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ABSTRACT. Statistical inference of the fundamental parameters pegymmetric theories is a
challenging and active endeavor. Several sophisticatgaiiims have been employed to this end.
While Markov-Chain Monte Carlo (MCMC) and nested sampliaghniques are geared towards
Bayesian inference, they have also been used to estimajgefrgést confidence intervals based
on the profile likelihood ratio. We investigate the perforno@ and appropriate configuration of
MuLTINEST, a nested sampling based algorithm, when used for profadilikod-based analyses
both on toy models and on the parameter space of the ComstratsSM. We find that while
the standard configuration previously used in the literaria appropriate for an accurate recon-
struction of the Bayesian posterior, the profile likelihdsdboorly approximated. We identify a
more appropriate MLTINEST configuration for profile likelihood analyses, which givas ex-
cellent exploration of the profile likelihood (albeit at agdar computational cost), including the
identification of the global maximum likelihood value. Wenctude that with the appropriate con-
figuration MULTINEST is a suitable tool for profile likelihood studies, indicafiprevious claims
to the contrary are not well founded.
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1. Introduction

The results of the first searches for supersymmetry (SUSWeatarge Hadron Collider (LHC)
have recently been released [1]. The field is eager to switmin i mode of excluding model
parameters to an exciting and challenging era in which wesstienating the underlying parame-
ters of a new fundamental theory. Within the context of SUB#¥,technology has evolved from
likelihood scans over low-dimensional subspaces of SUSYalts0[2-5] to higher-dimensional
Bayesian analysis using Markov Chain Monte Carlo (MCMC)86—More recently, the nested
sampling [9, 10] algorithm has been used by several autlvorthé study of SUSY models [11—
20]. Although Bayesian techniques like MCMC andiM'INEST have been designed specifically
to explore the Bayesian posterior distributions, they halge been used to obtain (approximate)
profile likelihoods [14, 21, 22].

MULTINEST [23, 24], a publicly available implementation of the nessadhpling algorithm,
has been shown to reduce the computational cost of perfgrBayesian analysis typically by two
orders of magnitude as compared with basic MCMC technigMes.TINEST has been integrated
in the Super BayeS codé for fast and efficient exploration of SUSY models. Receritlyas
been demonstrated (at least for a limited region of the CM$8Mmeter space around a specific
benchmark point) that neural networks techniques can e toseduce the computational efforts
for these parameter scans by an additional facter af/* [25].

For highly non-Gaussian problems like supersymmetric rpatar determination, inference
can depend strongly on whether one chooses to work with teepor distribution (Bayesian) or
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profile likelihood (frequentist) [14, 21, 22]. There is a ying consensus that both the posterior
and the profile likelihood ought to be explored in order toaibia fuller picture of the statistical
constraints from present-day and future data. This begsjtlestion, which we address in this
paper, of the algorithmic solutions available to reliabkplere both the posterior and the profile
likelihood in the context of SUSY phenomenology.

Recently, a genetic algorithm (GA) based method was deedlap[26] specifically to obtain
the profile likelihoods for CMSSM parameters and the restiltistributions were then compared
with the profile likelihoods obtained with MLTINEST, run in the standard configuration com-
monly used in the literature. The authors found thaitWi NEST missed several high likelihood
regions in the CMSSM parameter space making the resultafiteplikelihood functions highly
inaccurate. They further questioned the accuracy of postéistributions obtained with MLTI-
NEST. They went on to argue that BLTINEST might not be able to find these high likelihood
regions even if its termination criterion is adjusted fodfirg the profile likelihoods. One of the
aims of this paper is to show that these shortcomings candideal/through proper configuration
of the MULTINEST.

The outline of this paper is as follows. In S¢k. 2 we first giméraroduction to the Bayesian
and frequentist frameworks for statistical analysis. Weflyrdescribe the MLTINEST algorithm
and how it can be tuned for evaluating profile likelihoods et $8. In Sed.]4 we use two relevant
toy problems to study the ability of MLTINEST to reconstruct both the posterior and profile likeli-
hood. We then obtain the profile likelihood function of CMS$rameters using MLTINEST in
Sec.[b and compare our results with the GA method adoptedbin {2e also discuss implications
for direct and indirect detection prospects. Finally wespre our conclusions in S€g. 6.

2. Statistical Framework

2.1 Bayesian Modelling

We briefly recall some basics about Bayesian inferenceiriedethe reader to e.g. [27] for further
details. Bayesian inference is based on Bayes’ theoretingtaat

P(D|©)P(©)

P(OID) = ==,

(2.1)
whereP(®|D) is the posterior probability distribution of the paramse®rgiven datdD, P(D|©®) =
L(0) is the likelihood function,P(®) is the prior, andP?(D) = Z is the Bayesian evidence (or
model likelihood). The latter is a normalization constaittained by averaging the likelihood over
the prior:

z- / L(©)P(©)d®. 2.2)

In Bayesian statistics, th&¥—dimensional posterior distribution described in Hg.]{2dnstitutes
the complete Bayesian inference of the parameter valuesinférence about an individual param-
eter; is then given by the marginalised posterior distributi®(®;|/D) which can be obtained by
integrating (marginalizing) th&/—dimensional posterior distribution over all the paramsetgpart
from 6;. If samples from the full posterior are available (havinggenerated for example via
Markov Chain Monte Carlo sampling), then the above integrakplaced by a simple counting



procedure: since posterior samples are distributed aicgptd the posterior, the marginal pos-
terior for 6; above is obtained from the full posterior by dividing thegarof§; in a number of
bins and counting how many posterior samples fall in eachAih-D marginal posterior interval
corresponding to a symmetric credible region contairiing o of posterior probability fom; is
delimited by an intervald;”, 6] such that:

0. 00
—00 6i+

2.2 Profile Likelihood-Based Frequentist Analysis

In the classical or frequentist school of statistics, orfinds the probability of an event as the limit
of its frequency in a large number of trials. Classical caiick intervals based on the Neyman
construction are defined as the set of parameter points ichvgame real-valued function, test
statistic ¢ evaluated on the data falls in an acceptance refign = [t_,¢.]. If the boundaries
of the acceptance regions are such that ¢ Weg |®) > 1 — « is satisfied, then the resulting
intervals will cover the true value @& with a probability of at least — «. Likelihood ratios are
often chosen as the test statistic on which frequentistviale are based. Whe® is composed
of parameters of interesf, and nuisance parameteis, a common choice of test statistic is the
profile likelihood ratio

AO) = (2.4)

where is the conditional maximum likelihood estimate (MLE) ofwith ¢ fixed andé, ¢> are
the unconditional MLEs. Under certain regularity conditso Wilks showed that the distribution
of —21n \(#) converges to a chi-square distribution with a number of elegof freedom given by
the dimensionality of [28]. Thus, by assuming that the asymptotic distributioa good approx-
imation of the finite sample case, one can trivially defineabeeptance regioWg from standard
lookup tables. One must keep in mind that these intervalscasa the asymptotic properties of
the profile likelihood ratio require certain regularity cltions to be fulfilled and are not guaran-
teed to have strict coverage. In particular, in cases withgiex multimodal likelihoods one might
reasonably suspect that the distribution-afln A(#) is still far from converging to its asymptotic
form (see [25] for an illustration). While there exist modéftions to the profile likelihood ratio
that converge more rapidly [29-31], within particle phygsilce profile likelihood ratio is a standard
techniqué.

One can approximate thg#) using an arbitrary sampling of the likelihood function asdo
as one has access to the value of the likelihood functioneasdmpled points. The procedure is
simple: one groups the samples in bing@nd for each bin searches for the maximum likelihood

sample in that bin, which correspondszéd, 1)).

~ltcan be seen from Ed. (2.4) that the profile likelihood fimetrequires the conditional MLEs
¥ (#) to be found for each value @fas well as the unconditional MLE, ¢), which represents
the global maximum likelihood point. If the unconditionall® is not properly resolved, this will

2In the following, we will refer to the profile likelihood ratias “profile likelihood” or “likelihood function” for
brevity.



effectively result in a different threshold er2 In \(#) corresponding to a wrong confidence level.
Even if the unconditional MLE is found, we might also worrywhwell the conditional MLEaZz(H)

~ A A

are found, particularly wheB (6, ) < L(6,).

3. UsingMuLTINEST for Profile Likelihood Exploration

Nested sampling [9] is a Monte Carlo method whose primary igithe efficient calculation of
the Bayesian evidence given by Ef. [2.2) As a by-productatgerithm also produces posterior
samples which can be used to map out the posterior distibafi Eq. [2.]1). Those same samples
have also been used to estimate the profile likelihood, a pmiwwhich we return below in greater
detail. Nested sampling calculates the evidence by tramafig the multi-dimensional evidence
integral into a one—dimensional integral that is easy tduata numerically. This is accomplished
by defining the prior volumeX asdX = P(®)d®, so that

Mm:/ P(©)d®, (3.1)
L(©)>A

where the integral extends over the region(s) of parampterescontained within the iso-likelihood
contour£(®) = A. The evidence integral, E4. (P.2), can then be written as:

1
Z=A£MMK (3.2)

where£(X), the inverse of Eq[(3.1), is a monotonically decreasingtion of X. Thus, if one
can evaluate the likelihoodS; = £(X;), whereX; is a sequence of decreasing values,

O<Xy<--<Xo< X1 <Xo=1, (3.3)

the evidence can be approximated numerically using stdrgizadrature methods as a weighted
sum

M
Z=) Lw;, (3.4)
i=1

where the weights; for the simple trapezium rule are given ay = %(Xi_l — Xit1)-

The summation in Eq[ (3.4) is performed as follows. The tteracounter is first set to = 0
andny;y, ‘active’ (or ‘live’) samples are drawn from the full prid?(®), so the initial prior volume
is Xy = 1. The samples are then sorted in order of their likelihoodthadmallest (with likelihood
L) is removed from the active set (hence becoming ‘inactiaat] replaced by a point drawn from
the prior subject to the constraint that the point has ailkeld £ > L£,. The corresponding
prior volume contained within the iso-likelihood contowgsaciated with the new live point will
be a random variable given by, = t;X,, wheret; follows the distributionP(t) = NtN—1
(i.e., the probability distribution for the largest 6f samples drawn uniformly from the interval
[0,1]). At each subsequent iteratioanthe removal of the lowest likelihood poid; in the active
set, the drawing of a replacement wifh> £; and the reduction of the corresponding prior volume
X, = t;X;_1 are repeated, until the entire prior volume has been trader§he algorithm thus
travels through nested shells of likelihood as the priouna is reduced.



The nested sampling algorithm is terminated when the eegldias been computed to a pre-
specified precision. The evidence that could be contribloyettie remaining live points is estimated
asAZ; = L. X, whereL .« is the maximum-likelihood value of the remaining live pairgénd
X, is the remaining prior volume. The algorithm terminates whez; is less than a user-defined
value.

The most challenging task in implementing nested sampéing draw samples from the prior
within the hard constrainf > £; at each iteration. The MULTINEST algorithm [23, 24] tackles
this problem through an ellipsoidal rejection samplingesnok. The live point set is enclosed
within a set of (possibly overlapping) ellipsoids and a nainpis then drawn uniformly from the
region enclosed by these ellipsoids. The ellipsoidal dgmsition of the live point set is chosen
to minimize the sum of volumes of the ellipsoids. The ellipab decomposition is well suited to
dealing with posteriors that have curving degeneracieg,alows mode identification in multi-
modal posteriors. If there are subsets of the ellipsoidsdtdo not overlap with the remaining
ellipsoids, these are identified as a distinct mode and sulesdly evolved independently.

The two most important parameters that control the parampsee exploration in nested sam-
pling are the number of live points;,. — which determines the resolution at which the parameter
space is explored — and a tolerance parametferwhich defines the termination criterion based
on the accuracy of the evidence. As discussed in the predeciton, evaluating profile likeli-
hoods is much more challenging than evaluating postergirikliitions. Therefore, one should not
expect that a vanilla setup for BATINEST (which is adequate for an accurate exploration of the
posterior distribution) will automatically be optimal fprofile likelihoods evaluation. Generally, a
larger number of live points is necessary to explore proiliglihoods accurately. Moreover, set-
ting tol to a smaller value results in M.TINEST gathering a larger number of samples in the high
likelihood regions (as termination is delayed). This isallsunot necessary for the posterior distri-
butions, as the prior volume occupied by high likelihoodoeg is usually very small and therefore
these regions have relatively small probability mass. Fofilp likelihoods, however, getting as
close to the true global maximum is crucial and thereforestrmild setol to a relatively smaller
value. We now investigate these issues in the context of élevant toy problems.

4. Application to Toy Models

In order to demonstrate the differences between profildiikeds and the posterior distributions
reconstruction with MILTINEST, we consider two 8-D toy problems in this section. The dimen-
sionality of these toy problems is chosen to corresponddalimensionality of CMSSM analyses
in which 4 CMSSM parameters are varied along with 4 StandaodléVl(SM) parameters (see
Sec[b).

The first problem we consider is a uni-modal 8-D isotropic §an with the following like-

lihood function:
8

0 — )2
£©) = ﬁ exp —% 3 % (4.1)
=1

with o = 0.05 andy; = 0.5 (j = 1,...,8). We assume uniform priotg(0, 1) for all 8 parameters.
The analytical posterior distributions and profile likeidd functions are shown in Fif] 1 for a
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Figure 1: Analytical 1-D and 2-D (a) marginalized posterior disttibns and (b) profile likelihood functions
for the unimodal 8-D Gaussian problem. The contours reptéke 68% and 95% Bayesian credible regions
in (a) and profile likelihood confidence intervals in (b) restively.

subset of the parameters. As expected, the posterior afifikeelihood distributions are identical
in this case.

We now reconstruct both profile likelihood and posteriotribsition with MULTINEST, using
nive = 1000 with tol = 0.5 (which is expected to be adequate for posterior recongin)cand1 x
10~ (a much lower value targeted at profile likelihood recorettam). The posterior distributions
and profile likelihoods recovered by dTINEST for the first three parameters are shown in Hipjs. 2
and[B respectively. It is evident from these plots that reces posterior distributions for both
tol = 0.5 and1 x 10~* are almost identical to the analytical posterior more thainto the tails.
However, the recovered profile likelihood fesl = 0.5 is quite noisy and inaccurate, especially
around the peak. This is becauseuMINEST has not explored the high likelihood region in
great detail, as the algorithm is terminated after aboutQ®@Blikelihood evaluations, which is
adequate to calculate the evidence to sufficient accuraeyaW circumvent this problem by setting
tol = 1 x 10~ (dotted blue curves), which results in a larger number d@liilood evaluations,
around 261,000. The situation around the peak is now graaflyoved, although the tails of the
profile likelihood are still not explored to very high acceydeyond the- 3o region. Nevertheless,
the overall profile likelihood has been recovered with sigficaccuracy to allow for a reasonably
correct parameter estimation.

The second problem we consider is a multi-modal 8-D Gaussiature model with the fol-
lowing likelihood function:

8 2
1 1 (91 — Mij)
Wit =g XD | —5 Z —_— 4.2)
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Figure 2: 1-D posterior distributions for the first 3 parameters of time-modal 8-D Gaussian problem.
The red curve shows the analytical posterior distributidrievthe blue dashed and grey dotted curves show
the posterior distributions recovered byuMriNEST with tol set to 0.5 and x 10~ respectively. 1000
live points were used in both cases. The upper and lower pahelw the posterior anieh of posterior
distributions respectively.

with the following values for the parameters defining thelitkood function:

My 1wy = 0.98,0; = 0.05 andug; = 0.5(1 < i < 8); (4.3)
Ma twy = 0.01,09; = 0.02(1 < i < 8), 2 = 0.55, 19 = 0.5(2<i <8);  (4.4)
Ms w3 = 0.01, 031 = 0.004, 035 = 0.1, 03 = 0.02 (3 < i < 8),

pis1 = 0.3, g = 0.5(2 < i < 8). (4.5)

We assume uniform priod(0, 1) for all 8 parameters. This describes a multi-modal distidou
with the broad Gaussian of the previous example centereldeimiddle of the parameter space.
A narrow isotropic Gaussian lies slightly to the right of thead Gaussian ifl; while another
narrow Gaussian lies to the left. We denote these three ninpdad;, M, and M3 respectively.
M3 has its variances in the first two dimensions chosen in suchyaovmimic the funnel region
at low m, /s, values in the CMSSM model. The weights of the mixture modelsat such that the
M occupies 98% of the posterior probability mass while, and M3 collectively occupy only
2% of the probability mass and therefore we would expect dstgpior probability distribution to
be dominated byM;. The analytical 1-D and 2-D posterior distributions andfitedikelihood
functions are shown in Fif] 4 (only distributions of the fBgtarameters are shown, as parameters
04 onwards behave exactly 8g). As expected, the posterior distributions are dominatawst
entirely by M1, the mode with the largest posterior probability masg; barely registers in the
posterior distribution as the secondary peak indthdirection, whileM5 is completely masked by
M;.

The profile likelihood, on the other hand, is dominated byriaerow, highly-peaked modes
My and M3, whose peak likelihood values are 9.25 and 9.61 times higbgpectively, than the
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Figure 3: 1-D profile likelihood functions for the first 3 parametergtod uni-modal 8-D Gaussian problem.
The red curve shows the analytical profile likelihood fuors while the blue dashed and grey dotted curves
show the profile likelihoods recovered byuuri NEST with tol set to 0.5 and x 10~* respectively. 1000
live points were used in both cases. The upper and lower pahelw the profile likelihood and2 In of
profile likelihood functions respectively. Green and magdmorizontal lines represent the and2¢ profile
likelihood intervals respectively.

likelihood value at the peak of1;. This is indeed reflected in the right panels of Hig. 4. The
1-D profile likelihood forf, is bi-modal with My and M3 constituting the two modesM s only
produces a heavier, non-Gaussian tail extending downviiamsd; = 0.55 (where the maximum
likelihood peak of M- is located). Looking instead at the profile likelihood #y, the (very
subdominant) contribution from\1; barely shows up as a small extra peak on top of the broader
peak fromM3 atf, = 0.5. The profile likelihood forf, consists almost entirely of3 as its
standard deviation ifl; is 5 times larger than the one @#fl5 while the likelihood value at the peak
of M3 is only slightly smaller than the value fov1,. We notice that confidence regions for the
profile likelihood plotted in the 2-D panels are only approaiely correct, as we have assumed
that the likelihood distribution follows a multivariate Gesian distribution in order to derive the
confidence limits as discussed in Spc] 2.2, which is obwonst correct for this particular toy
model.

These dramatic differences in the posterior and profildiliked functions make this problem
an extremely challenging one for any numerical inferengerithm to tackle. Even just finding
My and Ms is an extremely difficult task as they are essentially spilkeke probability distribu-
tion. We show the recovered 1-D posterior distributions jprafile likelihood with MULTINEST
in Figs.[p and]5, respectively. With;,. = 4,000 andtol = 0.5 (resulting in about 725,000 likeli-
hood evaluations), MLTINEST finds all three Gaussians and the recovered posteriortisons
are almost identical to the analytical posterior distiitmos. However, the profile likelihood func-
tions are highly inaccurate and very noisy. This is becalbsehigh likelihood regions have not
been explored in great detail as the sampling proceedsdingato the posterior mass, which is
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Figure 4: 1-D and 2-D (a) marginalized posterior distributions anggiwfile likelihood functions for the
8-D Gaussian mixture problem. The contours represent the &8l 95% Bayesian credible regions in (a)
and profile likelihood confidence intervals in (b) respeslv The plots were generated after dividing the
analytical posterior values 200 bins so that a fair comparison can be made with the distdhstobtained
using MULTINEST.

heavily concentrated in;. Therefore, the mode$1, and M3 are explored with a proportionally
lower number of live points, as their posterior mass is small

This problem can be solved by runninguri NEST with ny;,. = 20,000 and decreasingol
to 1 x 10~* which results in around 11 million likelihood evaluatioriscreasing the number of
live points ensures thab1s encloses more live points and is explored at higher resolutiAs
can be seen from Fi@ 6, the recovered profile likelihood fions are much more accurate and
less noisy with this setup. The 1-D profile likelihoods f3randfs; are almost identical to the
analytical ones, but we can see some under-sampling of diidepikelihood for6,. Despite this,
just finding M3 is already an extremely challenging task for any numerieahnique, including
GA, and although the recovered profile likelihood functicaysMULTINEST are not perfect, they
are reasonably accurate, certainly within #aeconfidence region.

5. Application to the CMSSM

The Minimal Supersymmetric Standard Model (MSSM) [32, 3&hvR-parity can solve the hier-
archy problem and provide a candidate dark matter (DM) gartifhe MSSM with one particular
choice of universal boundary conditions at the grand urifinascale, is called the Constrained
Minimal Supersymmetric Standard Model (CMSSM) [34]. In DBISSM, the scalar mass,,
gaugino massn, , and tri-linear couplingd, are assumed to be universal at a gauge unification
scale Mgyt ~ 2 x 10'6 GeV. In addition, at the electroweak scale one selegtss, the ratio

of Higgs vacuum expectation values and $jgn wherey is the Higgs/higgsino mass parameter
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Figure 5: 1-D posterior distributions for the first 3 parameters of 8dB Gaussian mixture problem. The
red curve shows the analytical posterior distribution whhe blue dashed and grey dotted curves show
the posterior distributions recovered byuMriNEST with ny,. = 4,000, tol = 0.5 andnyye. = 20,000,

tol = 1 x 10~* respectively. The upper and lower panels show the postanidin of posterior distributions
respectively.

whose square is computed from the potential minimisatiamditmns of electroweak symmetry
breaking (EWSB) and the empirical value of the mass of #eboson, M. The family uni-
versality assumption is well motivated since flavour chaggieutral currents are observed to be
rare. Indeed several string models (see, for example Re&f.38]) predict approximate MSSM
universality in the soft terms.

The CMSSM has proved to be a popular choice for SUSY phenologyndecause of the
small number of free parameters and it has recently beenedtglite extensively in multi—
parameter scans, both from a frequentist [4, 5, 37] and a®a@y@erspective [6-8, 14, 15, 22, 26,
38]. Bayesian and frequentist analyses are expected tagigstent inferences for the CMSSM
parameters if the data are sufficiently constraining. Hemeseveral groups have concluded that
we do not yet have enough constraining power in the availdhta to overridethe influence of
priors in the Bayesian framework. Furthermore, the stmectf the parameter space is such that
the likelihood presents “spikes” that contain little pogiemass (for reasonable choice of priors).
As a consequence, regions of high likelihood (favoured eguentist analysis) do not necessarily
match regions of large posterior mass (favoured under adtayanalysis), see e.g. [14]. There-
fore, Bayesian and frequentist inferences should not beaed to yield quantitatively consistent
results. Both hurdles are expected to be overcome once ATesdts become available, see [39],
although the actual performance of different statistiggdraaches, as measured by their coverage
properties, has only just begun to be scrutinized [25, 40].

Here we focus on the algorithmic problem of obtaining rdégtosterior probability and pro-
file likelihood maps with MULTINEST. The authors of Ref. [26] claimed that the GA method
produces more accurate profile likelihood functions thanLMNEST. They also raised questions
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Figure 6: 1-D profile likelihood functions for the first 3 parameterstioé 8-D Gaussian mixture problem.
The red curve shows the analytical profile likelihood fuantivhile the blue dashed and grey dotted curves
show the profile likelihoods recovered byuvri NEST with ny;,. = 4,000, tol = 0.5 andn;y. = 20, 000,

tol = 1 x 104 respectively. The upper and lower panels show the profildilikod and—21n of pro-

file likelihood functions respectively. Green and magertezontal lines represent thier and2c profile
likelihood intervals respectively.

about the accuracy of the posterior distributions obtaini#ld MuLTINEST. The previous section
demonstrates that the posterior distributions fromv1 NEST are highly reliable, as they match
very well the analytical solution for both toy problems ooitnhore thar8o in the tails. We stress
that this is the case even for the less computationally gitenMULTINEST configuration, with
Niive = 1000 andtol = 0.5.

We now reconstruct both the posterior distribution and tiudile likelihood for the CMSSM
parameters using M.TINEST, as implemented in th8uper BayeS v1. 5 code in almost ex-
actly the same setup employed in Ref. [26]. The set of CMSS#M3M parameters together con-
stitute an 8-dimensional parameter space Witk(mo, m; /2, Ao, tan 3, my, mb(mb)m, aMs,
ai,V[_S(MZ)) to be scanned and constrained with the presently availafplerienental data. The
ranges over which we explore these parameters@ten; » € (0.05, 4) TeV, 4g € (—4, 4) TeV,
tan 8 € (2, 65), my € (167.0, 178.2) GeV, my(mp)M5 € (3.92, 4.48) GeV, 1/aM5(My) €
(127.835, 128.075) and M5 (M) € (0.1096, 0.1256). We use a slightly wider range fosn 3
and a smaller range fot, which was allowed to vary between? TeV and7 TeV in [26] as there
is very little probability mass as well as very few pointsiwftigh likelihood with|Ay| > 4 TeV.
The observables used in our analysis are exactly the sameeasiig Table 1 of Ref. [26], in order
to allow a comparison.

As discussed in Seds. 3 afjd 4, a larggy, and smalletol should be used for profile likelihood
analyses with MULTINEST. We therefore used;;,. = 20,000 andtol = 1 x 10~%. Flat priors
were imposed on all 8 parameters with parameter rangesidedabove. This resulted in about 5.5
million likelihood evaluations (compared to 3 million likeood evaluations for the GA method)
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Figure 7: 2-D (a) marginalized posterior distributions and (b) peofiikelihoods for the CMSSM parameters
using all presently available constraints. The contoyssagent the 68% and 95% Bayesian credible regions
in (a) and profile likelihood confidence intervals in (b). tHhaiors with 20,000 live points were used with
tol set tol x 10~ (no smoothing applied to the plots). The mean and best-fitrpaters values are shown

by a black cross and a green circle, respectively.

taking 6 days on 10 2.4GHz CPUs and returned an evidence wvhlog(Z) = —18.62 £ 0.08.

The resultant 2-D marginalized posterior distributions @nofile likelihoods in then, , — mg
andtan 3 — mg planes are shown in Fif]. 7. By comparing the posterior 8istion in the upper
left panel of Fig[7 with the upper left panel of Fig. 13 in [14ébtained with the same setup but
with ny;e = 4,000 andtol = 0.5, it is apparent that the posterior is stable with respeatdoeias-

ing the number of samples (Fif]. 7 uses20 times more samples than the corresponding figure
in Ref. [14]). Indeed, the evidence value obtained with #gtup islog(Z) = —18.28 4+ 0.14.
The difference in log evidence between the two setups is flig(Z) = —0.34 £+ 0.16. For

the log prior scans, the difference in log evidence betwbenwo configurations is even lower,
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Figure 8: 1-D profile likelihoods for the CMSSM parameters normalitedhe global best-fit point. The
red solid and blue dotted vertical lines represent the dlobst-fit point (> = 9.26, located in the focus
point region) and the best-fit point found in the stau co-hifetion region 2 = 11.38) respectively. The
upper and lower panel show the profile likelihood akg? values, respectively. Green (magenta) horizontal
lines represent thes (20) approximate confidence intervals.uuriNEST was run with flat priors, 20,000

live points andtol = 1 x 1074,

Alog(Z) = —0.08 £ 0.14. As this systematic difference is comparable with the stiatl
uncertainty, we can conclude that the posterior mass wiicheing missed by the standard,
Bayesian setup is negligible (especially so given that ttstesnatic difference is much less than
the typical difference in thresholds on the Jeffreys’ sdatethe strength of evidence, which are
atAlog(Z) = 1.0,2.5,5.0, see e.g. [27]). This leads us to reject the speculation in[R€] re-
garding the validity of posterior probability distributise obtained with the standard configuration
of MULTINEST.

The 2-D profile likelihood plots (bottom panels in F[4. 7) slibbe compared with Fig. 1(a)
in Ref. [26], which were obtained with the GAOur best-fit point (i.e, the unconditional MLE)
hasy? = 9.26 and lies in the focus point region. Therefore, dnd 2 regions are approximately
delimited byy? < 11.56 and x? < 15.43, respectively. The MLTINEST best-fit point has a
slightly bettery? value than the GA best-fit poini¢ = 9.35). However, MULTINEST 10 and
20 regions are much larger than the corresponding GA regiohi i$ because MLTINEST has
been able to map out more accurately the regions surrouticénigest-fit than GA. By comparing
2-D posterior and profile likelihood plots in Fig. 7, we netithat most of thed profile likelihood
interval in the focus point region of the, ,, — m, lies outside of the corresponding Bayesian
credible interval. This is a clear sign that the high liketid region in the focus point region is
spike-like. These regions are not well explored by IMINEST with the standard configuration
(tol = 0.5). If one is interested in mapping out the posterior, howetrds is fully justified, as
these regions contribute almost nothing to the Bayesiateaee or the posterior probability. |f
however one wants to useWITINEST for profile likelihood intervals, then it is imperative to ma

3We have verified that reducingiive = 4,000, while keepingtol = 1 x 1074, leads to profile likelihoods very
similar to the ones shown in Fiﬂ. 7, albeit slightly more goig/e thus do not show those results, but we remark that
this configuration reduces the computational effort by éofaof ~ 3 compared with the case wheng,. = 20, 000,
without degrading the profile likelihood results appretiab

— 13—
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Figure 9: 2-D profile likelihood functions for (a) log priors and (b) fldog merged chains for CMSSM
parameters. The contours represent the 68% and 95% pr&élébod confidence intervals. 20,000 live
points were used withol set tol x 10~%. The mean and best-fit parameters values are shown by blesk cr
and green circle respectively.

out those regions in much greater detail.

The values of global best-fit point and the best-fit point austo-annihilation region (COA)
found by MULTINEST are listed in Takf]1 and have similar parameter values to fonesl by GA.
Fig. B, shows the 1-D profile likelihood. This figure shoulddmmpared with the corresponding
1-D profile likelihoods obtained with the GA method in Fig. 3Ref. [26].

In principle, the profile likelihood does not depend on theicé of priors. However, in order
to explore the parameter space using any Monte Carlo teebnigset of priors needs to be defined.
Any numerical sampling technique effectively defines a mo&tn the parameter space of interest,
and different choices of this metric will generally lead iffatent regions of the parameter space
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the global best-fit point. The red solid and blue dotted gattines represent the global best-fit poigt (=
9.26, located in the focus point region) and the best-fit pointfibin the stau co-annihilation regiog¥ =

11.38) respectively. The upper and lower panel show the profilgilibod andAx? values, respectively.
Green (magenta) horizontal lines representlth¢20) approximate confidence intervals.UriNEST was

run with flat priors, 20,000 live points andl = 1 x 1074

Table 1: Best-fit parameter and observable values found from flatregged chains. These quantities are shown for
both the global best-fit point, located in the focus point)(Feigion, as well as the best-fit point in the stau co-anrtibita

(COA) region.

to be explored in greater or lesser detail. Therefore, iiffechoice of priors might lead to slightly
different profile likelihoods. Uniform priors itog(mg) andlog(m; /,) (calledlog priors) are often
employed in Bayesian analyses of CMSSM as the masses aseparameters. In order to get
a feeling for the robustness of our profile likelihoods, wewlthe 2-D profile likelihoods from a

Global BFP COA BFP
(located in FP region
Model and Nuisance Parameters

mo 1748.7 GeV 159.0 GeV
mi/e 334.1 GeV 411.4 GeV
Ao 1949.5 GeV 946.2 GeV
tan 55.7 19.53
my 173.0 GeV 173.3 GeV
ma ()M 4.19 GeV 4.20 GeV
al?® (Mz) 0.1178 0.1182
1/aM5 (Mz) 127.952 127.959

Observables
mw 80.367 GeV 80.371 GeV
sin? Oog 0.23156 0.23153
Sap”" x 10" 6.8 13.7
BR(B — X,7v) x 10* | 3.45 2.95
AMp, 17.31 ps~* 19.0 ps?!
BR(B, — Tv) x 10* | 1.38 1.46
O, h? 0.11408 0.11038
BR(Bs — pTu™) 4.08 x 1078 3.89 x 1078
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scan usindog priors in Fig.[p(a). As expected, the parameter space witeio andm j, values
has been explored more thoroughly. The best-fit point fouashA = 11.44 and lies in the stau
co-annihilation region (COA), thus this scan witlg priors has missed a a higher likelihood point
in the focus point region. Conversely, the scan with flatngrioas explored the COA region in
similar detail. Thus, while these tunings ofuuri NEST are clearly superior for profile likelihood
analysis than the default settings for Bayesian analyis&setremains sensitivity to the choice of
priors used in the scans as previously seen in the literature

We can obtain more robust profile likelihoods by simply meggtihe flat andog prior scans,
the performing the profiling over the joint set of samplesc(@npassing about 10.85 million
points). This does not come at a greater computational gesh ghat a responsible Bayesian
analyses would estimate sensitivity to the choice of priowall. The resulting 2-D and 1-D pro-
file likelihoods are shown in Fig§l 9(b) arid] 10 respectiv@lye most obvious difference between
the merged and flat profile likelihood distributions is theo@grance of the funnel region at low
my /o values which was not explored thoroughly with flat priors diese of the its smaller prob-
ability mass. Apart from this, it is clear that the mergedfipedikelihood distributions are quite
similar to the distributions obtained with flat prior (seg HI(b)).

In the left panel of Fig[ 31, we show the 2-D profile likelihoghctions spin-independent
scattering cross-section of the neutralino and a pro@nversus the neutralino mass, along
with the latest experimental exclusion limits at the 90%fmtance level from CDMS-II [41] and
XENON100 [42], derived under standard halo assumptiond {arparticular, assuming a local
DM density p, = 0.3 GeV/cn?). Our global best-fit point has quite a large cross-sectlosb(x
10~7 pb) and almost the entirer region in the FP region would already be excluded by current
experimental limits if one takes them at face value. Howetlere are several uncertainties that
need to be accounted for in order to achieve a robust exdusistrophysical uncertainties in
the local DM density and velocity distribution [43—45], smmatic uncertainties related to our
position in the Milky Way halo [46], clumpiness of the DM disution and impact of baryonic
physics [47], hadronic matrix elements uncertainties .[4&dken together, all those uncertainties
can easily exceed an order of magnitude. For this reasonaweedhosen not to include the current
direct detection limits in the likelihood function, althglu we notice qualitatively that the FP best-
fit point is coming under pressure from such limits. On theeotand, the best—ﬁztgI in the COA
region is relatively small2.02 x 10~ pb) and is well below the current experimental limits.

Regarding indirect detection prospects, we plot the 2-Oilprtikelihood functions for the
velocity-averaged neutralino self-annihilation crosst®n (ov) against the neutralino mass,
in the right panel of Figl 31. Although there is a small regidrthe parameter space around 300
GeV < m, <500 GeV and-27.5 < log, (ov) < —26.5 with high likelihood points found by
GA in [26] and missed by MLTINEST, in general we have mapped the profile likelihood more
thoroughly as can be seen by comparing the right panel of[Bjgwith Fig. 6(a) in [26]. Our
global best-fit point hagov) = 2.29 x 10~26cm® s~! which is very similar to the global best-fit
point found in [26] and therefore we reach the same conatsiamely that it might be possible to
cover part of this high-likelihood FP region in the futurehvihe Large Area Telescope (LAT)[49]
aboard the Fermi gamma-ray space telescope.
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Figure 11: 2-D profile likelihood functions for flat+log merged chaims Epin-independent scattering cross-
section of the neutralino and a protoErl versus the neutralino mass, (left panel) and velocity-averaged
neutralino self-annihilation cross-secti¢siv) versus the neutralino mass, (right panel). The contours
represent the 68% and 95% profile likelihood confidencewater 20,000 live points were used withl set

to 1 x 10~*. The best-fit parameters values are shown by green circle.lafast experimental exclusion
limits at the 90% confidence level from CDMS-I11 [41] and XENQ@OO [42] are also shown in the left panel.

Global BFP COABFP 6. Conclusions
(located in FP region)
m, | 136.34 GeV [ 156.46 GeV As the LHC impinges on the most antic-
Direct Detection ipated regions of SUSY parameter space,
0;2; 1.85 x 10" pb 2.02 x 10~ pb the need for statistical techniques that will
-6 —6
o 1'23 x 18*6 pE g'gg x 18*6 pg be able to cope with the complexity of
oy .34 x p .00 x p .
Indirect Detection SUSY phenomenolggy is greater than ever.
(ov) [ 22010 ®cnPs ' [ 489x 10 cns ' Early on, the data will not be strong enough

) _ _ _to dominate the impact of priors on Bayesian
Table 2: Best-fit neutralino mass and dark matter direct and in-

direct detection observables. These gquantities are shomioth inference; thus, the field |s_prepar|r_19 to
the global best-fit point, located in the focus point (FPjoagas Present the complementary information pro-

well as the best-fit point in the stau co-annihilation (CO&gion. vided by Bayesian techniques and the tra-
ditional results from the profile likelihood.
In this paper we have shown that, when configured approjy;id#euLTINEST can be suc-
cesfully employed for approximating the profile likelihofwhctions, even though it was primarily
designed for Bayesian analyses. In particular, we have dstraded that it is important to use a
termination criterion that allows MLTINEST to explore high-likelihood regions. We have also
shown that the likelihood spikes which play a key role in thefife likelihood and are missed by
MULTINEST when it is run in Bayesian analysis mode, have no bearing @pdisterior distribu-
tion. Despite these significant improvements, we do find tiratprior used in the MLTINEST
scan can influence the profile likelihood ratio, particylaflthe global maximum of the likeli-
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hood is spiky and in a region with extremely low prior probéypi This can be partially abated by
merging samples from scans with different priors, whichaften available from studies of prior
dependence in the corresponding Bayesian results.

We compared our results and conclusions to those reportBefin26], which used genetic
algorithms for mapping the profile likelihood functions. érauthors of that study concluded that
their sampling algorithm resulted in better approximagiom the profile likelihood than those ob-
tained with samples from Bayesian techniques like MCMC and MINEST. They also speculated
that MULTINEST might not be sufficiently accurate even for Bayesian analy§air results indi-
cate that when run appropriately, IMTINEST provides a significantly better approximation to the
profile likelihood than the genetic algorithm method preésdnn Ref. [26], particularly in the ex-
ploration of the parameter space near the boundaries ohteeval, albeit at a slightly increased
computational cost. There are also indications that MNEST might be more reliable in identify-
ing the overall best-fit point than the genetic algorithmtheslatter only found the overall best-fit
in 1 out of 10 runs (see Fig. 8 in Ref. [26]).

We end by speculating that the ideal algorithm for profilelitkood based analyses in com-
plex, multi-modal problems such as supersymmetric paransgaces may require a hybrid of
global scans like MCMC and MLTINEST together with dedicated maximization packages like
MinuIT [50]. The challenge for most maximization packages — whethey are based on gradi-
ent descent, conjugate gradient descent, or the EM-ahgorit is that they can get stuck in local
maxima. Hence, it seems clear that a more global scan wikgeired. However, once the scan-
ning algorithm has located a basin of attraction the mavation packages are likely to be the best
tool for refining the local maxima. As we discussed hereJLMNEST with a low tolerance acts
as a maximizer, and can be subject to similar problems withllmaxima. The nested structure
provided by the nested sampling algorithm may provide aniefit and practical way for defining
those basins of attraction, reducing the number of poirgswhll initiate a dedicated maximiza-
tion. In future work we wish to investigate these hybrid ayggmhes and compare INUIT and
MuLTINEST for this dedicated maximization step.
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