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1 Additional Elements of Discussion 

Areas with Plasmodium vivax  

The majority of countries aiming for malaria elimination are likely to be endemic for P. vivax 
(1, 2). Even in Africa where the prevalence of Duffy-negative blood in the population 
severely restricts P. vivax transmission, it is thought that it will become increasingly 
epidemiologically important as the area approaches local elimination (2).  

The current framework is designed to quantify transmission of falciparum malaria as it 
assumes that all new cases come from new infections. However, new cases of P. vivax can 
occur from a relapse of a previous infection. This is not accounted for in our approach, 
although the method is still applicable to P. vivax malaria. Relapse cases are similar to 
imported cases in that they are not caused by local transmission. If we knew the proportion 
of cases due to local transmission (i.e., cases which are neither imported nor relapsed), we 
could obtain unbiased estimates of R (average number of new persons infected by a person 
with malaria given current control interventions). In practice, however, it is not possible to 
determine if an autochthonous case is due to a relapse of infection or to local transmission. 
If we assume that all autochthonous cases of P. vivax are due to local transmission, we will 
overestimate the level of local transmission and R. The approach is therefore conservative: if 
the hypothesis R ≥ 1 can be rejected under these conservative assumptions, we can be 
confident that R < 1. So, when using the method for P. vivax, we lose power if a substantial 
proportion of cases come from relapsed infections but the test remains valid and 
conservative. 

In areas endemic for multiple species of malaria, all data should ideally be stratified by 
species. This will allow the epidemiology of the different infections to be disentangled and 
enable more precise estimates of falciparum malaria. If this is not possible, then all cases of 
malaria can be analyzed together, as the test remains valid irrespective of the ratio of the 
different species. 

Spatial Heterogeneity 

The question of defining the most appropriate geographical scale at which transmission 
should be assessed is critically important for any method aiming to ascertain levels of 
malaria transmission, as the infection is highly spatially heterogeneous. Too large a scale and 
countrywide estimates may mask the presence of more localized pockets of endemic 
transmission. For example, if data come from cities (where transmission is low) and other 
parts of the country (where transmission is high) are underrepresented, assessment of 
“country-wide” transmission will be biased and reflect the situation in the cities. Conversely, 
too small a geographical scale may make conclusions difficult because of a low number of 
cases. Compared with other methods, we believe that the approach we present here is well 
positioned to tackle the challenge of spatial heterogeneity. Indeed, other methods may 
typically require detailed data that may be difficult to gather at a fine spatial resolution. In 
contrast, standard techniques from geostatistics can be used to map the probability of a 
case’s being  imported from data consisting of the address of cases and their travelling 
status. This will allow the development of spatial models that reconstruct how the 
probability of a case’s being  imported varies spatially and will derive from that the map of 
the levels of local transmission.  
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Case-to-Case Heterogeneity In Infectivity 

Further work is also needed to generate more accurate estimates of k, the case-to-case 
heterogeneity in infectivity. This will enable the power of the test to be improved (see 
section 2.3 below). Recent advances in parasite genetic sequencing (3) should make it easier 
to recreate chains of transmission and to get more precise estimates of k for a particular 
epidemiological setting. Methods such as those outlined in Section 3 of these supplementary 
materials can also be used to refine estimates of k.  

Removing Cases Detected During Outbreak Investigations from the Analysis 

Surveillance of infectious diseases often mixes routine surveillance where cases are detected 
within the community with more detailed outbreak investigations, consisting of active case 
searching near surveillance cases. However, it is difficult to correctly account for cases found 
during outbreak investigations in our statistical framework. This is because this two-step 
data collection process is likely to generate a selection bias toward larger outbreaks. To get 
an idea of the problem, one can conceptually partition cases into distinct outbreaks each of 
a different size. If all cases have the same probability of being detected, then larger 
outbreaks are more likely to be detected and investigated (because they have more 
opportunities of having at least one case detected by routine surveillance). Investigated 
outbreaks are therefore expected to be atypically large, which may bias estimates of the 
current level of transmission upwards. This issue is more thoroughly discussed and explored 
in Cauchemez et al. (4). By removing cases detected via outbreak investigation from our 
analysis, we ensure that our estimates of R remain unbiased. If we included the cases 
identified by active case detection in our analysis, we would expect to overestimate levels of 
local transmission. This means that the test for R ≥ 1 would be expected to lose power 
although it would remain conservative; that is, if the hypothesis R ≥ 1 can be rejected 
despite the fact that R is overestimated, then we can be confident that R < 1. In practice, 
including cases found during outbreak investigations in Swaziland would have had little 
impact on our analysis: In 2010, for example, the proportion of imported cases used to 
estimate R would have moved from 36% to 33%.  

2 A Method to Ascertain Status of Controlled Nonendemic Malaria 

Here, we give a technical description of our method to ascertain the status of controlled 
nonendemic malaria. The work focuses on Plasmodium falciparum, as this is the main 
species of malaria in Swaziland (5) (in section 1 of these supplementary materials, we discuss 
the use of the method in areas where P. vivax circulates).  

The method uses the proportion of imported cases among malaria cases detected through 
routine surveillance to test the hypothesis R ≥ 1. The status of controlled nonendemic 
malaria is achieved if the hypothesis R ≥ 1 can be rejected. 

The method is based on the intuitive idea, already explored in (4, 6, 7), that, if most cases 
detected by surveillance are imported, levels of local transmission are low. When local 
transmission is known to be below sustainability levels (i.e., R < 1), a simple formula linking 
the proportion p of imported cases to R [p = 1/(1 – R)] has been used to derive point 
estimates of R. However, formalizing it into a sound statistical test for R ≥ 1 is challenging 
because the variability in the proportion of imported cases depends on parameters for 
which estimates may not be available: the case-to-case variability in infectiousness (i.e., the 
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fact that few cases may be responsible for most transmissions) (8); the total number of 
imported cases (including those missed by surveillance); and the number of local cases 
generated by a single importation on a finite time period (i.e., chains of transmission on 
finite time periods may be censored). To tackle these challenges and to ensure our approach 
is conservative, we consider worst-case scenarios for each of these unknown. 

2.1 Total number of cases generated by a single importation 

Here, we use branching process theory to model the total number of cases generated by a 
single importation (i.e., one importation + subsequent number of local cases). 

Following Lloyd-Smith et al. (8), the offspring distribution (i.e., number of persons infected 
by a case) is modeled with a negative binomial distribution with mean R and overdispersion 
parameter k (parameter k inversely characterizes the variation in the number of secondary 
cases caused by each case of malaria). 

The total number of cases, L, generated by a single importation after an infinite time has 
probability (9): 

 
  
     

 

   
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 [1] 

In practice, however, we work on finite time periods, and the epidemic may still be ongoing 
at the point when we examine the data. This is accounted for by right censoring the 
distribution at a certain threshold Z (i.e., if the total number of cases is going to be larger 
than Z, we assume it is of size Z): 

*

* if 

if L L

L Z L Z

L Z 


 


 [2] 

We present tests for different values of k and Z.  

Estimates of k in malaria are hard to derive. The spatial distribution of mosquitoes is often 
highly focal (10), particularly as an area approaches local elimination and transmission is 
restricted to smaller and smaller “hot spots” or populations at risk (11). Although this 
heterogeneity is increasingly being quantified (12, 13), the number of cases caused by each 
case is far from clear and will depend on the level of endemicity, control interventions, and 
local mosquito behavior among others. In light of this uncertainty, we consider a scenario 
with high overdispersion (k = 0.2) and a scenario with limited heterogeneity (k = 1). When R 
= 1, this equates to 80% of all new infections coming from either 14% (k = 0.2) or 30% (k = 1) 
of cases. The lower the value of k, the greater the variance of R estimates (4). Therefore, we 
take k = 0.2 as the baseline scenario, as it may be seen as a worst-case scenario (10, 14) and 
is therefore conservative. This is consistent with independent estimates of k calculated from 
the time-series data (see section 3.4). 

We now want to determine sensible values for the threshold Z in a context where 
surveillance data are grouped by year. Remember that this threshold is introduced to 
capture the effect of right censoring that occurs in ongoing epidemics. A more refined way 
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to capture such censoring consists in analyzing the detailed epidemic time series, and we 
apply such approach in section 3 of these supplementary materials. Here, however, we aim 
to provide simpler approximations for the development of our operational tool that only 
relies on the proportion of imported cases for a given year. We approximate the situation of 
right censoring (i.e., the number of cases in a chain of infections is censored because 
transmission is still ongoing at the time of the analysis) with the following approach: 

 We simulate chains of transmission from one imported case with R = 1.01, i.e., just 
above the critical level and with a generation time that is estimated from data (see 
section 3.2). 

 We derive the probabilistic distribution of the size of chains of transmission that are 
still ongoing after 1 year. 

We obtain a median size of 207 (2.5% and 97.5% percentile, 58–700) for k = 0.2 and 82 (30–
258) for k = 1. The lower the Z value, the harder it is to distinguish between R ≥ 1 and R < 1 
and so, the smaller the power of our test (Figure S1 and Table S1). So, we can be 
conservative by choosing a small value for Z. This is what we do here, by specifying Z = 30 in 
our baseline scenario. We also consider Z = 15, 50, 100, 1000 in our sensitivity analyses 
(Figure S1 and Table S1). More refined approaches could be considered (for example, using 
the exact distribution of the size of chains derived above). Such approaches would have a 
better power but would be more dependent on the validity of assumptions made about the 
generation time and overdispersion parameter k. 

2.2 Statistical procedure 

We assume that each of the cases is classified either “imported” or “local.” Furthermore, we 
assume that n cases have been independently detected by routine surveillance. It is possible 
that additional secondary cases were detected during epidemiological investigations (active 
case detection) that may have followed up the detection of the n surveillance cases. 
However, here, we ignore these secondary cases and restrict the analysis to the n 
surveillance cases (see section 1 of these supplementary materials for a discussion of this 
point).  

We aim to use the proportion of detected cases that are classified as “imported” to test the 
hypothesis H0: R ≥ 1. This is achieved with the following procedure. 

Known number of imported cases 

Assume first that m, the total number of imported cases (including those that have not been 
detected) is known. Given m, we can derive the probabilistic distribution of the proportion 
of detected cases that are imported under the assumption that R = 1. This is achieved via 
simulations, with the following algorithm. 

For simulation s = 1,…, 15,000: 

- For imported case i = 1, …, m , draw the total number of cases generated by that 

case siS from its probabilistic distribution (equations [1] and [2]).  

- Calculate the total number of cases 

s si

i

S S  
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- Assuming that each case has the same probability of detection, draw the number 

sB  of detected cases that were imported from its distribution, which is 

hypergeometric (with n  draws among m  imported and sS m  local cases). 

From these 15,000 simulations, we derive the 95% percentile   detected,  importedRp n m

of the proportion of detected cases that were imported. If the observed proportion is above 
this value, we reject H0: R ≥ 1. 

Unknown number of imported cases 

In practice, the number of undetected imported cases is unknown, so the total number of 
imported cases m is also unknown. To derive a test that is conservative and robust to such 
uncertainty, we explicitly consider different scenarios for the total number of imported cases 
(m = 10, 15, 20, …, 100, 150, …, 500 introductions) and derive the test threshold value 

  detected,  importedRp n m for each of these scenarios. A test threshold value that is 

robust to uncertainty in the number of imported cases is 

   10, 15, 20, , 100, 150,  500 detected max  detected,  importedR m Rp n p n m    

2.3 Summary tables to ascertain controlled nonendemic malaria  

The proportions of imported cases above which the hypothesis H0: R ≥ 1 can be rejected, as 
a function of the number of detected cases, are shown in Fig  S1 and Table S1. Results are 
presented for different thresholds (Z) after which the size of chains of transmission is 
supposed to be censored (Z = 30 corresponds to the baseline scenario). This is done under 
the conservative assumption of important overdispersion in the offspring distribution (k = 
0.2). Table S2 presents the same information but for hypothesis H0: R ≥ 0.5. Table S3 shows 
how power would improve in contexts where overdispersion in the offspring distribution is 
known to be more limited (k = 1). So, obtaining precise estimates of k will be important to 
improve power further, but our approach has the benefit that it remains valid and 
conservative as long as k ≥ 0.2 (which covers most infectious diseases).  

The methods are also equally applicable to other infections approaching local elimination.  
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Figure S1. Proportions of imported cases above which the hypothesis H0: R ≥ 1 can be 
rejected, as a function of the numbers of detected cases. Results are presented for 
different thresholds (Z) after which the size of chains of transmission is supposed to be 
censored, be it 15 (red), 30 (blue), 50 (green), 100 (purple) or 1000 (orange). This is done 
under the conservative assumption of important overdispersion in the offspring distribution 
(k = 0.2).  

 
  



8 
 

Table S1. Proportions of imported cases above which the hypothesis H0 : R ≥ 1 can be 
rejected, as a function of the numbers of detected cases (rows). Results are presented for 
different thresholds (Z) after which the size of chains of transmission is supposed to be 
censored (columns). This is done under the conservative assumption of important 
overdispersion in the offspring distribution (k = 0.2).  
 

Number 
of 

detected 
cases 

Threshold Z after which the size of chains of transmission is 
supposed to be censored 

15 30 (baseline) 50  100 1000 

10 0.90 0.90 0.90 0.90 0.90 

20 0.70 0.70 0.70 0.65 0.65 

30 0.60 0.57 0.57 0.57 0.57 

40 0.58 0.53 0.50 0.50 0.50 

50 0.54 0.48 0.46 0.46 0.46 

60 0.53 0.47 0.43 0.43 0.42 

70 0.51 0.44 0.40 0.40 0.40 

80 0.50 0.43 0.39 0.38 0.38 

90 0.49 0.42 0.38 0.36 0.35 

100 0.48 0.41 0.37 0.34 0.34 

150 0.45 0.38 0.34 0.29 0.28 

200 0.44 0.37 0.32 0.28 0.25 

250 0.42 0.35 0.31 0.26 0.22 

300 0.42 0.33 0.29 0.25 0.20 

350 0.41 0.33 0.28 0.24 0.19 

400 0.41 0.33 0.28 0.23 0.17 

450 0.40 0.32 0.28 0.23 0.16 

500 0.40 0.32 0.27 0.22 0.15 
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Table S2: Proportions of imported cases above which the hypothesis H0 : R ≥ 0.5 can be 
rejected, as a function of the numbers of detected cases (rows). Results are presented for 
different thresholds (Z) after which the size of chains of transmission is supposed to be 
censored (columns). This is done under the conservative assumption of important 
overdispersion in the offspring distribution (k = 0.2).  
 

Number 
of 

detected 
cases 

Threshold Z after which the size of chains of 
transmission is supposed to be censored 

15 30 (baseline) 50 100 

10 1.00 1.00 1.00 1.00 

20 0.90 0.90 0.90 0.90 

30 0.83 0.83 0.83 0.83 

40 0.80 0.80 0.78 0.80 

50 0.76 0.76 0.76 0.76 

60 0.75 0.75 0.75 0.75 

70 0.73 0.73 0.73 0.73 

80 0.71 0.71 0.71 0.71 

90 0.71 0.70 0.70 0.70 

100 0.70 0.69 0.69 0.69 

150 0.66 0.65 0.65 0.65 

200 0.66 0.64 0.64 0.64 

250 0.64 0.62 0.62 0.62 

300 0.63 0.62 0.61 0.61 

350 0.63 0.61 0.61 0.61 

400 0.62 0.60 0.60 0.60 

450 0.62 0.60 0.60 0.60 

500 0.61 0.59 0.59 0.59 
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Table S3. Proportions of imported cases above which the hypothesis H0 : R ≥ 1 can be 
rejected, as a function of the numbers of detected cases (rows) and in a context where 
overdispersion in the offspring distribution is known to be limited (k = 1). Results are 
presented for different thresholds (Z) after which the size of chains of transmission is 
supposed to be censored (columns). 
 

Number 
of 

detected 
cases 

Threshold Z after which the size of chains of transmission is 
supposed to be censored 

15 30 (baseline) 50  100 1000 

10 0.60 0.60 0.60 0.60 0.60 

20 0.45 0.40 0.45 0.40 0.45 

30 0.40 0.37 0.37 0.37 0.37 

40 0.40 0.35 0.33 0.33 0.33 

50 0.38 0.32 0.28 0.28 0.28 

60 0.37 0.30 0.27 0.27 0.25 

70 0.36 0.30 0.26 0.24 0.24 

80 0.35 0.29 0.25 0.23 0.23 

90 0.33 0.28 0.24 0.21 0.21 

100 0.33 0.27 0.24 0.21 0.20 

150 0.31 0.25 0.22 0.18 0.17 

200 0.30 0.24 0.21 0.17 0.15 

250 0.29 0.23 0.20 0.16 0.13 

300 0.29 0.22 0.19 0.15 0.12 

350 0.28 0.22 0.19 0.15 0.11 

400 0.28 0.22 0.18 0.15 0.10 

450 0.28 0.21 0.18 0.14 0.10 

500 0.27 0.21 0.17 0.14 0.09 
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2.4 Step-by-step guide to determine whether endemic transmission has 
been halted  

To encourage the use of the method, we have developed a simple Excel spreadsheet that 
uses routine surveillance data to determine whether there is evidence that endemic 
transmission has been halted. The work is extended to allow more stringent targets to be 
tested (R = 0.1, 0.2, …, 0.9). Here follows a step-by-step guide outlining how the tool should 
be used. 
 
Box 1: Step-by-step guide to implement the method 

i. Collate routine surveillance data by year.  
 

ii. Remove any case identified by outbreak investigation.*  
 

iii. For each case detected through routine surveillance, determine whether the case was 
autochthonous or imported from abroad. For the definition of what constitutes an imported 
case, please refer to the latest World Health Organization guidelines (15). 
 

iv. Remove from the analysis any case with an unknown status imported/autochthonous.  
 

v. Enter the total number of cases selected for analysis into box C8 of the Excel tool. Note that 
the tool requires between 10 and 500 cases a year. 
 

vi. Enter the total number of imported cases selected for analysis into box C9 of the Excel tool. 
 

vii. Boxes C11 to C20 will populate automatically stating whether there is evidence that R is less 
than the corresponding value or whether the result was inconclusive. For example, if box 
C11 is “TRUE,” then there is evidence that R < 1 and that endemic transmission has been 
halted. If box C16 is “TRUE,” then there is evidence that R < 0.5 for that period. If an 
“ERROR” message appears, check that the number of cases is 10 or more and that it is no 
greater than the number of imported cases. 

*If this is not possible, local transmission may be overestimated. This means that the test for 
R ≥ 1 may lose power although it will remain conservative (see section 1 of these 
supplementary materials for a discussion of this point). 
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3 Using Malaria Epidemic Time Series to Evaluate Seasonal Variations 
in Transmissibility 

In this section, we describe how malaria epidemic time series can be analyzed to evaluate 
seasonal variations in transmissibility. In terms of public health impact, there may be only a 
minor difference between countries with R < 1 throughout the year; and those where R gets 
above 1 for a short high-season period. This is because a high season of 3 months (such as is 
observed in Swaziland) represents at most two or three generations of malaria cases (see 
section 3.2). As a result, R is reduced before long chains of transmission can be formed. In 
such situations, it may nonetheless be important to separate R estimates for high and low 
seasons to evaluate the effectiveness of local interventions and to predict their impact in 
countries with different seasonal patterns. This technique also provides a method of 
validating our estimates of parameter k which was used in section 2. Data consist of weekly 
counts of imported and local incident cases. 

In subsection 3.1, we present a mathematical model for malaria importations and local 
transmission. Fitting this model to data requires characterizing the generation time of 
malaria in the area under study. This is done for Swaziland in subsection 3.2. In subsection 
3.3, we present model specifications and explain how model parameters are estimated from 
the data. Subsection 3.4 presents the results and sensitivity analyses. 

3.1 A model for malaria importations and local transmission 

3.1.1 Latent importation and transmission process 

We denote tM and tL the total numbers (i.e., detected + undetected) of imported and local 

incident cases in week t . The total number of incident cases in week t is t t tT M L  . 

We assume that the total number of imported incident cases tM in week t follows a Poisson 

distribution with mean I

t : 

 ~ Pois I

t tM   

The modeling of local transmission is largely inspired from Cori et al. (16). We denote tR the 

instantaneous reproduction number in week t  [the instantaneous reproduction number is 
defined as the average number of people someone infected in week t would expect to infect 
if conditions remained unchanged (17)]. The infectivity profile of infected individuals is 

characterized by a probability distribution  u , whereu  is the number of weeks elapsed 

since infection (this distribution is derived for Swaziland in subsection 3.2 below). The total 

infectivity of infected individuals in week t is  
0

t t u

u

T u



  .  

The mean number of local incident cases in week t is then given by the product of total 

infectivity and the instantaneous reproduction number  
0

t t u

u

R T u



 . Cori et al. (16) used 

a Poisson distribution to characterize the associated distribution: 

 
0

~t t t u

u

L Pois R T u



 
 
 
  
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However, overdispersion in the offspring distribution may be substantial and may have 
important implications on the dynamics and for control (8). Here, we follow the seminal 
work of Lloyd-Smith et al. (8) and extend the model of Cori et al. to account for such 
overdispersion.  

Assume first that total infectivity in week t is equal to 1t  . Following (8) , we can use a 

Negative Binomial distribution with mean tR  and overdispersion k to model the number tL of 

local incident cases. This is a Negative Binomial distribution  ,t tNegBin r p where 

 1 1t tp k R  is the probability of success,  1t t t tr R p p  corresponds to the 

number of failures. The distribution has density 

 
 

 
   1

!

tr xt

t t t

x r
P L x p p

x x

 
  


 

More generally, for 1t  , we can use the additive properties of the Negative Binomial 

distribution to derive that the number tL of local incident cases has a Negative Binomial 

distribution  ,t t tNegBin r p  with density: 

 
 

 
   1

!

t tr xt t

t t t

x r
P L x p p

x x

  
  


 

3.1.2 Underreporting 

Only a proportion of imported and local cases are detected by the surveillance system. We 

denote 
O

tM and 
O

tL the observed numbers of imported and local incident cases in week t  

(i.e., cases detected by the surveillance system).  

Conditional on the total numbers of imported and local incident cases, observed numbers 
have Binomial distributions: 

 | ~ ,O

t t tM M Bin M   and  | ~ ,O

t t tL L Bin L   

where  is the case-detection rate. 

3.2 Deriving the generation time of malaria transmission in Swaziland 

Here, we derive the distribution of the infectivity profile  u characterizing infectivity of 

cases after infection and introduced in the previous section. The timelines of falciparum 
malaria transmission are relatively complex, with incubation periods in both the human and 
the mosquito. Continuing infection also varies over time so the temporal life-history of the 

parasite needs to be included in the derivation of  u .  

The infectivity profile  u can be approximated by the distribution of the generation time. 

The generation time is the mean time interval between infection of one person and infection 
of the people that individual infects. The mean generation time is denoted 

gT . In malaria, 

the generation time remains poorly understood. Field evidence suggests that untreated 
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infections can last a long time (18, 19), with recent molecular evidence suggesting an 
average duration of infection of approximately 140 days (20). These estimates were derived 
in areas of intense malaria transmission, so they may differ from regions approaching local 
elimination, where human immunity (and therefore parasite persistence) is likely to be 
different.  

Treatment with a drug that kills transmission stages (gametocytes) will substantially reduce 
the generation time. In areas with access to effective antimalarial treatment, the generation 
time will then depend on the time till drug treatment, the type of drug used, adherence to 
treatment regimens, the proportion of the population who are asymptomatic (who 
therefore do not seek treatment) and the relative infectivity of asymptomatic versus 
symptomatic infections. The generation time will therefore be an amalgamation of biological 
factors governing parasite development and behavioral, social, and pharmacodynamics 
processes determining drug treatment and parasite clearance.  

A list of the processes contributing to the generation time of treated and untreated cases of 
malaria are given in Table S4. The probability distribution of time taken for each process is 
either taken from the scientific literature or is estimated from experimental and Swaziland 
survey data. The majority of the human data comes from patients who were experimentally 
infected with P. falciparum as part of their neurosyphilis treatment (21). These patients were 
all malaria naive before infection so their immunological profiles are likely to be similar to 
those in areas approaching local elimination (assuming that the immunological process 
regulating parasite invasion and development are relatively short). A standard set of 
frequency distributions (normal, log-normal, gamma, Weibull, exponential) are fitted using 
maximum likelihood and compared using Akaike information criterion (AIC). Results are 
shown in Figure S2. Each shall be discussed in turn. 

  



15 
 

 

Table S4. List of the processes influencing the generation time of treated and untreated 
cases of malaria. 

Untreated host Treated host Notation 

Human Prepatient Period Human Prepatient Period 1X  

Human Latent Period Human Latent Period p  

Human Duration of 
Infectiousness 

Human Duration of 
Infectiousness 2X  

Mosquito Latent Period Mosquito Latent Period n  

Mosquito Duration of 
Infectiousness 

Mosquito Duration of 
Infectiousness 3X  

 
Human Patency to Symptoms 

Period 1Y  

 
Human Symptoms to Treatment 

Period 2Y  

 
Human Treatment to Parasite 

Clearance Period 3Y  
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Figure S2. Processes influencing the generation time of falciparum malaria in a population 
receiving treatment. Histograms show observed data; red lines indicate the best fitting 
probability distribution. (A) The prepatient period; (B) patient infectiousness to mosquitoes; 
(C) onset of symptoms (temperature >101oF); and (D) time between onset of symptoms and 
starting treatment. For (A) to (C), we use data from the neurosyphilis data set (21); for (D), 
we use times to treatment from the Swaziland Demographic and Health Survey (DHS) for the 
time period of interest. 

 

3.2.1 Human Prepatient Period 

The time between infective mosquito bite and the appearance of asexual parasites in a 
person’s peripheral bloodstream (as detected by microscopy) is called the prepatient period. 
It is estimated by fitting different distributions to data from 109 sporozoite-induced 
infections from the neurosyphilis data set (21). There was a minimum of 7 days before the 
first observable parasitemia. The distribution of prepatient periods is adequately described 

by a log-normal distribution  1 ~ ln 2.38,0.254X N  (Figure S2A).  

3.2.2 Human – Mosquito Transmission 

The probability a human will transmit malaria to a blood-feeding mosquito depends on the 
time since infection. This can be estimated from the neurosyphilis data set where 
anopheline mosquitoes were fed on the skin of P. falciparum–infected patients different 
times after the appearance of asexual parasites (21). Mosquitoes were dissected after 7 to 8 
days to determine the proportion of infected mosquitoes as measured by the presence of 
oocysts on the gut wall. There is a minimum of 9 days between the appearance of asexual 
parasites and the first mosquito infection (this period is denoted p ). Thereafter the 
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proportion of infected mosquitoes is adequately described by a gamma distribution (Figure 
S2B). The distribution of times between patient parasitemia and mosquito infection in an 

untreated host can therefore be sampled from  2 1.19~ Ga ,0mm 6a .01X  and by adding

p .  

3.2.3 Duration of mosquito infectiousness 

The time taken for a blood-feeding mosquito to become infectious (the latent period or 
extrinsic incubation period) is typically of n  = 10 days in malaria endemic areas (22). The 
average mosquito life expectancy is g  = 9.5 days (22) and the maximum age of a mosquito 

is m  = 30 days (23). It is assumed that mosquitoes die at a constant rate and are infectious 
for life (22). Therefore the time between blood feeding and infection of another host is 

assumed to have a truncated exponential distribution,  3 ~ MX g  taking values between 

n and m . 

3.2.4 Duration of infectiousness to mosquitoes in treated and untreated cases 

For an untreated patient the duration of infectiousness to mosquitoes will be determined by 
the shape of Figure S2B.  

However for someone receiving treatment it will depend on the time till they develop 
symptoms, the time between the onset of symptoms and drug treatment and the time it 
takes for the drug to clear gametocytes. Each of these can be estimated separately. In the 

neurosyphilis study, the time 1Y between patient infection and onset of symptoms (defined 

as temperature > 101oF) is shown in Figure S2C and is best described by a gamma 

distribution  1 3.4~ G 2,amma 1.08Y .  

The distribution of times to treatment can be estimated from the Swaziland Demographic 
and Health Surveys (DHS). Data pooled from the study period are best described by an 

exponential distribution with an average of 3.05 days to treatment:  2 5~ M 3.0Y  (Figure 

S2D). The DHS survey records time to treatment in children, which is likely to be quicker 
than that experienced by the overall population. This is adjusted for in the sensitivity 
analysis below. 

Once treatment starts patients take a number of days before they are no longer infectious. 
Estimates of the effectiveness of different artemesinin-based combination therapy (ACT) 
treatment at reducing gametocyte density have been quantified using molecular methods 
(24). Results suggest gametocytes are killed at a constant rate and last for an average of 3 
days from the start of treatment. For simplicity, it is assumed that human infectiousness to 
mosquitoes follows a similar pattern, although the relation between gametocyte density and 
mosquito infectivity is likely to be more complex (25). The time between the start of 
treatment and when a host is no longer infectious to mosquitoes is assumed to have an 

exponential distribution  3 3~ MY . 

3.2.5 Generation time frequency distribution 

If we assume that the times described above are independent of one another, we derive the 
empirical distribution of the generation time for untreated and treated cases via simulation. 
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The generation time between a primary and secondary infection in an untreated population,

U , can be generated using the following equation 
3

1

i

i

X pU n


  . The empirical 

density functions of U is denoted  h t . 

In a treated population, the generation time,V , can be generated using the same formula 
3

1

i

i

X pV n


  , but with the additional condition that the time taken for a mosquito to 

get infected ( 2X p ) must be less than the time taken for the patient to clear the infection, 

i.e.,    2 1 2 3X p Y Y Y    . Simulated values that do not satisfy this condition do not 

contribute to the derivation of  f t , the empirical density ofV .  

The mean generation time of a treated patient using the above parameters is 32.8 days 
compared to 102 days for an untreated case. A graphical representation of the life history of 
human-mosquito-human transmission is shown in Figure S3. 

 

Figure S3. An illustration of the generation time of malaria in a population treated with 
ACT. All individuals are infected at time 0 through inoculation of sporozoites. The regions 
show passage of the parasite through the human, mosquito, and back to the human. The 
green area denotes the distribution of patient parasitemias, the blue region the distribution 
of mosquitoes becoming infected, and the red area is the times of secondary human 
infections (i.e., the infection-to-infection generation time). Black dotted line shows the 
distribution of the onset of symptoms, the black dot-dash lines the distribution of treatment, 
and the black dashed line the time of parasite clearance. The solid black line shows the 
relative infectiousness of mosquitoes in an untreated individual. In a treated patient, there is 
a brief period between a person being infectious to mosquitoes and clearing the infection, 
which shows how effective prompt treatment can be to transmission control. All curves are 
normalized. 

 

The overall generation time will be determined by the proportion of malaria cases receiving 
treatment. This will depend on whether or not the patient is symptomatic. Symptomatic 
cases will tend to seek treatment, either through the routine health system or the private 
sector. These private sector distributors may or may not report back to the national health 
system (26), which might cause the proportion of cases recorded by routine surveillance (the 
case-detection rate) to be substantially lower than the proportion of cases receiving 
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treatment. Asymptomatic infections are less likely to receive treatment and, therefore, may 
continue to contribute to local transmission. For countries pushing for malaria elimination, 
the WHO recommends that outbreak investigations are carried out around every case 
identified by routine surveillance (15). This enables asymptomatic infections to be detected 
and treated. Outbreak investigations typically use rapid diagnostic tests (RDTs) to diagnose 
cases, although this may have imperfect sensitivity (27).  

Asymptomatic patients will typically have lower gametocyte densities than symptomatic 
individuals, as the density of asexual parasites influences both fever and gametocyte 
production. This will likely reduce their infectiousness to mosquitoes. A recent study in 
Burkina Faso found that asymptomatic children infected on average 6.18% of mosquitoes 
(28). Comparing this with the infectivity from symptomatic infections from the neurosyphilis 
study, where on average 20% of mosquitoes were infected, suggests that asymptomatic 
hosts are on average 69% less infectiousness to mosquitoes. To account for this, we 
introduce a parameter   which is the relative infectiousness to mosquitoes of 
asymptomatic to symptomatic infections, which has a value of 0.31.  

In the context of Swaziland, routine surveillance and outbreak investigation are very 
efficient, and most cases of malaria receive treatment through the public health system (5, 
26, 29). The case-detection rate is estimated from outbreak investigation data to 90%. 
Therefore, in Swaziland, it is reasonable to assume that: 

1. All symptomatic cases and a certain proportion of asymptomatic cases are treated. In 
our baseline scenario, we assume that all cases receive treatment but consider, in a 

sensitivity analysis, scenarios where the proportion of untreated asymptomatic is  = 5% 
and 10%. (This is only affecting the generation time distribution; see equation [3] 
below.) 

2. The relative infectiousness of untreated asymptomatic cases (relative to untreated 
symptomatic cases) is  = 0.31. (This is only affecting the generation time distribution; 
see equation [3] below.) 

3. Untreated asymptomatic cases have the same generation time as untreated 
symptomatic cases. 

4. Consistent with data from our outbreak investigation, we assume that the case-

detection rate is  = 90% in our baseline scenario. In a sensitivity analysis, we also 

consider  = 50%. 

In the context of Swaziland, under assumptions 1 to 3, the overall estimate of the generation 
time can be derived from the equation 

 
    

    

1

1
g

u

f t h t
T t

f u h u

  

  

 


  
 [3] 

where  is the relative infectiousness to mosquitoes of symptomatic to asymptomatic 

infections,   is the proportion of malaria infections that get treated,  h t  and  f t  are 

the densities of the generation time for untreated and treated cases, respectively.  

The generation time calculated above assumes that the time between onset of symptoms 
and treatment is, on average, 3 days. To see the epidemiological impact of a longer delay, 
the model is rerun with the assumption of an average of 6 days between symptoms and 
treatment. This delay is longer than the average time to treatment generally reported in the 
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literature (30, 31), so the two scenarios should reflect the variability in generations that 
might occur in the field. 

3.3 Model specifications and parameter estimation 

3.3.1 Model specifications  

Following (32), we take a flexible approach to represent temporal variations in the 

importation rate I

t . This parameter is modeled with a stochastic diffusion from which 

variance is estimated (32). We assume that the overdispersion parameter k is constant over 
time.  

Each year, we estimate the instantaneous reproduction number tR  for the high and the low 

season (33). We assume that tR  is constant throughout each season. To test whether there is 

evidence that tR  has changed over the last three years, a model with a single high and low 

season tR estimate is compared to one where each season has its own value. 

3.3.2 Parameter estimation 

We use particle Markov chain Monte Carlo (34) to estimate the parameters of our model 
from the surveillance data. We use 3,000 particles and 10,000 MCMC iterations per run, with 
a burn in of 500 and derive the posterior distribution of parameters, as well as the 
reconstructed trajectories of the latent infection process. We assume the overdispersion 

parameter k has a Uniform prior   0,10U . For all other parameters, we use flat priors. 

We use the deviance information criterion (DIC) for model comparison (35). Smaller values 
of the DIC indicate a better fit. A difference of 5 DIC units is considered to be substantial. 

The first weeks of the observation period cannot be used for parameter estimation. 
Consider, for example, the first week of surveillance. Estimating transmissibility in that week 
would require knowing incident number of cases in preceding weeks (for a time period 
roughly covering the generation time distribution); but these data are unavailable. We 
therefore dedicate a first portion of the surveillance data (that covers most of the 
generation time distribution) to initiating the latent variables of the total numbers of 
imported and local incident cases, respectively. During this time period, consider, for 

example, 0

tM —the observed number of imported incident cases in week t. We use the 

following formula to draw the total number of imported cases 0

t tM M z  ,  where 

 0~ ,1tz NegBin M  . A similar approach is used for the initialization of latent numbers 

of local incident cases. For the scenario where all cases are assumed to be treated (short 
generation time), the initialization period goes from October to December 2009, so that we 
can generate results for 3 years, between January 2010 and 2012. For the other scenarios 
where 5% or 10% of cases do not receive treatment, the initialization period is longer (from 
October 2009 till December 2010), and estimates are therefore only available for 2011 and 
2012.  
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3.4 Results 

Estimates of the importation rate and of the reproduction number are shown in Figures S4 
and 1C, respectively. The fit of the model to data is presented in Figure S5. Sensitivity 
analysis is shown in Table S5 and Figure S6.  

The model which allowed tR  to change every year (and season) gave a better fit (DIC = 

1269.9) than the one with just a single estimate for all high and all low seasons (DIC = 
1277.2), which indicates that, at the national scale, endemic transmission has significantly 

changed over the time period. Sensitivity analysis shows that estimates of tR  are robust to 

differences in the frequency distribution of generation times for treated and untreated 
malaria, the case-detection rate and the proportion of untreated infections (Figure S6).
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Figure S4. Estimated rate of importation of malaria cases into Swaziland. Solid line indicates the 
best fitting model with shaded area denoting the 95% credible intervals.  

 

Figure S5. Model fits. (A) Number of imported cases and (B) number of locally acquired cases. Solid 
line indicates the posterior mean of estimates with shaded area denoting the 95% credible intervals. 
The points correspond to data. 
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Table S5. Model sensitivity analysis. Parentheses show 95% credible intervals. Lower DIC indicates a better fit. DIC values from different proportion of the 
population receiving treatment are not comparable, as each were fit to different sized data sets. 

Proportion of 

untreated cases  

Case-detection 

rate  

Annual 
variations in R 

Mean delay onset to 
treatment (days) 

Mean 
generation time 

Volatility of the 
importation rate  

Overdispersion 
parameter k 

DIC* 

0 

0.5 

no  
6 35.2 0.31[0.21,0.45] 0.21[0.12,0.38] 1277.9 

3 32.9 0.31[0.21,0.44] 0.21[0.12,0.42] 1278.5 

yes 
6 35.2 0.31[0.2,0.46] 0.3[0.16,0.89] 1270.8 

3 32.9 0.31[0.21,0.45] 0.29[0.16,0.88] 1270 

0.9 

no  
6 35.2 0.29[0.19,0.44] 0.46[0.22,1.52] 1280.1 

3 32.9 0.29[0.18,0.44] 0.48[0.24,1.45] 1277.2 

yes 
6 35.2 0.3[0.19,0.44] 0.99[0.32,6.92] 1271.6 

3 32.9 0.29[0.19,0.44] 1.03[0.34,9.05] 1269.9 

0.05 

0.5 

no  
6 38.5 0.31[0.19,0.46] 0.18[0.11,0.34] 1252.7 

3 36.2 0.31[0.21,0.46] 0.18[0.11,0.37] 1250.8 

yes 
6 38.5 0.32[0.22,0.47] 0.24[0.13,0.55] 1246.8 

3 36.2 0.32[0.21,0.47] 0.25[0.13,0.67] 1246.8 

0.9 

no  
6 38.5 0.3[0.2,0.45] 0.4[0.21,1.08] 1246.4 

3 36.2 0.3[0.2,0.45] 0.41[0.21,1.35] 1246.6 

yes 
6 38.5 0.3[0.19,0.45] 0.71[0.28,7.08] 1241.8 

3 36.2 0.3[0.2,0.46] 0.62[0.24,7.28] 1241.5 

0.1 

0.5 

no  
6 42.0 0.31[0.22,0.46] 0.18[0.11,0.33] 1251.9 

3 39.8 0.32[0.22,0.47] 0.18[0.11,0.35] 1250.3 

yes 
6 42.0 0.32[0.2,0.47] 0.24[0.13,0.61] 1246.9 

3 39.8 0.31[0.22,0.47] 0.23[0.13,0.59] 1246 

0.9 

no  
6 42.0 0.3[0.18,0.45] 0.41[0.21,4.52] 1244.5 

3 39.8 0.3[0.19,0.45] 0.4[0.21,1.68] 1245.8 

yes 
6 42.0 0.3[0.19,0.45] 0.71[0.27,6.04] 1240.3 

3 39.8 0.31[0.2,0.46] 0.58[0.27,4.73] 1240.7 
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Figure S6. Sensitivity analysis comparing the reproduction number, tR , estimates fit using 

different parameters for (A) the mean delay onset to treatment and case-detection rate, 
and (B) the proportion of untreated cases. Solid lines show the mean estimate; dotted lines 
indicate the 95% credible intervals. In both panels, the black line denotes the best-fitting 
model with the short delay onset to treatment and 90% case-detection rate and 0% 
untreated infections. In (A), all lines assume 0% untreated cases and have the following 
parameters: red line, short-delay onset to treatment and 50% case-detection rate; blue line, 
long-delay onset to treatment and 50% case-detection rate and; green line, long-delay onset 
to treatment and 90% case-detection rate. In (B), all lines have the same parameters with 
the exception of the proportion of untreated cases, be it 5% (purple line) or 10% (orange 

line). When not visible the lines are overrun by the best-fitting model. The tR  estimates are 

relatively insensitive to changes in parameters. 

 

  



25 
 

4 References 

 1.  C. A. Guerra et al., The international limits and population at risk of Plasmodium vivax 
transmission in 20 09. PLoS Negl. Trop. Dis. 4, e774 (2010). Medline 
doi:10.1371/journal.pntd.0000774 

 2.  World Health Organization, “World malaria report: 2013” (WHO, Geneva, 2013). 

 3.  M. Manske et al., Analysis of Plasmodium falciparum diversity in natural infections by 
deep sequencing. Nature 487, 375–379 (2012). Medline doi:10.1038/nature11174 

 4.  S. Cauchemez et al., Using routine surveillance data to estimate the epidemic potential 
of emerging zoonoses: Application to the emergence of US swine origin influenza A 
H3N2v virus. PLoS Med. 10, e1001399 (2013). Medline 
doi:10.1371/journal.pmed.1001399 

 5.  M. S. Hsiang et al., Surveillance for malaria elimination in Swaziland: A national cross-
sectional study using pooled PCR and serology. PLoS ONE 7, e29550 (2012). Medline 
doi:10.1371/journal.pone.0029550 

 6.  C. Chiyaka et al., The stability of malaria elimination. Science 339, 909–910 (2013). 
Medline doi:10.1126/science.1229509 

 7.  J. M. Cohen, B. Moonen, R. W. Snow, D. L. Smith, How absolute is zero? An evaluation 
of historical and current definitions of malaria elimination. Malar. J. 9, 213 (2010). 
Medline doi:10.1186/1475-2875-9-213 

 8.  J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, W. M. Getz, Superspreading and the effect 
of individual variation on disease emergence. Nature 438, 355–359 (2005). Medline 
doi:10.1038/nature04153 

 9.  H. Nishiura, P. Yan, C. K. Sleeman, C. J. Mode, Estimating the transmission potential of 
supercritical processes based on the final size distribution of minor outbreaks. J. Theor. 
Biol. 294, 48–55 (2012). Medline doi:10.1016/j.jtbi.2011.10.039 

 10.  T. Smith, J. D. Charlwood, W. Takken, M. Tanner, D. J. Spiegelhalter, Mapping the 
densities of malaria vectors within a single village. Acta Trop. 59, 1–18 (1995). Medline 
doi:10.1016/0001-706X(94)00082-C 

 11.  H. J. Sturrock et al., Targeting asymptomatic malaria infections: Active surveillance in 
control and elimination. PLoS Med. 10, e1001467 (2013). Medline 
doi:10.1371/journal.pmed.1001467 

 12.  P. Bejon et al., Stable and unstable malaria hotspots in longitudinal cohort studies in 
Kenya. PLoS Med. 7, e1000304 (2010). Medline doi:10.1371/journal.pmed.1000304 

 13.  T. Bousema et al., Hitting hotspots: Spatial targeting of malaria for control and 
elimination. PLoS Med. 9, e1001165 (2012). Medline 
doi:10.1371/journal.pmed.1001165 

 14.  M. E. Woolhouse et al., Heterogeneities in the transmission of infectious agents: 
Implications for the design of control programs. Proc. Natl. Acad. Sci. U.S.A. 94, 338–
342 (1997). Medline doi:10.1073/pnas.94.1.338 

 15.  WHO, “Disease surveillance for malaria elimination: An operational manual” (WHO, 
Geneva, 2012). 

 16.  A. Cori, N. M. Ferguson, C. Fraser, S. Cauchemez, A new framework and software to 
estimate time-varying reproduction numbers during epidemics. Am. J. Epidemiol. 178, 
1505–1512 (2013). Medline doi:10.1093/aje/kwt133 

Comment [BEPO2]: links were added 
to references 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20689816&dopt=Abstract
http://dx.doi.org/10.1371/journal.pntd.0000774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22722859&dopt=Abstract
http://dx.doi.org/10.1038/nature11174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23472057&dopt=Abstract
http://dx.doi.org/10.1371/journal.pmed.1001399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22238621&dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0029550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23430640&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23430640&dopt=Abstract
http://dx.doi.org/10.1126/science.1229509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20649972&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20649972&dopt=Abstract
http://dx.doi.org/10.1186/1475-2875-9-213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16292310&dopt=Abstract
http://dx.doi.org/10.1038/nature04153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22079419&dopt=Abstract
http://dx.doi.org/10.1016/j.jtbi.2011.10.039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7785522&dopt=Abstract
http://dx.doi.org/10.1016/0001-706X(94)00082-C
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23853551&dopt=Abstract
http://dx.doi.org/10.1371/journal.pmed.1001467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20625549&dopt=Abstract
http://dx.doi.org/10.1371/journal.pmed.1000304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22303287&dopt=Abstract
http://dx.doi.org/10.1371/journal.pmed.1001165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8990210&dopt=Abstract
http://dx.doi.org/10.1073/pnas.94.1.338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24043437&dopt=Abstract
http://dx.doi.org/10.1093/aje/kwt133


26 
 

 17.  C. Fraser, Estimating individual and household reproduction numbers in an emerging 
epidemic. PLoS ONE 2, e758 (2007). Medline doi:10.1371/journal.pone.0000758 

 18.  W. Sama, G. Killeen, T. Smith, Estimating the duration of Plasmodium falciparum 
infection from trials of indoor residual spraying. Am. J. Trop. Med. Hyg. 70, 625–634 
(2004). Medline 

 19.  D. L. Smith, J. Dushoff, R. W. Snow, S. I. Hay, The entomological inoculation rate and 
Plasmodium falciparum infection in African children. Nature 438, 492–495 (2005). 
Medline doi:10.1038/nature04024 

 20.  M. T. Bretscher et al., The distribution of Plasmodium falciparum infection durations. 
Epidemics 3, 109–118 (2011). Medline doi:10.1016/j.epidem.2011.03.002 

 21.  W. E. Collins, G. M. Jeffery, A retrospective examination of sporozoite- and 
trophozoite-induced infections with Plasmodium falciparum: Development of 
parasitologic and clinical immunity during primary infection. Am. J. Trop. Med. Hyg. 61 
(suppl.), 4–19 (1999). Medline doi:10.4269/tropmed.1999.61-04 

 22.  D. L. Smith, S. I. Hay, Endemicity response timelines for Plasmodium falciparum 
elimination. Malar. J. 8, 87 (2009). Medline doi:10.1186/1475-2875-8-87 

 23.  J. D. Lines, T. J. Wilkes, E. O. Lyimo, Human malaria infectiousness measured by age-
specific sporozoite rates in Anopheles gambiae in Tanzania. Parasitology 102, 167–177 
(1991). Medline doi:10.1017/S0031182000062454 

 24.  T. Bousema et al., Revisiting the circulation time of Plasmodium falciparum 
gametocytes: Molecular detection methods to estimate the duration of gametocyte 
carriage and the effect of gametocytocidal drugs. Malar. J. 9, 136 (2010). Medline 
doi:10.1186/1475-2875-9-136 

 25.  T. S. Churcher et al., Predicting mosquito infection from Plasmodium falciparum 
gametocyte density and estimating the reservoir of infection. eLife 2, e00626 (2013). 
doi:10.7554/eLife.00626  

 26.  J. M. Cohen et al., Public health. Optimizing investments in malaria treatment and 
diagnosis. Science 338, 612–614 (2012). Medline doi:10.1126/science.1229045 

 27.  WHO, “Malaria rapid diagnostic test performance results of WHO product testing of 
malaria RDTs: Round 3 (2010–2011).” (WHO, 2011). 

 28.  A. L. Ouédraogo et al., Substantial contribution of submicroscopical Plasmodium 
falciparum gametocyte carriage to the infectious reservoir in an area of seasonal 
transmission. PLoS ONE 4, e8410 (2009). Medline doi:10.1371/journal.pone.0008410 

 29.  WHO, “Roll Back Malaria Progress and Impact Series: No. 5 Focus on Swaziland ” 
(WHO, Geneva, Switzerland, 2012). 

 30.  W. Piyaphanee et al., Emergence and clearance of gametocytes in uncomplicated 
Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 74, 432–435 (2006). Medline 

 31.  I. Sutanto et al., The effect of primaquine on gametocyte development and clearance 
in the treatment of uncomplicated falciparum malaria with dihydroartemisinin-
piperaquine in South sumatra, Western indonesia: An open-label, randomized, 
controlled trial. Clin. Infect. Dis. 56, 685–693 (2013). Medline doi:10.1093/cid/cis959 

 32.  J. Dureau, K. Kalogeropoulos, M. Baguelin, Capturing the time-varying drivers of an 
epidemic using stochastic dynamical systems. Biostatistics 14, 541–555 (2013). 
Medline doi:10.1093/biostatistics/kxs052 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17712406&dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0000758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15211003&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16306991&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16306991&dopt=Abstract
http://dx.doi.org/10.1038/nature04024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21624782&dopt=Abstract
http://dx.doi.org/10.1016/j.epidem.2011.03.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10432041&dopt=Abstract
http://dx.doi.org/10.4269/tropmed.1999.61-04
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19405974&dopt=Abstract
http://dx.doi.org/10.1186/1475-2875-8-87
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1852484&dopt=Abstract
http://dx.doi.org/10.1017/S0031182000062454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20497536&dopt=Abstract
http://dx.doi.org/10.1186/1475-2875-9-136
http://dx.doi.org/10.7554/eLife.00626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23118172&dopt=Abstract
http://dx.doi.org/10.1126/science.1229045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20027314&dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0008410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16525102&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23175563&dopt=Abstract
http://dx.doi.org/10.1093/cid/cis959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23292757&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23292757&dopt=Abstract
http://dx.doi.org/10.1093/biostatistics/kxs052


27 
 

 33.  J. M. Cohen et al., Rapid case-based mapping of seasonal malaria transmission risk for 
strategic elimination planning in Swaziland. Malar. J. 12, 61 (2013). Medline 
doi:10.1186/1475-2875-12-61 

 34.  C. Andrieu, A. Doucet, R. Holenstein, Particle Markov chain Monte Carlo methods. J. R. 
Stat. Soc. Ser. B. 72, 269–342 (2010). doi:10.1111/j.1467-9868.2009.00736.x 

 35.  D. J. Spiegelhalter, N. G. Best, B. R. Carlin, A. van der Linde, Bayesian measures of 
model complexity and fit. J. R. Stat. Soc. Ser. B 64, 583–639 (2002). doi:10.1111/1467-
9868.00353 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23398628&dopt=Abstract
http://dx.doi.org/10.1186/1475-2875-12-61
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://dx.doi.org/10.1111/1467-9868.00353
http://dx.doi.org/10.1111/1467-9868.00353

