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ASYMPTOTICALLY CYLINDRICAL CALABI-YAU MANIFOLDS

MARK HASKINS, HANS-JOACHIM HEIN, AND JOHANNES NORDSTRÖM

Abstract. Let X be a compact connected Ricci-flat manifold and let M be a complete Kähler Ricci-

flat manifold with one end which converges to [0,∞) ×X at an exponential rate. We prove general

structure theorems for M . In particular we show that there is no loss of generality in assuming that

M is simply-connected and irreducible. If dimC M > 2, we then show that there exists a projective

orbifold M and an orbifold divisor D ∈ |−KM | such that M is biholomorphic to M \ D. We give

examples where M is not smooth; the existence of such examples appears not to have been noticed

previously. If X splits off a circle, then M and D are both smooth and we show that the linear system

|D| defines a fibration M → P
1. Conversely for any such fibred manifold M we give a short direct

and self-contained proof of the existence and uniqueness of (exponentially) asymptotically cylindrical

Calabi-Yau metrics with split cross-section on M \D. As a consequence, all asymptotically cylindrical

Calabi-Yau manifolds with split cross-section must arise from this particular construction.

1. Introduction

Background and overview. In one of their foundational papers on complete Kähler Ricci-flat

metrics Tian and Yau proved the existence of such metrics with linear volume growth on particular

smooth noncompact quasiprojective varieties M [40, Corollary 5.1]. In fact, their estimates establish

that M is uniformly bi-Lipschitz at infinity to half of a metric cylinder M∞ = R ×X with a given

smooth compact Ricci-flat cross-section X. The current paper has two principal goals:

(i) To give a short and self-contained proof of a refined version of the Tian-Yau existence theorem

that in particular establishes exponential convergence of M to M∞.

(ii) To understand to what extent every Kähler Ricci-flat manifold that is exponentially asymp-

totically cylindrical in this sense arises from the given construction.

(i) is important because the exponential convergence is used in an essential way in the so-called

twisted connected sum construction of compact Riemannian 7-manifolds with holonomy group equal

to the compact exceptional Lie group G2 [9, 10, 23], first suggested by Donaldson and then pioneered

by Kovalev in [23]. At present no complete proof of the existence of exponentially asymptotically

cylindrical Calabi-Yau manifolds exists in the literature: see also the introduction to Section 4.

Moreover, the existence proof of [40] is difficult and much more general; we will show that the

asymptotically cylindrical case allows for a fairly short and direct treatment.

(ii) fits naturally into the broader framework of complex analytic compactifications of complete

Kähler Ricci-flat manifolds—a topic Yau raised in his 1978 ICM Address [45]. Under the assumption

of finite topology all currently known complete Kähler Ricci-flat manifolds are biholomorphic to a

quasi-projective variety (the examples of [1] show that even complete hyper-Kähler 4-manifolds need

not have finite topology though). However, we are not aware of any general results in the Kähler

Ricci-flat case that establish quasiprojectivity even under additional hypotheses. One strategy which

has had some success in Kähler manifolds with Ric < 0 and finite volume [31] (or with Ric > 0 and

Euclidean volume growth [30]) relies on studying the section ring of the (anti-)canonical bundle. In

this paper we adopt a completely different approach to proving compactification results.

Let M be asymptotically cylindrical Kähler Ricci-flat and let n = dimCM . We show that there is

no loss of generality in assuming that M is simply-connected of holonomy SU(n). If n > 2, we will

then prove that the asymptotic cylinder M∞ of M has a finite cover that splits as a Kähler product

R× S
1 ×D, where D is compact Kähler Ricci-flat. The cylinder M∞ now admits a natural orbifold

compactification, so we can try to use the fact that M is asymptotic to M∞ to build a (projective)
1
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orbifold compactification of M . We emphasise that a considerable amount of extra work is required

to pass from a compactification of M∞ to a compactification of M ; see Section 3.

Basic terminology. Before proceeding to a more detailed description of the main results and the

organization of the paper, we begin with a few basic definitions and remarks.

Definition 1.1. A complete Riemannian manifold (M,g) is called asymptotically cylindrical (ACyl)

if there exist a bounded domain U ⊂M , a closed (not necessarily connected) Riemannian manifold

(X,h), and a diffeomorphism Φ : [0,∞)×X →M \U such that |∇k(Φ∗g− g∞)| = O(e−δt) in terms

of g∞ := dt2 + h for some δ > 0 and all k ∈ N0. Here t denotes projection onto the [0,∞) factor;

we often extend t ◦ Φ−1 by zero and refer to this as a cylindrical coordinate function on M . We call

the connected components of M∞ := R × X endowed with the product metric g∞ the asymptotic

cylinders (or sometimes the cylindrical ends) and (X,h) the cross-section of (M,g).

We will often suppress the map Φ in our notation, or tacitly replace it by Φ ◦ [(t, x) 7→ (t+ t0, x)]

for some large constant t0. Also, it will be irrelevant whether we measure norms of tensors on M \U

with respect to g or g∞. Finally, we remark that exponential asymptotics are a priori more natural

than polynomial or even weaker ones because solutions to linear elliptic equations on cylinders tend

to behave exponentially. The Calabi-Yau condition is not linear, but we obtain a consistent theory

within the exponential setting; see also the Concluding Remarks at the end of this section.

Remark 1.2. We will mainly be interested in ACyl manifolds that are Ricci-flat. In this case:

(i) M has only a single end except when it is isometric to a product cylinder. This is an immediate

consequence of the splitting theorem [6], and holds even if we assume only Ric ≥ 0. From now

on in this remark, assume M is not a product cylinder.

(ii) The end M∞ is a Ricci-flat cylinder, so the cross-section X is compact connected and Ricci-flat.

We recall a basic structure result: there exists a flat torus T with dimT ≥ b1(X), a simply-

connected compact Ricci-flat manifold X ′, and a finite Riemannian covering T×X ′ → X

[11, Thm 4.5]. This is deduced from a more general theorem for Ric ≥ 0 [6, Thm 3], but uses

the inequality Ric ≤ 0 in an essential way to ascertain that all Killing fields are parallel.

We also need to recall some terminology related to holonomy groups and explain what we will mean

by a Calabi-Yau manifold in this paper. We say that (M,g) is locally irreducible if the representation

of the restricted holonomy group Hol0(M) is irreducible; by de Rham’s theorem, this is equivalent

to M being locally irreducible in the sense of isometric product decompositions. We call (M2n, g)

Calabi-Yau if Hol(M) ⊆ SU(n); this implies M is Ricci-flat Kähler. Conversely, if M is Ricci-flat

Kähler then Hol0(M) ⊆ SU(n), so if additionally M is simply-connected then it is Calabi-Yau. If M

is Ricci-flat Kähler and locally irreducible then, by Berger’s classification, either Hol0(M) = SU(n),

or n is even and Hol0(M) = Sp(n2 ). In general, if Hol(M) ⊆ Sp(n2 ), we say M is hyper-Kähler.

A final point of notation: Sk will denote a round k-sphere and T
k a flat k-torus (not necessarily a

product of k circles). Thus S
1 = T

1 is a circle but we do not specify its radius. However, we always

identify S
1 = R/2πZ topologically and denote the resulting angular coordinate on S

1 by θ.

Killing the fundamental group. Our first main result gives an ACyl analogue of the structure

theorem for compact Ricci-flat manifolds of Remark 1.2(ii). This is again an easy consequence of a

structure result for (ACyl) manifolds with nonnegative Ricci curvature (Theorem 2.13).

Theorem A. Every Ricci-flat ACyl manifold has a finite normal covering space that splits as the

isometric product of a flat torus and a simply-connected Ricci-flat ACyl manifold.

Theorem A allows us to reduce to the case that the Ricci-flat ACyl manifold in question is simply-

connected and irreducible. In particular, if the manifold is in addition Kähler—as it will be in most

of our results—we can assume without loss that its full holonomy is either SU(n) or Sp(n2 ).
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Holonomy and the asymptotic cylinder. If M is ACyl Kähler, then naively one might expect

that the orbits of the parallel vector field J∂t on the cross-section X of the asymptotic cylinder M∞

necessarily split off as isometric circle factors. But, even if Ric ≥ 0, this may not be true even up to

a finite cover. However, in the Ricci-flat case, we will prove that such pathologies never occur once

dimCM > 2. This is important for the compactification problem in that the splitting gives us a

Compactification ansatz : A complex product cylinder R × S
1 ×D ∼= C

∗ ×D can be

compactified as C×D. If D has a holomorphic volume form ΩD, then (dt+ idθ)∧ΩD

extends to a meromorphic volume form with a simple pole along {0} ×D.

However, we point out that this is really only an ansatz, or in other words a sufficient condition—a

complex compactification may exist even if the metric is “irregular” in the sense that the J∂t-orbits

do not split off as S
1-factors in any finite cover. But the construction of a complex compactification

would then require a new ansatz and could be much more complicated; see Remark 1.6.

The following theorem is proved in Section 2.3 based on holonomy considerations. The structure

theorem for compact Ricci-flat manifolds of Remark 1.2(ii) plays a role too.

Theorem B. Let M be simply-connected irreducible ACyl Calabi-Yau with n = dimCM > 2.

(i) M is not hyper-Kähler, or in other words Hol(M) = SU(n).

(ii) There exists a compact Calabi-Yau manifold D with a Kähler isometry ι of finite order m such

that the cross-section X of M can be written as X = (S1×D)/〈ι〉, where ι acts on the product

via ι(θ, x) = (θ + 2π
m , ι(x)). Moreover, ι preserves the holomorphic volume form on D but no

other holomorphic forms of positive degree. In particular, b1(X) = 1.

In particular, ACyl hyper-Kähler manifolds exist only in real dimension 4. But their asymptotic

cylinders need not be finite quotients of a product R× S
1 ×D; see again Remark 1.6.

The order m of the Kähler isometry ι of Theorem B(ii) really can be greater than 1 even though

π1(M) = 0; see Examples 1.5 and 1.8, both of which are 3-dimensional. This possibility seems not

to have been realized before. In particular, such spaces do not fit within the remit of the Tian-Yau

construction [40, Corollary 5.1]. However, we regard m > 1 as a nongeneric case because only a small

fraction of the currently known ACyl Calabi-Yau manifolds have m > 1; Examples 1.5 and 1.8 are

essentially the only series of examples with m > 1 known to us.

Remark 1.3. Theorem B(ii) severely restricts the possible shapes of M∞.

(i) If n = 3 then D could be T
4 or K3, but not a finite quotient of either; in Examples 1.5 and 1.8

we show that both occur (with m > 1). In both cases there are strong a priori restrictions on

the possible values of m: if D = T
4 then m ∈ {2, 3, 4, 6} by [13, Lemma 3.3], while if D = K3

then m ≤ 8 (and the number of fixed points of ι depends only on m) by [32, §0.1] or [34].

(ii) If m = 1, then hp,0(D) = 1 for p ∈ {0, n − 1} but hp,0(D) = 0 otherwise. Thus, if n = 3 then

D = K3; alternatively if π1(D) = 0 then Hol(D) = SU(n− 1). However, D could be reducible:

D = (K3 ×K3)/Z2 is not a priori ruled out if Z2 acts anti-symplectically on each factor, i.e.

as a holomorphic involution of K3 that changes the sign of the holomorphic volume form.

Theorem B(ii) implies that M∞ is biholomorphic to the complement of D/Zm in (C × D)/Zm.

This compactification could be smooth even if m > 1, but if n is odd and if D has no holomorphic

forms except in degrees 0 and n − 1, then the holomorphic Lefschetz formula tells us that ι must

have fixed points, so in this case the compactification is definitely not smooth if m > 1.

A compactification theorem. In Section 3 we will prove that any ACyl Kähler manifold M that

satisfies the conclusion of Theorem B(ii) has an orbifold holomorphic compactification M modeled

on the obvious holomorphic compactification of M∞. Moreover, M is in fact Kähler, and if M is

Calabi-Yau, then M must necessarily be projective. Thus, our results are most comprehensive if M

satisfies the assumptions of Theorem B; for simplicity we give the statement only in this case.
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Theorem C. Let M be simply-connected irreducible ACyl Calabi-Yau of complex dimension > 2.

Let X, D, ι ∈ Isom(D), and m be as in Theorem B(ii) and define D = D/〈ι〉. Then with respect to

either of the two parallel complex structures on M we have:

(i) There exists a projective orbifold M with hp,0(M) = 0 for all p > 0 such that D ∈ |−KM | is

an admissible1 divisor and M is biholomorphic to M \D. If m = 1 then M is smooth.

(ii) The ACyl Kähler form is cohomologous to the restriction to M of a Kähler form on M .

(iii) If b1(D) = 0 then the linear system |mD| is a pencil on M , defining a fibration M → P
1 with

D as an m-fold fibre. In particular this holds for m = 1 since b1(X) = 1 by Theorem B(ii).

Before discussing the statement in more detail, we describe the basic motivation for our proof:

Let D be a smooth divisor with trivial holomorphic normal bundle in some complex

manifold M . Then typically no tubular neighborhood of D is biholomorphic to the

product of the unit disk with D. However, there still exists an exponential map that

sends the fibres of the normal bundle to holomorphic disks in M .

In proving Theorem C (at least when m = 1), we first construct a “punctured version” of such an

exponential map purely within M , with M∞ playing the role of the normal bundle of the putative

divisor D at infinity. Studying ∂̄-type equations along the resulting punctured holomorphic disks in

M allows us to prove that the complex structure of M is sufficiently regular at infinity to admit a

holomorphic compactification M . The normal bundle to D in M is then necessarily trivial.

Remark 1.4. We make some basic comments about the fibration in Theorem C(iii).

(i) No compact complex manifold with finite fundamental group can fibre over a Riemann surface

with non-zero genus, since then the lift of the fibering map to the universal cover would be a

non-constant holomorphic function from a compact complex manifold to C.

(ii) We can compare the conclusions of Theorems B(i) and C(iii) with the following observation

of Matsushita’s [26, Lemma 1(2)]: If M is a compact Kähler manifold with holonomy Sp(n2 ),

n = dimCM , and if f : M → B is a surjective holomorphic map onto a Kähler manifold B of

complex dimension 0 < b < n, then b = n
2 . (In this situation, a much more difficult result due

to Hwang [18] then asserts that B is projective space if both M and B are algebraic.)

(iii) We do not know whether or not |mD| still defines a fibration of M over P
1 if b1(D) > 0 (hence

necessarily m > 1). See also the discussion following Example 1.5.

We now describe a simply-connected ACyl Calabi-Yau 3-fold where m = 2 and D is a torus. This

space is closely related to a Kummer construction due to Joyce; see [35, 7.3.3(iv)].

Example 1.5. Let E be an elliptic curve and M0 = (P1 ×E ×E)/〈α, β〉, where α and β act on P
1

as the commuting holomorphic involutions z 7→ 1
z and z 7→ −1

z , and on E×E as (−1, 1) and (1,−1).

Let M be the blow-up of M0 at the fixed sets of α and β (these have complex codimension 2). The

fixed points of ι = αβ become orbifold singularities in M contained in the image D ∼= (E×E)/{±1}

of {0,∞} × E × E. Since {0,∞} is an anticanonical divisor on P
1 and the blow-up is crepant, D is

an anticanonical orbifold divisor on M (“two cylindrical ends folded into one”).

We can deduce that M = M \D admits ACyl Calabi-Yau metrics from a slight generalization of

Theorem D; see Remark 1.7(ii). However, we can also think of M as a blow-up of the flat orbifold

M0 = (R× S
1 × E × E)/〈α, β〉

and obtain ACyl Calabi-Yau metrics by a generalised Kummer construction [35, 7.3.3(iv)]. Because

〈α, β〉 is generated by elements with fixed points, the argument of [20, §12.1.1] can be applied to

show that π1(R × S
1 × E × E) → π1(M0) is surjective, and that M0 and M are simply-connected.

This model for M also makes it easy to see that the cross-section X is the quotient of S1 × E × E

by the fixed-point free involution (θ, x, y) 7→ (θ+ π,−x,−y); in particular, b1(X) = 1 in accordance

with Theorem B(ii) since the only Z2-invariant parallel 1-form upstairs is dθ.

1This notion was introduced in [41, Definition 1.1(iii)] to capture a closely related phenomenon.
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Example 1.5 is also interesting in view of the discussion of Theorem C(iii) in Remark 1.4(iii). By

composing the projection P1×E×E → P1 with a degree 4 map P1 → P1 invariant under 〈α, β〉, we

obtain a fibration M → P
1; this must correspond to the linear system |2D|. (The reader’s intuition

may be aided by observing that the special fibres are I∗0 ×E, E × I∗0 , and 2D in Kodaira’s notation

[22].) However, one can show that M admits nontrivial ACyl Calabi-Yau deformations with the same

cylindrical end as M ; it is not clear to us whether or not these are still fibred by |2D|.

Remark 1.6. The compactification question for n = 2 is more subtle. To begin with, we have X = T
3

since Hol(R×X) 6⊆ SU(2) if X is a proper quotient of T3 (but all orientable proper quotients of T3

occur as cross-sections of locally hyper-Kähler ACyl 4-manifolds with nontrivial π1 [4, Thm 0.2]).

By [17, Thm 1.10], X need not be an isometric product S1 ×T
2, and by extending the construction

of [17] one can show that every flat torus T
3 occurs as a cross-section. Thus, for a generic choice of

hyper-Kähler metric or parallel complex structure J , the orbits of J∂t do not split off as isometric

S
1-factors in any finite cover of X, and our compactification ansatz does not apply.

It is nevertheless possible to compactify M∞ holomorphically, strongly suggesting that M itself

can be compactified so that M is P2 blown up in 9 general points, D is the proper transform of the

unique cubic passing through these points, and |D| is trivial. By contrast, the construction in [17]

is based on pencils of cubics in P
2. We plan to discuss the details of this picture elsewhere.

Existence and uniqueness of ACyl Calabi-Yau metrics. Next we prove—at least in the split

case (m = 1)—that every pair (M,D) satisfying the conclusions of Theorem C gives rise to ACyl

Calabi-Yau metrics on M = M \D. This is the content of Theorem D below. Moreover, we state a

uniqueness result (Theorem E) that in particular implies that if M is simply-connected ACyl Calabi-

Yau and if (M,D) is the compactification of M obtained in Theorem C, then the ACyl Calabi-Yau

structure on M provided by Theorem D recovers the given one on M .

Theorem D. Let M be a projective manifold of dimension n ≥ 2. Assume that the linear system

|−KM | defines a map M → P
1 with connected fibres. Let D be a smooth divisor in |−KM | and let

Ω be a rational n-form on M with a simple pole along D. Then for every Kähler class k on M there

exists an ACyl Calabi-Yau metric ω on M = M \D such that ω ∈ k|M and ωn = in
2

Ω ∧ Ω̄.

Remark 1.7.

(i) Theorem D always yields ACyl Calabi-Yau manifolds with split cross-section X = S
1×D, i.e.

m = 1 in Theorems B and C. Here D, which has trivial canonical bundle by adjunction, carries

the unique Ricci-flat Kähler metric representing k|D provided by the Calabi-Yau theorem [44].

Also, Ω is unique only up to a scalar factor, so we get a 1-parameter family of ACyl Calabi-Yau

metrics representing k|M ; this parameter is the length of the S
1-factor.

(ii) We can construct examples with m > 1 proceeding from projective orbifolds M provided that

we assume both that the orbifold divisor D ∈ |−KM | is a global quotient D = D/〈ι〉 and that

M is fibred over P
1 by the linear system |mD| (as in Theorem C(iii)); in that case only minor

modifications of the proof of Theorem D are needed. If m > 1, then we currently do not know

that M is fibred except if b1(D) = 0; cf. Remark 1.4(iii) and the discussion after Example 1.5.

On the other hand, while the fibration assumption greatly simplifies the proof of Theorem D,

it may ultimately only be a technical convenience.

Examples of projective manifolds M satisfying the hypotheses of Theorem D were first constructed

by Kovalev [23] as blow-ups of Fano 3-folds; this construction yields around one hundred families of

split ACyl Calabi-Yau 3-folds. In [9] so-called weak Fano manifolds are used instead; the weak Fano

construction yields hundreds of thousands of families of split ACyl Calabi-Yau 3-folds.

Kovalev-Lee [24] describe a different class of manifolds M satisfying the hypotheses of Theorem D

(therefore necessarily with m = 1) proceeding from K3 surfaces with anti-symplectic involutions.

This leads to around 70 further families of split ACyl Calabi-Yau 3-folds. By modifying [24], we can

find admissible orbifolds M with m > 1; the cross-section of the resulting non-split ACyl Calabi-Yau

3-fold will be the mapping torus of a finite order symplectic automorphism of K3.
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Example 1.8. Let D be a K3 surface with a group G = 〈ι, τ〉 of holomorphic automorphisms where

ι is symplectic of order m and τ is an anti-symplectic involution with non-empty fixed set such that

τιτ = ι−1; in particular, G is isomorphic to the dihedral group with 2m elements.

Let ι act on P
1 by z 7→ e2πi/mz, and τ by z 7→ 1

z . Let M0 = (P1×D)/G and let M be the blow-up

at the fixed sets of the reflections τ〈ι〉 ⊂ G (which are disjoint). M has orbifold singularities from

the fixed points of the rotations 〈ι〉, which all lie in the image D = D/Zm of {0,∞} ×D.

We claim that M = M \D admits ACyl Calabi-Yau metrics with cross-section X = (S1×D)/Zm.

This follows from the fibred orbi-version of Theorem D discussed in Remark 1.7(ii). Moreover, we

can construct a fibration M → P
1 with D as an m-fold fibre as in Example 1.5, but in this case the

existence of the fibration is also guaranteed by Theorem C(iii) since b1(D) = 0.

Here we choose not to pursue a systematic study of such examples and instead content ourselves

with exhibiting a few concrete ones. As in Remark 1.3(i) we have the a priori bound m ≤ 8. [21, §3]

describes a K3 surface with automorphism group A6 ⋊ Z4 containing G of the required kind for

2 ≤ m ≤ 6; see also [12, §7]. For m = 2, 3, 4 one can also use Kummer surface constructions.

We now state our uniqueness result. Given some facts from ACyl Hodge theory, the proof is fairly

straightforward; cf. Section 4.4. See also [17, Thm 1.9] and the surrounding discussion.

Theorem E. Let M be an open complex manifold with only one end and let ω1, ω2 be ACyl Kähler

metrics on M such that ω1 − ω2 is exponentially decaying with respect to either ω1 or ω2. If ω1, ω2

represent the same class in H2(M) and have the same volume form, then ω1 = ω2.

Our main reason for including Theorem E here is that it allows us to see that Theorems C and D

are inverse to each other—at least in the simply-connected, split (m = 1), complex dimension n > 2

setting, which we assume throughout the following discussion.

Let (M,D) be as in Theorem D and let M = M \D be the resulting ACyl Calabi-Yau manifold.

The cylindrical end structure Φ : R+ × S
1 ×D → M of M is obtained by trivializing the fibration

M → P
1 smoothly in a tubular neighborhood of D and identifying the unit disk in C with R

+ × S
1

via the complex exponential function. It is clear that applying Theorem C to M recovers (M,D).

On the other hand, if we start from an ACyl Calabi-Yau n-fold M with metric ω, apply Theorem

C to compactify it to M , and apply Theorem D to M to construct another ACyl Calabi-Yau metric

ω′ on M in the same Kähler class as ω, then ω − ω′ will be exponentially decaying—independent of

all the choices involved in constructing ω′. Then Theorem E implies that ω = ω′.

Concluding remarks. We have now come full circle in our theory of exponentially asymptotically

cylindrical Calabi-Yau manifolds, at least if n > 2 and m = 1: there exists a simple Tian-Yau type

construction, and we have proved that this construction exhausts all possible examples. If n = 2, or

if n > 2 and m > 1, then basic questions remain open as discussed in Remarks 1.6 and 1.7.

Even in the split case it remains to understand the purely complex projective geometry question

of classifying the possible projective manifolds M satisfying the hypotheses of Theorem D. In three

dimensions the vast majority of known examples (but not all [24]) arise by blowing up the base loci

of smooth anticanonical pencils in smooth weak Fano 3-folds. This produces a very large but finite

number of deformation families of split ACyl Calabi-Yau 3-folds. Is it possible to prove that there

are only finitely many deformation families of split ACyl Calabi-Yau 3-folds?

Another (metric) question that remains is whether there exist asymptotically cylindrical Calabi-

Yau manifolds with slower than exponential convergence. However, the methods of Cheeger-Tian [8]

would seem to rule this out—if the Gromov-Hausdorff distance of a complete Calabi-Yau manifold

to a cylinder goes to zero at infinity, then the convergence should automatically be exponential in

C∞ because the cross-section of the cylinder is always integrable as an Einstein manifold.

For a potentially more interesting analytic question, recall that complete Riemannian manifolds of

nonnegative Ricci curvature always have at least linear volume growth. The case of precisely linear

volume growth would therefore seem to be somewhat rigid; but examples due to Sormani show that

numerous pathologies can occur [39]. Does the Calabi-Yau condition impose further restrictions? Is
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a complete Calabi-Yau of linear volume growth necessarily Gromov-Hausdorff asymptotic to R×X

for some geodesic metric space X? If so, then could X be non-compact or singular?
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2. Basic properties of ACyl Calabi-Yau manifolds

This section discusses the basic analysis, geometry, and topology of ACyl Calabi-Yau manifolds.

In particular, it provides the technical tools necessary for the rest of the paper. The results stated

in Theorems A and B will be proved as we go along: see Corollary 2.15 for A and §2.3 for B.

2.1. Linear analysis and Hodge theory on ACyl manifolds. We review some analytic facts for

elliptic operators on manifolds with cylindrical ends from Lockhart-McOwen [25], with applications

to the scalar and Hodge Laplacians and the Dirac operator on ACyl manifolds.

Suppose that M = U ∪ ([0,∞) ×X) topologically for a bounded domain U ⊂ M and a compact

(but not necessarily connected) manifold X. A differential operator A : Γ(E) → Γ(F ) on sections of

tensor bundles on M is called asymptotically translation-invariant if there is a translation-invariant

operator A∞ on sections of the corresponding bundles on Rt ×X such that the difference between

the coefficients of A and A∞ goes to zero in C∞ uniformly as t→ ∞. Now even if A is elliptic, then

since M is noncompact we cannot expect A to induce a Fredholm operator on ordinary Hölder or

Sobolev spaces. To fix this, it is helpful to introduce Hölder norms with exponential weights.

Definition 2.1. Extend t smoothly to the whole of M . For u ∈ C∞
0 (E) define

‖u‖
Ck,α

δ
(E)

≡ ‖eδtu‖Ck,α(E), (2.2)

and let Ck,α
δ (E) denote the associated Banach space completion of C∞

0 (E). Thus, Ck,α
δ sections are

exponentially decaying for δ > 0, and at worst exponentially growing for δ < 0. We will occasionally

use the notation C∞
δ (E) ≡

⋂
Ck,α
δ (E).

We now assume that A is elliptic, i.e. that the principal symbol of A is an isomorphism in every

cotangent direction. Then δ is called a critical weight if there exists a non-zero solution of

A∞(eiλtu) = 0, (2.3)

where Imλ = δ and u is a section of E → R×X that is polynomial in t. The set of critical weights

is a discrete subset of R. We then have the following basic result [25, Thm 6.2]:

Proposition 2.4. Let A : Γ(E) → Γ(F ) be asymptotically translation-invariant elliptic of order r.

If δ is not a critical weight then the induced linear map A : Ck+r,α
δ (E) → Ck,α

δ (F ) is Fredholm.

We mention some ingredients of the proof—partly because the result is stated for Sobolev rather

than Hölder spaces in [25], and partly because we will need Remark 2.6 repeatedly in Section 3. The

first step is to invert A along the cylindrical end.

Proposition 2.5. If δ is not critical then there exists R : Ck,α
δ (F ) → Ck+r,α

δ (E) linear and bounded

such that A ◦ R = id on the complement of a bounded subset of M .

Proof. Maz’ya-Plamenevskĭı [27, Thm 5.1] show that A∞ : Ck+r,α
δ (E) → Ck,α

δ (F ) is an isomorphism

by using the Fourier transform. The condition on δ ensures that if v ∈ Γ(F ) is translation-invariant

and Imλ = δ, then A∞(eiλtu) = eiλtv has a unique translation-invariant solution u ∈ Γ(E).

Let t0 ≫ 1 and let ρ : R+ → R be a cut-off function that is 0 for t < t0 − 1 and 1 for t > t0.

Set A′ ≡ (1 − ρ)A∞ + ρA on X ×R. Then A′ is close to A∞ in operator norm, so it has an inverse

R′ : Ck,α
δ (E) → Ck+r,α

δ (E). If we define R(u) ≡ R′(ρu) on M , then A(R(u)) = u for t > t0. �
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Remark 2.6. What is proved here is that A has a right inverse defined on Ck,α
δ (F ) over [t0,∞) ×X

provided that t0 is large enough depending on k, α, δ. Since such right inverses are not unique, it is

not immediately clear from the statement whether or not the right inverse given by Proposition 2.5

is independent of k, α, i.e. compatible with the obvious inclusions Cℓ,β
δ ⊆ Ck,α

δ for ℓ ≥ k and β ≥ α.

But this is clear from the proof, provided that the same cut-off function ρ is used.

Now let ψ ∈ C∞
0 (M) be a cut-off function which is equal to 1 for t < t0. Proposition 2.4 can be

deduced from Proposition 2.5 together with local Schauder theory and the fact that multiplication

by ψ and the commutator [A, ψ] define compact maps Ck+r,α
δ (E) → Ck,α

δ (E); see [25, §2].

In [25, Thm 6.2], Lockhart-McOwen also provide a formula to compute the change in index of A

as δ passes a critical weight, by counting the number of solutions of (2.3). In [25, Thm 7.4], this is

used to compute the indices of formally self-adjoint operators for |δ| ≪ 1. One application is

Proposition 2.7. If X is connected and δ > 0 is smaller than the square root of the first eigenvalue

of the scalar Laplacian on X, then the scalar Laplacian on M maps Ck+2,α
δ (M) isomorphically onto

the subspace Ck+2,α
δ (M)0 of functions of mean value zero.

Proof. Integration by parts shows that the kernel of ∆ : Ck+2,α
δ (M) → Ck,α

δ (M) is trivial, and that

functions in the image have mean value zero. But the index of ∆ on these spaces is −1. �

The proof of the index formula uses asymptotic expansions for the elements in the kernel of A.

If we assume that A is asymptotic to A∞ at an exponential (rather than just uniform) rate, these

can be described more simply. This often makes it possible to imitate Hodge theoretic arguments on

compact manifolds that are based on integration by parts and Weitzenböck formulas.

For example, if M is ACyl in the sense of Definition 1.1, then every bounded harmonic form α on

M has an asymptotic limit α∞, which is itself a harmonic form on M∞, such that α − α∞ ∈ Ck,α
δ

on M∞ for all k, α and some δ > 0. The bounded harmonic forms with α∞ = 0 are precisely the

L2-integrable ones. We denote the space of all bounded harmonic k-forms by Hk
bd(M).

Proposition 2.8. Let M be an ACyl Riemannian manifold.

(i) The natural map Hk
bd(M) → Hk(M) to the de Rham cohomology of M is surjective.

(ii) If M has a single end then H1
bd(M) → H1(M) is an isomorphism.

(iii) If M has nonnegative Ricci curvature then any bounded harmonic 1-form is parallel.

(iv) If M has nonpositive Ricci curvature then any Killing vector field is parallel.

Proof. For (i), see Melrose [28, Thm 6.18]. For (ii), see [36, Cor 5.13]. (iii) is proved by the Bochner

method. For (iv), first note that every Killing field of M converges exponentially to a Killing field

of M∞ [36, Prop 6.22]. Thus, the Bochner method applies again. �

Another application, which will be very significant for us, is to the Dirac operator of an ACyl spin

manifold M . Let HS
∞ be the space of translation-invariant solutions of the Dirac equation /∂s = 0

on M∞, and let HS
bd and HS

L2 denote the bounded and L2 solutions on M . In analogy with harmonic

forms, every element of HS
bd is asymptotic at an exponential rate to an element of HS

∞.

Proposition 2.9. Let M be an ACyl spin manifold.

(i) dim(HS
bd/H

S
L2) = 1

2 dimHS
∞.

(ii) If M has nonnegative scalar curvature, then every element of HS
bd is parallel.

Proof. (i) is essentially an instance of (3.25) in Atiyah-Patodi-Singer [2]. It can also be deduced from

the previously mentioned index formula [25, Thm 7.4]; see [35, §2.3.5] for details. (ii) follows from

the Lichnerowicz formula and integration by parts. �

The strength of Proposition 2.9 is well-illustrated by the following “positive mass theorem”, which

is an immediate consequence by [43] (but will not be used in the rest of this paper).

Corollary 2.10. Let M be an ACyl spin manifold of nonnegative scalar curvature. If the end M∞

is Ricci-flat of special holonomy, then so is M .
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2.2. Structure of Ricci-flat ACyl manifolds. The goal here is to extend the structure theorem

for compact Ricci-flat manifolds of Remark 1.2(ii) to the ACyl setting, proving Theorem A. As in

the compact case, this will be a relatively easy consequence of a more general result (Theorem 2.13)

for manifolds with Ric ≥ 0. At the end of this section, we also collect some closely related remarks

that will not be used in rest of this paper, but are useful in [9, §2] and [10, §3]. All coverings in this

section will be Riemannian, and all deck transformations are isometries.

The theory in the compact case rests on a subtle observation due to Cheeger-Gromoll in the proof

of [6, Thm 3]. The following proposition states a slight extension of their idea that we require for

our ACyl structure theorem. We give the proof for convenience.

Proposition 2.11. A complete Riemannian manifold Z with Ric ≥ 0 admits a cocompact isometric

group action if and only if Z splits as the isometric product of Rk and some compact manifold. In

this case, every cocompact and discrete subgroup Γ ⊂ Iso(Z) contains a normal subgroup Ψ of finite

index such that [Ψ,Ψ] is finite and Ψ/[Ψ,Ψ] is a free abelian group of rank k.

Proof. By the splitting theorem, Z = R
k×Z ′, where Z ′ contains no lines, and we must show that Z ′

is necessarily compact. Notice that Iso(Z) = Iso(Rk) × Iso(Z ′) because Z ′ is line-free. Since Iso(Z)

acts cocompactly on Z, there exists a compact set F ′ ⊂ Z ′ whose translates under Iso(Z ′) cover Z ′.

If Z ′ itself was noncompact, then there would exist a nontrivial ray γ : [0,∞) → Z ′. For each n ∈ N

there exists gn ∈ Iso(Z ′) with gn(γ(n)) ∈ F ′. We can assume that gn(γ(n)) has a limit as n → ∞

because F ′ is compact. But then the shifted rays γn : [−n,∞) → Z ′ defined by γn(t) = gn(γ(t+ n))

subconverge to a line locally uniformly in t, which contradicts the definition of Z ′.

Let Γ′ be the kernel of the projection of Γ to Iso(Rk). Then Γ′ is a discrete subgroup of Iso(Z ′),

hence finite. On the other hand, the image Γ′′ of the projection of Γ to Iso(Rk) acts cocompactly

on R
k, and is discrete because Iso(Z ′) is compact and Γ is discrete. Thus Γ′′ is a Bieberbach group.

In other words, we have an exact sequence 1 → Γ′ → Γ → Γ′′ → 1 with Γ′ finite, and a split exact

sequence 1 → Z
k → Γ′′ → Γ′′′ → 1 with Γ′′′ a finite subgroup of O(k) acting on Z

k in the standard

fashion. The preimage Ψ of Zk under Γ → Γ′′ is then normal of finite index in Γ. Also, we have an

exact sequence 1 → Ψ′ → Ψ → Z
k → 1, so that [Ψ,Ψ] ⊂ Ψ′ ⊂ Γ′ must be finite. �

Remark 2.12. Given a finitely generated group Γ with a finite index normal subgroup Ψ such that

[Ψ,Ψ] is finite, the rank k <∞ of the abelian group Ψ/[Ψ,Ψ] only depends on Γ; in fact, k is equal

to the volume growth exponent of the Cayley graph of Γ.

By applying Proposition 2.11 to various normal covers of the cross-section of an ACyl manifold

and bringing in some ACyl Hodge theory from Section 2.1, we will prove the following key

Theorem 2.13. Let M be ACyl with Ric ≥ 0 and a single end. Then either M is a Z2-quotient of

a cylinder, or its universal cover is isometric to R
k ×M ′, where M ′ is ACyl with a single end.

Remark 2.14. We will see in the proof that k ≥ b1(M), but the inequality can be strict; this already

happens in the compact case if M is any compact flat k-manifold other than T
k. However, k equals

b1 of a certain finite normal cover of M whose fundamental group has finite derived group.

The structure theorem for Ricci-flat ACyl manifolds (Theorem A) follows from this.

Corollary 2.15. Every Ricci-flat ACyl manifold has a finite normal cover that splits isometrically

as the product of a flat torus and a simply-connected Ricci-flat ACyl manifold.

Proof. If M is a cylinder or a Z2-quotient of one, then the claim follows from Remark 1.2(ii) applied

to the cross-section. If not, then Theorem 2.13 shows that the universal cover M̃ of M splits as an

isometric product Rk ×M ′, where M ′ is ACyl with a single end. Thus, Iso(M̃) = Iso(Rk)× Iso(M ′).

As M ′ has a single end, the orbits of Iso(M ′) are bounded, which implies that Iso(M ′) is compact.

Therefore the projection of π1(M) to Iso(Rk) is discrete, hence a Bieberbach group, so its projection

to SO(k) = Iso(Rk)/Rk is finite. Since M ′ is simply-connected Ricci-flat, Proposition 2.8(iv) tells us

that Iso(M ′) is discrete, hence finite. The kernel Γ of the projection π1(M) → SO(k) × Iso(M ′) is
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therefore a finite index normal subgroup of π1(M) whose image in Iso(Rk) acts on R
k as a full rank

lattice of translations. Thus (Rk/Γ) ×M ′ is a cover of the required form. �

Example 2.16. To appreciate the role that the Ricci-flat condition plays in this proof, it is helpful

to consider the following (compact) example [7, p. 440]. Let M be the mapping torus of a rotation

of S2 by an irrational angle. Then M is diffeomorphic to S
1 × S

2, RicM ≥ 0, but no finite cover of

M splits isometrically as S
1 × S

2. The proof of Corollary 2.15 fails at the point where one uses that

the isometry group of M ′ is finite: the kernel of π1(M) → SO(k) × Iso(M ′) is trivial here.

We preface the proof of Theorem 2.13 with a simple lemma that will be applied twice.

Lemma 2.17. Let Y be a connected manifold and i : X → Y the inclusion of a connected open set.

Let G be a subgroup of π1(Y ) and p : Ỹ → Y the covering space with characteristic group G. Then

the number of connected components of p−1(X) is equal to the index of 〈G, i∗(π1(X))〉 in π1(Y ), and

each such connected component is a covering of X with characteristic group i−1
∗ (G) ⊂ π1(X).

The first application deserves separate mention since it will itself be applied repeatedly.

Lemma 2.18. If M is ACyl with Ric ≥ 0 and a single end, then either π1(M∞) → π1(M) is onto

and every finite cover of M has a single end, or else the image has index 2 and M = M∞/Z2.

Proof. If π1(M∞) → π1(M) is not surjective, consider the cover M̃ → M with characteristic group

equal to the image. By Lemma 2.17, M̃ has at least two cylindrical ends on which the covering map

is a diffeomorphism onto M∞. Thus, by the splitting theorem, M̃ = M∞, and M = M∞/Z2. �

Proof of Theorem 2.13. Write M∞ = R×X for the end of M . By Lemma 2.18, we can assume that

π1(M∞) → π1(M) is surjective. By Proposition 2.11 applied to the universal cover of X, π1(M∞)

contains a finite index normal subgroup whose derived group is finite. Since π1(M∞) surjects onto

π1(M), the image Ψ of this subgroup in π1(M) is still normal of finite index and has finite derived

group. Replacing M by its finite normal cover with characteristic group Ψ, which is still ACyl with

a single end, we can thus assume without loss that π1(M) itself has finite derived group.

Let k ∈ N0 denote the rank of the abelianization of π1(M). Then in particular b1(M) = k, and

so Proposition 2.8(ii)-(iii) tells us that k is also the number of parallel vector fields on M . Thus, by

de Rham’s theorem, the universal cover M̃ splits as an isometric product M̃ = R
k ×M ′, where M ′

is complete and simply-connected. A priori M ′ could split off further line factors, but our goal is to

show that this does not happen and moreover that M ′ is ACyl with a single end.

The parallel vector fields on M form a k-dimensional abelian Lie algebra a of Killing fields on M .

Sending each element of a to its asymptotic limit under the ACyl diffeomorphism Φ−1 of Definition

1.1, we obtain an isomorphism φ : a∞ → a with an abelian Lie algebra a∞ of parallel Killing fields

on M∞ = R ×X. The elements of a∞ have no ∂t-components—or in other words, can be regarded

as parallel Killing fields on X—since otherwise Iso(M) would have unbounded orbits, which is not

possible since M has only one end. Notice also that Φ is asymptotically φ-equivariant: we have

distM (Φ(t, exp(a)x), exp(φ(a))Φ(t, x)) ≤ C|a|e−δt (2.19)

for all a ∈ a∞, simply by how φ was defined.

Elements of a pull back to parallel Killing fields on M̃ . By construction, the Lie algebra ã of all

such pull-backs consists of the parallel vector fields tangent to the R
k factor in M̃ = R

k×M ′. We can

assume that the domain U of Definition 1.1 is a-invariant. Put E ≡M \U and let Ẽ be the preimage

of E under the covering map M̃ →M . By ã-invariance, we have Ẽ = R
k × E′ with E′ ⊂M ′.

Lemma 2.17 tells us that Ẽ is a connected normal covering space of E with characteristic group

ker (π1(M∞) → π1(M)) and deck group π1(M). There certainly exists a connected normal covering

space X̃ → X such that there exists a diffeomorphism Φ̃ : [0,∞) × X̃ → Ẽ covering Φ. Let ã∞ be

the pull-back of a∞ to X̃. Then ã∞ is an abelian Lie algebra of parallel Killing fields on X̃, φ induces

an isomorphism φ̃ : ã∞ → ã, and (2.19) implies that

distM̃ (Φ̃(t, exp(ã)x̃), exp(φ̃(ã))Φ̃(t, x̃)) ≤ C|ã|e−δt (2.20)
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for all ã ∈ ã∞; to prove (2.20), fix N ≫ 1 depending only on ã such that, for every ỹ ∈ X̃, exp( ã
N )ỹ

is closer to ỹ than any deck group translate of ỹ, and then apply (2.19) N times.

We now wish to use these preparations to argue that X̃ = R
k ×X ′ with X ′ compact, and that Φ̃

induces an ACyl diffeomorphism Φ′ : [0,∞) ×X ′ → E′ in the sense of Definition 1.1. The key point

of this argument is the following: π1(M) acts isometrically on X̃ with compact quotient X. Thus,

Proposition 2.11 tells us that X̃ = R
ℓ ×X ′ with X ′ compact for some ℓ ∈ N0, and that π1(M) has

a finite index normal subgroup with finite derived group whose abelianization has rank ℓ. But recall

that we arranged for π1(M) itself to have finite derived group; thus, ℓ = k by Remark 2.12.

Now the basic idea for splitting off Φ′ from Φ̃ is as follows. Since Φ̃ is an almost isometry, it sends

lines to almost lines. But the lines in M̃ are ã-orbits and Φ̃ is almost equivariant, so the lines in X̃ are

ã∞-orbits (approximately—hence precisely) even though a priori we only knew that ã∞ consisted of

parallel vector fields and X ′ might have parallel vector fields too. Using the approximate isometry

and equivariance properties of Φ̃ again, it quickly follows that Φ̃ acts as an almost isometry on the

R
k factor and as an ACyl diffeomorphism on the [0,∞) ×X ′ factor.

In fact we will argue slightly differently. If ã ∈ ã∞ had a nontrivial X ′-component, the curves

γt(s) ≡ (t, exp(sã)x̃) would not be lines, i.e. there exist s0 > 0 and θ < 1 independent of t such that

the distance between γt(0) and γt(s0) is θs0. But ã is tangent to the R
k factor in Ẽ, so (2.20) shows

that Φ̃ ◦ γt : [0, s0] → Ẽ remains O(s0e
−δt) close to a line segment of length s0. This means that if σ

is any other curve in X̃ connecting γt(0) and γt(s0), then Φ̃ ◦ σ has length at least s0 − O(s0e
−δt).

Now Φ̃∗gM̃ = dt2 + gX̃ +O(e−δt), so the length of σ itself is at least s0 −O(s0e
−δt). Taking σ to be

distance minimizing and t sufficiently large relative to θ and s0, we get a contradiction.

Now we know that the ã∞-orbits are the lines in X̃ = R
k ×X ′. Fixing linear coordinates y on R

k

and writing x for points in X ′ for simplicity, (2.20) then implies that

Φ̃(t, y, x) = (Φ̃(t, 0, x)Rk + φ̃(y), Φ̃(t, 0, x)M ′) +O(|y|e−δt). (2.21)

Here we have decomposed the target M̃ = R
k ×M ′. Notice that (2.20) provides O(|y|e−δt) control

on the errors only in a distance sense; we will take it for granted that if |y| ≪ 1 and t≫ 1 then this

can be upgraded to C∞ control in local charts (alternatively we could arrange for Φ̃ to be precisely

equivariant but this requires similar technical work to make precise). It then follows from (2.21) and

the almost isometry property Φ̃∗[dy2 + gM ′ ] = [dt2 + dy2 + gX′ ] +O(e−δt) that

Φ̃(t, 0, x)Rk = const+O(e−δt), (Φ′)∗[gM ′ ] = [dt2 + gX′ ] +O(e−δt), (2.22)

where we have defined Φ′(t, x) ≡ Φ̃(t, 0, x)M ′ .

To conclude that M ′ is an ACyl manifold in the sense of Definition 1.1, it remains to prove that

M ′ \ E′ is bounded. If not, then M ′ would be a cylinder by the splitting theorem, i.e. there exists

a function t′ : M ′ → R with ∇2t′ = 0 which is exponentially asymptotic to t : E′ → [0,∞) on E′.

Notice that the trivial extension of t′ to M̃ = R
k ×M ′ is deck group invariant because Ẽ and t are.

But then t′ pushes down to an unbounded Lipschitz function on the bounded region U ⊂M . (This

whole argument crucially exploits that Ẽ is connected by our initial reductions.) �

With the proof of the main theorem of this section out of the way, we now explain some related

but more elementary observations that are needed in [9, §2] and [10, §3].

Proposition 2.23. Let M be ACyl Calabi-Yau and let n = dimCM .

(i) If π1(M) is finite then M has a single end and π1(M∞) → π1(M) is surjective.

(ii) If π1(M) is finite and n = 3 then M has holonomy SU(3).

(iii) If M∞ = R× S
1 ×D with π1(D) finite then either π1(M) is finite or M = M∞/Z2.

Proof. (i) This follows from Lemma 2.18 if we can show that every cover M̃ →M has a single end.

But otherwise M̃ would be a Calabi-Yau cylinder R × X̃ by the splitting theorem, and b1(X̃) = 0

since π1(M̃ ) is finite, whereas Jdt is a nontrivial harmonic 1-form on X̃ .

(ii) Let M̃ be the universal cover of M . By (i), this is ACyl with a single end. If Hol(M̃) were a

proper subgroup of SU(3) then by the de Rham theorem M̃ would be a product of simply-connected
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lower-dimensional submanifolds with even smaller holonomies, so at least one of these factors would

be C, contradicting that M̃ is ACyl. Now Hol(M̃ ) = SU(3) implies Hol(M) = SU(3) by [35, 4.1.10].

(iii) If π1(M) is infinite then Corollary 2.15 shows that M has a finite cover M̃ = T
k ×M ′ with

k ≥ 1 and M ′ simply-connected ACyl Calabi-Yau. Let X ′ denote the cross-section of M ′; this may

not be connected. Then T
k ×X ′ covers S

1 × D, so π1(D) finite implies k = 1. Since M̃ is Kähler,

the space of parallel 1-forms on M̃ inherits a complex structure and therefore has even dimension.

Hence M ′ has a parallel 1-form. Since b1(M ′) = 0, M ′ must have more than one end by Proposition

2.8(ii), hence split as a cylinder, and so Lemma 2.18 tells us that M = M∞/Z2. �

The simplest example of an ACyl Calabi-Yau manifold M = M∞/Z2 as in Proposition 2.23(iii) is

M = (R × S
1 ×D)/(−1,−1, τ) with D a K3 surface and τ a free anti-symplectic involution of D;

see Remark 1.3. There is exactly one deformation family of such pairs (D, τ) (“Enriques surfaces”),

so this is essentially the unique M of this kind with n ≤ 3.

2.3. Holonomy considerations. The main content of this section is the proof of Theorem B but

first we need to recall some background material.

The first ingredient is the well-known relation between special holonomy and parallel spinors [43]. If

Z is a Riemannian spin manifold, then we write s(Z) for the number of parallel spinors on Z. A Kähler

manifold Z with trivial canonical bundle is spin and its spinor bundle is naturally identified with

the total bundle of (0, p)-forms [3, 1.156], so that parallel spinors correspond to parallel (0, p)-forms

and we always have s(Z) ≥ 1 from p = 0. Let d = dimC Z. If Hol(Z) ⊆ SU(d) then s(Z) ≥ 2

from the conjugate holomorphic volume form except if Z is a point. If Z is even hyper-Kähler, i.e.

Hol(Z) ⊆ Sp(d2), then s(Z) ≥ d
2 + 1 from the powers of the conjugate holomorphic symplectic form.

If Hol(Z) is equal to SU(d) or Sp(d2), then s(Z) = 2 if d > 0 and s(Z) = d
2 + 1, respectively [43]; this

is a purely representation-theoretic fact. (The converse is false—in Remark 1.3(ii) we mentioned a

Kähler 4-fold with holonomy (SU(2) × SU(2)) ⋊Z2 and s = 2.) Finally, it is helpful to keep in mind

that all holomorphic forms on a compact Kähler manifold with Ric ≥ 0 are parallel by the Bochner

method; this still holds for all bounded holomorphic forms in the ACyl case.

The second ingredient is the following structure theorem for compact Ricci-flat manifolds.

Proposition 2.24 (Calabi, Fischer-Wolf). Let X be compact connected Ricci-flat and set k = b1(X).

There exists a flat torus T
k and a finite normal Riemannian covering T

k ×X ′ → X such that:

(i) The deck group can be written as {(h(ψ), ψ) : ψ ∈ Ψ}, where Ψ is a finite group of isometries

of X ′ and h is an injective homomorphism of Ψ into the translation group of Tk.

(ii) X ′ is compact connected Ricci-flat and carries no Ψ-invariant parallel vector fields.

This could be deduced from Remark 1.2(ii) (i.e. [11, Thm 4.5]) but is also proved directly in

[11, Thm 4.1] without relying on the splitting theorem of [6]. The proposition generalizes an earlier

result for compact flat manifolds due to Calabi; according to [11], Calabi was independently aware

of this extension to the compact Ricci-flat case, but had only published the result for X Kähler.

Proof of Theorem B. Since M is simply-connected irreducible, either Hol(M) = SU(n) or n is even

and Hol(M) = Sp(n2 ). The proof proceeds by analyzing these two cases separately but in parallel,

based on the facts reviewed above and on the following consequence of Proposition 2.9:

s(M) =
1

2
s(M∞). (2.25)

The main aim is to rule out the Sp(n2 ) case and show that in the SU(n) case, b1(X) (which is always

at least 1 because of the parallel 1-form Jdt) has to be exactly 1. This already implies a significant

part of the statement of Theorem B(ii) by applying Proposition 2.24 for k = 1.

The analysis in fact relies on the conclusion of Proposition 2.24, i.e. that we have a finite normal

Riemannian covering T
k ×X ′ → X whose deck group Ψ is a finite group of isometries of X ′ acting

effectively on T
k by translations, and that Ψ does not preserve any parallel vector fields on X ′. We

will use this to construct parallel spinors on M∞—almost always more than (2.25) allows.
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Case 1: Holonomy SU(n). Then M has exactly two parallel holomorphic forms, so (2.25) tells us

that s(M∞) = 4. Now since M∞ is Kähler with respect to J∞, the parallel vector fields on M∞ are

closed under J∞, and so both R × T
k and X ′ are Ψ-invariantly Kähler. Thus, k = 2ℓ + 1 for some

ℓ ∈ N0 and R × T
k is Ψ-invariantly Calabi-Yau. But this implies that X ′ is not just Ricci-flat and

Ψ-invariantly Kähler, but Ψ-invariantly Calabi-Yau—by contracting the holomorphic n-form pulled

back from M∞ with the holomorphic (ℓ+ 1)-form on R× T
k. We see that R× T

k has 2ℓ+1 parallel

holomorphic Ψ-invariant forms, and X ′ has at least 2 unless X ′ is a point, when there is only one.

Thus, s(M∞) ≥ 2ℓ+2 if X ′ is not a point, and s(M∞) ≥ 2ℓ+1 if X ′ is a point. But s(M∞) = 4, and

hence ℓ = 0, k = 1, unless ℓ = 1, k = 3, n = 2; we explicitly excluded the latter case.

If k = 1, then Ψ is a finite subgroup of U(1), so Ψ = 〈ι〉 for some finite order isometry ι of X ′.

Moreover, we already know that ι preserves the complex structure and holomorphic volume form.

Now X ′ can have more parallel (p, 0)-forms with p > 0 (e.g. parallel vector fields), but if any of those

were Ψ-invariant, this would immediately contradict the above counting inequalities.

Case 2: Holonomy Sp(n2 ). In this case, s(M∞) = n + 2. Since M∞ is hyper-Kähler, the parallel

vector fields on M∞ are closed under I∞, J∞,K∞, so R × T
k and X ′ are themselves Ψ-invariantly

hyper-Kähler. In particular, k = 4ℓ + 3 for some ℓ ∈ N0, and there are now even more Ψ-invariant

parallel holomorphic forms than before (though also more on M∞ to begin with): 22ℓ+2 on the R×T
k

factor and at least n
2 − ℓ on the X ′ factor (which equals 1 if X ′ is a point). As before we deduce that

n + 2 ≥ 22ℓ+2(n2 − ℓ). We now argue that this leaves no possibility except for ℓ = 0, k = 3, n = 2;

but this is the excluded case. If the inequality fails for some ℓ and n then it also fails for the same

ℓ and all larger n. But n ≥ 2ℓ + 2, and the inequality does fail for n = 2ℓ + 2 unless ℓ = 0. If ℓ = 0

then k = 3, and the inequality clearly holds for n = 2 but fails for all larger n. �

Remark 2.26. A similar argument of counting parallel spinors was used in [35, Thm 4.1.19] to give

a criterion for an ACyl 8-manifold to have holonomy Spin(7).

3. Quasiprojectivity

3.1. Proof of Theorem C modulo technical results. Let M be simply-connected irreducible

ACyl Calabi-Yau of complex dimension n > 2. By Theorem B(i), M has holonomy SU(n); hence

there exists precisely one parallel complex structure J on M up to sign. Theorem B(ii) tells us that

the cylindrical end M∞ has a finite cover M̃∞ biholomorphic to C
∗ ×D for some compact Ricci-flat

Kähler manifold D. Thus, M̃∞ can be compactified as C×D. One would then expect that M itself

has a holomorphic compactification M . This is true, but not obvious; it is also not obvious that M

is Kähler. However, once we know this, Theorem C follows reasonably quickly.

We begin by stating the technical compactification results. This requires some terminology. Let

∆ denote the unit disc in C and put ∆∗ = ∆ \ {0}. Let D be a compact complex manifold and gD
an arbitrary Hermitian metric on D. Let M+

∞ = R
+ × S

1 ×D with product complex structure J∞
and Hermitian metric g∞ = dt2 + dθ2 + gD, where θ ∈ S

1 = R/2πZ and J∞(∂t) = ∂θ.

Theorem 3.1. Let J be an integrable complex structure on M+
∞ such that J − J∞ = O(e−δt) with

respect to g∞ as t → +∞, including all covariant derivatives, for some δ > 0. Then there exists a

diffeomorphism Ψ : M+
∞ → ∆∗ × D such that Ψ∗J extends as an integrable complex structure on

∆ ×D. Moreover, the submanifold {0} ×D is complex and biholomorphic to D with respect to this

extension, and its normal bundle is trivial as a holomorphic line bundle on D.

Theorem 3.2. In the setting of Theorem 3.1, assume in addition that there exists a J-Kähler form

ω on M+
∞ such that ω − ω∞ = O(e−δt) as t → +∞. Then ∆ ×D admits a Ψ∗J-Kähler form which

coincides with Ψ∗ω on {1
2 < |w| < 1} ×D, where w denotes a complex coordinate on ∆.

Let us first see how the full statement of Theorem C now follows.

Proof of Theorem C. We are given an m-sheeted covering M̃∞ of M∞ such that M̃∞ = R× S
1 ×D

for some compact Ricci-flat Kähler manifold D. We can assume that the circle factor has length 2π.
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Pulling back J from M to M+
∞ by the ACyl diffeomorphism and further pulling back by the covering

map M̃+
∞ → M+

∞, we obtain a complex structure J̃ on M̃+
∞. Theorem 3.1 applies and produces a

J̃ -holomorphic compactification Ψ̃ : M̃+
∞ →֒ ∆ × D. The action of the deck group of the covering

M̃∞ →M∞ extends and preserves the divisor D at infinity, so that M itself can be compactified as

an orbifold M by adding a suborbifold D = D/〈ι〉. Averaging the Kähler form on ∆ ×D provided

by Theorem 3.2 under the given holomorphic Zm-action, passing to the quotient, and joining it to

the ACyl Kähler form on M , we obtain an orbifold Kähler form on M .

Following [24, Prop 2.2], we can now easily see that M must even be projective: As in the smooth

case, it suffices to prove that M does not admit any holomorphic (2, 0)-forms. But any holomorphic

(p, 0)-form on M restricts to an asymptotically translation-invariant holomorphic (p, 0)-form on M ,

and since Hol(M) = SU(n), the usual Bochner argument then shows that there are no such forms if

0 < p < n (the unique bounded holomorphic n-form on M is Ω, which has a pole along D).

As for the fibration of M by |mD|, observe that we have a short exact sequence

0 → OM → OM (mD) → OmD(mD) → 0. (3.3)

The cokernel sheaf OmD(mD) is the sheaf of sections of the restriction of the line bundle mD to the

scheme mD, i.e. an infinitesimal “thickening” of D. This yields a long exact sequence

0 → H0(OM ) → H0(OM (mD)) → H0(OmD(mD)) → H1(OM ).

Notice that H0,1(M) = 0. Thus, if we knew that OmD(mD) had a section, then we would find that

h0(OM (mD)) = 2, so |mD| is a pencil. Now the line bundle ℓD is trivial on D for all ℓ ∈ mZ, but

this does not imply that it is trivial on mD except if m = 1 (on the other hand, if m = 1, it is then

also clear that |D| has no base locus). However, we have a general “lifting” sequence

0 → OkD(ℓD) → O(k+1)D((ℓ+ 1)D) → OD((ℓ + 1)D) → 0 (3.4)

for every k ∈ N0 and ℓ ∈ Z. Setting k = ℓ = m− 1 and taking cohomology yields

H0(OmD(mD)) → H0(OD(mD)) → H1(O(m−1)D((m− 1)D)). (3.5)

Thus, if the H1 term vanishes (e.g. if m = 1), then our trivializing section extends from D to mD.

We can get a handle on this H1 by taking cohomology in the upstairs counterpart to (3.4):

H1(OkD(ℓD)) → H1(O(k+1)D((ℓ + 1)D)) → H1(OD((ℓ + 1)D)).

Now suppose that b1(D) = 0 (which in fact follows from m = 1 in our setting). Since ℓD is trivial

on D for all ℓ ∈ Z, the third term vanishes, and so induction on k ∈ N0 yields H1(OkD(ℓD)) = 0 for

all k ∈ N0 and ℓ ∈ Z. In particular, setting k = ℓ = m − 1 and taking Zm-invariants, we find that

the obstruction space in (3.5) vanishes and the trivializing section of OD(mD) does extend. �

Remark 3.6. In Example 1.5, we have m = 2, so the formal obstruction space in (3.5) coincides with

the Z2-invariants in H1(OD(D)). To compute these, it is helpful to identify this H1 with the space

of constant (0, 1)-forms on D taking values in the normal bundle. The two standard generators are

then dx̄⊗ ∂
∂w and dȳ⊗ ∂

∂w , with w = re−iθ, as in Example 1.5. But these are obviously Z2-invariant

and so the formal obstruction space to fibering M by |2D| is 2-dimensional.

It remains to prove Theorems 3.1–3.2. This will be done in the following two subsections.

3.2. Holomorphic compactification. We begin with a discussion of the main difficulties and an

outline of the argument. For (t, θ) ∈ R
+ × S

1 let w = e−t−iθ. Then the diffeomorphism

Ψ∞ : M+
∞ → ∆∗ ×D, (t, θ, x) 7→ (w, x), (3.7)

pushes J∞ forward to the product complex structure J∆ on ∆∗×D, which is clearly compactifiable.

However, (Ψ∞)∗J may not even be uniformly bounded with respect to g∆ = |dw|2 + gD as w → 0.

Specifically, for any section s of (T ∗∆)a ⊗ (T ∗D)b ⊗ (T∆)c ⊗ (TD)d over ∆∗ ×D we have that

|Ψ∗
∞s|g∞ = O(e−δt) ⇐⇒ |s|g∆ = O(|w|δ+c−a). (3.8)
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Thus, in terms of the decomposition T∆ ⊕ TD, the off-diagonal T ∗∆ ⊗ TD components of (Ψ∞)∗J

can be expected to blow up like |w|−1+δ as |w| → 0; all the remaining components of (Ψ∞)∗J are at

least C0,δ Hölder continuous along {0} ×D, but not—a priori—smooth.

The key point in resolving this problem is to exploit that the integrability of J is equivalent to

a nonlinear first-order differential equation: the vanishing of the Nijenhuis torsion. This equation

is not elliptic, but the lack of ellipticity can be traced back to diffeomorphism invariance. In other

words, there is hope that a suitable improvement of Ψ∞ will map J to a smooth complex structure

on ∆ ×D.

The proof of Theorem 3.1 now follows in three steps. Step 1 shows how to construct a gauge in

which J coincides with J∞ in directions tangent to R
+ × S

1 × {x} (x ∈ D). This already fixes the

discontinuity of (Ψ∞)∗J at infinity. Based on this, Step 2 then uses an elliptic regularity argument

along these cylinders to show that the pushforward of J is actually smooth at infinity; this involves

the C1,α Newlander-Nirenberg theorem of [33]. Step 3 deals with the normal bundle.

Step 1: Gauge fixing. The pushforward (Ψ∞)∗J fails to be continuous at {0} ×D if and only if

the J∞-holomorphic cylinders R
+× S

1×{x} are not J-holomorphic. This suggests replacing Ψ∞ by

Ψ∞ ◦F−1, where F ∈ Diff(M+
∞) maps each R

+×S
1×{x} onto a J-holomorphic curve exponentially

asymptotic to it. For this, it suffices to find (J∞, J)-holomorphic maps Fx : R+ × S
1 × {x} → M+

∞

that are exponentially asymptotic to the identity and depend smoothly on x ∈ D.

To solve this problem, it is helpful to invoke some of the usual formalism for the construction of

holomorphic curves. Given x ∈ D and the tautological map f0,x : R+ × S
1 → R

+ × S
1 × {x} ⊂M+

∞,

let Ex denote the space of all smooth embeddings f : R
+ × S

1 → M+
∞ exponentially asymptotic

to f0,x, and let Vx → Ex denote the natural vector bundle whose fibre at f ∈ Ex is the vector space

of all exponentially decaying vector fields along f . With a very slight abuse of notation, we then

have a section ∂̄ ∈ Γ(Ex,Vx) whose value at f is given by ∂̄f ≡ ∂f
∂t + J ∂f

∂θ . Restricting to the region

t ≫ 1, we can assume that ‖∂̄f0,x‖ ≪ 1 uniformly in x, and our goal is to construct a genuine zero

fx ∈ Ex of the section ∂̄ which, as an embedding of R+ × S
1 into M+

∞, depends smoothly on x.

We begin by choosing a chart for Ex near f0,x (modelled on a definite neighborhood of the origin

in Tf0,xEx), as well as a trivialization for Vx over it. There are no canonical choices for either, but a

natural and useful way is to apply the exponential map and parallel transport with respect to g∞.

This now allows us to view ∂̄ ∈ Γ(Ex,Vx) as a nonlinear first-order differential operator ∂̄x acting on

some definite open neighborhood of the origin in Ck,α
δ (R+ × S

1, f∗0,xTM
+
∞). We have ‖∂̄x(0)‖ ≪ 1,

and the linearization Lx of ∂̄x at 0 satisfies Lx = L + Ux, where

LV ≡
∂V

∂t
+ J∞

(
∂V

∂θ

)
, ‖Ux‖op ≪ 1.

Also, Ux varies smoothly with x if we use parallel transport with respect to the Chern connection of

(M+
∞, g∞) in order to identify Ck,α

δ (R+ × S
1, f∗0,xTM

+
∞) with Ck,α

δ (R+ × S
1, f∗0,yTM

+
∞) for different

points x, y ∈ D. Notice that these identifications do not affect the operator L ≡ ∂̄J∞ .

Using Remark 2.6, we can construct a bounded right inverse R to L (since the ∂̄-equation in one

complex variable with values in a complex vector space is elliptic). The desired holomorphic maps fx
are then obtained by an elementary fixed point argument—specifically, by iterating the contraction

mappings R ◦ (L − ∂̄x) on some neighborhood of the origin.

Step 2: Elliptic regularity. If we define Ψ ≡ Ψ∞ ◦F−1 with F ∈ Diff(M+
∞) as in Step 1, then we

know that Ψ∗J is equal to the standard complex structure J∆ on the horizontal subbundle T∆ of

T (∆ ×D). In particular, by (3.8), Ψ∗J extends C0,δ across {0} ×D. We will now first explain how

the vanishing of the Nijenhuis torsion of J implies that Ψ∗J automatically extends C1,α.

Since J̃ ≡ F ∗J satisfies J̃∂t = ∂θ, the vanishing of the torsion of J (or J̃) implies that

∂J̃

∂t
+ J̃ ◦

∂J̃

∂θ
= 0. (3.9)
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Thus, the endomorphism field K ≡ J̃ − J∞, which is exponentially decaying, satisfies the following

quadratic perturbation of the L- or ∂̄J∞-equation:

LK +K ◦
∂K

∂θ
= 0. (3.10)

Using the right inverse R to L of Remark 2.6, we can therefore write K = K̃ −R(K ◦ ∂θK) with K̃

in the kernel of L, which consists of Laurent series in w with constant coefficients on R
+× S

1×{x}.

Since K already decays exponentially and R preserves the decay rate, an iteration shows that

K = J̃ − J∞ = wK̃1 +O(|w|1+α) (3.11)

for every α ∈ (0, 1). Here K̃1 = K̃1(x) denotes a constant section of EndR(f∗0,xTM
+
∞) that depends

smoothly on x, and the product with w is again understood in the sense that iA ≡ J∞ ◦ A for any

endomorphism A. Since (Ψ∞)∗K vanishes on the horizontal subbundle T∆, the same is true for the

slicewise constant section (Ψ∞)∗K̃1, which therefore extends smoothly to ∆ × D. It then follows

from (3.11) and (3.8) that Ψ∗J extends C1,α to ∆ ×D for every α < 1.

The version of the Newlander-Nirenberg theorem of [33, Thm II] now tells us that there exists a

complex analytic atlas on ∆ ×D whose coordinate functions are Ψ∗J-holomorphic and C1,α
n with

respect to g∆. (Thus, in our main application—Theorem C—we would now already know that M

is holomorphically compactifiable by adding a divisor.) However, we are claiming more: Ψ∗J in fact

extends smoothly as a tensor field, not just modulo C1,α
n local diffeomorphisms.

To prove this, note that [33, Thm II] in particular tells us that there exist sufficiently many local

Ψ∗J-holomorphic functions so that Ψ∗J can be recovered from their differentials as a tensor field. It

therefore suffices to check that Ψ∗J-holomorphic functions are smooth: Let z be Ψ∗J-holomorphic

on a neighborhood of a point in {0} ×D. Since Ψ∗J coincides with J∆ on T∆, we immediately find

that z is J∆-holomorphic on each horizontal slice. In other words, we have

z = z0 + wz1 + w2z2 + · · · , (3.12)

and the Cauchy integral formula expresses the coefficients zi = zi(x) in terms of z(w, x) with w 6= 0.

But we already know that z is smooth for w 6= 0 because Ψ∗J is.

Remark 3.13. It is conceivable that a similar (but more difficult) argument could work for the

endomorphism K itself, by refining the partial expansion (3.11) to a complete one based on (3.10).

We will not need that much regularity for Ψ∗J , but this is certainly a natural question.

Step 3: Normal bundle to the compactifying divisor. We identify J and Ψ∗J for convenience.

It is clear that {0} ×D is a J-complex submanifold of ∆ ×D, biholomorphic to D. It remains only

to prove that the normal bundle ND is holomorphically trivial with respect to J . Since every slice

∆×{x} is a J-complex submanifold by construction, the complex tangent vector field ∂
∂w is of type

(1, 0) with respect to J . We show that the section of ND that it induces is J-holomorphic.

For every x ∈ D there is a J-holomorphic function z on a neighbourhood U of (0, x) in ∆ × D

which vanishes to order 1 along D. Let U ′ ≡ U ∩ ({0} ×D). Then dz is a trivializing holomorphic

section of N∗
D over U ′, and so ∂

∂w will be a holomorphic section of ND if and only if dz( ∂
∂w ) = ∂z

∂w is

a holomorphic function on U ′. Now if we expand z as a power series in w as in (3.12),

z = wz1 + w2z2 + · · · , (3.14)

then ∂z
∂w = z1 on U ′. On the other hand, applying the ∂̄-operator of J to (3.14) yields

0 = ∂̄Jz = w∂̄Jz1 + (z1 + 2wz2)∂̄Jw +O(|w|2).

In order to conclude from this that ∂̄Jz1 = 0 along U ′, we need to know that ∂̄Jw = o(|w|) in terms

of g∆. But w is J∆-holomorphic, so ∂̄Jw = i
2dw ◦ (J − J∆). Now the only components of J − J∆ not

annihilated by dw are the T ∗D ⊗ T∆ ones, whose g∆-length is |w| times their g∞-length, and the

g∞-length of J − J∆ certainly goes to zero; in fact, by (3.11), it is even O(|w|). �
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3.3. Kähler compactification. We have found two different proofs of Theorem 3.2, both of which

will be explained in this section. We assume the conclusion of Theorem 3.1 and will be ignoring the

diffeomorphism Ψ throughout. Both proofs begin by writing the ACyl Kähler form on M+
∞ as

ω = i∂∂̄t2 + ωD +O(e−δt). (3.15)

Here i∂∂̄ is with respect to J , and ωD is pulled back from the D factor in M+
∞ = R

+ × S
1 ×D; in

particular, ωD is closed, but not necessarily (1, 1) with respect to J . The most intuitive approach to

“compactifying” ω may be to replace t2 by the Kähler potential of a half-cylinder with a spherical

cap attached, but there are two (related) problems with this: (1) The O(e−δt) terms have no reason

to extend smoothly to the complex compactification. (2) The capped-off potential will be O(e−2t),

so the O(e−δt) errors may dominate and the modified form may not be positive.

Our first proof uses ideas from Section 3.2 to fix (1) and, by consequence, (2). Specifically, recall

that the cylinders R
+ × S

1 × {x} are J-holomorphic by the construction of Ψ. Solving ∂̄-equations

along these cylinders, we will be able to construct u = O(e−δt) supported far out in M+
∞ such that

the exponential errors of the corrected Kähler form ω + i∂∂̄u do extend smoothly. It then follows

immediately from this that we can cap off the i∂∂̄t2 part without losing positivity.

The second proof will emphasize positivity over smoothness. We back up one step and cap off the

infinite end of the cylinder metric on R
+ × S

1 by a cone of angle 2πε (ε≪ δ) rather than a disk or

hemisphere. This amounts to replacing t2 in (3.15) by e−2εt rather than e−2t at infinity. Then (2) is

not a problem to begin with, but (1) now looks worse. However, geometrically, we have created an

edge singular Kähler metric on the compactified space. We will prove that this “edge metric” has

continuous local Kähler potentials. It can therefore be regularized using the method of [42].

First proof of Theorem 3.2. By translating t, we can assume without loss that (3.15) holds on all of

M+
∞ = R

+× S
1 ×D and that the exponential errors are bounded by εe−δt, where ε is as small as we

like. The moral point of the proof is to correct ω by i∂∂̄u, with u exponentially decaying and small

(obtained by solving ∂̄-equations on each horizontal slice), in order to arrange that the exponential

errors of ω + i∂∂̄u have a power series expansion in w, or are at least smooth at infinity.

Let ψ denote the O(e−δt) error terms in (3.15). We begin by noting that ψ = d(η + η̄) for some

(0, 1)-form η = O(e−δt). Indeed, we can write ψ = dt∧ψ1 +ψ2, where ψi = O(e−δt) is a 1-parameter

family of i-forms on X; the closedness of ψ implies that ξ(t, x) ≡ −
∫∞
t ψ1(s, x) ds is a primitive for

ψ and we let η be the (0, 1)-part of ξ. Next, we solve ∂̄fx = η|Cx along Cx = R
+ × S

1 × {x} ⊂ M+
∞

for each x ∈ D in such a way that the fx depend smoothly on x with |fx| ≤ Cεe−δt. In particular,

we obtain a smooth complex-valued function f on M+
∞, and we now put u ≡ −2 Imf .

It is immediate that

ω + i∂∂̄u = i∂∂̄t2 + ωD + d(κ+ κ̄) > 0, κ ≡ η − ∂̄f = O(e−δt), (3.16)

and the restriction of κ to each of the usual J-holomorphic cylinders Cx vanishes by construction.

Thus, for all (t, θ, x), we can view κ|(t,θ,x) as an element of Vx ≡ T ∗
xD ⊗ C, which we in turn view

as a real vector space (with an obvious complex structure, but this will not be relevant). Now Vx
has a natural family of complex structures Jx(t, θ) defined by the pullback action of −J , which

leaves T ∗D ⊂ T ∗M+
∞ invariant because the action of J on vectors preserves T∆ ⊂ TM+

∞. Given any

fixed x, we then view κ as a function on R
+ × S

1 taking values in Vx, and we claim that

∂κ

∂t
+ Jx

∂κ

∂θ
= 0. (3.17)

To see this, first note that ∂tκ+ Jx∂θκ = (∂t + i∂θ) x ∂̄κ, where ∂̄κ means the ∂̄-derivative of κ as a

(0, 1)-form on M+
∞; this is proved using that ∂̄κ = 1

2(dκ − J∗dκ), that κ is vertical, and that T∆ is

J-invariant. On the other hand, ∂̄κ is equal to the (0, 2)-part of −ωD by (3.16), and

ω0,2
D (X,Y ) =

1

4
(ωD(X,Y ) − ωD(JX, JY ) + i(ωD(JX, Y ) + ωD(X,JY ))),

so if X is horizontal then this vanishes for every Y since JX is horizontal as well.
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We now exploit the ∂̄-type equation (3.17), together with the smoothness at infinity of Jx from

Section 3.2, to deduce that κ is itself smooth at infinity. For this we pass to the disk picture, writing

w = u + iv ∈ ∆ with u = e−t cos θ and v = −e−t sin θ. Then (3.17) yields ∂uκ + Jx∂vκ = 0 on ∆∗,

where the function κ : ∆ → Vx is C0,δ Hölder continuous, smooth away from the origin, and zero at

the origin itself, and the function Jx : ∆ → EndR(Vx) is smooth with J 2
x = −idVx . Smoothness of κ

at w = 0 now follows from elementary elliptic regularity; for example, by applying ∂u−Jx∂v we can

deduce that ∆κ+Kx(∂vκ) = 0, where Kx ≡ ∂uJx−Jx∂vJx is smooth (but not always zero, despite

(3.9); cf. Remark 3.20), and using κ = O(|w|δ) and dκ = O(|w|δ−1) one checks that κ ∈W 1,2 solves

this equation weakly at w = 0. Smooth dependence of κ = κx(u, v) on x is then standard.

To conclude the proof, we will now verify that the closed (1, 1)-form

ωD + d(κ+ κ̄) + i∂∂̄((1 − χ)t2 + χφ) (3.18)

on M+
∞ is positive and extends to a smooth Kähler form on ∆ ×D, where χ(t) is a cutoff function

with χ ≡ 0 on {t < 1} and χ ≡ 1 on {t > 2}, and φ(t) is a convex function with

φ(t) =

{
t2 + C1t+ C2 for t ∈ (0, 3),

C3e
−2t for t ∈ (5,∞),

the absolute constants C1, C2, C3 being chosen so that the two branches of the definition match up

at t = 4 including first and second derivatives. This is understood in the sense that we have already

shifted t so that |J − J∞| + |κ| ≤ εe−δt on the whole of M+
∞, with ε as small as necessary.

Since we already know that J, κ extend smoothly, and since e−2t = |w|2 is smooth on ∆ ×D, it

is clear that the form in (3.18) extends smoothly. Positivity for t ∈ (0, 3) is also clear, given that we

can assume that |i∂∂̄t| ≤ ε. For t ∈ (3,∞), we would be stuck if all we knew was that κ = O(e−δt)

for some δ > 0 (even δ = 1) because such terms can easily swamp i∂∂̄φ. But d(κ+ κ̄) + ω2,0
D + ω0,2

D

extends smoothly and vanishes along D, while i∂∂̄φ+ ω1,1
D is smooth and positive near D. �

Remark 3.19. Unlike κ of (3.16), the (0, 1)-form η describing the exponential errors in (3.15) has no

reason to be smooth at infinity even though (∂t + i∂θ) x ∂̄η = 0. Of course we expect that κ really is

more regular than η, but there is a subtle point here: formally, (3.17), which gives regularity for κ,

is derived from (∂t + i∂θ) x ∂̄κ = 0, which also holds for η, using only that κ is vertical.

Remark 3.20. We also mention an alternative approach to regularity for κ. In the disk picture, pick

a C-basis {κi} for (Vx,Jx(0)), so that {κi} still is a C-basis for (Vx,Jx(w)) if |w| is small. Each κi
trivially solves (3.17), and using (3.9) one can compute that Jxκi solves (3.17) too. We now expand

κ =
∑
fiκi with fi : ∆∗ → C, again in the sense that i ∈ C acts on Vx by Jx. Then κ solves (3.17)

if and only if all the fi are holomorphic, so we can apply the removable singularities theorem.

We can interpret this argument as follows. By (3.9), the (0, 1)-part of the trivial connection ∇ on

the complex vector bundle (Vx,Jx) is a (0, 1)-connection, i.e. ∇0,1(fκ) = ∂̄f ⊗κ+ f∇0,1κ. We could

have worked in any local frame {κi} with ∇0,1κi = 0. Such frames exist for every (0, 1)-connection

over the disk (i.e. the (0, 1)-connection is integrable, defining a holomorphic structure).

Second proof of Theorem 3.2. We again assume that all O(e−δt) error terms are uniformly as small

as necessary on the whole cylinder M+
∞, and we write our ACyl Kähler form as ω = i∂∂̄t2 +ωD +ψ

with ψ = O(e−δt). We then construct the following closed (1, 1) modification ω̃ of ω:

ω̃ = i∂∂̄((1 − χ)t2 + χφ) + ωD + ψ, (3.21)

where χ(t) is a cutoff with χ ≡ 0 on {t < 1} and χ ≡ 1 on {t > 2}, and φ(t) is convex with

φ(t) =

{
t2 + C1t+ C2 for t ∈ (0, 3),

C3e
−2εt for t ∈ (5,∞).

Here ε > 0 is fixed but strictly smaller than δ
2 , and C1, C2, C3 are determined by ε so that the two

branches match up at t = 4 including first and second derivatives. This construction is similar to
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(3.18), except that now the reason why (3.21) defines a positive form on M+
∞ is that the good term

i∂∂̄φ+ ω1,1
D > 0 swallows the error ψ + ω2,0

D + ω0,2
D by Cauchy-Schwarz because ε is small.

Now ω̃ does not extend smoothly, but the Riemannian metric associated with ω̃ only has a fairly

mild (conical with cone angle 2πε) singularity along the compactifying divisor {0} ×D. We pursue

this idea by proving that ω̃ has local potentials that remain continuous at the divisor. For this, we

first cover a neighborhood of {0}×D by holomorphic coordinate charts isomorphic to ∆×B, where

B denotes the unit ball in C
n−1, such that ({0}×D)∩ (∆×B) = {0}×B. It is then easy to see that

Proposition 3.22 applies to η ≡ ω̃− p∗ωD, where p denotes projection onto z2, . . . , zn. This produces

a smooth potential φ for ω̃ on ∆∗ × B such that φ extends as a C0,2ε function to the full domain

∆ × B with dφ = O(|z1|
2ε−1).

We now apply the (elementary but clever) Varouchas method [42] for smoothing singular Kähler

forms with continuous local potentials; the presentation in Perutz [37] is particularly convenient. In

order to do so, we first need to check that φ is strictly plurisubharmonic in the sense of currents on

the whole of ∆ × B. By definition, we must prove that φ′ ≡ φ− λ|z|2 is weakly plurisubharmonic in

the sense of currents for some λ > 0. Now if λ is small enough, then surely ω̃′ ≡ ω̃ − i∂∂̄(λ|z|2) ≥ 0

on ∆∗ × B. We then pick any test form ζ ∈ C∞
0 (∧n−1,n−1(∆ × B)) with ζ ≥ 0 and compute

∫

|z1|>δ
φ′ddcζ =

∫

|z1|>δ
ω̃′ ∧ ζ +

∫

|z1|=δ
(φ′dcζ − dcφ′ ∧ ζ);

the first term is nonnegative, and the second term goes to zero as δ → 0 because dφ′ = O(|z1|
2ε−1).

We are now in a position to apply [37, Lemma 7.5] to the Kähler cocycle (Ui, φi)i∈I thus obtained,

where X = ∆ ×D, X1 = ∆∗ ×D, and X2 is the union of all our ∆ × B coordinate charts. �

It remains to prove the i∂∂̄-lemma with estimates that was crucially used in the above. The result

is perhaps most conveniently stated by identifying ∆∗ × B with the cylinder R
+ × S

1 × B and using

weighted Hölder spaces Ck,α
ε on this cylinder. Also, we will again write z1, . . . , zn for the standard

holomorphic coordinates on ∆ × B, and we will use indices with respect to those.

Proposition 3.22. Fix ε > 0 small enough. Let η ∈ C∞
ε be a closed real (1, 1)-form on ∆∗ × B.

Then η = i∂∂̄ξ for some real-valued function ξ ∈ C∞
ε . In particular, ξ = O(|z1|

ε) extends as a C0,ε

Hölder function to the full domain ∆ × B and dξ = O(|z1|
ε−1).

Proof. The proof consists of a reduction to known analytic results on the two factors. We make no

pretense of optimality in the analysis. Let us begin by stating the results that we need.

(i) The operators ∂, ∂∂̄ acting on weighted Hölder spaces Ck,α
ε on ∆∗ = R

+ × S
1 admit bounded

right inverses Rh
z ,R

h
zz̄ (the h means “horizontal” and the subscripts are mnemonics) that are

compatible with the obvious inclusions of Hölder spaces. See Remark 2.6 for this.

(ii) The operators ∂̄, ∂∂̄ acting on smooth functions on B have right inverses Rv
z̄ ,R

v
zz̄ defined on

the spaces of smooth ∂̄-closed (0, 1)-forms and smooth d-closed (1, 1)-forms, respectively, that

extend to bounded operators Ck → Ck. For ∂̄ this is proved in [38]. For ∂∂̄ let P denote the

usual Poincaré operator on star-shaped domains [19, §11.5], so that dPη = η for all closed

forms η. Then Rv
zz̄η ≡ 2iImRv

z̄((Pη)0,1) works because P is clearly bounded Ck → Ck.

(iii) Since these right inverses R are all linear and bounded with respect to Ck type norms, they

commute with partial differentiation of C∞ forms with respect to C∞ parameters.

We now define ξ ≡ Re(ξ(1) + ξ(2) + ξ(3)), where the ξ(i) are constructed as follows. First,

ξ(1) ≡ Rh
zz̄(η11̄)

on each horizontal slice. Next, we construct a vertical (0, 1)-form ζ by setting

ζk̄ ≡ Rh
z (η1k̄ − ξ

(1)

,1k̄
) (k > 1).

Then (iii) above and the closedness of η imply that ζ is ∂̄-closed on each vertical fibre; hence we can

set ξ(2) ≡ Rv
z̄(ζ) fibrewise. Again using (iii) and the closedness of η, one checks that

ξ
(2)
,11̄

= 0, ξ
(2)

,1k̄
= η1k̄ − ξ

(1)

,1k̄
(k > 1).



20 M. HASKINS, H.-J. HEIN, AND J. NORDSTRÖM

With ξ(3) ≡ Rv
zz̄(ηjk̄ − ξ

(1)

,jk̄
− ξ

(2)

,jk̄
), where again j, k > 1, a similar computation shows that ξ

(3)
,1 = 0.

The proposition now follows easily from the stated identities. �

4. Existence and uniqueness

4.1. Discussion and overview. The main aim of this section is to prove Theorem D. This refines

an existence result for complete Ricci-flat Kähler metrics of linear volume growth due to Tian-Yau

[40, Corollary 5.1]. At the end of the section we also quickly explain the proof of Theorem E. As we

already discussed in Section 1, Theorem E shows that Theorem D exhausts all possible examples of

ACyl Calabi-Yau manifolds with n = dimCM > 2 and split cross-section (m = 1).

Theorem D can be proved (although this proof is not written down anywhere) by combining the

proof of the Tian-Yau theorem [40] with a new idea concerning asymptotics of solutions to complex

Monge-Ampère equations from [17]. However, the ingredients from [40] needed in this approach are

in fact much more general and, correspondingly, technically quite formidable. The proof in the ACyl

case that we give here will be significantly easier. We achieve this by using weighted function spaces

throughout, and by retooling the decay argument from [17, Prop 2.9(i)] as an a priori estimate.

Joyce already employed weighted spaces to treat certain examples of maximal volume growth—

ALE and QALE Kähler manifolds, see [20, §8.5, §9.6]—but his weighted nonlinear estimates break

down in our minimal volume growth situation. This issue is related to an error in the construction

of ACyl Calabi-Yau manifolds with exponential asymptotics in [23], where the analysis is based

[23, p. 132] on an estimate for the maximal volume growth case [41, p. 52]—this is incorrect because

the estimate from [41] crucially relies on a Euclidean type Sobolev inequality that definitely fails for

any volume growth rate less than the maximal one. See Proposition 4.6 below for comparison.

The following is our main analytic existence theorem.

Theorem 4.1 (ACyl version of the Calabi conjecture). Let (M,g, J) be an ACyl Kähler manifold

of complex dimension n with Kähler form ω. If 0 < ε≪ 1 and if f ∈ C∞
ε (M) satisfies

∫

M
(ef − 1)ωn = 0, (4.2)

then there exists a unique u ∈ C∞
ε (M) such that ω + i∂∂̄u > 0 and (ω + i∂∂̄u)n = efωn.

Remark 4.3. Integration by parts shows that (4.2) is indeed necessary in order for u to exist. This

is a nonlinear version of the mean-value-zero assumption of Proposition 2.7. As in the linear case, if

f ∈ C∞
ε (M) but (4.2) is not satisfied, then there may still exist solutions that grow at infinity since

the Green’s function on M is asymptotically pluriharmonic (in fact, asymptotically linear).

We will prove Theorem 4.1 in Section 4.3, after having deduced Theorem D from it in Section 4.2.

The proof of Theorem E is essentially independent of this and will be given in Section 4.4. It may

be worth advertising that our proof of Theorem 4.1 will be self-contained with only two exceptions:

(1) We use Proposition 2.7 without proof, but no other facts from linear analysis on ACyl manifolds.

(2) We assume that the reader is familiar with Yau’s proof of the Calabi conjecture on compact

Kähler manifolds [44]; see B locki [5] for a detailed and readable exposition.

4.2. The analytic existence theorem implies the geometric one. In order to prove Theorem D

we need to construct an ACyl Kähler metric ω̃ on M = M \D such that Theorem 4.1 applies to the

pair (M, ω̃) and the function f defined by

ef ω̃n = in
2

Ω ∧ Ω̄. (4.4)

Notice that f is always C∞ because Ω has neither poles nor zeros in M . If u is the solution provided

by Theorem 4.1, the desired Calabi-Yau metric ω is then given by ω = ω̃ + i∂∂̄u.

To construct ω̃, we begin with an arbitrary Kähler form ω0 in the chosen Kähler class k on M .

The first step is to find a Kähler form ω̃0 on M that is cohomologous to ω0 when restricted to M

and Ricci-flat when restricted to D. For this, we first of all observe that KD is trivial by adjunction.
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Thus, by the Calabi-Yau theorem, there exists φ ∈ C∞(D) such that ω0|D + i∂∂̄φ > 0 is Ricci-flat.

Fix a C∞ trivialization of the anticanonical fibration M → P1 near D, thus smoothly identifying a

tubular neighborhood of D with ∆×D, where ∆ again denotes the unit disk {|z| < 1}. Extend φ to

be constant along the ∆ factor and multiply this extension by a cutoff function pulled back from ∆

to further extend φ to the whole of M . If the tubular neighborhood was sufficiently small, then the

restriction of ω0 + i∂∂̄φ to any fibre will be positive definite. Any negative components of ω0 + i∂∂̄φ

on the total space M can be compensated by adding the pullback of a sufficiently positive “bump

2-form” on ∆ supported in an annulus containing the cutoff region; such a pullback is automatically

closed (1, 1) on M and exact on M . This creates the desired Kähler form ω̃0.

We now modify ω̃0 to become asymptotically cylindrical with the correct volume form at infinity.

Notation: Define ∆(r) = {|z| < r}, fix parameters s ≪ r ≪ 1 to be chosen later, and pick a cutoff

function χ : ∆ → R with χ = 1 on ∆(r− s), χ = 0 away from ∆(r+ s), and s|χz|+ s2|χzz̄| ≤ C. Fix

a bump 2-form β ≥ 0 on ∆ with support contained in ∆(r+ 2s) \∆(r− 2s) such that β = i
2dz ∧ dz̄

on ∆(r + s) \ ∆(r − s), and identify β with its pullback to M under the anticanonical map.

The Kähler potentials of the cylindrical metric i
2 |z|

−2dz ∧ dz̄ are given by u(z) = (log |z|)2 + h(z)

with h a harmonic function. We use these potentials to define closed (1, 1)-forms on M :

ω̃t := ω̃0 + λi∂∂̄(χu) + tβ.

Being compactly supported, the tβ term does not change the asymptotics of the metric at infinity,

but the extra degree of freedom t > 0 is needed to deal with the integral condition (4.2). Also, λ > 0

is a fixed real number determined by the condition that

(ω̃0|D)n−1 =
2

nλ
i(n−1)2R ∧ R̄,

where R = ResDΩ is the holomorphic volume form on D specified by Ω = dz
z ∧R +O(1) as z → 0.

The forms ω̃t are then positive definite except possibly over ∆(r+ s) \∆(r− s). Moreover, if ω̃t is in

fact positive definite globally, then the associated Riemannian metric on M is ACyl and the volume

form ω̃n
t is exponentially asymptotic to in

2

Ω ∧ Ω̄ at infinity.

We complete the construction by choosing h(z) = (log r)2 − (2 log r) log |z|. This implies that

|u| + s|uz| ≤ C
|log r|

r2
s2 (4.5)

in the gluing region ∆(r + s) \ ∆(r − s), by making a Taylor expansion centered at |z| = r.

Claim. Given any fixed choice of r ≪ 1 and s ≪ r, there exists a unique value of t > 0 such that

we have ω̃t > 0 globally and
∫
M (ω̃n

t − in
2

Ω ∧ Ω̄) = 0.

Thus for any choice of s≪ r ≪ 1 we obtain an ACyl Kähler metric ω̃ = ω̃t such that the function

f ∈ C∞
ε (M) associated with ω̃ by (4.4) satisfies (4.2) with respect to (M, ω̃). Then Theorem 4.1 can

be applied. (The resulting Calabi-Yau metric ω is independent of r, s, by Theorem E.)

Proof of the claim. Using (4.5), positivity quickly reduces to t≫ 1
r2 |log r|. The integral condition is

equivalent to the following linear equation for t:
∫

M
(ω̃n

0 + nλi∂∂̄(χu) ∧ ω̃n−1
0 − in

2

Ω ∧ Ω̄) + nt

∫

M
β ∧ ω̃n−1

0 = 0.

The t-coefficient is positive and ∼ rs. The constant term can be split as a sum of three contributions:

O(r) from ∆(r − s) since due to our choice of λ the integrand is O(|z|−1ω̃n
0 ) there; O(|log r| sr ) from

the gluing region, using (4.5) again; and a negative part ∼ log r from the rest of M . We see that the

solution t ∼ 1
rs |log r| if s≪ r ≪ 1, which is well within the positivity constraint.

4.3. Proof of the analytic existence theorem. The proof of Theorem 4.1 requires a nontrivial

technical preliminary: the proof of a global Sobolev inequality on M . Such inequalities are sensitive

to the volume growth at infinity, and need to take rather different shapes depending on whether the

growth rate is slower or faster than quadratic. Our proof follows the strategy expounded in [14]; see

also [16, 29] for closely related results and applications.
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Proposition 4.6. Let (Mn, g) be an ACyl manifold as in Definition 1.1. Then for all µ > 0 there

exists a piecewise constant positive function ψµ = O(e−2µt) with
∫
M ψµ dvol = 1 such that

‖e−µt(u− ūµ)‖2σ ≤ CM,µ,σ‖∇u‖2 (4.7)

holds for all σ ∈ [1, n
n−2 ] and all u ∈ C∞

0 (M), where ūµ ≡
∫
M uψµ dvol.

The subtraction of an average on the left-hand side of (4.7) is inevitable because M has less than

quadratic volume growth. In [40], the relation (4.2) is directly applied to compensate this.

Proof of Proposition 4.6. We have M =
⋃

clos(Ai), where A0 = U and Ai = (i− 1, i)×X for i ∈ N,

and we begin by discretizing the left-hand side of (4.7) accordingly:

‖e−µt(u− ūµ)‖22σ ≤ C
∑

‖χi(u− ūi)‖
2
2σ +C

∑
e−2µi|ūi − ūµ|

2, (4.8)

where χi is the characteristic function of Ai and ūi is the average of u over Ai. Since the Ai have

uniformly bounded geometry, ‖χi(u− ūi)‖2σ ≤ C‖χi∇u‖2 by the usual Sobolev inequality. Thus, it

suffices to estimate the second sum in (4.8). This involves defining the weight function ψµ. In order

for our argument to go through, we require that
∑
e−2µi(ūi − ūµ) = 0 for all test functions u, and

so we define ψµ ≡ φµ/
∫
M φµ dvol, where φµ is constant equal to e−2µi/|Ai| on Ai. Then

∑
e−2µi|ūi − ūµ|

2 ≤ C
∑

i<j

e−2µ(i+j)|ūi − ūj|
2 ≤ C

∑

i<j

e−2µ(i+j)|i− j|

j−1∑

k=i

|ūk − ūk+1|
2.

Next, we define Bk ≡ int(clos(Ak ∪Ak+1)) and observe that

|ūk − ūk+1|
2 ≤

1

|Ak||Ak+1|

∫

Ak×Ak+1

|u(x) − u(y)|2 dx dy ≤
2|Bk|

|Ak||Ak+1|

∫

Bk

|u− ūBk
|2,

where ūBk
denotes the average of u over Bk. Since Bk is connected, we can now apply the standard

Poincaré inequality on Bk, which completes the proof. �

Proof of Theorem 4.1. The uniqueness claim is proved independently in Section 4.4 and really only

requires that u ∈ C2
ε (M). Thus, it suffices to prove the existence of a solution u ∈ Ck+2,α

ε (M) for

any given k ∈ N0 and α ∈ (0, 1). For this we take ε ∈ (0, δ] to be smaller than the square root of the

first eigenvalue of the Laplacian on the cross-section X, and set up a continuity method. Let

X = {u ∈ Ck+2,α
ε (M) : ωu = ω + i∂∂̄u > 0}, Y = {f ∈ Ck,α

ε (M) :
∫
M (ef − 1)ωn = 0}.

Then X is an open set, Y is a hypersurface, and the complex Monge-Ampère operator F given by

(ω + i∂∂̄u)n = eF(u)ωn induces a map F : X → Y. For u ∈ X , the metric gu associated with ωu is

again asymptotically cylindrical (though only of regularity Ck,α
ε ) with respect to Φ and X.

Given f as in the statement of the theorem, we wish to solve the family of equations F(uτ ) = fτ
for uτ ∈ X , with fτ ≡ log

(
1 + τ(ef − 1)

)
∈ Y for τ ∈ [0, 1]. We have a trivial solution u0 = 0. Next,

we need to show that the set of all τ for which a solution uτ ∈ X exists is open. For u ∈ X ,

TuF =
1

2
∆gu : TuX = Ck+2,α

ε (M) → TF(u)Y = Ck,α
ε (M)0,gu ,

the subscripts 0, gu indicating mean value zero with respect to gu, and we must show that this is an

isomorphism if u = uτ . But if u = uτ , then F(uτ ) = fτ , which implies uτ ∈ C∞
ε (M) by a standard

bootstrapping argument, and so gu is regular enough to apply Proposition 2.7 as written.

It remains to prove a quantitative a priori bound on the Ck+2,α
ε -norm of uτ , using the qualitative

information that uτ ∈ C∞
ε (M). We proceed in a sequence of four partial a priori estimates. We will

write u = uτ and f = fτ , but all constants are understood to be independent of τ .
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Step 1: C0 from Moser iteration. We apply Moser iteration as in [16, §3.1] or [40, Lemma 3.5] to

derive an a priori bound on the sup norm of u. First let us recall the basic underlying computation.

To this end, fix T > 0 and define an auxiliary form η ≡
∑n−1

k=0 ω
k ∧ ωn−1−k

u . Then we have
∫

t<T
|∇|u|

p

2 |2ωn ≤ −
np2

2(p − 1)

[∫

t<T
u|u|p−2(ef − 1)ωn −

1

2

∫

t=T
u|u|p−2dcu ∧ η

]
(4.9)

for all p > 1. See [5, p. 212] for this, although in [5] there are of course no boundary terms. Notice

that (4.9) still holds with u replaced by u − λ for any constant λ ∈ R, and also that the boundary

term goes to zero as T → ∞ (no matter what λ we subtract) because dc(u− λ) = O(e−εt).

We begin the iteration process by setting p = 2 and λ = ūµ (as in Proposition 4.6), with µ to be

determined as we go along. If µ < ε, then (4.7) and (4.9) imply that

‖e−µt(u− ūµ)‖22σ ≤ C‖∇u‖22 ≤ C‖e−εt(u− ūµ)‖1 ≤ C‖e−µt(u− ūµ)‖2σ .

To continue the iteration, we are now going to prove that
∥∥∥e−µt|u− ūµ|

σk+1
∥∥∥
2

2σ
≤ Cσk max

{
1,
∥∥∥e−µt|u− ūµ|

σk
∥∥∥
2σ

2σ

}
(4.10)

for all k ∈ N0, provided that σ < 2 and 2µσ < ε. Given this, a standard argument [5, p. 212] shows

that the L2σk

-norm of u− ūµ with respect to the measure e−2µσtdvol is bounded uniformly in k, so

that ‖u− ūµ‖∞ ≤ C. Since u = O(e−εt), we deduce that |ūµ| ≤ C, hence ‖u‖∞ ≤ C as desired.

In order to prove (4.10), we first apply (4.9) with p = 2σk+1 and with u replaced by u− ūµ, and

then (4.7). Abbreviating uk ≡ |u− ūµ|
σk

, this yields the following inequalities:

‖e−µt(uk+1 − uk+1 ,µ)‖22σ ≤ C‖∇uk+1‖
2
2 ≤ Cσk‖e−εt|u− ūµ|

2σk−1‖1.

Proceeding on the right-hand side, Hölder’s inequality tells us that

‖e−εt|u− ūµ|
2σk−1‖1 ≤ C‖e(2µσ−ε)t‖2σk+1 max{1, ‖e−µtuk‖

2σ
2σ},

and if 2µσ < ε then the prefactor converges to 1 as k → ∞. On the other hand,

‖e−µtuk+1 ,µ‖
2
2σ = ‖e−µt‖22σ‖ψµuk+1‖

2
1 ≤ C‖e(σ−2)µt‖22‖e

−µtuk‖
2σ
2σ ,

which is finite if σ < 2, and of the required form. All in all, this proves (4.10).

Step 2: C0 implies C∞. We do not need to say very much here. Given that functions in the space

X attain their extrema on M and that M has uniformly bounded geometry at infinity, the classical

arguments proving Step 2 in the compact case [5, §5.5, §5.6] go through verbatim.

Step 3: C∞ implies C∞
ε′ for some uniform ε′ ∈ (0, ε]. This is a special case of an energy decay

argument from [17, Prop 2.9(i)], which we apply as an priori estimate here. We begin by writing out

the counterpart of the p = 2 case of (4.9) for the outer domain {t > T}:
∫

t>T
|∇u|2ωn ≤ −2n

[∫

t>T
u(ef − 1)ωn +

1

2

∫

t=T
u dcu ∧ η

]
. (4.11)

This is proved by repeating the standard computation on {T < t < T ′} and sending T ′ → ∞. Also,

(4.11) again holds with u replaced by u− λ for any constant λ ∈ R; we take λ to be the average of

u over {t = T}. Defining QT to be the quantity on the left-hand side of (4.11), this yields

QT ≤ Ce−εT + C

∫

t=T
|u− λ||∇u| ≤ Ce−εT + C

∫

t=T
|∇u|2 ≤ Ce−εT − C

dQT

dT
,

where we have used our C2 a priori estimate from Steps 1 and 2, Cauchy-Schwarz, and the Poincaré

inequality. It is elementary to deduce from this that QT ≤ Ce−ε′T for some uniform ε′ ∈ (0, ε].

Now define AT ≡ {T < t < T + 1} and let uT denote the average of u on AT . Then our estimate

for QT and the Poincaré inequality imply that ‖u−uT ‖L2(AT ) ≤ Ce−ε′T . On the other hand, simply

by rewriting the Monge-Ampère equation, we have

L(u− uT ) = ef − 1 = O(e−εT ) on AT ,
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where

(Lv)ωn = i∂∂̄v ∧ (ωn−1 + ωn−2 ∧ ωu + · · · + ωn−1
u ) (4.12)

as in [23, p. 137]. Since L is uniformly elliptic with respect to g by Step 2, Moser iteration now tells

us that |u− uT | ≤ Ce−ε′T on a slightly smaller domain; see [15, Thm 4.1] for this type of estimate.

Then Schauder theory gives |∇ku| ≤ Cke
−ε′t for all k > 0. Thus, eventually, |u| ≤ Ce−ε′t for some

uniform constant C, by integrating up the exponentially decaying bound on ∇u.

Step 4: C∞
ε′ implies C∞

ε . We are assuming that u ∈ C∞
ε (M) with ineffective bounds, and Step 3

yields u ∈ C∞
ε′ (M) with effective bounds for some uniform ε′ ∈ (0, ε]. To upgrade from ε′ to ε in the

effective bounds, we first rewrite the complex Monge-Ampère equation as

1

2
∆gu = (ef − 1) −Q(u), Q(u)ωn =

(
n

2

)
(i∂∂̄u)2 ∧ ωn−2 + · · · + (i∂∂̄u)n. (4.13)

If u ∈ C∞
δ (M) for some δ ∈ (0, ε], then the right-hand side of (4.13) is in C∞

δ′ (M)0,g, δ′ = min{2δ, ε},

and so Proposition 2.7 yields u ∈ C∞
δ′ (M), effective estimates understood throughout. We then put

δ = ε′ and iterate a bounded number of times to obtain the desired conclusion. �

Remark 4.14. Let us quickly review how we used that
∫
M (ef − 1)ωn = 0. Unlike in [40, Lemma 3.4],

this played no direct role in the nonlinear estimates. However, we needed to drop boundary terms at

infinity in (4.9) and (4.11). This was possible because we were working in a space of functions with

exponential decay, which the linear analysis allowed us to do because
∫
M (ef − 1)ωn = 0.

4.4. Uniqueness. Finally, let us explain why the Ricci-flat ACyl metric produced by Theorem D is

unique among metrics that are ACyl with respect to the same diffeomorphism Φ. This follows from

Hodge theory arguments as in Section 2.1.

Proof of Theorem E. First we deduce an ACyl i∂∂̄-lemma, showing that the exact decaying (1, 1)-

form ω = ω2 − ω1 can be written as i∂∂̄u for some function u of linear growth.

Since ω is exact and decaying, it can according to [35, Thm 2.3.27] be written as ω = dα, where α

is asymptotic to a translation-invariant harmonic 1-form on M∞. In particular, ∂̄∗α0,1 is a decaying

function and can therefore be written as ∂̄∗∂̄γ for a function γ of linear growth. The form ∂̄γ −α0,1

is bounded harmonic, hence closed. Thus, if we set u = 2 Im γ, then i∂∂̄u = ∂α0,1 + ∂̄α1,0 = ω.

Now ωn
1 = ωn

2 implies that Lu = 0, where Lv = i∂∂̄v ∧ η with

η = ωn−1
1 + ωn−2

1 ∧ ω2 + · · · + ωn−1
2

as in (4.12). The (n−1, n−1)-form η is positive in the sense that η ∧ α ∧ ᾱ > 0 for every nonzero

(1, 0)-form α. It follows that there is a Hermitian metric ω such that ωn−1 = η. This is not typically

Kähler, but the “balanced” condition that dωn−1 = 0 implies that L is exactly the Laplacian with

respect to the Riemannian metric associated with ω. Since any subexponentially growing harmonic

function h defines a direction in the cokernel of the Laplacian on exponentially decaying functions

(because
∫

(∆v)h = 0 if v is decaying), and since this cokernel is 1-dimensional by Proposition 2.7,

the only subexponential harmonic functions are constants. Hence u is a constant. �

References

1. M. T. Anderson, P. B. Kronheimer, and C. LeBrun, Complete Ricci-flat Kähler manifolds of infinite topological

type, Comm. Math. Phys. 125 (1989), 637–642.

2. M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Camb.

Phil. Soc. 77 (1975), 97–118.

3. A. L. Besse, Einstein manifolds, Springer-Verlag, New York, 1987.

4. O. Biquard and V. Minerbe, A Kummer construction for gravitational instantons, Comm. Math. Phys. 308 (2011),

773–794.

5. Z. B locki, The Calabi-Yau theorem, Complex Monge-Ampère equations and geodesics in the space of Kähler

metrics, Lecture Notes in Math., vol. 2038, Springer, 2012, pp. 201–227.

6. J. Cheeger and D. Gromoll, The splitting theorem for manifolds of non-negative Ricci curvature, J. Diff. Geom. 6

(1971), 119–128.



ASYMPTOTICALLY CYLINDRICAL CALABI-YAU MANIFOLDS 25

7. , On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413–443.

8. J. Cheeger and G. Tian, On the cone structure at infinity of Ricci-flat manifolds with Euclidean volume growth

and quadratic curvature decay, Invent. Math. 118 (1994), 493–571.

9. A. Corti, M. Haskins, J. Nordström, and T. Pacini, Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano

3-folds, arXiv:1206.2277.

10. , G2-manifolds and associative submanifolds via semi-Fano 3-folds, arXiv:1207.4470.

11. A. E. Fischer and J. A. Wolf, The structure of compact Ricci-flat Riemannian manifolds, J. Diff. Geom. 10 (1975),

277–288.

12. K. Frantzen, K3 surfaces with special symmetry, Ph.D. thesis, Ruhr-Universität Bochum, 2008.

13. A. Fujiki, Finite automorphism groups of complex tori of dimension two, Publ. Res. Inst. Math. Sci. 24 (1988),

1–97.

14. A. Grigoryan and L. Saloff-Coste, Stability results for Harnack inequalities, Ann. Inst. Fourier 55 (2005), 825–890.

15. Q. Han and F. Lin, Elliptic partial differential equations, Courant Lecture Notes in Mathematics, vol. 1, New York

University Courant Institute of Mathematical Sciences, New York, 1997.

16. H.-J. Hein, Weighted Sobolev inequalities under lower Ricci curvature bounds, Proc. Amer. Math. Soc. 139 (2011),

2943–2955.

17. , Gravitational instantons from rational elliptic surfaces, J. Amer. Math. Soc. 25 (2012), 355–393.

18. J.-M. Hwang, Base manifolds for fibrations of projective irreducible symplectic manifolds, Invent. Math. 174 (2008),

625–644.

19. K. Jänich, Vector analysis, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2001.

20. D. D. Joyce, Compact manifolds with special holonomy, OUP Mathematical Monographs series, Oxford University

Press, 2000.

21. J. Keum, K. Oguiso, and D.-Q. Zhang, The alternating group of degree 6 in the geometry of the Leech lattice and

K3 surfaces, Proc. London Math. Soc. 90 (2005), no. 3, 371–394.

22. K. Kodaira, On compact analytic surfaces, II, Ann. of Math. (2) 77 (1963), 563–626.

23. A. G. Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003),

125–160.

24. A. G. Kovalev and N.-H. Lee, K3 surfaces with non-symplectic involution and compact irreducible G2-manifolds,

Math. Proc. Camb. Phil. Soc. 151 (2011), 193–218.

25. R. B. Lockhart and R. C. McOwen, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm.

Sup. Pisa Cl. Sci. 12 (1985), 409–447.

26. D. Matsushita, On fibre space structures of a projective irreducible symplectic manifold, Topology 38 (1999), 79–83.
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42. J. Varouchas, Stabilité de la classe des variétés kählériennes par certains morphismes propres, Invent. Math. 77

(1984), 117–127.



26 M. HASKINS, H.-J. HEIN, AND J. NORDSTRÖM
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