section to trigger fingers and compared the solutions of 

adaptive mesh simulation with those obtained using the commercial simulator for several different grid resolutions and types 

of meshes. The same disturbance was used in all cases. Figure 6 compares the fingering patterns seen in the different meshes 

at early time (0.03 PVI).  

 

Figures 6 (i) to (v) show results from the commercial simulator whilst Figures 6 (vi) and (viii) show those from the CVFE 

simulator. The effect of mesh resolution can clearly be seen in Figures 6 (i) and 6 (ii). The higher the mesh resolution, the 

greater the number of fingers. This is in agreement with the growth rate analysis described by a number of authors including 

Christie (1989) for miscible viscous fingering and Chikhliwala et al. (1988). In the absence of transverse diffusion (miscible 

viscous fingering) or transverse capillary pressure, the growth rate of viscous fingers increases with their wavenumber. In the 

finite volume simulations of immiscible displacement studied here, it appears that the maximum wavenumber (minimum 

wavelength) simulated corresponds approximately to the number of grid blocks perpendicular to flow when the grid is 

orientated parallel to flow e.g. in Mesh 1, the number of fingers is approximately 50 while for Mesh 2 we observe hundreds 

of fingers. In contrast, in previous studies of miscible viscous fingering the minimum width of each finger in the absence of 

transverse diffusion is several grid blocks. The number of fingers seen in Meshes 1 and 3 at early time is also very similar in 

number suggesting that mesh resolution ahead of the saturation front does not influence the fingering pattern. The same 

observation is true for Meshes 2 and 4 where the low resolution of mesh in Mesh 4 in front of the saturation front has 

negligible impact on the fingering pattern.  

 

The effect of grid orientation on the fingering pattern can be seen by comparing Figures 6 (i) (when the grid is parallel to 

flow) and Figure 6 (v) (when the grid is diagonal to the principal flow direction).  It can be seen that the fingers are thicker 

and fewer in number when the grid is diagonal to the principal flow direction. This is because the diagonal grid introduces a 



8   

transverse numerical diffusion that results in a maximum growth rate for a particular wavenumber of fingering (Yortsos and 

Huang, 1986). It should be remembered that Meshes 2 and 5 have similar mesh resolution and the only reason for different 

saturation distribution is the different grid orientation and hence different numerical diffusion. Figures 6 (vi) and 6 (vii) show 

the saturation distributions using the CVFE simulator. The fingering patterns in these simulations are very similar for 

different mesh orientations with similar resolution. This suggests that the CVFE does not suffer from such a large grid 

orientation error as the finite volume schemes but conversely this does cause a higher transverse numerical diffusion. Figure 

6 (viii) shows a result using mesh adaptivity that is in excellent agreement with the static meshes but requires much fewer 

elements.  

 

Figure 7 shows the evolution of fingers at a later time (0.13 PVI). In the uniform Cartesian grid Meshes 1 and 2, some of the 

numerical fingers merge, however, they are still numerous and their width is of the order of a grid block. In Mesh 3, as the 

mesh resolution is finer in the right hand region of the model, tip splitting occurs triggered by finer grid and the lack of 

transverse numerical or physical diffusion. Fingers that were captured by a single grid block at the early time of simulation, 

now occupies 10 grid blocks. Due to the high mobility of the displacing fluid and the increased resolution, finer fingers can 

be resolved and their growth rate is higher than the longer wavelength fingers.. In contrast, for Mesh 4, the mesh resolution 

decreases in the right hand region. Therefore, the numerical fingers merge and the number of formed fingers is similar to 

those in Mesh 1. As noted above, in all Meshes 1-4, the number of fingers is directly related to the mesh resolution in the 

region they grow. The width of fingers in these models is at the scale of the grid block size in the right hand region. Figure 7 

(v) shows the evolution of fingers on the diagonal grid, as simulated by the finite volume method. In this model, the width of 

each finger is approximately 50 grid blocks, which is significantly higher than in the parallel grid models.  

 

Figures 7 (vi) and (vii) show the CVFE results for the fingering pattern in the static structured and unstructured triangular 

meshes, respectively. These two patterns of fingers are very similar while their mesh formats are different. They are also 

similar to those seen using Mesh 5 in the finite volume simulator. Figure 7 (viii) shows the saturation distribution and 

fingering pattern obtained when using dynamic mesh adaptivity. Qualitatively, the fingering pattern and size are similar to 

Meshes 5-7. However, the number of fingers in the adaptive mesh is slightly less than Meshes 6 and 7. This is probably due 

to the interpolation error occurring during mesh adaptation.  

 

 

    

 

(i) (ii) (iii) (iv)  

    

 

(v) (vi) (vii) (viii)  
Figure 6. Fingering patterns at 0.03 PVI for Mesh 1 with uniform parallel low resolution mesh (i), Mesh 2 with uniform parallel 

high resolution mesh (ii), Mesh 3 with non-uniform parallel mesh consisting of low resolution mesh in the left region and high 

resolution mesh in the right region (iii), Mesh 4 with non-uniform parallel mesh consisting of high resolution mesh in the left region 

and low resolution mesh in the right region (iv), Mesh 5 with diagonal uniform mesh (v), Mesh 6 with structured triangular mesh 

(vi), Mesh 7 with unstructured triangular mesh (vii), and Mesh 8 with anistropic adaptive mesh (viii). 
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(i) (ii) (iii) (iv)  

    

 

(v) (vi) (vii) (viii)  
Figure 7. Fingering patterns at 0.13 PVI for Mesh 1 with uniform parallel low resolution mesh (i), Mesh 2 with uniform parallel 

high resolution mesh (ii), Mesh 3 with non-uniform parallel mesh consisting of low resolution mesh in the left region and high 

resolution mesh in the right region (iii), Mesh 4 with non-uniform parallel mesh consisiting of high resolution mesh in the left 

region and low resolution mesh in the right region (iv), Mesh 5 with diagonal uniform mesh (v), Mesh 6 with structured triangular 

mesh (vi), Mesh 7 with unstructured triangular mesh (vii), and Mesh 8 with anistropic adaptive mesh (viii). 

 

Figures 8 (i) and (ii) show the meshes generated for Mesh 8 after 0.03 and 0.13 PVI, respectively. The minimum edge length 

of elements is 0.1 m (similar to the grid block size in the high resolution grid in Meshes 2 and 5). On the other hand, the 

maximum allowed number of elements is 10,000, which is similar to the lower resolution mesh in Mesh 1. The dynamic 

mesh adaptivity generates a higher resolution mesh in the areas where fingers are growing and coarsens mesh in other 

regions. As can be seen in Figure 8 (i), the edge length of elements ahead of the saturation front increases up to 50 m while 

the refined mesh close to fingers have an edge length of 0.1 m. 

  

  
(i) (ii) 

Figure 8. Anisotropic meshes generated for Mesh 8 at 0.03 (i) and 0.13  (ii) PVI. 
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Table 2. Mesh properties of Models 1-7, computational time, and breakthrough time 

 
Mesh format nx×ny dx×dy (m) ntotal 

CPU time 

(hours) 

Breakthrough 

time (PVI) 

Mesh 1 
Uniform parallel 

Cartesian 
100×100 1×1 10,000 0.12 0.135 

Mesh 2 
Uniform parallel 

Cartesian 
1000×1000 0.1×0.1 1,000,000 25.8 0.145 

Mesh 3 
Non-uniform parallel 

Cartesian 
50×100+500×1000 1×1/0.1×0.1 505,000 7.7 0.135 

Mesh 4 
Non-uniform parallel 

Cartesian 
500×1000+50×100 0.1×0.1/1×1 505,000 40.6 0.147 

Mesh 5 Uniform diagonal 1000×1000 0.1×0.1 1,000,000 174.9 0.158 

Mesh 6 Structured triangular 1000×1000 0.1* 2,000,000 509.2 0.148 

Mesh 7 Unstructured triangular 1000×1000 0.1* 2,000,000 523.4 0.148 

*denotes the characteristic length of elements 

 

 Table 3: Mesh properties for Mesh 8, computational time, and breakthrough time 

Mesh format 

Minimum value 

for length of 

elements (m) 

Maximum 

value for length 

of elements (m) 

Maximum number 

of elements 
CPU time (hours) 

Breakthrough time 

(PVI) 

Adaptive 0.1 50 10,000 22.4 0.152 

 

 

 
 

Figure 9. Watercut as function of PVI for Meshes 1, 2, 5, and 8. 

 

The breakthrough times (calculated when the watercut exceeds 10
-4

) obtained using the different meshes and simulation 

models are reported in Table 2  and Figure 9 shows the watercut as a function of time when using Meshes 1, 2, 5 and 8.  The 

results for Meshes 6 and 7 are very similar to those obtained using Mesh 8 and are not shown on Figure 9. They are all very 

similar. The finite volume simulations using Meshes 1 and 3 predict the earliest breakthrough whilst that using mesh 5 

predicts the latest breakthrough time. The breakthrough times predicted by the three CVFE simulations (Meshes 6, 7 and 8) 

are very similar to those predicted by the finite volume simulation using Meshes 2 and 4. The fingering pattern in terms of 

wavelength is very similar in all the CVFE simulations so we expect a similar growth rate for the fingers and thus a similar 

breakthrough time. On the basis of the growth rate analysis of Chikhliwala et al. (1988), we would have expected Mesh 2 

(which has the highest wavenumber fingers and the lowest level of numerical diffusion) to break through earlier than the 

Mesh 1 simulations as these should have the highest growth rate. This is not the case. Instead it seems that the increased 
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levels of longitudinal numerical diffusion in the Mesh 1 (coarse) simulations outweigh the difference in growth rate causing 

the Mesh 1 simulations to breakthrough earlier. 

 

The computational time after 2 PVI for all simulations is also given in Table 2. As expected, the computational time increases 

as the mesh becomes finer. The computational time for Mesh 2 is approximately 208 times higher than Mesh 1. Mesh 5 

requires more iterations to converge and requires a longer computational time in comparison with Mesh 2. For Meshes 3 and 

4, the computational time is between Meshes 1 and 5. The computational time for Mesh 8 is lower than Model 2 and 5 while 

its accuracy is similar. The CPU time for Meshes 6 and 7 is approximately 20 times higher than for Mesh 2 showing the 

additional computational effort needed to solve a CVFE model (although it should be noted all these simulations were run on 

a single processor and CVFE methods lend themselves to more efficient parallelization than finite volume techniques). Mesh 

8 runs 24 times more quickly than Meshes 6 and 7, highlighting the efficiency of mesh adaptivity. In future work, more 

efforts will be made to optimize the computational time for both the CVFE code and the mesh adaptivity to make it 

significantly faster than the commercial simulator while not losing accuracy.   

 

Conclusions 
Recent investments in waterflooding of heavy oil reservoirs have renewed interest in the simulation of viscous fingering in 

immiscible displacements. One of the main factors affecting accurate simulation of fingering is the choice of mesh size and 

orientation in order to ensure that the simulations are dominated by physical rather than numerical diffusion and grid to 

minimise grid orientation effects. Typically this means a very fine grid is needed, especially for field scale simulations where 

levels of physical diffusion are very low but this can result in very long simulation times.  

 

We propose using an adaptive mesh, control volume, finite element (CVFE) method to resolve this phenomenon accurately 

and efficiently. Dynamic mesh adaptivity optimizes the mesh resolution based on fingering structures whilst the use of a 

CVFE approach reduces the grid orientation error seen in finite volume simulations. We have compared the size and pattern 

of fingering obtained by this method with results of a commercial reservoir simulator based on finite volume methods using 

models with parallel, diagonal and non-uniform gridding. Our results indicate that there was a significant grid orientation 

error associated with the finite volume approach. A very different fingering pattern was seen depending upon whether a 

parallel and diagonal grid was used. The diagonal grid resulted in fewer fingers, probably because of higher levels of 

numerical diffusion, although predicted watercut versus time was similar in both cases.   

 

The water cut profile obtained from the adaptive CVFE approach agreed well with the results from the conventional 

commercial simulator . The fingering pattern obtained from the CVFE approach agreed best with that seen when using a 

diagonal grid in the finite volume simulations on a fixed grid for both static and adaptive meshes, suggesting that the level of 

transverse numerical diffusion was similar in both cases. The simulation time obtained when using a dynamic and adaptive 

mesh was significantly faster than that needed for the fine, fixed mesh, CVFE  simulations and comparable to that needed for 

the fine grid runs using the commercial simulator. This was despite the fact that this code has not yet been optimized. We 

expect the CPU time for this approach to reduce once this has been done. Further work is also needed to validate the models 

against experiments and analytical results when there is capillary pressure present. 
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