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Abstract—Cost effective, long term planning under uncertainty
constitutes a significant challenge since a meaningful description
of the planning problem is given by large Mixed Integer Linear
Programming (MILP) models which may contain thousands of
binary variables and millions of continuous variables. In this
paper, a novel multistage decomposition scheme, based on Nested
Benders decomposition is applied to the transmission plan-
ning problem. The difficulties in using temporal decomposition
schemes in the context of planning problems due to the presence
of non-sequential investment state equations are highlighted. An
efficient and highly-generalizable framework for recasting the
temporal constraints of such problems in a structure amenable
to nested decomposition methods is presented. The proposed
scheme’s solution validity and substantial computational benefits
are clearly demonstrated through the aid of case studies on the
IEEE24-bus test system.

Index Terms—Long-Term Planning, Nested Bender Decompo-
sition, Stochastic programming

NOMENCLATURE

The symbols used for sets and quantities are as follows

ΩG Set of generation units, indexed g.

ΩE Set of all stages.

ΩM Set of all nodes belonging to the scenario tree.

ΩWℓ
Set of expansion options for line ℓ.

ΩN Set of system buses.

ΩNs

Set of system buses for which a storage candidate is

available.

ΩNsT

Set of system buses for which a storage device exists

or a candidate storage is available.

ΩL Set of transmission lines.

ΩB Set of demand blocks indexed by b.

Ωb
T Set of periods in demand block b indexed by t.

ε(m) Stage to which the node m belongs to.

Φk(m) Set of all parent nodes of m up to stage ε(m) − k.

Φe
0(m) Parent node of m at stage e.

Given a set S, |S| denotes the cardinality of the set S.
The input parameters of the optimization problem, summarised

by the vector ρ, are as follows

Fmax
ℓ,w

Maximum capacity provided by expansion option w
for line ℓ.

p̄m,g,t
Maximum generation for unit g at the operating point
(m, t).

F 0
ℓ Initial capacity for line ℓ.

H0
n Existing storage at bus n ∈ ΩNsT

.

Db
t,n

Demand at bus n in period t for demand block b
(MW).

Bn,g Bus-to-generation incidence matrix.

In,ℓ Bus-to-line incidence matrix.

χℓ Line length in km.

Wb Weight of demand block b.

Xℓ Reactance of transmission line ℓ.
uℓ Sending bus for line ℓ.

vℓ Receiving bus for line ℓ.

h̄
Maximum charge/discharge rate of storage device

(MW).
η̄ Energy capacity of storage device (MWh).

τ b
t

Time duration of demand period t in demand block
b.

γH Build time of storage device.

κH Annual capital cost of storage device (£/yr).

κℓ,w Build time for line ℓ and expansion option w.

κG
g Operation cost of generating unit g (£/MWh).

γℓ,w
Annualised fixed investment cost for line ℓ, option w
(£/(km yr)).

cℓ,w
Annualised variable investment cost for line ℓ, option
w (£/(MW km yr)).

Γ System balance penalty constant (£/MWh).

ρef Storage efficiency.

σb First period of demand block b.

Tb Last period of demand block b.

rI
ε(m)

Cumulative discount factor for investment cost in

epoch ε(m).

rO
ε(m)

Cumulative discount factor for operation cost in epoch

ε(m).

The decision variables of the optimization problem are

stacked in the vector x as follows

f inv
m,ℓ,w

Transmission capacity to be built for line ℓ using
option w at node m.

βm,ℓ,w
Binary variable modeling the choice of expansion

option w for line ℓ at node m.

Hm,n
Binary variable modelling the decision at node m of
building a storage device at bus n.

dm,t,n Curtailed demand at bus n at operating point (m, t).

pm,t,g Output of generation unit g at operating point (m, t).

fm,t,ℓ Power flow on line ℓ at operating point (m, t).

θm,t,n Bus angle at node n for operating point (m, t).

hm,t,n
Output of storage device at bus n at operating point
(m, t).



h̃m,t,n
State of charge of storage device at bus n at operating
point (m, t).

I. INTRODUCTION

Achieving the ambitious decarbonization goals set by gov-

ernments worldwide will entail significant changes to the way

electrical energy is generated, transmitted and used. While

renewable sources will play a major role in supporting this

transition, their cost effective integration within conventional

energy systems constitutes a signicant challenge. Substantial

transmission investment is required to support the emerging

power flows, especially given that low-carbon sources are typi-

cally located far away from the load centres. Most importantly,

following the ownership unbundling that has taken place in

many jurisdictions, planners are facing increased uncertainty

regarding the size, type and location of new connections.

In view of the difficulty of obtaining permissions for new

transmission corridors and the fast pace at which new gen-

erators can be built in areas with limited exporting capability,

retaining a reactive stance is no longer feasible. Planners are

starting to shift to an anticipatory planning paradigm and as a

result, require suitable models to identify strategic investment

opportunities [1].

Traditionally, the transmission expansion planning problem

[2] has been formulated on the basis of identifying the optimal

investment plan for a target horizon (e.g. [3], [4]). Recently, it

has been shown that stochastic transmission planning based on

scenario trees is a framework that enables planners to identify

strategic opportunities which can enable the cost-efficient man-

agement of long-term uncertainty by taking into account the

inter-temporal resolution of uncertainty (e.g. [5], [6], [7]). In

this vein, non-network solutions such as storage, Demand-Side

Response (DSR) and FACTS devices can possess significant

strategic value, enabling planners to manage interim conges-

tion until investment in large-scale interconnection projects is

firmly established e.g. [8], [9]. It follows that a comprehensive

planning model is required to include a plethora of competing

investment options characterized by different building times,

thus resulting in scenario trees of high temporal resolution. In

addition, considering that the size of a scenario tree grows

exponentially with the sources of uncertainty it describes

along with the increasing need for extended chronological

simulations of time-shifting elements, new planning tools are

facing an extremely high computational burden; a meaningful

description of the transmission expansion planning problem is

given by large MILP models which may contain thousands of

binary variables and tens of millions of continuous variables.

Decomposition techniques, based on Benders Decomposi-

tion [10] have been broadly applied to power systems [11],

[12], [13] to optimize the desired objectives [14]. Transmission

and generation planning models exhibit a problem structure

which is highly exploitable by Benders decomposition meth-

ods [15] when a separation between investment and operation

costs is performed. Enhanced multi-cut formulations [16], [9]

have been proposed to improve convergence properties of

Benders decomposition techniques. However these traditional

decomposition techniques, which have been employed in the

past, are reaching their limits: in long-term planning problems

the master problem can quickly become intractable due to the

large number of binary variables.

In this paper, a novel multistage decomposition scheme,

based on Nested Benders decomposition [17], [18], is ap-

plied to the transmission planning problem. The proposed

decomposition is performed along the temporal axis defining a

sequence of master problems and subproblems similar to [19],

[20] where an averaging of the future cost with respect to the

realizations of the uncertainty is performed. The difficulties in

using temporal decomposition schemes in the context of plan-

ning problems due to the presence of non-sequential invest-

ment state equations are highlighted. To this end an efficient

and generalizable reformulation is proposed. Another major

challenge is the non-convex structure of subproblems due to

the presence of binary variables. To tackle this challenge,

recently-developed approximation and tight relaxation tech-

niques can be applied to the planning problem. Approximation

techniques for multi-stage stochastic optimization problems

with mixed-integer variables are reviewed and analyzed in

[21], [22]. A first approximation consists in relaxing the mixed

integer problems on the backward pass and estimating a lower

bound and an upper bound of the cost. Even if the relaxed

problem does not converge to the global optimum, the lower

bound and the upper bound give useful information on the

investment and if the gap is small, the solution given by the

upper bound is acceptable. If the solution is not acceptable

it is possible to refine the estimation of the bounds. Note

that the Nested Benders decomposition is well suited for

parallelization ([23] and [24]). The proposed scheme’s solution

validity and substantial computational benefits are clearly

demonstrated through the aid of case studies on test systems.

The model takes into account candidate investments on line

reinforcements and storage installations and models operation

across five typical days. It is of paramount importance to

stress that the impressive computational gains achieved with

the nested solution strategy are readily extensible to other

application such as the stochastic unit commitment problem

which also contains binary variables and non-sequential state

equations due to minimum up/down times.

II. PROBLEM FORMULATION

The stochastic process {ξ}NE

e=1, where NE , |ΩE |, affecting
the transmission planning problem is approximated by a

process forming a scenario tree which is based on a finite

set ΩM of nodes [25]. In the scenario tree the root node

m = 1 is located at epoch e = 1. Since we assume the first
epoch is not affected by uncertainty, at e = 1 there is only
one node which is the root node. Every other node m has a

unique predecessor m− = Φ
ε(m)−1
0 (m) and a set N+(m) of

successors. A node m belongs to stage ε(m) if its distance
from the root node is ε(m) − 1. A leaf node m is a node

at stage NE satisfying N+(m) = ∅ (it has no successors).
Probability that tree node m occurs is denoted by πm. Using



the scenario tree representation of the uncertainty it is possible

to formulate the stochastic transmission planning problem as

a MILP.

The objective of the transmission planning problem is to

minimize the expected system cost under the uncertainty

described by a multi-stage scenario tree while satisfying op-

eration and investment constraints. The mathematical formu-

lation presented in the following sections enables the strategic

investment in different line reinforcement options as well as

storage assets. Note that the presented planning framework

can accommodate other technologies such as DSR following

straightfroward modifications to the formulation (for an exam-

ple see [26]).

Two important aspects in transmission expansion models

are economies of scale and the delay between investment and

asset commissioning. Capturing the economies of scale present

in transmission projects is essential in modelling both timing

and sizing flexibility. The chosen approach is to express capital

costs in terms of fixed and variable components. The planner

can choose to incur some fixed costs for the ability to invest

in a specific project in the future. On the other hand, incurred

variable costs depend on the eventual reinforcement size, with

each option limited to a maximum capacity addition. In addi-

tion, the presented formulation enables the modeling of delays.

A set of investment options with different upgradeability levels

and construction times have been included in the formulation

to capture available choices present in a realistic setting, where

the planner can choose to invest in an anticipatory manner. Our

model includes investment candidate options in line capacity

and storage devices.

The expected system cost is a probability weighted

combination of discounted investment and operation costs,

V I
m(ρ,xm) and V O

m (ρ,xm) respectively and it is minimized
along a planning horizon

V ∗(ρ) = min
x

∑

m∈ΩM

πm

[

rI
ε(m)V

I
m(ρ,x) + rO

ε(m)V
O
m (ρ,x)

]

subject to

(4), (5), (6), (7)
(8), (9), (10)
(11), (12), (13)

(1)

where x, the vector of decision variables, and ρ the parameters

vector, are defined in the nomenclature. The investment cost

V I
m(ρ,xm) at node m is defined by

V I
m(·) =

∑

ℓ∈ΩL

∑

w∈ΩWℓ
(cℓ,wf inv

m,ℓ,w + γℓ,wβm,ℓ,w)χℓ

+
∑

n∈ΩNs
Hm,nκH

(2)

The operation cost V O
m (ρ,xm) at node m is defined by

V O
m (·) ,

∑

b∈ΩB

Wb

∑

t∈Ωb
T

τ b
t





∑

g∈ΩG

κG
g pm,t,g +

∑

n∈ΩN

Γdm,t,n



.

(3)

The aggregate capacity F inv
m,ℓ is the sum of the investment

decisions taken in all nodes belonging to the path Φ0(m)

subject to the building option time κℓ,w

F inv
m,ℓ =

∑

w∈ΩWℓ

∑

φ∈Φκℓ,w
(m)

f inv
φ,ℓ,w ∀ℓ ∈ ΩL,m ∈ ΩM . (4)

The bound on the capacity that can be built for line ℓ at node
m using investment option w is as follows

f inv
m,ℓ,w ≤

∑

φ∈Φ0(m)

βφ,ℓ,wFmax
ℓ,w −

∑

φ∈Φ1(m)

f inv
φ,ℓ,w (5)

where ℓ ∈ ΩL, m ∈ ΩM and w ∈ ΩWℓ
. Exclusive investment

options have been taken into account adding the constraints
∑

w∈ΩWℓ

∑

φ∈Φ0(m)

βφ,ℓ,w ≤ 1 ∀ℓ ∈ ΩL (6)

The amount of storage H̃m,n added up at bus n and node m
is given by

H̃m,n =
∑

φ∈Φ
γH (m)

Hφ,n ∀n ∈ ΩNs
(7)

The constraints (4),(5),(6) and (7) describe the evolution of

different forms of investment along the prediction horizon.

At the operational level the limits to the generation dispatch

for each operation point (m, t) is

0 ≤ pm,t,g ≤ p̄m,g,t ∀g ∈ ΩG, ∀t ∈ Ωb
T . (8)

The distribution of the power over the network is described by

the Direct Current Optimal Power Flow (DCOPF) formulation

as follows

fm,t,ℓ =
θm,t,uℓ

− θm,t,vℓ

Xℓ

∀t ∈ Ωb
T , ∀ℓ ∈ ΩL, ∀b ∈ ΩB ,

(9)

The system balance requires to impose that the sum of the

injected power in each node is equal to the local demand level
∑

g∈ΩG

Bn,gpm,t,g +
∑

ℓ∈ΩL

In,ℓfm,t,ℓ + dm,t,n − hm,t,n = Db
t,n

∀t ∈ Ωb
T , ∀b ∈ ΩB , ∀n ∈ ΩN ∀m ∈ ΩM

(10)

where dm,t,n ≥ 0 and it is used as a slack variable to
ensure that operation is feasible even in cases of inadequate

generation capacity. On each line ℓ the power flow has to
remain inside the available system capacity

−(F inv
m,ℓ+F 0

ℓ ) ≤ fm,t,ℓ ≤ F inv
m,ℓ+F 0

ℓ

∀t ∈ Ωb
T , ∀b ∈ ΩB

∀ℓ ∈ ΩL, ∀m ∈ ΩM

(11)

The storage operation can be effectively modeled with a first

order difference equation as follows

h̃m,t,n = ρef h̃m,t−1,n + τ b
t hm,t,n ∀t ∈ Ωb

T \{σb},
∀b ∈ ΩB , ∀n ∈ ΩNsT

∀m ∈ ΩM

hm,t,n = 0, h̃m,t,n = 0 ∀n /∈ ΩNsT

(12)

where the initial condition h̃m,σb,n for block b can be an input
parameter or defined as a decision variable. Moreover it can

be required to equate h̃m,σb,n to the value of h̃m,t,n at the

last period of the demand block b i.e. h̃m,σb,n = h̃m,Tb,n. The



operating storage is required to satisfy physical constraints

∀t ∈ Ωb
T , ∀b ∈ ΩB , ∀m ∈ ΩM

|hm,t,n| ≤ (H̃m,n + H0
n)h̄ ∀n ∈ ΩNs

|hm,t,n| ≤ H0
nh̄ ∀n ∈ ΩNsT

\{ΩNs
}

0 ≤ h̃m,t,n ≤ η̄ ∀n ∈ ΩNsT

(13)

The transmission planning problem (1), referred to as Un-

decomposed, requires the solution of a large-scale Stochastic

Mixed Integer Programming (SMIP) problem. The SMIP prob-

lem becomes computationally intractable using standard solu-

tion approaches when a considerable number of uncertainty

scenarios is included especially in the presence of a large num-

ber of binary variables. In [9] the transmission planning prob-

lem has been tackled with a Benders decomposition scheme.

The Benders decomposition allows to solve efficiently large

scale problems but it is not possible to include a sufficiently

significant number of possible scenarios because the size of

the master problem increase rapidly with the number of nodes

in the scenario tree and its solution become impossible. Here a

novel decomposition based on Nested Benders decomposition

scheme is used to render the model tractable for systems

with multiple scenarios and operating points. The proposed

decomposition is performed along the temporal axis defining

a sequence of master problems and subproblems similarly

to [19]. Each optimization problem can represent both a

master problem and a subproblem. A sequence of master

problems is solved forward in time to compute trial values

of the decision variables. Then a sequence of subproblems

is solved backward in time to compute the dual variables to

approximate the future cost in each optimization problem. The

application of this decomposition, based on Nested Benders, to

the dynamic formulation of the transmission planning problem

is not straightforward for three reasons: (i) the subproblems

contain binary variables, (ii) the investments are required to

satisfy dynamic constraints along the scenario tree and (iii) the

building time of the additional capacity is affected by delay.

III. TEMPORAL DECOMPOSITION AND INVESTMENT

MODELING

A multi-stage temporal decomposition requires that in each

stage the constraints are only coupled with decision variables

belonging to the previous stage as illustrated in Figure 1.

StageStageStage

xi−1 xi xi+1

yi−1

i i + 1i− 1

yi yi+1

Figure 1: Desired relation among stages.

The vector xi denotes the variables involved in stage i;
the output yi = Cixi, where Ci is a matrix of appropriate

dimensions, only depends on xi and describes the variables of

interest to the next stage i + 1. Since all the nodes belonging
to the same stage i are decoupled with each other we can
illustrate the optimization model looking at a single node m
belonging to stage i ∈ ΩE . The structure illustrated in Figure

1 is achieved by introducing additional variables and state

equations. Mutually exclusive investment constraints (6) in line

capacity can be reformulated, introducing additional decision

variables xβ
m,ℓ ∈ R for all ℓ ∈ ΩL, as follows

xβ
m,ℓ = yβ

m−,ℓ

xβ
m,ℓ +

NWℓ
∑

w=1

βm,ℓ,w ≤ 1 ∀ℓ ∈ ΩL

(14)

where yβ
m,ℓ , xβ

m,ℓ +

NWℓ
∑

w=1

βm,ℓ,w and xβ
1,ℓ = yβ

1−,ℓ
= 0.

Similarly limits (5) on transmission capacity f inv
m,ℓ,w for each

line ℓ ∈ ΩL at node m ∈ ΩM are required to satisfy

xc
m,ℓ = yc

m−,ℓ

xc
m,ℓ + Fmax,ℓβℓ

m − f inv
m,ℓ ≥ 0

(15)

where xc
m,ℓ ∈ R

NWℓ is an additional decision variable.

The inequalities in (15) are defined componentwise, yc
m,ℓ ,

xc
m,ℓ + Fmax,ℓβℓ

m − f inv
m,ℓ , xc

1,ℓ = yc
1−,ℓ

= 0, βℓ
m ,

[βm,ℓ,1, . . . , βm,ℓ,NWℓ
]′ Fmax,ℓ ∈ R

NWℓ
×NWℓ is a diagonal

matrix with the diagonal entries given by [Fmax
ℓ,1 , . . . , Fmax

ℓ,NWℓ
]′

and f inv
m,ℓ , [f inv

m,ℓ,1, . . . , f
inv
m,ℓ,NWℓ

]′. Note that the term

yc
m−,ℓ

∈ R
NWℓ describes the transmission capacity that has

been decided to be built in the set of all parent nodes of

m. Constraints (15) only depend on a subset of variables
belonging to the previous stage.

In contrast to βm,ℓ,w and f inv
m,ℓ,w, describing the investment

process, it is fundamental to note that the aggregate capacity

F inv
m,ℓ available for operational use at node m is affected by a
delay modeling the building time of the transmission capacity.

The choice of reinforcing line ℓ is taken at stage ε(m) but the
transmission capacity will be available at a stage j ≥ ε(m)
depending on the features of the expansion options. When

a delay larger than one stage is present, the sequential state

equations break down. As such, it is not straightforward to

get the structure required by Nested Benders’ decompositions.

The target structure can be achieved by defining an extended

state carrying information on when the capacity is going to

be available for operational use. Given ℓ ∈ ΩL let κmax
ℓ ,

max{maxw∈ΩWℓ
κℓ,w, 1}. Let zFℓ

m−,ℓ
∈ R

κmax
ℓ be a state

vector whose k-th entry contains the transmission capacity
decided by all father nodes of m which is available at stage
ε(m) + k − 1 for k = 1, . . . , κmax

ℓ . Let Bℓ ∈ R
κmax

ℓ ×NWℓ and

Aℓ ∈ R
κmax

ℓ ×κmax
ℓ be matrices whose elements, respectively

bℓ
j,w and aℓ

j,k for j = 1, . . . , κmax
ℓ , k = 1, . . . , κmax

ℓ and

w = 1, . . . , NWℓ
, are given by

bℓ
j,w =

{

1 if j ≥ κℓ,w w ∈ ΩWℓ

0 otherwise
(16)

aℓ
j,k =

{

1 if k = j + 1, or j = κmax
ℓ , k = κmax

ℓ

0 otherwise
(17)

The aggregate capacity F inv
m,ℓ for ℓ ∈ ΩL can be modeled by

xFℓ

m,ℓ = yFℓ

m−,ℓ

F inv
m,ℓ = xFℓ

m,ℓ(1) + Bℓ
0f

inv
m,ℓ

(18)



where xFℓ

m,ℓ = [xFℓ

m,ℓ(1), . . . , xFℓ

m,ℓ(κ
max
ℓ )]′ is a decision vector,

yFℓ

m,ℓ , AℓxFℓ

m,ℓ + Bℓf inv
m,ℓ with xFℓ

1,ℓ = 0 and Bℓ
0 ∈ R

1×NWℓ is

defined as

bℓ,0
w =

{

1 if κℓ,w = 0, w ∈ ΩWℓ

0 otherwise
(19)

According to (18), we have successfully rendered investment

variables at stage ε(m) to only depend onε(m) and ε(m)−1.
Constraints (14),(15) and (18) describe investment and com-

missioning of transmission capacity. The same approach can

be applied to investment options such as storage.

The storage capacity H̃m,n commissioned up to decision

point m, at bus n ∈ ΩNs
, can be modeled using the decision

vector xhn
m , carrying information on the amount of storage

available at node m decided in the previous stages, as follows

xhn
m = yhn

m−

H̃m,n = xhn
m (1) + Bh

0 Hm,n

(20)

where Bh
0 is a scalar equal to 1 if γH = 0 and 0 otherwise,

yhn
m = Ahxhn

m− + BhHm,n with xhn

1 = 0. The entries ah
j,k

and bh
j of A

h ∈ R
γmax×γmax

and Bh ∈ R
γmax×1 are defined

by

ah
j,k =

{

1 if k = j + 1, or j = γmax, k = γmax

0 otherwise
(21)

bh
j =

{

1 if j = γmax

0 otherwise
(22)

where γmax = max{γH , 1}. Using the proposed formulation,
constraints (20) at stage ε(m) only depend on variables at
stage ε(m) and ε(m) − 1. Then the maximum number of
decision variables added up to each optimization problem is

the same for all nodes and equal to |ΩL| +
∑

ℓ∈ΩL
|ΩWℓ

| +
∑

ℓ∈ΩL
κmax

ℓ + γmax|ΩNs
|. Note that all additional variables

can be defined to be continuous without affecting the optimal

solution.

IV. NESTED DECOMPOSITION APPLIED TO THE

TRANSMISSION PLANNING PROBLEM

In this section we propose a multistage decomposition

scheme exploiting the constraints’ structure achieved in

section III. The nodes of the scenario tree correspond to

decision points and a master problem and a subproblem is

associated to each node. In this way the original problem

is decomposed into small tractable optimization problems

of uniform size. However, the subproblems are not convex

since some of the variables have binary restrictions. A

convexification of the future value function can be achieved

by relaxing the binary decision variables to be continuous.

This relaxation allows us to compute Lagrange multipliers

in the subproblems and obtain a first approximation of the

future value functions. The relaxed formulation does not

guarantee convergence to the optimal solution but returns

upper and lower bounds. The upper bound gives the cost

of actually investing in options that are available whereas

the lower bound gives the cost of investing in the minimum

options required to meet the system constraints. If the gap

between the lower and the upper bound is too large it is

possible to refine the approximation arbitrarily by sequential

convexification techniques reviewed in [21], [22].

Let Vm(ρ,xm) , πm

[

rI
ε(m)V

I
m(ρ,xm) + rO

ε(m)V
O
m (ρ,xm)

]

.

The master problems and the subproblems at iteration k for
each node m are denoted by P

M
m (ρ, yk

m−) and P
S
m(ρ, yk

m−)
respectively and, they can be compactly defined by the

problem P
ζ
m(ρ, yk

m−) as follows

min
xm,αi

j
≥0

Vm(ρ,xm) +
∑

j∈N+(m)

αm
j (23)

subject to

(14), (15), (18), (20) (24)

(8), (9), (10) (25)

(11), (12), (13) (26)

If ε(m) < NE , αm
j ≥ V S,∗

j (ρ, yν
m) + (xI

m − xI,ν
m )′F ′

sΛ
S,ν
j

j ∈ N+(m), ν = 1, . . . , k − 1, k > 1 (27)

where xI,k
m denotes the investment variables contained in the

optimal solution xk
m to P

M
m (ρ, yk

m−). When ζ = S, all the
decision variables in the optimization problem P

S
m(ρ, yk

m−)
take values over the real numbers i.e the binary variables

are relaxed. The complicating variables are only given by

investment variables (see section (III)), so we can express the

Benders cuts (27) as linear functions of investment variables

denoted by xI
m. The vector Λk

ε(m) denotes the dual optimal

solution to P
S
m(ρ, yk

m−) and V S,∗
m (ρ, yk

m−) its optimal value
function. The dual optimal variables associated with the con-

straints containing terms belonging to yk
m− (see constraints

(14), (15), (18) and (20)) are indicated by ΛS,k
j . The matrix

Fs in (27) is such that y
k
m = Fsx

I,k
m (see Figure 1). Note that

in the proposed decomposition Fs is constant and identical in

each node so that it can be pre-computed in advance.

The proposed multi-stage decomposition algorithm, illus-

trated in Figure 2, is an iterative procedure solving a sequence

of master problems forward in time and a sequence of sub-

problems backward in time. The convergence criterion for the

iterative procedure is based on estimated lower bounds of the

optimal cost V ∗(ρ) of the transmission planning problem. A
convergence criterion typically used is checking if the lower

bound does not improve within a certain tolerance ǫ. The lower
bound at iteration k is given by

Zk
l = V M,∗

1 (ρ, yk
1−). (28)

where V M,∗
1 (ρ, yk

1−) is the optimal cost of the master problem
P

M
1 (ρ, yk

1−). The upperbound of V ∗(ρ) at iteration k is given
by

Zk
u =

∑

m∈ΩM

Vm(ρ,xk
m). (29)

Since the backward pass optimises a continuous relaxed

problem, the convergence of Zk
l and Zk

u to V ∗(ρ) is not
guaranteed. If a higher solution accuracy is required it is

possible to refine the convexifications of the subproblems



as described in [21], [22] at the expense of increasing the

computational burden.

k = k + 1

x
k
m

Data ρ, ǫ

Set Z0
l

= 0, Z0
u = +∞, k = 1

for m = 1, . . . NM

Forward pass

Solve P
M
m (ρ, yk

m−
)

If

Zk
l
−Z

k−1
l

Z
k−1
l

≤ ǫ

True

False

Λk
ε(m)

m = NM , NM − 1, ..., 2

Backward Pass

Solve P
S
m(ρ, yk

m−
) for

Zk
u

Zk
l

Set Z
u

= min
0<ι≤k

Z
ι
u

Figure 2: Decomposition Algorithm

The Benders decomposition applied in [9] solves a total of

|ΩB ||ΩM |+1 optimization problems per iteration. The number
of binary variables in the master problem is (

∑

ℓ∈ΩL
|ΩWℓ

|+
|ΩNs

|)|ΩM |. Note that the number of binary variables grows
linearly with the number of nodes NM = |ΩM | in the scenario
tree. The proposed decomposition requires the solution of NM

master problems and NM −1 subproblems. In our formulation
the number of binary variables involved in the master problem

P
M
m (ρ, yk

m−) is
∑

ℓ∈ΩL
|ΩWℓ

| + |ΩNs
| and does not depend

on the value of NM . Since mixed integer problems are NP-

Hard [27] it is preferable to formulate problems with a small

number of discrete variables; in this respect the proposed

decomposition is clearly advantageous compared to Benders’

decomposition when the value of NM is large.

V. IEEE-RTS CASE STUDY

In this section we analyse the computational benefits of the

proposed decomposition scheme using the IEEE24-bus system

(IEEE-RTS) [28] which is extensively used in benchmarking

studies worldwide. The network topology is the same as in

[28] but some minor changes have been implemented to render

the analysis more straightforward. The model consists of 24
buses, 39 lines and 27 generation units. The operating cost of
the three generation technologies, nuclear, coal and oil, have

been set to 6, 50 and 150 £/MWh respectively. In the first
stage the total conventional generation capacity is 3105 MW.

The length of all the lines is 50km and a line connecting buses
7 and 8 has been added. The hydro plants have been removed
to further increase the need for investment in this system. The

peak load is assumed to be 2850 MW along all the stages. The
uncertainty of the generation capacity of a prospective wind

farm development at bus node 24 is modeled as a scenario
tree using the variable input parameter pmax

m,g . In order to

model different operating conditions occurring during a year

we have used 5 demand blocks of 24 hours representing the
daily trend of the demand. One block for each calendar season

and an extra block modeling peak demand during the period

close to Christmas are introduced. The blocks representing

the calendar seasons are assumed to repeat 87.5 times while
the extra block is repeated 15 times. The repetition of the
blocks is included by weighting the corresponding part of the

cost accordingly. The weekly wind and loading time series

defining the input parameters Db
t,n and p̄m,g,t respectively

have been extracted from measurements of Great Britain’s

aggregate wind production and electricity demand in 2012.

In term of investment, the planner can choose to invest on

transmission line reinforcement and storage devices and the

value of the parameters are reported in Table I.

TABLE I: TRANSMISSION LINE REINFORCEMENT OP-

TIONS
w Reinforcement

Capacity [MW]
cℓ,w

£/(MW km yr)
γℓ,w

£/(km yr)
κℓ,w

A 200 50 60000 1, ∀ℓ
B 400 50 80000 1, ∀ℓ
C 800 50 130000 2, ∀ℓ

The transmission line reinforcement options have a building

time delay γℓ,w of 1 stage. The annualized capital cost of
storage devices amounts to 15, 000, 000£/yr and their building
time is not affected by delay. The energy capacity η̄ of the stor-
age device is 1600MWh and the maximum charge/discharge
rate h̄ is 400MW. Load curtailment has been economically
penalized using Γ = 30, 000 £/MWh. An annual discount rate
of 5% has been chosen to compute the cumulative discount
investment and operation costs rI

ε(m) and rO
ε(m).

The computational benefits of proposed Nested Benders’

decomposition is investigated comparing the performance with

the Undecomposed model and the Benders decomposition

used in [9]. The comparisons have been performed using a

single storage candidate at bus 24 and a binary scenario tree
with an increasing number of stages NE = 4, . . . 8 and nodes
NM .

The optimisation models have been implemented and exe-

cuted using Matlab with Gurobi 6.0 ([29]) on a Xeon computer

with two 3.46GHz processors. The standard Gurobi’s settings
have been used apart from selecting the Deterministic Con-

current approach. The convergence criterion for the Benders

decomposition in [9] is given by (Zu−Zk
l )/Zu ≤ 10−5 while

the stopping criterion of the Nested Benders decomposition

uses an ǫ = 10−12. Table II shows the numerical advantages

with respect to Benders Decomposition [9] and the original

undecomposed problem when the number of stages and nodes

NM in the scenario tree increases.



TABLE II: COMPUTATIONAL STUDIES

Nodes
NM

N. of
iterations

CPU
time

Cost lower
bound £m

Cost upper
bound £m

Benders decomposition

15 12 55s 6346.3 6346.3
31 15 5m 52s 6917.1 6917.1
63 11 3d 19h 39m 7309.5 7328.5
127 6 15d 14h 35m 7559.8 7642.9
255 7 21d 7h 7585.3 7674.4

Nested Benders decomposition

15 13 1m 58s 6301.3 6348.8
31 14 4m 28s 6840.8 6922.8
63 16 10m 39s 7219.7 7316.9
127 12 16m 13s 7449.2 7612.3
255 12 28m 28s 7464.9 7637.4

Undecomposed Problem

15 1 9m 3s 6346.3 6346.3
31 1 13h 19m 6917.1 6917.1
63 Timed out after 21 days

The number of iterations required by the decomposition

algorithms is practically uniform with respect to the number of

stages but the execution time required by the Benders decom-

position considerably increases with the number of scenarios.

In all the computational studies reported in table II the total

CPU time required by the Nested Benders decomposition is

less than half hour while the Benders decomposition requires

several days when the number of nodes in the scenario tree

increases. Moreover, note that the lower and upper bound of

the cost in the Benders decomposition does not achieve the

convergence criterion when the number of nodes is large,

even if the algorithm ran for several days. Table III shows

investment decision forNM = 15 together with the investment
(IC), operation (OC) and total costs (TC) for all scenarios. The

storage devices are denoted as STOR.

TABLE III: CASE STUDY FOR NM = 15.

Investment Decisions Costs (£m)

Epochs
1 2 3 4 IC OC TC

Benders’ decomposition

s1 STOR A(6, 7) A(27) − 269.1 5225.1 5494.2
s2 STOR A(6, 7) A(27) - 269.1 5322.2 5591.3
s3 STOR A(6, 7) - - 251.2 5610.5 5861.7
s4 STOR A(6, 7) - - 251.2 5830.8 6082.0
s5 STOR - A(7) - 212.4 6208.7 6421.0
s6 STOR - A(7) - 212.4 6410.6 6623.0
s7 STOR - - - 196.3 6863.9 7060.2
s8 STOR - - - 196.3 7203.3 7399.6

Nested Benders’ decomposition

s1 STOR A(7) A(6, 27) - 258.4 5249.3 5507.7
s2 STOR A(7) A(6, 27) - 258.4 5346.2 5604.6
s3 STOR A(7) - - 224.4 5630.0 5854.4
s4 STOR A(7) - - 224.4 5832.1 6056.5
s5 STOR - A(7) - 212.4 6208.7 6421.0
s6 STOR - A(7) - 212.4 6410.6 6623.0
s7 STOR - - - 196.3 6863.9 7060.2
s8 STOR - - - 196.3 7203.3 7399.6

The scenario tree used in this case for the IEEE-RTS case

study is reported in Figure 3.
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Figure 3: Transition probabilities for NM = 15

VI. CONCLUSIONS

In this paper a novel multistage decomposition scheme

is applied to the transmission planning problem. The main

difficulty in using temporal decomposition schemes in the

context of planning problems is due to the presence of non-

sequential investment state equations. A general formulation

of non-sequential investment constraints suitable for temporal

decompositions is attained. The implemented decomposition

is based on the definition of a master problem and a sub-

problem for each node in the scenario tree; each iteration

of the algorithm solves NM optimization problems. In this

way the original problem is decomposed into small tractable

subproblems with an uniform size. This is contrasted to

conventional Benders’ decomposition approaches where the

number of binary variables present in the master problem

increases linearly with the number of scenario tree nodes NM .

Through case studies on IEEE-RTS we show the significant

computational benefits obtained by applying the temporal de-

composition when the size of the scenario tree increases. The

use of the problem structure in the proposed decomposition

renders the transmission planning problem tractable for long-

term cost-benefit studies. The proposed framework is efficient

and highly-generalizable to investment and operation problems

involving decision delays.
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