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A LOGARITHMIC INTERPRETATION OF EDIXHOVEN’S

JUMPS FOR JACOBIANS

DENNIS ERIKSSON, LARS HALVARD HALLE, AND JOHANNES NICAISE

Abstract. Let A be an abelian variety over a discretely valued field.
Edixhoven has defined a filtration on the special fiber of the Néron model
of A that measures the behaviour of the Néron model under tame base
change. We interpret the jumps in this filtration in terms of lattices of
logarithmic differential forms in the case where A is the Jacobian of a
curve C, and we give a compact explicit formula for the jumps in terms
of the combinatorial reduction data of C.

1. Introduction

Let R be a henselian discrete valuation ring, with quotient field K and
algebraically closed residue field k. We denote by p the characteristic
exponent of k. Let A be an abelian variety over K, and denote by A
its Néron model; loosely speaking, this is the minimal smooth model of A
over R. If K ′ is a finite separable extension of K with valuation ring R′, then
from the universal property that defines the Néron model we get a canonical
morphism of R′-group schemes h : A ×R R′ → A ′ where A ′ denotes the
Néron model of A′ = A ×K K ′. The morphism h is not an isomorphism
unless K = K ′ or A has good reduction (i.e., A is an abelian R-scheme).
One would like to understand the properties of the morphism h, and thus
how the Néron model of A behaves under base change.

In [Ed92], Edixhoven constructed a filtration on the special fiber Ak of A
by closed subgroups that measures the behaviour of the Néron model under
tame extensions of the base field K, that is, finite extensions of degree prime
to the characteristic exponent p of k. This filtration is indexed by rational
numbers in the semi-open interval [0, 1[. The numbers in [0, 1[ where this
filtration jumps form an interesting set of invariants of A; we will simply
refer to these numbers as the jumps of A. Note that, by definition, these
jumps are real numbers. The question whether they are always rational is
one of the main open problems about these invariants.

Let Ks be a separable closure of K. By Grothendieck’s Semi-Stable
Reduction Theorem [SGA7-I, IX.3.6] there exists a smallest finite extension
L of K inKs such that the abelian variety A×KL has semi-stable reduction;
this means that the identity component of the special fiber of the Néron
model of A ×K L is an extension of an abelian k-variety by an algebraic
k-torus. We say that A is tamely ramified if L is a tame extension of K, and
wildly ramified otherwise. When A is tamely ramified, Edixhoven explained
how the jumps of A can be computed from the action of the Galois group
Gal(L/K) on the Néron model of A ×K L. This description implies in
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particular that the jumps are rational and that the degree of L over K is
the least common multiple of their denominators.

In this paper we are mainly interested in the wildly ramified case. We
will study the jumps of A under the assumption that A is the Jacobian
of a K-curve C. In this case, it was already proven by the second author
in [Ha10b] that the jumps are rational; see also [HN14, §5.3]. In fact, he
proved a much stronger result, namely that the jumps of A only depend
on the combinatorial reduction data of C, and not on the characteristic of
k. A result of Winters [Wi74] guarantees that we can always find a curve
D over the field of complex Laurent series C((t)) with the same reduction
data, and thus the same jumps, as C. Since D is automatically tame, it
follows that the jumps of C are rational. By Corollary 3.1.5 in Chapter 5
of [HN14], the least common multiple of their denominators is the so-called
stabilization index of C, a combinatorial invariant whose definition we will
recall in (2.3.3).

This result is quite powerful, but the proof of the rationality of the jumps
is somewhat indirect, since one uses the combinatorial nature of the jumps
and Winters’s result to reduce to the case where the residue field k has
characteristic zero. The aim of the present paper is to give an interpretation
of the jumps of A in terms of lattices of logarithmic differential forms on
R-models of C (Theorems 4.3.5 and 4.4.1), and to deduce a direct proof of
their rationality (Theorem 4.4.5). Very roughly, we show that the jumps
are controlled by the so-called saturation of a log regular model of C. The
saturation is essentially equivalent to a semi-stable model in the tamely
ramified case, but not in general; it can be viewed as a kind of combinatorial
(characteristic-free) approximation of a semi-stable model. We expect that
this approach can be generalized to arbitrary abelian K-varieties, provided
that one finds a good notion of logarithmic Néron model of A. To our
knowledge, such a construction has not yet appeared in the literature. Using
our logarithmic interpretation of the jumps, we then establish an explicit and
compact formula for the jumps of A in terms of the combinatorial reduction
data of C (Theorem 5.4.1). Such a formula was not known before. It
allows to prove directly that the stabilization index e(C) is the least common
multiple of the denominators of the jumps (Corollary 5.5.7), without relying
on Winters’s result. We also deduce some interesting new properties of the
jumps that make it easy to compute them in concrete examples (Propositions
5.5.2 and 5.5.6). Our methods give a conceptual explanation of the role that
is played by the stabilization index of C: it is the smallest possible saturation
index of a log regular model of C (see Corollary 5.5.8). Our formula and the
properties we deduce from it are somewhat reminiscent of jumping numbers
of multiplier ideals of divisors on surfaces, but we do not know if there are
any direct connections.
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Notation. Throughout the paper, we will let R denote a henselian discrete
valuation ring, with maximal ideal m, quotient field K and residue field k.
We will assume that k is algebraically closed and we denote its characteristic
exponent by p ≥ 1. We set S = SpecR. Given a finite extension K ′ of K, we
will denote by R′ the integral closure of R in K ′ (which is again a henselian
discrete valuation ring) and we set S′ = SpecR′.

We fix a separable closure Ks of K, and we denote by Kt the tame closure
of K in Ks. The integral closures of R in Kt and Ks will be denoted by Rt

and Rs, respectively.
For every ring A we denote by (Sch/A) the category of A-schemes. For

every A-algebra B we denote by

(·)B : (Sch/A) → (Sch/B) : X 7→ XB = X ×A B

the base change functor.
Throughout the paper, C will always denote a smooth, proper and

geometrically connected K-curve of genus g > 0. We also assume that
C has a zero divisor of degree one. The Jacobian variety of C is denoted
Jac(C).

If P is a monoid, then we write P gp for its groupification and P sat for its
saturation.

2. A few reminders on Edixhoven’s filtration and Néron

models of Jacobians

2.1. Chai’s base change conductor.

(2.1.1) Let A be an abelian K-variety of dimension g and let A denote
its Néron model over R. Let moreover K ′/K be a finite separable field
extension and denote by R′ the integral closure of R in K ′ and by m′ its
maximal ideal. We denote by A ′ the Néron model of A ×K K ′ over R′.
Since A ×R R′ is smooth and A ′ is a Néron model, there exists a unique
morphism

h : A ×R R′ → A ′

extending the canonical isomorphism between the generic fibers. We shall
refer to this morphism as the base change morphism.

(2.1.2) On the level of Lie algebras, the base change morphism induces an
injective homomorphism

Lie(h) : Lie(A )⊗R R′ → Lie(A ′)

of free R′-modules of rank g = dim(A).

Definition 2.1.3.
(1) The tuple of K ′-elementary divisors of A is the unique non-

decreasing tuple

(c1(A,K
′), . . . , cg(A,K

′))

in Ng such that

coker(Lie(h)) ∼=

g⊕

i=1

(
R′/(m′)ci(A,K ′)

)
.
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(2) The tuple (c1(A), . . . , cg(A)) of elementary divisors of A is defined
by

ci(A) =
1

[K ′ : K]
ci(A,K

′)

where K ′ is any finite separable extension of K such that A ×K K ′

has semi-stable reduction. The base change conductor c(A) of A is
defined by

c(A) =

g∑

i=1

ci(A) =
1

[K ′ : K]
lengthR′coker(Lie(h)).

(2.1.4) It follows from [SGA7-I, IX.3.3] that the definition of ci(A) and
c(A) is independent of choice of the extension K ′/K over which A has
semi-stable reduction. The base change conductor c(A) and the elementary
divisors ci(A) were defined by Chai and Yu for algebraic tori in [CY01].
Chai generalized this definition to semi-abelian varieties in [Ch00]. The
base change conductor measures the defect of semi-stable reduction of A; in
particular, it vanishes if and only if A has semi-stable reduction.

2.2. Edixhoven’s filtration and the tame base change conductor.

(2.2.1) In [Ed92], Edixhoven defined a filtration F •Ak on the special fiber
Ak of the Néron model A of A, by closed subgroups F iAk indexed by
rational numbers i ∈ [0, 1[. This filtration measures the behaviour of the
Néron model under tame finite extensions of K. One can define the jumps
in this filtration by looking at the indices where F iAk changes. These jumps
are real numbers in [0, 1[, and each of them has a natural multiplicity; see
[HN14, 5.1.3.6]. The number of jumps (counted with multiplicities) is equal
to the dimension g of the abelian variety A.

(2.2.2) Edixhoven also proposed an alternative way to compute the jumps
and their multiplicities, which we can reformulate as follows. Let K0 ⊂
K1 ⊂ . . . be a tower of finite extensions of K in Kt that is cofinal in the
set of all finite extensions of K in Kt, ordered by inclusion. Then for every
index i in {1, . . . , g}, the sequence

(ci(A,Kn)/[Kn : K])n∈N

is a non-decreasing sequence of rational numbers; one can show that the
elements of this sequence are strictly bounded by 1. We denote by ji(A) the
limit of this sequence. By [HN14, 5.1.3.7], the non-decreasing tuple of real
numbers

(j1(A), . . . , jg(A))

is precisely the tuple of jumps of A, counted with multiplicities.
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(2.2.3) In [HN14, 5.1.3.6], the last two authors defined the tame base
change conductor ctame(A) of A as the sum of the jumps:

ctame(A) =

g∑

i=1

ji(A).

If A is tamely ramified, then ji(A) = ci(A) for all i and ctame(A) = c(A) by
[HN11, 4.18], but these invariants differ in general.

(2.2.4) Whereas the elementary divisors ci(A) are rational numbers by
definition, it is an open problem whether the jumps ji(A) are always rational
numbers (this question was already raised by Edixhoven in [Ed92, 5.4.5]). It
is not even known whether their sum ctame(A) is always rational. Assuming
that all the jumps are rational, we define the stabilization index e(A) of A
as the smallest positive integer e such that e · ji(A) is rational for every i.
If A is tamely ramified, it follows from the equalities ci(A) = ji(A) that
the jumps are rational numbers, and one can show that e(A) is equal to
the degree of the minimal extension L of K in Ks such that A ×K L has
semi-stable reduction [HN14, 5.1.3.12].

(2.2.5) The stabilization index of A (whose definition depends on the
rationality of the jumps) seems to capture important information about the
behaviour of the Néron model of A under tame base change: the idea is that
the Néron model should change “as little as possible” if the degree of the
base extension is prime to e(A). This principle is made precise in section
1 of Part 4 in [HN14]; it is the key to understanding the so-called motivic
zeta function of A.

2.3. Regular models of curves.

(2.3.1) Let C be a smooth, proper and geometrically connected K-curve
of genus g > 0. We assume that C has a zero divisor of degree one. An R-
model of C is a flat and proper R-scheme C , endowed with an isomorphism
of K-schemes

C ×R K → C.

Morphisms of models are defined in the obvious way. An ncd-model
(resp. sncd-model) of C is a regular R-model C such that the special fiber
Ck is a divisor with normal crossings (resp. strict normal crossings, i.e. the
reduced irreducible components are smooth). Since we assume that the
genus of C is at least one, the curve C has a unique minimal regular model,
a unique minimal ncd-model and a unique minimal sncd-model; we refer
to section 2.2 of [Ni13] for a brief summary of the literature with detailed
references. We say that C has semi-stable reduction if the special fiber of the
minimal ncd-model of C is reduced. By the Semi-Stable Reduction Theorem
for curves [DM69], there exists a smallest finite extension L of K in Ks such
that C ×K L has semi-stable reduction. Moreover, since we assume that C
has a zero divisor of degree one, C has semi-stable reduction if and only if its
Jacobian variety has semi-stable reduction (this does not hold for genus one
curves without a rational point, but such a curve never has a zero divisor of
degree one).
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(2.3.2) If C is an sncd-model of C with special fiber Ck =
∑r

i=1 NiEi,
then the combinatorial reduction data of C consist of the dual graph of Ck,
where we label the vertex corresponding to Ei with the multiplicity Ni and
the genus g(Ei) of Ei. We define the combinatorial reduction data of C to
be those of the minimal sncd-model of C. The condition that C has a zero
divisor of degree one is equivalent to the condition that the greatest common
divisor of the multiplicities Ni is equal to one, by [Ra70, 7.1.6]. This implies
that the structural morphism C → S is cohomologically flat [Ra70, 8.2.1],
so that H1(C ,OC ) is a free R-module.

(2.3.3) If C is an sncd-model of C, then we say that an irreducible
component E of the special fiber Ck is principal if the genus of E is at least
one or E is a rational curve meeting the other components of Ck in at least
three points. The stabilization index of C is defined as the least common
multiple of the multiplicities of the principal components in the special fiber
of the minimal sncd-model of C; see Definition 2.2.2 in Chapter 3 of [HN14].
Let L be the minimal finite extension of K in Ks such that C ×K L has
semi-stable reduction. If this extension is tame, then its degree is equal
to e(C) by [Ni13, 3.4.4], but this is false in general. As we have already
mentioned in the introduction, it was proven by the last two authors that
the stabilization index of C is equal to that of its Jacobian in the sense of
(2.2.5) (see Corollary 3.1.5 in Chapter 5 of [HN14]). We will give a more
direct and conceptual argument in Corollary 5.5.7.

2.4. Néron models of Jacobians.

(2.4.1) Let C be a regular model of C, let J be the Néron model of
J = Jac(C) and let J 0 be its identity component. Recall that we assume
that the curve C has a zero divisor of degree one. By a fundamental theorem
of Raynaud [BLR90, 9.5.4], there is a natural isomorphism

Pic0C /R
∼= J 0.

Via this description of J 0, it is possible to reduce many computations
concerning Néron models to computations on regular models of curves,
something which is often very useful. We will see that this is true, in
particular, for the jumps in Edixhoven’s filtration. To this end, we will
need the following well known interpretation of the invariant differential
forms on J .

(2.4.2) Let eJ : S → J be the unit section of the Néron model of
J . Then we define Ω(J) to be the module of translation-invariant relative
differential forms on J (see [BLR90, §4.2]); thus

Ω(J) = e∗J Ω1
J /S .

This is an R-lattice in the g-dimensional K-vector space

H0(J, ωJ/K) ∼= H0(C,ωC/K).
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Proposition 2.4.3. Let C be a regular R-model of C, and denote by ωC /R

the relative canonical sheaf. Then one has

Ω(J) = H0(C , ωC /R)

as lattices in H0(C,ωC/K).

Proof. By [BLR90, 8.4.1], the canonical isomorphism

Lie(J) → H1(C,OC )

can be extended to an isomorphism of R-modules

Lie(J ) → H1(C ,OC ).

Since ωC /R is a dualizing sheaf for the structural morphism C → S,
Grothendieck duality yields an isomorphism

Lie(J )∨ ∼= Ω(J) → H0(C , ωC /R).

�

3. Log schemes and differential forms

In this section we will prove some basic results on sheaves of differentials
on logarithmic schemes. The standard introduction to logarithmic geometry
is [Ka89]. Our log structures are defined with respect to the étale topology,
and our definition of log regularity is the one from [Ni06, 2.2]; see [Ni06, 2.3]
for a comparison with Kato’s definition for the Zariski topology in [Ka94].

3.1. Base change of fs log schemes.

(3.1.1) We will denote by S+ the scheme S = Spec (R) with its standard
log structure, that is, the log structure induced by the morphism of monoids
R\{0} → R. If X is a flat R-scheme, we will denote by X + the log scheme
we obtain by endowing X with the divisorial log structure associated with
Xk. Similar notation will be used for S′ = Spec (R′) and schemes over R′, if
K ′ is a finite extension of K and R′ is its valuation ring. The fiber product
in the category of fine and saturated (fs) log schemes will be denoted by
×fs. Beware that it does not commute with the forgetful functor to the
category of schemes.

(3.1.2) Let C be an R-model of C such that C+ is log regular. Let K ′ be
a finite extension of K. Set

D+ = C+ ×fs
S+ (S′)+.

Let D be the underlying scheme of D+. Then the log structure on D+ is the
divisorial log structure induced by Dk, so that our notation is consistent.
The scheme D is canonically equipped with a finite morphism

D → C ×R R′

which is an isomorphism on the generic fibers since there the log structure
is trivial.
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(3.1.3) If C+ is log smooth over S+, then D+ is log smooth over (S′)+,
because log smoothness is preserved by base change in the category of fs
log schemes. Likewise, if K ′ is a tame extension of K, then (S′)+ is log étale
over S+ and D+ is log étale over C+. In both cases, D+ is log smooth over
a log regular scheme, and thus itself log regular [Ka94, 8.2], which implies
that the underlying scheme D is normal [Ka94, 4.1]. Therefore,

D → C ×R R′

must be a normalization map.

3.2. Differential forms on log regular schemes.

(3.2.1) Let X be a flat R-scheme of finite type such that the associated
log scheme X + is log regular and let x be a closed point of Xk. The aim
of this section is to construct a free resolution of the module of germs of
log differential forms Ω1

X +/S+,x. This result will be important for the study

of logarithmic canonical sheaves in the following sections. To simplify the
notations, we introduce the following abbreviations: we writeO for the étale-
local ring of X at x (the henselization of OX ,x), M = O∩(O⊗RK)× for the

monoid MX +,x, M = M/O× for the characteristic monoid and Ω for the

O-module Ω1
X +/S+,x (where the stalk at x is taken in the étale topology).

Recall that the monoid M is toric (that is, sharp, fine and saturated). We
fix a section M → M for the projection morphism M → M, so that we
can view M as a submonoid of the multiplicative monoid (O, ·). Denote by
I the ideal of O generated by M\ {1}. By definition of log regularity, the
local ring O/I is regular, and its dimension r is equal to the dimension of O

minus the rank of the free abelian group M
gp
. We choose elements t1, . . . , tr

in O whose reductions modulo I form a regular system of local parameters
in O/I, and we denote by M the O-module

M = O ⊗Z (M
gp

⊕ Zr).

Proposition 3.2.2. Denote by

γ : M → Ω

the unique morphism of O-modules that sends a⊗ (m⊕ n) to

a(dlog(m) +

r∑

i=1

nidti)

for all a in O, all m in M and all n in Zr. Then γ is surjective, and its
kernel is a free O-module of rank one.

Proof. By faithful flatness of the completion morphism O → Ô, it is enough

to prove the statement after base change to Ô. We denote by R̂ the

completion of R and by X the formal R̂-scheme Spf Ô, and we define a

log structure on X by means of the chart M → Ô. The resulting log formal
scheme will be denoted by X+, and we write S+ for the formal scheme

Spf R̂ with its standard log structure. Then we can identify Ω ⊗O Ô with

the module of log differentials Ω1
X+/S+ . Set A = R̂[[M]][[T1, . . . , Tr]] and

denote by Y+ the log formal scheme Spf A with chart M → A. By the local
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description of toric singularities in [Ka94, 3.2], we know that we can view
X+ as a strict closed log formal subscheme of Y+ defined by a principal
ideal J such that ti is the restriction of Ti to X+ for every i (in the notation
of [Ka94, 3.2(2)] the ring R is the ring of Witt vectors W (k), but the proof
can be adapted in an obvious way). Let m1, . . . ,ms be a basis for M

gp
.

Then Ω1
Y+/S+ is free with basis dT1, . . . , dTr,dlog(m1), . . . ,dlog(ms). Thus

the base change of γ to Ô fits into the fundamental short exact sequence of

Ô-modules

0 → J/J2 → Ω1
Y+/S+ ⊗A (A/J) = M ⊗O Ô → Ω1

X+/S+ = Ω⊗O Ô → 0.

�

3.3. Logarithmic canonical sheaves.

(3.3.1) Let X be a Noetherian scheme and F a coherent OX -module.
Recall that the reflexive hull of F is the double dual F∨∨ of F , and that F
is called reflexive if the natural morphism F → F∨∨ is an isomorphism. We
recall a few basic properties of reflexive sheaves:

• If X is regular, then every reflexive rank one sheaf on X is a line
bundle [Ha80, 1.9].

• IfX is normal, then every reflexive sheaf F on X has the S2 property
[Ha94, 1.9]. This implies that, for every closed subscheme Z of X of
codimension at least two, the restriction map

F(X) → F(X \ Z)

is an isomorphism.
• Assume that X is normal and let Z be a closed subscheme of X of
codimension at least two. Let G be a reflexive sheaf on U = X \ Z.
If we denote by i the open immersion U → X, then i∗G is a reflexive
sheaf on X, and it is the unique extension of G to a reflexive sheaf
on X.

(3.3.2) Let C be a normal R-model of C. Denote by U = C reg the open
subscheme of regular points of C and by i : U → C the open immersion.
We denote by ωU /R the canonical line bundle of the morphism U → SpecR
and we define the canonical sheaf of the R-scheme C by

ωC /R = i∗ωU /R.

This is a reflexive rank one sheaf on C , whose restriction to C is naturally
isomorphic to the canonical line bundle ωC/K . If the structural morphism
f : C → SpecR is l.c.i., then ωC /R is canonically isomorphic to the relative

canonical bundle of f , i.e., the determinant of Ω1
C /R. We say that C has

canonical singularities if, for every morphism g : C ′ → C of R-models of C
such that C ′ is regular, we have g∗ωC /R ⊂ ωC ′/R as subsheaves of j∗ωC/K ,

where j denotes the open immersion C → C ′.
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(3.3.3) Likewise, we define the logarithmic canonical sheaf on C by

ωlog
C /R = i∗(det Ω

1
U +/S+).

This is again a reflexive rank one sheaf on C whose restriction to C is
naturally isomorphic to the canonical line bundle ωC/K . Its relation to
ωC /R is explained in the following proposition.

Proposition 3.3.4. Let C be a normal model of C, and denote by j the
open immersion j : C → C . Then

ωlog
C /R = ωC /R(Ck,red − Ck)

as subsheaves of j∗ωC/K . In particular, if Ck is reduced, then ωC /S and

ωlog
C /R coincide.

Proof. Since both sheaves are reflexive, it suffices to prove that they coincide
on the complement of a finite set of closed points, so that we can replace C
by a regular open subscheme U such that Uk has strict normal crossings.
Then the statement follows from [KS04, 5.3.4] by taking determinants. �

(3.3.5) The logarithmic canonical sheaf ωlog
C /R behaves well under fs base

change, in the following sense. Assume either that C+ is log smooth over
S+, or that C+ is log regular and K ′ is a tame finite extension of K. If we
set

D+ = C+ ×fs
S+ (S′)+

then ωlog
D/R′

is canonically isomorphic to the pullback of ωlog
C /R to D . This

follows from the fact that D is normal (cf. 3.1.3), Ω1
D+/(S′)+ is the pullback

of Ω1
C+/S+ and D → C is flat at every point of codimension ≤ 1 (recall that

taking determinants commutes with flat base change).

Proposition 3.3.6. Let C be an R-model of C such that C+ is log regular.

Then the logarithmic canonical sheaf ωlog
C /R is the determinant line bundle of

the perfect coherent sheaf Ω1
C+/S+ . If h : D → C is a morphism of models

of C such that the morphism of log schemes D+ → C+ is log étale, and if

we denote by j the open immersion DK → D , then we have ωlog
D/R = h∗ωlog

C /R

as subsheaves of j∗ωC/K .

Proof. The entire statement is local with respect to the étale topology on C .
Thus we may assume, by Proposition 3.2.2, that there exists a resolution of
Ω1

C+/S+ by free coherent sheaves of the form

(3.3.7) 0 → OC → F → Ω1
C+/S+ → 0.

The determinant line bundle det(Ω1
C +/S+) is equal to ωlog

C /R because these

reflexive sheaves coincide on the regular locus of C and C is normal. Since h
is log étale, the pullback h∗Ω1

C+/S+ is isomorphic to Ω1
D+/S+ . Applying the

right exact functor h∗ to our resolution (3.3.7) yields a right exact sequence

OD → h∗F → Ω1
D+/S+ → 0.
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This sequence is also exact on the left because this holds on the generic fiber
C of D and D is flat over R. Thus

ωlog
D/R = det(Ω1

D+/S+) = h∗ωlog
C /R.

�

4. A logarithmic interpretation of the jumps in Edixhoven’s

filtration

4.1. Comparing lattices over discrete valuation rings.

(4.1.1) Let V be a vector space of dimension g over K. For every pair of
R-lattices L0 ⊂ L1 in V , we define the tuple of elementary divisors of this
pair as the unique non-decreasing tuple

(c1(L1/L0), . . . , cg(L1/L0))

in Ng such that

L1/L0
∼= ⊕g

i=1R/mci(L1/L0).

The conductor c(L1/L0) of the pair of lattices is defined by

c(L1/L0) =

g∑

i=1

ci(L1/L0) = lengthR(L1/L0).

(4.1.2) Denote by Rs the valuation ring of Ks. Let L0 ⊂ L1 be a pair
of Rs-lattices in V ⊗K Ks. Then we can choose a finite extension K ′ of K
in Ks and R′-lattices L′

0 ⊂ L′
1 in V ⊗K K ′ such that Li = L′

i ⊗R′ Rs for
i = 0, 1. We define the elementary divisors c1(L1/L0), . . . , cg(L1/L0) and
the conductor c(L1/L0) of the pair (L0, L1) by

ci(L1/L0) =
1

[K ′ : K]
ci(L

′
1/L

′
0),

c(L1/L0) =
1

[K ′ : K]
c(L′

1/L
′
0).

It is straightforward to check that these definitions do not depend on the
choice of K ′. We will make use of the following elementary property.

Proposition 4.1.3. Let L0 ⊂ L1 ⊂ L2 be lattices in V ⊗K Ks, and let a be
a non-zero element of Rs such that the R-module L1/L0 is killed by a. If we
denote by N the valuation of a in Rs (with respect to the unique valuation
on Rs that extends the normalized discrete valuation on R), then

ci(L2/L1) ≤ ci(L2/L0) ≤ ci(L2/L1) +N

for every i in {1, . . . , g}.

Proof. We can assume that the lattices L0, L1 and L2 are defined over R,
and that a is an element of R. The proof is based on the following elementary
observation: for every positive integer M , the number of elementary divisors
of the pair (L0, L2) greater than or equal to M is equal to the dimension of
the k-vector space

V M
0,2 = (mM−1L2/L0)⊗R k
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and the analogous statement holds for (L1, L2). The projection L2/L0 →
L2/L1 gives rise to a surjection V M

0,2 → V M
1,2 for every M , which means that

ci(L2/L1) ≤ ci(L2/L0) for all i. On the other hand, multiplication with a
defines a morphism of R-modules L2/L1 → L2/L0 which induces a surjection

V M
1,2 → V M+N

0,2 for every M , so that we also have ci(L2/L0) ≤ ci(L2/L1)+N
for all i. �

4.2. Lattices of differential forms.

Proposition 4.2.1.
Let C be a normal model of C over R.

(1) If C+ is log regular, then the R-lattice

H0(C , ωlog
C /R)

in H0(C,ωC/K) only depends on C, and not on the choice of C .
(2) If we assume that C has at worst canonical singularities, then the

R-lattice
H0(C , ωC /R)

in H0(C,ωC/K) only depends on C, and not on the choice of C .

Proof. (1) Let C1 be an R-model of C such that C+
1 is log regular. Let

f : C2 → C1 be a morphism of R-models of C that is obtained by blowing
up C1 at a closed point x of its special fiber. Since C1 has only rational
singularities, the scheme C2 is normal [Li69, 1.5]. It suffices to show that
C+
2 is log regular and

H0(C1, ω
log
C1/R

) = H0(C2, ω
log
C2/R

),

since any pair of log regular R-models can be connected by a chain of such
point blow-ups.

It is clear that
H0(C2, ω

log
C2/R

) ⊂ H0(C1, ω
log
C1/R

)

because f is an isomorphism over C1 \ {x} and ωlog
C1/R

is reflexive. Thus it is

enough to prove that

(4.2.2) f∗ωlog
C1/R

⊂ ωlog
C2/R

as subsheaves of the pushforward of ωC/K to C2.
First, assume that x is a regular point of the reduced special fiber (C1,k)red

of C1. Then C1 is also regular at x by [Ni06, 5.2]. Thus C+
2 is log regular

and (4.2.2) is a straightforward consequence of the analogous inclusion for
the canonical sheaves ωCi/R, together with Proposition 3.3.4.

Now assume that x is a singular point of (C1,k)red. Then the morphism

C+
2 → C+

1 is a log blow-up by [Ni06, 4.3], and hence log-étale, so that C+
2

is log regular and (4.2.2) follows from Proposition 3.3.6.
Property (2) can be proven in a similar way, replacing C1 by a normal

model of C with at worst canonical singularities and f : C2 → C1 by a
resolution of singularities of C1; then the inclusion

f∗ωC1/R ⊂ ωC2/R

follows from the definition of a canonical singularity. �
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Definition 4.2.3. Let C be a normal R-model of C. If C+ is log regular,
then we call the R-lattice

H0(C , ωlog
C /R) ⊂ H0(C,ωC/K)

the logarithmic lattice associated with C, and we denote it by Ωlog(C). If C
has at worst canonical singularities, then we call the R-lattice

H0(C , ωC /R) ⊂ H0(C,ωC/K)

the canonical lattice associated with C, and denote it by Ωcan(C).

(4.2.4) We can always find an R-model C of C such that C+ is log regular
(for instance, an ncd-model). By Proposition 4.2.1, Definition 4.2.3 does not
depend on the choice of C . Note that

Ωlog(C) ⊂ Ωcan(C)

by Proposition 3.3.4, and that they are equal when C has semi-stable
reduction.

Proposition 4.2.5. Let K ′ be a finite separable extension of K and denote
by R′ the integral closure of R in K ′. Set C ′ = C ×K K ′.

(1) We have

Ωcan(C)⊗R R′ ⊃ Ωcan(C
′)

as lattices in H0(C ′, ωC′/K ′), with equality if C has semi-stable
reduction.

(2) Assume either that C has an R-model C such that C+ is log smooth
over S+, or that K ′ is a tame extension of K. Then we have

Ωlog(C)⊗R R′ ⊂ Ωlog(C
′)

as lattices in H0(C ′, ωC′/K ′).

Proof. (1) The inclusion follows from from Proposition 2.4.3. If C is a semi-
stable R-model of C, then C ×RR

′ is a normal R′-model of C ′ with canonical
singularities (rational double points of type An) so that

Ωcan(C
′) = Ωcan(C)⊗R R′.

(2) This follows from (3.3.5). �

(4.2.6) In other words, the logarithmic lattice grows under tame extensions
of K, and the canonical lattice shrinks under arbitrary extensions of K. It
will be convenient to summarize all of the above inclusions in the following
diagram; here K ′ is a finite extension of K in Kt, K ′′ is a finite extension
of K ′ in Ks, and R′ and R′′ denote their respective valuation rings.

Ωcan(C)⊗R Rs ⊃ Ωcan(C ×K K ′)⊗R′ Rs ⊃ Ωcan(C ×K K ′′)⊗R′′ Rs

∪ ∪

Ωlog(C)⊗R Rs ⊂ Ωlog(C ⊗K K ′)⊗R′ Rs

Now we can associate with the curve C two further lattices.
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(4.2.7) The semi-stable lattice is defined by

Ωss(C) = Ωcan(C ×K K ′)⊗R′ Rs ⊂ H0(C,ωC/K)⊗K Ks,

where K ′ is any finite extension of K in Ks such that C ×K K ′ has semi-
stable reduction. It follows from Proposition 4.2.5 that this definition does
not depend on the choice of K ′, and that Ωss(C) is the intersection of the
lattices

Ωcan(C ×K K ′)⊗R′ Rs

where K ′ ranges over all the finite extensions of K in Ks.

(4.2.8) The saturated lattice Ωsat(C) is defined by

Ωsat(C) =
⋂

K ′

(Ωcan(C ×K K ′)⊗R′ Rs)

where K ′ runs through the finite extensions of K in Kt. We will prove in
Theorem 4.3.5 that this is indeed a lattice in H0(C,ωC/K)⊗K Ks.

(4.2.9) By (4.2.6), the lattices we have defined are related as follows:

Ωss(C) ⊂ Ωsat(C) ⊂ Ωcan(C)⊗R Rs.

We will prove in Theorem 4.4.1 that Edixhoven’s jumps and Chai’s
elementary divisors of the Jacobian variety Jac(C) measure precisely the
difference between these lattices.

(4.2.10) The saturated (resp. semi-stable) lattice is invariant under base
change of C to a finite extension of K in Kt (resp. in Ks). If C is tamely
ramified and K ′ is a finite extension of K in Kt such that C ×K K ′ has
semi-stable reduction, then

Ωss(C) = Ωsat(C) = Ωcan(C ×K K ′)⊗R′ Rs.

However, if C is wildly ramified, then the intersection in the definition of the
saturated lattice never stabilizes for large K ′1 makes the definition difficult
to work with; it is not even clear from this definition that the saturated
lattice is indeed a lattice. We will now give a more convenient description,
which also explains our choice of terminology.

4.3. Saturated models.

1One way to see this is to combine Theorem 4.4.1 and Corollary 5.5.7 with [HN14,
III.2.2.4]: if C is wildly ramified then the least common multiple of the denominators
of the jumps of Jac(C) is divisible by p, which implies that the saturated lattice is not
defined over a tame extension of R.
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(4.3.1) We will need a few results on saturated morphisms of log schemes
that have been established by T. Tsuji in an unpublished 1997 preprint; a
published account of the properties we need can be found at the beginning of
[Vi04, §1.3]. A morphism of saturated monoids P → Q is called saturated if,
for every morphism of saturated monoids P → P ′, the coproduct P ′ ⊕P Q
is still saturated. A morphism of fs log schemes f : X → Y is called
saturated if for every geometric point x on X, the morphism of characteristic
monoids MY,f(x) → MX,x is saturated. We will only use this notion for

morphisms of the form f : C+ → S+, where C is an R-model of C. If f
is saturated, then for every finite separable extension K ′ of K, the fs base

change D+ = C+ ×fs
S+ (S′)+ coincides with the base change in the category

of log schemes. In particular, the underlying scheme of D+ is simply the
fiber product C ×R R′.

(4.3.2) Let C be an R-model of C. The saturation index of f : C+ → S+

is defined on page 993 of [Vi04, §1.3]. It is a positive integer m such that,
for every finite separable extension K ′ of K of degree m, the morphism

D+ = C+ ×fs
S+ (S′)+ → (S′)+

is saturated; we havem = 1 if and only if f is itself saturated. The saturation
index m is easy to compute if C+ is log regular, which is the only case we
will need: it is precisely the least common multiple of the multiplicities of
the prime components in the divisor Ck.

Lemma 4.3.3. Let P be a fine and saturated monoid, and let (N,+) → P
be a morphism of monoids. Then for every integer d > 0, the image of the
natural morphism

Q = P ⊕N (1/d)N → Qsat

contains (0, 1) +Qsat.

Proof. For every rational number a, we write ⌊a⌋ for its integral part (the
largest integer smaller than or equal to a) and {a} = a−⌊a⌋ for its fractional
part. We denote by e the image of 1 under the morphism N → P .

Using criterion (iv) in [Ka89, 4.1], it is straightforward to verify that the
morphism N → (1/d)N is integral. Thus Q is integral, and we can view it
as the submonoid of the amalgamated sum P gp ⊕Z (1/d)Z generated by P
and (0, 1/d).

Let q be an element of Qsat. Then we can write q as (p1, n1/d)−(p2, n2/d)
with p1, p2 in P and n1, n2 non-negative integers, and we know that there
exists an integer N > 0 such that

N(p1, n1/d) −N(p2, n2/d)

= (N(p1 − p2) + ⌊N(n1 − n2)/d⌋e, {N(n1 − n2)/d})

lies in Q. This is only possible if

N(p1 − p2) + ⌊N(n1 − n2)/d⌋e

lies in P , which implies that

N(p1 − p2 + (⌊(n1 − n2)/d⌋ + 1)e)
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lies in P because

N⌊n/d⌋ +N ≥ ⌊nN/d⌋

for all integers n. Since P is saturated, it follows that

p1 − p2 + (⌊(n1 − n2)/d⌋ + 1)e

belongs to P . Thus

q + (0, 1) = q + (e, 0)

= (p1 − p2 + (⌊(n1 − n2)/d⌋ + 1)e, {(n1 − n2)/d})

lies in Q. �

Lemma 4.3.4. We have

mΩcan(C) ⊂ Ωlog(C)

where m denotes the maximal ideal in R.

Proof. Let C be an sncd-model of C. We denote by D the divisor Ck−Ck,red

on C and by i the closed immersion D → C . By Proposition 3.3.4, we have
a short exact sequence of coherent OC -modules

0 → ωlog
C /R → ωC /R → i∗i

∗ωC /R → 0.

Thus the cokernel of the inclusion of R-lattices

Ωlog(C) → Ωcan(C)

is a submodule of H0(D, i∗ωC /R). It is killed by m, since every element of
m vanishes on D. �

Theorem 4.3.5. Let C be an R-model of C such that C+ is log regular.
Let K ′ be a finite extension of K in Ks with valuation ring R′ such that the
log scheme

D+ = C+ ×fs
S+ (S′)+

is saturated over (S′)+, and denote by h the morphism D → C . Then

(4.3.6) Ωsat(C) = H0(D , h∗ωlog
C /R)⊗R′ Rs.

In particular, Ωsat(C) is a lattice in H0(C,ωC/K)⊗K Ks.

Proof. Denote by K0 the tame closure of K in K ′, by R0 its valuation
ring, and by S+

0 the spectrum of R0 with its standard log structure. Set

C0 = C ×K K0 and C+
0 = C+ ×fs

S+ S+
0 and denote by m0 the maximal ideal

of R0.
It follows from (3.3.5) and Lemma 4.3.4 that

(m0Ωcan(C0))⊗R0
Rs ⊂ Ωlog(C0)⊗R0

Rs ⊂ H0(D , h∗ωlog
C /R)⊗R′ Rs.

The right hand side of this expression does not change if we replace K ′ by a
finite extension of K ′ in Ks, because D+ is saturated over (S′)+ so that fs
base change coincides with base change in the category of log schemes and
commutes with the forgetful functor to the category of schemes. Since we
can dominate any finite extension of K in Kt by a finite extension of K ′ in
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Ks, and the maximal ideal ms of Rs is generated by the uniformizers in the
finite extensions of K in Kt, we find that

msΩsat(C) ⊂ H0(D , h∗ωlog
C /R)⊗R′ Rs.

This is only possible if

Ωsat(C) ⊂ H0(D , h∗ωlog
C /R)⊗R′ Rs.

Now we prove the converse inclusion. We claim that

(4.3.7) m0H
0(D , h∗ωlog

C /R) ⊂ H0(C0, ω
log
C0/R0

)⊗R0
R′.

This implies that

(m0H
0(D , h∗ωlog

C /R))⊗R′ Rs ⊂ Ωsat(C)

because we have

Ωlog(C ×K K0)⊗R0
Rs ⊂ Ωlog(C ×K K ′

0)⊗R′

0
Rs ⊂ Ωcan(C ×K K ′

0)⊗R′

0
Rs

for every finite extension K ′
0 of K0 in Kt with valuation ring R′

0. As in the
first part of the proof, we see by replacing K ′ by its finite tame extensions
(and letting K0 grow accordingly) that

ms(H0(D , h∗ωlog
D/R)⊗R′ Rs) ⊂ Ωsat(C),

and thus
H0(D , h∗ωlog

D/R
)⊗R′ Rs ⊂ Ωsat(C),

which is what we wanted to show.
It remains to prove our claim (4.3.7). The schemes D and C0 are related

by a finite morphism
g : D → C0 ×R0

R′,

which is an isomorphism on the generic fibers. Moreover, h∗ωlog
C /R is

isomorphic to the pullback of the line bundle ωlog
C0/R0

to D . Thus it suffices

to show that the cokernel of the morphism

OC0×R0
R′ → g∗OD

is killed by m0. This property is local with respect to the étale topology, so
that we can assume that the morphism of log schemes C+

0 → S+
0 has a chart

N → P , with P a fine and saturated monoid, sending 1 ∈ N to a uniformizer
π0 in R0. If we denote by d the degree of K ′ over K0, then the morphism
(S′)+ → S+

0 has a chart of the form

N →
1

d
N⊕ Z

sending 1 ∈ N to π0, since we can write π0 as the d-th power of a uniformizer
in R′ times a unit u in R′. Thus the fiber product C+

0 ×S+
0

(S′)+ in the

category of log schemes has a chart

Q = (P ⊕ Z)⊕N

1

d
N → O(C0 ×S0

S′)

that sends 1 ∈ N to u−1π0. The scheme D is given by

(C0 ×R0
R′)×Z[Q] Z[Q

sat],

so that our claim follows from Lemma 4.3.3. �
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4.4. Relation with Edixhoven’s filtration and Chai’s elementary
divisors.

Theorem 4.4.1.
(1) The tuple of jumps in Edixhoven’s filtration for Jac(C) is equal to

the tuple of elementary divisors of the lattices

Ωsat(C) ⊂ Ωcan(C)⊗R Rs

in H0(C,ωC/K) ⊗K Ks. In particular, all the jumps are rational
numbers and

ctame(Jac(C)) = c(Ωcan(C)⊗R Rs/Ωsat(C)).

(2) The tuple of elementary divisors for Jac(C) is equal to the tuple of
elementary divisors of the lattices

Ωss(C) ⊂ Ωcan(C)⊗R Rs

in H0(C,ωC/K)⊗K Ks. In particular,

c(Jac(C)) = c(Ωcan(C)⊗R Rs/Ωss(C)).

Proof. Point (2) is essentially the definition of the elementary divisors,
modulo the identification Ω(J) = Ωcan(C) in Proposition 2.4.3 and the
duality between Ω(J) and Lie(J ). The same arguments show that the
tuple of K ′-elementary divisors of Jac(C) is equal to the tuple of elementary
divisors of the lattices

Ωcan(C ×K K ′) ⊂ Ωcan(C)⊗R R′

for every finite extension K ′ of K in Kt with valuation ring R′. If we denote
by m′ the maximal ideal of R′, then it follows from (4.2.6) and Lemma 4.3.4
that

m′Ωcan(C ×K K ′)⊗R′ Rs ⊂ Ωsat(C) ⊂ Ωcan(C ×K K ′)⊗R′ Rs.

Now we apply Proposition 4.1.3 to the chain of lattices

Ωsat(C) ⊂ Ωcan(C ×K K ′)⊗R′ Rs ⊂ Ωcan(C)⊗R Rs.

This yields

ci(Jac(C),K ′)

[K ′ : K]
≤ ci(Ωcan(C)⊗R Rs/Ωsat(C)) ≤

ci(Jac(C),K ′) + 1

[K ′ : K]

for every i in {1, . . . , g}. Letting K ′ range through the finite extensions of
K in Kt, we find that

ji(Jac(C)) = ci(Ωcan(C)⊗R Rs/Ωsat(C))

for every i. �

Remark 4.4.2. Theorem 4.4.1 suggests to define a new set of invariants, the
wild elementary divisors, as the tuple of elementary divisors of the lattices

Ωss(C) ⊂ Ωsat(C)

in H0(C,ωC/K) ⊗K Ks. If we define the wild base change conductor
cwild(Jac(C)) as the sum of the wild elementary divisors, then

cwild(Jac(C)) = c(Ωsat(C)/Ωss(C)) = c(Jac(C))− ctame(Jac(C)).
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The wild elementary divisors and the wild base change conductor form an
interesting measure for the wild ramification of C; if C is tamely ramified
then these invariants all vanish. If C is an elliptic curve, then cwild(C) can
be computed from the Swan conductor of C; see [HN14, Ch.5, 2.2.4].

(4.4.3) Observe that Theorem 4.4.1 yields a new proof of the rationality
of Edixhoven’s jumps for Jacobians. We will now give a more conceptual
explanation for the role of the stabilization index. In order to do this, we
first prove an elementary lemma.

Lemma 4.4.4. Let C be an sncd-model of C. Let E0 be an irreducible
component of Ck of multiplicity N0 > 1, and suppose that E0 is a rational
curve that meets the other components of Ck in precisely one point. Then
there exists a principal component in Ck whose multiplicity N is divisible by
N0. If C is a minimal sncd-model, then we can find such a component with
the additional property N > N0.

Proof. Let E1 be the unique component of Ck intersecting E0. From the
intersection formula Ck · E0 = 0 we obtain that N1 = −N0(E0 · E0); in
particular, N0 divides N1. If E1 is not principal, then it is a rational curve
that meets exactly one irreducible component E2 of Ck different from E0 (it
has to meet another component because, by our assumption that C has a
zero divisor of degree one, the greatest common divisor of the multiplicities
of the components of Ck must be equal to one; see (2.3.2)). The intersection
formula Ck ·E1 = 0 tells us that N2 = −N0−N1(E1 ·E1), so that N0 divides
N2. Repeating the argument, we eventually find a principal component Et

of Ck whose multiplicity Nt is divisible by N0. If C is minimal, then every
rational component intersecting the rest of the special fiber in at most two
points has self-intersection number at most −2, because otherwise it would
be contractible by Castelnuovo’s criterion, contradicting the minimality of
C . The above computations now easily yield Nt > N0. �

Theorem 4.4.5. If we denote by e(C) the stabilization index of the curve
C, then for every jump j in Edixhoven’s filtration for Jac(C), the product
e(C) · j is an integer.

Proof. Let C be an R-model of C such that C+ is log regular, and denote
by m the saturation index of the morphism C+ → S+. By Theorem 4.3.5,
the lattice Ωsat(C) is defined over an extension of K of degree m. Thus it
follows from Theorem 4.4.1 that the product m · j is integer for every jump
j of Jac(C). Therefore, it suffices to show that we can choose C such that
m is equal to the stabilization index e(C).

Let C ′ be the minimal sncd-model of C. By Lipman’s generalization of
Artin’s contractibility criterion [Li69, 27.1], any chain of rational curves in
C ′
k can be contracted to a rational singularity. In particular, there exists a

morphism h : C ′ → C of normal R-models of C that contracts precisely the
rational components of C ′

k that meet the rest of the special fiber in exactly
two points. The special fiber of C has étale locally two distinct branches at
any point in the image of the exceptional locus of h, so we can deduce from
[IS14, §3] that C+ is log regular. By Lemma 4.4.4, the saturation index of
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C+ → S+ is equal to e(C), because the non-principal components of C ′
k are

either contracted by h or do not contribute to the saturation index. This
concludes the proof. �

5. A formula for the jumps

5.1. The basic formula.

(5.1.1) We will now use our logarithmic interpretation of the jumps of
Jac(C) in Theorem 4.4.1 to deduce an explicit formula for the jumps in
terms of the combinatorial reduction data of C. Our starting point is the
chain of lattices

Ωlog(C)⊗R Rs ⊂ Ωsat(C) ⊂ Ωcan(C)⊗R Rs

in H0(C,ωC/K)⊗K Ks. Recall that, by Theorem 4.4.1, the jumps of Jac(C)
are precisely the elementary divisors of the pair of lattices

Ωsat(C) ⊂ Ωcan(C)⊗R Rs.

We will compute these elementary divisors by computing those of the other
inclusions in the chain:

Ωlog(C) ⊂ Ωcan(C),(5.1.2)

Ωlog(C)⊗R Rs ⊂ Ωsat(C).(5.1.3)

The tuples of elementary divisors do not behave additively in chains, in
general, but they do in special cases, as is explained in the following easy
lemma.

Lemma 5.1.4. Let V be a vector space over K of finite dimension g and
let Ω1 ⊂ Ω2 ⊂ Ω3 be a chain of lattices in V ⊗K Ks. Suppose that the tuple
of elementary divisors of Ω1 ⊂ Ω3 is of the form

v = (0, . . . , 0, a, . . . , a)

for some positive rational number a, and denote by n ≤ g the number of
entries equal to 0. Then the tuple of elementary divisors

w = (w1, . . . , wg)

of Ω1 ⊂ Ω2 satisfies 0 ≤ wi ≤ vi for all i in {1, . . . , g}, and the tuple of
elementary divisors of Ω2 ⊂ Ω3 is given by

(0, . . . , 0, a − wg, . . . , a− wn+1).

Proof. We may assume that all the lattices are defined over R. Then a is a
positive integer and the statement boils down to the following simple fact:
if N is a submodule of M = (R/ma)g−n for some positive integer a, then N

is isomorphic to ⊕g−n
i=1 R/mai for some non-negative integers ai ≤ a, and the

quotient M/N is isomorphic to ⊕g−n
i=1 R/ma−ai . �

The following proposition will be quite useful in our computations.

Proposition 5.1.5. If C is an sncd-model of C, then the R-modules

H1(C , ωC /R) and H1(C , ωlog
C /R) have no torsion.
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Proof. We write D for the divisor Ck−Ck,red on C . We know by Proposition
3.3.4 that

ωlog
C /R = ωC /R(−D).

The cohomology module H1(C ,OC ) is free by cohomological flatness of the
structural morphism C → S (see (2.3.2)). The short exact sequence of
OC -modules

0 → OC (D − Ck) → OC → OCk,red
→ 0

gives rise to an injection

H1(C ,OC (D)) → H1(C ,OC )

by surjectivity of the map

R = H0(C ,OC ) → H0(C ,OCk,red
) = k.

Thus we see that H1(C ,OC (D)) is free, as well. Now Grothendieck-Serre
duality provides us with isomorphisms

H1(C , ωC /R) → H0(C ,OC )
∨

and

H1(C , ωlog
C /R) → H0(C ,OC (D))∨.

In particular, H1(C , ωC /R) and H1(C , ωlog
C /R) have no torsion. �

5.2. Computation of Ωcan(C)/Ωlog(C).

(5.2.1) We know that mΩcan(C) ⊂ Ωlog(C) by Lemma 4.3.4. Thus the
quotient Ωcan(C)/Ωlog(C) is isomorphic to (R/m)u for some 0 ≤ u ≤ g
and the tuple of elementary divisors of Ωlog(C) ⊂ Ωcan(C) is given by
(0, . . . , 0, 1, . . . , 1) where the number of zeroes is equal to g − u. It only
remains to determine the value of u, that is, the dimension of the k-vector
space Ωcan(C)/Ωlog(C). To compute this dimension, we rewrite it as

dimk(Ωcan(C)/Ωlog(C)) = g − dimk(Ωlog(C)/mΩcan(C)).

Let C be an sncd-model of C. By Proposition 3.3.4, we have a short exact
sequence of OC -modules

(5.2.2) 0 → mωC /R = ωlog
C /R(−Ck,red) → ωlog

C /R → ι∗ι
∗ωlog

C /R → 0

where ι denotes the closed immersion Ck,red → C . By Proposition 5.1.5, the
R-module H1(C , ωC /R) is torsion free. Therefore, the sequence

0 → H0(C ,mωC /R) → H0(C , ωlog
C /R) → H0(Ck,red, ι

∗ωlog
C /R) → 0

is still exact; the start of this sequence is precisely the inclusion of lattices
mΩcan(C) → Ωlog(C). Hence,

dimk(Ωcan(C)/Ωlog(C)) = g − dimkH
0(Ck,red, ι

∗ωlog
C /R).
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(5.2.3) Now we compute dimkH
0(Ck,red, ι

∗ωlog
C /R). Denote by

a1 : C̃k,red → Ck,red

the normalization morphism of Ck,red. If we write Ck,red =
∑r

i=1 Ei then

C̃k,red is simply the disjoint union ⊔iEi. We denote by Σ the singular
locus of Ck,red and by a2 the closed immersion Σ → Ck,red. For notational

convenience, we write L for the line bundle ωlog
C /R on C , and Li for the

pullback of L to Ei. Then we can construct the usual short exact sequence

0 → ι∗L → (a1)∗(a1)
∗ι∗L → (a2)∗(a2)

∗ι∗L → 0

which tells us that

χ(ι∗L) =
r∑

i=1

χ(Li)− |Σ|.

By Proposition 3.3.4 and the adjunction formula, Li is isomorphic to the
sheaf

ωEi/k(Ei ∩ Σ)

of differential forms on Ei with logarithmic poles along Ei ∩ Σ. Thus

χ(Li) = g(Ei)− 1 + |Ei ∩ Σ|

where g(Ei) denotes the genus of Ei. Since every point of Σ lies on precisely
two irreducible components of Ck,red, we find

χ(ι∗L) =
r∑

i=1

g(Ei)− r + |Σ|

and hence

dimkH
0(Ck,red, ι

∗L) =
r∑

i=1

g(Ei)− r + |Σ|+ dimkH
1(Ck,red, ι

∗L).

(5.2.4) The short exact sequence (5.2.2) also yields an exact sequence

0 → H1(C , ωlog
C /R(−Ck,red)) → H1(C , ωlog

C /R) → H1(Ck,red, ι
∗L) → 0.

By Proposition 3.3.4 and Grothendieck-Serre duality, the second arrow can
be identified with the map

H0(C ,OC (Ck))
∨ → H0(C ,OC (Ck − Ck,red))

∨

whose cokernel is clearly isomorphic to k. Thus

dimkH
1(Ck,red, ι

∗L) = 1.

Putting all these pieces together, we arrive at the following result.

Proposition 5.2.5. Let C be an sncd-model of C. Denote by Γ the dual
graph of Ck and by β(Γ) its first Betti number. We write u(C) for the
unipotent rank of Jac(C), that is, the dimension of the unipotent radical of
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the identity component of the special fiber of the Néron model of Jac(C).
Then

dimk(Ωcan(C)/Ωlog(C)) = g −
r∑

i=1

g(Ei)− β(Γ)

= u(C).

Proof. The above computations yield the formula

dimk(Ωcan(C)/Ωlog(C)) = g −

r∑

i=1

g(Ei) + r − |Σ| − 1.

Since r is equal to the number of vertices of Γ and |Σ| equals the number of
edges, we have r − |Σ| − 1 = −β(Γ). The equality

g −
r∑

i=1

g(Ei)− β(Γ) = u(C)

is well-known; see for instance [Lo90, p.148]. �

Remark 5.2.6. If Ck is reduced, then Ωcan(C) = Ωlog(C) and our formula
in Proposition 5.2.5 boils down to the classical expression

g =

r∑

i=1

g(Ei) + β(Γ).

5.3. Computation of Ωsat(C)/(Ωlog(C)⊗R Rs).

(5.3.1) We still denote by C an sncd-model of C and by L the line bundle

ωlog
C /R on C . Denote bym the saturation index of C+ → S+, that is, the least

common multiple of the multiplicities of the prime components in Ck. Let
K ′ be a degree m extension of K in Ks and denote by R′ its valuation ring.

Set C ′ = C ×RR′ and denote by D the underlying scheme of C+×fs
S+ (S′)+.

We write L′ for the pullback of L to C ′ and h for the natural morphism
D → C ′. By flat base change, we have

H0(C ′,L′) = Ωlog(C)⊗R R′.

By Theorem 4.3.5, we know that

Ωsat(C) = H0(D , h∗L′)⊗R′ Rs.

Therefore, we need to compute the cokernel of

H0(C ′,L′) → H0(D , h∗L′).

(5.3.2) Denote by F the cokernel of the morphism of OC ′-modules

OC ′ → h∗OD .

Note that F is trivial on the generic fiber C ′ because the morphism DK ′ →
C ′
K ′ is an isomorphism. We have a short exact sequence of OC ′-modules

0 → L′ → h∗h
∗L′ → L′ ⊗O

C ′
F → 0

which gives rise to a short exact sequence of R′-modules

0 → H0(C ,L′) → H0(D , h∗L′) → H0(C ′,L′ ⊗O
C ′

F) → 0
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because H1(C ′,L′) = H1(C ,L)⊗RR′ has no torsion (see Proposition 5.1.5).
As we explained in the proof of Theorem 4.3.5, it follows from Lemma 4.3.3
that F is killed by m, so that we can also view it as a coherent sheaf on the
k-scheme

X = C ′ ×R′ (R′/mR′) ∼= Ck ×k (R
′/mR′).

Thus, denoting by Lk the pullback of L to Ck and by κ the projection
morphism X → Ck, we find that the cokernel of

H0(C ′,L′) → H0(D , h∗L′)

is isomorphic to the R′/mR′-module

M = H0(Ck,Lk ⊗OCk
κ∗F).

(5.3.3) Denote by m′ the maximal ideal of R′. For every i in {0, . . . ,m},
we set

Fi = κ∗((m
′)iF/(m′)i+1F)

and Vi = (m′)iM/(m′)i+1M . Then Fi is a coherent OCk
-module and Vi is a

k-vector space, and they both vanish if i = m. The dimensions of the vector
spaces Vi completely determine the R′-module structure of M : for every i
in {0, . . . ,m− 1}, the multiplicity of R′/(m′)i+1 as a direct summand in M
is equal to dimkVi − dimkVi+1.

From the spectral sequence for the hypercohomology of a filtered complex
[De71, 1.4.5], we deduce that

(5.3.4) Vi
∼= ker(di : H

0(Ck,Lk ⊗Fi) → H1(Ck,Lk ⊗Fi+1))

for every i in {0, . . . ,m− 1}, where di is the connecting homomorphism in
the long exact cohomology sequence associated to the short exact sequence
of OCk

-modules

0 → Lk ⊗Fi+1 → Lk ⊗ κ∗((m
′)iF/(m′)i+2F) → Lk ⊗Fi → 0.

(5.3.5) We will now give an explicit description of the OCk
-modules Fi. It

will be convenient to use the following notation. For every effective R-divisor
D on C , we denote by ⌊D⌋ the integral part of D, obtained by rounding
down the coefficients, and we write 〈D〉 for the divisor obtained from D
by putting all the coefficients in R \ Z equal to zero. Moreover, we write
〈D〉red for the reduction of 〈D〉 and J (D) for the pullback of OC (⌊D⌋) to
〈D〉red. The letter J stands for “jump”: if we let the coefficients of D grow
continuously in R, then J (D) detects how ⌊D⌋ changes.

Proposition 5.3.6. For every i in {0, . . . ,m − 1}, the OCk
-module Fi is

isomorphic to
m−i−1⊕

j=1

J ((j/m)Ck).
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Proof. The proof is based on a local study of the morphism h : D → C ′.
Case 1. First, let x be a regular point of Ck,red

∼= C ′
k,red. Since C is an

sncd-model, the morphism C+ → S+ has Zariski-locally at x a chart of the
form

N →
1

a
N⊕ Z : 1 7→ (1, 1)

where a is the multiplicity of Ck at x, the generator of N is sent to a
uniformizer π in R, and the generator of (1/a)N is sent to a local defining
function f for Ck,red in C at x. As we’ve already explained in the proof of
Theorem 4.3.5, the morphism (S′)+ → S+ has a chart of the form

N →
1

m
N⊕ Z : 1 7→ (1, 1)

sending the generator of N to π and the generator of (1/m)N to a uniformizer
π′ in R′. Thus, locally at x, (C ′)+ has a chart of the form

Q = (Z⊕
1

a
N)⊕N

1

m
N → OC ′,x

sending the generator of (1/a)N to f and the generator of (1/m)N to π′.
If we denote by Q → Qsat the natural morphism from Q to its saturation,
then over some open neighbourhood of x in C ′, D is given by

C ′ ×Z[Q] Z[Q
sat].

Thus we must understand the exact shape of the morphism Q → Qsat.
The groupification Qgp of Q is the coproduct

(Z⊕
1

a
Z)⊕Z

1

m
Z ∼= (Z⊕

1

a
Z⊕

1

m
Z)/〈(1, 1,−1)〉.

An element (u, v/a,w/m) of Qgp belongs to Qsat if and only if v/a + w/m
is non-negative, that is, mv + aw ≥ 0. Thus the Z[Q]-module Z[Qsat]/Z[Q]
is generated by the elements (0,−⌊ja/m⌋, j) with j ∈ {1, . . . ,m− 1}. This
means that the stalk Fx is generated as an OC ,x-module by the elements

(π′)j/f ⌊ja/m⌋ with j ∈ {1, . . . ,m − 1}. An element of the form (π′)s/f t is
divisible by (π′)i in Fx if and only if a(s − i) − mt ≥ 0. In particular, if
(π′)s/f t is divisible by (π′)i then (π′)s/f t−1 is divisible by (π′)i+1. From
these computations, we deduce that locally at x, the morphism

m−1−i⊕

j=1

OC (⌊(j/m)Ck⌋) → Fi : (c1, . . . , cm−1−i) 7→
m−1−i∑

j=1

cj(π
′)j+i

factors through an isomorphism

m−i−1⊕

j=1

J ((j/m)Ck) → Fi,

for every i ∈ {0, . . . ,m− 1}.
Case 2. Now we treat the case where x is a singular point of Ck,red. The

morphism C+ → S+ has Zariski-locally at x a chart of the form

N → Z⊕
1

a
N⊕

1

b
N : 1 7→ (1, 1, 1)
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where a and b are the multiplicities of Ck along the irreducible components
E1 and E2 passing through at x, the generator of N is sent to a uniformizer
π in R, and the generators (1/a)N and (1/b)N are sent to local defining
functions f1 and f2 for E1 and E2 in C at x. In a similar way as in Case 1,
we can produce a local chart

Q = (Z⊕
1

a
N⊕

1

b
N)⊕N

1

m
N → OC ′,x

sending the generators of (1/a)N and (1/b)N to f1 and f2, respectively, and
the generator of (1/m)N to π′. Now Qgp is given by

(Z⊕
1

a
Z⊕

1

b
Z)⊕Z

1

m
Z ∼= (Z⊕

1

a
Z⊕

1

b
Z⊕

1

m
Z)/〈(1, 1, 1,−1)〉

and an element (t, u/a, v/b, w/m) of Qgp belongs to Qsat if and only if mu+
aw ≥ 0 and mv + bw ≥ 0. It follows that the stalk Fx is generated over

OC ,x by the elements (π′)j/(f
⌊ja/m⌋
1 f

⌊jb/m⌋
2 ) with j ∈ {1, . . . ,m − 1} and

j ≥ min{m/a,m/b}. We deduce as in Case 1 that locally at x, the morphism

m−i−1⊕

j=1

OC (⌊(j/m)Ck⌋) → Fi : (c1, . . . , cm−1−i) 7→
m−1−i∑

j=1

cj(π
′)j+i

factors through an isomorphism

m−i−1⊕

j=1

J ((j/m)Ck) → Fi,

for every i ∈ {0, . . . ,m− 1}.
As x varies, all of these local isomorphisms glue to an isomorphism as

required in the statement. �

(5.3.7) We can now use Proposition 5.3.6 to finish our computations.
We will need the following vanishing result. Recall that we write Ck =∑r

i=1NiEi and that we denote by L the line bundle ωlog
C /R on C , by ι the

closed immersion Ck,red → Ck, and by Σ the set of singular points of Ck,red.

Lemma 5.3.8. Let E be a connected, smooth and proper curve over k and
let D and D′ be divisors on E of degrees d and d′, respectively. Assume
that D′ is reduced. Then H1(E,ωE/k ⊗ OE(D)) vanishes if d > 0, and the
restriction map

H0(E,ωE/k ⊗OE(D)) →
⊕

x∈D′

ι∗x(ωE/k ⊗OE(D))

is surjective if d > d′. Here we wrote ιx for the closed immersion of x in E.

Proof. These are standard applications of Serre duality: if d > 0 then

H1(E,ωE/k ⊗OE(D)) ∼= H0(E,OE(−D))∨ = 0.

Moreover, the cokernel of

H0(E,ωE/k ⊗OE(D)) →
⊕

x∈D′

ι∗x(ωE/k ⊗OE(D))
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is isomorphic to
H1(E,ωE/k ⊗OE(D −D′)),

and thus vanishes if d > d′. �

Proposition 5.3.9. For every j in {1, . . . ,m− 1} we have

H1(Ck,red, ι
∗L ⊗ J ((j/m)Ck)) = 0.

Proof. We denote by Ij the set of indices i in {1, . . . , r} such that j is a
multiple of m/Ni. The components Ei with i ∈ Ij are precisely the prime
components of 〈(j/m)Ck〉. For every i ∈ Ij we denote by Jj,i the restriction
of J ((j/m)Ck) to Ei. This is a line bundle on Ei whose degree is equal to the
intersection number (Ei · ⌊(j/m)Ck⌋). Writing {(j/m)Ck} for the fractional
part (j/m)Ck − ⌊(j/m)Ck⌋ of the Q-divisor (j/m)Ck, we compute:

0 = (Ei · (j/m)Ck) = (Ei · ⌊(j/m)Ck⌋) + (Ei · {(j/m)Ck}).

The prime components of the divisor {(j/m)Ck} are precisely the
components of Ck that are not contained in 〈(j/m)Ck〉. We write σj,i for the
number of intersection points of Ei with the support of {(j/m)Ck}. Note
that these are singular points of Ck,red, so that σj,i ≤ |Σ ∩ Ei|. Since the
coefficients of {(j/m)Ck} are strictly contained between 0 and 1, we find
that

(Ei · ⌊(j/m)Ck⌋) ≥ min{−σj,i + 1, 0}.

We have already observed in (5.2.3) that the restriction Li of L to Ei is
isomorphic to the sheaf of differential forms with logarithmic poles at the
points of (Σ ∩ Ei). Thus Lemma 5.3.8 implies that

H1(Ei,Li ⊗ Jj,i) = 0

for every i ∈ Ij. Now we can compute

H1(Ck,red, ι
∗L⊗ J ((j/m)Ck))

using the standard resolution of the line bundle ι∗L ⊗ J ((j/m)Ck) on the
reduced strict normal crossings divisor 〈(j/m)Ck〉red as in (5.2.3). The
associated long exact cohomology sequence contains the exact subsequence
⊕

i∈Ij

H0(Ei,Li⊗Jj,i) →
⊕

x∈Σj

ι∗x(L⊗J ((j/m)Ck)) → H1(Ck,red, ι
∗L⊗J ((j/m)Ck)) → 0

where Σj denotes the set of singular points of 〈(j/m)Ck〉red and we write ιx
for the closed immersion of x in Ck,red. We will prove that the first arrow in
this sequence is surjective, which means that

H1(Ck,red, ι
∗L ⊗ J ((j/m)Ck)) = 0.

We say that a point x0 in Σj is good if the characteristic function of {x0}
lies in the image of

ρ :
⊕

i∈Ij

H0(Ei,Li ⊗ Jj,i) →
⊕

x∈Σj

ι∗x(L ⊗ J ((j/m)Ck)).

For every i ∈ Ij, the restriction map

H0(Ei,Li ⊗ Jj,i) →
⊕

x∈Ei∩Σj

ι∗x(Li ⊗ Jj,i)
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is surjective if σj,i 6= 0, because the number of points in Ei ∩Σj is precisely
equal to |Σ∩Ei|−σj,i so that we can apply Lemma 5.3.8. Thus if if σj,i 6= 0
then every point of Σj ∩ Ei is good. On the other hand, if i is any element
of Ij such that σj,i = 0 and Ei contains a good point x0 of Σj, then any
point x1 6= x0 of Σj ∩Ei is good, because we can always find an element of

H0(Ei,Li ⊗Jj,i)

that is non-zero at x0 and x1 and vanishes at all other points of Σj ∩ Ei

(this is again a consequence of Lemma 5.3.8, applied to D′ = {x0} and
D′ = {x1}). Note that Ij cannot be the whole set {1, . . . , r} because this
contradicts our overall assumption that the multiplicities Ni are coprime.
Thus every connected component of

∑
i∈Ij

Ei contains at least one prime

component Ei with σj,i 6= 0, and we may conclude that every point in Σj is
good, so that ρ is surjective. �

5.4. An explicit formula for the jumps.

Theorem 5.4.1. Let C be an sncd-model of C. Write Ck =
∑r

i=1NiEi

and denote by m the least common multiple of the multiplicities Ni of the
irreducible components Ei in Ck. For each i, we denote by g(Ei) the genus
of Ei. For every j in {0, . . . ,m}, we denote by Ij the set of indices i in
{1, . . . , r} such that j is a multiple of m/Ni, and we write σj for the number
of singular points of Ck,red that lie on at least one component Ei with i ∈ Ij .

The jumps of Jac(C) are contained in the set {0, . . . , (m − 1)/m}. For
every element j in {0, . . . ,m − 1}, the multiplicity of j/m as a jump of
Jac(C) is equal to

(
∑

i∈Ij

Ei · ⌊(j/m)Ck⌋) +
∑

i∈Ij

g(Ei)− |Ij |+ σj + δj,0

where δ is the Kronecker symbol.

Proof. We already know by Theorem 4.4.5 that the jumps are multiples of
1/m, and it follows from Edixhoven’s original definition in [Ed92] that they
are always strictly smaller than one (for arbitrary abelian K-varieties). Thus
each jump is of the form j/m with j ∈ {0, . . . ,m − 1}. First, assume that
j 6= 0. By (5.1.1) and Lemma 5.1.4, the multiplicity of j/m as a jump of
Jac(C) is equal to the number of occurrences of the value (m− j)/m in the
tuple of elementary divisors of the inclusion of lattices

Ωlog(C)⊗R Rs ⊂ Ωsat(C).

We will denote this number by γj . As we have explained in (5.3.3), the
number γj is equal to

dimk Vm−j−1 − dimk Vm−j .

Propositions 5.3.6 and 5.3.9 imply that the target of the morphism di from
(5.3.4) vanishes for every i in {0, . . . ,m − 1}, so that we can identify the
k-vector space Vi with

H0(Ck,Lk ⊗Fi).

Using the description of the sheaves Fi in Propositions 5.3.6, we can write

γj = dimk H
0(Ck,red, ι

∗L ⊗ J ((j/m)Ck)),
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which is also equal to the Euler characteristic

χ(Ck,red, ι
∗L ⊗ J ((j/m)Ck))

by the vanishing result in Proposition 5.3.9. Recall that the sheaf J (j/m)Ck

was defined as the pullback of the line bundle OC (⌊(j/m)Ck⌋) to the
reduced strict normal crossings divisor

∑
i∈Ij

Ei. Computing the above

Euler characteristic as in (5.2.3), we find that

γj = (
∑

i∈Ij

Ei · ⌊(j/m)Ck⌋) +
∑

i∈Ij

g(Ei)− |Ij|+ σj.

It remains to compute the multiplicity of 0 as a jump of Jac(C). By (5.1.1)
and Lemma 5.1.4, it is equal to the number of occurrences of the value 0 in
the tuple of elementary divisors of the inclusion of lattices Ωlog(C) ⊂ Ωcan(C)
(which is g − u(C) by Proposition 5.2.5) plus the number of occurrences of
the value m in the tuple of elementary divisors of the inclusion of lattices

Ωlog(C)⊗R Rs ⊂ Ωsat(C).

The latter number is equal to the dimension of the k-vector space

Vm−1
∼= H0(Ck,Lk ⊗Fm−1),

but it follows from Proposition 5.3.6 that the sheaf Fm−1 vanishes. Thus the
multiplicity of 0 as a jump of Jac(C) is equal to g − u(C). By Proposition
5.3.6, g−u(C) is given by the expression in the statement for j = 0 because
I0 = {1, . . . , r}. �

Corollary 5.4.2. The jumps of C only depend on the combinatorial
reduction data of C, and not on the characteristic of k.

Proof. This is obvious, since all the terms in the formula in Theorem 5.4.1
only depend on the combinatorial reduction data. �

Corollary 5.4.3. The number of non-zero jumps of Jac(C) (counted with
multiplicities) is equal to the unipotent rank of Jac(C).

Proof. We have already remarked in the proof of Theorem 5.4.1 that the
multiplicity of zero as a jump is g− u(C), and the total number of jumps is
g. �

5.5. Jumps and principal components.

(5.5.1) Let C be the minimal sncd-model of C and write Ck =
∑r

i=1NiEi

and m = lcm{N1, . . . , Nr} as before. It is clear from Theorem 5.4.1 that all
the jumps of Jac(C) are of the form j/m = a/Ni for some i in {1, . . . , r}
and some a in {0, . . . , Ni − 1} (otherwise, the set Ij is empty). However, we
will now show that one can deduce much more precise information about
which components Ei can give rise to a jump. We keep the notations Ij and
σj from Theorem 5.4.1.

Proposition 5.5.2. Let j be an element of {1, . . . ,m− 1}. If we denote by
Γj the dual graph of

∑
i∈Ij

Ei and by β(Γj) its first Betti number, then the

multiplicity of j/m as a jump of Jac(C) is at least

β(Γj) +
∑

i∈Ij

g(Ei).
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Proof. We write

(j/m)Ck = ⌊(j/m)Ck⌋+ {(j/m)Ck}

as in the proof of Proposition 5.3.9. The support of the Q-divisor {(j/m)Ck}
is precisely the union of the components Ei with i /∈ Ij, and the coefficients
in this Q-divisor are strictly contained between 0 and 1.

Let D be a connected component of
∑

i∈Ij
Ei. Then D · ⌊(j/m)Ck⌋ is

strictly bigger than the negative of the number of intersection points of D
with

∑
i/∈Ij

Ei. Summing over the connected components, we find that

(
∑

i∈Ij

Ei · ⌊(j/m)Ck⌋)

is at least cj − σ′
j where cj is the number of connected components of the

divisor
∑

i∈Ij
Ei and σ′

j the number of intersection points of
∑

i∈Ij
Ei with

the remainder of the special fiber. Using the formula in Theorem 5.4.1 we
find that the multiplicity of j/m as a jump of Jac(C) is at least

cj − |Ij|+ σj − σ′
j +

∑

i∈Ij

g(Ei).

The value σj − σ′
j is precisely the number of edges of the dual graph Γj of∑

i∈Ij
Ei. Since |Ij | is the number of vertices of Γj and cj its number of

connected components, we see that cj − |Ij |+ σj − σ′
j equals the first Betti

number of Γj. �

Corollary 5.5.3. If E is an irreducible component in Ck of multiplicity N
and the genus of E is at least one, then a/N is a jump of Jac(C) for every
a in {1, . . . , N − 1}.

Proof. We set j = am/N so that j/m = a/N . By our assumption, there is
at least one element i ∈ Ij such that g(Ei) > 0, so that j/m is a jump of
Jac(C) by Proposition 5.5.2. �

Lemma 5.5.4. Let j be an element of {1, . . . , N−1} and let i0 be an element
of Ij. The intersection of Ei0 with

∑
i/∈Ij

Ei is either empty or consists of

at least two points.

Proof. We once more use the equality

(5.5.5) (Ei0 · ⌊(j/m)Ck⌋) = −(Ei0 · {(j/m)Ck}).

Since the left hand side of (5.5.5) is an integer, we see that the intersection
of Ei0 with

∑
i/∈Ij

Ei cannot consist of a single point. �

Proposition 5.5.6. Each non-zero jump of Jac(C) is of the form a/N
where N is the multiplicity of a principal component in Ck and a is an
element of {1, . . . , N − 1}. Conversely, for every principal component of
Ck of multiplicity N , there exist a multiple N ′ of N and an element a in
{1, . . . , N ′ − 1} such that a is prime to N ′ and a/N ′ is a jump of Jac(C).

Proof. Assume that j is an element of {1, . . . ,m − 1} such that the
components Ei with i ∈ Ij are all non-principal. We will show that j/m
cannot be a jump of Jac(C). A component Ei with i ∈ Ij cannot be
a rational curve intersecting the rest of Ck in precisely one point, since
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otherwise, there would be a principal component Eℓ with ℓ ∈ Ij by Lemma
4.4.4. Thus each component Ei with i ∈ Ij is a rational curve intersecting
the rest of Ck in precisely two points. By Lemma 5.5.4 this is only possible
if each connected component of

∑
i∈Ij

Ei consists of a single curve Ei (note

that
∑

i∈Ij
Ei cannot be the entire reduced special fiber Ck,red by our overall

assumption that the multiplicities Ni are coprime). By Theorem 5.4.1, the
multiplicity of j/m as a jump of Jac(C) equals

(
∑

i∈Ij

Ei · ⌊(j/m)Ck⌋)− |Ij |+ σj.

Again using the equality (5.5.5) we see that the intersection product

(
∑

i∈Ij

Ei · ⌊(j/m)Ck⌋)

is at most −|Ij |. On the other hand, −|Ij|+ σj is equal to |Ij|. Thus

(
∑

i∈Ij

Ei · ⌊(j/m)Ck⌋)− |Ij |+ σj = 0

and j/m is not a jump of C.
Now we prove the converse statement. Let i0 be an element of {1, . . . , r}

such that Ei0 is principal; we will prove that there exist a multiple N ′

of Ni0 and an element a in {1, . . . , N ′ − 1} such that a is prime to N ′

and a/N ′ is a jump of Jac(C). We may assume that there does not exist
a principal component Ei1 in Ck such that Ni1 is a multiple of Ni0 and
Ni1 > Ni0 (otherwise we can simply replace i0 by i1). By Corollary 5.5.3
we may also assume that there does not exist a component of multiplicity
Ni0 with positive genus. Finally, if we set j = m/Ni0 , then by Proposition
5.5.2, we can also suppose that the divisor

∑
i∈Ij

Ei does not contain a loop.

Otherwise, β(Γj) is positive and j/m = 1/Ni0 is a jump.
Assume that ℓ ∈ Ij and that Eℓ is a non-principal component of Ck. Then

Eℓ must intersect the rest of Ck in exactly two points, because otherwise
there would exist a principal component in Ck whose multiplicity is a strict
multiple of Ni0 by Lemma 4.4.4, contradicting the maximality of Ni0 . If E
and E′ are the components of Ck intersecting Eℓ (where possibly E = E′)
then Lemma 5.5.4 implies that either E and E′ are both contained in∑

i∈Ij
Ei, or neither of them is. From these observations we deduce that

some connected component of
∑

i∈Ij
Ei must intersect

∑
i/∈Ij

Ei in at least

three points. We denote by M1, M2 and M3 the multiplicities of the
components of

∑
i/∈Ij

Ei intersecting
∑

i∈Ij
Ei for an arbitrary choice of

three such intersection points. Then for at least one of both elements a
in {1, Ni0 − 1} we have

{aM1/Ni0}+ {aM2/Ni0}+ {aM3/Ni0} < 2,

where {q} = q − ⌊q⌋ denotes the fractional part of a rational number q. In
the notation of the proof of Proposition 5.5.2, this implies that

(
∑

i∈Iaj

Ei · ⌊(aj/m)Ck⌋)
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is at least cj + 1 − σ′
j, and the arguments in that proof show that aj/m =

a/Ni0 is a jump of Jac(C). �

Corollary 5.5.7. The stabilization index e(C) of C is equal to least common
multiple of the denominators of the jumps of Jac(C), that is, the smallest
positive integer e such that e · j is an integer for every jump j of Jac(C).
Thus the stabilization index of C is equal to the stabilization index of Jac(C)
in the sense of (2.2.5).

Proof. This is an immediate consequence of Proposition 5.5.6. �

Corollary 5.5.8. The stabilization index e(C) is equal to the smallest
possible saturation index of an R-model C of C such that C+ is log regular.

Proof. If m is the saturation index of such a model C , then it follows from
Theorems 4.3.5 and 4.4.1 that m · j is an integer for every jump j of C (this
was already observed in the proof of Theorem 4.4.5). Thus by Corollary
5.5.7, m must be divisible by e(C). On the other hand, we have constructed
in the proof of Theorem 4.4.5 a model C such that C+ is log regular and
such that the saturation index of C+ → S+ is precisely e(C). �

5.6. Examples.

(5.6.1) We illustrate with a few examples how the formula in Theorem
5.4.1 can be used to compute the jumps in practice. We start with the case
where C is an elliptic curve. Then C has precisely one jump, which is zero if
and only if C has semi-stable reduction. If this is not the case, the unipotent
rank u(C) equals one, and the unique jump is non-zero.

Let C denote the minimal sncd-model of C. If C has reduction type I∗≥0,
the multiplicity of any irreducible component of Ck is either 1 or 2, and the
jump is therefore 1/2. In all other remaining cases, the special fiber Ck has
precisely one principal component, which is a rational curve intersecting the
other components in precisely three points. We denote its multiplicity by
N . Then we know by Proposition 5.5.6 that the jump of C is of the form
a/N . The proof of Proposition 5.5.6 even tells us how to find a: it is the
unique element in {1, N − 1} that satisfies the property that

{aM1/N}+ {aM2/N}+ {aM3/N} < 2

where M1, M2 and M3 are the multiplicities of the components of Ck

intersecting the principal component. In this way, we immediately recover
the table from [Ed92, 5.4.5] and [Ha10b, Table 8.1] giving the jump for each
of the Kodaira-Néron reduction types (see Table 5.6.1).

Type I≥0 II III IV I∗≥0 IV ∗ III∗ II∗

jump 0 1/6 1/4 1/3 1/2 2/3 3/4 5/6

Table 5.6.1. The jump of an elliptic curve
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(5.6.2) Now we consider the case where C has genus 2. Let C be the
minimal sncd-model of C and assume that Ck has a component of genus
one and multiplicity N > 1. Then the unipotent rank of Jac(C) is one, so
that 0 is a jump of C of multiplicity one. On the other hand, Corollary
5.5.3 tells us that a/N is a jump of C for every a in {1, . . . , N − 1}. Since
the total number of jumps of C is equal to 2, we must have N = 2, and
the jumps of C are 0 and 1/2. With similar arguments one can quickly
reproduce the tables in [Ha10b, §8.4] which give the jumps of C for each of
the reduction types in the Namikawa-Ueno classification of degenerations of
genus 2 curves.
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[Ch00] C.-L. Chai. Néron models for semiabelian varieties: congruence and change of base
field. Asian J. Math., 4(4):715–736, 2000.

[CY01] C.-L. Chai and J.-K. Yu. Congruences of Néron models for tori and the Artin
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[Ra70] M. Raynaud. Spécialisation du foncteur de Picard. Publ. Math. Inst. Hautes Étud.
Sci., 38:27–76, 1970.

[Vi04] I. Vidal. Monodromie locale et fonctions zêta des log schémas. In: Geometric aspects
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