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ABSTRACT: Statistical inference of the fundamental parameters of supersymmetric theories is a
challenging and active endeavor. Several sophisticated algorithms have been employed to this end.
While Markov-Chain Monte Carlo (MCMC) and nested sampling techniques are geared towards
Bayesian inference, they have also been used to estimate frequentist confidence intervals based
on the profile likelihood ratio. We investigate the performance and appropriate configuration of
MULTI NEST, a nested sampling based algorithm, when used for profile likelihood-based analyses
both on toy models and on the parameter space of the Constrained MSSM. We find that while
the standard configuration previously used in the literarture is appropriate for an accurate recon-
struction of the Bayesian posterior, the profile likelihoodis poorly approximated. We identify a
more appropriate MULTI NEST configuration for profile likelihood analyses, which gives an ex-
cellent exploration of the profile likelihood (albeit at a larger computational cost), including the
identification of the global maximum likelihood value. We conclude that with the appropriate con-
figuration MULTI NEST is a suitable tool for profile likelihood studies, indicating previous claims
to the contrary are not well founded.
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1. Introduction

The results of the first searches for supersymmetry (SUSY) atthe Large Hadron Collider (LHC)
have recently been released [1]. The field is eager to switch from a mode of excluding model
parameters to an exciting and challenging era in which we areestimating the underlying parame-
ters of a new fundamental theory. Within the context of SUSY,the technology has evolved from
likelihood scans over low-dimensional subspaces of SUSY models [2–5] to higher-dimensional
Bayesian analysis using Markov Chain Monte Carlo (MCMC) [6–8]. More recently, the nested
sampling [9, 10] algorithm has been used by several authors for the study of SUSY models [11–
20]. Although Bayesian techniques like MCMC and MULTI NEST have been designed specifically
to explore the Bayesian posterior distributions, they havealso been used to obtain (approximate)
profile likelihoods [14, 21, 22].

MULTI NEST [23, 24], a publicly available implementation of the nestedsampling algorithm,
has been shown to reduce the computational cost of performing Bayesian analysis typically by two
orders of magnitude as compared with basic MCMC techniques.MULTI NEST has been integrated
in theSuperBayeS code1 for fast and efficient exploration of SUSY models. Recently,it has
been demonstrated (at least for a limited region of the CMSSMparameter space around a specific
benchmark point) that neural networks techniques can be used to reduce the computational efforts
for these parameter scans by an additional factor of∼ 104 [25].

For highly non-Gaussian problems like supersymmetric parameter determination, inference
can depend strongly on whether one chooses to work with the posterior distribution (Bayesian) or

1Available from:www.superbayes.org
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profile likelihood (frequentist) [14, 21, 22]. There is a growing consensus that both the posterior
and the profile likelihood ought to be explored in order to obtain a fuller picture of the statistical
constraints from present-day and future data. This begs thequestion, which we address in this
paper, of the algorithmic solutions available to reliably explore both the posterior and the profile
likelihood in the context of SUSY phenomenology.

Recently, a genetic algorithm (GA) based method was developed in [26] specifically to obtain
the profile likelihoods for CMSSM parameters and the resultant distributions were then compared
with the profile likelihoods obtained with MULTI NEST, run in the standard configuration com-
monly used in the literature. The authors found that MULTI NEST missed several high likelihood
regions in the CMSSM parameter space making the resultant profile likelihood functions highly
inaccurate. They further questioned the accuracy of posterior distributions obtained with MULTI -
NEST. They went on to argue that MULTI NEST might not be able to find these high likelihood
regions even if its termination criterion is adjusted for finding the profile likelihoods. One of the
aims of this paper is to show that these shortcomings can be avoided through proper configuration
of the MULTI NEST.

The outline of this paper is as follows. In Sec. 2 we first give an introduction to the Bayesian
and frequentist frameworks for statistical analysis. We briefly describe the MULTI NEST algorithm
and how it can be tuned for evaluating profile likelihoods in Sec. 3. In Sec. 4 we use two relevant
toy problems to study the ability of MULTI NEST to reconstruct both the posterior and profile likeli-
hood. We then obtain the profile likelihood function of CMSSMparameters using MULTI NEST in
Sec. 5 and compare our results with the GA method adopted in [26]. We also discuss implications
for direct and indirect detection prospects. Finally we present our conclusions in Sec. 6.

2. Statistical Framework

2.1 Bayesian Modelling

We briefly recall some basics about Bayesian inference, referring the reader to e.g. [27] for further
details. Bayesian inference is based on Bayes’ theorem, stating that

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
, (2.1)

whereP (Θ|D) is the posterior probability distribution of the parametersΘ given dataD,P (D|Θ) ≡

L(Θ) is the likelihood function,P (Θ) is the prior, andP (D) ≡ Z is the Bayesian evidence (or
model likelihood). The latter is a normalization constant,obtained by averaging the likelihood over
the prior:

Z =

∫

L(Θ)P (Θ)dΘ. (2.2)

In Bayesian statistics, theN–dimensional posterior distribution described in Eq. (2.1) constitutes
the complete Bayesian inference of the parameter values. The inference about an individual param-
eterθi is then given by the marginalised posterior distributionP (θi|D) which can be obtained by
integrating (marginalizing) theN–dimensional posterior distribution over all the parameters apart
from θi. If samples from the full posterior are available (having been generated for example via
Markov Chain Monte Carlo sampling), then the above integralis replaced by a simple counting
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procedure: since posterior samples are distributed according to the posterior, the marginal pos-
terior for θi above is obtained from the full posterior by dividing the range of θi in a number of
bins and counting how many posterior samples fall in each bin. A 1-D marginal posterior interval
corresponding to a symmetric credible region containing1 − α of posterior probability forθi is
delimited by an interval[θ−i , θ

+
i ] such that:

∫ θ−i

−∞

P (θi|D)dθi = α/2 and
∫

∞

θ+i

P (θi|D)dθi = α/2. (2.3)

2.2 Profile Likelihood-Based Frequentist Analysis

In the classical or frequentist school of statistics, one defines the probability of an event as the limit
of its frequency in a large number of trials. Classical confidence intervals based on the Neyman
construction are defined as the set of parameter points in which some real-valued function, ortest
statistic, t evaluated on the data falls in an acceptance regionWΘ = [t−, t+]. If the boundaries
of the acceptance regions are such thatP (t ∈ WΘ |Θ) ≥ 1 − α is satisfied, then the resulting
intervals will cover the true value ofΘ with a probability of at least1 − α. Likelihood ratios are
often chosen as the test statistic on which frequentist intervals are based. WhenΘ is composed
of parameters of interest,θ, and nuisance parameters,ψ, a common choice of test statistic is the
profile likelihood ratio

λ(θ) ≡
L(θ,

ˆ̂
ψ)

L(θ̂, ψ̂)
. (2.4)

where ˆ̂
ψ is the conditional maximum likelihood estimate (MLE) ofψ with θ fixed andθ̂, ψ̂ are

the unconditional MLEs. Under certain regularity conditions, Wilks showed that the distribution
of −2 lnλ(θ) converges to a chi-square distribution with a number of degrees of freedom given by
the dimensionality ofθ [28]. Thus, by assuming that the asymptotic distribution isa good approx-
imation of the finite sample case, one can trivially define theacceptance regionWΘ from standard
lookup tables. One must keep in mind that these intervals based on the asymptotic properties of
the profile likelihood ratio require certain regularity conditions to be fulfilled and are not guaran-
teed to have strict coverage. In particular, in cases with complex multimodal likelihoods one might
reasonably suspect that the distribution of−2 lnλ(θ) is still far from converging to its asymptotic
form (see [25] for an illustration). While there exist modifications to the profile likelihood ratio
that converge more rapidly [29–31], within particle physics the profile likelihood ratio is a standard
technique2.

One can approximate theλ(θ) using an arbitrary sampling of the likelihood function as long
as one has access to the value of the likelihood function at the sampled points. The procedure is
simple: one groups the samples in bins ofθ and for each bin searches for the maximum likelihood

sample in that bin, which corresponds toL(θ, ˆ̂ψ).
It can be seen from Eq. (2.4) that the profile likelihood function requires the conditional MLEs

ˆ̂
ψ(θ) to be found for each value ofθ as well as the unconditional MLE(θ̂, ψ̂), which represents
the global maximum likelihood point. If the unconditional MLE is not properly resolved, this will

2In the following, we will refer to the profile likelihood ratio as “profile likelihood” or “likelihood function” for
brevity.
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effectively result in a different threshold on−2 ln λ(θ) corresponding to a wrong confidence level.

Even if the unconditional MLE is found, we might also worry how well the conditional MLEsˆ̂ψ(θ)

are found, particularly whenL(θ, ˆ̂ψ) ≪ L(θ̂, ψ̂).

3. UsingMULTI NEST for Profile Likelihood Exploration

Nested sampling [9] is a Monte Carlo method whose primary aimis the efficient calculation of
the Bayesian evidence given by Eq. (2.2) As a by-product, thealgorithm also produces posterior
samples which can be used to map out the posterior distribution of Eq. (2.1). Those same samples
have also been used to estimate the profile likelihood, a point to which we return below in greater
detail. Nested sampling calculates the evidence by transforming the multi–dimensional evidence
integral into a one–dimensional integral that is easy to evaluate numerically. This is accomplished
by defining the prior volumeX asdX = P (Θ)dΘ, so that

X(Λ) =

∫

L(Θ)>Λ
P (Θ)dΘ, (3.1)

where the integral extends over the region(s) of parameter space contained within the iso-likelihood
contourL(Θ) = Λ. The evidence integral, Eq. (2.2), can then be written as:

Z =

∫ 1

0
L(X)dX, (3.2)

whereL(X), the inverse of Eq. (3.1), is a monotonically decreasing function ofX. Thus, if one
can evaluate the likelihoodsLi = L(Xi), whereXi is a sequence of decreasing values,

0 < XM < · · · < X2 < X1 < X0 = 1, (3.3)

the evidence can be approximated numerically using standard quadrature methods as a weighted
sum

Z =

M
∑

i=1

Liwi, (3.4)

where the weightswi for the simple trapezium rule are given bywi =
1
2(Xi−1 −Xi+1).

The summation in Eq. (3.4) is performed as follows. The iteration counter is first set toi = 0

andnlive ‘active’ (or ‘live’) samples are drawn from the full priorP (Θ), so the initial prior volume
isX0 = 1. The samples are then sorted in order of their likelihood andthe smallest (with likelihood
L0) is removed from the active set (hence becoming ‘inactive’)and replaced by a point drawn from
the prior subject to the constraint that the point has a likelihood L > L0. The corresponding
prior volume contained within the iso-likelihood contour associated with the new live point will
be a random variable given byX1 = t1X0, wheret1 follows the distributionP (t) = NtN−1

(i.e., the probability distribution for the largest ofN samples drawn uniformly from the interval
[0, 1]). At each subsequent iterationi, the removal of the lowest likelihood pointLi in the active
set, the drawing of a replacement withL > Li and the reduction of the corresponding prior volume
Xi = tiXi−1 are repeated, until the entire prior volume has been traversed. The algorithm thus
travels through nested shells of likelihood as the prior volume is reduced.
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The nested sampling algorithm is terminated when the evidence has been computed to a pre-
specified precision. The evidence that could be contributedby the remaining live points is estimated
as∆Zi = LmaxXi, whereLmax is the maximum-likelihood value of the remaining live points, and
Xi is the remaining prior volume. The algorithm terminates when ∆Zi is less than a user-defined
value.

The most challenging task in implementing nested sampling is to draw samples from the prior
within the hard constraintL > Li at each iterationi. The MULTI NEST algorithm [23, 24] tackles
this problem through an ellipsoidal rejection sampling scheme. The live point set is enclosed
within a set of (possibly overlapping) ellipsoids and a new point is then drawn uniformly from the
region enclosed by these ellipsoids. The ellipsoidal decomposition of the live point set is chosen
to minimize the sum of volumes of the ellipsoids. The ellipsoidal decomposition is well suited to
dealing with posteriors that have curving degeneracies, and allows mode identification in multi-
modal posteriors. If there are subsets of the ellipsoid set that do not overlap with the remaining
ellipsoids, these are identified as a distinct mode and subsequently evolved independently.

The two most important parameters that control the parameter space exploration in nested sam-
pling are the number of live pointsnlive – which determines the resolution at which the parameter
space is explored – and a tolerance parametertol, which defines the termination criterion based
on the accuracy of the evidence. As discussed in the previoussection, evaluating profile likeli-
hoods is much more challenging than evaluating posterior distributions. Therefore, one should not
expect that a vanilla setup for MULTI NEST (which is adequate for an accurate exploration of the
posterior distribution) will automatically be optimal forprofile likelihoods evaluation. Generally, a
larger number of live points is necessary to explore profile likelihoods accurately. Moreover, set-
ting tol to a smaller value results in MULTI NEST gathering a larger number of samples in the high
likelihood regions (as termination is delayed). This is usually not necessary for the posterior distri-
butions, as the prior volume occupied by high likelihood regions is usually very small and therefore
these regions have relatively small probability mass. For profile likelihoods, however, getting as
close to the true global maximum is crucial and therefore oneshould settol to a relatively smaller
value. We now investigate these issues in the context of two relevant toy problems.

4. Application to Toy Models

In order to demonstrate the differences between profile likelihoods and the posterior distributions
reconstruction with MULTI NEST, we consider two 8-D toy problems in this section. The dimen-
sionality of these toy problems is chosen to correspond to the dimensionality of CMSSM analyses
in which 4 CMSSM parameters are varied along with 4 Standard Model (SM) parameters (see
Sec. 5).

The first problem we consider is a uni-modal 8-D isotropic Gaussian with the following like-
lihood function:

L(Θ) =
1

(2π)4σ8
exp



−
1

2

8
∑

j=1

(θj − µj)
2

σ2



 (4.1)

with σ = 0.05 andµj = 0.5 (j = 1, . . . , 8). We assume uniform priorsU(0, 1) for all 8 parameters.
The analytical posterior distributions and profile likelihood functions are shown in Fig. 1 for a
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Figure 1: Analytical 1-D and 2-D (a) marginalized posterior distributions and (b) profile likelihood functions
for the unimodal 8-D Gaussian problem. The contours represent the 68% and 95% Bayesian credible regions
in (a) and profile likelihood confidence intervals in (b) respectively.

subset of the parameters. As expected, the posterior and profile likelihood distributions are identical
in this case.

We now reconstruct both profile likelihood and posterior distribution with MULTI NEST, using
nlive = 1000 with tol = 0.5 (which is expected to be adequate for posterior reconstruction) and1×
10−4 (a much lower value targeted at profile likelihood reconstruction). The posterior distributions
and profile likelihoods recovered by MULTI NEST for the first three parameters are shown in Figs. 2
and 3 respectively. It is evident from these plots that recovered posterior distributions for both
tol = 0.5 and1× 10−4 are almost identical to the analytical posterior more than3σ into the tails.
However, the recovered profile likelihood fortol = 0.5 is quite noisy and inaccurate, especially
around the peak. This is because MULTI NEST has not explored the high likelihood region in
great detail, as the algorithm is terminated after about 163,000 likelihood evaluations, which is
adequate to calculate the evidence to sufficient accuracy. We can circumvent this problem by setting
tol = 1 × 10−4 (dotted blue curves), which results in a larger number of likelihood evaluations,
around 261,000. The situation around the peak is now greatlyimproved, although the tails of the
profile likelihood are still not explored to very high accuracy beyond the∼ 3σ region. Nevertheless,
the overall profile likelihood has been recovered with sufficient accuracy to allow for a reasonably
correct parameter estimation.

The second problem we consider is a multi-modal 8-D Gaussianmixture model with the fol-
lowing likelihood function:

L(Θ) =

3
∑

i=1

wi
1

(2π)4
∏8

j=1 σij
exp



−
1

2

8
∑

j=1

(θi − µij)
2

σ2ij



 (4.2)
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Figure 2: 1-D posterior distributions for the first 3 parameters of theuni-modal 8-D Gaussian problem.
The red curve shows the analytical posterior distribution while the blue dashed and grey dotted curves show
the posterior distributions recovered by MULTI NEST with tol set to 0.5 and1 × 10−4 respectively. 1000
live points were used in both cases. The upper and lower panels show the posterior andln of posterior
distributions respectively.

with the following values for the parameters defining the likelihood function:

M1 :w1 = 0.98, σ1i = 0.05 andµ1i = 0.5 (1 ≤ i ≤ 8); (4.3)

M2 :w2 = 0.01, σ2i = 0.02 (1 ≤ i ≤ 8), µ21 = 0.55, µ2i = 0.5 (2 ≤ i ≤ 8); (4.4)

M3 :w3 = 0.01, σ31 = 0.004, σ32 = 0.1, σ3i = 0.02 (3 ≤ i ≤ 8),

µ31 = 0.3, µ3i = 0.5 (2 ≤ i ≤ 8). (4.5)

We assume uniform priorsU(0, 1) for all 8 parameters. This describes a multi-modal distribution
with the broad Gaussian of the previous example centered in the middle of the parameter space.
A narrow isotropic Gaussian lies slightly to the right of thebroad Gaussian inθ1 while another
narrow Gaussian lies to the left. We denote these three modesby M1, M2 andM3 respectively.
M3 has its variances in the first two dimensions chosen in such a way to mimic the funnel region
at lowm1/2 values in the CMSSM model. The weights of the mixture model are set such that the
M1 occupies 98% of the posterior probability mass whileM2 andM3 collectively occupy only
2% of the probability mass and therefore we would expect the posterior probability distribution to
be dominated byM1. The analytical 1-D and 2-D posterior distributions and profile likelihood
functions are shown in Fig. 4 (only distributions of the first3 parameters are shown, as parameters
θ4 onwards behave exactly asθ3). As expected, the posterior distributions are dominated almost
entirely byM1, the mode with the largest posterior probability mass.M3 barely registers in the
posterior distribution as the secondary peak in theθ1 direction, whileM2 is completely masked by
M1.

The profile likelihood, on the other hand, is dominated by thenarrow, highly-peaked modes
M2 andM3, whose peak likelihood values are 9.25 and 9.61 times higher, respectively, than the
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Figure 3: 1-D profile likelihood functions for the first 3 parameters ofthe uni-modal 8-D Gaussian problem.
The red curve shows the analytical profile likelihood functions while the blue dashed and grey dotted curves
show the profile likelihoods recovered by MULTI NEST with tol set to 0.5 and1 × 10−4 respectively. 1000
live points were used in both cases. The upper and lower panels show the profile likelihood and−2 ln of
profile likelihood functions respectively. Green and magenta horizontal lines represent the1σ and2σ profile
likelihood intervals respectively.

likelihood value at the peak ofM1. This is indeed reflected in the right panels of Fig. 4. The
1-D profile likelihood forθ1 is bi-modal withM2 andM3 constituting the two modes.M3 only
produces a heavier, non-Gaussian tail extending downwardsfrom θ1 = 0.55 (where the maximum
likelihood peak ofM2 is located). Looking instead at the profile likelihood forθ2, the (very
subdominant) contribution fromM1 barely shows up as a small extra peak on top of the broader
peak fromM3 at θ2 = 0.5. The profile likelihood forθ2 consists almost entirely ofM3 as its
standard deviation inθ2 is 5 times larger than the one ofM2 while the likelihood value at the peak
of M3 is only slightly smaller than the value forM2. We notice that confidence regions for the
profile likelihood plotted in the 2-D panels are only approximately correct, as we have assumed
that the likelihood distribution follows a multivariate Gaussian distribution in order to derive the
confidence limits as discussed in Sec. 2.2, which is obviously not correct for this particular toy
model.

These dramatic differences in the posterior and profile likelihood functions make this problem
an extremely challenging one for any numerical inference algorithm to tackle. Even just finding
M2 andM3 is an extremely difficult task as they are essentially spikesin the probability distribu-
tion. We show the recovered 1-D posterior distributions andprofile likelihood with MULTI NEST

in Figs. 6 and 5, respectively. Withnlive = 4, 000 andtol = 0.5 (resulting in about 725,000 likeli-
hood evaluations), MULTI NEST finds all three Gaussians and the recovered posterior distributions
are almost identical to the analytical posterior distributions. However, the profile likelihood func-
tions are highly inaccurate and very noisy. This is because the high likelihood regions have not
been explored in great detail as the sampling proceeds according to the posterior mass, which is
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Figure 4: 1-D and 2-D (a) marginalized posterior distributions and (b) profile likelihood functions for the
8-D Gaussian mixture problem. The contours represent the 68% and 95% Bayesian credible regions in (a)
and profile likelihood confidence intervals in (b) respectively. The plots were generated after dividing the
analytical posterior values in200 bins so that a fair comparison can be made with the distributions obtained
using MULTI NEST.

heavily concentrated inM1. Therefore, the modesM2 andM3 are explored with a proportionally
lower number of live points, as their posterior mass is small.

This problem can be solved by running MULTI NEST with nlive = 20, 000 and decreasingtol
to 1 × 10−4 which results in around 11 million likelihood evaluations.Increasing the number of
live points ensures thatM3 encloses more live points and is explored at higher resolution. As
can be seen from Fig. 6, the recovered profile likelihood functions are much more accurate and
less noisy with this setup. The 1-D profile likelihoods forθ1 andθ3 are almost identical to the
analytical ones, but we can see some under-sampling of the profile likelihood forθ2. Despite this,
just findingM3 is already an extremely challenging task for any numerical technique, including
GA, and although the recovered profile likelihood functionsby MULTI NEST are not perfect, they
are reasonably accurate, certainly within the2σ confidence region.

5. Application to the CMSSM

The Minimal Supersymmetric Standard Model (MSSM) [32, 33] with R-parity can solve the hier-
archy problem and provide a candidate dark matter (DM) particle. The MSSM with one particular
choice of universal boundary conditions at the grand unification scale, is called the Constrained
Minimal Supersymmetric Standard Model (CMSSM) [34]. In theCMSSM, the scalar massm0,
gaugino massm1/2 and tri–linear couplingA0 are assumed to be universal at a gauge unification
scaleMGUT ∼ 2 × 1016 GeV. In addition, at the electroweak scale one selectstan β, the ratio
of Higgs vacuum expectation values and sign(µ), whereµ is the Higgs/higgsino mass parameter
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Figure 5: 1-D posterior distributions for the first 3 parameters of the8-D Gaussian mixture problem. The
red curve shows the analytical posterior distribution while the blue dashed and grey dotted curves show
the posterior distributions recovered by MULTI NEST with nlive = 4, 000, tol = 0.5 andnlive = 20, 000,
tol = 1× 10−4 respectively. The upper and lower panels show the posteriorandln of posterior distributions
respectively.

whose square is computed from the potential minimisation conditions of electroweak symmetry
breaking (EWSB) and the empirical value of the mass of theZ0 boson,MZ . The family uni-
versality assumption is well motivated since flavour changing neutral currents are observed to be
rare. Indeed several string models (see, for example Ref. [35, 36]) predict approximate MSSM
universality in the soft terms.

The CMSSM has proved to be a popular choice for SUSY phenomenology because of the
small number of free parameters and it has recently been studied quite extensively in multi–
parameter scans, both from a frequentist [4, 5, 37] and a Bayesian perspective [6–8, 14, 15, 22, 26,
38]. Bayesian and frequentist analyses are expected to giveconsistent inferences for the CMSSM
parameters if the data are sufficiently constraining. However, several groups have concluded that
we do not yet have enough constraining power in the availabledata to overridethe influence of
priors in the Bayesian framework. Furthermore, the structure of the parameter space is such that
the likelihood presents “spikes” that contain little posterior mass (for reasonable choice of priors).
As a consequence, regions of high likelihood (favoured in a frequentist analysis) do not necessarily
match regions of large posterior mass (favoured under a Bayesian analysis), see e.g. [14]. There-
fore, Bayesian and frequentist inferences should not be expected to yield quantitatively consistent
results. Both hurdles are expected to be overcome once ATLASresults become available, see [39],
although the actual performance of different statistical approaches, as measured by their coverage
properties, has only just begun to be scrutinized [25, 40].

Here we focus on the algorithmic problem of obtaining reliable posterior probability and pro-
file likelihood maps with MULTI NEST. The authors of Ref. [26] claimed that the GA method
produces more accurate profile likelihood functions than MULTI NEST. They also raised questions
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Figure 6: 1-D profile likelihood functions for the first 3 parameters ofthe 8-D Gaussian mixture problem.
The red curve shows the analytical profile likelihood function while the blue dashed and grey dotted curves
show the profile likelihoods recovered by MULTI NEST with nlive = 4, 000, tol = 0.5 andnlive = 20, 000,
tol = 1 × 10−4 respectively. The upper and lower panels show the profile likelihood and−2 ln of pro-
file likelihood functions respectively. Green and magenta horizontal lines represent the1σ and2σ profile
likelihood intervals respectively.

about the accuracy of the posterior distributions obtainedwith MULTI NEST. The previous section
demonstrates that the posterior distributions from MULTI NEST are highly reliable, as they match
very well the analytical solution for both toy problems out to more than3σ in the tails. We stress
that this is the case even for the less computationally intensive MULTI NEST configuration, with
nlive = 1000 andtol = 0.5.

We now reconstruct both the posterior distribution and the profile likelihood for the CMSSM
parameters using MULTI NEST, as implemented in theSuperBayeS v1.5 code in almost ex-
actly the same setup employed in Ref. [26]. The set of CMSSM and SM parameters together con-
stitute an 8-dimensional parameter space withΘ =(m0, m1/2, A0, tan β, mt, mb(mb)

MS , αMS ,

αMS
s (MZ)) to be scanned and constrained with the presently available experimental data. The

ranges over which we explore these parameters arem0,m1/2 ∈ (0.05, 4) TeV,A0 ∈ (−4, 4) TeV,

tan β ∈ (2, 65), mt ∈ (167.0, 178.2) GeV,mb(mb)
MS ∈ (3.92, 4.48) GeV, 1/αMS(MZ) ∈

(127.835, 128.075) and αMS
s (MZ) ∈ (0.1096, 0.1256). We use a slightly wider range fortan β

and a smaller range forA0 which was allowed to vary between−7 TeV and7 TeV in [26] as there
is very little probability mass as well as very few points with high likelihood with|A0| > 4 TeV.
The observables used in our analysis are exactly the same as given in Table 1 of Ref. [26], in order
to allow a comparison.

As discussed in Secs. 3 and 4, a largernlive and smallertol should be used for profile likelihood
analyses with MULTI NEST. We therefore usednlive = 20, 000 andtol = 1 × 10−4. Flat priors
were imposed on all 8 parameters with parameter ranges described above. This resulted in about 5.5
million likelihood evaluations (compared to 3 million likelihood evaluations for the GA method)
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Figure 7: 2-D (a) marginalized posterior distributions and (b) profile likelihoods for the CMSSM parameters
using all presently available constraints. The contours represent the 68% and 95% Bayesian credible regions
in (a) and profile likelihood confidence intervals in (b). Flat priors with 20,000 live points were used with
tol set to1 × 10−4 (no smoothing applied to the plots). The mean and best-fit parameters values are shown
by a black cross and a green circle, respectively.

taking 6 days on 10 2.4GHz CPUs and returned an evidence valueof log(Z) = −18.62 ± 0.08.
The resultant 2-D marginalized posterior distributions and profile likelihoods in them1/2 − m0

andtan β −m0 planes are shown in Fig. 7. By comparing the posterior distribution in the upper
left panel of Fig. 7 with the upper left panel of Fig. 13 in [14], obtained with the same setup but
with nlive = 4, 000 andtol = 0.5, it is apparent that the posterior is stable with respect to increas-
ing the number of samples (Fig. 7 uses∼ 20 times more samples than the corresponding figure
in Ref. [14]). Indeed, the evidence value obtained with thissetup islog(Z) = −18.28 ± 0.14.
The difference in log evidence between the two setups is thus∆ log(Z) = −0.34 ± 0.16. For
the log prior scans, the difference in log evidence between the two configurations is even lower,

– 12 –



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4

λ

m0 (TeV)
 0  0.5  1  1.5  2

m1/2 (TeV)
-4 -3 -2 -1  0  1  2  3  4

A0 (TeV)
 10  20  30  40  50  60

tanβ

global best-fit
COA best-fit

1-σ
2-σ

 0

 4

 8

 12

 16

 0  1  2  3  4

∆χ
2

m0 (TeV)
 0  0.5  1  1.5  2

m1/2 (TeV)
-4 -3 -2 -1  0  1  2  3  4

A0 (TeV)
 10  20  30  40  50  60

tanβ

Figure 8: 1-D profile likelihoods for the CMSSM parameters normalizedto the global best-fit point. The
red solid and blue dotted vertical lines represent the global best-fit point (χ2 = 9.26, located in the focus
point region) and the best-fit point found in the stau co-annihilation region (χ2 = 11.38) respectively. The
upper and lower panel show the profile likelihood and∆χ2 values, respectively. Green (magenta) horizontal
lines represent the1σ (2σ) approximate confidence intervals. MULTI NEST was run with flat priors, 20,000
live points andtol = 1× 10−4.

∆ log(Z) = −0.08 ± 0.14. As this systematic difference is comparable with the statistical
uncertainty, we can conclude that the posterior mass which is being missed by the standard,
Bayesian setup is negligible (especially so given that the systematic difference is much less than
the typical difference in thresholds on the Jeffreys’ scalefor the strength of evidence, which are
at∆ log(Z) = 1.0, 2.5, 5.0, see e.g. [27]). This leads us to reject the speculation in Ref. [26] re-
garding the validity of posterior probability distributions obtained with the standard configuration
of MULTI NEST.

The 2-D profile likelihood plots (bottom panels in Fig. 7) should be compared with Fig. 1(a)
in Ref. [26], which were obtained with the GA3. Our best-fit point (i.e, the unconditional MLE)
hasχ2 = 9.26 and lies in the focus point region. Therefore, 1σ and 2σ regions are approximately
delimited byχ2 < 11.56 andχ2 < 15.43, respectively. The MULTI NEST best-fit point has a
slightly betterχ2 value than the GA best-fit point (χ2 = 9.35). However, MULTI NEST 1σ and
2σ regions are much larger than the corresponding GA regions. This is because MULTI NEST has
been able to map out more accurately the regions surroundingthe best-fit than GA. By comparing
2-D posterior and profile likelihood plots in Fig. 7, we notice that most of the 1σ profile likelihood
interval in the focus point region of them1/2 −m0 lies outside of the corresponding 2σ Bayesian
credible interval. This is a clear sign that the high likelihood region in the focus point region is
spike-like. These regions are not well explored by MULTI NEST with the standard configuration
(tol = 0.5). If one is interested in mapping out the posterior, however, this is fully justified, as
these regions contribute almost nothing to the Bayesian evidence or the posterior probability. If
however one wants to use MULTI NEST for profile likelihood intervals, then it is imperative to map

3We have verified that reducingnlive = 4, 000, while keepingtol = 1 × 10−4, leads to profile likelihoods very
similar to the ones shown in Fig. 7, albeit slightly more noisy. We thus do not show those results, but we remark that
this configuration reduces the computational effort by a factor of ∼ 3 compared with the case wherenlive = 20, 000,
without degrading the profile likelihood results appreciably.
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Figure 9: 2-D profile likelihood functions for (a) log priors and (b) flat+log merged chains for CMSSM
parameters. The contours represent the 68% and 95% profile likelihood confidence intervals. 20,000 live
points were used withtol set to1× 10−4. The mean and best-fit parameters values are shown by black cross
and green circle respectively.

out those regions in much greater detail.

The values of global best-fit point and the best-fit point in stau co-annihilation region (COA)
found by MULTI NEST are listed in Tab. 1 and have similar parameter values to onesfound by GA.
Fig. 8, shows the 1-D profile likelihood. This figure should becompared with the corresponding
1-D profile likelihoods obtained with the GA method in Fig. 3 of Ref. [26].

In principle, the profile likelihood does not depend on the choice of priors. However, in order
to explore the parameter space using any Monte Carlo technique, a set of priors needs to be defined.
Any numerical sampling technique effectively defines a metric on the parameter space of interest,
and different choices of this metric will generally lead to different regions of the parameter space
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Figure 10: 1-D profile likelihoods for the CMSSM parameters for flat+logmerged chains, normalized to
the global best-fit point. The red solid and blue dotted vertical lines represent the global best-fit point (χ2 =

9.26, located in the focus point region) and the best-fit point found in the stau co-annihilation region (χ2 =

11.38) respectively. The upper and lower panel show the profile likelihood and∆χ2 values, respectively.
Green (magenta) horizontal lines represent the1σ (2σ) approximate confidence intervals. MULTI NEST was
run with flat priors, 20,000 live points andtol = 1× 10−4.

Global BFP COA BFP
(located in FP region)

Model and Nuisance Parameters
m0 1748.7 GeV 159.0 GeV
m1/2 334.1 GeV 411.4 GeV
A0 1949.5 GeV 946.2 GeV
tanβ 55.7 19.53

mt 173.0 GeV 173.3 GeV

mb(mb)
MS 4.19 GeV 4.20 GeV

αMS
s (MZ) 0.1178 0.1182

1/αMS(MZ) 127.952 127.959

Observables
mW 80.367 GeV 80.371 GeV
sin2 θeff 0.23156 0.23153

δaSUSY
µ × 1010 6.8 13.7

BR(B → Xsγ)× 104 3.45 2.95
∆MBs

17.31 ps−1 19.0 ps−1

BR(Bu → τν)× 104 1.38 1.46

Ωχh
2 0.11408 0.11038

BR(Bs → µ+µ−) 4.08× 10−8 3.89 × 10−8

Table 1: Best-fit parameter and observable values found from flat+logmerged chains. These quantities are shown for
both the global best-fit point, located in the focus point (FP) region, as well as the best-fit point in the stau co-annihilation
(COA) region.

to be explored in greater or lesser detail. Therefore, different choice of priors might lead to slightly
different profile likelihoods. Uniform priors inlog(m0) andlog(m1/2) (calledlog priors) are often
employed in Bayesian analyses of CMSSM as the masses are scale parameters. In order to get
a feeling for the robustness of our profile likelihoods, we show the 2-D profile likelihoods from a
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scan usinglog priors in Fig. 9(a). As expected, the parameter space with lowerm0 andm1/2 values
has been explored more thoroughly. The best-fit point found hasχ2 = 11.44 and lies in the stau
co-annihilation region (COA), thus this scan withlog priors has missed a a higher likelihood point
in the focus point region. Conversely, the scan with flat priors has explored the COA region in
similar detail. Thus, while these tunings of MULTI NEST are clearly superior for profile likelihood
analysis than the default settings for Bayesian analysis, there remains sensitivity to the choice of
priors used in the scans as previously seen in the literature.

We can obtain more robust profile likelihoods by simply merging the flat andlog prior scans,
the performing the profiling over the joint set of samples (encompassing about 10.85 million
points). This does not come at a greater computational cost given that a responsible Bayesian
analyses would estimate sensitivity to the choice of prior as well. The resulting 2-D and 1-D pro-
file likelihoods are shown in Figs. 9(b) and 10 respectively.The most obvious difference between
the merged and flat profile likelihood distributions is the appearance of the funnel region at low
m1/2 values which was not explored thoroughly with flat priors because of the its smaller prob-
ability mass. Apart from this, it is clear that the merged profile likelihood distributions are quite
similar to the distributions obtained with flat prior (see Fig. 7(b)).

In the left panel of Fig. 11, we show the 2-D profile likelihoodfunctions spin-independent
scattering cross-section of the neutralino and a protonσSIp versus the neutralino massmχ along
with the latest experimental exclusion limits at the 90% confidence level from CDMS-II [41] and
XENON100 [42], derived under standard halo assumptions (and in particular, assuming a local
DM densityρχ = 0.3 GeV/cm3). Our global best-fit point has quite a large cross-section (1.85 ×

10−7 pb) and almost the entire1σ region in the FP region would already be excluded by current
experimental limits if one takes them at face value. However, there are several uncertainties that
need to be accounted for in order to achieve a robust exclusion: astrophysical uncertainties in
the local DM density and velocity distribution [43–45], systematic uncertainties related to our
position in the Milky Way halo [46], clumpiness of the DM distribution and impact of baryonic
physics [47], hadronic matrix elements uncertainties [48]. Taken together, all those uncertainties
can easily exceed an order of magnitude. For this reason, we have chosen not to include the current
direct detection limits in the likelihood function, although we notice qualitatively that the FP best-
fit point is coming under pressure from such limits. On the other hand, the best-fitσSIp in the COA
region is relatively small (2.02 × 10−9 pb) and is well below the current experimental limits.

Regarding indirect detection prospects, we plot the 2-D profile likelihood functions for the
velocity-averaged neutralino self-annihilation cross-section 〈σv〉 against the neutralino massmχ

in the right panel of Fig. 11. Although there is a small regionof the parameter space around 300
GeV≤ mχ ≤ 500 GeV and−27.5 < log10 〈σv〉 < −26.5 with high likelihood points found by
GA in [26] and missed by MULTI NEST, in general we have mapped the profile likelihood more
thoroughly as can be seen by comparing the right panel of Fig.11 with Fig. 6(a) in [26]. Our
global best-fit point has〈σv〉 = 2.29 × 10−26cm3 s−1 which is very similar to the global best-fit
point found in [26] and therefore we reach the same conclusion, namely that it might be possible to
cover part of this high-likelihood FP region in the future with the Large Area Telescope (LAT)[49]
aboard the Fermi gamma-ray space telescope.
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Figure 11: 2-D profile likelihood functions for flat+log merged chains for spin-independent scattering cross-
section of the neutralino and a protonσSI

p versus the neutralino massmχ (left panel) and velocity-averaged
neutralino self-annihilation cross-section〈σv〉 versus the neutralino massmχ (right panel). The contours
represent the 68% and 95% profile likelihood confidence intervals. 20,000 live points were used withtol set
to 1 × 10−4. The best-fit parameters values are shown by green circle. The latest experimental exclusion
limits at the 90% confidence level from CDMS-II [41] and XENON100 [42] are also shown in the left panel.

6. ConclusionsGlobal BFP COA BFP
(located in FP region)

mχ 136.34 GeV 156.46 GeV
Direct Detection

σSI
p 1.85 × 10−7 pb 2.02× 10−9 pb

σSD
p 1.96 × 10−6 pb 4.05× 10−6 pb

σSD
n 1.34 × 10−6 pb 3.00× 10−6 pb

Indirect Detection
〈σv〉 2.29 × 10−26 cm3 s−1 4.89× 10−28 cm3 s−1

Table 2: Best-fit neutralino mass and dark matter direct and in-
direct detection observables. These quantities are shown for both
the global best-fit point, located in the focus point (FP) region, as
well as the best-fit point in the stau co-annihilation (COA) region.

As the LHC impinges on the most antic-
ipated regions of SUSY parameter space,
the need for statistical techniques that will
be able to cope with the complexity of
SUSY phenomenology is greater than ever.
Early on, the data will not be strong enough
to dominate the impact of priors on Bayesian
inference; thus, the field is preparing to
present the complementary information pro-
vided by Bayesian techniques and the tra-
ditional results from the profile likelihood.

In this paper we have shown that, when configured appropriately, M ULTI NEST can be suc-
cesfully employed for approximating the profile likelihoodfunctions, even though it was primarily
designed for Bayesian analyses. In particular, we have demonstrated that it is important to use a
termination criterion that allows MULTI NEST to explore high-likelihood regions. We have also
shown that the likelihood spikes which play a key role in the profile likelihood and are missed by
MULTI NEST when it is run in Bayesian analysis mode, have no bearing on the posterior distribu-
tion. Despite these significant improvements, we do find thatthe prior used in the MULTI NEST

scan can influence the profile likelihood ratio, particularly if the global maximum of the likeli-
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hood is spiky and in a region with extremely low prior probability. This can be partially abated by
merging samples from scans with different priors, which areoften available from studies of prior
dependence in the corresponding Bayesian results.

We compared our results and conclusions to those reported inRef. [26], which used genetic
algorithms for mapping the profile likelihood functions. The authors of that study concluded that
their sampling algorithm resulted in better approximations to the profile likelihood than those ob-
tained with samples from Bayesian techniques like MCMC and MULTI NEST. They also speculated
that MULTI NEST might not be sufficiently accurate even for Bayesian analyses. Our results indi-
cate that when run appropriately, MULTI NEST provides a significantly better approximation to the
profile likelihood than the genetic algorithm method presented in Ref. [26], particularly in the ex-
ploration of the parameter space near the boundaries of the interval, albeit at a slightly increased
computational cost. There are also indications that MULTI NEST might be more reliable in identify-
ing the overall best-fit point than the genetic algorithm, asthe latter only found the overall best-fit
in 1 out of 10 runs (see Fig. 8 in Ref. [26]).

We end by speculating that the ideal algorithm for profile likelihood based analyses in com-
plex, multi-modal problems such as supersymmetric parameter spaces may require a hybrid of
global scans like MCMC and MULTI NEST together with dedicated maximization packages like
M INUIT [50]. The challenge for most maximization packages – whether they are based on gradi-
ent descent, conjugate gradient descent, or the EM-algorithm – is that they can get stuck in local
maxima. Hence, it seems clear that a more global scan will be required. However, once the scan-
ning algorithm has located a basin of attraction the maximization packages are likely to be the best
tool for refining the local maxima. As we discussed here, MULTI NEST with a low tolerance acts
as a maximizer, and can be subject to similar problems with local maxima. The nested structure
provided by the nested sampling algorithm may provide an efficient and practical way for defining
those basins of attraction, reducing the number of points that will initiate a dedicated maximiza-
tion. In future work we wish to investigate these hybrid approaches and compare MINUIT and
MULTI NEST for this dedicated maximization step.
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