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Abstract—This paper describes a new hardware-efficient
method and implementation for neural spike sorting based
on selection of a channel-specific near-optimal subset of fea-
tures given a larger predefined set. For each channel, real-
time classification is achieved using a simple decision matrix
that considers the features that provide the highest separability
determined through off-line training. A 32-channel system for on-
line feature extraction and classification has been implemented
in an ARM Cortex-M0+ processor. Measured results of the
hardware platform consumes 268µW per channel during spike
sorting (includes detection). The proposed method provides at
least x10 reduction in computational requirements compared to
literature, while achieving an average classification error of less
than 10% across wide range of datasets and noise levels.

I. INTRODUCTION

Hidden among the interactions of billions of neurons in
the brain are the cures for neurological diseases and disability.
Over the past decades, many neural recording systems have
been proposed in order to extract this wealth of information for
advancing neuroscience research as well as developing better
assistive devices and neural prosthetics [1]–[3]. Improvements
in microfabrication techniques, as well as in microelectronics,
present a unique opportunity to monitor large groups of
neurons at an individual level. It has been projected that
thousands of channels will be monitored in future neural
recording systems [4]. However, biological limits on allowable
thermal dissipation (to prevent tissue damage) imposes strict
constraints on the wireless transmission (required to eliminate
percutaneous wires to minimise risk of infections) of such large
amounts of data, hence dimensionality reduction is required.
On-node spike sorting prior to wireless transmission is a way
of overcoming this power and bandwidth bottleneck.

Traditionally done off-line, spike sorting is a source separa-
tion task during which spiking neurons are identified based on
their distinguishing characteristics (e.g. features). The typical
processing flow comprises spike detection, feature extraction
and spike classification. Since on-node spike sorting trades-
off processing power to reduce wireless power, feasibility of
such approach requires developing computationally efficient
and accurate spike sorting methods. Hence, several feature
extraction methods have been proposed in literature within
this context. Among these are discrete derivatives (DD) [5],
zero-crossing features (ZCF) [6] and first and second derivative
extrema (FSDE) [7], and feature de-noising filter together with
optimal features [8].

In this paper, a new method for online spike sorting is pro-
posed and demonstrated in a low power embedded platform.
The remainder of this paper is organized as follows: Section

II provides a high level description of the proposed method,
while Section III details algorithm design and hardware im-
plementation. In Section IV the spike sorting accuracy and
computational efficiency of the proposed method is verified
through Matlab simulations and circuit measurements, fol-
lowed by conclusions in Section V. From here on, the proposed
method is referred as waveform and derivative features (WDF).

II. PROPOSED METHOD FOR SPIKE SORTING

The high level description of WDF is presented in Fig. 1.
It consists of two parts: calibration and real-time classification.
During calibration, neural data is streamed out to an external
device where initial clustering of the data establishes available
neurons (N ) and their associated waveforms (i.e. templates).
The training algorithm then finds the positions of local extrema
for each template. These positions of extrema are considered as
possible regions of maximum separation between neurons, de-
noted as S (see Section III). Training algorithm then searches
for a subset of features (denoted by P ) within S that maximises
separation of all N . For example, P1,2 is the sample index of
the feature that maximally separates neuron #1 and neuron
#2. This approach ensures channel-specific selection of near-
optimal features. For P , a corresponding comparison threshold
vector, T , is also computed.

Fig. 1. A high level description of the proposed method for spike sorting.

Training algorithm then sends P and T back on-chip.
During real-time classification, features are extracted using P ,
compared to corresponding T , and a vote is cast for either of
the relevant neurons. For example, considering P1,2 (Fig. 1),
feature extracted at this position differentiates neurons #1
and #2. Since feature at P1,2 is above T1,2 , it is likely
to belong neuron #1. The same is done for all P and the
detected spike is assigned to neuron with maximum votes. It
should be noted that derivative space is also included in WDF.
The same procedure above is also applied to second derivative
waveforms.



III. ALGORITHM DESIGN AND HARDWARE
IMPLEMENTATION

A. Feature Selection

The selected feature space is based on the waveform
dynamics of EAPs relative to the electrode position. It has
been shown that EAP can be modelled as a dipole charge, and
its amplitude scales with distance from the source [9]. In fact,
the paradigm where identical neurons laterally aligned would
have the same waveform expansion time, however, would scale
differently in amplitude has been the motivation for previous
derivative based feature extraction studies such as FSDE [7].

Besides amplitude scaling, the electrode position relative
to different sections of neuronal structure also affects the ex-
pression of other critical features — initial positive capacitive
peak and re-polarisation phase — of the EAP due to variations
in current components across the neuronal structure [10]. For
example, the amplitude of the initial capacitive peak can range
along apical trunk from none (closer to soma) to almost as
same as the main peak (closer to more distant dendrites) [11].
Furthermore, it has been shown that differences in conduction
densities is another major source of variability observed in the
main peak and re-polarisation phase. These result in variations
in the width and amplitude of the main peak and re-polarisation
phase, as well as variations in inflection points associated
between their transition [11].

Based on the underlying analysis of waveform dynamics,
one can hypothesize that the main features affected are at the
local extrema and the inflection points of the EAP and its
derivatives. In other words, characterisation — thus separation
— of signals may be done using EAP amplitudes and rates of
change at such local extrema and inflection points. In fact, an
empirical study of the recorded EAPs reveal that the majority
of separation between EAPs are in fact at these local extrema.
Fig. 2 presents the amplitude and temporal variation profiles
of local extrema of EAP and their derivatives up to third
order. Based on waveform dynamics and empirical evidence,
the features with highest variability are considered as potential
candidates for proposed algorithm (features 1,2 and 3 for EAP
waveform; 2 and 3 for first derivative; 2,3, and 4 for both
second and third derivatives).

Among the determined feature space above, combining
EAP waveform and second derivative features are found to
provide the best trade-off in terms of accuracy and compu-
tational complexity across various datasets at varying levels
of background and added white Gaussian noise (AWGN)
noise (see Section IV for datasets). This result is attributed to
derivatives’ superior performance at high background activity,
while waveform features are more tolerant to increases in
AWGN. In fact, the rate of sorting accuracy loss of derivatives
for AWGN is observed to be are 0.44%, 0.60% and 0.72%
per dB (increasing order of derivatives), while this is 0.25%
per dB for EAP waveform features. On the other hand, it
can be observed that higher derivative orders are better at
rejecting background activity. Although from the perspective
of computational requirements first derivative is preferable, the
average classification accuracy of second and third derivatives
are better than the first by 4.6% and 3.6% respectively across
all datasets and noise levels (7.57% and 6.20% for “Difficult1”
and “Difficult2” only ). Hence, second derivatives provide a
significant accuracy improvement with minimal increase in

Fig. 2. Variations in (a) EAP waveforms (b) First Derivative (c) Second
Derivative (d) Third Derivative. X-axis samples, Y-axis normalised amplitudes.
In addition to distributions, given are they typical waveforms and numbered
local extrema associated with each. Note that since EAPs are aligned with
respect to their main peak, there is no temporal spread at peak position.

computational complexity (extra addition and shift operation
per feature) over first derivatives. The reason why third deriva-
tives are 1% worse than second is attributed to the fact that
differentiation at the presence of AWGN reduces overall SNR.
Therefore, features 1,2,3 for EAP waveform and 2,3,4 for
second derivatives is the chosen feature space for training
algorithm to search (denoted by S previously).

B. Off-chip Calibration

As described previously, the initial training clusters the
EAPs and creates their template waveforms. Then, the posi-
tions of the local extrema of the waveform and derivative space
are found for each neuron template. Among these positions of
extrema, the training algorithm searches for sample positions
Pi,j for each neuron — where i, j ∈ N , i 6= j, and N is the
number of neurons — such that features at Pi,j has the largest
L1-distance (hence separation).

For example, considering N=3, three feature positions
(P1,2, P1,3, P2,3) are required from both the EAP waveform
and second derivative space (total of 6 features). In addition to
feature positions, corresponding comparison thresholds (Ti,j)
are also computed. Ti,j is the mid-point of the features at
Pi,j scaled according to the spread (i.e. standard deviation) of
feature j and i at Pi,j . Without such scaling, the threshold
will be placed exactly at midpoint, and may cause errors
in classification if there exists a significant difference in
distribution of features j and i (see Fig. 3).

It should be noted that although training requires a cluster-
ing algorithm in order to establish neurons and their templates,
perfect clustering and template creation is assumed. This is to
prevent the choice of clustering method to affect the evaluation
of WDF.

C. Feature Extraction and Classification

Feature extraction relies on the feature positions of maxi-
mum separation, Pi,j , determined during training. As the EAPs
are detected, features at Pi,j are compared with threshold
values Ti,j . The procedure for comparison based classification



is illustrated in Fig. 3. Considering X is the feature extracted
at Pi,j , it is compared to Ti,j . Since X is below Ti,j , it is
highly likely that recorded action potential belongs to neuron
#j. Hence, neuron #j receives a vote. This procedure is done
for all Pi,j , and the detected EAP is assigned to neuron with
the majority of the votes.

Fig. 3. Illustration of the threshold choice (Ti,j ) based on distributions of
features i and j, and the mechanics of comparison based classification.

In order to improve the classification accuracy, a weighted
voting scheme is employed by taking into account the standard
deviation of the noise. If X is within one standard deviation
of Ti,j , the weighting of the vote is 1. If X is beyond
one standard deviation of Ti,j , the weight of the vote is 2.
Although this approach increases computational complexity by
one comparison per Pi,j , the classification accuracy improves
by 4.73% on average (8.19% for difficult only), while at some
instances improving up to 11%. The standard deviations of
noise are calculated separately for EAP waveform and second
derivative space.

D. Embedded Hardware Platform

A high level description of the implementation is given
in Fig. 4. WDF is implemented and verified on an MCU-
based platform, FRDM-KL25Z, running an ARM Cortex-
M0+ processor. MCU-implementation also incorporates single-
amplitude spike detection as described in [12].
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Fig. 4. High level block diagram of the implementation.

Following verification of WDF, RHD2216/32 analogue
front-end (AFE) by Intan Technologies is chosen for com-
plete recording system implementation. The AFE provides
16/32 amplifier channels with software configurable band-
width (0.1 Hz to 20 kHz) and sampling rates (1kS to 30kS).
Furthermore, a Graphical User Interface (GUI) is developed
in MATLAB which allows users to: (1) stream neural data
and perform training, (2) monitor the spike sorting output,
(3) display neural recording statistics (e.g. ISI diagrams and
spike count rates), and (4) save or load a recording session. It
should be noted that Kinetis KL43Z is used for the complete
system implementation. This choice is due to the fact that Intan
requires 16-bit SPI connection to communicate instructions
and data, and KL25Z MCU only has 8-bit SPI option.

IV. RESULTS

The investigations and verification of WDF are performed
in MatlabTM R2011b v7.13. It is then followed by hard-
ware specific verification and measurements. For the real-time
demonstration of WDF, KeilµVision 5 embedded development
environment is used. Synthetic datasets at varying background
activity levels (σnoise: 0.05, 0.10, 0.15 and 0.20) are used to
assess spike sorting accuracy [12]. In addition to background
activity, AWGN arising from electronic noise, axons, dendrites
and synaptic currents — can also be significant. Even only
considering the contribution from electronics, noise contribu-
tions up to 11µVrms are observed in literature [13]. Therefore,
additional AWGN are added to the above datasets.

WDF is compared to other hardware-efficient feature ex-
traction methods such as DD [5] and FSDE [7], as well as
template matching (TM) which uses complete sample space.
In addition, principle component analysis (PCA) is also in-
cluded since it is regarded as the “gold standard”. WDF
is assessed both in terms of sorting accuracy and computa-
tional complexity. For the feature extraction methods (from
literature) compared herein, K-means has been used as the
clustering/classification method. The spike sorting accuracy is
evaluated as % Accuracy = No. of correctly sorted spikes

Total no. of spikes ×100%. The
computational requirements are assessed through a complexity
figure-of-merit CFOM = Nadd + 10 × Nmult, where Nadd

is the number of additions and Nmult is the number of
multiplications required [5].

The trade-off between sorting error and computational
complexity is shown in Fig. 5. It is clearly observed from
Fig. 5 (a) that the feature extraction proposed performs sig-
nificantly better than others. While the two derivative based
methods (FSDE and DD) are closest in terms computational
complexity, computational efficiency of WDF is more than
an order of magnitude. This primarily due to the fact that
WDF trades-off memory (Pi,j) for extracting features. The
only computation that dominates CFOM is calculating the
second derivative features. However, unlike other methods such
as FSDE that computes the derivatives for whole sample space,
WDF calculates the second derivatives only at Pi,j resulting in
better CFOM. Besides feature extraction, classification method
is also very efficient. In fact, the classification of each detected
EAP takes 18 additions(1 comparison = 1 addition).

Fig. 5. Comparison of the methods (averaged across datasets and noise
levels) in terms of classification error and (a) feature extraction complexity, (b)
dimensionality reduction (no. of extracted features / no. of samples per spike)

On the other hand, better sorting accuracy of WDF com-
pared to other derivative features is attributed to two factors.
The primary factor is the use of EAP waveform features which
are least affected by increasing AWGN levels (compared to



derivative features). The second is the extraction method itself.
Since the feature selection is done on averaged waveforms
during training (i.e. neuron templates), the effects of AWGN
on feature selection is minimised. On-node feature extraction
step is merely finding the relevant position of the feature. This
is in contrary to derivative methods that needs to operate on
derivatives. For example, FSDE relies on calculating max/min
on the derivative waveforms which with increasing AWGN
may introduce artificial spikes that can be picked up as the
max/min resulting in incorrect feature extraction.

AWGN (μV)

Ba
ck

gr
ou

nd
 A

ct
iv

ity
 (s

td
) 

−3

−2

−1

0

1

2

3

4

5

6

7

8

A
ccuracy D

i�erence %

Ba
ck

gr
ou

nd
 A

ct
iv

ity
 (s

td
)

Ba
ck

gr
ou

nd
 A

ct
iv

ity
 (s

td
)

Ba
ck

gr
ou

nd
 c

tiv
ity

 (s
td

)

(a) (b)

(c) (d)

0.05

0.20

0.05

0.20

0.05

0.20

0.05

0.20

AWGN (μV)

AWGN (μV) AWGN (μV)

1 11 1 11

1 11 111

Fig. 6. Spike sorting accuracy difference between Matlab and MCU
implementations at various background activity and AWGN levels of test
datasets(a-d). (a) Easy1 (b) Easy2 (c) Difficult1 (d) Difficult2

The sorting accuracy difference between Matlab simula-
tions and MCU-implementation is presented in Fig. 6. The
average accuracy loss is 5.52% (σ=1.74%) compared to Matlab
simulations, while the maximum loss observed is 9.32%.
Considering that the sample resolution for real-time imple-
mentation is 8-bits compared to double-precision in MATLAB,
5.52% average accuracy loss is an expected trade-off between
performance and hardware resource utilisation.
TABLE I. MEASURED POWER CONSUMPTION PER CHANNEL (IN µW)

Ch. No. Idle Comm. Det. & Sort Total

1 487 4610 700 5800
8 2210 525 388 3130

32 588 110 268 975

The combined power consumption for detection and sorting
is measured to be 268µW/channel, which sorting (i.e. WDF
algorithm) consumes 5% of (see Table I1). Despite the WDF
algorithm being very efficient and scalable, implementation
is nevertheless off-the-shelf and sub-optimal. For example,
268µW/channel could further be reduced by monolithically
integrating the ARM-core (for WDF) and an ASIC realisation
of detection. Such implementation is estimated to consume
33.8µW2 for detection and 0.3µW3 for sorting code executed
in IP Core (without I/O), hence reducing the detection and
sorting power (by×8) to 34µW/channel. The total power

1The idle power, consumed by having KL25Z on, is measured in the absence
of communication, detection and sorting.

2Estimation (per channel) includes spike alignment and memory. It is based
on implementation synthesized for Igloo Nano AGLN250V2.

3Excludes memory access. Assumes 3 neurons/channel (each spiking at 20 Hz).

consumption is also reduced as such implementation eliminates
the redundant MCU-peripherals.

V. CONCLUSION

A new feature extraction and a classification method have
been presented and implemented on an MCU-based platform.
When compared against other hardware efficient methods in
literature, WDF achieves the best trade-off in spike sorting
accuracy and computational requirements.

The high accuracy of the WDF is due to the selection of a
channel-specific near-optimal subset of features based on the
local extrema of the EAPs and their second derivatives, which
are shown to provide the highest separability and noise immu-
nity (both background activity and AWGN). The computational
efficiency of WDF is due to simplicity of feature extraction and
classification. Feature extraction computes second derivatives
only at feature positions, while classification is based only on
simple comparison operations.
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