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Abstract

The design of mixtures plays an important role in improving process and product performance
but is challenging because it requires finding the optimal number, identities and compositions of
mixture components and using nonlinear property models. To address this, a general modeling
framework for mixture design problems is presented. It integrates Generalized Disjunctive Pro-
gramming (GDP) into Computer-Aided Mixture/blend Design via Hull Reformulation (HR). The
design methodology is applied successfully to a case study involving solid-liquid equilibrium cal-
culations to find an optimal solvent mixture that dissolves ibuprofen. The results show that the
proposed GDP-based approach appears very promising for the design of mixture problems. The
HR approach is used to solve mixture problems successfully. Its overall computational efficiency
is found to be better than that of Big-M approach. Numerical difficulties arising from the absence
of components in the final mixture can be avoided, leading to computationally efficient solutions.
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1. Introduction

The design of mixtures is an essential activity across a wide range of chemical engineering appli-
cations, from separation processes to product design. Although pure compounds can be used in
many applications, they do not always offer the desired performance. Moreover, restrictions arise
on the use of common compounds as a result of changing regulations (e.g., REACH regulations).
The formulation of mixtures, on the other hand, offers a potential route to enhanced performance,
because mixtures can exhibit properties that equal or even surpass those of pure components.

Hence, over the last decades there has been growing interest in the development of systematic
methods, within the Computer-Aided Mixture/blend Design (CAMbD) framework (Achenie et al.,
2003} |Gani, 2004)), for the determination of optimal mixtures. Several methodologies for designing
solvent mixtures, blends of refrigerants and polymers have been reported in the literature. Bux-
ton et al.| (1999) proposed a systematic decomposition-based procedure to select optimal solvent
blends for nonreactive, multicomponent gas absorption processes. |[Karunanithi et al.| (2005} pro-
posed a decomposition-based computer-aided molecular/mixture design methodology which was
applied successfully to two solvent design case studies. A Multi-Objective Optimisation approach
was developed by |[Papadopoulos et al.| (2013) for obtaining the optimal binary fluid mixtures for
organic Rankine cycles. [Siougkrou et al.|(2014)) investigated the design of binary solvent mixtures
as part of the conceptual designs of reactive processes. Their approach focused on the design
of a CO,-expanded solvent and its impact on process performance. In the area of refrigerants,
Duvedi and Achenie| (1997) proposed a mathematical programming framework for the design of
environmentally-friendly refrigerant mixtures. |Vaidyanathan and El-Halwagi| (1996)) proposed a
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general and systematic methodology for the design of polymer blends, where binary polymer mix-
tures that match a set of target properties were determined. In a different approach, |Solvason et al.
(2009) proposed a methodology where property clustering techniques were integrated with the
existing mixture design framework to design multicomponent mixtures. |Yunus et al.| (2014) pre-
sented a systematic four-step methodology for the design of blended liquid products.

Two aspects of general mixture design problems make them particularly challenging: the com-
plexity that arises from dealing with a mixture with an unknown number of components and
the numerical difficulties that accompany large nonlinear and combinatorial problems. Indeed,
the majority of existing methodologies focus on the design of mixtures with a fixed number of
components and have been applied mostly to binary mixtures (Buxton et al.| [1999; |Karunanithi
et al.l [2005; Papadopoulos et al.| 2013} |Siougkrou et al.| 2014} |Duvedi and Achenie, [1997)), with
some exceptions such as the work of Klein et al.| (1992), Solvason et al.| (2009)) and [Yunus et al.
(2014) who have presented methodologies for the design of multicomponent mixtures. Further-
more, within the CAMPD framework, the design problems have often been posed as Mixed-Integer
Nonlinear Programming (MINLP) problems, where the optimal molecular structure is determined
with respect to a set of property constraints. Solving the resulting mixed integer optimization
problems can be challenging due to nonconvexities in the space of the continuous variables and a
large combinatorial solution space which may lead to several numerical difficulties.

In view of the challenges that remain in the area of formulation design, the main purpose of this
work is to create a comprehensive and systematic mathematical programming approach for the
solution of the generalised CAMPD problem. We have recently proposed (Jonuzaj et al., 2015) a
novel methodology where the number, identity and compositions of mixture constituents are op-
timised simultaneously. Within this approach, Generalized Disjunctive Programming (GDP) (Ra-
man and Grossmann, 1994) was employed to formulate the CAM®D problem, in order to address
the difficulties arising from the complexity of the model and facilitate the problem formulation.
Although GDP has been applied to process network systems, scheduling and distillation column
design (Grossmann and Trespalacios| [2013)), it had not previously been used in formulating mix-
ture problems. In our initial work, the GDP problems were reformulated as MINLP problems
using the Big-M (BM) approach. Here the approach is extended to Hull Relaxations (HR) and a
comparison of the relative performance of big-M and HR approaches is presented.

2. Problem formulations

The GDP formulations were introduced and described in detail in our recent work (Jonuzaj et al.,
2015)); we focus here on investigating the use of BM and HR approaches on mixture problems.
The CAMPD problem involves the generic formulation of the mixture design problem where the
optimal number of mixture ingredients, the optimal identities of the components and their com-
positions are identified, such that all given specifications are satisfied and the performance ob-
jective is optimised. The mixture to be designed consists of fixed molecules (e.g., solutes) and
unknown components (e.g., solvents) that are selected from a predefined list. In order to develop
the formulations, we define several index sets. The first is the set of components in the mixture,
I={1,...,N.}, where N, is the total number of components. We define N" as the number of fixed
components and N4 as the maximum number of components to be designed (i.e., the maximum
number of components in the mixture is N, = N’ + Nygr). N = {1,...,Nyax} is the set of com-
ponents to be designed and the set S = {1,...,N;} defines the list of compounds from which the
unknown mixture components must be chosen.

2.1. GDP formulation of the CAMPD problem

The GDP formulation of the CAMPD problem consists of the objective function, f(x), general
constraints, g(x), that must hold regardless of the discrete choices, conditional constraints that
depend on the discrete choices and are formulated inside disjunctions, and logic relations, Q(Y),
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that connect the disjunctive sets. Two different sets of disjunctions are included in the formulation.
The first set involves disjunctions for selecting each component from a list of pure compounds;
the each compound is assigned through Boolean variables, ¥; ; (a compound s is (not) assigned to
component i in the mixture if ¥; ; is True (False)). The second set involves property constraints that
depend on the number of mixture ingredients and that are active when the corresponding Boolean
variable ¥, is True. The GDP formulation of the mixture problem can be written as:

miyn f(x)
s.t. g(x) <0

~ ?l’l
v Fy(x) <0
n=belmas | >0k i=N'+2,..,N +n
x=0,i=N+n+1,...,N,
Q(Y) = True
xe kAl CcrR™
Y € {True,False}, i=N'+1,..,N.; s€S
Y, € {True,False}, n=1,...,Nyax

(GDP)

where the vector h; ; represents the constraints inside the disjunctions for the assignment of com-
pounds and are active when compound s is assigned to the i component in a mixture. £, is a
vector of constraints that depend on the number of components in the mixture. Without loss of
generality, the first N’ + N,,q, variables in vector x are taken to be mole fractions of components
in the mixture. The mole fraction, x;, of a component i is greater than a threshold value xiL if the
component is present in the mixture and is zero otherwise. The GDP formulations are converted
into MINLP problems by replacing the Boolean variables with binary ones (Y;, and Y, are re-
placed with y; ¢ and §,, respectively) and converting the logic propositions into linear inequalities.
Conditional constraints inside the disjunctions are formulated using the BM and HR approaches.

Both BM and HR models have a one-to-one correspondence with the GDP formulation. The BM
approach is the simplest representation of a GDP problem in a mixed-integer form. However,
it introduces a large parameter (M) which is often specified intuitively and can lead to poor re-
laxations. The HR approach, on the other hand, introduces a new set of disaggregated variables
(e.g.,Vis,vin) and new constraints, increasing the size of the problem. The big-M model derived
from the general GDP formulation was presented in our initial work (Jonuzaj et al.,[2015)), whereas
the HR model is described in the following subsection.

2.2. GDP converted into MINLP via Hull Reformulation

In the HR formulation, the continuous variables are disaggregated into additional variables for
each disjunctive term (e.g., x; is disaggregated into v;,). Each nonlinear disjunctive constraint,
his(x) <0, can be formulated using the approximation proposed by [Sawaya and Grossmann
(2007) in order to avoid singularities:

Vis

(L =&)yis+€)hig ((l—g)yls-|—g

> —& hi,s(o)(l *)’i,x) <0,

where € is a small finite number (usually varying from 104 to 10~®). Hence, the resulting MINLP
model derived by applying the HR approach in the mixture problem is written as follows:
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where Ay < b is a set of linear inequalities resulting from the logic relations, Q(Y). [Lee and
Grossmann| (2003)) showed that in the case of convex problems the HR bounds are at least as tight
or tighter than BM.

3. Case study: maximizing the solubility of ibuprofen

The objective of the design problem is to identify an optimal solvent mixture in order to max-
imise the solubility of ibuprofen, x;3, (i.e., the mole fraction of ibuprofen in the mixture) at 300 K.
We have already addressed and described the problem of identifying appropriate solvents or sol-
vent mixtures that dissolve ibuprofen (Jonuzaj et al., |2015) and this application is thus a suitable
example to investigate the use of the proposed GDP formulations for CAMPD.

3.1. Problem description

The problem includes phase stability and phase equilibrium relations which increase the complex-
ity of the models. In particular, the mixture problem is highly nonlinear and nonconvex due to the
solid-liquid equilibrium relations for calculating the solubility of ibuprofen, the UNIFAC model
for calculating the activity coefficients and miscibility functions for every binary pair of solvent
molecules, which are presented in Table[T] In order to reduce the complexity of the model two
scenarios are considered: first a simpler problem is formulated where only basic thermodynamic
properties (in this case, solubility) are included in the model and then a set of highly nonlinear
constraints (here, miscibility of solvent components) is added to the problem formulation. For
both scenarios, the standard problem with fixed number of solvent components and the general
problem, where the number of components in the mixture is bounded by an upper limit, are for-
mulated. Hence, mixtures with one, two, three solvents (N=1 ,2, 3 - restricted problem) and at
most three solvents (N <3 - general problem) are designed. The solvents are selected from a list
of 9 candidate compounds. The solvent molecules, the design sets and the size of the general
MINLP formulations (i.e., number of equations and variables in the BM and HR models of the
general problem) are also presented in Table|l] In the restricted problem, disjunctive constraints
are expressed algebraically by directly multiplying the relevant equations with the binary variables
Yi,s» avoiding the use of big-M parameters (when formulating via BM) or disaggregated variables
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Table 1: Problem specifications

Description N<3
Components in mixture ibu, ¢y, ¢3, ¢3
. .j
Model Equations InXipy + In Yo = 2w | L 1} ‘9‘"3{ +-L. >0, UNIFAC Model
R Tim T 9 XI_-/ xi‘J

Acetone, Chloroform (chlorof), Ethanol, Ethyl-acetate,
Methanol (meth), MIBK, 2-Propanol, Toluene, Water
Size of general MINLP BM: 594 equations, 72 discrete variables, 361 continuous variables

Candidate solvents

(all properties included) HR: 703 equations, 72 discrete variables, 545 continuous variables
Size of general MINLP BM: 241 equations, 72 discrete variables, 60 continuous variables
(miscibility excluded) HR: 272 equations, 72 discrete variables, 87 continuous variables

(when formulating via HR) in the MINLP model. Therefore, both BM and HR models result in
the same MINLP formulations for the restricted model.

3.2. Results and discussion

All models were implemented and solved in GAMS version 24.2.3 and were run on a single core
of a dual 6 core Intel Xeon X5675 machine at 3.07GHz with 48GB of memory. Several global
solvers were tested but did not reach convergence, and DICOPT, a local MINLP solver, was used to
solve the problems. Due to the highly nonlinear nature of the equations and the size of the models
(see Table[I)), multiple initial guesses were used and several local solutions were identified. The
best solutions obtained from all the runs with different starting points, in the first (i.e., without
the miscibility constraints) and in the second scenario (i.e., with the miscibility constraints) are
summarised in Tables[2]and [3] respectively. The highest solubility is achieved in a mixture of two
solvents. A mixture of chloroform and water is identified as the optimal solvent mixture when the
miscibility functions are not included in the formulations and a binary mixture of chloroform and
methanol is identified as optimal when the miscibility constraints are added.

In both scenarios, the CPU time increases rapidly with the number of components, due to the
increased size and complexity of the problems. HR formulations of the general problem require
less CPU time than BM formulations. In the second scenario, HR appears to be more effective
than solving the highly nonlinear problem with a fixed number of mixture components several
times (N = 1,2,3), from the perspective of computational cost.

Table 2: Results of BM (Jonuzaj et al.,2015) and HR formulations without miscibility constraints.

Case Xibu cl Xe, 2 Xe, c3 Xes CPU(s)
N=1 0.31833 chlorof 0.68167 0.35
N=2 0.34928 chlorof 0.49706 water 0.15366 5.02
N=3 0.34915 chlorof 0.49691 water 0.15294 meth 0.00100 114.49
N<3 (BM) | 0.34928 chlorof 0.49706 water 0.15366 316.92
N<3 (HR) | 0.34928 chlorof 0.49706 water 0.15366 223.89

4. Conclusions

A general methodology for designing optimal mixtures using GDP within the CAMPD frame-
work has been presented. Employing GDP techniques to formulate the discrete choices inherent
in the mixture design problem can facilitate the problem formulation, making it possible to opti-
mise simultaneously the number, identities and compositions of components in the mixture. Both
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Table 3: Results of BM (Jonuzaj et al.,[2015) and HR formulations with miscibility constraints.

Case Xibu cl X¢, ) Xe, c3 Xes CPU(s)

N=2 0.33383 chlorof 0.52292 meth 0.14325 4.87

N=3 0.33375 chlorof 0.52263 meth 0.14262 ethanol 0.00100 107.90
N<3 (BM) | 0.33383 chlorof 0.52292 meth 0.14325 369.06
N<3 (HR) | 0.33383 chlorof 0.52292 meth 0.14325 93.59

BM and HR approaches can be applied successfully to convert the GDP mixture formulations
into MINLP problems. In the example studied, the HR technique results in more computationally
efficient solutions than the BM approach. Furthermore mixtures outperform pure solvents, show-
ing the benefit of using mixtures instead of pure compounds to attain enhanced behaviour. This
promising framework is currently being applied to additional examples, so that the performance
of the proposed methodology can be further investigated.
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